WO2002097843A1 - Electrode, electron emission element and device using it - Google Patents

Electrode, electron emission element and device using it Download PDF

Info

Publication number
WO2002097843A1
WO2002097843A1 PCT/JP2002/005153 JP0205153W WO02097843A1 WO 2002097843 A1 WO2002097843 A1 WO 2002097843A1 JP 0205153 W JP0205153 W JP 0205153W WO 02097843 A1 WO02097843 A1 WO 02097843A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
electrode
film
present
boron
Prior art date
Application number
PCT/JP2002/005153
Other languages
French (fr)
Japanese (ja)
Inventor
Takashi Sugino
Masaki Kusuhara
Masaru Umeda
Original Assignee
Kabushiki Kaisha Watanabe Shoko
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kabushiki Kaisha Watanabe Shoko filed Critical Kabushiki Kaisha Watanabe Shoko
Priority to JP2003500934A priority Critical patent/JPWO2002097843A1/en
Publication of WO2002097843A1 publication Critical patent/WO2002097843A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J1/00Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
    • H01J1/02Main electrodes
    • H01J1/30Cold cathodes, e.g. field-emissive cathode
    • H01J1/304Field-emissive cathodes

Definitions

  • the present invention relates to an electrode and an electron-emitting device using electron emission from a semiconductor. Background art
  • Cold cathodes can be applied to field emission displays, electron beam exposure machines, microwave traveling wave tubes, imaging devices, and the like. In addition, it can be used as an electron source for a material evaluation device such as an Auger electron spectrometer using an electron beam, and can be used in various applications.
  • the present invention has been made in view of the above circumstances, and has electron emission characteristics superior to those of the related art. It is intended to provide a cold cathode. Disclosure of the invention
  • An electrode of the present invention for achieving the above object is characterized in that a surface thereof has a film having a thickness of 50 nm or less and an electron affinity of 4 eV or less.
  • the electron affinity is preferably 3.5 eV or less. The smaller the electron affinity is, the more preferable it is.
  • the film is any one of a compound of a group III atom and a nitrogen atom, boron nitride, and diamond.
  • Compounds of group 111 atoms and nitrogen atoms include boron nitride (BN), aluminum nitride (A 1 N), boron aluminum nitride (A 1 BN), boron gallium nitride (B GaN), and aluminum gallium nitride (A 1 GaN). , Boron carbon nitride (BCN), and diamond.
  • the film is characterized by containing any one of silicon, zeolite, oxygen, and phosphorus atoms. When such an atom is contained, the effect of increasing the Fermi level is exhibited.
  • the content is preferably from 0.001% to 1%, and more preferably from 0.01% to 0.1% in atomic%.
  • hydrogen is present on the surface of the film.
  • the effect of reducing electron affinity is achieved.
  • a hydrogen plasma treatment may be performed after the film is deposited.
  • the film is present on a substrate having irregularities or a spire shape.
  • the film has a concavo-convex or spire shape, the effect of increasing the electric field strength in the film of the concavo-convex or spire-shaped portion and on the film surface is achieved.
  • the unevenness is preferably from 10 to 50 nm.
  • the invention is characterized in that the film is present on a carbon nanotube or a carbon nanofiber. In this case, the effect of further increasing the electric field strength in the film and on the surface is achieved.
  • the electron emission device of the present invention is characterized in that the electrode is provided as a cathode. Further, the plasma display according to the present invention is characterized in that the electrode is used as an electrode of a discharge cell.
  • the electron-emitting device of the present invention When used for a display, a low-voltage operation and a clear image can be realized.
  • the electron-emitting device of the present invention When the electron-emitting device of the present invention is used in an electron beam exposure apparatus, a high-resolution electron beam exposure apparatus can be realized.
  • the electron-emitting device of the present invention When the electron-emitting device of the present invention is used in a microwave traveling-wave tube, a high-output microwave output can be obtained.
  • the electron-emitting device of the present invention When the electron-emitting device of the present invention is used for an imaging device, a clear image can be realized. When the electron-emitting device of the present invention is used for a material evaluation device using an electron beam, improvement in evaluation accuracy can be realized.
  • the electrode of the present invention is used for an electrode of a light-emitting element.
  • the electrode of the present invention is used for a light-emitting element, clear light emission with high luminance can be obtained, and high-quality illumination and display can be realized.
  • the light emitting element using the electrode of the present invention is used for a backlight of a liquid crystal display, a liquid crystal display with high luminance and low power consumption can be realized.
  • an organic light emitting device includes the above electrode.
  • the electrode of the present invention is used for an organic light-emitting device, clear light emission with high luminance can be obtained, and a display device of public quality can be realized.
  • FIG. 1 is a sectional view showing Embodiment 1 of the electron-emitting device of the present invention.
  • Figure 2 is a graph showing the relationship between the electron emission threshold electric field and film thickness.
  • Figure 3 is a graph showing the relationship between electron affinity and material
  • FIG. 4 is a sectional view showing Embodiment 2 of the electron-emitting device of the present invention.
  • FIG. 5 is a sectional view showing Embodiment 3 of the electron-emitting device of the present invention.
  • FIG. 6 is a sectional view showing Embodiment 4 of the electron emission device of the present invention.
  • FIG. 7 is a sectional view showing Example 5 of the light emitting device of the present invention.
  • FIG. 8 is a sectional view showing Example 6 of the organic light emitting device of the present invention. (Explanation of code)
  • the electron emission device produces a semiconductor film having an electron affinity of 3.5 eV or less by forming a conventional Spindt-type cold cathode made of silicon or molybdenum, or by providing irregularities on the surface of another metal or semiconductor substrate.
  • FIG. 1 is a schematic sectional view of an electron-emitting device according to a first embodiment of the present invention.
  • Example 1 This electron emission device is composed of a substrate 1, a boron nitride thin film 2, a SiO x film 3, an extraction electrode 4, an anode electrode 5, power supplies 6, 7, and a force source electrode 8.
  • boron nitride thin film 2 was deposited to a thickness of 25 nm by a plasma-assisted chemical vapor deposition (CVD) method using boron trichloride and nitrogen gas.
  • the boron nitride thin film 2 was added Iou atom concentration of 1 X 1 O l8 cm- 3.
  • an SiO x thin film 3 is formed on the boron nitride thin film 2 by 800 nm, and Ti (20 nm) / Au (500 nm) as a metal for the extraction electrode 4 is formed by electron beam evaporation.
  • a 1 (500 nm) was electron-beam evaporated as a force source electrode 8 on the back surface of the silicon substrate 1.
  • the metal for the extraction electrode 4 and the Si x x thin film 3 are removed by etching to form a window having a diameter of 5 xm.
  • a metal plate serving as the anode electrode 5 was opposed to the boron nitride thin film 2 in a vacuum chamber, and the interval was 125 xm.
  • the extraction electrode 4 and the ground, the addition of each bias to cathode one cathode electrode 8 and the anode electrode 5 was measured emission current at degree of vacuum of 8 X 1 0_ 7 To rr.
  • the anode voltage was kept constant at 500 V, and the force source voltage was changed. By applying 40 V to the force source electrode 8, a high emission current of 0.1 mA was obtained.
  • a boron nitride thin film is deposited on a silicon substrate by the above-described method, and the electron emission current is made constant by keeping the distance between the boron nitride thin film and the anode electrode at 125 m without forming the extraction electrode 4 in the samples having different thicknesses.
  • Examination of the average threshold electric field when 1 X 1 O l A is obtained gives the results in Fig. 2. From this, it is expected that the threshold electric field will be reduced by further reducing the thickness.
  • the improvement of the electron emission characteristics according to the present invention is due to the fact that the provision of the semiconductor film of the present invention can reduce the effective work function as compared with a cold cathode in which the semiconductor film is not provided.
  • a boron nitride film was used here, a material having a low electron affinity as shown in FIG. 3 can be used other than boron nitride.
  • Compounds consisting of Group III and nitrogen atoms can be obtained by metal organic chemical vapor synthesis (MOCVD) or molecular beam epitaxy (MB
  • MOCVD metal organic chemical vapor synthesis
  • MB molecular beam epitaxy
  • the thin film can be synthesized by the E) method, and is used for manufacturing electron emission devices.
  • the plasma CVD method was used for synthesizing boron nitride.
  • the same plasma CVD method was used for synthesizing a boron nitride carbon film by supplying carbon using methane gas or the like. A thin film can be deposited. Diamond can be synthesized by plasma CVD and hot filament CVD.
  • boron nitride thin film 2 doped with zeo impurities was used, a boron nitride thin film 3 doped with atoms of donor impurities such as lithium, oxygen, and silicon can also be used. Similar impurities can be used for compounds consisting of a group III atom and a nitrogen atom other than boron nitride. For diamond, iodine, phosphorus, boron, and nitrogen can be used as impurities.
  • silicon was used as the substrate material, but other conductors and semiconductors such as metals, gallium arsenide, indium phosphide, silicon carbide, and gallium nitride can be used.
