WO2003066192A1 - Microorganism-trapping agent - Google Patents

Microorganism-trapping agent Download PDF

Info

Publication number
WO2003066192A1
WO2003066192A1 PCT/JP2003/001322 JP0301322W WO03066192A1 WO 2003066192 A1 WO2003066192 A1 WO 2003066192A1 JP 0301322 W JP0301322 W JP 0301322W WO 03066192 A1 WO03066192 A1 WO 03066192A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
microorganism
capturing
saturated
unsaturated
Prior art date
Application number
PCT/JP2003/001322
Other languages
French (fr)
Japanese (ja)
Inventor
Shuichi Sugawara
Original Assignee
Asahi Kasei Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Kabushiki Kaisha filed Critical Asahi Kasei Kabushiki Kaisha
Priority to JP2003565612A priority Critical patent/JP4522707B2/en
Priority to AU2003207181A priority patent/AU2003207181A1/en
Publication of WO2003066192A1 publication Critical patent/WO2003066192A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/082Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/08Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer
    • C12N11/089Enzymes or microbial cells immobilised on or in an organic carrier the carrier being a synthetic polymer obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C12N11/096Polyesters; Polyamides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L25/00Compositions of, homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Compositions of derivatives of such polymers
    • C08L25/18Homopolymers or copolymers of aromatic monomers containing elements other than carbon and hydrogen

Definitions

  • the present invention relates to a microorganism capturing agent. More specifically, the present invention relates to a compound having at least two carboxyl groups, a benzotriazole-based compound, an amide-based compound, a water-insoluble azo compound, and a fourth compound having a specific structure.
  • the present invention relates to a microorganism capturing agent comprising at least one compound selected from the group consisting of a quaternary ammonium salt and a quaternary ammonium salt-containing polymer having a specific structure.
  • the microorganism-capturing agent of the present invention not only has excellent microorganism-capturing ability, but also can maintain such excellent microorganism-capturing ability for a long period of time. It can be used effectively for trapping.
  • microorganism-capturing agent of the present invention is soluble in an organic solvent and Z or a water-containing organic solvent, a microorganism-capturing compound comprising a carrier on which the capturing agent is carried using a solution of the microorganism-capturing agent. Coalescence can be manufactured easily.
  • the complex for capturing microorganisms using the microorganism capturing agent of the present invention can be advantageously used as a carrier for holding microorganisms and Z or bacterial cells in a bioreactor and a biosensor.
  • microbe capture agents substances that have the ability to trap microorganisms used in microbe removal materials for water treatment and bioreactors and as carriers for holding Z or bacterial cells. It has been done. Microbial scavengers are primarily intended for use in water, so they must be water-insoluble to prevent the eradication of the microbial scavengers from attenuating the effect of removing microorganisms over time. I was For example, Japanese Patent Publication No. 62-41641 discloses an insoluble microbial scavenger composed of cross-linked polyvinyl pyridinum halide.
  • microorganism trapping agent disclosed in this publication has a problem that the amount of microorganisms adsorbed by crosslinking for insolubilization decreases.
  • the present inventors have made intensive studies to develop such an excellent microorganism capturing agent as described above.
  • compounds having at least two hydroxyl groups, benzotriazole compounds, amide compounds, water-insoluble azo compounds, and quaternary ammonium salts having a specific structure And at least one compound selected from the group consisting of quaternary ammonium salt-containing polymers having a specific structure.
  • microorganism-capturing agent is soluble in an organic solvent and Z or a water-containing organic solvent
  • a solution of the microorganism-capturing agent is used to form a microorganism-capturing complex including a carrier on which the capturing agent is supported. It has been found that it can be easily produced, and that the obtained composite for capturing microorganisms can be advantageously used as a carrier for holding microorganisms and / or cells in bioreactors and biosensors.
  • the present invention has been completed based on these findings. Therefore, one of the objects of the present invention is not only to have an excellent ability to capture microorganisms, but also to maintain such an excellent ability to capture microorganisms for a long period of time. Agent.
  • Another object of the present invention is to provide a microorganism capturing complex carrying the microorganism capturing agent.
  • Still another object of the present invention is to provide a method for capturing a microorganism by bringing the microorganism capture agent into contact with a liquid or a gas containing a microorganism.
  • Still another object of the present invention is to provide a method for capturing microorganisms by bringing the complex for capturing microorganisms into contact with a liquid or a gas containing the microorganisms.
  • a compound having at least two hydroxyl groups a benzotriazole-based compound,
  • R 1 , R 2 and R 3 are each independently saturated or unsaturated
  • C i _ C 5 Saturated or unsaturated C i -C 5 containing an aliphatic hydrocarbyl group or a hydroxyl group. Aliphatic hydrocarbyl groups, C 6 —C 5 .
  • X represents an ion selected from the group consisting of a thiophene, a logenide ion, an alkyl sulfonate ion, an aromatic sulfonate ion, a sulfate ion and a nitrate ion.
  • R 4 is a nitrogen-containing compound that forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain, and includes pyridin 4 —dimethylaminopyridine, 2,4 ′ 6 —collidine , 2,3,5—a nitrogen-containing compound selected from the group consisting of collidine, tri (saturated or unsaturated C 3 —Ci 8 aliphatic hydrocarbyl) amine, and quinoline;
  • k and ⁇ are integers that satisfy the following conditions
  • R 5 is a nitrogen-containing compound which forms an ammonium ion by bonding to a CH 2 — group of a side chain of the polymer chain, and includes pyridin 4-dimethylaminopyridinine, 2,4,6-collidine, 2,3,5—Nitrogen-containing compounds selected from the group consisting of collidine, tri (saturated or unsaturated C 3 —C 8 aliphatic hydrocarbyl) amines, and quinoline;
  • R 6 represents a hydrogen atom or a C 1 -C 3 alkyl group
  • Y is a hydrogen atom, a saturated or unsaturated C i -C 5 .
  • Fatty acid residues, C 6 —C 5 Represents an aryl group, a benzyl group, and a sulfoxyl group,
  • a microbial scavenger comprising at least one compound selected from the group consisting of:
  • R 1 , R 2 and R 3 are each independently saturated or unsaturated C 1 C 5 .
  • Aliphatic arsenide de Rokarubiru group containing a hydroxyl group, a saturated or unsaturated C i - C 5.
  • Aliphatic hydrocarbyl groups C 6 —C 5 .
  • X- represents an ion selected from the group consisting of a halide ion, an alkylsulfonic acid ion, an aromatic sulfonic acid ion, a sulfate ion and a nitrate ion.
  • R 4 is a nitrogen-containing compound that forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain,
  • k and ⁇ are integers that satisfy the following conditions
  • R 5 is a nitrogen-containing compound that forms an ammonium ion by bonding to a C 2 — group on the side chain of the polymer chain,
  • R 6 represents a hydrogen atom or a C 3 alkyl group
  • X— represents a halide ion
  • Y is a hydrogen atom, saturated or unsaturated C 1 -C 5 .
  • Aliphatic carbyl radical saturated or unsaturated C 1 -C 5 .
  • Aliphatic hydrolability Rubiroxy group (saturated or unsaturated C 1 -C 5 .
  • Carboxyl group a saturated or unsaturated CC 50 fatty acid residue, C 6 —C 5 .
  • n and n are integers satisfying the following conditions.
  • R 3 is as defined in the formula (1).
  • the quaternary ammonium salt of the formula (1) is a quaternary ammonium chloride represented by the following formula (6), and a quaternary ammonium salt represented by the following formula (7): And a quaternary ammonium night rate represented by the following equation (8):
  • the polymer represented by the formula (4) is a polymer represented by the following formula (9): 2.
  • R is a saturated or unsaturated C i one C 5.
  • Aliphatic hydrocarbyl A saturated or unsaturated mono-C 5 Q aliphatic hydrocarbyl group containing a hydroxyl group, C 6 -C 5 .
  • r and s are integers satisfying the following relationship.
  • the weight average molecular weight of the polymer of the formula (2) is from 1,000 to 1,000,000.
  • microorganism according to any one of the above items 1, 2 and 4, wherein the polymer of the formula (3) has a weight average molecular weight of 1,000 to 1,000,000. Capture agents.
  • the compound having at least two carboxyl groups is Ethylenediaminetetraacetic acid, cunic acid, hydroxyshethylethylenediaminetriacetic acid, dihydroxylshethylethylenediaminediacetic acid, 1,3 propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and triethyleneethylenetetraacetic acid 2.
  • R 7 is a saturated or unsaturated C _ C 5 .
  • Aliphatic arsenide Dorokarubiru group containing a hydroxyl group, a saturated or unsaturated C i one C 5.
  • Aliphatic hydrocarbyl groups C 6 —C 5 .
  • Ariru group a benzyl group, a saturated or unsaturated C one C 5. Represents a fatty acid residue or a saturated or unsaturated fatty acid ester residue,
  • a microorganism capturing complex comprising a carrier carrying the microorganism capturing agent according to any one of the above items 1 to 9, wherein the weight of the microorganism capturing agent is 0 to the weight of the carrier. 0.1 to 20% by weight of the complex for capturing microorganisms.
  • the carrier comprises a polyester, a polyacrylic acid or a derivative thereof, a polyamide, a polyvinylidene chloride, a polyvinylidene fluoride, a polyurethane, a polysaccharide, a polyoxyalkylene, and a polyoxyalkylene.
  • the microorganism capturing complex according to the above item 10 wherein the complex is produced from at least one compound selected from the group consisting of ethylene terephthalate.
  • a method for capturing microorganisms comprising the following steps (1) and (2).
  • microorganisms are captured by bringing the microorganism capture agent into contact with a liquid or a gas containing the microorganisms.
  • a method for capturing microorganisms comprising the following steps (1) and (2).
  • a composite for capturing microorganisms according to any one of (10) to (13) above.
  • R 4 is a nitrogen-containing compound which forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain,
  • 3, 5 a nitrogen-containing compound selected from the group consisting of collidine, tri (saturated or unsaturated C 3 _C 8 aliphatic hydrocarbyl) amine, and quinoline;
  • X represents a halide ion
  • k and ⁇ are integers satisfying the following conditions.
  • hydrocarbyl group refers to a monovalent group derived from hydrocarbon
  • IUPAC International Union of Pure and Applied
  • the microorganism capturing agent of the present invention includes a compound having at least two carboxyl groups, a benzotriazole-based compound, an amide-based compound, a water-insoluble azo compound, and a quaternary compound having a specific structure described below. It includes at least one compound selected from the group consisting of an ammonium salt and a quaternary ammonium salt-containing polymer having a specific structure described below.
  • the use of the microorganism capturing agent of the present invention enables capturing while maintaining the active state of the microorganism.
  • the active microorganisms are, for example, microorganisms having a sewage purification ability (ie, activated sludge bacteria).
  • Examples of the compound having at least two propyloxyl groups include, for example, ethylenediaminetetraacetic acid, citric acid, and hydroxyethylethylenediamine.
  • the microorganism capturing agent had to be insoluble in water.
  • the present inventor has reported that, despite the fact that the above-mentioned carboxyl group-containing compound used in the present invention is water-soluble, the microorganism-capturing complex comprising the above-described compound supported on a carrier has excellent microorganism-capturing ability. It has been found that it is possible to maintain such excellent microorganism-capturing ability over a long period of time, in addition to exerting the same. Although the reason is not clear, it is considered to be as follows.For example, when using the above-described complex for capturing microorganisms to capture microorganisms in wastewater or sewage, organic molecules are present on the surface of the complex.
  • microorganisms are adsorbed on the surface of the denatured complex, and the microorganisms are further adsorbed on the microorganisms adsorbed on the carrier.
  • the microorganism-capturing agent of the present invention is used, even if the microorganism-capturing agent is detached from the carrier during the microorganism-capturing treatment, the amount of adsorbed microorganisms from several days to about one week after the start of the treatment
  • benzotriazole-based compounds have And those used as agents.
