WO2003067065A1 - Systeme de demarrage pour moteur a gaz a allumage par veilleuse - Google Patents

Systeme de demarrage pour moteur a gaz a allumage par veilleuse Download PDF

Info

Publication number
WO2003067065A1
WO2003067065A1 PCT/JP2002/001018 JP0201018W WO03067065A1 WO 2003067065 A1 WO2003067065 A1 WO 2003067065A1 JP 0201018 W JP0201018 W JP 0201018W WO 03067065 A1 WO03067065 A1 WO 03067065A1
Authority
WO
WIPO (PCT)
Prior art keywords
pilot
ignition
engine
fuel
fuel injection
Prior art date
Application number
PCT/JP2002/001018
Other languages
English (en)
French (fr)
Inventor
Satoru Goto
Original Assignee
NIIGATA POWER SYSYEMS Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2000247865A priority Critical patent/JP3672805B2/ja
Application filed by NIIGATA POWER SYSYEMS Co., Ltd. filed Critical NIIGATA POWER SYSYEMS Co., Ltd.
Priority to PCT/JP2002/001018 priority patent/WO2003067065A1/ja
Priority to EP02712287.8A priority patent/EP1473458B1/en
Priority to CNB028078926A priority patent/CN100351508C/zh
Priority to KR1020037012995A priority patent/KR100831693B1/ko
Priority to US10/474,235 priority patent/US6990946B2/en
Publication of WO2003067065A1 publication Critical patent/WO2003067065A1/ja
Priority to NO20034446A priority patent/NO340966B1/no

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/10Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02NSTARTING OF COMBUSTION ENGINES; STARTING AIDS FOR SUCH ENGINES, NOT OTHERWISE PROVIDED FOR
    • F02N99/00Subject matter not provided for in other groups of this subclass
    • F02N99/002Starting combustion engines by ignition means
    • F02N99/006Providing a combustible mixture inside the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/10Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder
    • F02B19/1019Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with only one pre-combustion chamber
    • F02B19/108Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with only one pre-combustion chamber with fuel injection at least into pre-combustion chamber, i.e. injector mounted directly in the pre-combustion chamber
    • F02B19/1085Engines characterised by precombustion chambers with fuel introduced partly into pre-combustion chamber, and partly into cylinder with only one pre-combustion chamber with fuel injection at least into pre-combustion chamber, i.e. injector mounted directly in the pre-combustion chamber controlling fuel injection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B19/00Engines characterised by precombustion chambers
    • F02B19/12Engines characterised by precombustion chambers with positive ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0605Control of components of the fuel supply system to adjust the fuel pressure or temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/0602Control of components of the fuel supply system
    • F02D19/0607Control of components of the fuel supply system to adjust the fuel mass or volume flow
    • F02D19/061Control of components of the fuel supply system to adjust the fuel mass or volume flow by controlling fuel injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D19/00Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures
    • F02D19/06Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed
    • F02D19/08Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels
    • F02D19/10Controlling engines characterised by their use of non-liquid fuels, pluralities of fuels, or non-fuel substances added to the combustible mixtures peculiar to engines working with pluralities of fuels, e.g. alternatively with light and heavy fuel oil, other than engines indifferent to the fuel consumed simultaneously using pluralities of fuels peculiar to compression-ignition engines in which the main fuel is gaseous
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/402Multiple injections
    • F02D41/403Multiple injections with pilot injections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M21/00Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form
    • F02M21/02Apparatus for supplying engines with non-liquid fuels, e.g. gaseous fuels stored in liquid form for gaseous fuels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Definitions

