WO2003069649A1 - Electrode, electron emitter, and device using the same - Google Patents

Electrode, electron emitter, and device using the same Download PDF

Info

Publication number
WO2003069649A1
WO2003069649A1 PCT/JP2002/005964 JP0205964W WO03069649A1 WO 2003069649 A1 WO2003069649 A1 WO 2003069649A1 JP 0205964 W JP0205964 W JP 0205964W WO 03069649 A1 WO03069649 A1 WO 03069649A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
boron
carbon
electron
electrode according
Prior art date
Application number
PCT/JP2002/005964
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Sugino
Masaki Kusuhara
Masaru Umeda
Original Assignee
Kabushiki Kaisha Watanabe Shoko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Watanabe Shoko filed Critical Kabushiki Kaisha Watanabe Shoko
Priority to JP2003568680A priority Critical patent/JPWO2003069649A1/en
Publication of WO2003069649A1 publication Critical patent/WO2003069649A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J3/00Details of electron-optical or ion-optical arrangements or of ion traps common to two or more basic types of discharge tubes or lamps
    • H01J3/02Electron guns
    • H01J3/021Electron guns using a field emission, photo emission, or secondary emission electron source
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2201/00Electrodes common to discharge tubes
    • H01J2201/30Cold cathodes
    • H01J2201/304Field emission cathodes