  • metals gallium arsenide, indium phosphide, silicon carbide, and gallium nitride
  • Ti ZAu was used as the metal for the extraction electrode 4
  • Cr can be used instead of Ti
  • various metals can be used instead of Au.
  • any metal that can form an ohmic electrode can be used as the metal for the cathode electrode 8
  • the substrate itself can be used as the cathode electrode. it can.
  • FIG. 4 is a schematic sectional view of an electron-emitting device according to a second embodiment of the present invention.
  • This is an electron emission device in which a Spindt-type spire shape is formed on a silicon substrate 1 and a boron nitride carbon film of the present invention is provided.
  • the boron nitride carbon thin film 22 of the present invention is formed on the spire shape portion 29.
  • a 25 nm-thick boron nitride carbon thin film 22 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was deposited by plasma-assisted chemical vapor deposition using boron trichloride, methane, and nitrogen gas.
  • the boron nitride thin carbon film 22 was added Iou atom concentration of 1 X 1 0 18 cm one 3. A 1 (5 0 0 nm) by electron beam evaporation.
  • a metal plate serving as the anode electrode 25 is made to face the spire-shaped portion 29 having the boron nitride carbon thin film 22 in the vacuum chamber, and the interval is set to 1 2 And 5.
  • Grounded extraction electrode 24, and each added Baia scan to force cathode electrode 2 8 and the anode electrode 2 5 was measured emission current at 8 X 1 0_ 7 T 0 rr following vacuum.
  • the anode voltage was kept constant at 500 V, and the force sword voltage was varied. By applying 30 V to the force source electrode 28, a high emission current of 0.1 mA was obtained.
  • boron nitride carbon thin film is used, but other materials described above including boron nitride can also be used.
  • FIG. 5 is a schematic sectional view of an electron-emitting device according to a third embodiment of the present invention.
  • the electron-emitting device of Example 3 has a silicon substrate 31 on which an n-type gallium nitride layer 30 is formed, a boron nitride carbon thin film 32, a SiO x film 33, an extraction electrode 34, an anode electrode 35, and a power source. It consists of 36, 37, and a force electrode 38.
  • a wafer obtained by growing a silicon-added n-type gallium nitride layer 30 on an n-type silicon substrate 31 (111) surface by metal organic chemical vapor deposition is used as a substrate.
  • Hydrogen plasma is generated by microwaves to treat the surface of the gallium nitride layer 30.
  • the microphone mouth wave output is set to 300 W
  • the hydrogen flow rate is set to 50 sccm
  • the gas pressure is set to 40 T rr
  • the treatment is performed for 5 minutes.
  • the flat gallium nitride layer 30 surface changes to a surface having irregularities of 10 to 50 nm.
  • boron-nitride carbon thin film 32 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was formed by plasma-assisted chemical vapor synthesis using boron trichloride, methane, and nitrogen gas. Deposited 25 nm.
  • the boron nitride thin carbon film 3 2 was added Iou atom concentration of 1 X 1 0 18 cm_ 3.
  • 800 nm of SiO x thin film 33 was deposited on boron nitride carbon thin film 32, and Ti (20 nm) / An (500 nm) was used as a metal for extraction electrode 34 by electron beam evaporation. It is formed by a method.
  • a 1 (500 nm) was vapor-deposited on the rear surface of the silicon substrate 31 as a force source electrode 38 by electron beam evaporation.
  • the metal for the lead electrode 3.4 and the Si x x thin film 33 are removed by etching using a photolithography process. To form a 5 diameter window.
  • a metal plate serving as the anode electrode 35 was opposed to the boron nitride carbon thin film 32 in a vacuum chamber, and the interval was set to 125 zm. Pull the electrode 34 is grounded Shi out, each bias pressurized strong point on the cathode electrode 38 and anode electrode 35 was measured emission current at degree of vacuum of 8 X 1 0- 7 To rr. The anode voltage was kept constant at 500 V, and the force sword voltage was changed. By applying 40 V to the force source electrode 38, a high emission current of 0.1 mA was obtained.
  • the uneven surface is formed by the hydrogen plasma treatment.
  • a gas containing oxygen, chlorine, fluorine, or the like can be used as a gas for generating plasma for forming the unevenness on the surface.
  • Plasma power can be generated using not only microwaves but also RF power, and applying a bias to the sample during plasma processing is effective in controlling the surface shape.
  • FIG. 6 is a schematic sectional view of an electron-emitting device according to a fourth embodiment of the present invention.
  • This is an electron emission device in which carbon nanofibers 40 are formed on a metal substrate 41 and a boron nitride carbon film of the present invention is provided.
  • a carbon nanofiber is formed on a metal substrate 41, and a boron nitride carbon thin film of the present invention is formed thereon.
  • Boron trinitride carbon thin film 42 composition ratio, boron 0.
  • a metal plate serving as the anode electrode 45 is opposed to the boron nitride carbon thin film 42 in the vacuum chamber, and the interval is set to 1 2 5 ⁇ ⁇ ⁇ 1.
  • the extraction electrode 44 is grounded, and the metal substrate 41 is And, in each bias added to the metal substrate 4 1 and the anode electrode 45 was measured emission current at degree of vacuum of 8 X 1 0_ 7 T orr.
  • the anode voltage was kept constant at 500 V, and the force source voltage was changed. By applying 10 V to the metal substrate 41, a high emission current of 0.1 lmA was obtained.
  • Example 2 as described in Example 1, the material of the group III atom and the nitrogen atom, boron nitride carbon, and diamond can be used as the material of the electron-emitting portion.
  • two or more electron-emitting portions can be manufactured on the same substrate to realize an array.
  • FIG. 7 is a schematic sectional view of a light emitting device using an electron emitting device according to a fifth embodiment of the present invention.
  • a carbon nanofiber 50 is formed on a metal substrate 51, and a boron nitride carbon thin film 52 of the present invention is formed thereon.
  • Boron carbon nitride thin film 52 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was deposited to a thickness of 10 nm by plasma-assisted chemical vapor deposition using boron trichloride, methane, and nitrogen gas. .
  • the boron nitride carbon thin film 42 was doped with iodine atoms at a concentration of 1 ⁇ 10 1 S cm ⁇ 3 . Attach the extraction electrode 54 on the mesh, put it in the glass tube 511 having the anode 5 5 formed on the phosphor 5 10, and seal it in vacuum. When 400 V was applied to the extraction electrode 54 with respect to the force source electrode 58 and 10 kV was applied to the anode electrode 55, a current of 500 A was obtained, and light emission was observed.
  • FIG. 8 is a schematic sectional view of an organic light emitting device using an electrode according to a sixth embodiment of the present invention.
  • An anode 62 is formed on a glass substrate 61 using an ITO transparent electrode, a hole transport layer 63 and a light emitting layer 64 are formed thereon using an organic thin film, and the cathode 65 is nitrided according to the present invention. It consists of a boron thin film 66 and a metal (lithium or magnesium) 67 with a small work function.
  • the use of the cathode of the present invention improves the electron injection efficiency. Thus, an organic light-emitting device having improved light-emitting characteristics can be obtained.
  • the emission current was measured in the same manner as in the fourth embodiment using stainless steel fibers or fiber pieces instead of the carbon nanofibers 40 formed on the metal substrate 41 of the fourth embodiment of the present invention. The same characteristics as in the example were obtained.
  • a fiber or a fiber piece formed of boron, nitrogen, and carbon is used as in the fourth embodiment. Although the emission current was measured, characteristics higher than those of the eighth embodiment were obtained.
  • the electron emission having any one of the following films of boron nitride, aluminum nitride, aluminum nitride, boron nitride, aluminum gallium nitride, aluminum gallium nitride, boron nitride carbon, and diamond having a thickness of 50 nm or less according to the present invention.
  • Low voltage operation and high current operation become possible in the device, and the effect is further enhanced by providing the film of the present invention on a substrate having irregularities or a spire shape, or on a carbon nanotube or a carbon nanofiber. Reliability is also improved.
  • a high-performance electron emission device can be provided, which is effective as a key device of a display device, an electron beam exposure machine, an imaging device, a light emitting element, and a material evaluation device using an electron beam.
  • a high-performance electron emission device can be provided, which is effective as a key device of a display device, an electron beam exposure machine, an imaging device, a light emitting element, and a material evaluation device using an electron beam.
  • luminance is improved, and a wide range of practical use as a display device can be realized.

Abstract

A high-performance electron emission device that can further improve the electron emission characteristics of a conventional spin trapping type cold cathode, carbon nano-tube and carbon nano-fiber, and emit high-brightness electrons at a low voltage is produced to provide it as a key device in a flat panel display, imaging device, electron beam device and microwave travelling wave tube. A semiconductor film having a thickness of up to 50 nm and an electron affinity of up to 4.0 eV is provided in a spin trapping type cold cathode, carbon nano-tube, carbon nano-fiber and metal or semiconductor substrate having irregularities to produce an electron emission device. The above semiconductor film uses either one of a compound of III group atoms of such as aluminum nitride, boron nitride, aluminum/boron nitride, aluminum/gallium nitride and boron/gallium nitride and nitrogen atoms; boron/carbon nitride; and diamond.