  • a pre-combustion chamber with a liquid fuel injection valve is provided in a cylinder head, and a mixture of compressed gaseous fuel and air is introduced into a main combustion chamber and ignited by pilot oil injected from the liquid fuel injection valve.
  • a starting device for a pilot ignition gas engine of a pre-combustion chamber system is provided in a cylinder head, and a mixture of compressed gaseous fuel and air.
  • the one shown in FIG. 8 is known as a pre-combustion chamber type pilot ignition gas engine that drives an industrial or consumer stationary power generation facility.
  • the gas engine 1 includes a cylinder liner (cylinder) 2, a piston 3 that reciprocates up and down in the cylinder liner 2, a pre-combustion chamber with a liquid fuel injection valve including a liquid fuel injection valve 4 and a pre-combustion chamber 5. And a cylinder head 7 having a unit 6.
  • Fuel gas gaseous fuel
  • a main combustion chamber 8 defined by a cylinder liner 2, a piston 3, and a cylinder head 7, via an intake port of a cylinder head 7.
  • pilot oil is injected from the liquid fuel injection valve 4 into the pre-combustion chamber 5 as pilot oil.
  • the pilot oil is compressed and ignited in a high-temperature, high-pressure atmosphere, and the fuel gas in the main combustion chamber 8 is burned using this as an ignition source.
  • a jerk type fuel injection pump designed to stably secure a small injection amount is adopted. Since this jerk type fuel pump is driven by the rotation of the engine via a camshaft, it is affected by the rotation speed of the engine.
  • Fig. 7 shows the relationship between the position of the fuel rack (fuel adjustment rod) that starts fuel injection and the engine speed (engine speed) in this jerk type fuel pump. As can be seen from Fig.
  • the range of the engine speed in the non-injection range (the range of the engine speed at which the injection of the fuel oil from the liquid fuel injection valve 4 is not started) is widened. For example, if the position of the fuel rack is set to 8 mm, which is equivalent to discharging the pilot oil amount of about 1% of the total calorific value, the pilot oil will be kept until the engine speed reaches about 600 rpm. No injection from liquid fuel injection valve.
  • the compression ratio is set lower than that of a diesel engine to avoid knocking during gas operation. For this reason, even when the injection of pilot oil from the liquid fuel injection valve is started, especially during the transition of the rotation start (mn-up) from the start of the engine, it is difficult to ignite the compression oil. When the temperature is low, the difficulty is remarkable.
  • the gas engine cannot be started.
  • an ignition means 9 such as a spark plug or glove lug is provided, and the fuel gas introduced into the main combustion chamber 8 is ignited and started. It is also performed.
  • the ignition means 9 since the ignition means 9 is required in addition to the liquid fuel injection valve 4, the structure of the engine becomes complicated, and the number of parts increases and the cost increases.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a pilot port capable of reliably injecting pilot oil from a liquid fuel injection valve from the start of an engine and enabling a smooth start of the engine.
  • the present invention provides a starting device for a gas ignition gas engine.
  • Another object of the present invention is to provide a pilot ignition gas source that can stably perform compression ignition using pilot oil even when the engine coolant temperature is low when the engine is started.
  • the present invention has the following features to solve the above-mentioned object.
  • a first invention provides a main combustion chamber defined by a cylinder, a piston reciprocating in the cylinder, and a cylinder head provided with a pre-combustion chamber with a liquid fuel injection valve.
  • a pilot-ignited gas engine that obtains a drive output by igniting and combusting a mixture of gaseous fuel and air introduced by a piston and compressed by a piston with pilot oil injected from a liquid fuel injection valve into a pre-combustion chamber.
  • the driving device is characterized in that a controller is provided for controlling the position of a fuel adjusting rod for adjusting the discharge amount of a fuel injection pump for supplying pilot oil to the liquid fuel injection valve based on the engine speed. .
  • gaseous fuel from a gaseous fuel supply source is mixed with air from an intake port of a cylinder head to form an air-fuel mixture, which is supplied to a main combustion chamber and is supplied by a piston. Compressed. Part of the compressed air-fuel mixture enters the pre-combustion chamber, and in the second half of the piston compression stroke, is ignited by the pilot oil injected from the liquid fuel injection valve by the operation of the fuel injection pump. The flame burns the remainder of the mixture in the main combustion chamber.
  • the controller operates to control the position of the fuel adjustment rod, which adjusts the discharge rate of the fuel injection pump, based on the engine speed.
  • the discharge amount of the fuel injection pump that injects pilot oil from the liquid fuel injection valve is ensured regardless of the engine rotation speed.
  • the starting device of the pilot ignition gas engine by adjusting the movement of the fuel adjusting rod to a position where the discharge amount of the fuel injection pump is increased in a low engine speed range, the movement from the liquid fuel injection valve is reduced. Pilot oil can be injected from the start of the engine. As a result, the mixture of gaseous fuel and air in the main combustion chamber can be reliably ignited and burned, and the engine can be started smoothly.
  • the starting device for a pilot ignition gas engine described above wherein the controller moves the fuel adjusting rod to a position where the discharge amount of the fuel injection pump increases in a low engine speed range; In the high engine speed range, the fuel adjustment rod is controlled to a position where the discharge of the fuel injection pump is reduced.
  • the controller can control the fuel injection pump to increase the discharge rate in the low engine speed range even when the engine is started.
  • the pilot oil required for air supply is sufficiently supplied, and the injection of pilot oil from the liquid fuel injection valve to the pre-combustion chamber is reliably performed.
  • the starting device for a pilot ignition gas engine according to the second aspect of the present invention, wherein the position of the fuel adjusting rod is in a low-speed range where the engine speed is equal to or lower than a predetermined value.
  • the fuel injection pump In the high-speed range where the engine rotation speed is equal to or higher than the predetermined value, the fuel injection pump is in the certain position where the discharge amount is the minimum, and in the low-speed range and the high-speed range.
  • the fuel injection pump is controlled so as to change in accordance with the engine speed from a constant position where the discharge amount of the fuel injection pump becomes maximum to a constant position where the discharge amount of the fuel injection pump becomes minimum.
  • the minimum pilot oil amount required to start injection of the liquid fuel injection valve is supplied from the fuel injection pump to the liquid fuel injection valve according to the engine rotation speed.
  • the engine can be started smoothly by using the engine efficiently.
  • the controller comprises: a rotation speed sensor for detecting an engine rotation speed; A position control actuator for moving and adjusting the position of the fuel adjustment rod, and a position control actuator that adjusts the position of the fuel adjustment rod based on a predetermined relationship between the engine rotation speed and the position of the fuel adjustment rod.
  • a control device for calculating a control target position of the fuel adjustment rod, and activating a position control function so that the position of the fuel adjustment rod is adjusted to the calculated control target position. .
  • the control device controls the position of the fuel adjustment rod using the position control function, and the fuel injection pump is controlled according to the engine speed detected by the speed sensor.
  • the discharge amount is set appropriately to the amount of pipe oil required to start the injection of the liquid fuel injection valve.
  • the ignition operation is performed before the pilot oil is injected from the liquid fuel injection valve into the cylinder head. And the compressed gas fuel in the main combustion chamber 02 01018
  • An ignition means for igniting an air-fuel mixture is provided.
  • the ignition and combustion by the injection of the pilot oil from the liquid fuel injection valve are promoted by igniting the mixture of the gaseous fuel and the air using the ignition means.
  • the misfire rate at the start of rotation is reduced, and the combustion stability is improved.
  • all hydrocarbons in the exhaust gas are reduced, explosions in the exhaust flue are avoided, and start-up time to the rated engine speed is reduced.
  • Most of the total hydrocarbons in the exhaust gas depend on the amount of fuel gas discharged from the main combustion chamber without being fully burned due to poor combustion.
  • a sixth invention according to the present invention is the starting device for a pilot ignition gas engine according to the fifth invention described above, wherein the ignition means stops the ignition operation when the engine rotation speed reaches a rated rotation speed.
  • the ignition means stops the ignition operation when the engine rotation speed reaches the rated rotation speed, so that unnecessary use of the ignition means is prevented, and the service life of the ignition means is reduced. Will be extended.
  • FIG. 1 is a control block diagram showing an embodiment of a starting device for a pilot ignition gas engine according to the present invention.
  • FIG. 2 is a diagram illustrating an example of a relationship between a current signal and a control target position of a fuel rack.
  • FIG. 3 is a diagram illustrating an example of a relationship between an engine speed and a control target position of a fuel rack.
  • FIG. 4 is a diagram showing an example of a relationship between an engine speed and a pilot oil injection amount.
  • FIG. 5 is a diagram showing an example of a controlled object and an example of a change in a state variable when the engine is started up.
  • FIG. 6A is a diagram showing an example of engine start data obtained by the pilot ignition gas engine test apparatus when the position of the fuel rack is set to 8 mm.
  • FIG. 6B is a diagram showing an example of engine start data obtained by the pilot ignition gas engine test apparatus when the position of the fuel rack is set to 15 mm.
  • Figure 7 shows the relationship between the engine speed and the fuel rack position where fuel injection can be started. It is a diagram showing an example.