  • benzotriazole compounds include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-13,1t-butyl-5 , -Methylphenyl) 1 5 —Cro-benzotriazole, 2 — (2'-Hydroxy 5'-t-Butylphenyl) benzotriazole, 2 ⁇ (2'Hydroxy-1 3 ', 5 '—Di-tert-butylphenyl) benzotriazole, 2 — (2'-hydroxy 3', 5 '-di-t-butylphenyl) 1 5 —Cross-opening benzotriazole and (2 '— Hydroxy 3', 5 '-di-t-amylphenyl) benzotriazole, preferably 2 — (2' -hydroxy 3 '-t-butyl-5' -methylphenyl)
  • benzotriazole-based compound interacts with the positively charged part of the skeletal molecule benzotriazole and the negative charge on the cell surface of the microorganism.
  • amide-based compounds examples include those conventionally used as antistatic agents.
  • Preferred specific examples of the amide compound include an N, N-di (polyoxyethylene) -substituted amide amide compound represented by the formula (11).
  • R 7 is a saturated or unsaturated C 1 C 5 .
  • Aliphatic arsenide Dorokarubiru group containing a hydroxyl group, a saturated or unsaturated (E one C 5 aliphatic arsenide Dorokarubiru group, C 6 -.. C 5 ⁇ Li Ichiru group, a benzyl group, a saturated or unsaturated C i one C 5. represents a fatty acid residue or a saturated or unsaturated fatty acid ester residue,
  • the N, N-di (polyoxyethylene) -substituted amide compound represented by the formula (11) has a hydrophobic hydrocarbon moiety and a hydrophilic polyoxyethylene moiety in the R 7 group in the constituent components. Therefore, it exerts a surfactant effect. Therefore, when the N, N-di (polyethylene) -substituted amide compound is coated on the carrier surface, the initial adsorption of microorganisms is promoted by improving the affinity with water on the hydrophobic carrier surface, and the microorganisms are captured. It is considered to be done.
  • water-insoluble 7azo compound examples include those conventionally used as azo pigments.
  • the azo pigment has a wide range of hues, such as yellow, orange, and reddish purple, depending on the combination of the diazo component and the coupling component.
  • Specific examples of azo pigments include Fast Yellow, Disazo Yellow, Disazo Orange, and Naf Examples include tall red.
  • disazo orange one of the water-insoluble azo compounds, has a diazo group and imidazole in the molecule, so when the carrier surface is coated with disazo orange, the surface of the capturing material exhibits a positive charge in water. .
  • the electrostatic interaction between the microorganism and the negatively charged microorganism in water works to capture the microorganism.
  • the quaternary ammonium salt that can be used in the present invention is a compound represented by the following formula (1).
  • R 1 , R 2 and R 3 are each independently saturated or unsaturated C, one C 5 .
  • Aliphatic arsenide Dorokarubiru group containing a hydroxyl group, a saturated or unsaturated C i-C 5.
  • Aliphatic hydrocarbyl groups C 6 —C 5 .
  • Echiru group a benzyl group, a saturated young properly unsaturated C E - C 5.
  • X represents a halide ion, an alkylsulfonate ion Represents an ion selected from the group consisting of aromatic sulfonate, sulfate and nitrate. ).
  • R 1 R 2 and R 3 of the ammonium salt of the formula (1) are each independently saturated or unsaturated C 1 C 2 .
  • Saturated or unsaturated C 1 -C 2 containing an aliphatic hydrocarbyl group or a hydroxyl group.
  • Aliphatic hydrocarbyl group, C 6 -C 2 aryl group, 4 pyridyl group, 2 —dimethylaminoethyl group, 2 — (N —benzyl-NN —dimethylammonium) ethyl group, benzyl group, Saturated or unsaturated C 1 C 2 .
  • fatty acid residue or a saturated or unsaturated fatty acid ester residue is preferably a saturated or unsaturated C—C ester.
  • Saturated or unsaturated C-Ci containing an aliphatic hydrocarbyl group or a hydroxyl group.
  • X— of the ammonium salt of the formula (1) is preferably a chloride ion.
  • the quaternary ammonium salt-containing polymer that can be used in the present invention is a polymer having polymer chains represented by the following formulas (2) to (5).
  • R 4 is a nitrogen-containing compound that forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain, and is a pyrimidine 4 dimethylaminopyridine, 2, 4, 6 — co lysine, 2, 3, 5 - co lysine, Application Benefits (saturated or unsaturated C 3 - C E 8 fatty Zokuhi Dorokarubiru) ⁇ Mi emissions, and nitrogen-containing Bareru election Ri by Kino Li down or Ranaru group Represents a compound,
  • X represents a halide ion
  • k and ⁇ are integers satisfying the following conditions.
  • R 5 is a nitrogen-containing compound which forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain
  • 3,5 a nitrogen-containing compound selected from the group consisting of collidine, tri (saturated or unsaturated C 3 —C 8 aliphatic carboxy) amine, and quinoline;
  • R 6 represents a hydrogen atom or a C 1 -C 3 alkyl group
  • X — represents a halide ion
  • Y is a hydrogen atom, a saturated or unsaturated C E - C 5.
  • Aliphatic lipocarbyl group saturated or unsaturated C 1 C 5 .
  • Aliphatic hydrolyl rubyoxy group saturated or unsaturated C 1 C 5 Q aliphatic hydrocarbyl) carboxy group, saturated or unsaturated C 1 C 5 .
  • M and n represent an aryl group, a benzyl group, and a lipoxyl group, and m and n are integers satisfying the following conditions.
  • R 3 is as defined in the formula (1).
  • R 4 in the formula (2) is preferably pyridine, 4-dimethylaminopyridine, or tri (saturated or unsaturated C 3 —C 2 aliphatic lipocarbyl) amine.
  • X_ in the formula (2) is preferably a chloride ion.
  • R 5 in the formula (3) is preferably pyridin, 4-dimethylaminopyridine, or tri (saturated or unsaturated). C 3 —C 2 aliphatic lip mouth carbyl) It is preferred that this be an amiline.
  • R 6 in the formula (3) is preferably a hydrogen atom or a methyl group.
  • X in the formula (3) is preferably a chloride ion.
  • Y in the formula (3) is a saturated or unsaturated C i -C 2 .
  • Saturated or unsaturated C 1 -C 2 containing an aliphatic hydrocarbyl group or a hydroxyl group.
  • Aliphatic arsenide de Rokarubiru group saturated or unsaturated C one C 2.
  • Fat aliphatic arsenide de Rokarubirokishi group saturated or unsaturated C E - C 2 0 aliphatic arsenide de Rokarubi port carboxymethyl
  • carboxymethyl group a saturated or unsaturated C i one C 2. It is preferably a fatty acid residue, a C 6 -Ci 2 aryl group, a benzyl group, or a lipoxyl group.
  • Preferred examples of R 2 and R 3 in equations (4) and (5) are the same as that described above in relation to equation (1).
  • Preferred examples of the quaternary ammonium salt of the formula (1) include a quaternary ammonium chloride represented by the following formula (6): a quaternary ammonium sulfate represented by the following formula (7): , And a quaternary ammonium nitrate represented by the following formula (8):
  • Preferred examples of the polymer of the formula (4) include the following:
  • Preferred examples of the polymer of the formula (5) include the following:
  • R represents a saturated or unsaturated C 1 -C 5 Q aliphatic hydrocarbyl group, a hydroxyl group-containing, saturated or unsaturated 1 -C 5 .
  • Aliphatic hydrocarbyl groups, C 6 —C 5 Represents a aryl group, a benzyl group, a saturated or unsaturated C 5 C fatty acid residue, or a saturated or unsaturated fatty acid ester residue.
  • r and s are integers satisfying the following relationship.
  • R is saturated or unsaturated C—C 5 .
  • C i _ C Aliphatic carboxy group, saturated or unsaturated mono-C 0 aliphatic hydrocarbyl group containing hydroxyl group, C 6 -C 2 aryl group, and benzyl group.
  • a quaternary ammonium salt-containing polymer represented by the formula (9) Can be used, and specific examples thereof include:
  • quaternary ammonium salt-containing polymer represented by the formula (10) known polymers can be used, and specific examples thereof include poly (dimethyl methylene methylene piperidium), dimethyl (trade name: PD- 50; Japan, manufactured by Asahi Denka Kogyo Co., Ltd.).
  • quaternary ammonium salts have a positively charged functional group.
  • the quaternary ammonium salt and the quaternary ammonium salt-containing polymer used in the present invention have an electrostatic interaction with the target microorganism surface. It is presumed that you are doing.
  • the quaternary ammonium salt and the quaternary ammonium salt-containing polymer used in the present invention often have a structure represented by the following formula due to quaternization of the amino group.
  • the quaternized amino group is mainly responsible for capturing the microorganism while maintaining the active state of the microorganism.
  • a compound containing a similar quaternized amino group that does not satisfy the requirements of the present invention such as the cationic surfactant Benzethonium Chloride or chloride Since benzalkonium (Benzalkonium Chloride) is usually used as a bactericidal disinfectant for hulls, it is expected that the quaternized amino group may exhibit a bactericidal action in some cases. Compounds having such a bactericidal action are unsuitable for use as the microorganism capturing agent of the present invention.
  • Japanese Patent No. 3118604 a polyvinylpyridinium halide derivative (Japanese Patent No. 3118604) described as a microorganism-adsorbing resin in Japanese Patent No. 3118604 is also described. It has been reported that it has a bactericidal action (J 0 erg Tiller, Chun—Jen Liao, Kim Lewis, and Ale ander M. K 1 ib anov, Proc. Natl. Acad. Sc i. USA, 9 8, 5981-5985, 2001). On the other hand, the quaternary ammonium salt and the quaternary ammonium salt-containing polymer used in the present invention have a weak bactericidal action against microorganisms and have an excellent trapping action as shown in Examples.
  • the quaternary ammonium salt-containing polymer having the polymer chains represented by the formulas (2) and (3) is prepared by adding 4-vinylpentyl chloride, vinylidene chloride, and a substituted vinyl compound in the presence of a polymerization initiator.
  • a polymerization initiator For example, it is produced by copolymerizing styrene and the like under heating, and then reacting with a base such as pyridine, 4-dimethylaminopyridine, and tertiary organic amine.
  • the quaternary ammonium salt-containing polymer having a polymer chain represented by the formula (2) that can be used is, for example, 4-vinyl benzyl chloride or vinyl chloride as a monomer. Deny (Vinylidene chloride) as a polymerization initiator
  • an equimolar amount of the above It can be obtained by reacting a nitrogen-containing compound (eg, pyridine) in a polar solvent such as ethanol.
  • a nitrogen-containing compound eg, pyridine
  • the reaction conditions for the copolymerization of 4-bibenzylbenzyl chloride with vinylidene chloride are preferably such that the reaction pressure is between atmospheric pressure and 20 atm, and between atmospheric pressure and 1 atm. The pressure is more preferably 0 atm, the reaction temperature is preferably from 180 to 300 ° C, and more preferably from 120 to 80 ° C.
  • the reaction pressure is preferably from atmospheric pressure to 5 atm, more preferably from atmospheric pressure to 2 atm.
  • the reaction temperature is preferably from 0 to 200 ° C., more preferably from 20 to 100 ° C.
  • a quaternary ammonium salt-containing polymer having an it-incorporated chain represented by the formula (3) is, for example, a polymer of 4-bibenzylbenzene as a monomer. Chloride and styrene are copolymerized using a radical initiator such as AI as a polymerization initiator, and then about an equimolar amount of the above-mentioned nitrogen-containing compound with respect to 4-vinylbenzyl chloride (for example, It can be obtained by reacting pyridine in a polar solvent such as ethanol.