Description

明 細 書 電極、 電子放出素子及びそれを用いた装置 - 技術分野  Electrode, electron-emitting device and device using the same
本発明は半導体からの電子放出を利用する電極、 電子放出素子に関するもので ある。 背景技術  The present invention relates to an electrode and an electron-emitting device using electron emission from a semiconductor. Background art
冷陰極はフィールドェミッションディスプレー、 電子ビーム露光機、 マイクロ 波進行波管、 撮像素子等に応用できる。 また、 電子ビームを用いたォージェ電子 分光装置等の材料評価装置の電子源としても用いることができ、 様々な用途に対 応できる。  Cold cathodes can be applied to field emission displays, electron beam exposure machines, microwave traveling wave tubes, imaging devices, and the like. In addition, it can be used as an electron source for a material evaluation device such as an Auger electron spectrometer using an electron beam, and can be used in various applications.
従来、 冷陰極としては金属やシリコンを用いて尖塔形状を作製したスピント型 と呼ばれている電子放出素子が研究開発されてきたが、 上記の応用に対して更に 低電圧動作、 高電流動作および素子の信頼性が要求され、 スピント型冷陰極の特 性改善や新しい冷陰極用材料の研究開発がすすめられている。 ダイヤモンド、 窒 化アルミニウム、 窒化ホウ素は負性電子親和力を有する材料として注目され、 ま た、 近年、 カーボンナノチューブやカーボンナノファイバといった電界集中因子 を大きくできる材料の合成がすすみ、 低電圧での電子放出が観測され、 フィール ドエミッションディスプレイ等への応用が期待されている。 しかしこれらのカー ボンナノチューブやカーボンナノファイバからの電子放出特性における空間安定 性について問題があった。 今後更なる低電圧動作、 高電流動作も望まれている。 このような状況でスピント型冷陰極の特性改善については表面への異なった材 料のコーティングが検討されてきている。 また、 カーボンナノチューブやカーボ ンナノファイバからの電子放出時の空間安定性を向上させるためにもコーティン グ技術が注目される。 これまでにいくつかの試みが為されているが、 更に優れた 電子放出特性の実現が望まれている。  Conventionally, research and development has been conducted on electron emitters called spindt type, which have a spire shape made of metal or silicon as a cold cathode. There is a demand for device reliability, and improvements in the characteristics of Spindt-type cold cathodes and research and development of new cold cathode materials are underway. Diamond, aluminum nitride, and boron nitride are attracting attention as materials having a negative electron affinity, and in recent years, materials that can increase the electric field concentration factor, such as carbon nanotubes and carbon nanofibers, have been synthesized and electron emission at low voltage Has been observed, and application to field emission displays and the like is expected. However, there was a problem about the spatial stability of the electron emission characteristics from these carbon nanotubes and carbon nanofibers. Further low-voltage operation and high-current operation are desired in the future. Under these circumstances, to improve the characteristics of the Spindt-type cold cathode, coating of different materials on the surface has been studied. Coating technology is also attracting attention in order to improve the spatial stability during electron emission from carbon nanotubes and carbon nanofibers. Some attempts have been made so far, but it is desired to realize more excellent electron emission characteristics.
本発明は上記の状況を鑑みてなされたもので、 従来に優る電子放出特性をもつ た冷陰極を提供することを目的とする。 発明の開示 The present invention has been made in view of the above circumstances, and has electron emission characteristics superior to those of the related art. It is intended to provide a cold cathode. Disclosure of the invention
上記目的を達成するための本発明の電極は、 厚さ 50 nm以下の電子親和力 4 e V以下の膜を表面に有することを特徴とする。 なお、 膜の厚さは薄いほど好ま しいが、 下限としては製造コストを考慮して 3 nmが好ましい。 また、 電子親和 力としては 3. 5 eV以下が好ましい。 電子親和力は小さいほど好ましくマイナ スの値をとれば更に好ましい。  An electrode of the present invention for achieving the above object is characterized in that a surface thereof has a film having a thickness of 50 nm or less and an electron affinity of 4 eV or less. The thinner the film, the better, but the lower limit is preferably 3 nm in consideration of the manufacturing cost. The electron affinity is preferably 3.5 eV or less. The smaller the electron affinity is, the more preferable it is.
また、 前記の膜が III族原子と窒素原子の化合物、 窒化ホウ素炭素、 ダイヤモン ドのいずれかであることを特徴とする。111族原子と窒素原子の化合物としては、 窒化ホウ素 (BN) 、 窒化アルミニウム (A 1 N) 、 窒化ホウ素アルミニウム (A 1 BN) 、 窒化ホウ素ガリウム (B GaN) 、 窒化アルミニウムガリウム (A 1 GaN) 、 窒化ホウ素炭素 (BCN) 、 ダイヤモンドがあげられる。  Further, the film is any one of a compound of a group III atom and a nitrogen atom, boron nitride, and diamond. Compounds of group 111 atoms and nitrogen atoms include boron nitride (BN), aluminum nitride (A 1 N), boron aluminum nitride (A 1 BN), boron gallium nitride (B GaN), and aluminum gallium nitride (A 1 GaN). , Boron carbon nitride (BCN), and diamond.
また、 前記の膜にシリコン、 ィォゥ、 酸素、 リン原子のいずれかを含有するこ とを特徴とする。 かかる原子を含有する場合は、 フェルミ準位の上昇という効果 を奏する。 含有量としては、 原子%で、 0. 001 %〜 1 %が好ましく、 0. 0 1 %〜 0. 1 %がより好ましい。  Further, the film is characterized by containing any one of silicon, zeolite, oxygen, and phosphorus atoms. When such an atom is contained, the effect of increasing the Fermi level is exhibited. The content is preferably from 0.001% to 1%, and more preferably from 0.01% to 0.1% in atomic%.
また、 前記の膜の表面に水素が存在することを特徴とする。 表面に水素が存在 する場合には、 電子親和力の低下という効果が達成される。 なお、 表面に水素を 存在させるためには、 膜の堆積後、 水素プラズマ処理を行えばよい。  Further, hydrogen is present on the surface of the film. When hydrogen is present on the surface, the effect of reducing electron affinity is achieved. In order to make hydrogen exist on the surface, a hydrogen plasma treatment may be performed after the film is deposited.
また、 前記の膜が凹凸を有するまたは尖塔形状を有する基板上に存在すること を特徴とする。 膜が凹凸又は尖塔形状を有する場合には、 凹凸又は尖塔形状部の 膜内及び膜表面で電界強度を上昇させるという効果が達成される。 凹凸は 1 0〜 5 0 nmとすることが好ましい。  In addition, the film is present on a substrate having irregularities or a spire shape. When the film has a concavo-convex or spire shape, the effect of increasing the electric field strength in the film of the concavo-convex or spire-shaped portion and on the film surface is achieved. The unevenness is preferably from 10 to 50 nm.
また、 前記の膜がカーボンナノチューブ、 カーボンナノファイバ上に存在する ことを特徴とする。 この場合には、 更に膜内及び表面の電界強度が上昇するとい う効果を達成する。  Further, the invention is characterized in that the film is present on a carbon nanotube or a carbon nanofiber. In this case, the effect of further increasing the electric field strength in the film and on the surface is achieved.
また、 本発明の電子放出装置は、 前記電極を陰極として備えたことを特徴とす る。 さらに、 本発明のプラズマディスプレイは前記電極を放電セルの電極として用 いたことを特徴とする。 The electron emission device of the present invention is characterized in that the electrode is provided as a cathode. Further, the plasma display according to the present invention is characterized in that the electrode is used as an electrode of a discharge cell.
本発明の電子放出素子をディスプレイに用いた場合、 低電圧動作、 明瞭な画像 を実現できる。  When the electron-emitting device of the present invention is used for a display, a low-voltage operation and a clear image can be realized.
本発明の電子放出素子を電子ビーム露光装置に用いた場合、 高解像度の電子ビ ーム露光装置が実現できる。  When the electron-emitting device of the present invention is used in an electron beam exposure apparatus, a high-resolution electron beam exposure apparatus can be realized.
本発明の電子放出素子をマイクロ波進行波管に用いた場合、 高出力マイクロ波 出力を得られることができる。  When the electron-emitting device of the present invention is used in a microwave traveling-wave tube, a high-output microwave output can be obtained.
本発明の電子放出素子を撮像素子に用いた場合、 明瞭な画像が実現できる。 本発明の電子放出素子を電子ビームを用いた材料評価装置に用いた場合、 評価 精度の向上が実現できる。  When the electron-emitting device of the present invention is used for an imaging device, a clear image can be realized. When the electron-emitting device of the present invention is used for a material evaluation device using an electron beam, improvement in evaluation accuracy can be realized.
また、 本発明の電極を発光素子の電極に用いることを特徴とする。 本発明の電 極を発光素子に用いた場合、 高輝度で鮮明な発光が得られ、 高品質な照明および 表示が実現できる。  Further, the electrode of the present invention is used for an electrode of a light-emitting element. When the electrode of the present invention is used for a light-emitting element, clear light emission with high luminance can be obtained, and high-quality illumination and display can be realized.
また、 本発明の電極を用いた発光素子を液晶ディスプレイのバックライトに用 いた場合、 高輝度で消費電力の少ない液晶ディスプレイが実現できる。  Further, when the light emitting element using the electrode of the present invention is used for a backlight of a liquid crystal display, a liquid crystal display with high luminance and low power consumption can be realized.
更に、 本発明の有機発光装置は前記電極を備えたことを特徴とする。 本発明の 電極を有機発光装置に用いた場合、 高輝度で鮮明な発光が得られ、 公品質な表示 装置が実現できる。 図面の簡単な説明  Furthermore, an organic light emitting device according to the present invention includes the above electrode. When the electrode of the present invention is used for an organic light-emitting device, clear light emission with high luminance can be obtained, and a display device of public quality can be realized. BRIEF DESCRIPTION OF THE FIGURES