  • FIG. 8 is a longitudinal sectional view illustrating a main part of a conventional pilot ignition gas engine.
  • reference numeral 10 denotes a pilot ignition gas engine (hereinafter abbreviated as a gas engine).
  • the pilot ignition gas engine 10 constitutes a part of a stationary power generation facility by connecting a generator 12 to the output shaft through a joint 11.
  • the gas engine 10 has the cylinder head 7 assembled to the cylinder liner 2 with the piston 3 inserted, and pre-combustes to the cylinder head 7. It has a configuration in which a unit 6 of a pre-combustion chamber with a liquid fuel injection valve having a chamber 5 and a liquid fuel injection valve 4 and an ignition means 9 are provided.
  • a unit 6 of a pre-combustion chamber with a liquid fuel injection valve having a chamber 5 and a liquid fuel injection valve 4 and an ignition means 9 are provided.
  • description of the periphery of the combustion chamber such as the cylinder head 7 of the gas engine 10 will be made with reference to FIG. 8 as necessary.
  • reference numeral 13 denotes a jacket type fuel injection pump (fuel injection pump) provided for each cylinder head 7 of the gas engine 10.
  • fuel injection pump 13 fuel injection pump
  • These jerk-type fuel injection pumps 13 are driven by a camshaft connected to the crankshaft of the gas engine 10 via a gear train including an intermediate gear and the like, so that a small amount of oil can be stably injected. It is designed to be.
  • the pilot oil discharged from the fuel injection pump 13 is supplied to the liquid fuel injection valve 4 provided in each cylinder head 7 via a pilot oil pipe (not shown).
  • Each of the fuel injection pumps 13 is connected to a fuel rack (fuel adjusting rod) 14 for simultaneously operating a mechanism for setting a pilot oil discharge amount in the fuel injection pumps 13.
  • the position of the fuel rack 14 can be moved by the operation of the rack control unit 15 (position control unit) connected thereto, and the pilot rack can be moved in accordance with the position of the fuel rack 14.
  • the oil discharge amount is set.
  • the rack control actuator 15 is a type in which the operation rod is pulled and moved by an electromagnetic coil.The movement of the operation rod depends on the amount of electricity supplied to the electromagnetic coil. The amount is set.
  • Figure 2 shows an example of the relationship between the position of the fuel rack 14 moved by the rack control factory 15 and the amount of electricity (current) supplied to the rack control factory 15.
  • Reference numeral 16 denotes a rotation speed sensor that detects the rotation speed of the gas engine 10.
  • the rotation speed sensor 16 is composed of a magnetic pickup or the like, is installed to face the tooth surface of the ring gear 17 mounted on the crankshaft of the gas engine 10, and is generated by detecting the tooth surface of the ring gear 17.
  • the pulse is sent to the control device 18.
  • the controller 18 counts the number of pulses per unit time of the pulse sent from the rotation speed sensor 16 to measure the engine rotation speed (engine rotation speed), and controls the fuel as a control target for the engine rotation speed.
  • the position of the rack 14 (control target position) is calculated based on the control target line C2 in the relationship between the engine speed and the position of the fuel rack shown in FIG.
  • control device 18 obtains the amount of electricity corresponding to the calculated control target position of the fuel rack 14 based on the relationship shown in FIG. 2 and outputs it to the rack control factory 15 as a command signal. I do.
  • the position of the fuel rack 14 that adjusts the discharge rate of the fuel injection pump 13 is controlled by the rack control function 15, the rotation speed sensor 16, the control device 18, etc. based on the engine rotation speed. Controller 19 to be configured.
  • the relationship between the engine speed and the position of the fuel rack 14 shown in FIG. 3 is obtained by the following procedure.
  • the injection test device or pilot ignition gas engine test device is operated in advance and the injection amount of pilot oil from the liquid fuel injection valve 4 with respect to the engine speed is measured for each position of the fuel rack 14, the characteristics shown in Fig. 4 Is obtained.
  • Figure 3 shows that from these characteristics, the minimum engine speed in the injection region where pilot oil starts to be injected from the liquid fuel injection valve 4 at each position of the fuel rack 14 is determined.
  • the characteristic curve C1 indicating the boundary between the injection region and the non-injection region is obtained from the result.
  • the control target position of the fuel rack 14 is about 8% of the calorific value to the calorie required for the rated load operation of the engine. Pilot oil equivalent to The fixed position where the body fuel injection valve 4 injects is set to 15 mm.
  • the fixed position is set at 8 mm, at which the pilot oil corresponding to the calorific value ratio of 1% is injected.
  • the control target position of the fuel rack 14 gradually decreases from the position 15 mm toward the position 8 mm. Is set to
  • the gas engine 10 When the gas engine 10 is started, when a fuel gas (gas fuel) from a gas fuel supply source (not shown) is introduced into the intake port of the cylinder head 7, the starting of the gas engine 10 is started by the starting device.
  • the gaseous fuel and air are mixed at an intake port or the like to form an air-fuel mixture, which is supplied to the main combustion chamber 8.
  • This mixture is compressed by the piston 3 in the main combustion chamber 8.
  • Part of the compressed air-fuel mixture enters the pre-combustion chamber 5, and in the second half of the compression stroke of the piston 3, is ignited by the pilot oil injected from the liquid fuel injection valve 4 by the operation of the fuel injection pump 13 and ignited.
  • the remainder of the air-fuel mixture in the main combustion chamber 8 is burned by the flame generated by the combustion, and the gas engine 10 starts rotating.
  • the controller 19 When the gas engine 10 is started, the controller 19 operates, and the control device 18 counts the pulses detected by the rotation speed sensor 16 to calculate the engine rotation speed. Control of the fuel rack corresponding to the engine speed The target position is determined based on the control target line C2 in FIG. Since the maximum control target position corresponding to the low-speed rotation range is set on the control target line C2, the controller 18 controls the rack control signal to command a large amount of electricity corresponding to the control target position. Send the work to evening 15. As a result, the rack control factory 15 moves the position of the fuel rack 14 by the maximum amount, and the fuel injection pump 13 is adjusted to the maximum discharge amount.
  • the discharge amount (compressed oil amount) of the pilot oil from the fuel injection pump 13 is increased, and the oil pressure in the pilot oil pipe connecting the fuel injection pump 13 to the liquid fuel injection valve 4 is sufficiently increased.
  • the pilot oil is reliably injected from the liquid fuel injection valve 4.
  • the ignition and combustion of the air-fuel mixture in the main combustion chamber 8 are reliably performed, and the gas engine 10 is smoothly started.
  • the maximum discharge amount of the fuel injection pump 13 is, as described above, the amount of heat with respect to the rated load operation. It is only about 8%. Therefore, it is not possible to generate a torque that causes the gas engine 10 to start up to the rated speed, and there is no hindrance to the operation of the gas engine 10, that is, the speed control by the engine governor. Further, when the rotation speed of the gas engine 10 increases, the control device 18 controls the control target of the fuel rack 14 according to the control target line C2 in FIG. 3 based on the detection result of the rotation speed sensor 16. Adjust the position to gradually lower from its maximum position.
  • the rack control unit 15 moves the position of the fuel rack 14 to the control target position so that about 1% of the pilot oil at a calorific value ratio is injected from the liquid fuel injection pump 4. Adjust.
  • the rack control unit 15 moves the position of the fuel rack 14 to the control target position so that about 1% of the pilot oil at a calorific value ratio is injected from the liquid fuel injection pump 4. Adjust.
  • the mixture in the main combustion chamber 8 is ignited and burned by the injection of pilot oil with a small amount of oil, and the engine is operated.
  • the fuel adjusting rod 14 is moved to the control target position where the discharge amount of the fuel injection pump 13 increases in the low engine speed range. It is possible to inject the pilot oil sent from the fuel injection pump 13 from the liquid fuel injection valve 4 into the pre-combustion chamber 5 even in the low engine speed range in the above. As a result, ignition and combustion of the mixture of the gaseous fuel and air in the main combustion chamber 8 are reliably performed, and smooth engine startability is obtained.
  • Figures 6A and 6B show a single cylinder pilot ignition gas engine test device with a cylinder diameter of 260 mm, with the fuel rack position set to 8 mm or 15 mm and the ignition plug activated from the start.
  • the pilot data was collected and recorded as the starting data of pilot oil pipe pressure a, liquid fuel injector valve lift b, gas fuel supply pipe pressure c, engine speed d, and main combustion chamber pressure e.
  • a and B correspond to the case where the position of the fuel rack was set to 8 mm and 15 mm, respectively.
  • the rack control actuator 15 is of a type in which the operation rod is pulled and moved by an electromagnetic coil, but instead, The rotation of the electric servo motor may be converted into linear motion by a screw mechanism in which a nut is screwed onto a screw shaft, and the fuel rack 14 may be moved by the linear motion. In this case, the position of the fuel rack 14 is adjusted by controlling the amount of rotation by controlling the amount of electricity supplied to the electric servomotor.
  • the rack control factory 15 may be a hydraulic servo cylinder or the like, and there is no particular limitation as long as the fuel rack 14 can be moved to a predetermined position by a command from the control device 18.
  • the engine rotation speed is measured by a pulse generated by detecting the tooth surface of the ring gear 17 mounted on the crankshaft with a magnetic pickup or the like.
  • the number of revolutions of the camshaft that rotates in conjunction with the crankshaft of the engine and other shafts may be measured by directly measuring the number of revolutions with a tachogenerator or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)