Definitions

  • the present invention relates to an electrode and an electron-emitting device utilizing electron emission from a thin film.
  • Cold cathodes can be applied to field emission displays, electron beam exposure machines, microwave traveling wave tubes, imaging devices, and the like. Further, it can be used as an electron source of a material evaluation device such as an Auger electron spectrometer using an electron beam. Further, the light-emitting element can be used for a lighting device or a display lamp, and can be used for various applications. Conventionally, research and development has been conducted on electron emitters called spindt type, which have a spire shape made of metal or silicon as a cold cathode. There is a demand for device reliability, and improvements in the characteristics of Spindt-type cold cathodes and research and development of new cold cathode materials are underway.
  • Diamond, aluminum nitride, and boron nitride have attracted attention as materials having a negative electron affinity. Electron emission is observed in the field, and it is expected to be applied to field emission displays. However, there was a problem about the spatial stability of the electron emission characteristics from these carbon nanotubes and carbon nanofibers. Further low-voltage operation and high-current operation are desired in the future.
  • the present invention has been made in view of the above situation, and an object of the present invention is to provide a cold cathode having electron emission characteristics superior to conventional ones. Disclosure of the invention
  • the electrode of the present invention has a film on a base material capable of supplying electrons, the film has an electric field, and has a state density capable of tunneling electrons from the base material. I do.
  • the electric field in the film is formed by a negative charge in the one material and a positive charge in the film.
  • the positive charges in the film are generated by any of an amorphous region, a crystal grain boundary, and the presence of impurity atoms.
  • a film having a thickness of 30 nm or less and an electron affinity of 4.0 eV or less is provided on the surface. It is to be noted that the thinner the film is, the more preferable it is. The effect becomes remarkable at 10 nm or less, and 3 to 5 nm is preferable in consideration of the production cost.
  • the electron affinity is preferably 3.5 eV or less. The smaller the electron affinity is, the more preferable it is.
  • the film is any one of a compound of a group II and a nitrogen atom, or an oxide containing boron nitride carbon, boron carbide, carbon nitride, or boron.
  • Boron nitride (BN), aluminum nitride (AIN), and indium nitride (InN) are examples of binary compounds of group III atoms and nitrogen atoms, and these are binary compounds. Can also be used.
  • the above-described film includes any one of atoms of silicon, zeolite, phosphorus, oxygen, and lithium. When such an atom is contained, it has an effect of increasing the Fermi level.
  • the content is preferably 0.001% to 1% in atom%, more preferably 0.01% to 0.1%.
  • hydrogen is present on the surface of the film.
  • the effect of reducing electron affinity is achieved.
  • a hydrogen plasma treatment may be performed after the film is deposited.
  • the film is present on a surface of a substrate having irregularities or a spire shape. If the membrane has irregularities or a spire shape, inside the membrane and on the membrane surface The effect of increasing the electric field strength by the unevenness or the spire-shaped portion in the above is achieved.
  • the invention is characterized in that the film is present on the surface of a carbon nanotube or a carbon nanofiber. In this case, the effect of further increasing the electric field strength in the film and on the film surface is achieved.
  • the electron emission device of the present invention is characterized in that the electrode is provided as a cathode. Further, the plasma display of the present invention is characterized in that the electrodes are used as electrodes of a discharge cell.
  • the electron-emitting device of the present invention When the electron-emitting device of the present invention is used for a field emission display, a low-voltage operation and a clear image can be realized.
  • an electron beam exposure apparatus with high resolution and improved throughput can be realized.
  • the electron-emitting device of the present invention is used for a microwave traveling wave tube, a high output microwave output can be obtained.
  • the electron-emitting device of the present invention when used in a material evaluation device using an electron beam, an improvement in evaluation accuracy can be realized.
  • the electrode of the present invention is used for an electrode of a light-emitting element.
  • the electrode of the present invention is used for a light-emitting element, clear light emission with high luminance can be obtained, and high-quality illumination and display can be realized.
  • FIG. 1 is a sectional view showing Embodiment 1 of the electron-emitting device of the present invention.
  • FIG. 2 is a sectional view showing Embodiment 2 of the electron-emitting device of the present invention.
  • FIG. 3 is a sectional view showing Embodiment 3 of the electron-emitting device of the present invention.
  • FIG. 4 is a sectional view showing Embodiment 4 of the electron-emitting device of the present invention.
  • FIG. 5 is a cross-sectional view showing Example 5 of the light emitting device of the present invention.
  • FIG. 6 is a sectional view showing Example 6 of the organic light emitting device of the present invention.
  • the electrode and the electron-emitting device according to the present invention are a conventional Spindt-type cold cathode made of silicon-molybdenum, a cold cathode made by providing irregularities on the surface of another metal or a semiconductor substrate, and a carbon nanotube on a metal substrate.
  • a film corresponding to the present invention is provided with a thickness of 50 nm or less on a cold cathode on which a carbon nanofiber is produced, and on a flat substrate made of metal or semiconductor.
  • the thin film of the present invention may be provided. By doing so, it is possible to provide a flat-type electron emission device that is effective in improving the electron emission characteristics and reliability of the cold cathode described above and that is easy to manufacture.
  • FIG. 1 is a schematic sectional view of an electron-emitting device according to a first embodiment of the present invention.
  • the electron-emitting device of the first embodiment includes a substrate 1, a boron nitride thin film 2, a SiO x film 3, an extraction electrode 4, an anode electrode 5, power supplies 6, 7, and a power source electrode 8.
  • silicon was used as the substrate 1.
  • a 10 nm-thick boron nitride thin film 2 was deposited thereon by plasma-assisted chemical vapor deposition (CVD) using boron trichloride and nitrogen gas.
  • the boron nitride thin film 2 was doped with iodine atoms at a concentration of 1 ⁇ 10 18 cm_3.
  • a TiO x thin film 3 is formed on the boron nitride thin film 2 by 800 nm, and Ti (20 nm) / Au (500 nm) is formed by electron beam evaporation as a metal for the extraction electrode 4. I do.
  • the extraction electrode 4 was grounded, a bias was applied to each of the cathode electrode 8 and the anode electrode 5, and the emission current was measured at a degree of vacuum of 8.times.10.sup.- 7 Torr or less.
  • the anode voltage was kept constant at 500 V, and the cathode voltage was changed. Electron emission started when 10 V was applied to the force source electrode 8, and a high emission current of 0.1 mA was obtained when 30 V was applied.
  • a 10 nm-thick boron nitride thin film is deposited on a flat silicon substrate by the above-mentioned method, and the electron emission characteristics are kept constant at 125 m between the boron nitride thin film and the anode electrode 5 without forming the extraction electrode 4.
  • the surface roughness of the film was evaluated. A surface roughness of 0.3-0.7 nm was evaluated for a flat silicon substrate surface, and a surface roughness of 0.6-1.2 nm was evaluated for a 10-nm-thick boron nitride film. .
  • the effective potential barrier height is evaluated to be about 0.6 eV, and the present invention makes it possible to significantly reduce the effective potential barrier height. A reduction in the electron emission threshold electric field can be expected.
  • boron nitride film was used, but all materials according to the present invention can be used other than boron nitride.
  • the boron nitride film was synthesized by plasma-assisted CVD.
  • various manufacturing methods such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and sputtering were used. Can be used.
  • boron nitride thin film 2 doped with zeo impurities was used, a boron nitride thin film 3 doped with atoms of donor impurities such as lithium, oxygen, and silicon can also be used. Similar impurities can be used for compounds consisting of a group III atom and a nitrogen atom other than boron nitride.
  • silicon was used as the substrate material, but other conductors and semiconductors such as metal, gallium arsenide, indium phosphide, silicon carbide, and gallium nitride can be used.
  • Ti / Au is used as the metal for the extraction electrode 4
  • various metals can be used instead of Cr and Au instead of Ti.
  • any metal that can form an ohmic electrode can be used as the metal for the cathode electrode 8
  • the substrate itself is used as the cathode electrode. be able to.
  • FIG. 2 is a schematic sectional view of an electron-emitting device according to a second embodiment of the present invention.
  • Spindt spire shape is formed on the silicon substrate 1, an electron emitting device boron carbon nitride film is provided et the of the present invention, the substrate 2 1, boron carbon nitride film 22, S i O x film 23, the extraction electrode 24, an anode electrode 25, power supplies 26 and 27, a cathode electrode 28, and a spire shape 29.
  • the boron nitride carbon thin film 22 of the present invention is formed on the spire portion 29.
  • Boron carbon nitride thin film 22 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was deposited to a thickness of 10 nm by plasma-assisted chemical vapor deposition using boron trichloride, methane, and nitrogen gas. .
  • the boron nitride carbon thin film 22 was doped with iodine atoms at a concentration of 1 ⁇ 10 18 cm ⁇ 3 .
  • a 1 (500 nm) was electron beam evaporated as a force source electrode 28 on the back surface of the silicon substrate 1.
  • the metal plate serving as the anode electrode 25 is opposed to the spire portion 29 having the boron nitride carbon thin film 22 in the vacuum chamber, and the interval is 1 25 im And Grounded extraction electrode 24, in addition to each Baia scan the Chikarasoichido electrode 2 8 and the anode electrode 2 5 was measured emission current at 8 X 1 0 7 T 0 rr following vacuum.
  • the anode voltage was kept constant at 500 V, and the force sword voltage was varied. By applying 20 V to the force source electrode 28, a high emission current of 0.1 mA was obtained.
  • boron nitride carbon thin film is used, but other materials described above including boron nitride can also be used.
  • FIG. 3 is a schematic sectional view of an electron-emitting device according to a third embodiment of the present invention.
  • the electron-emitting device of Example 3 has a silicon substrate 31 on which an n-type gallium nitride layer 30 is formed, a boron nitride carbon thin film 32, a Si x film 33, an extraction electrode 34, an anode electrode 35, a power supply 36, and 37.
  • the force sword electrode 38 is constituted.
  • a wafer obtained by growing a silicon-added n-type gallium nitride layer 30 by 1 m on an n-type silicon substrate 31 (111) surface by metal organic chemical vapor deposition is used as a substrate.
  • Hydrogen plasma is generated by microwaves to treat the surface of the gallium nitride layer 30.
  • the flat surface of the gallium nitride layer 30 changes to a surface having irregularities of several tens nm.
  • a boron-nitride carbon thin film 32 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was formed to a thickness of 10 nm by plasma-assisted chemical vapor synthesis using boron trichloride, methane, and nitrogen gas. Accumulated.
  • the boron nitride carbon thin film 32 was doped with iodine atoms at a concentration of 1 ⁇ 10 18 cm ⁇ 3 .
  • Ti (20 nm) / Au (500 nm) is formed as a metal for the extraction electrode 34 by an electron beam evaporation method.
  • Grounded extraction electrode 3 4 and each added server Iasu force cathode electrode 3 8 and the anode electrode 35 was measured emission current at degree of vacuum of 8 X 1 0- 7 T 0 rr .
  • the anode voltage was kept constant at 500 V and the force source voltage was varied. By applying 30 V to the force source electrode 38, a high emission current of 0.1 mA was obtained.
  • the uneven surface is formed by the hydrogen plasma treatment, but a gas containing oxygen, chlorine, fluorine, or the like can be used as a gas for generating plasma for forming the unevenness on the surface.
  • RF power can be used to generate plasma, and applying a bias to the sample during plasma processing is effective in controlling the surface shape.
  • FIG. 4 is a schematic sectional view of an electron-emitting device according to a fourth embodiment of the present invention.
  • This is an electron emission device in which carbon nanofibers 40 are formed on a metal substrate 41 and a boron nitride carbon film of the present invention is provided.
  • Carbon nanofibers 40 are formed on a metal substrate 41, and a boron nitride carbon thin film 42 of the present invention is formed thereon.
  • Boron carbon nitride thin film 42 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was deposited to a thickness of 10 nm by plasma-assisted chemical vapor deposition using boron trichloride, methane, and nitrogen gas. .
  • the boron nitride thin carbon film 4 2 was added Iou atom concentration of 1 X 1 0 1 8 c m_ 3.
  • 800 nm of S i ⁇ x thin film 43 was placed on the boron nitride carbon thin film 42, and T i (20 nm) / Au (500 nm) was used as the metal for extraction electrode 44 by electron beam. It is formed by a vapor deposition method.
  • the metal for the extraction electrode 44 and S The I_ ⁇ x thin film 4 3 is removed by etching, to form a window with a diameter of 5 m.
  • the metal plate to be the anode electrode 45 is made to face the boron nitride carbon thin film 42 in a vacuum chamber.
  • Grounded extraction electrode 4 4, the metal substrate 4 1 and cathodes when cathode electrode, and each of the bias added to the metal substrate 4 1 and the anode electrode 4 5, 8 X 1 0- 7 T orr degree of vacuum below in emission current was measured.
  • the anode voltage was kept constant at 500 V, and the force source voltage was changed. By applying 10 V to the metal substrate 41, a high emission current of 0.1 mA was obtained.
  • Example 2 as described in Example 1, the compound of the group III atom and the nitrogen atom, the oxide containing nitrogen-boron-carbon, boron carbide, carbon nitride, carbon-nitride was used as the material of the electron-emitting portion as described in Example 1. Any of these materials can be used. Further, in Examples 1 to 4, two or more electron-emitting portions can be manufactured on the same substrate to realize an array.
  • FIG. 5 is a schematic sectional view of a light emitting device using an electron-emitting device according to a fifth embodiment of the present invention.
  • This is a light emitting device (lamp) in which carbon nanofibers 50 are formed on a metal substrate 51 and the boron nitride carbon film of the present invention is provided.
  • the substrate 51, the boron nitride carbon thin film 52, the extraction electrode It consists of 54, an anode electrode 55, a power source electrode 58, a phosphor 510, and a glass tube 511.
  • a carbon nanofiber 50 is formed on a metal substrate 51, and a boron nitride carbon thin film 52 of the present invention is formed thereon.
  • the boron nitride carbon thin film 4 was doped with iodine atoms at a concentration of 1 ⁇ 10 18 cm ⁇ 3 .
  • the extraction electrode 54 on the mesh is attached, placed in a glass tube 511 in which the anode electrode 55 is formed on the phosphor 510, and vacuum-sealed. By applying 400 V to the extraction electrode 54 with respect to the force source electrode 58 and applying 10 kV to the anode electrode 55, a current of 500 A was obtained, and light emission was observed.
  • FIG. 6 does not show a schematic sectional view of an organic light emitting device using an electrode according to the sixth embodiment of the present invention.
  • An anode 62 is formed on a glass substrate 61 using an ITO transparent electrode, and a hole transport layer 63 and a light emitting layer 64 are formed thereon using an organic thin film. It consists of a boron oxide thin film 66 and a metal (lithium or magnesium) 67 with a small work function.
  • the cathode of the present invention the efficiency of electron injection can be improved, and an organic light-emitting device with improved light-emitting characteristics can be obtained.
  • the emission current was measured in the same manner as in the fourth embodiment using stainless steel fibers or fiber pieces instead of the carbon nanofibers 40 formed on the metal substrate 41 of the fourth embodiment of the present invention. The same characteristics as in the example were obtained.
  • a fiber or a fiber piece formed by boron and nitrogen is used to reduce the emission current as in the fourth embodiment. As a result of measurement, higher characteristics were obtained than in the fourth example.
  • an electron emission device having any one of a film of a compound of a group III atom and a nitrogen atom having an electric field, boron nitride carbon, boron carbide, carbon nitride, and an oxide containing boron is used.
  • Low voltage operation and high current operation are possible, and the effect of the present invention is further enhanced by having the film of the present invention on a substrate having a concave-convex ⁇ spire shape, or on a carbon nanotube or a carbon nanofiber.
  • the performance is also improved. This provides a high-performance electron emission device, which is effective as a key device of a display device, an electron beam exposure machine, an imaging device, a light emitting element, and a material evaluation device using an electron beam.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

A high-performance electron emitter capable of emitting electrons at low voltage with high luminance and leading to further improvement of the electron emission characteristic of a Spindt-type cold cathode, a carbon nanotube, and a carbon nanofiber. The electron emitter is provided as a key device of a flat panel display, an imager, an electron beam device, a microwave traveling-wave tube, or an illuminator. A film having an electric field therein, having a thickness of below 50 nm and an electron affinity of below 4.0 eV is formed on a Spindt-type cold cathode, a carbon nanotube, a carbon nanofiber, and a metal or semiconductor substrate having an irregular surface to fabricate an electron emitter. The film is made of a compound of a nitride atom and a group III element atom, such as aluminum nitride, boron nitride, aluminum boron nitride, aluminum gallium nitride, or boron gallium nitride, boron carbon nitride, boron carbide, carbon nitride, or an oxide containing boron.