  • a radical initiator such as AI as a polymerization initiator
  • the reaction pressure is preferably from atmospheric pressure to 10 atmospheres, more preferably from atmospheric pressure to 2 atmospheres.
  • the reaction temperature is preferably from 0 to 200 ° C, more preferably from 50 to 150 ° C.
  • the reaction conditions for reacting the above-mentioned nitrogen-containing compound are preferably a reaction pressure of atmospheric pressure to 5 atm, more preferably atmospheric pressure to 2 atm, and a reaction temperature of 0 to 200 atm. ° C is preferred, and more preferably from 20 to 100 ° C.
  • the number k of monomer units constituting a quaternary ammonium salt-containing polymer having a polymer chain represented by the formula (2) is 10 ⁇ k ⁇ 100, preferably 100 0 ⁇ k ⁇ 1 0, 0 0 0, more preferably 10 ⁇ k ⁇ 5, 0 0 0, ⁇ is 10 ⁇ ⁇ ⁇ 1 0 0, 0 0 0, preferably 1 0 ⁇ ⁇ ⁇ 10 0, 0 0 0, more preferably 10 ⁇ ⁇ 5, 0 0 0. 41.
  • the ratio of vinylbenzyl chloride to pinylidene chloride that is, the ratio of k: ⁇ is preferably in the range of 5:95 to 95: 5, and more preferably 2: 8 to 9: 1. I like it. 4—Better than this range, low percentage of vinylbenzyl chloride provides good microbial capture It is difficult to obtain the performance, and if it is more than this, the water solubility of the obtained copolymer tends to be too high.
  • the number m of monomer units constituting the quaternary ammonium salt-containing polymer having a polymer chain of the present invention represented by the formula (3) is 10 ⁇ m ⁇ 10 0, 00 0, preferably 10 ⁇ m ⁇ 10, 0 00, more preferably 10 ⁇ m ⁇ 5, 0 0, n is 10 ⁇ n ⁇ 1 0 0, 0 0 0, preferably 1 0 ⁇ n ⁇ l 0, 0 0 0, and more preferably 10 ⁇ n ⁇ 5, 0 0 0.
  • the ratio of vinylbenzyl chloride to styrene is preferably in the range of 5:95 to 95: 5, more preferably 2: 8 to 9: 1. preferable. If the proportion of 4-vinylpentyl chloride is smaller than this range, it is difficult to obtain sufficiently good microorganism capture, and if it is larger than this range, the obtained copolymer becomes highly water-soluble. Cheap. '
  • the degree of polymerization of the quaternary ammonium salt-containing polymer represented by the formulas (2) and (3) is preferably 100 or more and 9,000 or less. If the degree of polymerization is less than 100, the water solubility of the obtained polymer tends to increase, and if it exceeds 9,000, the solubility in organic solvents decreases.
  • the weight average molecular weight of the quaternary ammonium salt-containing polymer is preferably from 1,000 to 1,000,000, and the solubility in an organic solvent is high. In consideration of the above, 1, 000 to 50,000, 0000 is more preferable. Even if the molecular weight exceeds 500,000 The microorganism capturing effect of the present invention is achieved.
  • the quaternary ammonium salt-containing polymers represented by the formulas (2) and (3) are contained in a polymer skeleton that does not sufficiently exhibit a microbial trapping effect by itself, although the polymer skeleton itself has excellent chemical stability.
  • various nitrogen-containing compounds such as pyridine, 2,4,6—collidine, 23,5—collidine, 4-dimethylaminopyridine, triethylamine,
  • an amine compound such as triplimamine
  • the surface of the complex for capturing microorganisms prepared by adding or coating the quaternary ammonium salt-containing polymer represented by the above formulas (2) and (3) is positively charged in the aqueous phase. It is thought that there is. As described above, the cell surface of microorganisms is generally negatively charged, and the microorganisms are trapped on the surface of the complex by utilizing the electrostatic interaction between the microorganism and the microorganism trapping agent. (For the state of the surface of the microbial cells, Editor-in-chief: Hisao Morisaki, Hiroyuki Oshima and Kenji Isobe, "Biofilm", published by Science Forum, Japan (1998)). Similarly, cells can be captured on the complex surface.
  • Most of the compounds that can be used as the microbial scavenger of the present invention are soluble in organic solvents having a water content of not more than 20% by weight. It can be dissolved in an organic solvent such as alcohol to form a solution. Therefore, the solution of the microorganism capture agent of the present invention can be impregnated with various carriers, or the solution can be sprayed on the carrier. By performing the coating, the complex for capturing microorganisms of the present invention can be produced.
  • the microorganism capturing agent of the present invention contains the polymer represented by any of the above formulas (2) to (5), the microorganism capturing agent itself may be used as a material or a substrate for producing a carrier for capturing microorganisms. Is possible.
  • THF trifluoroethyl ether
  • DMF dimethylformamide
  • DMA dimethylacetamide
  • Materials used for the carrier of the microorganism capture complex include polyester resins, polyamide resins, polyurethane resins, acrylic resins, polyvinylidene chloride, and polyvinylidene fluoride.
  • Polyoxyalkylene polyoxyalkylene compound, cell Natural polysaccharides such as loin and chitin are used.
  • Polyvinylidene chloride is preferred in view of the durability and chemical stability of the compound and, when used in water, the greater the specific gravity of the fiber made of the compound, the faster it sinks.
  • any material can be used as long as it can form a complex for capturing microorganisms, such as a fiber, a woven fabric, a knitted fabric, a nonwoven fabric, a membrane, a hollow fiber, and a particle. .
  • Examples of the method of applying the microorganism capturing agent of the present invention to the microorganism capturing carrier include a method of impregnating the microorganism capturing carrier with the microorganism capturing agent solution, and coating the microorganism capturing agent solution on the carrier by spraying or the like. And a method in which a microorganism capturing agent is mixed with a carrier raw material, melted, and shaped, and the like.
  • Examples of the form of the composite for capturing microorganisms provided with the microorganism capturing agent of the present invention include fibers, woven fabrics, knitted fabrics, nonwoven fabrics, membranes, hollow fibers, particles, and adsorption carriers constructed based on them. It is preferably used as a woven or knitted fabric.
  • the above-mentioned fibers are usually used as an aggregate obtained by simply combining the fibers, for example, in a state in which short fibers and long fibers are packed in a mesh bag-like or net-like container.
  • the carrier used in the complex for capturing microorganisms of the present invention is preferably a carrier having an ability to adsorb microorganisms.
  • examples of such carriers include polyvinylidene chloride, polyethylene terephthalate, and the like. JP03 / 01322
  • a method for capturing a microorganism by bringing the microorganism capturing agent of the present invention into contact with a liquid or a gas containing a microorganism.
  • liquid containing microorganisms examples include clean water, sewage, industrial water, wastewater, human waste, and the like.
  • gas containing microorganisms include aseptic rooms, clean rooms, hospital rooms, operating rooms, The air used for breeding and cultivation of microbes, pharmaceutical factories, food factories, precision machinery factories, etc. can be mentioned.
  • the microorganism capturing agent used in the method of the present invention is as described above.
  • a specific operation for capturing microorganisms can be performed by a known method.
  • the microorganism capturing agent of the present invention is a polymer represented by the above formulas (2) to (5), a fibrous polymer is used, and the fibrous polymer is formed into a net or a ball. Submerged in water to capture microorganisms.
  • reference can be made to publicly known documents such as “Water Purification Manual-One Technology and Practical Example-” (2001, Kaibundo Shuppan Co., Ltd., Japan).
  • the above-mentioned complex for capturing microorganisms obtained by supporting the above-mentioned microorganism-capturing agent of the present invention on a carrier may be brought into contact with a liquid or gas containing microorganisms to capture the microorganisms.
  • the microorganism capturing complex used in this method is as described above.
  • a specific method for capturing microorganisms can be performed by a known method.
  • the carrier is in the form of fiber, woven fabric, knitted fabric, membrane, hollow fiber, etc.
  • a method of adsorbing on the surface of the fiber or membrane, or in the case of non-woven fabric, filter on the surface of or inside the non-woven fabric There is a method of adsorption by excess.
  • the microorganisms enter the nonwoven fabric and adsorb the microorganisms inside, so that the surface area can be used effectively.
  • the particle form there is a method of adsorbing on the particle surface or inside the particle, and the particle can be used by filling the column or the like with the particle.
  • the capture operation reference can be made to publicly known documents such as the “Environmental Microbial Engineering Research Method” (1993, Gihodo Publishing Co., Ltd., Japan).
  • the microorganism capturing agent of the present invention can be used alone or supported on a carrier and used for capturing microorganisms.
  • the complex for capturing microorganisms of the present invention can be used to improve the ability of the carrier to absorb microorganisms. It can be used as an adsorption carrier. It can also be used as a bioreactor for cell capture and cell fixation.
  • the microorganism capture complex obtained by applying the microorganism capture agent of the present invention to a microorganism capture carrier has a surface with water. It becomes possible to charge positively in the phase and the gas phase.
  • microorganisms to be captured by the microorganism capturing agent and the composite for capturing microorganisms include bacteria, fungi, algae, viruses, activated sludge bacteria, and denitrifying bacteria.
  • microorganisms that also include cells as capture targets are described in, for example, Iwanami Shoten, “Iwanami Biological Encyclopedia, 4th Edition” (issued 4th edition, July 15, 2002, July 15, 2002) in Japan. Refer to the description of the listed biological classification table.
  • bacteria examples include facultative anaerobic bacteria
  • fungi examples include Trichophyton and .Microsporum belonging to incomplete bacteria.
  • Fungi also commonly called molds, are fungi such as black mold of the genus Cladospori umu, blue mold of the genus Aspergilus (Aspergi 1 lus), and blue mold of the genus Penicillium (Penici 1 i um). Is mentioned.
  • algae examples include Microcystis belonging to the class Cyanobacteria and 0 sci 11 a t 0 ria (uremo).
  • Still another object of the present invention is to provide a quaternary ammonium salt-containing polymer represented by the above formula (2).
  • the specific structure of the quaternary ammonium salt-containing polymer and the production method thereof are as described above.
  • This polymer containing a quaternary ammonium salt is a compound that is particularly useful as a microorganism capturing agent.
  • Still another object of the present invention is to provide a quaternary ammonium salt represented by the following formula (12).
  • the quaternary ammonium salt of the above formula (12) is a particularly preferred example of the quaternary ammonium salt of the above formula (1), and is extremely useful as a microorganism capturing agent.
  • the quaternary ammonium salt represented by the formula (12) is obtained by heating benzyl chloride in an equimolar amount or an excess amount (usually 1 to 2 equivalents) with 4-dimethylaminopyridine under a normal pressure in a polar solvent such as ethanol. It is obtained by reacting for several hours to several tens of hours under a temperature of 50 to 80 ° C in the case of an ethanol solvent. NMR confirmed that the reaction site was not a pyridine nitrogen atom but a dimethylamino group nitrogen atom.
  • the solution after the phage capture process is used as the test solution, and a part of the solution is taken and diluted in a phosphate buffer.
  • Each 50 ⁇ of the test solution and the diluent was added to an L ⁇ medium (10 g / kg of Paktotripton, 5 g of yeast extract, 5 g of Zinc, 5 g of NaCl, in distilled water).
  • L ⁇ medium 10 g / kg of Paktotripton, 5 g of yeast extract, 5 g of Zinc, 5 g of NaCl, in distilled water.
  • E. coli JM109 culture solution 200 a ⁇ cultured overnight at 37 ° C at 37 ° C, and allow the resulting mixture to stand at 37 ° C for 10 minutes.
  • Prepare a 3 ml LB soft agar medium (prepared by adding 0.7% by weight of agar in the LB medium), which was previously dissolved and kept at 50 ° C.