図 1は、 本発明の電子放出装置の実施例 1を示す断面図  FIG. 1 is a sectional view showing Embodiment 1 of the electron-emitting device of the present invention.
図 2は、 電子放出しきい値電界と膜厚の関係を示すグラフ  Figure 2 is a graph showing the relationship between the electron emission threshold electric field and film thickness.
図 3は、 電子親和力と材料の関係を示すグラフ  Figure 3 is a graph showing the relationship between electron affinity and material
図 4は、 本発明の電子放出装置の実施例 2を示す断面図  FIG. 4 is a sectional view showing Embodiment 2 of the electron-emitting device of the present invention.
図 5は、 本発明の電子放出装置の実施例 3を示す断面図  FIG. 5 is a sectional view showing Embodiment 3 of the electron-emitting device of the present invention.
図 6は、 本発明の電子放出装置の実施例 4を示す断面図  FIG. 6 is a sectional view showing Embodiment 4 of the electron emission device of the present invention.
図 7は、 本発明の発光素子の実施例 5を示す断面図  FIG. 7 is a sectional view showing Example 5 of the light emitting device of the present invention.
図 8は、 本発明の有機発光素子の実施例 6を示す断面図 (符号の説明) FIG. 8 is a sectional view showing Example 6 of the organic light emitting device of the present invention. (Explanation of code)
.、 2 1、 3 1 4 1  ., 2 1, 3 1 4 1
2 2 3 2 4 2  2 2 3 2 4 2
2 3 3 3 4 3 S i〇x2 3 3 3 4 3 S i〇 x membrane
2 4 3 4 4 4 引き出し電極  2 4 3 4 4 4 Leader electrode
2 5 3 5 4 5 アノード電極  2 5 3 5 4 5 Anode electrode
2 6 3 6 4 6 7、 2 7、 3 7、 4 7  2 6 3 6 4 6 7, 2 7, 3 7, 4 7
2 8 3 8 カソード電極  2 8 3 8 Cathode electrode
2 9 尖塔部  2 9 Spire
3 0 窒化ガリウム層  30 Gallium nitride layer
4 0 カーボンナノチュ ブまたはカーボンナノファイバ 発明を実施するための最良の形態  40 Carbon Nanotube or Carbon Nanofiber Best Mode for Carrying Out the Invention
次に本発明の実施の形態について説明する。  Next, an embodiment of the present invention will be described.
本発明による電子放出装置は 3 . 5 e V以下の電子親和力をもつ半導体膜を従 来のシリコンやモリブデンで作製されるスピント型冷陰極、 他の金属や半導体基 板表面に凹凸を設けて作製される冷陰極、 金属基板上に力一ボンナノチューブや 力一ボンナノファイバを作製した冷陰極、 および金属や半導体平坦基板に 5 O n m以下の厚さに設ける。 The electron emission device according to the present invention produces a semiconductor film having an electron affinity of 3.5 eV or less by forming a conventional Spindt-type cold cathode made of silicon or molybdenum, or by providing irregularities on the surface of another metal or semiconductor substrate. Cold cathodes, cold cathodes with carbon nanotubes and carbon nanofibers fabricated on a metal substrate, and a metal or semiconductor flat substrate with a thickness of 5 Om or less.
前記の従来の冷陰極や力一ボンナノチューブやカーボンナノファイバおよび陰 極基板として用いられているほとんどの材料は仕事関数が 4 e V以上であるため、 本発明の薄膜を設けることにより、 従来の冷陰極の電子放出特性の改善および信 頼性の向上に効果を発揮すると共に、 作製の容易な平板型電子放出装置の提供が 可能となる。  Most of the materials used as the conventional cold cathode, carbon nanotube, carbon nanofiber, and cathode substrate described above have a work function of 4 eV or more. This is effective in improving the electron emission characteristics and reliability of the cold cathode, and provides a flat-plate electron emission device that is easy to manufacture.
(実施例) ' 以下に各々の基板上に作製する本発明の電子放出装置の実施例について、 具体 的に説明する。  (Examples) 'Hereinafter, examples of the electron-emitting device of the present invention manufactured on each substrate will be specifically described.
(実施例 1 )  (Example 1)
図 1は本発明の第 1実施例に係る電子放出装置の断面概略図を示す。 実施例 1 の電子放出装置は基板 1、 窒化ホウ素薄膜 2、 S i Ox膜 3、 引き出し電極 4、 ァ ノード電極 5、 電源 6、 7、 力ソード電極 8で構成されている。 FIG. 1 is a schematic sectional view of an electron-emitting device according to a first embodiment of the present invention. Example 1 This electron emission device is composed of a substrate 1, a boron nitride thin film 2, a SiO x film 3, an extraction electrode 4, an anode electrode 5, power supplies 6, 7, and a force source electrode 8.
基板 1としてここではシリコンを用いた。 その上に三塩化ホウ素と窒素ガスを 用いたプラズマアシスト化学気相合成 (CVD) 法によって窒化ホウ素薄膜 2を 2 5 nm碓積した。窒化ホウ素薄膜 2にはィォゥ原子を 1 X 1 Ol8cm— 3の濃度に 添加した。 Here, silicon was used as the substrate 1. On top of that, a boron nitride thin film 2 was deposited to a thickness of 25 nm by a plasma-assisted chemical vapor deposition (CVD) method using boron trichloride and nitrogen gas. The boron nitride thin film 2 was added Iou atom concentration of 1 X 1 O l8 cm- 3.
次に、 窒化ホウ素薄膜 2上に S i Ox薄膜 3を 800 nm、 および引き出し電極 4用金属として T i (20 nm) /Au ( 500 nm) を電子ビ一ム蒸着法で形 成する。 また、 シリコン基板 1の裏面に力ソード電極 8として A 1 ( 500 nm) を電子ビーム蒸着した。 その後、 フォトリソグラフィー工程を用いて、 引き出し 電極 4用金属および S i〇x薄膜 3をエッチングにより除去し、直径 5 xmの窓を 形成する。 Next, an SiO x thin film 3 is formed on the boron nitride thin film 2 by 800 nm, and Ti (20 nm) / Au (500 nm) as a metal for the extraction electrode 4 is formed by electron beam evaporation. A 1 (500 nm) was electron-beam evaporated as a force source electrode 8 on the back surface of the silicon substrate 1. Then, using a photolithography process, the metal for the extraction electrode 4 and the Si x x thin film 3 are removed by etching to form a window having a diameter of 5 xm.
窓の中に露出した窒化ホウ素薄膜 2表面を水素プラズマで処理した後、 真空チ ェンバー内でアノード電極 5となる金属板を窒化ホウ素薄膜 2に対向させ、 その 間隔を 125 xmとした。  After the surface of the boron nitride thin film 2 exposed in the window was treated with hydrogen plasma, a metal plate serving as the anode electrode 5 was opposed to the boron nitride thin film 2 in a vacuum chamber, and the interval was 125 xm.
引き出し電極 4を接地し、 カソ一ド電極 8とアノード電極 5に各々バイアスを 加えて、 8 X 1 0_7To r r以下の真空度で放出電流を測定した。 アノード電圧 を 5 00 Vと一定にし、 力ソード電圧を変化させた。 力ソード電極 8に 40 V印 加することにより 0. 1mAの高い放出電流が得られた。 The extraction electrode 4 and the ground, the addition of each bias to cathode one cathode electrode 8 and the anode electrode 5 was measured emission current at degree of vacuum of 8 X 1 0_ 7 To rr. The anode voltage was kept constant at 500 V, and the force source voltage was changed. By applying 40 V to the force source electrode 8, a high emission current of 0.1 mA was obtained.
シリコン基板上に窒化ホウ素薄膜を上記の方法で堆積させ、 厚さの異なる試料 において引き出し電極 4を作製しないで、 窒化ホウ素薄膜とアノード電極 5間を 1 2 5 mと一定にして電子放出電流が 1 X 1 O l A得られる時の平均しきい 値電界を調べると図 2の結果が得られる。 このことから更に薄膜化を行うことに よりしきい値電界の低下が期待できる。  A boron nitride thin film is deposited on a silicon substrate by the above-described method, and the electron emission current is made constant by keeping the distance between the boron nitride thin film and the anode electrode at 125 m without forming the extraction electrode 4 in the samples having different thicknesses. Examination of the average threshold electric field when 1 X 1 O l A is obtained gives the results in Fig. 2. From this, it is expected that the threshold electric field will be reduced by further reducing the thickness.
本発明による電子放出特性の改善は本発明の半導体膜を設けることにより、 そ れを設けない場合の冷陰極に比べ、 実効的な仕事関数が低減できることによって いる。 ここでは窒化ホウ素膜を用いたが、 窒化ホウ素以外に図 3に示すような低 い電子親和力を有する材料を用いることができる。 ΠΙ族原子と窒素原子からなる 化合物は有機金属化学気相合成 (MOCVD) 法や分子線ェビタキシャル (MB E) 法によって薄膜合成ができ、 電子放出装置の作製に用いられる。 また、 本実施例では窒化ホウ素の合成にプラズマ CVD法を用いたが、 窒化ホ ゥ素炭素膜の合成に対しても同様のプラズマ CVD法を用い、 メタンガス等を用 いて炭素を供給することにより薄膜の堆積ができる。 ダイヤモンドについてはプ ラズマ CVD法ゃホットフィラメント CVD法によって合成できる。 The improvement of the electron emission characteristics according to the present invention is due to the fact that the provision of the semiconductor film of the present invention can reduce the effective work function as compared with a cold cathode in which the semiconductor film is not provided. Although a boron nitride film was used here, a material having a low electron affinity as shown in FIG. 3 can be used other than boron nitride. Compounds consisting of Group III and nitrogen atoms can be obtained by metal organic chemical vapor synthesis (MOCVD) or molecular beam epitaxy (MB The thin film can be synthesized by the E) method, and is used for manufacturing electron emission devices. In this example, the plasma CVD method was used for synthesizing boron nitride. However, the same plasma CVD method was used for synthesizing a boron nitride carbon film by supplying carbon using methane gas or the like. A thin film can be deposited. Diamond can be synthesized by plasma CVD and hot filament CVD.
ィォゥ不純物を添加した窒化ホウ素薄膜 2を用いたが、 ドナー不純物となるリ チウム、 酸素、 シリコン等の原子を添加した窒化ホウ素薄膜 3を用いることもで きる。上記の窒化ホウ素以外の III族原子と窒素原子からなる化合物に対しても同 様の不純物を用いることができる。 また、 ダイヤモンドについてはィォゥ、 リン、 ホウ素、 窒素を不純物として用いることができる。  Although the boron nitride thin film 2 doped with zeo impurities was used, a boron nitride thin film 3 doped with atoms of donor impurities such as lithium, oxygen, and silicon can also be used. Similar impurities can be used for compounds consisting of a group III atom and a nitrogen atom other than boron nitride. For diamond, iodine, phosphorus, boron, and nitrogen can be used as impurities.