Description

明 細 書  Specification
電極、 電子放出素子およびそれを用いた装置 技術分野 Electrode, electron-emitting device and device using the same
本発明は薄膜からの電子放出を利用する電極、 電子放出素子に関するものであ る。 背景技術  The present invention relates to an electrode and an electron-emitting device utilizing electron emission from a thin film. Background art
冷陰極はフィールドェミッションディスプレー、 電子ビーム露光機、 マイクロ 波進行波管、 撮像素子等に応用できる。 また、 電子ビームを用いたォ一ジェ電子 分光装置等の材料評価装置の電子源としても用いることができる。 更に、 発光素 子として照明装置や表示ランプにも用いることができ、様々な用途に対応できる。 従来、 冷陰極としては金属やシリコンを用いて尖塔形状を作製したスピント型 と呼ばれている電子放出素子が研究開発されてきたが、 上記の応用に対して更に 低電圧動作、 高電流動作および素子の信頼性が要求され、 スピント型冷陰極の特 性改善や新しい冷陰極用材料の研究開発がすすめられている。 ダイヤモンド、 窒 化アルミニウム、 窒化ホウ素は負性電子親和力を有する材料として注目され、 ま た、 近年、 力一ボンナノチューブや力一ボンナノファイバといった電界集中因子 を大きくできる材料の合成がすすみ、 低電圧での電子放出が観測され、 フィ一ル ドエミッションディスプレイ等への応用が期待されている。 しかしこれらの力一 ボンナノチューブやカーボンナノファイバからの電子放出特性における空間安定 性について問題があった。 今後更なる低電圧動作、 高電流動作も望まれている。  Cold cathodes can be applied to field emission displays, electron beam exposure machines, microwave traveling wave tubes, imaging devices, and the like. Further, it can be used as an electron source of a material evaluation device such as an Auger electron spectrometer using an electron beam. Further, the light-emitting element can be used for a lighting device or a display lamp, and can be used for various applications. Conventionally, research and development has been conducted on electron emitters called spindt type, which have a spire shape made of metal or silicon as a cold cathode. There is a demand for device reliability, and improvements in the characteristics of Spindt-type cold cathodes and research and development of new cold cathode materials are underway. Diamond, aluminum nitride, and boron nitride have attracted attention as materials having a negative electron affinity. Electron emission is observed in the field, and it is expected to be applied to field emission displays. However, there was a problem about the spatial stability of the electron emission characteristics from these carbon nanotubes and carbon nanofibers. Further low-voltage operation and high-current operation are desired in the future.
このような状況でスピント型冷陰極の特性改善については表面への異なった材 料のコーティングが検討されてきている。 また、 カーボンナノチューブやカーボ ンナノファイバからの電子放出時の空間安定性を向上させるためにもコーティン グ技術が注目される。 これまでにいくつかの試みが為されているが、 更に優れた 電子放出特性の実現が望まれている。  Under these circumstances, to improve the characteristics of the Spindt-type cold cathode, coating of different materials on the surface has been studied. Coating technology is also attracting attention in order to improve the spatial stability during electron emission from carbon nanotubes and carbon nanofibers. Some attempts have been made so far, but it is desired to realize more excellent electron emission characteristics.
本発明は上記の状況を鑑みてなされたもので、 従来に優る電子放出特性をもつ た冷陰極を提供することを目的とする。 発明の開示 The present invention has been made in view of the above situation, and an object of the present invention is to provide a cold cathode having electron emission characteristics superior to conventional ones. Disclosure of the invention
上記目的を達成するための本発明の電極は電子供給可能な下地材料上に膜があ り、 前記膜が電界を有し、 前記下地材料からの電子がトンネルできる状態密度を 有することを特徴とする。  In order to achieve the above object, the electrode of the present invention has a film on a base material capable of supplying electrons, the film has an electric field, and has a state density capable of tunneling electrons from the base material. I do.
また、 前記膜内の電界が前記一材料内の負電荷と前記膜内の正電荷により形成 されていることを特徴とする。  Further, the electric field in the film is formed by a negative charge in the one material and a positive charge in the film.
また、 前記膜内の正電荷がアモルファス領域、 結晶粒界、 不純物原子の存在の いずれかにより生成されることを特徵とする。 なお、 正電荷の密度は高いほど好 ましい。 1 X 1 0 1 7 c m— 3以上あれば効果的である。 Further, it is characterized in that the positive charges in the film are generated by any of an amorphous region, a crystal grain boundary, and the presence of impurity atoms. The higher the positive charge density, the better. 1 X 10 17 cm- 3 or more is effective.
また、 厚さ 3 0 n m以下、 電子親和力が 4 . 0 e V以下の膜を表面に有するこ とを特徴とする。 なお、 膜の厚さは薄いほど好ましく、 1 0 n m以下でその効果 が顕著になり、 製造コストを考慮して 3— 5 n mが好ましい。 また、 電子親和力 としては 3 . 5 e V以下が好ましい。 電子親和力は小さいほど好ましく、 マイナ スの値を取れば更に好ましい。  In addition, a film having a thickness of 30 nm or less and an electron affinity of 4.0 eV or less is provided on the surface. It is to be noted that the thinner the film is, the more preferable it is. The effect becomes remarkable at 10 nm or less, and 3 to 5 nm is preferable in consideration of the production cost. The electron affinity is preferably 3.5 eV or less. The smaller the electron affinity is, the more preferable it is.
また、前記の膜が I I I族原子と窒素原子の化合物、窒化ホウ素炭素、炭化ホウ素、 窒化炭素、 ホウ素を含む酸化物のいずれかであることを特徴とする。 I I I族原子と 窒素原子の二元化合物として窒化ホウ素(B N ) 、窒化アルミニウム (A I N ) 、 窒化インジウム ( I n N ) があげられ、 それらの二元化合物を混晶にした多元化 合物混晶も用いることができる。  Further, the film is any one of a compound of a group II and a nitrogen atom, or an oxide containing boron nitride carbon, boron carbide, carbon nitride, or boron. Boron nitride (BN), aluminum nitride (AIN), and indium nitride (InN) are examples of binary compounds of group III atoms and nitrogen atoms, and these are binary compounds. Can also be used.
また、 前記の膜にシリコン、 ィォゥ、 リン、 酸素、 リチウムのいずれかの原子 を含むことを特徴とする。 かかる原子を含有する場合、 フェルミ準位の上昇とい う効果を奏する。 含有量としては原子%で 0 . 0 0 1 %— 1 %が好ましく 0 . 0 1 % - 0 . 1 %がより好ましい。  In addition, the above-described film includes any one of atoms of silicon, zeolite, phosphorus, oxygen, and lithium. When such an atom is contained, it has an effect of increasing the Fermi level. The content is preferably 0.001% to 1% in atom%, more preferably 0.01% to 0.1%.
また、 前記膜の表面に水素が存在することを特徴とする。 表面に水素が存在す る場合には、 電子親和力の低下という効果が達成される。 なお、 表面に水素を存 在させるためには、 膜の堆積後、 水素プラズマ処理を行えばよい。  Further, hydrogen is present on the surface of the film. When hydrogen is present on the surface, the effect of reducing electron affinity is achieved. In order to make hydrogen exist on the surface, a hydrogen plasma treatment may be performed after the film is deposited.
また、 前記の膜が凹凸を有するまたは尖塔形状を有する基板の表面に存在する ことを特徴とする。 膜が凹凸または尖塔形状部を有する場合、 膜内および膜表面 での凹凸又は尖塔形状部で電界強度を上昇させるという効果が達成される。 Further, the film is present on a surface of a substrate having irregularities or a spire shape. If the membrane has irregularities or a spire shape, inside the membrane and on the membrane surface The effect of increasing the electric field strength by the unevenness or the spire-shaped portion in the above is achieved.
また、 前記の膜がカーボンナノチューブまたはカーボンナノファイバの表面に 存在することを特徴とする。 この場合には更に膜内および膜表面の電界強度が上 昇するという効果を達成する。  Further, the invention is characterized in that the film is present on the surface of a carbon nanotube or a carbon nanofiber. In this case, the effect of further increasing the electric field strength in the film and on the film surface is achieved.