  • the PET non-woven fabric with the cells attached is immersed in a methylene blue solution for 2 minutes to stain the cells, and then the excess dye is removed by washing with water, and a certain amount of 10% SDS (sodium dodecy 1 sulfate)
  • SDS sodium dodecy 1 sulfate
  • the dye is extracted by adding the solution to obtain a sample solution.
  • Using a UV-160A spectrophotometer manufactured by Shimadzu Corporation, Japan, measure the absorbance at 660 nm of the sample solution using a 1 cm long quartz cell. Calculate the extinction coefficient at 660 nm from the absorbance according to the following formula.
  • This compound was analyzed by 1 H-NMR analysis using tetramethylsilane as the standard in DMSO (dimethylsulfoxide) -d6 solvent to find that the nitrogen atom of the 4-dimethylamino group was a benzyl group.
  • the adhesion rate of the quaternary ammonium compound to the nonwoven fabric is ⁇ (weight of nonwoven fabric after adhesion / weight of nonwoven fabric before adhesion) / (weight of nonwoven fabric before adhesion) X 100 ⁇ is 1.0% by weight.
  • Met. The microorganism capture complex, after 3 2 stacked packed in a column having an inner diameter of 2 cm, were suspended to a concentration of 5 XI 0 8 pieces / m .1 to saline Eshieri Kia co Li (Escherichia Col [pi Liquid The solution was passed through the column at a rate of 45 m 1 Z hr. The number of viable bacteria in the filtrate obtained by passing through the plate was determined by the agar plate pour method (the 14th revision of the Japanese Pharmacopoeia).
  • the compound of (14) is a DMS with tetramethylsilane as standard. - It was confirmed to be by Ri quaternized Jimechiruami amino group Gabe Njiru group Ri by the 1 H- NMR analysis d 6 solvent. Also, a singlet peak due to dimethyl at ⁇ 3.15, a singlet peak due to ethylene at ⁇ 4.19, a singlet peak due to benzylmethylene at 0.47.66, and ⁇ 55.33 to A peak due to phenyl was observed at 7.70.
  • a carrier for capturing microorganisms was obtained by punching a nonwoven cloth made of PET (0.016 decitex fineness) into 2 cm.
  • the PET nonwoven fabric was impregnated with a THF solution (10 mg / m 1) in which the quaternary ammonium compound was dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour to obtain a composite for capturing microorganisms.
  • the adhesion rate of the quaternary ammonium compound (14) to the nonwoven fabric was 1.0% by weight.
  • the microorganism capture complex after 3 2 stacked packed in a column having an inner diameter of 2 cm, were suspended to a concentration of 5 XI 0 8 pieces / m 1 in physiological saline Eshieri Kia co Li (Escherichia Col 0 The filtrate was passed through the column at a rate of 45 m 1 Z hr. The viable cell count in the filtrate obtained through the passage was measured over time by the agar plate pour method, and the eradication rate was determined. The results are shown in Table 1.
  • a solution of citrate in THF (10 mg / m2) was added to the same PET non-woven fabric (fineness: 0.016 decitex) as in Example 1. After 1) was impregnated for 30 seconds, it was dried at room temperature under reduced pressure for 1 hour to obtain a microorganism capturing material. The adhesion ratio of citric acid to the nonwoven fabric was 1.0% by weight.
  • the microorganism capture complex after 3 2 stacked filling the column with an inner diameter of 2 cm, are suspended in a concentration of Eshierikia co Li (Escherichia Col i) the saline 5 XI 0 8 pieces / m 1
  • Eshierikia co Li Eshierikia co Li
  • the solution was passed through the column at a rate of 45 m 1 Z hr.
  • the number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 1 shows the results.
  • a PET nonwoven fabric (fineness: 0.016 decitex) similar to that of Example 1 was added with 2— (2′-hydroxyl-3′-t-butyl-5′-methylphenyl) represented by the chemical formula (15).
  • I 5 Carbon-mouth benzotriazole (trade name: JF-79, manufactured by Johoku Chemical Co., Ltd., Japan) dissolved in a THF solution (1 O mg / m 1) for 30 seconds After drying at room temperature under reduced pressure for 1 hour, a complex for capturing microorganisms was obtained.
  • the adhesion rate of the benzotriazole derivative (15) to the nonwoven fabric was about 1.0% by weight.
  • Example 5 After packing the microbe-capturing complex in a two-layer column with a 2 cm inner diameter, the Escherichia Coli was suspended in physiological saline at a concentration of 5 ⁇ 10 8 cells / m 1. The solution was passed through the column at a rate of 45 ml / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 1 shows the results.
  • Example 5 shows the results.
  • a carrier for capturing microorganisms was obtained by punching a nonwoven cloth made of PET (0.016 decitex) into a 2 cm diameter.
  • the PET nonwoven fabric was impregnated with a THF solution (10 mg / m 1) in which the quaternary ammonium salt-containing polymer was dissolved for 30 seconds, and dried at room temperature under reduced pressure for 1 hour to obtain a composite material for capturing microorganisms. I got a body.
  • the adhesion rate of the vinyl copolymer to the nonwoven fabric was 1.0% by weight. there were.
  • the microbial capture complex after 3 2 stacked packed in a column having an inner diameter of 2 cm, are suspended in a concentration of Eshieri Kia co Li (Escherichia Col i) the saline 5 XI 0 8 or Z m 1
  • Eshieri Kia co Li Eshieri Kia co Li
  • the solution was passed through a column at a rate of 45 ml / hr.
  • the number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 1 shows the results.
  • This microorganism capturing complex was applied to a column in the same manner as in Example 1.
  • the Eshierikia co Li Esscherichia Col i
  • the Eshierikia co Li was suspended in a concentration of 5 XI 0 8 or Z m 1 in physiology saline solution was passed through the column at a rate of 4 5 m 1 / hr .
  • the number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 1 shows the results. Comparative Example 1
  • Example 1 Without using the compound of the present invention, only the PET nonwoven fabric of the carrier for capturing microorganisms used in Example 1 was packed in a column, and Escherichia Coli was added to a saline solution at a concentration of 5 ⁇ .
  • Table 1 As can be clearly seen, the microorganism-trapping complex using the nonwoven fabric with the microorganism-trapping agents of Examples 1, 2, 3, 4, 5, 6 and 7 adhered to the bacteria. Excellent power and high eradication rate. In the case of Comparative Example 1 to which the microorganism-capturing agent of the present invention was not adhered, the adsorbing power of the bacterium was weak, and the bacterium was remarkably reduced with the passage of time.
  • the (Staphylococcus aureus) was suspended in a concentration of the saline 3 X 1 0 8 M m 1 solution was passed through the column at a rate of 6 0 m 1 / hr.
  • the number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. The results are shown in Table 2.Comparative Example 2
  • Example 2 Without using a microorganism scavenger of the present invention, only the PET nonwoven microbial trapping carrier used in Example 1 was packed into a column, 3 X 1 0 8 or Sutafi loco Kkasu Aureusu the (Staphylococcus aureus) in saline Bruno The liquid suspended at a concentration of m 1 was passed through the column at a rate of 60 m 1 / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 2 shows the results.
  • Example 1 Without using a microorganism scavenger of the present invention, only the PET nonwoven microbial trapping carrier used in Example 1 was packed into a column, the shoes de 'Sphingomonas Aeriregino one The J seudomonas aeruginosa) with saline 6 XI 0 8 The liquid suspended at a concentration of Zm1 was passed through the column at a speed of 30 m ⁇ / r. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 3 shows the results.
  • the microorganism-trapping complex using the PET nonwoven fabric to which the microorganism-trapping agents of Examples 1, 2, 3, 4, 5, 6, and 7 were attached has a lower absorption capacity for bacteria. Although excellent and good eradication rate was exhibited, Comparative Example 3 to which the microorganism trapping agent of the present invention was not adhered had a weak bacterial adsorbing power, and was significantly improved with time. The eradication rate was only about 8%.
  • Each of the 2 ⁇ microbial capturing complexes produced in the same manner as in Examples 1, 2, 3, 5 and 7 was stacked and packed in 32 pieces on a power ram having an inner diameter of 2 cm.
  • a suspension obtained by suspending an off-phase in physiological saline at a concentration of 5 ⁇ 10 6 particles Z m 1 was passed through the column at a rate of 40 m 1 / hr.
  • the number of phage particles in the filtrate obtained by passing the solution was measured over time by the above method, and the removal rate was determined. Table 4 shows the results. Comparative Example 4
  • examples only PET nonwoven microbial trapping carrier used in 1 was packed into a column, M l 3 bar Kuteriofu ⁇ one di saline 5 XI 0 6 particles Z m
  • the liquid suspended at a concentration of 1 was passed through the column at a speed of 40 m 1 / r.
  • the number of phage particles in the filtrate obtained by passing the solution was measured over time to determine the removal rate. Table 4 shows the results.
  • a 2 cm ci) microbial capturing complex obtained in the same manner as in Examples 1 to 7 was immersed in an activated sludge-containing liquid for 14 hours or 48 hours, and the activated sludge tank was immersed. It was shaken back and forth at a speed of 50 rpm.
  • the cells adhering to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of adhered cells.
  • Table 5 shows the results.
  • the amount of adhered cells is proportional to the absorbance of methylene blue, and the higher the value of the absorbance (660 nm), the greater the amount of adhered cells is determined. Comparative Example 5
  • Example 1 Without using the microorganism capturing agent of the present invention, only the PET nonwoven fabric used in Example 1 was immersed in a solution containing activated sludge for 14 hours or 48 hours, and the activated sludge tank was rotated at 50 rpm. Shake back and forth. The cells attached to the PET nonwoven fabric were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the attached cells. The results are shown in Table 5 ⁇ .
  • the microorganism-trapping complex using the PET nonwoven fabric prepared by adhering the microorganism-trapping agents of Examples 1 to 7 is excellent in the ability to capture bacteria, but the microorganism-trapping compound of the present invention. It can be seen that the sample of Comparative Example 5 to which no is attached has a weaker ability to capture bacteria. Table 5
  • the complex for capturing microorganisms of 2 ⁇ produced in the same manner as in Examples 1 to 7 was added to the solution containing denitrifying bacteria for 14 hours or more. It was immersed for 48 hours, and the denitrifying bacteria tank was shaken back and forth at a speed of 50 rpm.
  • the cells adhered to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the adhered cells.
  • Table 6 shows the results.
  • the amount of attached cells is proportional to the absorbance of methylene blue, and the higher the value of the absorbance (660 nm), the larger the amount of attached cells is determined. Comparative Example 6
  • Example 1 Without using the microorganism capturing agent of the present invention, only the PET nonwoven fabric used in Example 1 was immersed in a denitrifying bacteria-containing solution for 14 hours or 48 hours, and the denitrifying bacteria tank was rotated at a speed of 50 rpm. Shake back and forth. The cells adhered to the PET nonwoven fabric were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the adhered cells. Table 6 shows the results.
  • the microorganism-trapping complex using the PET nonwoven fabric prepared by attaching the microorganism-trapping agent of Examples 1 to 7 is excellent in the ability to capture bacteria, but the microorganism-trapping agent of the present invention It can be seen that in the case of Comparative Example 6 where no bacteria were attached, the ability to capture bacteria was weak. Table 6
  • Example 6 (41 mg, 0.25 mmol) was reacted under the same conditions as in Example 6 to obtain a compound obtained by copolymerizing 4-vinylbenzyl chloride and vinylidene chloride at a molar ratio of 1 Z 1. Obtained. The above molar ratio was confirmed by NMR. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a quaternary ammonium salt-containing polymer.
  • a carrier for capturing microorganisms was prepared by punching a non-woven fabric made of polyethylene terephthalate (PET) (fineness: 0.016 decitex) into 2 cm ⁇ .
  • PET polyethylene terephthalate
  • the PET non-woven fabric was impregnated with a THF solution (10 mg Zm 1) in which the quaternary ammonium salt-containing polymer was dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour, to obtain a vinyl-based non-woven fabric.