ここでは基板材料としてシリコンを用いたが、それ以外の金属、ガリウムヒ素、 インジウムリン、 炭化ケィ素、 窒化ガリウム等、 様々な導体および半導体を用い ても作製できる。 また、 引き出し電極 4用金属として T i ZAuを用いたが、 T iの代わりに C r、 Auの代わりには様々な金属を用いることができる。  Here, silicon was used as the substrate material, but other conductors and semiconductors such as metals, gallium arsenide, indium phosphide, silicon carbide, and gallium nitride can be used. Although Ti ZAu was used as the metal for the extraction electrode 4, Cr can be used instead of Ti, and various metals can be used instead of Au.
半導体基板を用いる場合にはォーミック電極形成可能な材料であればどのよう な金属でもカソ一ド電極 8用金属として用いる事ができ、 導体基板を用いる場合 には基板自身をカソード電極として用いることができる。  When a semiconductor substrate is used, any metal that can form an ohmic electrode can be used as the metal for the cathode electrode 8, and when a conductor substrate is used, the substrate itself can be used as the cathode electrode. it can.
(実施例 2 )  (Example 2)
図 4は本発明の第 2実施例に係る電子放出装置の断面概略図を示す。 シリコン 基板 1上にスピント型尖塔形状が形成され、 本発明の窒化ホウ素炭素膜が設けら れた電子放出装置であり、 基板 2 1、 窒化ホウ素炭素薄膜 22、 S i Ox膜 23、 引き出し電極 24、 アノード電極 25、 電源 26、 27、 カゾード電極 28、 尖 塔形状 29で構成されている。 FIG. 4 is a schematic sectional view of an electron-emitting device according to a second embodiment of the present invention. This is an electron emission device in which a Spindt-type spire shape is formed on a silicon substrate 1 and a boron nitride carbon film of the present invention is provided. The substrate 21, the boron nitride carbon thin film 22, the SiO x film 23, and the extraction electrode 24, an anode electrode 25, power supplies 26 and 27, a cathode electrode 28, and a spire shape 29.
取り出し電極 24を持つ尖塔形状 29が作製された n型シリコン基板 1 (1 1 1) を用い、 尖塔形状部 29に本発明の窒化ホウ素炭素薄膜 22を形成する。 プ ラズマアシスト化学気相合成法により三塩化ホウ素とメタンと窒素ガスを用いて 窒化ホウ素炭素薄膜 22 (組成比、 ホウ素 0. 4、 炭素 0. 2、 窒素 0. 4) を 25 nm堆積した。 窒化ホウ素炭素薄膜 22にはィォゥ原子を 1 X 1 018cm一3 の濃度に添加した。 シリコン基板 1の裏面に力ソード電極 28として A 1 (5 0 0 nm) を電子ビーム蒸着した。 窒化ホウ素炭素薄膜 22表面を水素プラズマで 処理した後、 真空チェンバ一内でアノード電極 2 5となる金属板を窒化ホウ素炭 素薄膜 22を有する尖塔形状部 2 9に対向させ、 その間隔を 1 2 5 とした。 引き出し電極 24を接地し、 力ソード電極 2 8とアノード電極 2 5に各々バイァ スを加えて、 8 X 1 0_7T 0 r r以下の真空度で放出電流を測定した。 アノード 電圧を 5 0 0 Vと一定にし、 力ソード電圧を変化させた。 力ソード電極 2 8に 3 0V印加することにより 0. 1mAの高い放出電流が得られた。 Using the n-type silicon substrate 1 (111) having the spire shape 29 having the extraction electrode 24 formed thereon, the boron nitride carbon thin film 22 of the present invention is formed on the spire shape portion 29. A 25 nm-thick boron nitride carbon thin film 22 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was deposited by plasma-assisted chemical vapor deposition using boron trichloride, methane, and nitrogen gas. The boron nitride thin carbon film 22 was added Iou atom concentration of 1 X 1 0 18 cm one 3. A 1 (5 0 0 nm) by electron beam evaporation. After treating the surface of the boron nitride carbon thin film 22 with hydrogen plasma, a metal plate serving as the anode electrode 25 is made to face the spire-shaped portion 29 having the boron nitride carbon thin film 22 in the vacuum chamber, and the interval is set to 1 2 And 5. Grounded extraction electrode 24, and each added Baia scan to force cathode electrode 2 8 and the anode electrode 2 5 was measured emission current at 8 X 1 0_ 7 T 0 rr following vacuum. The anode voltage was kept constant at 500 V, and the force sword voltage was varied. By applying 30 V to the force source electrode 28, a high emission current of 0.1 mA was obtained.
ここでは窒化ホウ素炭素薄膜を用いたが、 窒化ホウ素をはじめ前記の他の材料 も用いることができる。  Here, a boron nitride carbon thin film is used, but other materials described above including boron nitride can also be used.
(実施例 3)  (Example 3)
図 5は本発明の第 3実施例に係る電子放出装置の断面概略図を示す。 実施例 3 の電子放出装置は n型窒化ガリウム層 3 0が形成されたシリコン基板 3 1、 窒化 ホウ素炭素薄膜 3 2、 S i Ox膜 3 3、 引き出し電極 34、 アノード電極 3 5、 電 源 3 6、 3 7、 力ソード電極 38で構成されている。 FIG. 5 is a schematic sectional view of an electron-emitting device according to a third embodiment of the present invention. The electron-emitting device of Example 3 has a silicon substrate 31 on which an n-type gallium nitride layer 30 is formed, a boron nitride carbon thin film 32, a SiO x film 33, an extraction electrode 34, an anode electrode 35, and a power source. It consists of 36, 37, and a force electrode 38.
有機金属化学気相合成法によって n型シリコン基板 3 1 ( 1 1 1) 面上にシリ コン添加 n型窒化ガリウム層 30を 1 成長させたウェハーを基板として用い る。 マイクロ波により水素プラズマを生成し、 窒化ガリウム層 3 0の表面を処理 する。 マイク口波出力 3 00 W、 水素流量を 5 0 s c c m、 ガス圧力 40 T o r rに設定し、 5分間処理を行う。 水素プラズマ処理によって平坦な窒化ガリウム 層 3 0表面は 1 0〜5 0 nmの凹凸を有する表面に変化する。 その上に三塩化ホ ゥ素とメタンと窒素ガスを用いたプラズマアシスト化学気相合成法によって窒化 ホウ素炭素薄膜 3 2 (組成比、 ホウ素 0. 4、 炭素 0. 2、 窒素 0. 4) を 2 5 nm堆積した。  A wafer obtained by growing a silicon-added n-type gallium nitride layer 30 on an n-type silicon substrate 31 (111) surface by metal organic chemical vapor deposition is used as a substrate. Hydrogen plasma is generated by microwaves to treat the surface of the gallium nitride layer 30. The microphone mouth wave output is set to 300 W, the hydrogen flow rate is set to 50 sccm, the gas pressure is set to 40 T rr, and the treatment is performed for 5 minutes. By the hydrogen plasma treatment, the flat gallium nitride layer 30 surface changes to a surface having irregularities of 10 to 50 nm. On top of this, a boron-nitride carbon thin film 32 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was formed by plasma-assisted chemical vapor synthesis using boron trichloride, methane, and nitrogen gas. Deposited 25 nm.
窒化ホウ素炭素薄膜 3 2にはィォゥ原子を 1 X 1 018cm_3の濃度に添加した。 次に、 窒化ホウ素炭素薄膜 32上に S i Ox薄膜 3 3を 8 0 0 nm、 および引き 出し電極 34用金属として T i (2 0 nm) /An ( 5 0 0 nm) を電子ビーム 蒸着法で形成する。 また、 シリコン基板 3 1の裏面に力ソ一ド電極 3 8として A 1 ( 5 0 0 nm) を電子ビ一ム蒸着した。 その後、 フォトリソグラフィー工程を 用いて、引き出し電極 3.4用金属および S i〇x薄膜 3 3をエッチングにより除去 し、 直径 5 の窓を形成する。 窓の中に露出した窒化ホウ素炭素薄膜 32表面 を水素プラズマで処理した後、 真空チェンバー内でアノード電極 35となる金属 板を窒化ホウ素炭素薄膜 32に対向させ、 その間隔を 125 zmとした。 引き出 し電極 34を接地し、 カソード電極 38とアノード電極 3 5に各々バイアスを加 えて、 8 X 1 0— 7To r r以下の真空度で放出電流を測定した。 アノード電圧を 500 Vと一定にし、 力ソード電圧を変化させた。 力ソード電極 38に 40 V印 加することにより 0. 1mAの高い放出電流が得られた。 The boron nitride thin carbon film 3 2 was added Iou atom concentration of 1 X 1 0 18 cm_ 3. Next, 800 nm of SiO x thin film 33 was deposited on boron nitride carbon thin film 32, and Ti (20 nm) / An (500 nm) was used as a metal for extraction electrode 34 by electron beam evaporation. It is formed by a method. Also, A 1 (500 nm) was vapor-deposited on the rear surface of the silicon substrate 31 as a force source electrode 38 by electron beam evaporation. Thereafter, the metal for the lead electrode 3.4 and the Si x x thin film 33 are removed by etching using a photolithography process. To form a 5 diameter window. After the surface of the boron nitride carbon thin film 32 exposed in the window was treated with hydrogen plasma, a metal plate serving as the anode electrode 35 was opposed to the boron nitride carbon thin film 32 in a vacuum chamber, and the interval was set to 125 zm. Pull the electrode 34 is grounded Shi out, each bias pressurized strong point on the cathode electrode 38 and anode electrode 35 was measured emission current at degree of vacuum of 8 X 1 0- 7 To rr. The anode voltage was kept constant at 500 V, and the force sword voltage was changed. By applying 40 V to the force source electrode 38, a high emission current of 0.1 mA was obtained.
本実施例では水素プラズマ処理によって凹凸表面を作製じたが、 表面に凹凸を 形成するためのプラズマを生成するガスとして酸素、 塩素、 フッ素等を含むガス も使用できる。 プラズマの生成にはマイクロ波だけではなく RF電力を用いる事 もでき、 プラズマ処理において試料にバイアスをかけることは表面形状の制御に 有効である。  In this embodiment, the uneven surface is formed by the hydrogen plasma treatment. However, a gas containing oxygen, chlorine, fluorine, or the like can be used as a gas for generating plasma for forming the unevenness on the surface. Plasma power can be generated using not only microwaves but also RF power, and applying a bias to the sample during plasma processing is effective in controlling the surface shape.
(実施例 4 )  (Example 4)
図 6は本発明の第 4実施例に係る電子放出装置の断面概略図を示す。 金属基板 41上にカーボンナノファイバ 40が形成され、 本発明の窒化ホウ素炭素膜が設 けられた電子放出装置であり、 基板 41、 窒化ホウ素炭素薄膜 42、 S i Ox膜 4FIG. 6 is a schematic sectional view of an electron-emitting device according to a fourth embodiment of the present invention. This is an electron emission device in which carbon nanofibers 40 are formed on a metal substrate 41 and a boron nitride carbon film of the present invention is provided. The substrate 41, the boron nitride carbon thin film 42, and the SiO x film 4