また、本発明の電子放出装置は前記電極を陰極として備えたことを特徴とする。 更に、 本発明のプラズマディスプレイは前記電極を放電セルの電極として用いた ことを特徴とする。  Further, the electron emission device of the present invention is characterized in that the electrode is provided as a cathode. Further, the plasma display of the present invention is characterized in that the electrodes are used as electrodes of a discharge cell.
また、 本発明の電子放出素子をフィールドエミツションディスプレイに用いた 場合、 低電圧動作、 明瞭な画像を実現できる。  When the electron-emitting device of the present invention is used for a field emission display, a low-voltage operation and a clear image can be realized.
また、 本発明の電子放出素子を電子ビーム露光装置に用いた場合、 高解像度で スループットの向上した電子ビーム露光装置が実現できる。  When the electron-emitting device of the present invention is used in an electron beam exposure apparatus, an electron beam exposure apparatus with high resolution and improved throughput can be realized.
また、 本発明の電子放出素子をマイクロ波進行波管に用いた場合、 高出力マイ クロ波出力を得ることができる。  Further, when the electron-emitting device of the present invention is used for a microwave traveling wave tube, a high output microwave output can be obtained.
また、 本発明の電子放出素子を撮像素子に用いた場合、 明瞭な画像を実現でき る。  When the electron-emitting device of the present invention is used for an image sensor, a clear image can be realized.
また、本発明の電子放出素子を電子ビームを用いた材料評価装置に用いた場合、 評価精度の向上が実現できる。  Further, when the electron-emitting device of the present invention is used in a material evaluation device using an electron beam, an improvement in evaluation accuracy can be realized.
また、 本発明の電極を発光素子の電極に用いることを特徴とする。 本発明の電 極を発光素子に用いた場合、 高輝度で鮮明な発光が得られ、 高品質な照明および 表示が実現できる。  Further, the electrode of the present invention is used for an electrode of a light-emitting element. When the electrode of the present invention is used for a light-emitting element, clear light emission with high luminance can be obtained, and high-quality illumination and display can be realized.
また、 本発明の電極を用いた発光素子を液晶ディスプレイのバックライトに用 いた場合、 高輝度で消費電力の少ない液晶ディスプレイが実現できる。 図面の簡単な説明  Further, when the light emitting element using the electrode of the present invention is used for a backlight of a liquid crystal display, a liquid crystal display with high luminance and low power consumption can be realized. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の電子放出装置の実施例 1を示す断面図  FIG. 1 is a sectional view showing Embodiment 1 of the electron-emitting device of the present invention.
図 2は、 本発明の電子放出装置の実施例 2を示す断面図  FIG. 2 is a sectional view showing Embodiment 2 of the electron-emitting device of the present invention.
図 3は、 本発明の電子放出装置の実施例 3を示す断面図  FIG. 3 is a sectional view showing Embodiment 3 of the electron-emitting device of the present invention.
図 4は、 本発明の電子放出装置の実施例 4を示す断面図  FIG. 4 is a sectional view showing Embodiment 4 of the electron-emitting device of the present invention.
図 5は、 本発明の発光素子の実施例 5を示す断面図 図 6は、 本発明の有機発光素子の実施例 6を示す断面図 FIG. 5 is a cross-sectional view showing Example 5 of the light emitting device of the present invention. FIG. 6 is a sectional view showing Example 6 of the organic light emitting device of the present invention.
(符号の説明) (Explanation of code)
2 1、 3 1、 4 1、 5 1 · ·基板  2 1, 3 1, 4 1, 5 1
2、 2 2、 3 2、 42、 5 2 · ·膜  2, 2, 2, 3, 2, 42, 5 2
2 3、 3 3、 43 — S i Ox膜  2 3, 3 3, 43 — S i Ox film
24、 34、 44、 54 · ·引き出し電極  24, 34, 44, 54
5、 2 5、 3 5、 4 5、 5 5 · ·アノード電極  5, 25, 35, 45, 55 5Anode electrode
6、 2 6、 3 6、 7、 2 7、 3 7、 46、 47  6, 26, 36, 7, 27, 37, 46, 47
8、 2 8、 3 8、 5 8 · ·力ソ一ド電極  8, 2 8, 3 8, 5 8
2 9 · •尖塔部  2 9
3 0 · *窒化ガリウム層  30 * Gallium nitride layer
40、 5 0 · ·力一ポンナノチューブまたは力  40, 50 · · power-on-nanotube or power
5 1 0 • ·蛍光体  5 1 0 • Phosphor
5 1 1 • ·ガラス管  5 1 1 • · Glass tube
6 1 · •ガラス基板  6 1 · • Glass substrate
6 2 · •陽極  6 2 ·· Anode
6 3 · •正孔輸送層  6 3Hole transport layer
64 ·  64
6 5 · •陰極  6 5
6 6 ·  6 6
6 7 · •金属 発明を実施するための最良の形態  6 7 · • Best mode for carrying out the invention
次に本発明の実施の形態について説明する。 本発明による電極および電子放出 装置は従来のシリコンゃモリブデンで作製されるスピント型冷陰極、 他の金属や 半導体基板表面に凹凸を設けて作製される冷陰極、 金属基板上にカーボンナノチ ュ一ブや力一ボンナノファイバを作製した冷陰極、 および金属や半導体平坦基板 に本発明に該当する膜を 5 0 nm以下の厚さに設ける。 本発明の薄膜を設けるこ とにより、 前述の冷陰極の電子放出特性の改善および信頼性の向上に効果を発揮 すると共に、 作製の容易な平坦型電子放出装置の提供が可能となる。 Next, an embodiment of the present invention will be described. The electrode and the electron-emitting device according to the present invention are a conventional Spindt-type cold cathode made of silicon-molybdenum, a cold cathode made by providing irregularities on the surface of another metal or a semiconductor substrate, and a carbon nanotube on a metal substrate. A film corresponding to the present invention is provided with a thickness of 50 nm or less on a cold cathode on which a carbon nanofiber is produced, and on a flat substrate made of metal or semiconductor. The thin film of the present invention may be provided. By doing so, it is possible to provide a flat-type electron emission device that is effective in improving the electron emission characteristics and reliability of the cold cathode described above and that is easy to manufacture.
(実施例)  (Example)
以下に各々の基板上に作製する本発明の電子放出装置の実施例について、 具体 的に説明する。  Examples of the electron emission device of the present invention manufactured on each substrate will be specifically described below.
(実施例 1 )  (Example 1)
図 1は本発明の第 1実施例に係る電子放出装置の断面概略図を示す。 実施例 1 の電子放出装置は基板 1、 窒化ホウ素薄膜 2、 S i Ox膜 3、 引き出し電極 4、 アノード電極 5、 電源 6、 7、 力ソード電極 8で構成されている。 FIG. 1 is a schematic sectional view of an electron-emitting device according to a first embodiment of the present invention. The electron-emitting device of the first embodiment includes a substrate 1, a boron nitride thin film 2, a SiO x film 3, an extraction electrode 4, an anode electrode 5, power supplies 6, 7, and a power source electrode 8.
基板 1としてここではシリコンを用いた。 その上に三塩化ホウ素と窒素ガスを 用いたプラズマアシス卜化学気相合成 (CVD) 法によって窒化ホウ素薄膜 2を 1 0 nm堆積した。 窒化ホウ素薄膜 2にはィォゥ原子を 1 X 1 018 c m _ 3の濃 度に添加した。 次に、 窒化ホウ素薄膜 2上に S i Ox薄膜 3を 8 00 nm、 およ び引き出し電極 4用金属として T i (20 nm) /Au ( 500 nm) を電子ビ ーム蒸着法で形成する。 また、 シリコン基板 1の裏面に力ソード電極 8として A L ( 5 00 nm) を電子ビーム蒸着した。 その後、 フォトリソグラフィ一工程を 用いて、 引き出し電極 4用金属および S i〇x薄膜 3をエッチングにより除去し、 直径 5 xmの窓を形成する。 窓の中に露出した窒化ホウ素薄膜 2表面を水素ブラ ズマで処理した後、 真空チェンバー内でアノード電極 5となる金属板を窒化ホウ 素薄膜 2に対向させ、 その間隔を 1 2 5 /_imとした。 引き出し電極 4を接地し、 カソ一ド電極 8とアノード電極 5に各々バイァスを加えて、 8 X 1 0— 7T o r r 以下の真空度で放出電流を測定した。 アノード電圧を 500 Vと一定にし、 カソ ―ド電圧を変化させた。 力ソード電極 8に 1 0 V印可することにより電子放出が 始まり、 30 V印可することにより 0. 1mAの高い放出電流が得られた。 Here, silicon was used as the substrate 1. A 10 nm-thick boron nitride thin film 2 was deposited thereon by plasma-assisted chemical vapor deposition (CVD) using boron trichloride and nitrogen gas. The boron nitride thin film 2 was doped with iodine atoms at a concentration of 1 × 10 18 cm_3. Next, a TiO x thin film 3 is formed on the boron nitride thin film 2 by 800 nm, and Ti (20 nm) / Au (500 nm) is formed by electron beam evaporation as a metal for the extraction electrode 4. I do. Also, AL (500 nm) was electron-beam evaporated on the back surface of the silicon substrate 1 as a force source electrode 8. Thereafter, by a photolithography one step, the metal and S I_〇 x thin film 3 for the extraction electrode 4 is removed by etching to form a diameter 5 xm window. After treating the surface of the boron nitride thin film 2 exposed in the window with hydrogen plasma, the metal plate to be the anode electrode 5 is opposed to the boron nitride thin film 2 in the vacuum chamber, and the interval is set to 125 / im. did. The extraction electrode 4 was grounded, a bias was applied to each of the cathode electrode 8 and the anode electrode 5, and the emission current was measured at a degree of vacuum of 8.times.10.sup.- 7 Torr or less. The anode voltage was kept constant at 500 V, and the cathode voltage was changed. Electron emission started when 10 V was applied to the force source electrode 8, and a high emission current of 0.1 mA was obtained when 30 V was applied.