  • a complex for capturing microorganisms having an adhesion rate of the polymer of about 1.0% by weight was prepared.
  • the microorganism capture complex after 3 2 stacked packed in a column having an inner diameter of 2 cm, were suspended to a concentration of Eshierikia co Li (Escherichia Col i) the saline 5 XI 0 8 pieces / m 1 The liquid was passed through the column at a rate of 45 m 1 / hr.
  • Example 14 Without using the quaternary ammonium salt-containing polymer of the present invention, only the PET non-woven fabric used in Example 13 was packed in a column, and Escherichia Coli was added to a physiological saline solution. The liquid suspended at a concentration of 8 cells / ml was passed through the column at a rate of 45 ml / hr. Table 7 shows the results obtained by measuring the number of viable bacteria in the filtrate obtained by passage over time and determining the eradication rate.
  • Example 14 shows the results obtained by measuring the number of viable bacteria in the filtrate obtained by passage over time and determining the eradication rate.
  • Example 6 (41 mg, 0.25 mmol) was reacted under the same conditions as in Example 6 to give a compound obtained by copolymerizing (4-pinylbenzylchloridnovinylidene chloride) at a molar ratio of 2/3. Obtained. The above molar ratio was confirmed by NMR. Next, in the same manner as in Example 13 except that a quaternary ammonium salt-containing polymer obtained by quaternizing 4-vinylbenzyl chloride with an equimolar amount of pyridine was used. Thus, a complex for capturing microorganisms was obtained.
  • Example 2 After this microorganism capture complex was packed in a column in the same manner as in Example 1 3 was suspended in a concentration of Eshieri Kia co Li (Escherichia Col i) the saline 5 XI 0 8 pieces / m 1 The solution is passed through the column at a rate of 45 ml / hr, and the viable cell count in the filtrate is determined. Table 7 shows the results measured over time.
  • Example 16 After stacking three 2 cm-diameter microorganism-complexes obtained in the same manner as in Example 13 in a 2 cm-diameter column in a stack, Staphylococcus aureus was replaced with physiological saline. water 3 XI 0 8 pieces / m 1 of a liquid suspended in a concentration was passed through the column at a rate of 6 O ml Z hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time, and the eradication rate was determined. Table 8 shows the results.
  • Example 16 shows the results.
  • a 2 cm ⁇ complex for capturing microorganisms obtained in the same manner as in Example 13 was packed in a stack of 32 pieces in a column having an inner diameter of 2 cm, and then packed in a stack.
  • Pseudomonas aeruginosa Pseudomonas aeruginosa
  • aeruginosa was suspended in physiological saline at a concentration of 6 ⁇ 10 8 Zm 1 and passed through the column at a rate of 30 m 1 / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time, and the eradication rate was determined. Table 8 shows the results.
  • Example 6 (41 mg, 0.25 mmol) was reacted under the same conditions as in Example 6 to give a compound obtained by copolymerizing (4-vinylbenzyl chloride Z vinylidene chloride) at a molar ratio of 1 Z 4. I got The above molar ratio was confirmed by NMR. Next, this was quaternized with an equimolar amount of pyridine based on 4-vinylbenzyl chloride to obtain a quaternary ammonium salt-containing polymer. A composite for capturing microorganisms was obtained in the same manner as in Example 13 except that the obtained quaternary ammonium salt-containing polymer was used.
  • Example 19 4-vinylylbenzodiolechloride (3.82 g, 25 mmol), vinylidene chloride (2.12 g, 125 mmol) and AIBN
  • Example 6 (41 mg, 0.25 mmol) was reacted under the same conditions as in Example 6 to give a compound in which 4-vinylbenzyl chloride and vinylidene chloride were copolymerized in a molar ratio of 1 Z 1. I got The composition ratio was confirmed by NMR. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a quaternary ammonium salt-containing polymer.
  • a PET non-woven fabric is impregnated with a THF solution (10 mg Zml) in which the above quaternary ammonium salt-containing polymer is dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour to obtain a vinyl copolymer for the non-woven fabric.
  • a composite for capturing microorganisms having a coalescence rate of about 1.0% by weight was prepared.
  • Example 6 (41 mg, 0.25 mmo ⁇ ) was reacted under the same conditions as in Example 6 to copolymerize (4-vinylbenzyl chloride / vinylidene chloride) at a molar ratio of 2 Z 3. The obtained compound was obtained. The above molar ratio was confirmed by NMR. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a quaternary ammonium salt-containing polymer. A composite for capturing microorganisms was obtained in the same manner as in Example 19, except that the obtained quaternary ammonium salt-containing polymer was used.
  • This complex for capturing microorganisms was immersed in a solution containing activated sludge for 14 hours or 48 hours in the same manner as in Example 19, and the activated sludge tank was reciprocated at 50 rpm. .
  • the cells adhering to the above-mentioned complex for capturing microorganisms are stained with methylene blue, and the absorbance is measured.
  • a nonwoven fabric made of polyethylene terephthalate (PET) (fineness: 0.016 decitex) was punched into 2 cm ⁇ to obtain a carrier for adsorbing microorganisms.
  • Escherichia coli was suspended in saline at a concentration of 5 ⁇ 10 8 cells / m 1.
  • the turbid solution was passed through the column at a rate of 45 m 1 / r.
  • Example 22 Without using the quaternary ammonium salt-containing polymer of the present invention, only the PET nonwoven fabric used in Example 21 was filled in a column, and Escherichia coli (Escherichia Coli) was added to physiological saline. Eight suspensions having a concentration of Zm 1 were passed through a column at a rate of .45 m 1 / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time to determine the eradication rate. The results are shown in Table 12.
  • Example 22 Example 22
  • Escherichia coli was suspended in physiological saline at a concentration of 5 ⁇ 10 8 cells / m 1. The solution is passed through the column at a rate of 45 m 1 / r, and the viable cell count in the filtrate is determined. Measured over time. The results are shown in Table 12.
  • Example 2 After stacking two 2 cm-diameter complex for microbial capture obtained in the same manner as in a column of 2 cm in diameter on a column of 2 cm in diameter, Staphylococcus aureus (Staphylococcus aureus) was added to physiological saline. The liquid suspended at a concentration of 3 ⁇ 10 8 Zm 1 was passed through the column at a rate of 60 m 1 / hr. The number of viable bacteria in the filtrate obtained through the passage was measured over time, and the eradication rate was determined. Table 13 shows the results.
  • Staphylococcus aureus Staphylococcus aureus
  • Example 2 After 2 layers of 2 cm ⁇ of the microorganism-capturing complex obtained in the same manner as in Example 1 were packed in a column having an inner diameter of 2 cm by three layers, Pseudomonas aerialeginosa (Ps eudomonas
  • aeruginosa was suspended in physiological saline to a concentration of 6 ⁇ 10 8 particles / m 1 and passed through the column at a rate of 30 ml / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time, and the eradication rate was determined. Table 13 shows the results.
  • a PET nonwoven fabric similar to that used in Example 21 was punched out into a size of 2 cm ⁇ i) as in Example 25, and this was packed into a column having an inner diameter of 2 cm in a stack of 32 pieces. After that, a suspension of Ml 3 pacteriophage at a concentration of 5 x 10 6 particles Zml in physiological saline was passed through the column at a flow rate of 40 ml / hr. The number of particles in the obtained filtrate was measured over time, and the bacteria removal rate was determined. The results are shown in Table 14.
  • Table 14 shows that the complex for capturing microorganisms using the microorganism capturing agent of the present invention works more effectively on microscopic viruses than bacterial cells.
  • Example 21 By a method similar to that of Example 21, a compound in which 4-vinylbenzyl chloride and styrene were copolymerized in a molar ratio of 1: 1 was obtained. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a desired quaternary ammonium salt-containing polymer.
  • PET polyethylene terephthalate
  • a nonwoven fabric made of 0. 16 decitex) was punched into 2 cm ⁇ to obtain a carrier for adsorbing microorganisms.
  • the PET non-woven fabric was impregnated with a THF solution (10 mg / ml) in which the quaternary ammonium salt-containing polymer was dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour to obtain a vinyl copolymer for the non-woven fabric.
  • a complex for capturing microorganisms having a coalescence rate of about 1.0% by mass was obtained.
  • the microorganism scavenger of the present invention (quaternary ammonium salt-containing polymer) only the PET nonwoven fabric used in Example 21 was immersed in a liquid containing active sludge for 14 hours or 48 hours. Then, the activated sludge tank was shaken back and forth at a speed of 50 rpm. The cells attached to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the attached cells. Table 16 shows the results.
  • Example 2 9 By a method similar to that in Example 22, a compound copolymerized at a molar ratio of (4-Bielbenzyl chloride Z styrene) of 2 Z 3 was obtained. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a desired quaternary ammonium salt-containing polymer. Thus, a complex for capturing microorganisms was obtained.
  • the complex for capturing microorganisms was immersed in a liquid containing activated sludge for 14 hours or 48 hours in the same manner as in Example 28, and the activated sludge tank was reciprocated at a speed of 50 rpm.
  • the cells attached to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the attached cells. The results are shown in Table 16.
  • the PET non-woven fabric is impregnated with a THF solution (10 mg / ml) in which the above quaternary ammonium salt-containing polymer is dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour to obtain a vinyl copolymer for the non-woven fabric.
  • a complex for capturing microorganisms having a coalescence rate of about 1.0% by mass was obtained.
  • the microorganism capturing complex was immersed in a liquid containing denitrifying bacteria for 14 hours or 48 hours, and the denitrifying bacteria tank was shaken back and forth at a speed of 50 rpm.
  • the cells adhered to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the adhered cells. The results are shown in Table 17.
  • This complex for capturing microorganisms was immersed in a denitrifying bacteria-containing solution for 14 hours or 48 hours in the same manner as in Example 30. Reciprocal shaking was performed at a speed of 50 r; pm. The cells adhering to the above complex for capturing microorganisms are stained with methylene blue, and the absorbance (6
  • Example 30 Without using the microorganism-capturing agent of the present invention, only the PET nonwoven fabric used in Example 30 was immersed in a denitrifying bacteria-containing solution for 14 hours or 48 hours, and the denitrifying bacteria tank was rotated at 50 rpm.
  • the results are shown in Table 17.
  • the amount of bacterial cells attached is proportional to the absorbance of the methylelene, and the higher the value of the absorbance (660 nm), the greater the amount of bacterial cells attached is determined.
  • the microorganism-trapping complex using the PET nonwoven fabric to which the microorganism-trapping agents of Examples 30 and 31 were attached was more effective than the comparative example 13 in denitrifying bacteria.
  • the composite for capturing microorganisms of Example 30 to which the microorganism capturing agent of the present invention is attached is superior to the composite for capturing microorganisms of Example 31 to which the microorganism capturing agent of Example 31 is attached. It can be seen that the ability to capture denitrifying bacteria is excellent.
  • Comparative Example 13 in which no microorganism-capturing agent was attached had a weaker ability to capture bacteria. Table 17
  • the quaternary ammonium salt-containing polymer obtained in Example 20 was melt-extruded from a spinneret at an extrusion temperature of 180 ° C by a single screw extruder using a single screw extruder, and quenched by a water cooler.
  • the fiber was drawn four times by a temperature difference nozzle to obtain a fiber consisting of 10 single yarns having a circular cross section of about 100 / m in diameter. These fibers were bundled into 50 bundles each having a length of 50 cm to obtain a fiber bundle for capturing microorganisms.
  • the obtained fiber bundle for capturing microorganisms was immersed in a liquid containing activated sludge bacteria, and the activated sludge tank was reciprocated at a speed of 50 rpm. After a lapse of 68 hours, the fiber bundle for capturing microorganisms was dried at 105 ° C. for 3 hours under normal pressure, and the dry weight of the amount of cells attached to the fiber bundle for capturing microorganisms was measured.