3、 引き出し電極 44、 アノード電極 45、 電源 46、 47で構成されている。 金属基板 41上にカーボンナノファイバ 40を作製し、 その上に本発明の窒化 ホウ素炭素薄膜 42を形成する。 プラズマアシスト化学気相合成法により三塩化 ホウ素とメタンと窒素ガスを用いて窒化ホウ素炭素薄膜 42 (組成比、 ホウ素 0.3. Consists of a lead electrode 44, an anode electrode 45, and power supplies 46 and 47. A carbon nanofiber is formed on a metal substrate 41, and a boron nitride carbon thin film of the present invention is formed thereon. Boron trinitride carbon thin film 42 (composition ratio, boron 0.
4、 炭素 0. 2、 窒素 0. 4) を 2 5 nm堆積した。 窒化ホウ素炭素薄膜 42に はィォゥ原子を 1 X 1 018cm— 3の濃度に添加した。 次に、 窒化ホウ素炭素薄膜 4 2上に S i Ox薄膜 43を 800 nm、および引き出し電極 44用金属として T i4, carbon 0.2 and nitrogen 0.4) were deposited at 25 nm. To the boron nitride carbon thin film 42, iodine atoms were added at a concentration of 1 × 10 18 cm− 3 . Next, 800 nm of SiO x thin film 43 was formed on boron nitride carbon thin film 42, and Ti
(20 nm) /A ( 500 nm) を電子ビーム蒸着法で形成する。 その後、 フ オトリソグラフィー工程を用いて、引き出し電極 44用金属および S i〇x薄膜 4 3をエッチングにより除去し、 直径 5 /xmの窓を形成する。 窓の中に露出した窒 化ホウ素炭素薄膜 42表面を水素プラズマで処理した後、 真空チェンバー内でァ ノ一ド電極 45となる金属板を窒化ホウ素炭素薄膜 42に対向させ、 その間隔を 1 2 5 Π1とした。 引き出し電極 44を接地し、 金属基板 41を力ソード電極と し、 金属基板 4 1とアノード電極 45に各々バイアスを加えて、 8 X 1 0_7T o r r以下の真空度で放出電流を測定した。 アノード電圧を 5 00 Vと一定にし、 力ソード電圧を変化させた。 金属基板 4 1に 1 0V印加することにより 0. lm Aの高い放出電流が得られた。 (20 nm) / A (500 nm) is formed by electron beam evaporation. Thereafter, using a photolithography process, the metal for the extraction electrode 44 and the Si x x thin film 43 are removed by etching to form a window having a diameter of 5 / xm. After the surface of the boron nitride carbon thin film 42 exposed in the window is treated with hydrogen plasma, a metal plate serving as the anode electrode 45 is opposed to the boron nitride carbon thin film 42 in the vacuum chamber, and the interval is set to 1 2 5 と し た 1. The extraction electrode 44 is grounded, and the metal substrate 41 is And, in each bias added to the metal substrate 4 1 and the anode electrode 45 was measured emission current at degree of vacuum of 8 X 1 0_ 7 T orr. The anode voltage was kept constant at 500 V, and the force source voltage was changed. By applying 10 V to the metal substrate 41, a high emission current of 0.1 lmA was obtained.
実施例 2〜 4においても電子放出部の材料として実施例 1で述べたように本発 明に係る III族原子と窒素原子の化合物、窒化ホウ素炭素、ダイヤモンドのいずれ の材料も用いることができる。 また、 実施例 1〜4において 2つ以上の電子放出 部を同一基板上に作製し、 アレーを実現することができる。  In Examples 2 to 4, as described in Example 1, the material of the group III atom and the nitrogen atom, boron nitride carbon, and diamond can be used as the material of the electron-emitting portion. In addition, in Examples 1 to 4, two or more electron-emitting portions can be manufactured on the same substrate to realize an array.
(実施例 5 )  (Example 5)
図 7は本発明の第 5実施例に係る電子放出素子を用いた発光素子の断面概略図 を示す。 金属基板 5 1上にカーボンナノファイバ 5 0が形成され、 本発明の窒化 ホウ素炭素膜が設けられた発光素子 (ランプ) であり、 基板 5 1、 窒化ホウ素炭 素薄膜 5 2、 引き出し電極 54、 アノード電極 5 5、 力ソード電極 5 8、 蛍光体 5 1 0、 ガラス管 5 1 1で構成されている。  FIG. 7 is a schematic sectional view of a light emitting device using an electron emitting device according to a fifth embodiment of the present invention. A light emitting device (lamp) in which carbon nanofibers 50 are formed on a metal substrate 51 and the boron nitride carbon film of the present invention is provided. The substrate 51, the boron nitride carbon thin film 52, the extraction electrode 54, It is composed of an anode electrode 55, a power source electrode 58, a phosphor 510, and a glass tube 511.
金属基板 5 1上にカーボンナノファイバ 5 0を作製し、 その上に本発明の窒化 ホウ素炭素薄膜 5 2を形成する。 プラズマアシスト化学気相合成法により三塩化 ホウ素とメタンと窒素ガスを用いて窒化ホウ素炭素薄膜 5 2 (組成比、ホウ素 0. 4、 炭素 0. 2、 窒素 0. 4) を 1 0 nm堆積した。 窒化ホウ素炭素薄膜 42に はィォゥ原子を 1 X 1 01 S cm— 3の濃度に添加した。メッシュ上の引き出し電極 54を付け、 蛍光体 5 1 0の上にアノード電極 5 5が形成されたガラス管 5 1 1 の中に入れ、 真空封入する。 力ソード電極 5 8に対して引き出し電極 54に 40 0 Vかけ、 アノード電極 5 5に 1 0 kV印可することにより 50 0 Aの電流が 得られ光放射が観測された。 A carbon nanofiber 50 is formed on a metal substrate 51, and a boron nitride carbon thin film 52 of the present invention is formed thereon. Boron carbon nitride thin film 52 (composition ratio, boron 0.4, carbon 0.2, nitrogen 0.4) was deposited to a thickness of 10 nm by plasma-assisted chemical vapor deposition using boron trichloride, methane, and nitrogen gas. . The boron nitride carbon thin film 42 was doped with iodine atoms at a concentration of 1 × 10 1 S cm− 3 . Attach the extraction electrode 54 on the mesh, put it in the glass tube 511 having the anode 5 5 formed on the phosphor 5 10, and seal it in vacuum. When 400 V was applied to the extraction electrode 54 with respect to the force source electrode 58 and 10 kV was applied to the anode electrode 55, a current of 500 A was obtained, and light emission was observed.
(実施例 6 )  (Example 6)
図 8は本発明の第 6の実施例に係る電極を用いた有機発光素子の断面概略図を 示す。 ガラス基板 6 1上に I TO透明電極を用いて陽極 6 2を形成し、 その上に 有機薄膜を用いて正孔輸送層 63、 発光層 64を形成し、 陰極 6 5を本発明の窒 化ホウ素薄膜 6 6と小さい仕事関数を持つ金属 (リチウムやマグネシウム) 6 7 で構成されている。 本発明の陰極を用いることにより電子の注入効率を向上させ ることができ、 発光特性が改善された有機発光素子が得られる。 FIG. 8 is a schematic sectional view of an organic light emitting device using an electrode according to a sixth embodiment of the present invention. An anode 62 is formed on a glass substrate 61 using an ITO transparent electrode, a hole transport layer 63 and a light emitting layer 64 are formed thereon using an organic thin film, and the cathode 65 is nitrided according to the present invention. It consists of a boron thin film 66 and a metal (lithium or magnesium) 67 with a small work function. The use of the cathode of the present invention improves the electron injection efficiency. Thus, an organic light-emitting device having improved light-emitting characteristics can be obtained.
(実施例 7 )  (Example 7)
本発明の第 4実施例の金属基板 4 1上に形成するカーボンナノファイバ 4 0の かわりに、 ステンレス繊維または繊維片を用いて、 第 4実施例と同様に放出電流 を測定したが第 4実施例と同様の特性が得られた。  The emission current was measured in the same manner as in the fourth embodiment using stainless steel fibers or fiber pieces instead of the carbon nanofibers 40 formed on the metal substrate 41 of the fourth embodiment of the present invention. The same characteristics as in the example were obtained.
(実施例 8 ) ' 本発明の第 4実施例の金属基板 4 1上に形成する力一ボンナノファイバ 4 0の かわりに、 ホウ素と窒素によって形成された繊維又は繊維片を用いて、 第 4実施 例と同様に放出電流を測定したが第 4実施例よりも高い特性が得られた。  (Embodiment 8) 'Instead of the carbon nanofibers 40 formed on the metal substrate 41 of the fourth embodiment of the present invention, a fiber or a fiber piece formed by boron and nitrogen is used. The emission current was measured in the same manner as in the example, but higher characteristics were obtained than in the fourth example.
(実施例 9 )  (Example 9)
本発明の第 4実施例の金属基板 4 1上に形成する力一ボンナノファイバ 4 0の かわりに、 ホウ素と窒素と炭素によって形成された繊維又は繊維片を用いて、 第 4実施例と同様に放出電流を測定したが第 8実施例よりも高いの特性が得られた 産業上の利用可能性.  Instead of the carbon nanofibers 40 formed on the metal substrate 41 of the fourth embodiment of the present invention, a fiber or a fiber piece formed of boron, nitrogen, and carbon is used as in the fourth embodiment. Although the emission current was measured, characteristics higher than those of the eighth embodiment were obtained.
以上説明したように、 本発明による厚さ 5 0 n m以下の窒化ホウ素、 窒化アル ミニゥム、 窒化ホウ素アルミニウム、 窒化ホウ素ガリゥム、 窒化アルミニウムガ リウム、 窒化ホウ素炭素、 ダイヤモンドのいずれかの膜を有する電子放出装置に おいて低電圧動作、 高電流動作が可能になり、 凹凸や尖塔形状を有する基板上、 また、 カーボンナノチューブやカーボンナノファイバ上に本発明の膜を有するこ とにより更にその効果は大きく、 信頼性も向上する。 これによつて高性能電子放 出装置が提供でき、 表示装置、 電子ビーム露光機、 撮像装置、 発光素子および電 子ビームを用いた材料評価装置のキーデバイスとして効果的である。 また、 本発 明の電極を用いて有機発光装置を作製することにより輝度の向上が実現し、 表示 装置として広範囲の実用化が可能となる。  As described above, the electron emission having any one of the following films of boron nitride, aluminum nitride, aluminum nitride, boron nitride, aluminum gallium nitride, aluminum gallium nitride, boron nitride carbon, and diamond having a thickness of 50 nm or less according to the present invention. Low voltage operation and high current operation become possible in the device, and the effect is further enhanced by providing the film of the present invention on a substrate having irregularities or a spire shape, or on a carbon nanotube or a carbon nanofiber. Reliability is also improved. As a result, a high-performance electron emission device can be provided, which is effective as a key device of a display device, an electron beam exposure machine, an imaging device, a light emitting element, and a material evaluation device using an electron beam. In addition, by manufacturing an organic light-emitting device using the electrode of the present invention, luminance is improved, and a wide range of practical use as a display device can be realized.