平坦なシリコン基板上に窒化ホウ素薄膜を上記の方法で厚さ 1 0 nm堆積させ、 引き出し電極 4を作製しないで、 窒化ホウ素薄膜とアノード電極 5間を 1 25 mと一定にして電子放出特性を調べ、 更に膜表面の粗さを評価した。 平坦なシリ コン基板表面では 0. 3— 0. 7 nmの表面粗さが評価され、 1 0 nmの厚さの 窒化ホウ素膜では表面粗さが 0. 6— 1. 2 nmと評価された。 平坦なシリコン 基板上で電界集中因子を 1と仮定し、 シリコンの電子親和力 (4. 0 5 e V) が 表面ポテンシャルに匹敵すると考えると、 それと比べ、 厚さ 1 0 nmの窒化ホウ 素の場合、 電界集中因子を過大評価して 1 0と見積もっても実効的なポテンシャ ル障壁高さが 0. 6 e V程度に評価され、 本発明により顕著な実効的なポテンシ ャル障壁高さの低減が可能となり、 電子放出しきい値電界の低下が期待できる。 窒化ホウ素膜以外の本発明に係る膜の導入により実効的なポテンシャル障壁高 さを低減でき、電子放出特性の改善ができる。ここでは窒化ホウ素膜を用いたが、 窒化ホウ素以外に本発明に係る材料は全て用いることができる。 また、 本実施例 では窒化ホウ素膜をプラズマアシスト CVD法により合成したが、 有機金属化学 気相合成 (MOCVD) 法、 分子線ェピタキシャル (MBE) 法、 スパッ夕リン グ法など様々な作製方法を用いることができる。 A 10 nm-thick boron nitride thin film is deposited on a flat silicon substrate by the above-mentioned method, and the electron emission characteristics are kept constant at 125 m between the boron nitride thin film and the anode electrode 5 without forming the extraction electrode 4. The surface roughness of the film was evaluated. A surface roughness of 0.3-0.7 nm was evaluated for a flat silicon substrate surface, and a surface roughness of 0.6-1.2 nm was evaluated for a 10-nm-thick boron nitride film. . Flat silicon Assuming that the electric field concentration factor is 1 on the substrate and that the electron affinity of silicon (4.05 eV) is comparable to the surface potential, in the case of boron nitride with a thickness of 10 nm, the electric field concentration Even if the factors are overestimated and estimated to be 10, the effective potential barrier height is evaluated to be about 0.6 eV, and the present invention makes it possible to significantly reduce the effective potential barrier height. A reduction in the electron emission threshold electric field can be expected. By introducing a film according to the present invention other than the boron nitride film, the effective potential barrier height can be reduced and the electron emission characteristics can be improved. Here, a boron nitride film was used, but all materials according to the present invention can be used other than boron nitride. In this example, the boron nitride film was synthesized by plasma-assisted CVD. However, various manufacturing methods such as metal organic chemical vapor deposition (MOCVD), molecular beam epitaxy (MBE), and sputtering were used. Can be used.
ィォゥ不純物を添加した窒化ホウ素薄膜 2を用いたが、 ドナー不純物となるリ チウム、 酸素、 シリコン等の原子を添加した窒化ホウ素薄膜 3を用いることもで きる。上記の窒化ホウ素以外の III族原子と窒素原子からなる化合物に対しても同 様の不純物を用いることができる。  Although the boron nitride thin film 2 doped with zeo impurities was used, a boron nitride thin film 3 doped with atoms of donor impurities such as lithium, oxygen, and silicon can also be used. Similar impurities can be used for compounds consisting of a group III atom and a nitrogen atom other than boron nitride.
ここでは基板材料としてシリコンを用いたが、それ以外の金属、ガリゥム砒素、 インジウムリン、 炭化珪素、 窒化ガリウム等、 様々な導体および半導体を用いて も作製できる。 また、 引き出し電極 4用金属として T i /Auを用いたが、 T i の代わりに C r、 A uの代わりには様々な金属を用いることができる。 半導体基 板を用いる場合にはォーミック電極形成可能な材料であればどのような金属でも カソ一ド電極 8用金属として用いる事ができ、 導体基板を用いる場合には基板自 身をカソード電極として用いることができる。  Here, silicon was used as the substrate material, but other conductors and semiconductors such as metal, gallium arsenide, indium phosphide, silicon carbide, and gallium nitride can be used. Although Ti / Au is used as the metal for the extraction electrode 4, various metals can be used instead of Cr and Au instead of Ti. When a semiconductor substrate is used, any metal that can form an ohmic electrode can be used as the metal for the cathode electrode 8, and when a conductor substrate is used, the substrate itself is used as the cathode electrode. be able to.
(実施例 2) '  (Example 2) ''
図 2は本発明の第 2実施例に係る電子放出装置の断面概略図を示す。 シリコン 基板 1上にスピント型尖塔形状が形成され、 本発明の窒化ホウ素炭素膜が設けら れた電子放出装置であり、基板 2 1、窒化ホウ素炭素薄膜 22、 S i Ox膜 23、 引き出し電極 24、 ァノード電極 25、 電源 26、 27、 カソ一ド電極 28、 尖 塔形状 29で構成されている。 FIG. 2 is a schematic sectional view of an electron-emitting device according to a second embodiment of the present invention. Spindt spire shape is formed on the silicon substrate 1, an electron emitting device boron carbon nitride film is provided et the of the present invention, the substrate 2 1, boron carbon nitride film 22, S i O x film 23, the extraction electrode 24, an anode electrode 25, power supplies 26 and 27, a cathode electrode 28, and a spire shape 29.
取り出し電極 24を持つ尖塔形状 2 9が作製された n型シリコン基板 1 (1 1 1) を用い、 尖塔形状部 2 9に本発明の窒化ホウ素炭素薄膜 22を形成する。 プ ラズマアシスト化学気相合成法により三塩化ホウ素とメタンと窒素ガスを用いて 窒化ホウ素炭素薄膜 22 (組成比、 ホウ素 0. 4、 炭素 0. 2、 窒素 0. 4) を 1 0 nm堆積した。 窒化ホウ素炭素薄膜 22にはィォゥ原子を 1 X 1 018 cm— 3の濃度に添加した。 シリコン基板 1の裏面に力ソード電極 28として A 1 (5 00 nm) を電子ビーム蒸着した。 窒化ホウ素炭素薄膜 22表面を水素プラズマ で処理した後、 真空チェンバ一内でアノード電極 25となる金属板を窒化ホウ素 炭素薄膜 22を有する尖塔形状部 2 9に対向させ、その間隔を 1 2 5 imとした。 引き出し電極 24を接地し、 力ソ一ド電極 2 8とアノード電極 2 5に各々バイァ スを加えて、 8 X 1 0 7T 0 r r以下の真空度で放出電流を測定した。 アノード 電圧を 500 Vと一定にし、 力ソード電圧を変化させた。 力ソード電極 28に 2 0 V印可することにより 0. 1 mAの高い放出電流が得られた。 N-type silicon substrate 1 (1 1 Using 1), the boron nitride carbon thin film 22 of the present invention is formed on the spire portion 29. Boron carbon nitride thin film 22 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was deposited to a thickness of 10 nm by plasma-assisted chemical vapor deposition using boron trichloride, methane, and nitrogen gas. . The boron nitride carbon thin film 22 was doped with iodine atoms at a concentration of 1 × 10 18 cm− 3 . A 1 (500 nm) was electron beam evaporated as a force source electrode 28 on the back surface of the silicon substrate 1. After treating the surface of the boron nitride carbon thin film 22 with hydrogen plasma, the metal plate serving as the anode electrode 25 is opposed to the spire portion 29 having the boron nitride carbon thin film 22 in the vacuum chamber, and the interval is 1 25 im And Grounded extraction electrode 24, in addition to each Baia scan the Chikarasoichido electrode 2 8 and the anode electrode 2 5 was measured emission current at 8 X 1 0 7 T 0 rr following vacuum. The anode voltage was kept constant at 500 V, and the force sword voltage was varied. By applying 20 V to the force source electrode 28, a high emission current of 0.1 mA was obtained.