  • the amount of adhered cells on the fiber bundle for capturing microorganisms was calculated as the amount of adhered cells per unit fiber weight of the fiber bundle for capturing microorganisms.
  • the evaluation was based on the amount of cells adsorbed when the amount of cells attached to the comparative example was 100%. The results are shown in Table 18.
  • melt-spinning was performed in the same manner as in Example 32 above, and the diameter of the circular section was about 10 mm. 0 Thus, a fiber composed of 10 m single yarns was obtained.
  • the fibrous mass was measured using the same method as in Example 32, using this fiber as a fifty cm long and fifty fifty rods.
  • the amount of cells attached to the fiber bundle for capturing microorganisms was calculated as the amount of cells attached per unit fiber weight of the fiber bundle for capturing microorganisms.
  • the evaluation was based on the amount of adsorbed cells when the amount of cells attached to the comparative example was 100%. The results are shown in Table 18.
  • Example 3 3
  • the fiber obtained in Example 32 was bundled into 50 bundles of 50 cm in length and immersed in a denitrifying bacteria suspension, and the denitrifying bacteria tank was shaken back and forth at a speed of 50 rpm. 6 After the lapse of 8 hours, dry the amount of cells attached to the microbe bundle for microorganism capture under normal pressure at 105 ° C for 3 hours, and dry the amount of bacteria attached to the microbe bundle. The weight was measured.
  • the amount of adhered cells on the fiber bundle for capturing microorganisms was calculated as the amount of adhered cells per unit fiber weight of the bundle of fibers for capturing microorganisms.
  • the evaluation was based on the amount of cells adsorbed when the amount of cells attached to the comparative example was 100%. The results are shown in Table 18.
  • Example 32 As is evident from Table 18, the microorganism-trapping fibers shown in Example 32 exhibited an excellent effect on capturing activated sludge bacteria and denitrifying bacteria. Comparative Example 15
  • Example 33 Using commercially available polyvinylidene chloride (registered trademark, Saran Wrap; manufactured by Asahi Kasei Corporation, Japan), this was melt-spun in the same manner as in Example 32 above to obtain a circular cross section having a diameter of about 100/100. A fiber consisting of 10 single yarns of im was obtained. The fibers were formed into 50 bundles of 50 cm in length, and the amount of adhered cells was measured in the same manner as in Example 33.
  • polyvinylidene chloride registered trademark, Saran Wrap; manufactured by Asahi Kasei Corporation, Japan
  • the amount of adhered cells on the fiber bundle for capturing microorganisms was calculated as the amount of adhered cells per unit fiber weight of the bundle of fibers for capturing microorganisms.
  • the evaluation was based on the amount of cells adsorbed when the amount of cells attached to the comparative example was 100%. The results are shown in Table 18.
  • the microorganism capturing agent of the present invention not only has excellent microorganism capturing ability, but also can maintain such excellent microorganism capturing ability for a long time. It can be used effectively for capture. Furthermore, since the microorganism capturing agent of the present invention is soluble in an organic solvent and / or a water-containing organic solvent, a microorganism capturing agent containing a carrier on which the capturing agent is supported is used using a solution of the microorganism capturing agent. The composite for use can be easily manufactured.
  • the surface area per unit weight of the microorganism-trapping complex that determines the microorganism-trapping ability of the microorganism-trapping complex is appropriately selected.
  • the complex can be set freely, and a complex for capturing microorganisms having a desired ability to capture microorganisms can be obtained.
  • the complex for capturing microorganisms using the microorganism capturing agent of the present invention can be advantageously used as a carrier for holding microorganisms and cells in bioreactors and biosensors.

Landscapes

  • Zoology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

A microorganism-trapping agent characterized by comprising a compound having at least two carboxy groups, a benzotriazole compound, an amide compound, a water-insoluble azo compound, a quaternary ammonium salt represented by the following formula (1), and at least one compound selected from the group consisting of quaternary-ammonium-salt-containing polymers respectively having polymer chains represented by the following formulae (2) to (5).

Description

明 細 書 微生物捕捉剤 技術分野  Description Microorganism scavenger Technical field
本発明は、 微生物捕捉剤に関する。 更に詳細には、 本発明 は、 少なく とも 2個のカルボキシル基を有する化合物、 ベン ゾト リアゾ一ル系化合物、 アミ ド系化合物、 非水溶性ァゾ化 合物、 特定の構造を有する第 4級アンモニゥム塩、 及び特定 の構造を有する第 4級アンモニゥム塩含有重合体からなる群 よ り選ばれる少なく とも 1種の化合物を含むこ とを特徴とす る微生物捕捉剤に関する。 本発明の微生物捕捉剤は、 優れた 微生物捕捉能を有するのみならず、 そのような優れた微生物 捕捉能を長時間維持できるので、 水処理における水中の微生 物の捕捉並びに気相中の微生物の捕捉に有効に用いる ことが できる。 さ らに、 本発明の微生物捕捉剤 、 有機溶媒及び Z 又は含水有機溶媒に可溶なため、 該微生物捕捉剤の溶液を用 いて、 該捕捉剤が担持されてなる担体を含む微生物捕捉用複 合体を容易に製造する こ とができる。 本発明の微生物捕捉剤 を用いた微生物捕捉用複合体は、 バイオリ アクタ一およびバ ィォセンサ一における微生物及び Z又は菌体の保持担体等と して有利に用いることができる。 従来技術 The present invention relates to a microorganism capturing agent. More specifically, the present invention relates to a compound having at least two carboxyl groups, a benzotriazole-based compound, an amide-based compound, a water-insoluble azo compound, and a fourth compound having a specific structure. The present invention relates to a microorganism capturing agent comprising at least one compound selected from the group consisting of a quaternary ammonium salt and a quaternary ammonium salt-containing polymer having a specific structure. The microorganism-capturing agent of the present invention not only has excellent microorganism-capturing ability, but also can maintain such excellent microorganism-capturing ability for a long period of time. It can be used effectively for trapping. Further, since the microorganism-capturing agent of the present invention is soluble in an organic solvent and Z or a water-containing organic solvent, a microorganism-capturing compound comprising a carrier on which the capturing agent is carried using a solution of the microorganism-capturing agent. Coalescence can be manufactured easily. The complex for capturing microorganisms using the microorganism capturing agent of the present invention can be advantageously used as a carrier for holding microorganisms and Z or bacterial cells in a bioreactor and a biosensor. Conventional technology
従来、 水処理用の微生物除去材ゃバイオリ アクターの微生 物捕及び Z又は菌体の保持担体に使用する微生物捕捉能を有 する物質 (以下、 「微生物捕捉剤」 と称す) に関して様々な 提案なされている。 微生物捕捉剤は、 主に水中での使用を目 的と しているので、 微生物捕捉剤の溶出による微生物除去効 果の経時的な減弱を防ぐために、 非水溶性でなければならな いと考え られていた。 例えば、 日本国特公昭 6 2 - 4 1 6 4 1 号公報は、 架橋ポリ ビニルピリ ジニゥムハライ ドからなる 不溶性の微生物捕捉剤を開示している。 しかし、 この公報に 記載の微生物捕捉剤の場合、 架橋によ り十分なポリマー強度 を得るためには、 ジビニル化合物の割合を高めねばならない そのためにビニルピリ ジニゥム単位の含有率が低下し、 その 結果として微生物吸着能が低下する という 問題があった。 更 に、 この微生物捕捉剤は、 水だけでなく 、 通常の有機溶媒に も不溶であるため、 溶液として担体に塗布する というような こ とはできず、 固体と してビーズのような形態でしか取り扱 う こ とができなかった。 同様に日本国特開平 3 — 8 4 4 2号 公報においては、 4級化ピリ ジニゥム重合体を架橋する こ と によって不溶化したものを微生物捕捉剤と して用いている。 この公報の微生物捕捉剤は、 不溶化のための架橋によって微 生物吸着量が低下する という問題があった。  Conventionally, various proposals have been made regarding substances that have the ability to trap microorganisms used in microbe removal materials for water treatment and bioreactors and as carriers for holding Z or bacterial cells (hereinafter referred to as “microbe capture agents”). It has been done. Microbial scavengers are primarily intended for use in water, so they must be water-insoluble to prevent the eradication of the microbial scavengers from attenuating the effect of removing microorganisms over time. I was For example, Japanese Patent Publication No. 62-41641 discloses an insoluble microbial scavenger composed of cross-linked polyvinyl pyridinum halide. However, in the case of the microbial scavenger described in this publication, the proportion of divinyl compounds must be increased in order to obtain sufficient polymer strength by crosslinking, and as a result, the content of vinylpyridinium units decreases, and as a result, There was a problem that the ability to adsorb microorganisms was reduced. Furthermore, since this microorganism trapping agent is insoluble not only in water but also in ordinary organic solvents, it cannot be applied to a carrier as a solution, but is in the form of beads as a solid. Could only be handled. Similarly, in Japanese Patent Application Laid-Open No. 3-8442, a quaternized pyridinium polymer which has been insolubilized by crosslinking is used as a microorganism capturing agent. The microorganism trapping agent disclosed in this publication has a problem that the amount of microorganisms adsorbed by crosslinking for insolubilization decreases.
このよう に、 微生物捕捉剤として、 優れた微生物捕捉能 を長時間にわたって発揮し、 且つ有機溶媒または含水有機溶 媒に溶解して担体に担持させる ことが可能な微生物捕捉剤ば 見出されていなかった。 発明の概要 As described above, the excellent microorganism-capturing ability as a microorganism-capturing agent No microbial scavenger has been found which exerts a long time and can be dissolved in an organic solvent or a water-containing organic solvent and supported on a carrier. Summary of the Invention
本発明者は、 上記のような優れた微生物捕捉剤を開発すベ く鋭意検討を行った。 その結果、 意外にも、 少なく とも 2個 の力ルポキシル基を有する化合物、 ベンゾ ト リ アゾール系化 合物、 アミ ド系化合物、 非水溶性ァゾ化合物、 特定の構造を 有する第 4級アンモニゥム塩、 及び特定の構造を有する第 4 級アンモニゥム塩含有重合体からなる群よ り選ばれる少なく とも 1 種の化合物を含むことを特徴とする微生物捕捉剤が、 優れた微生物捕捉能を有するのみならず、 そのような優れた 微生物捕捉能を長時間維持できるので、 水処理における水中 の微生物の捕捉並びに気相中の微生物の捕捉に有効に用いる ことができる ことを見出した。 また、 上記の微生物捕捉剤は 有機溶媒及び Z又は含水有機溶媒に可溶なため、 該微生物捕 捉剤の溶液を用いて、 該捕捉剤が担持されてなる担体を含む 微生物捕捉用複合体を容易に製造する こ とができ、 得られた 微生物捕捉用複合体は、 バイオリ アクターおよびバイオセン サ一における微生物及び/菌体の保持担体等として有利に用 いる ことができる ことを見出した。 これらの知見に基づき本 発明を完成した。 従って本発明の目的の 1 つは、 優れた微生物捕捉能を有 するのみならず、 そのような優れた微生物捕捉能を長時間維 持できる、 有機溶媒または含水有機溶媒に可溶な微生物捕捉 改良剤を提供する ことにある。 The present inventors have made intensive studies to develop such an excellent microorganism capturing agent as described above. As a result, surprisingly, compounds having at least two hydroxyl groups, benzotriazole compounds, amide compounds, water-insoluble azo compounds, and quaternary ammonium salts having a specific structure , And at least one compound selected from the group consisting of quaternary ammonium salt-containing polymers having a specific structure. However, it has been found that since such excellent microorganism capturing ability can be maintained for a long time, it can be effectively used for capturing microorganisms in water in water treatment and capturing microorganisms in a gas phase. In addition, since the above-mentioned microorganism-capturing agent is soluble in an organic solvent and Z or a water-containing organic solvent, a solution of the microorganism-capturing agent is used to form a microorganism-capturing complex including a carrier on which the capturing agent is supported. It has been found that it can be easily produced, and that the obtained composite for capturing microorganisms can be advantageously used as a carrier for holding microorganisms and / or cells in bioreactors and biosensors. The present invention has been completed based on these findings. Therefore, one of the objects of the present invention is not only to have an excellent ability to capture microorganisms, but also to maintain such an excellent ability to capture microorganisms for a long period of time. Agent.