Description

明 細 書 パイロット着火ガスエンジンの起動装置 発明の背景
1 . 発明の利用分野
本発明は、 シリンダヘッドに液体燃料噴射弁付き予燃焼室を設け、 主燃焼室に 導入、 圧縮された気体燃料と空気との混合気を、 液体燃料噴射弁から噴射される パイロット油で着火燃焼させる、 予燃焼室方式のパイロット着火ガスエンジンの 起動装置に関する。
2 . 従来技術の記載
従来、 産業用または民生用の定置型発電設備を駆動する予燃焼室方式のパイ口 ット着火ガスエンジンとして、 例えば図 8に示すものが知られている。
このガスエンジン 1は、 シリンダライナ (シリンダ) 2と、 シリンダライナ 2 内を上下に往復動するピストン 3と、 液体燃料噴射弁 4と予燃焼室 5を備えた液 体燃料噴射弁付き予燃焼室のュニット 6を有するシリンダへッド 7とを有してい る。 都市ガス等の燃料ガス (気体燃料) が空気と混合されて、 シリンダライナ 2 とピストン 3とシリンダへッド 7とで区画された主燃焼室 8に、 シリンダへッド 7の吸気ポートを経て供給され、 かつピストン 3の圧縮行程の後半には、 全熱量 比で約 1 %に相当する燃料油が、 液体燃料噴射弁 4から、 予燃焼室 5内に、 パイ ロット油として噴射される。 その結果、 高温高圧の雰囲気下でパイロット油が圧 縮着火され、 これを着火源として、 主燃焼室 8内の燃料ガスが燃焼される。
ところで、 液体燃料噴射弁 4に燃料油 (パイロット油) を供給するための燃料 噴射ポンプには、 少ない噴射量を安定して確保できるように設計されたジャーク 式燃料噴射ポンプが採用されている。 このジャーク式燃料ポンプは、 カム軸を介 してエンジンの回転によって駆動されるので、 エンジンの回転数の影響を受ける。 このジャーク式燃料ポンプにおける、 燃料噴射を開始する燃料ラック (燃料調節 棒) の位置と、 エンジン回転数 (エンジン回転速度) との関係を図 7に示す。 図 7からわかるように、 燃料吐出量を設定する燃料ラック位置の指示値が小さいほ ど、 無噴射域となるエンジン回転数の範囲 (液体燃料噴射弁 4からの燃料油の噴 射を開始させない回転数の領域) が広くなる。 例えば、 燃料ラックの位置を、 全 熱量比で約 1 %のパイロット油量を吐出するに相当する位置である 8 mmに設定 すると、 エンジン回転数が約 6 0 0 r p mに達するまで、 パイロット油が液体燃 料噴射弁から噴射されない。
さらに、 このガスエンジン 1では、 ガス運転時のノッキングを回避するために、 圧縮比をディーゼルエンジンに比べて低くしている。 このため、 特にエンジンの 起動からの回転立上り (mn-up ) の過渡時に、 液体燃料噴射弁からのパイロッ ト油の噴射が開始されても、 その圧縮着火が困難であり、 特に、 エンジン冷却水 の温度が低い場合は、 その困難の度合が顕著である。
これでは、 ガスエンジンの起動ができないので、 液体燃料噴射弁 4の他に、 点 火プラグやグローブラグ等の点火手段 9を設け、 主燃焼室 8内に導入された燃料 ガスに着火させて起動させることも行われている。 しかしながら、 この場合には、 液体燃料噴射弁 4の他に点火手段 9が必要になるため、 エンジンの構造が複雑に なり、 また、 部品点数が増加してコスト高になるという問題が生じる。
本発明は、 上記事情に鑑みてなされたもので、 その目的は、 液体燃料噴射弁か らのパイロット油の噴射をエンジンの始動時から確実に行え、 エンジンを円滑に 始動させることができるパイ口ット着火ガスエンジンの起動装置の提供である。
また、 本発明の他の目的は、 エンジンの起動時に、 エンジン冷却水温度が低い 場合でも、 パイロット油による圧縮着火を安定して行えるパイロット着火ガスェ
)起動装置の提供である。 発明の要約
本発明は、 前記目的を解決するために、 以下の点を特徴としている。
すなわち、 本発明に係る第一の発明は、 シリンダと、 シリンダ内で往復動する ピストンと、 液体燃料噴射弁付き予燃焼室を設けたシリンダヘッドとにより区画 される主燃焼室内で、 主燃焼室内に導入されピストンにより圧縮された、 気体燃 料と空気との混合気を、 液体燃料噴射弁から予燃焼室内に噴射されるパイロット 油で着火燃焼させることにより駆動出力を得るパイロット着火ガスエンジンの起 動装置において、 液体燃料噴射弁にパイロット油を供給する燃料噴射ポンプの吐 出量を調節する燃料調節棒の位置をエンジン回転速度にもとづいて制御するコン トローラが設けられていることを特徴とする。
このパイロット着火ガスエンジンの起動装置においては、 気体燃料供給源から の気体燃料が、 シリンダへッドの吸気ポートからの空気と混合されて混合気とな り、 主燃焼室に供給されてピストンにより圧縮される。 この圧縮された混合気の 一部が予燃焼室内に入って、 ピストンの圧縮行程の後半に、 燃料噴射ポンプの作 動で液体燃料噴射弁から噴射されるパイロット油により着火し、 この着火した火 炎によって、 主燃焼室内の混合気の残部が燃焼される。
その際、 コントローラが動作し、 燃料噴射ポンプの吐出量を調節する燃料調節 棒の位置が、 エンジン回転速度にもとづいて制御される。 その結果、 エンジン回 転速度に関わらず、 液体燃料噴射弁からパイロット油を噴射させる燃料噴射ボン プの吐出量が確保される。
このパイロット着火ガスエンジンの起動装置によれば、 エンジン回転速度の低 速域で前記燃料噴射ポンプの吐出量が多くなる位置へ、 燃料調節棒の移動を調節 することにより、 液体燃料噴射弁からのパイロット油の噴射をエンジンの起動時 から行うことができる。 その結果、 主燃焼室内での気体燃料と空気との混合気の 着火、 燃焼を確実に行え、 エンジンを円滑に起動させることができる。
本発明に係る第二の発明は、 上述したパイロット着火ガスエンジンの起動装置 において、 コントローラが、 エンジン回転速度の低速域では燃料調節棒を燃料噴 射ポンプの吐出量が多くなる位置に、 また、 エンジン回転速度の高速域では燃料 調節棒を燃料噴射ポンプの吐出量が少なくなる位置に制御することを特徴とする。 このパイロット着火ガスエンジンの起動装置では、 コントローラにより、 ェン ジン回転速度の低速域では燃料噴射ポンプの吐出量が多くなるように制御きれる ので、 エンジン起動時でも、 液体燃料噴射弁には噴射開始に必要なパイロット油 が十分に供給され、 液体燃料噴射弁から予燃焼室へのパイロッ卜油の噴射が確実 に行われる。 また、 エンジン回転速度の高速域では燃料噴射ポンプの吐出量が少 なくなるように制御されるので、 液体燃料噴射弁の噴射開始に多量のパイロット 油を必要としない高速域では、 過剰なパイロッ卜油の液体燃料噴射弁への供給が 防止され、 パイロット油が節約される。
本発明に係る第三の発明は、 上述した第二の発明に係るパイロット着火ガスェ ンジンの起動装置において、 燃料調節棒の位置が、 エンジン回転速度が所定値以 下となる低速域では、 燃料噴射ポンプの吐出量が最大になる一定位置に、 ェンジ ン回転速度が所定値以上となる高速域では、 燃料噴射ポンプの吐出量が最低にな る一定位置に、 また、 前記低速域と高速域との間の中間速度域では、 燃料噴射ポ ンプの吐出量が最大になる一定位置から最低になる一定位置まで、 エンジン回転 速度に応じて変化するよう制御されることを特徴とする。
このパイロット着火ガスエンジンの起動装置では、 エンジン回転速度に応じて 液体燃料噴射弁の噴射開始に必要な最小限のパイロット油量が燃料噴射ポンプか ら液体燃料噴射弁に供給されるので、 パイロット油を効率的に使用してエンジン の起動が円滑に行える。
本発明に係る第四の発明は、 上述した第一ないし第三の発明に係るパイロット 着火ガスエンジンの起動装置において, コントローラが、 エンジン回転速度を検 出する回転速度センサ一と、 燃料調節棒を移動させ、 燃料調節棒の位置を調節す る位置制御ァクチユエータと、 予め設定されているエンジン回転速度と燃料調節 棒の位置との関係にもとづいて、 回転速度センサ一によって検出されたエンジン 回転速度に対する燃料調節棒の制御目標位置を算出し、 算出された制御目標位置 に燃料調節棒の位置が調節されるように位置制御ァクチユエ一夕を作動させる制 御装置とを備えていることを特徴とする。
このパイロット着火ガスエンジンの起動装置では、 制御装置により、 位置制御 ァクチユエ一夕を用いて燃料調節棒の位置が制御され、 回転速度センサーで検出 されたエンジン回転速度に対応して、 燃料噴射ポンプの吐出量が液体燃料噴射弁 の噴射開始に必要なパイ口ット油量に適切に設定される。 その結果、 液体燃料噴 射弁から予燃焼室へのパイロット油の噴射が一層効率的に行え、 エンジンが円滑 かつ確実に起動される。