Claims

請 求 の 範 囲  The scope of the claims
I . 厚さ 5 0 n m以下の電子親和力 4 . 0 e V以下の膜を表面に有することを 特徴とする電極。 I. An electrode having a film having a thickness of 50 nm or less and an electron affinity of 4.0 eV or less on its surface.
2 . 前記膜が I I I族原子と窒素原子の化合物、 窒化ホウ素炭素、 ダイヤモンドの いずれかであることを特徴とする請求項 1記載の電極。  2. The electrode according to claim 1, wherein the film is made of any one of a compound of group II atoms and nitrogen atoms, boron nitride, and diamond.
3 . 前記膜にシリコン、 ィォゥ、 酸素、 リン原子、 リチウム、 ホウ素、 窒素の いずれかを含むことを特徴とする請求項 1または 2記載の電極。  3. The electrode according to claim 1, wherein the film contains any of silicon, zeolite, oxygen, phosphorus atom, lithium, boron, and nitrogen.
4 . 前記膜の表面に水素が存在することを特徴とする請求項 1〜 3のいずれか 1項記載の電極。  4. The electrode according to any one of claims 1 to 3, wherein hydrogen is present on the surface of the film.
5 . 前記膜が、 凹凸を有するまたは尖塔形状を有する基板の表面に存在するこ とを特徴とする請求項 1〜 4のいずれか 1項記載の電極。  5. The electrode according to any one of claims 1 to 4, wherein the film is present on a surface of a substrate having irregularities or a spire shape.
6 . 前記膜が、 力一ボンナノチューブまたは力一ボンナノファイバの表面に存 在することを特徴とする請求項 1〜 4のいずれか 1項記載の電極。  6. The electrode according to any one of claims 1 to 4, wherein the film is present on a surface of a carbon nanotube or a carbon nanofiber.
7 . 前記膜が、 ステンレス繊維または繊維片の表面に存在することを特徴とす る請求項 1〜 4のいずれか 1項記載の電極。  7. The electrode according to any one of claims 1 to 4, wherein the membrane is present on a surface of a stainless steel fiber or a piece of fiber.
8 . 前記膜が、 ホウ素と窒素によって形成された繊維又は繊維片の表面に存在 することを特徴とする請求項 1〜 4のいずれか 1項記載の電極。  8. The electrode according to any one of claims 1 to 4, wherein the film is present on a surface of a fiber or a piece of fiber formed by boron and nitrogen.
9 . 前記膜が、 ホウ素と窒素と炭素によって形成された繊維又は繊維片の表面 に存在することを特徴とする請求項 1〜4のいずれか 1項記載の電極。  9. The electrode according to any one of claims 1 to 4, wherein the film is present on a surface of a fiber or a piece of fiber formed by boron, nitrogen, and carbon.
1 0 . 請求項 1ないし 9のいずれか 1項記載の電極を冷陰極として用いたこと を特徴とする電子放出装置。  10. An electron-emitting device using the electrode according to any one of claims 1 to 9 as a cold cathode.
I I . 請求項 1ないし 9のいずれか 1項記載の電極を放電セルの電極として用 いたことを特徴とするプラズマディスプレイ。  I I. A plasma display, wherein the electrode according to claim 1 is used as an electrode of a discharge cell.
1 2 . 請求項 7ないし 1 0のいずれか 1項記載の電子放出素子を用いたことを 特徴とするフィールドェミッションディスプレイ、 電子ビーム露光装置、 マイク 口波進行波管、 撮像素子、 電子ビームを用いた材料評価装置。  12. A field emission display, an electron beam exposure apparatus, a microphone, a mouth-wave traveling wave tube, an image sensor, and an electron beam, wherein the electron-emitting device according to any one of claims 7 to 10 is used. Material evaluation equipment used.
1 3 . 請求項 1 0記載の電子放出装置を用いたことを特徴とする発光素子。 13. A light-emitting element using the electron-emitting device according to claim 10.
1 4 . 請求項 1 3記載の発光素子を用いたことを特徴とする照明装置、 液晶デ イスプレイのバックライト、 表示ランプ。 14. An illuminating device using the light-emitting device according to claim 13, and a liquid crystal device. Backlights and indicator lamps for display.
1 5 . 請求項 1ないし 9のいずれか 1項記載の電極を用いたことを特徴とする 有機発光装置。  15. An organic light-emitting device using the electrode according to any one of claims 1 to 9.
1 6 . 請求項 1 5記載の有機発光装置を用いたことを特徴とする表示装置。  16. A display device using the organic light-emitting device according to claim 15.
PCT/JP2002/005153 2001-05-28 2002-05-28 Electrode, electron emission element and device using it WO2002097843A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003500934A JPWO2002097843A1 (en) 2001-05-28 2002-05-28 Electrode, electron-emitting device and device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001158371 2001-05-28
JP2001-158371 2001-05-28