本発明の他の 1 つの目的は、 該微生物捕捉剤を担持してな る微生物捕捉用複合体を提供する こ とにある。  Another object of the present invention is to provide a microorganism capturing complex carrying the microorganism capturing agent.
本発明の更に他の 1 つの目的は、 該微生物捕捉剤を、 微生 物を含有する液体又は気体と接触させて、 微生物を捕捉する 方法を提供する ことにある。  Still another object of the present invention is to provide a method for capturing a microorganism by bringing the microorganism capture agent into contact with a liquid or a gas containing a microorganism.
本発明の更に他の 1 つの目的は、 該微生物捕捉用複合体を 微生物を含有する液体又は気体と接触させて、 微生物を捕捉 する方法を提供する ことにある。  Still another object of the present invention is to provide a method for capturing microorganisms by bringing the complex for capturing microorganisms into contact with a liquid or a gas containing the microorganisms.
本発明の上記及び他の諸目的、 諸特徴並びに諸利益は、 以 下の詳細な説明及び請求の範囲から明らかになる。 発明の詳細な説明  The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the appended claims. Detailed description of the invention
本発明の 1 つの態様によれば、  According to one aspect of the invention,
少なく とも 2個の力ルポキシル基を有する化合物、 ベンゾ ト リ アゾ一ル系化合物、  A compound having at least two hydroxyl groups, a benzotriazole-based compound,
アミ ド系化合物、  Amide compounds,
' 非水溶性ァゾ化合物、 '' Water-insoluble azo compounds,
下記式 ( 1 ) で表される第 4級アンモニゥム塩、 及び 下記式 ( 2 ) 〜 ( 5 ) で表される重合体鎖をそれぞれ有す る、 第 4級アンモニゥム塩含有重合体 A quaternary ammonium salt represented by the following formula (1), and a polymer chain represented by the following formulas (2) to (5): Quaternary ammonium salt-containing polymer
からなる群よ り選ばれる少なく とも 1 種の化合物を含むこ と を特徴とする微生物捕捉剤が提供される。 A microbial scavenger characterized by containing at least one compound selected from the group consisting of:
Figure imgf000008_0001
Figure imgf000008_0001
(式中、  (Where
R 1 、 R 2及び R 3はそれぞれ独立して飽和又は不飽和 R 1 , R 2 and R 3 are each independently saturated or unsaturated
C i _ C 5 。脂肪族ヒ ドロカルビル基、 水酸基を含有する、 飽和又は不飽和 C i 一 C 5。脂肪族ヒ ドロカルビル基、 C 6— C 5。ァ リ ール基、 4 一ピリ ジル基、 2 —ジメチルアミ ノエ チル基、 2 ― ( N —ベンジル— N , N —ジメチルアンモニゥ ム) ェチル基、 ベンジル基、 飽和若しく は不飽和 C ェ _ C 5 。脂肪酸残基、 及び飽和又は不飽和脂肪酸エステル残基か ら なる群よ り選ばれる基を表し ; C i _ C 5 . Saturated or unsaturated C i -C 5 containing an aliphatic hydrocarbyl group or a hydroxyl group. Aliphatic hydrocarbyl groups, C 6 —C 5 . Aryl group, 4-pyridyl group, 2-dimethylaminoethyl group, 2- (N-benzyl-N, N-dimethylammonium) ethyl group, benzyl group, saturated or unsaturated C_ C 5. A group selected from the group consisting of a fatty acid residue and a saturated or unsaturated fatty acid ester residue;
X一は、 ノ、ロゲン化物イオン、 アルキルスルホン酸イオン 芳香族スルホン酸イオン、 硫酸イオン及び硝酸イオンからな る群よ り選ばれるイオンを表す。 ) 、
Figure imgf000009_0001
X represents an ion selected from the group consisting of a thiophene, a logenide ion, an alkyl sulfonate ion, an aromatic sulfonate ion, a sulfate ion and a nitrate ion. ),
Figure imgf000009_0001
(式中、  (Where
R 4は、 該重合体鎖の側鎖の C H 2—基と結合してアンモ ニゥムイオンを形成する窒素含有化合物であって、 ピリ ジン 4 —ジメチルァミ ノ ピリ ジン、 2 , 4 ' 6 —コ リ ジン、 2 , 3 , 5 —コ リ ジン、 ト リ (飽和又は不飽和 C 3— C i 8脂肪 族ヒ ドロカルビル) ァミ ン、 及びキノ リ ンからなる群より選 ばれる窒素含有化合物を表し、 R 4 is a nitrogen-containing compound that forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain, and includes pyridin 4 —dimethylaminopyridine, 2,4 ′ 6 —collidine , 2,3,5—a nitrogen-containing compound selected from the group consisting of collidine, tri (saturated or unsaturated C 3 —Ci 8 aliphatic hydrocarbyl) amine, and quinoline;
X -は、 ハロゲン化物イオンを表し、  X-represents a halide ion,
k及び β は、 下記の条件を満足する整数である  k and β are integers that satisfy the following conditions
1 0 ≤ k ≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤ k ≤ 1 0 0, 0 0 0, and
1 0 ≤β ≤ 1 0 0 , 0 0 0 。 ) 、  1 0 ≤β ≤1 0 0, 0 0 0. ),
Figure imgf000009_0002
Figure imgf000009_0002
(式中 R 5は、 該重合体鎖の側鎖の C H 2—基と結合してアンモ ニゥムイオンを形成する窒素含有化合物であって、 ピリ ジン 4 ージメチルァミ ノ ピリ ジン、 2 , 4 , 6 —コ リ ジン、 2 , 3 , 5 —コ リ ジン、 ト リ (飽和又は不飽和 C 3— C 8脂肪 族ヒ ドロカルビル) ァミ ン、 及びキノ リ ンからなる群よ り選 ばれる窒素含有化合物を表し、 (Where R 5 is a nitrogen-containing compound which forms an ammonium ion by bonding to a CH 2 — group of a side chain of the polymer chain, and includes pyridin 4-dimethylaminopyridinine, 2,4,6-collidine, 2,3,5—Nitrogen-containing compounds selected from the group consisting of collidine, tri (saturated or unsaturated C 3 —C 8 aliphatic hydrocarbyl) amines, and quinoline;
R 6は、 水素原子又は C 一 C 3アルキル基を表し、 R 6 represents a hydrogen atom or a C 1 -C 3 alkyl group,
X -は、 ハロゲン化物イオンを表し、  X-represents a halide ion,
Yは、 水素原子、 飽和又は不飽和 C i 一 C 5。脂肪族ヒ ド 口カルビル基、 飽和又は不飽和 C i _ C 5。脂肪族ヒ ドロ力 ルビロキシ基、 (飽和又は不飽和 C ェ 一 C 5。脂肪族ヒ ドロ カルビ口キシ) カルポニル基、 飽和又は不飽和 C ェ一 C 5。 脂肪酸残基、 C 6— C 5 。ァ リール基、 ベンジル基、 及び力 ルポキシル基を表し、 Y is a hydrogen atom, a saturated or unsaturated C i -C 5 . Aliphatic arsenide de port carbyl group, saturated or unsaturated C i _ C 5. Aliphatic hydrolyl rubyoxy group, (saturated or unsaturated C 1 -C 5 .aliphatic hydrocarbyl) carbonyl group, saturated or unsaturated C 1 -C 5 . Fatty acid residues, C 6 —C 5 . Represents an aryl group, a benzyl group, and a sulfoxyl group,
m及び ; Qは、 下記の条件を満足する整数である。  m and; Q are integers satisfying the following conditions.
1 0 ≤m≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤m≤ 1 0 0, 0 0 0, and
1 0 ≤ n 0 0 , 0 0 0 。 ) 、  1 0 ≤ n 0 0, 0 0 0. ),
Figure imgf000010_0001
Figure imgf000010_0001
(式中、 R 2及び R 3は、 式 ( 1 ) で定義した通りであ る。 ) 、 及び
Figure imgf000011_0001
(Wherein R 2 and R 3 are as defined in formula (1)), and
Figure imgf000011_0001
(式中、 R 3は、 式 ( 1 ) で定義した通り である。 ) 。 次に本発明の理解を容易にするために、 まず本発明の基本 的特徴および好ましい諸態様を列挙する。 (In the formula, R 3 is as defined in the formula (1).) Next, in order to facilitate understanding of the present invention, first, the basic features and preferred embodiments of the present invention will be listed.