本発明に係る第五の発明は、 上述した第一ないし第四の発明に係るパイロッ卜 着火ガスエンジンの起動装置において、 シリンダヘッドに、 液体燃料噴射弁から パイロット油が噴射される前に点火作動し、 主燃焼室内に圧縮された気体燃料と 02 01018
5
空気との混合気に着火させる点火手段が設けられていることを特徴とする。
このパイロット着火ガスエンジンの起動装置では、 点火手段を用いて気体燃料 と空気との混合気に着火することにより、 液体燃料噴射弁からのパイロット油の 噴射による着火、 燃焼が助長されるので、 エンジンの回転立ち上がり時の失火率 が低減し、 燃焼安定性が向上する。 その結果、 排ガス中の全炭化水素が低減して 排気煙道での爆発が回避され、 エンジンの定格回転数までの立ち上げ時間が短縮 される。 なお、 排ガス中の全炭化水素の量は、 その殆どが、 燃焼不良により充分 に燃えきらないで主燃焼室から排出される燃料ガスの量に依存する。
本発明に係る第六の発明は、 上述した第五の発明に係るパイロット着火ガスェ ンジンの起動装置において、 点火手段が、 エンジン回転速度が定格回転数に達し たときに点火作動を停止することを特徴とする。
このパイロット着火ガスエンジンの起動装置では、 点火手段が、 エンジン回転 速度が定格回転数に達したときに点火作動を停止するので、 点火手段の不要な使 用が防止され、 点火手段の耐用年数が延長される。 図面の簡単な説明
図 1は、 本発明に係るパイロット着火ガスエンジンの起動装置の一実施形態を 示す制御ブロック図である。
図 2は、 電流信号と燃料ラックの制御目標位置との関係の例を示す線図である 図 3は、 エンジン回転数と燃料ラックの制御目標位置との関係の例を示す線図 である。
図 4は、 エンジン回転数とパイロット油噴射量との関係の例を示す線図である 図 5は、 エンジン回転立ち上げ時の制御対象とその状態量変化の例を示す線図 である。
図 6 Aは、 燃料ラックの位置を 8 mmに設定した場合における、 パイロット着 火ガスエンジン試験装置によるエンジンの起動データの例を示す図である。
図 6 Bは、 燃料ラックの位置を 1 5 mmに設定した場合における、 パイロット 着火ガスエンジン試験装置によるエンジンの起動データの例を示す図である。 図 7は、 ェンジン回転数と燃料噴射の開始が可能な燃料ラック位置との関係の 例を示す線図である。
図 8は、 従来のパイロット着火ガスエンジンの要部を例示する縦断面図である 好ましい実施様態
以下、 本発明の実施の形態を添付図面を参照して説明する。
図 1において、 1 0はパイロット着火ガスエンジン (以下、 ガスエンジンと略 称する) である。 このパイロット着火ガスエンジン 1 0は、 その出力軸に継ぎ手 1 1を介して発電機 1 2を連結することにより、 定置型発電設備の一部を構成し ている。
ガスエンジン 1 0は、 図 8に示した従来のパイロット着火ガスエンジン 1と同 様に、 ピストン 3が内挿されたシリンダライナ 2にシリンダへッド 7を組み付け、 シリンダへッド 7に予燃焼室 5と液体燃料噴射弁 4とを備えた液体燃料噴射弁付 き予燃焼室のユニット 6および点火手段 9を設けた構成を有している。 以下、 ガ スエンジン 1 0のシリンダヘッド 7等の燃焼室周辺部についての説明は、 必要に 応じて図 8にもとづいて行う。
図 1において、 1 3はガスエンジン 1 0の各シリンダへッド 7毎に設けたジャ ーク式燃料噴射ポンプ (燃料噴財ポンプ) である。 これらジャーク式燃料噴射ポ ンプ 1 3は、 ガスエンジン 1 0のクランク軸に、 中間ギヤ等からなるギヤトレィ ンを介して連結されるカム軸により駆動され、 少量の油が安定して噴射されるよ うに設計されている。 燃料噴射ポンプ 1 3から吐出されるパイロット油は、 個々 のシリンダへッド 7に設けられた液体燃料噴射弁 4に、 パイロット油管 (図示せ ず) を経て供給される。
各燃料噴射ポンプ 1 3には、 それらにおけるパイロット油の吐出量を設定する 機構部を同時に作動させる燃料ラック (燃料調節棒) 1 4が連結されている。 燃 料ラック 1 4の位置は、 これに連結されたラック制御ァクチユエ一夕 (位置制御 ァクチユエ一夕) 1 5の作動により移動可能とされるとともに、 燃料ラック 1 4 の位置に対応して前記パイロット油の吐出量が設定されるようになっている。 ラック制御ァクチユエ一夕 1 5は、 電磁コイルにより操作棒を牽引して移動さ せる形式のもので、 電磁コイルに供給する電気量の大きさにより、 操作棒の移動 量が設定される。 ラック制御ァクチユエ一夕 1 5によって移動される燃料ラック 1 4の位置とラック制御ァクチユエ一夕 1 5に供給される電気量 (電流) の大き さとの関係の例を図 2に示す。
また、 1 6は、 ガスエンジン 1 0の回転速度を検出する回転速度センサである。 回転速度センサ 1 6は、 磁気ピックアップ等から構成され、 ガスエンジン 1 0の クランク軸に装着されたリングギヤ 1 7の歯面に対向して設置され、 リングギヤ 1 7の歯面を検知して発生するパルスを制御装置 1 8に送るようになつている。 制御装置 1 8は、 回転速度センサ 1 6から送られたパルスの単位時間当たりのパ ルス数を計数してエンジン回転数 (エンジン回転速度) を計測し、 このエンジン 回転数に対する制御目標である燃料ラック 1 4の位置 (制御目標位置) を、 図 3 に示すェンジン回転数と燃料ラックの位置との関係における制御目標線 C 2にも とづいて算出する。
さらに、 前記制御装置 1 8は、 算出された燃料ラック 1 4の制御目標位置に対 応した電気量を、 図 2に示す関係にもとづいて求め、 ラック制御ァクチユエ一夕 1 5に指令信号として出力する。
そして、 ラック制御ァクチユエ一夕 1 5、 回転速度センサ 1 6、 制御装置 1 8 等により、 燃料噴射ポンプ 1 3の吐出量を調節する燃料ラック 1 4の位置を、 ェ ンジン回転速度にもとづいて制御するコントローラ 1 9を構成している。
なお、 図 3に示すエンジン回転数と燃料ラック 1 4の位置との関係は、 以下の 手順で求める。 予め噴射試験装置またはパイロット着火ガスエンジン試験装置を 作動させて、 燃料ラック 1 4の位置毎に、 エンジン回転数に対する液体燃料噴射 弁 4からのパイロット油の噴射量を測定すると、 図 4に示す特性が得られる。 図 3は、 この特性から、 燃料ラック 1 4の各位置において、 液体燃料噴射弁 4から パイロット油が噴射を開始する噴射領域における最小のエンジン回転数を求め、 この最小のエンジン回転数を燃料ラック 1 4の位置に対応させて表わしたもので、 その結果から、 噴射領域と無噴射領域の境界を示す特性曲線 C 1が得られる。 制御目標線 C 2によって、 エンジン回転数が 2 0 0 r p m以下の低速回転域 (低速域) では、 燃料ラック 1 4の制御目標位置が、 エンジンの定格負荷運転に 要する熱量に対する熱量比略 8 %に相当するパイロッ卜油を最大噴射量として液 体燃料噴射弁 4が噴射する固定位置 1 5 mmに設定される。 また、 エンジン回転 数が 8 0 0 r p m以上の高速回転域 (高速域) では、 熱量比 1 %に相当するパイ ロット油を噴射する固定位置 8 mmに設定される。 さらに、 上記低速域と高速域 との間の中間速度域では、 エンジン回転数が大きくなるに従い、 燃料ラック 1 4 の制御目標位置が徐々に位置 1 5 mmから位置 8 mmに向かって小さくなるよう に設定される。
また、 この制御目標線 C 2によって、 エンジン回転数が 1 5 0 r p m以上の速 度域では、 液体燃料噴射弁 4の噴射領域と無噴射領域の境界をなす特性曲線 C 1 から噴射領域側に変位するよう、 燃料ラックの制御目標位置が設定される。 一方、 従来のガスエンジンでは、 制御目標線 C 3に示すように、 燃料ラック 1 4の制御 目標位置が、 エンジン回転数に関係なく一定の固定位置に設定される。 制御目標 線 C 2, C 3の比較から明らかなように、 本発明では、 従来のガスエンジンより も、 エンジン回転数の広い範囲にわたりパイロット油の噴射が確実に行われる。 次に、 上記構成を有するパイロット着火ガスエンジン 1 0の起動装置の作用に ついて説明する。 .