ここでは窒化ホウ素炭素薄膜を用いたが、 窒化ホウ素をはじめ前記の他の材料 も用いることができる。  Here, a boron nitride carbon thin film is used, but other materials described above including boron nitride can also be used.
(実施例 3)  (Example 3)
図 3は本発明の第 3実施例に係る電子放出装置の断面概略図を示す。 実施例 3 の電子放出装置は n型窒化ガリウム層 30が形成されたシリコン基板 3 1、 窒化 ホウ素炭素薄膜 32、 S i 〇x膜 33、 引き出し電極 34、 アノード電極 3 5、 電源 3 6、 37、 力ソード電極 38で構成されている。 FIG. 3 is a schematic sectional view of an electron-emitting device according to a third embodiment of the present invention. The electron-emitting device of Example 3 has a silicon substrate 31 on which an n-type gallium nitride layer 30 is formed, a boron nitride carbon thin film 32, a Si x film 33, an extraction electrode 34, an anode electrode 35, a power supply 36, and 37. The force sword electrode 38 is constituted.
有機金属化学気相合成法によって n型シリコン基板 3 1 ( 1 1 1) 面上にシリ コン添加 n型窒化ガリゥム層 30を 1 m成長させたウェハーを基板として用い る。 マイクロ波により水素プラズマを生成し、 窒化ガリウム層 30の表面を処理 する。 マイクロ波出力 30 0 W、 水素流量を 50 s c c m、 ガス圧力 40 T o r rに設定し、 5分間処理を行う。 水素プラズマ処理によって平坦な窒化ガリウム 層 3 0表面は数十 nmの凹凸を有する表面に変化する。 その上に三塩化ホウ素と メタンと窒素ガスを用いたプラズマアシスト化学気相合成法によって窒化ホウ素 炭素薄膜 32 (組成比、 ホウ素 0. 4、 炭素◦ . 2、 窒素 0. 4) を 1 0 nm堆 積した。窒化ホウ素炭素薄膜 32にはィォゥ原子を 1 X 1 018 cm— 3の濃度に添 加した。 次に、 窒化ホウ素炭素薄膜 32上に S i Ox薄膜 33を 800 nm、 お よび引き出し電極 3 4用金属として T i (2 0 nm) /Au ( 5 0 0 nm) を電 子ビーム蒸着法で形成する。 また、 シリコン基板 3 1の裏面に力ソード電極 3 8 として AL ( 5 0 0 nm) を電子ビーム蒸着した。 その後、 フォトリソグラフィ —工程を用いて、 引き出し電極 3 4用金属および S i〇x薄膜 3 3をエッチング により除去し、 直径 5 mの窓を形成する。 窓の中に露出した窒化ホウ素炭素薄 膜 3 2表面を水素プラズマで処理した後、 真空チェンバー内でアノード電極 3 5 となる金属板を窒化ホウ素炭素薄膜 3 2に対向させ、 その間隔を 1 2 5 とし た。 引き出し電極 3 4を接地し、 力ソード電極 3 8とアノード電極 3 5に各々バ ィァスを加えて、 8 X 1 0— 7T 0 r r以下の真空度で放出電流を測定した。 ァノ ード電圧を 5 0 0 Vと一定にし、 力ソード電圧を変化させた。 力ソード電極 3 8 に 3 0 V印可することにより 0. 1 mAの高い放出電流が得られた。 A wafer obtained by growing a silicon-added n-type gallium nitride layer 30 by 1 m on an n-type silicon substrate 31 (111) surface by metal organic chemical vapor deposition is used as a substrate. Hydrogen plasma is generated by microwaves to treat the surface of the gallium nitride layer 30. Set microwave power 300 W, hydrogen flow rate 50 sccm, gas pressure 40 Torr, and process for 5 minutes. By the hydrogen plasma treatment, the flat surface of the gallium nitride layer 30 changes to a surface having irregularities of several tens nm. Then, a boron-nitride carbon thin film 32 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was formed to a thickness of 10 nm by plasma-assisted chemical vapor synthesis using boron trichloride, methane, and nitrogen gas. Accumulated. The boron nitride carbon thin film 32 was doped with iodine atoms at a concentration of 1 × 10 18 cm− 3 . Next, 800 nm and S i O x thin film 33 on the boron carbon nitride film 32, contact Then, Ti (20 nm) / Au (500 nm) is formed as a metal for the extraction electrode 34 by an electron beam evaporation method. AL (500 nm) was electron-beam evaporated on the back surface of the silicon substrate 31 as a force source electrode 38. Then, using a photolithography process, the metal for the extraction electrode 34 and the Si エ ッ チ ン グ x thin film 33 are removed by etching to form a window having a diameter of 5 m. After treating the surface of the boron nitride carbon thin film 32 exposed in the window with hydrogen plasma, a metal plate serving as the anode electrode 35 is opposed to the boron nitride carbon thin film 32 in the vacuum chamber, and the interval is set to 1 2 It was set to 5. Grounded extraction electrode 3 4, and each added server Iasu force cathode electrode 3 8 and the anode electrode 35 was measured emission current at degree of vacuum of 8 X 1 0- 7 T 0 rr . The anode voltage was kept constant at 500 V and the force source voltage was varied. By applying 30 V to the force source electrode 38, a high emission current of 0.1 mA was obtained.
本実施例では水素プラズマ処理によって凹凸表面を作製したが、 表面に凹凸を 形成するためのプラズマを生成するガスとして酸素、 塩素、 フッ素等を含むガス も使用できる。 プラズマの生成にはマイク口波だけではなく R F電力を用いるこ ともでき、 プラズマ処理において試料にバイアスをかけることは表面形状の制御 に有効である。  In this embodiment, the uneven surface is formed by the hydrogen plasma treatment, but a gas containing oxygen, chlorine, fluorine, or the like can be used as a gas for generating plasma for forming the unevenness on the surface. In addition to microphone mouth waves, RF power can be used to generate plasma, and applying a bias to the sample during plasma processing is effective in controlling the surface shape.
(実施例 4)  (Example 4)
図 4は本発明の第 4実施例に係る電子放出装置の断面概略図を示す。 金属基板 4 1上にカーボンナノファイバ 4 0が形成され、 本発明の窒化ホウ素炭素膜が設 けられた電子放出装置であり、 基板 4 1、 窒化ホウ素炭素薄膜 4 2、 S i〇x膜 4 3、 引き出し電極 4 4、 アノード電極 4 5、電源 4 6、 4 7で構成されている。 金属基板 4 1上にカーボンナノファイバ 4 0を作製し、 その上に本発明の窒化 ホウ素炭素薄膜 4 2を形成する。 プラズマアシスト化学気相合成法により三塩化 ホウ素とメタンと窒素ガスを用いて窒化ホウ素炭素薄膜 4 2 (組成比、ホウ素 0. 4、 炭素 0. 2、 窒素 0. 4) を 1 0 nm堆積した。 窒化ホウ素炭素薄膜 4 2に はィォゥ原子を 1 X 1 01 8 c m_3の濃度に添加した。 次に、 窒化ホウ素炭素薄膜 4 2上に S i 〇x薄膜 4 3を 8 0 0 nm、 および引き出し電極 4 4用金属として T i (2 0 nm) /Au ( 5 0 0 nm) を電子ビーム蒸着法で形成する。 FIG. 4 is a schematic sectional view of an electron-emitting device according to a fourth embodiment of the present invention. This is an electron emission device in which carbon nanofibers 40 are formed on a metal substrate 41 and a boron nitride carbon film of the present invention is provided. The substrate 41, the boron nitride carbon thin film 42, the Si x film 4 3. It consists of a lead electrode 44, an anode electrode 45, power supplies 46 and 47. Carbon nanofibers 40 are formed on a metal substrate 41, and a boron nitride carbon thin film 42 of the present invention is formed thereon. Boron carbon nitride thin film 42 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was deposited to a thickness of 10 nm by plasma-assisted chemical vapor deposition using boron trichloride, methane, and nitrogen gas. . The boron nitride thin carbon film 4 2 was added Iou atom concentration of 1 X 1 0 1 8 c m_ 3. Next, 800 nm of S i 〇 x thin film 43 was placed on the boron nitride carbon thin film 42, and T i (20 nm) / Au (500 nm) was used as the metal for extraction electrode 44 by electron beam. It is formed by a vapor deposition method.