Publications (1)

Publication Number Publication Date
WO2002097843A1 true WO2002097843A1 (en) 2002-12-05

Family

ID=19002107

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/005153 WO2002097843A1 (en) 2001-05-28 2002-05-28 Electrode, electron emission element and device using it

Country Status (2)

Country Link
JP (1) JPWO2002097843A1 (en)
WO (1) WO2002097843A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240722A (en) * 2006-03-07 2007-09-20 Ricoh Co Ltd Electrifier and image forming apparatus
JP2009535767A (en) * 2006-04-26 2009-10-01 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Organic light-emitting diode with structured electrode

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794081A (en) * 1993-09-23 1995-04-07 Okano Osamu Electron emitter using diamond and manufacture of electron emitter array
JPH07296797A (en) * 1994-04-27 1995-11-10 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery, and lithium secondary battery using it
JPH09185942A (en) * 1995-10-31 1997-07-15 Fuji Electric Co Ltd Cold cathode element and its manufacture
JPH09199001A (en) * 1996-01-18 1997-07-31 Sumitomo Electric Ind Ltd Electron discharging device
JPH11273551A (en) * 1998-03-23 1999-10-08 Nec Corp Electron emitting element employing boron nitride and its manufacture
JP2000090811A (en) * 1998-09-16 2000-03-31 Agency Of Ind Science & Technol Cold electron emitting element and manufacture thereof
JP2000251834A (en) * 1999-03-02 2000-09-14 Casio Comput Co Ltd Display
JP2000299082A (en) * 1999-04-13 2000-10-24 Seiko Epson Corp Pattern forming method, electron beam emission element and its manufacture
JP2000348601A (en) * 1999-06-07 2000-12-15 Sony Corp Electron emitting source and manufacture thereof, and display device using electron emitting source
JP2001020093A (en) * 1999-07-09 2001-01-23 Matsushita Electric Ind Co Ltd Electrophoresis device, electron releasing element and image display device produced by utilizing the same as well as their production
JP2001096499A (en) * 1999-07-15 2001-04-10 Lucent Technol Inc Nano-scale structural body assembly, electric field emission device, microwave vacuum tube amplifier, display device, and manufacture of electric field emission structural body
JP2001143601A (en) * 1999-11-10 2001-05-25 Sharp Corp Cold cathode and method of fabricating the same
JP2001256884A (en) * 2000-03-10 2001-09-21 Sony Corp Cold cathode electric field electron emission element and its production method and display of cold cathode electric field electron emission and its production method
JP2002015659A (en) * 2000-06-30 2002-01-18 Takashi Sugino Electron emission device
JP2002093305A (en) * 2000-07-12 2002-03-29 Akio Hiraki Electron emitting negative electrode

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794081A (en) * 1993-09-23 1995-04-07 Okano Osamu Electron emitter using diamond and manufacture of electron emitter array
JPH07296797A (en) * 1994-04-27 1995-11-10 Mitsubishi Cable Ind Ltd Negative electrode for lithium secondary battery, and lithium secondary battery using it
JPH09185942A (en) * 1995-10-31 1997-07-15 Fuji Electric Co Ltd Cold cathode element and its manufacture
JPH09199001A (en) * 1996-01-18 1997-07-31 Sumitomo Electric Ind Ltd Electron discharging device
JPH11273551A (en) * 1998-03-23 1999-10-08 Nec Corp Electron emitting element employing boron nitride and its manufacture
JP2000090811A (en) * 1998-09-16 2000-03-31 Agency Of Ind Science & Technol Cold electron emitting element and manufacture thereof
JP2000251834A (en) * 1999-03-02 2000-09-14 Casio Comput Co Ltd Display
JP2000299082A (en) * 1999-04-13 2000-10-24 Seiko Epson Corp Pattern forming method, electron beam emission element and its manufacture
JP2000348601A (en) * 1999-06-07 2000-12-15 Sony Corp Electron emitting source and manufacture thereof, and display device using electron emitting source
JP2001020093A (en) * 1999-07-09 2001-01-23 Matsushita Electric Ind Co Ltd Electrophoresis device, electron releasing element and image display device produced by utilizing the same as well as their production
JP2001096499A (en) * 1999-07-15 2001-04-10 Lucent Technol Inc Nano-scale structural body assembly, electric field emission device, microwave vacuum tube amplifier, display device, and manufacture of electric field emission structural body
JP2001143601A (en) * 1999-11-10 2001-05-25 Sharp Corp Cold cathode and method of fabricating the same
JP2001256884A (en) * 2000-03-10 2001-09-21 Sony Corp Cold cathode electric field electron emission element and its production method and display of cold cathode electric field electron emission and its production method
JP2002015659A (en) * 2000-06-30 2002-01-18 Takashi Sugino Electron emission device
JP2002093305A (en) * 2000-07-12 2002-03-29 Akio Hiraki Electron emitting negative electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007240722A (en) * 2006-03-07 2007-09-20 Ricoh Co Ltd Electrifier and image forming apparatus
JP2009535767A (en) * 2006-04-26 2009-10-01 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Organic light-emitting diode with structured electrode

Also Published As

Publication number Publication date
JPWO2002097843A1 (en) 2004-09-30

Similar Documents

Publication Publication Date Title
Satyanarayana et al. Low threshold field emission from nanoclustered carbon grown by cathodic arc
KR101281168B1 (en) Field emission electrode, method for preparing the same and field emission device comprising the same
US7812513B2 (en) Field emission cathode and planar light source using the same
Wong et al. Carbon nanotubes field emission devices grown by thermal CVD with palladium as catalysts
JP2001023508A (en) Field emission emitter, its manufacture, and field emission display element using it
US20020084502A1 (en) Carbon nanotip and fabricating method thereof
Wong et al. Array geometry, size and spacing effects on field emission characteristics of aligned carbon nanotubes
JP2004006205A (en) Electrode and device using same
JP2002352694A (en) Electrode, electron emission element and device using it
Joag et al. Field emission from a-GaN films deposited on Si (100)
JP5024813B2 (en) Method for manufacturing surface light emitting device
WO2002097843A1 (en) Electrode, electron emission element and device using it
Nishimura et al. Growth and characterization of carbon nanowalls
WO2003069649A1 (en) Electrode, electron emitter, and device using the same
JP4312352B2 (en) Electron emission device
Zhang et al. Stable field emission from planar-gate electron source with MWNTs by electrophoretic deposition
JP2008053172A (en) Surface light emitting device
Lai et al. Electron field emission from fluorinated amorphous carbon nanoparticles on porous alumina
KR100803210B1 (en) Field emission electrode using carbon nanotubes and method of fabricating the same
JP2003281991A (en) Hot cathode and discharge apparatus using the same
JP2004103259A (en) Electrode, electron emission element and device using same
Luo et al. Field emission characteristics of BN nanofilms grown on GaN substrates
KR100376201B1 (en) Active Matrix Type Field Emission Display Device Having Carbon Nanotube Film and Method of fabricating the same
Yoo et al. High performance carbon nanotube cold cathode for x-ray and UV devices
JP4312331B2 (en) Electron emission device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2003500934

Country of ref document: JP

122 Ep: pct application non-entry in european phase