ガスエンジン 1 0の起動に際し、 図示しない気体燃料供給源からの燃料ガス (気体燃料) がシリンダヘッド 7の吸気ポート等に導入されると、 始動装置によ りガスエンジン 1 0の始動が開始され、 吸気ポート等で気体燃料と空気とが混合 されて混合気となって主燃焼室 8に供給される。 この混合気は主燃焼室 8内にて ピストン 3により圧縮される。 圧縮された混合気の一部が予燃焼室 5内に入り、 ピストン 3の圧縮行程の後半に、 燃料噴射ポンプ 1 3の作動で液体燃料噴射弁 4 から噴射されるパイロット油により着火し、 着火により生じた火炎により、 主燃 焼室 8内の混合気の残部が燃焼され、 ガスエンジン 1 0が回転を開始する。
こうしてガスエンジン 1, 0が回転を開始すると、 主燃焼室 8内に供給される気 体燃料がエンジンガバナの働きにより増加され、 その結果、 ガスエンジン 1 0の 回転数が徐々に増加し、 所定時間後に定格回転数に達する。
また、 ガスエンジン 1 0の起動時には、 前記したコントローラ 1 9が動作して、 その制御装置 1 8が、 回転速度センサ 1 6により検出されるパルスを計数してェ ンジン回転数を算出し、 算出したエンジン回転数に対応する燃料ラックの制御目 標位置を、 図 3の制御目標線 C 2にもとづいて求める。 制御目標線 C 2では、 低 速回転域に対応する最大の制御目標位置が設定されているので、 制御装置 1 8は、 その制御目標位置に対応して大きな電気量を指令する信号をラック制御ァクチュ エー夕 1 5に送る。 その結果、 ラック制御ァクチユエ一夕 1 5が燃料ラック 1 4 の位置を最大量移動させ、 燃料噴射ポンプ 1 3が、 最大の吐出量になるように調 節される。
このため、 燃料噴射ポンプ 1 3からのパイロット油の吐出量 (圧縮油量) が増 加し、 燃料噴射ポンプ 1 3を液体燃料噴射弁 4に連絡するパイロット油管内の油 圧が十分に高められ、 低いエンジン回転数域でも液体燃料噴射弁 4からパイ口ッ ト油が確実に噴射される。 その結果、 主燃焼室 8内での混合気の着火、 燃焼が確 実に行われて、 ガスエンジン 1 0の起動が円滑に行われる。
なお、 ガスエンジン 1 0の起動時に燃料ラック 1 4の位置を最大の制御目標位 置に設定しても、 燃料噴射ポンプ 1 3の最大の吐出量は、 前記のように定格負荷 運転時に対する熱量比で約 8 %に過ぎない。 従って、 ガスエンジン 1 0を定格回 転数まで立ち上げるトルクを発生することはできず、 ガスエンジン 1 0の運転、 すなわち、 エンジンガバナによる回転数制御に対して支障を来すことはない。 また、 ガスエンジン 1 0の回転数が上昇すると、 制御装置 1 8が、 回転速度セ ンサ 1 6の検出結果にもとづき、 図 3における制御目標線 C 2に従って、 燃料ラ ック 1 4の制御目標位置を、 その最大位置から徐々に下げるよう調節する。 一定 のエンジン回転数以上では、 熱量比で約 1 %のパイロット油が液体燃料噴射ボン プ 4から噴射されるよう、 ラック制御ァクチユエ一夕 1 5が燃料ラック 1 4の位 置を制御目標位置に調節する。 その結果、 ガスエンジン 1 0の高速回転域では、 少量の油量によるパイロット油の噴射によって主燃焼室 8内の混合気が着火、 燃 焼し、 エンジン運転が行われる。
ガスエンジン 1 0の運転において、 エンジン回転の立ち上げ時の各制御対象 (燃料ラック 1 4の位置、 エンジン回転数、 燃料ガスの供給量、 点火プラグの 0 N、 O F F動作) とその状態量の変化を、 エンジン始動からの時間経過で示すと 図 5のようになる。
この例では、 始動開始後の所定時間にわたり、 シリンダヘッド 7に設けた点火 プラグ (点火手段) 9を作動させて、 主燃焼室 8内の混合気に着火させるように している。 このようにすると、 混合気の着火燃焼で発生する熱により予燃焼室 5 が加熱されて、 液体燃料噴射弁 4から噴射されるパイロット油の圧縮着火が助長 されるので、 エンジンの回転立ち上がり時の失火率が低減し、 燃焼安定性が向上 される。 その結果、 排ガス中の全炭化水素が低減して排気煙道における爆発が回 避され、 エンジンの定格回転数までの立ち上げ時間が短縮される。
点火プラグ 9の点火の作動時期は、 始動開始時期に設定され、 点火プラグ 9は、 液体燃料噴射弁 4からパイロット油が噴射されると同時期または直前に点火され る。 また、 点火の停止時期は、 ガスエンジン 1 0の定格回転数が回転速度センサ 1 6で検出されるとき、 または発電機 1 2から発生される電圧が定格電圧に達し たことが検出されるときに設定される。 このようにすれば、 点火プラグ 9の無駄 な使用が抑えられ、 その耐用年数が延長される。
このパイロット着火ガスエンジン 1 0の起動装置によれば、 エンジン回転数の 低速域では燃料噴射ポンプ 1 3の吐出量が多くなる制御目標位置へ燃料調節棒 1 4が移動されるので、 エンジン起動時における低いエンジン回転数域でも、 燃料 噴射ポンプ 1 3から送られたパイロット油を液体燃料噴射弁 4から予燃焼室 5内 に噴射することが可能となる。 その結果、 主燃焼室 8内での気体燃料と空気との 混合気の着火、 燃焼が確実に行われ、 円滑なエンジンの起動性が得られる。
図 6 Aおよび図 6 Bは、 シリンダ径 2 6 0 mmの単気筒パイロット着火ガスェ ンジン試験装置を、 燃料ラックの位置を 8 mmまたは 1 5 mmに設定し、 点火プ ラグを始動時から作動させた状態で運転し、 その起動データとして、 パイロット 油管内圧力 a、 液体燃料噴射弁の弁リフト b、 気体燃料供給管内圧力 c、 ェンジ ン回転数 d、 主燃焼室内圧力 eを採取し記録したもので、 A、 Bは、 それぞれ、 燃料ラックの位置を 8 mm、 1 5 mmに設定した場合に対応している。
燃料ラックの位置を 8 mmに設定した場合には、 図 6 Aの如く、 パイロット油 管内圧力 aが液体燃料噴射弁を開くために必要な圧力に達しないので、 パイロッ ト油は液体燃料噴射弁からは噴射されない (弁リフト bの信号なし) 。 また、 燃 料ガス (気体燃料) が、 始動時から第 3サイクル目 S 3以降に供給され (気体燃 料供給管内圧力 cの挙動) 、 点火プラグの火花点火により燃焼する結果としてェ ンジン回転数 dが増加している。 しかし、 その増加のし方は遅く、 主燃焼室内圧 力 eも低い。
これに対し、 燃料ラックの位置を 1 5 mmに設定した場合には、 図 6 Bの如く、 始動の第 1サイクル S 1から、 パイロット油管内圧力 aが液体燃料噴射弁を開く ための十分な圧力に達して、 液体燃料噴射弁からパイロット油が噴射される (弁 リフト bの信号あり) 。 したがって、 第 3サイクル目 S 3から燃料ガスが供給さ れるに伴い、 混合気の燃焼による主燃焼室内圧力 eも高くなり、 エンジン回転数 の立ち上がりが早くなる。
これらの結果から、 パイロット着火ガスエンジンにおいて、 エンジン起動時に、 燃料噴射ポンプの燃料ラックの位置を、 パイロット油の吐出量が大きくなるよう に設定すると、 液体燃料噴射弁が開弁し易い状態になって、 パイロット油が液体 燃料噴射弁から予燃焼室内に確実に噴射されて、 着火、 燃焼され、 エンジンの起 動が円滑、 確実に行えることが明らかとなった。 すなわち、 本発明に係るパイ口 ット着火ガスエンジンの起動装置の有効性が検証された。
なお、 前記実施形態のパイロット着火ガスエンジンの起動装置においては、 ラ ック制御ァクチユエ一夕 1 5を、 電磁コイルにより操作棒を牽引して移動させる 形式のものとしたが、 これに代えて、 電動サーポモータの回転を、 ねじ軸にナツ トを螺合したねじ機構により直線運動に変換して、 その直線運動により燃料ラッ ク 1 4を移動させるようにしてもよい。 この場合には、 電動サーポモータに供給 される電気量を制御することによりその回転量を調節して燃料ラック 1 4の位置 を調節する。 また、 ラック制御ァクチユエ一夕 1 5は、 油圧サーポシリンダ等で あってもよく、 燃料ラック 1 4を制御装置 1 8の指令で所定の位置に移動できる ものであれば、 特に制限はない。
また、 前記実施形態のパイロット着火ガスエンジンの起動装置においては、 ェ ンジン回転速度を、 クランク軸に装着したリングギヤ 1 7の歯面を磁気ピックァ ップ等で検知して発生するパルスによって計測するよう.にしたが、 これに代えて、 エンジンのクランク軸に連動して回転するカム軸や、 その他の軸の回転数を、 タ コジェネレータ等で直接測定することによって計測するようにしてもよい。