その後、 フォトリソグラフィー工程を用いて、 引き出し電極 4 4用金属および S i〇x薄膜 4 3をエッチングにより除去し、 直径 5 mの窓を形成する。 窓の中 に露出した窒化ホウ素炭素薄膜 4 2表面を水素プラズマで処理した後、 真空チェ ンバー内でアノード電極 4 5となる金属板を窒化ホウ素炭素薄膜 4 2に対向させ. その間隔を 1 2 5 とした。 引き出し電極 4 4を接地し、 金属基板 4 1をカソ ード電極とし、 金属基板 4 1とアノード電極 4 5に各々バイアスを加えて、 8 X 1 0— 7 T o r r以下の真空度で放出電流を測定した。 ァノ一ド電圧を 5 0 0 Vと 一定にし、 力ソード電圧を変化させた。 金属基板 4 1に 1 0 V印可することによ り 0 . 1 m Aの高い放出電流が得られた。 Then, using a photolithography process, the metal for the extraction electrode 44 and S The I_〇 x thin film 4 3 is removed by etching, to form a window with a diameter of 5 m. After the surface of the boron nitride carbon thin film 42 exposed in the window is treated with hydrogen plasma, the metal plate to be the anode electrode 45 is made to face the boron nitride carbon thin film 42 in a vacuum chamber. And 5. Grounded extraction electrode 4 4, the metal substrate 4 1 and cathodes when cathode electrode, and each of the bias added to the metal substrate 4 1 and the anode electrode 4 5, 8 X 1 0- 7 T orr degree of vacuum below in emission current Was measured. The anode voltage was kept constant at 500 V, and the force source voltage was changed. By applying 10 V to the metal substrate 41, a high emission current of 0.1 mA was obtained.
実施例 2〜 4においても電子放出部の材料として実施例 1で述べたように本発 明に係る I I I族原子と窒素原子の化合物、 窒素ホウ素炭素、 炭化ホウ素、 窒化 炭素、 ホウ素を含む酸化物のいずれの材料も用いることができる。 また、 実施例 1〜4において 2つ以上の電子放出部を同一基板上に作製し、 アレーを実現する ことができる。  In Examples 2 to 4, as described in Example 1, the compound of the group III atom and the nitrogen atom, the oxide containing nitrogen-boron-carbon, boron carbide, carbon nitride, carbon-nitride was used as the material of the electron-emitting portion as described in Example 1. Any of these materials can be used. Further, in Examples 1 to 4, two or more electron-emitting portions can be manufactured on the same substrate to realize an array.
(実施例 5 )  (Example 5)
図 5は本発明の第 5実施例に係る電子放出素子を用いた発光素子の断面概略図 を示す。 金属基板 5 1上に力一ボンナノファイバ 5 0が形成され、 本発明の窒化 ホウ素炭素膜が設けられた発光素子 (ランプ) であり、 基板 5 1、 窒化ホウ素炭 素薄膜 5 2、 引き出し電極 5 4、 アノード電極 5 5、 力ソード電極 5 8、 蛍光体 5 1 0、 ガラス管 5 1 1で構成されている。  FIG. 5 is a schematic sectional view of a light emitting device using an electron-emitting device according to a fifth embodiment of the present invention. This is a light emitting device (lamp) in which carbon nanofibers 50 are formed on a metal substrate 51 and the boron nitride carbon film of the present invention is provided. The substrate 51, the boron nitride carbon thin film 52, the extraction electrode It consists of 54, an anode electrode 55, a power source electrode 58, a phosphor 510, and a glass tube 511.
金属基板 5 1上にカーボンナノファイバ 5 0を作製し、 その上に本発明の窒化 ホウ素炭素薄膜 5 2を形成する。 プラズマアシス卜化学気相合成法により三塩化 ホウ素とメタンと窒素ガスを用いて窒化ホウ素炭素薄膜 5 2 (組成比、ホウ素 0 . 4、 炭素 0 . 2、 窒素 0 . 4 ) を 1 0 n m堆積した。 窒化ホウ素炭素薄膜 4 に はィォゥ原子を 1 X 1 0 1 8 c m— 3の濃度に添加した。メッシュ上の引き出し電極 5 4を付け、 蛍光体 5 1 0の上にアノード電極 5 5が形成されたガラス管 5 1 1 の中に入れ、 真空封入する。 力ソード電極 5 8に対して引き出し電極 5 4に 4 0 0 Vかけ、 ァノード電極 5 5に 1 0 k V印可することにより 5 0 0 Aの電流が 得られ光放射が観測された。 A carbon nanofiber 50 is formed on a metal substrate 51, and a boron nitride carbon thin film 52 of the present invention is formed thereon. Deposit 10 nm of boron nitride carbon thin film 52 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) using boron trichloride, methane and nitrogen gas by plasma assisted chemical vapor synthesis. did. The boron nitride carbon thin film 4 was doped with iodine atoms at a concentration of 1 × 10 18 cm− 3 . The extraction electrode 54 on the mesh is attached, placed in a glass tube 511 in which the anode electrode 55 is formed on the phosphor 510, and vacuum-sealed. By applying 400 V to the extraction electrode 54 with respect to the force source electrode 58 and applying 10 kV to the anode electrode 55, a current of 500 A was obtained, and light emission was observed.
(実施例 6 ) 図 6は本発明の第 6の実施例に係る電極を用いた有機発光素子の断面概略図を 示ず。 ガラス基板 6 1上に I T O透明電極を用いて陽極 6 2を形成し、 その上に 有機薄膜を用いて正孔輸送層 6 3、 発光層 6 4を形成し、 陰極 6 5を本発明の窒 化ホウ素薄膜 6 6と小さい仕事関数を持つ金属 (リチウムやマグネシウム) 6 7 で構成されている。 本発明の陰極を用いることにより電子の注入効率を向上させ ることができ、 発光特性が改善された有機発光素子が得られる。 (Example 6) FIG. 6 does not show a schematic sectional view of an organic light emitting device using an electrode according to the sixth embodiment of the present invention. An anode 62 is formed on a glass substrate 61 using an ITO transparent electrode, and a hole transport layer 63 and a light emitting layer 64 are formed thereon using an organic thin film. It consists of a boron oxide thin film 66 and a metal (lithium or magnesium) 67 with a small work function. By using the cathode of the present invention, the efficiency of electron injection can be improved, and an organic light-emitting device with improved light-emitting characteristics can be obtained.
(実施例 7 )  (Example 7)
本発明の第 4実施例の金属基板 4 1上に形成するカーボンナノファイバ 4 0の かわりに、 ステンレス繊維または繊維片を用いて、 第 4実施例と同様に放出電流 を測定したが第 4実施例と同様の特性が得られた。  The emission current was measured in the same manner as in the fourth embodiment using stainless steel fibers or fiber pieces instead of the carbon nanofibers 40 formed on the metal substrate 41 of the fourth embodiment of the present invention. The same characteristics as in the example were obtained.
(実施例 8 )  (Example 8)
本発明の第 4実施例の金属基板 4 1上に形成するカーボンナノファイバ 4 0の かわりに、 ホウ素と窒素によって形成された繊維又は繊維片を用いて、 第 4実施 例と同様に放出電流を測定したが第 4実施例よりも高い特性が得られた。  Instead of the carbon nanofibers 40 formed on the metal substrate 41 of the fourth embodiment of the present invention, a fiber or a fiber piece formed by boron and nitrogen is used to reduce the emission current as in the fourth embodiment. As a result of measurement, higher characteristics were obtained than in the fourth example.
(実施例 9 )  (Example 9)
本発明の第 4実施例の金属基板 4 1上に形成する力一ボンナノファイバ 4 0の かわりに、 ホウ素と窒素と炭素によって形成された繊維又は繊維片を用いて、 第 4実施例と同様に放出電流を測定したが第 8実施例よりも高いの特性が得られた。 産業上の利用可能性  Instead of the carbon nanofibers 40 formed on the metal substrate 41 of the fourth embodiment of the present invention, a fiber or a fiber piece formed of boron, nitrogen, and carbon is used as in the fourth embodiment. When the emission current was measured, characteristics higher than those of the eighth example were obtained. Industrial applicability
以上説明したように、本発明による膜内に電界を有する I I I族原子と窒素原子の 化合物、 窒化ホウ素炭素、 炭化ホウ素、 窒化炭素、 ホウ素を含む酸化物のいずれ かの膜を有する電子放出装置において低電圧動作、 高電流動作が可能になり、 凹 凸ゃ尖塔形状を有する基板上、 又、 力一ボンナノチューブや力一ボンナノフアイ バ上に本発明の膜を有することにより更にその効果は大きく、信頼性も向上する。 これによつて高性能電子放出装置が提供でき、 表示装置、 電子ビーム露光機、 撮 像装置、 発光素子および電子ビームを用いた材料評価装置のキーデバイスとして 効果的である。  As described above, in the electron emission device according to the present invention, an electron emission device having any one of a film of a compound of a group III atom and a nitrogen atom having an electric field, boron nitride carbon, boron carbide, carbon nitride, and an oxide containing boron is used. Low voltage operation and high current operation are possible, and the effect of the present invention is further enhanced by having the film of the present invention on a substrate having a concave-convex ゃ spire shape, or on a carbon nanotube or a carbon nanofiber. The performance is also improved. This provides a high-performance electron emission device, which is effective as a key device of a display device, an electron beam exposure machine, an imaging device, a light emitting element, and a material evaluation device using an electron beam.