Claims

請求の範囲
1 . シリンダと、 シリンダ内で往復動するピストンと、 液体燃料噴射弁付き予 燃焼室を設けたシリンダへッドとにより区画される主燃焼室内で、 主燃焼室内に 導入され前記ピストンにより圧縮された、 気体燃料と空気との混合気を、 前記液 体燃料噴射弁から前記予燃焼室内に噴射されるパイロット油で着火燃焼させるこ とにより駆動出力を得るパイロット着火ガスエンジンの起動装置において、 前記液体燃料噴射弁に前記パイロット油を供給する燃料噴射ポンプの吐出量を 調節する燃料調節棒の位置を、 エンジン回転速度にもとづいて制御するコント口 —ラが設けられているパイロット着火ガスエンジンの起動装置。
2 . 前記コントローラが、 前記エンジン回転速度の低速域では前記燃料調節棒 を前記燃料噴射ポンプの吐出量が多くなる位置に、 また、 前記エンジン回転速度 の高速域では前記燃料調節棒を前記燃料噴射ポンプの吐出量が少なくなる位置に 制御する請求項 1に記載のパイロット着火ガスエンジンの起動装置。
3 . 前記燃料調節棒の位置が、 前記エンジン回転速度が所定値以下となる低速 域では、 前記燃料噴射ポンプの吐出量が最大になる一定位置に、 前記エンジン回 転速度が所定値以上となる高速域では、 前記燃料噴射ポンプの吐出量が最低にな る一定位置に、 また、 前記低速域と高速域との間の中間速度域では、 前記燃料噴 射ボンプの吐出量が最大になる一定位置から最低になる一定位置まで、 前記ェン ジン回転速度に応じて変化するよう制御される請求項 2に記載のパイロット着火
4 . 前記コントローラが、 前記エンジン回転速度を検出する回転速度センサ一 と、 前記燃料調節棒を移動させ、 前記燃料調節棒の位置を調節する位置制御ァク チユエ一夕と、 予め設定されている前記エンジン回転速度と前記燃料調節棒の位 置との関係にもとづいて、 前記回転速度センサ一によって検出された前記ェンジ ン回転速度に対する前記燃料調節棒の制御目標位置を算出し、 算出された制御目 標位置に前記燃料調節棒の位置が調節されるように前記位置制御ァクチユエ一夕 を作動させる制御装置とを備えている請求項 1に記載のパイロット着火ガスェン ジンの起動装置。
5 . 前記コントローラが、 前記エンジン回転速度を検出する回転速度センサ一 と、 前記燃料調節棒を移動させ、 前記燃料調節棒の位置を調節する位置制御ァク チユエ一夕と、 予め設定されている前記エンジン回転速度と前記燃料調節棒の位 置との関係にもとづいて、 前記回転速度センサーによって検出された前記ェンジ ン回転速度に対する前記燃料調節棒の制御目標位置を算出し、 算出された制御目 標位置に前記燃料調節棒の位置が調節されるように前記位置制御ァクチユエ一夕 を作動させる制御装置とを備えている請求項 2に記載のパイロット着火ガスェン ジンの起動装置。
6 . 前記コントローラが、 前記エンジン回転速度を検出する回転速度センサ一 と、 前記燃料調節棒を移動させ、 前記燃料調節棒の位置を調節する位置制御ァク チユエ一夕と、 予め設定されている前記エンジン回転速度と前記燃料調節棒の位 置との関係にもとづいて、 前記回転速度センサ一によって検出された前記ェンジ ン回転速度に対する前記燃料調節棒の制御目標位置を算出し、 算出された制御目 標位置に前記燃料調節棒の位置が調節されるように前記位置制御ァクチユエ一夕 を作動させる制御装置とを備えている請求項 3に記載のパイロット着火ガスェン ジンの起動装置。
7 . 前記シリンダへッドに、 前記液体燃料噴射弁から前記パイ口ット油が噴射 される前に点火作動し、 前記主燃焼室内に圧縮された前記気体燃料と空気との混 合気に着火させる点火手段が設けられている請求項 1に記載のパイロット着火ガ
8 . 前記シリンダへッドに、 前記液体燃料噴射弁から前記パイロット油が噴射 される前に点火作動し、 前記主燃焼室内に圧縮された前記気体燃料と空気との混 合気に着火させる点火手段が設けられている請求項 2に記載のパイロッ卜着火ガ スエンジンの起動装置。
9 . 前記シリンダへッドに、 前記液体燃料噴射弁から前記パイ口ット油が噴射 される前に点火作動し、 前記主燃焼室内に圧縮された前記気体燃料と空気との混 合気に着火させる点火手段が設けられている請求項 3に記載のパイロッ卜着火ガ
1 0 . 前記シリンダへッドに、 前記液体燃料噴射弁から前記パィロット油が噴 射される前に点火作動し、 前記主燃焼室内に圧縮された前記気体燃料と空気との 混合気に着火させる点火手段が設けられている請求項 4に記載のパイロット着火 ガスエンジンの起動装置。
1 1 . 前記シリンダヘッドに、 前記液体燃料噴射弁から前記パイロット油が噴 射される前に点火作動し、 前記主燃焼室内に圧縮された前記気体燃料と空気との 混合気に着火させる点火手段が設けられている請求項 5に記載のパイ口ット着火
1 2 . 前記シリンダヘッドに、 前記液体燃料噴射弁から前記パイロット油が噴 射される前に点火作動し、 前記主燃焼室内に圧縮された前記気体燃料と空気との 混合気に着火させる点火手段が設けられている請求項 6に記載のパイロット着火 ガスエンジンの起動装置。
1 3 . 前記点火手段が、 前記エンジン回転速度が定格回転数に達したときに点 火作動を停止する請求項 7に記載のパイロット着火ガスエンジンの起動装置。
1 4 . 前記点火手段が、 前記エンジン回転速度が定格回転数に達したときに点 火作動を停止する請求項 8に記載のパイロット着火ガスエンジンの起動装置。
1 5. 前記点火手段が、 前記エンジン回転速度が定格回転数に達したときに点 火作動を停止する請求項 9に記載のパイ口ッ卜着火ガスエンジンの起動装置。
16. 前記点火手段が、 前記エンジン回転速度が定格回転数に達したときに点 火作動を停止する請求項 10に記載のパイロット着火ガスエンジンの起動装置。
1 7. 前記点火手段が、 前記エンジン回転速度が定格回転数に達したときに点 火作動を停止する請求項 1 1に記載のパイロット着火ガスエンジンの起動装置。
18. 前記点火手段が、 前記エンジン回転速度が定格回転数に達したときに点 火作動を停止する請求項 12に記載のパイ口ット着火ガスエンジンの起動装置。
PCT/JP2002/001018 2000-08-17 2002-02-07 Systeme de demarrage pour moteur a gaz a allumage par veilleuse WO2003067065A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2000247865A JP3672805B2 (ja) 2000-08-17 2000-08-17 パイロット着火ガスエンジンの起動装置
PCT/JP2002/001018 WO2003067065A1 (fr) 2000-08-17 2002-02-07 Systeme de demarrage pour moteur a gaz a allumage par veilleuse
EP02712287.8A EP1473458B1 (en) 2000-08-17 2002-02-07 Starting system for pilot-ignition gas engine
CNB028078926A CN100351508C (zh) 2000-08-17 2002-02-07 引燃点火燃气发动机的起动装置
KR1020037012995A KR100831693B1 (ko) 2002-02-07 2002-02-07 파일럿 착화 가스엔진의 기동 장치
US10/474,235 US6990946B2 (en) 2000-08-17 2002-02-07 Starting system for pilot-ignition gas engine
NO20034446A NO340966B1 (no) 2000-08-17 2003-10-03 Starter for gassmotor med pilotoljetenning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000247865A JP3672805B2 (ja) 2000-08-17 2000-08-17 パイロット着火ガスエンジンの起動装置
PCT/JP2002/001018 WO2003067065A1 (fr) 2000-08-17 2002-02-07 Systeme de demarrage pour moteur a gaz a allumage par veilleuse

Publications (1)

Publication Number Publication Date
WO2003067065A1 true WO2003067065A1 (fr) 2003-08-14

Family

ID=29272090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/001018 WO2003067065A1 (fr) 2000-08-17 2002-02-07 Systeme de demarrage pour moteur a gaz a allumage par veilleuse

Country Status (6)