Claims

請 求 の 範 囲 The scope of the claims
1. 下地材料付近の膜内に電界を有し、 前記下地材料からの電子がトンネルでき る状態密度が存在する膜を表面に有することを特徴とする電極。  1. An electrode having an electric field in a film in the vicinity of a base material and having a film on a surface having a state density capable of tunneling electrons from the base material.
2. 前記膜内の電界が前記下地材料内の負電荷と前記膜内の正電荷により形成さ れていることを特徴とする請求項 1記載の電極。  2. The electrode according to claim 1, wherein the electric field in the film is formed by negative charges in the base material and positive charges in the film.
3. 前記膜内の正電荷がアモルファス領域、 結晶粒界、 不純物原子の存在のいず れかにより生成されることを特徴とする請求項 1、 2記載の電極。  3. The electrode according to claim 1, wherein a positive charge in the film is generated by any of an amorphous region, a crystal grain boundary, and the presence of an impurity atom.
4. 前記膜の厚さが 50 nm以下であることを特徴とする請求項 1、 2記載の電 4. The electrode according to claim 1, wherein the thickness of the film is 50 nm or less.
5. 前記膜の電子親和力が 4. 0 e V以下であることを特徴とする請求項 1、 2 記載の電極。 5. The electrode according to claim 1, wherein the film has an electron affinity of 4.0 eV or less.
6. 前記膜が III族原子と窒素原子の化合物、 窒化ホウ素炭素、 炭化ホウ素、 窒化 炭素、 ホウ素を含む酸化物のいずれかであることを特徴とする請求項 1ないし 5 のいずれか 1項記載の電極。  6. The film according to claim 1, wherein the film is any one of a compound of a group III atom and a nitrogen atom, an oxide containing boron nitride carbon, boron carbide, carbon nitride, and boron. Electrodes.
7. 前記膜にシリコン、 ィォゥ、 リン、 酸素、 リチウムのいずれかの原子を含む ことを特徴とする請求項 1ないし 6のいずれか 1項記載の電極。 7. The electrode according to claim 1, wherein the film contains any atom of silicon, zeolite, phosphorus, oxygen, and lithium.
8. 前記膜の表面に水素が存在することを特徴とする請求項 1ないし 7のいずれ か 1項記載の電極。 8. The electrode according to claim 1, wherein hydrogen exists on the surface of the film.
9. 前記の膜が凹凸を有するまたは尖塔形状を有する基板の表面に存在すること を特徴とする請求項 1ないし 8のいずれか 1項記載の電極。  9. The electrode according to any one of claims 1 to 8, wherein the film is present on a surface of a substrate having irregularities or a spire shape.
1 0. 前記膜がカーボンナノチューブまたはカーボンナノファイバの表面に存在 することを特徴とする請求項 1ないし 8のいずれか 1項記載の電極。  10. The electrode according to claim 1, wherein the film is present on a surface of a carbon nanotube or a carbon nanofiber.
1 1. 前記膜が、 ステンレス繊維または繊維片の表面に存在することを特徴とす る請求項 1ないし 8のいずれか 1項記載の電極。  1 1. The electrode according to any one of claims 1 to 8, wherein the membrane is present on a surface of a stainless steel fiber or a piece of fiber.
1 2. 前記膜が、 ホウ素と窒素によって形成された繊維又は繊維片の表面に存在 することを特徴とする請求項 1ないし 8のいずれか 1項記載の電極。 12. The electrode according to claim 1, wherein the film is present on a surface of a fiber or a piece of fiber formed by boron and nitrogen.
1 3. 前記膜が、 ホウ素と窒素と炭素によって形成された繊維又は繊維片の表面 に存在することを特徴とする請求項 1ないし 8のいずれか 1項記載の電極。  13. The electrode according to claim 1, wherein the film is present on a surface of a fiber or a piece of fiber formed of boron, nitrogen, and carbon.
14. 請求項 1ないし 1 3のいずれか 1項記載の電極を冷陰極として用いたこと を特徴とする電子放出装置。 14. The use of the electrode according to any one of claims 1 to 13 as a cold cathode An electron emission device characterized by the above-mentioned.
1 5 . 請求項 1ないし 1 3のいずれか 1項記載の電極を放電セルの電極として用 いたことを特徴とするプラズマディスプレイ。  15. A plasma display, wherein the electrode according to any one of claims 1 to 13 is used as an electrode of a discharge cell.
1 6 . 請求項 1. 5記載の電子放出素子を用いたことを特徴とするフィールドエミ ッションディスプレイ、 電子ビーム露光装置、 マイクロ波進行波管、 撮像素子、 電子ビームを用いた材料評価装置。  16. A field emission display, an electron beam exposure apparatus, a microwave traveling wave tube, an imaging element, and a material evaluation apparatus using an electron beam, wherein the electron emission element according to claim 1.5 is used.
1 7 . 請求項 1 5記載の電子放出素子を用いたことを特徴とする発光素子。 17. A light-emitting device using the electron-emitting device according to claim 15.
1 8 . 請求項 1 7記載の発光素子を用いたことを特徴とする照明装置、 液晶ディ スプレイのバックライト、 表示ランプ。 18. A lighting device, a backlight of a liquid crystal display, and a display lamp, wherein the light emitting device according to claim 17 is used.
1 9 . 請求項 1ないし 1 3のいずれか 1項記載の電極を用いたことを特徴とする 有機発光装置。  19. An organic light-emitting device using the electrode according to any one of claims 1 to 13.
2 0 . 請求項 1 9記載の有機発光装置を用いたことを特徴とする表示装置。  20. A display device using the organic light emitting device according to claim 19.
PCT/JP2002/005964 2002-02-18 2002-06-14 Electrode, electron emitter, and device using the same WO2003069649A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003568680A JPWO2003069649A1 (en) 2002-02-18 2002-06-14 Electrode, electron-emitting device and apparatus using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002-39550 2002-02-18
JP2002039550 2002-02-18

Publications (1)

Publication Number Publication Date
WO2003069649A1 true WO2003069649A1 (en) 2003-08-21

Family

ID=27678255

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005964 WO2003069649A1 (en) 2002-02-18 2002-06-14 Electrode, electron emitter, and device using the same

Country Status (2)

Country Link
JP (1) JPWO2003069649A1 (en)
WO (1) WO2003069649A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053129A (en) * 2005-08-15 2007-03-01 Nikon Corp Electron gun and electron beam exposure apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348599A (en) * 1999-06-02 2000-12-15 Sharp Corp Field emission electron source and manufacture thereof
EP1081767A2 (en) * 1999-09-03 2001-03-07 Sel Semiconductor Energy Laboratory Co., Ltd. EL display device and manufacturing method thereof
JP2002015659A (en) * 2000-06-30 2002-01-18 Takashi Sugino Electron emission device
JP2002042663A (en) * 2000-07-24 2002-02-08 Sony Corp Ac drive plasma display device and method of manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000348599A (en) * 1999-06-02 2000-12-15 Sharp Corp Field emission electron source and manufacture thereof
EP1081767A2 (en) * 1999-09-03 2001-03-07 Sel Semiconductor Energy Laboratory Co., Ltd. EL display device and manufacturing method thereof
JP2002015659A (en) * 2000-06-30 2002-01-18 Takashi Sugino Electron emission device
JP2002042663A (en) * 2000-07-24 2002-02-08 Sony Corp Ac drive plasma display device and method of manufacturing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007053129A (en) * 2005-08-15 2007-03-01 Nikon Corp Electron gun and electron beam exposure apparatus

Also Published As

Publication number Publication date
JPWO2003069649A1 (en) 2005-06-09

Similar Documents

Publication Publication Date Title
KR101281168B1 (en) Field emission electrode, method for preparing the same and field emission device comprising the same
Sugino et al. Electron field emission from boron-nitride nanofilms
Satyanarayana et al. Low threshold field emission from nanoclustered carbon grown by cathodic arc
FR2818438A1 (en) TRANSMITTER STRUCTURE FOR FIELD EMISSION DISPLAY
JP2001348296A (en) Diamond having needle-shaped surface, carbon-based material having cilium-like surface, method of producing these materials and electrode and electronic device using these materials
JP2001023508A (en) Field emission emitter, its manufacture, and field emission display element using it
US6388366B1 (en) Carbon nitride cold cathode
JP3737688B2 (en) Electron emitting device and manufacturing method thereof
JP2004006205A (en) Electrode and device using same
JP7272641B2 (en) Electron-emitting device and electron microscope
JP2002352694A (en) Electrode, electron emission element and device using it
Joag et al. Field emission from a-GaN films deposited on Si (100)
Kimura et al. Field emission characteristics of boron nitride films deposited on Si substrates with cubic boron nitride crystal grains
Liu et al. Electron field emission from amorphous carbon nitride synthesized by electron cyclotron resonance plasma
WO2003069649A1 (en) Electrode, electron emitter, and device using the same
JP5024813B2 (en) Method for manufacturing surface light emitting device
JP4312352B2 (en) Electron emission device
WO2002097843A1 (en) Electrode, electron emission element and device using it
Zhang et al. Stable field emission from planar-gate electron source with MWNTs by electrophoretic deposition
JP2008053172A (en) Surface light emitting device
JP2003281991A (en) Hot cathode and discharge apparatus using the same
JP2004103259A (en) Electrode, electron emission element and device using same
JP4312331B2 (en) Electron emission device
Luo et al. Field emission characteristics of BN nanofilms grown on GaN substrates
US20070236133A1 (en) Field emission electrode, field emission device having the same and methods of fabricating the same

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2003568680

Country of ref document: JP