Country Link
US (1) US6990946B2 (ja)
EP (1) EP1473458B1 (ja)
JP (1) JP3672805B2 (ja)
CN (1) CN100351508C (ja)
NO (1) NO340966B1 (ja)
WO (1) WO2003067065A1 (ja)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2406137C (en) * 2002-10-02 2004-12-28 Westport Research Inc. Control method and apparatus for gaseous fuelled internal combustion engine
JP3861049B2 (ja) * 2002-12-17 2006-12-20 三菱重工業株式会社 ガスエンジンの燃焼制御装置
JP2005005954A (ja) * 2003-06-11 2005-01-06 Matsushita Electric Ind Co Ltd アンテナ
EP1862656B1 (en) * 2005-02-07 2010-12-22 Yanmar Co., Ltd. Fuel injection device of diesel engine
CN100419239C (zh) * 2005-05-04 2008-09-17 通用汽车环球科技运作公司 燃油控制***及其校准方法、***处理的模型的校准方法
AT506561B1 (de) 2009-05-07 2011-05-15 Avl List Gmbh Verfahren zum starten einer mit brenngas betriebenen brennkraftmaschine
AT506560B1 (de) 2009-05-07 2010-08-15 Avl List Gmbh Verfahren zum starten einer mit brenngas betriebenen brennkraftmaschine
US8275538B2 (en) * 2009-06-12 2012-09-25 Ford Global Technologies, Llc Multi-fuel engine starting control system and method
CA2842729C (en) * 2014-02-11 2015-09-01 Westport Power Inc. Starting a gaseous and pilot fuelled engine
US9689333B2 (en) * 2014-07-28 2017-06-27 Cummins Inc. Dual-fuel engine with enhanced cold start capability
CA2958286C (en) 2014-08-18 2023-05-02 Woodward, Inc. Torch igniter
DE102014017124A1 (de) 2014-11-20 2016-05-25 Man Diesel & Turbo Se Verfahren und Steuerungseinrichtung zum Betreiben eines Motors
DE102017009607A1 (de) 2017-10-17 2019-04-18 Daimler Ag Zuführungs- und Zündvorrichtung für einen Gasmotor und Verfahren zum Betrieb einer Zuführungs- und Zündvorrichtung für einen Gasmotor
CN108131205B (zh) * 2017-11-20 2019-06-18 北京动力机械研究所 一种涡扇发动机燃烧室启动方法
US10539086B2 (en) 2017-12-15 2020-01-21 Cummins Inc. Systems and method for a cold start system for a gaseous fuel engine
US11421601B2 (en) 2019-03-28 2022-08-23 Woodward, Inc. Second stage combustion for igniter

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157562U (ja) * 1983-04-08 1984-10-23 ヤンマーディーゼル株式会社 ガス燃料機関の始動性向上装置
JPS63106338A (ja) * 1986-10-23 1988-05-11 Mitsui Eng & Shipbuild Co Ltd Lng船における二元燃料機関の制御方法
JPS63105762U (ja) * 1986-12-27 1988-07-08
JPH0180656U (ja) * 1987-11-17 1989-05-30
JPH03249363A (ja) * 1990-02-27 1991-11-07 Yanmar Diesel Engine Co Ltd 希薄燃焼式ガス機関
JPH06137177A (ja) * 1993-02-04 1994-05-17 Yamaha Motor Co Ltd ガス燃料用内燃機関の起動装置
JPH10184462A (ja) * 1996-12-26 1998-07-14 Niigata Eng Co Ltd パイロットガスの圧力制御装置及び圧力制御方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922242B1 (ja) * 1969-05-27 1974-06-07
JPS58107834A (ja) * 1981-12-22 1983-06-27 Niigata Eng Co Ltd ガスエンジンの着火油噴射量制御装置
JPS58117329A (ja) * 1981-12-29 1983-07-12 Kubota Ltd 2元燃料エンジンのパイロツト燃料調整機構
JPS59137349A (ja) 1983-01-22 1984-08-07 Yamau Sogo Kaihatsu Kk 硫黄ガラス繊維強化材およびその製造法
JPS59137349U (ja) * 1983-03-03 1984-09-13 株式会社クボタ 二元燃料エンジン
NZ205140A (en) * 1983-08-04 1987-02-20 H M Reid Electronically controlled dual fuel system for diesel engines
US5450829A (en) * 1994-05-03 1995-09-19 Servojet Products International Electronically controlled pilot fuel injection of compression ignition engines
JPH11324750A (ja) * 1998-05-13 1999-11-26 Niigata Eng Co Ltd 複合エンジン及びその運転方法
US6209511B1 (en) * 1998-05-14 2001-04-03 Niigata Engineering Co., Ltd. Lean combustion gas engine
JP3930639B2 (ja) * 1998-05-14 2007-06-13 新潟原動機株式会社 予燃焼室方式ガスエンジン

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157562U (ja) * 1983-04-08 1984-10-23 ヤンマーディーゼル株式会社 ガス燃料機関の始動性向上装置
JPS63106338A (ja) * 1986-10-23 1988-05-11 Mitsui Eng & Shipbuild Co Ltd Lng船における二元燃料機関の制御方法
JPS63105762U (ja) * 1986-12-27 1988-07-08
JPH0180656U (ja) * 1987-11-17 1989-05-30
JPH03249363A (ja) * 1990-02-27 1991-11-07 Yanmar Diesel Engine Co Ltd 希薄燃焼式ガス機関
JPH06137177A (ja) * 1993-02-04 1994-05-17 Yamaha Motor Co Ltd ガス燃料用内燃機関の起動装置
JPH10184462A (ja) * 1996-12-26 1998-07-14 Niigata Eng Co Ltd パイロットガスの圧力制御装置及び圧力制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1473458A4 *

Also Published As

Publication number Publication date
US6990946B2 (en) 2006-01-31
NO340966B1 (no) 2017-07-31
EP1473458B1 (en) 2017-08-16
JP3672805B2 (ja) 2005-07-20
CN1502008A (zh) 2004-06-02
JP2002061523A (ja) 2002-02-28
NO20034446L (no) 2003-10-03
US20040107941A1 (en) 2004-06-10
CN100351508C (zh) 2007-11-28
NO20034446D0 (no) 2003-10-03
EP1473458A1 (en) 2004-11-03
EP1473458A4 (en) 2010-04-07

Similar Documents

Publication Publication Date Title
US7509932B2 (en) Control apparatus for controlling internal combustion engines
JP3672805B2 (ja) パイロット着火ガスエンジンの起動装置
JP3881243B2 (ja) 可変速度soc制御を有する予混合チャージ圧縮点火エンジン及び作動方法
RU2423618C2 (ru) Датчик действительного качества топлива
JP5786679B2 (ja) 圧縮自己着火式エンジンの始動制御装置
US8166942B2 (en) Start-up control of internal combustion engines
JP2009062959A (ja) ディーゼルエンジンの制御装置
JP2004197745A (ja) 可変圧縮比を有する多シリンダ式の内燃機関を運転するための方法
JP4139733B2 (ja) ディーゼル機関の制御方法
JP2016145570A (ja) エンジンの中の燃料品質を推定するためのシステムおよび方法
US6325044B1 (en) Apparatus and method for suppressing diesel engine emissions
GB2397851A (en) Method of calibrating an engine component
JP2005155549A (ja) エンジンの始動装置
US7051715B2 (en) Apparatus and method for suppressing diesel engine emissions
KR100831693B1 (ko) 파일럿 착화 가스엔진의 기동 장치
JP3820032B2 (ja) パイロット着火ガスエンジン
JP5831168B2 (ja) 圧縮自己着火式エンジンの始動制御装置
JP2011021481A (ja) 通電制御システム
JP2007182855A (ja) 内燃機関の制御装置
JP6100336B2 (ja) 機関及び機関の制御方法
JP2008095519A (ja) エンジンの停止制御装置
JP2841443B2 (ja) ディーゼル機関
JPS6232252A (ja) デイ−ゼル機関の燃料噴射時期制御装置
US20200200055A1 (en) Valve timing controller and valve timing control method
JP5904806B2 (ja) 機関及び機関の制御方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN IN KR NO US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 1253/KOLNP/2003

Country of ref document: IN

REEP Request for entry into the european phase

Ref document number: 2002712287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2002712287

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020037012995

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 10474235

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 01253/KOLNP/2003

Country of ref document: IN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 028078926

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2002712287

Country of ref document: EP