1 . 少なく とも 2個のカルボキシル基を有する化合物、 ベンゾ ト リ アゾ一ル系化合物、 1. Compounds having at least two carboxyl groups, benzotriazole compounds,
アミ ド系化合物、  Amide compounds,
非水溶性ァゾ化合物、  Water-insoluble azo compounds,
下記式 ( 1 ) で表される第 4級アンモニゥム塩、 及び 下記式 ( 2 ) 〜 ( 5 ) で表される重合体鎖をそれぞれ有す る、 第 4級アンモニゥム塩含有重合体  A quaternary ammonium salt represented by the following formula (1) and a quaternary ammonium salt-containing polymer each having a polymer chain represented by the following formulas (2) to (5)
からなる群より選ばれる少なく とも 1 種の化合物を含むこと を特徴とする微生物捕捉剤。 A microbial scavenger comprising at least one compound selected from the group consisting of:
Figure imgf000011_0002
Figure imgf000011_0002
(式中 R 1 、 R 2及び R 3はそれぞれ独立して飽和又は不飽和 C 一 C 5 。脂肪族ヒ ド ロカルビル基、 水酸基を含有する、 飽和 又は不飽和 C i — C 5 。脂肪族ヒ ド ロカルビル基、 C 6 — C 5 。ァ リ ール基、 4 一 ピ リ ジル基、 2 —ジメチルアミ ノ エチル 基、 2 - ( N —べンジルー N , N —ジメチルアンモニゥム) ェチル基、 ベンジル基、 飽和若し く は不飽和 C i 一 C 5 。脂 肪酸残基、 及び飽和又は不飽和脂肪酸エステル残基か らなる 群よ り選ばれる基を表し ; (Where R 1 , R 2 and R 3 are each independently saturated or unsaturated C 1 C 5 . Aliphatic arsenide de Rokarubiru group, containing a hydroxyl group, a saturated or unsaturated C i - C 5. Aliphatic hydrocarbyl groups, C 6 —C 5 . Aryl, 4-pyridyl, 2-dimethylaminoethyl, 2- (N-benzyl N, N-dimethylammonium) ethyl, benzyl, saturated or unsaturated C i one C 5. A group selected from the group consisting of a fatty acid residue and a saturated or unsaturated fatty acid ester residue;
X -は、 ハ ロゲン化物イ オン、 アルキルスルホン酸イ オン 芳香族スルホン酸イ オン、 硫酸イオン及び硝酸イ オンか らな る群よ り選ばれるイ オンを表す。 ) 、  X- represents an ion selected from the group consisting of a halide ion, an alkylsulfonic acid ion, an aromatic sulfonic acid ion, a sulfate ion and a nitrate ion. ),
Figure imgf000012_0001
Figure imgf000012_0001
(式中、  (Where
R 4は、 該重合体鎖の側鎖の C H 2 —基と結合してアンモ ニゥムイ オンを形成する窒素含有化合物であって、 ピリ ジンR 4 is a nitrogen-containing compound that forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain,
4 ジメチルァミ ノ ピリ ジン 2 4 6 —コ リ ジン 4 Dimethylaminopyridine 2 4 6 —Colidine
3 , 5 — コ リ ジン、 ト リ (飽和又は不飽和 C 3— C 8脂肪 族ヒ ド ロカルビル) ァミ ン、 及びキノ リ ンからなる群よ り選 ばれる窒素含有化合物を表し、 3, 5 — selected from the group consisting of collidine, tri (saturated or unsaturated C 3 — C 8 aliphatic hydrocarbyl) amine, and quinoline Represents a nitrogen-containing compound,
X -は、 ハロゲン化物イオンを表し、  X-represents a halide ion,
k及び β は、 下記の条件を満足する整数である  k and β are integers that satisfy the following conditions
1 0 ≤ k≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤ k≤ 1 0 0, 0 0 0, and
1 0 ≤β ≤ 1 0 0 , 0 0 0 。 ) 、  1 0 ≤β ≤1 0 0, 0 0 0. ),
Figure imgf000013_0001
Figure imgf000013_0001
(式中、  (Where
R 5は、 該重合体鎖の側鎖の C Η 2—基と結合してアンモ ニゥムイオンを形成する窒素含有化合物であって、 ピリ ジンR 5 is a nitrogen-containing compound that forms an ammonium ion by bonding to a C 2 — group on the side chain of the polymer chain,
4 ジメチルァミ ノ ピリ ジン、 2 , 4 , 6 — コ リ ジン、 2 ,4 Dimethylaminopyridine, 2, 4, 6 — collidine, 2,
3 , 5 — コ リ ジン、 ト リ (飽和又は不飽和 C 3 _ C j 8脂肪 族ヒ ドロカリレビル) ァミ ン、 及びキノ リ ンからなる群よ り選 ばれる窒素含有化合物を表し、 3, 5 - co lysine, represents Application Benefits (saturated or unsaturated C 3 _ C j 8 fatty Zokuhi Dorokarirebiru) § Mi emissions, and nitrogen-containing compounds Bareru election Ri by the group consisting of Keno Li down,
R 6は、 水素原子又は 一 C 3アルキル基を表し、 R 6 represents a hydrogen atom or a C 3 alkyl group,
X—は、 ハロゲン化物イオンを表し、  X— represents a halide ion,
Yは、 水素原子、 飽和又は不飽和 C ェ 一 C 5。脂肪族ヒ ド 口カルビル基、 飽和又は不飽和 C 一 C 5。脂肪族ヒ ドロ力 ルビロキシ基、 (飽和又は不飽和 C 1— C 5。脂肪族ヒ ドロ カルビ口キシ) カルポニル基、 飽和又は不飽和 C C 5 0 脂肪酸残基、 C 6 — C 5。ァリ一ル基、 ベンジル基、 及 びカルボキシル基を表し、 Y is a hydrogen atom, saturated or unsaturated C 1 -C 5 . Aliphatic carbyl radical, saturated or unsaturated C 1 -C 5 . Aliphatic hydrolability Rubiroxy group, (saturated or unsaturated C 1 -C 5 . Carboxyl group, a saturated or unsaturated CC 50 fatty acid residue, C 6 —C 5 . Aryl, benzyl, and carboxyl;
m及び nは、 下記の条件を満足する整数である。  m and n are integers satisfying the following conditions.
1 0 ≤ m≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤ m≤ 1 0 0, 0 0 0, and
1 0 ≤ n 0 0 , 0 0 0 。 ) 、 1 0 ≤ n 0 0, 0 0 0. ),
Figure imgf000014_0001
Figure imgf000014_0001
(式中、 R 2及び R 3は、 式 ( 1 ) で定義した通りであ る。 ) 、 及び (Wherein R 2 and R 3 are as defined in formula (1)), and
Figure imgf000014_0002
Figure imgf000014_0002
(式中、 R 3は、 式 ( 1 ) で定義した通りである。 ) (In the formula, R 3 is as defined in the formula (1).)
2 . 該式 ( 1 ) の第 4級アンモニゥム塩が、 下記式 ( 6 ) で 表される第 4級アンモニゥムク ロ ライ ド、 下記式 ( 7 ) で表 される第 4級アンモニゥムサルフエ一 ト、 及び下記式 ( 8 ) で表される第 4級アンモニゥムナイ ト レー トであり、 2. The quaternary ammonium salt of the formula (1) is a quaternary ammonium chloride represented by the following formula (6), and a quaternary ammonium salt represented by the following formula (7): And a quaternary ammonium night rate represented by the following equation (8):
該式 ( 4 ) のポリマーが下記式 ( 9 ) で表されるポリ力 チオンであ り、 該式 ( 5 ) のポリマーが下記式 ( 1 0 ) で表されるポリ カチオンである、 こ とを特徴とする前項 1 に記載の微生物捕捉剤。 The polymer represented by the formula (4) is a polymer represented by the following formula (9): 2. The microorganism-capturing agent according to the above item 1, wherein the polymer of the formula (5) is a cation, and the polymer of the formula (5) is a polycation represented by the following formula (10).
R、R,
Figure imgf000015_0001
Figure imgf000015_0001
R、 ,CH2CH2〇H R,, CH 2 CH 2 〇H
N+< CH3OSO3 (7)  N + <CH3OSO3 (7)
、CH2CH2OH , CH 2 CH 2 OH
Figure imgf000015_0002
Figure imgf000015_0002
Figure imgf000015_0003
、 及び
Figure imgf000015_0003
, as well as
Figure imgf000015_0004
Figure imgf000015_0004
(式中、 (Where
Rは、 飽和又は不飽和 C i一 C 5。脂肪族ヒ ドロカルビル 基、 水酸基を含有する、 飽和又は不飽和 一 C 5 Q脂肪族 ヒ ドロカルビル基、 C 6— C 5。ァリール基、 ベンジル基、 飽和又は不飽和 Cェ一 C 5 。脂肪酸残基、 又は飽和又は不飽 和脂肪酸エステル残基を表し R is a saturated or unsaturated C i one C 5. Aliphatic hydrocarbyl A saturated or unsaturated mono-C 5 Q aliphatic hydrocarbyl group containing a hydroxyl group, C 6 -C 5 . Aryl group, benzyl group, saturated or unsaturated C 1 C 5 . Represents a fatty acid residue or a saturated or unsaturated fatty acid ester residue
r 及び s は、 以下の関係を満足する整数である。  r and s are integers satisfying the following relationship.
1 0 ≤ r ≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤ r ≤ 1 0 0, 0 0 0, and
1 0 ≤ s ≤ 1 0 0 , 0 0 0 。 )  1 0 ≤ s ≤ 1 0 0, 0 0 0. )
3 . 該式 ( 2 ) の重合体を構成するモノ マ一の ( k : fi ) モ ル比が 5 : 9 5 〜 9 5 : 5 の範囲である ことを特徴とする前 項 1 に記載の微生物捕捉剤。 3. The monomer according to the above item (1), wherein the (k: fi) mole ratio of the monomer constituting the polymer of the formula (2) is in the range of 5:95 to 95: 5. Microbial scavenger.
4 . 該式 ( 3 ) の重合体を構成するモノ マーの (m : n ) モ ル比が 5 : 9 5 〜 9 5 : 5 の範囲である ことを特徴とする前 項 1 に記載の微生物捕捉剤。 4. The microorganism according to the above item 1, wherein the monomer constituting the polymer of the formula (3) has a (m: n) molar ratio in the range of 5:95 to 95: 5. Capture agents.
5 . 式 ( 2 ) のポリ マーの重量平均分子量が、 1 , 0 0 0〜 1 , 0 0 0 , 0 0 0 である ことを特徴とする前項 ;! 〜 3 のい ずれかに記載の微生物捕捉剤。 5. The preceding paragraph, wherein the weight average molecular weight of the polymer of the formula (2) is from 1,000 to 1,000,000. The microorganism-capturing agent according to any one of Items 1 to 3.
6 . 式 ( 3 ) のポリ マーの重量平均分子量が、 1 , 0 0 0〜 1 , 0 0 0 , 0 0 0である ことを特徴とする前項 1 、 2及び 4 のいずれかに記載の微生物捕捉剤。 6. The microorganism according to any one of the above items 1, 2 and 4, wherein the polymer of the formula (3) has a weight average molecular weight of 1,000 to 1,000,000. Capture agents.
7 . 少なく とも 2個のカルボキシル基を有する該化合物が、 エチレンジァミ ン四酢酸、 クェン酸、 ヒ ドロキシェチルェチ レンジアミ ン三酢酸、 ジヒ ドロキシェチルエチレンジアミ ン 二酢酸、 1 , 3 プロパンジァミ ン四酢酸、 ジエチレン ト リ ァ ミ ン五酢酸およびト リ エチレンテ ト ラミ ン六酢酸からなる群 よ り選ばれる少なく とも 1 種である前項 1 に記載の微生物捕 捉剤。 7. The compound having at least two carboxyl groups is Ethylenediaminetetraacetic acid, cunic acid, hydroxyshethylethylenediaminetriacetic acid, dihydroxylshethylethylenediaminediacetic acid, 1,3 propanediaminetetraacetic acid, diethylenetriaminepentaacetic acid, and triethyleneethylenetetraacetic acid 2. The microorganism capturing agent according to the above item 1, which is at least one member selected from the group consisting of tramine hexaacetic acid.
8 . 該ベンゾト リ アゾ一ル化合物が、 2 — ( 2 '—ヒ ドロキ シ— 5 '—メチルフエニル) ベンゾト リ アゾ一ル、 2 — ( 2 ' ーヒ ドロキシー 3 '— t ーブチルー 5 '—メチルフエニル) ― 5 —ク ロ 口べンゾト リ ァゾ一ル、 2 - ( 2 '—ヒ ドロキシー 5 ' _ t _ブチルフエニル) ベンゾト リ アゾ一ル、 2 - ( 2 ' ー ヒ ドロキシー 3 ', 5 '—ジ— t —ブチルフエニル) ベンゾ ト リ ァゾ一ル、 2 — ( 2 '—ヒ ドロキシ一 3 ' , 5 '—ジ一 t — ブチルフエニル) 一 5 —ク ロ口べンゾ ト リ アゾ一ル及び8. The benzotriazole compound is 2— (2′-hydroxy-5′-methylphenyl) benzotriazole, 2— (2′-hydroxy-3′—t-butyl-5′-methylphenyl) ― 5 ― Black benzotriazole, 2- (2'-hydroxy 5'_t_butylphenyl) benzotriazole, 2- (2'-hydroxy 3 ', 5'-diene — T — butylphenyl) benzotriazole, 2 — (2'-hydroxy-1 3 ', 5'-di-t-butylphenyl) 1 5 — black benzotriazole and
( 2 '—ヒ ドロキシー 3 ' , 5 '—ジー t ーァミルフエニル) ベ ンゾ ト リ アゾ一ルからなる群よ り選ばれる少なく とも 1種の 化合物である こ とを特徴とする前項 1 に記載の微生物捕捉剤 (2'-Hydroxy 3 ', 5'-G-t-amylphenyl) benzotriazole, which is at least one compound selected from the group consisting of benzotriazoles. Microbial scavenger
9 . 該アミ ド化合物が、 式 ( 1 1 ) で表される N , N —ジ (ポリオキシエチレン) 置換アミ ド化合物である ことを特徴 とする前項 1 に記載の微生物捕捉剤。
Figure imgf000018_0001
9. The microorganism capturing agent according to the above item 1, wherein the amide compound is an N, N-di (polyoxyethylene) -substituted amide compound represented by the formula (11).
Figure imgf000018_0001
(式中、  (Where
R 7は、 飽和又は不飽和 C ェ _ C 5。脂肪族ヒ ドロカルビル 基、 水酸基を含有する、 飽和又は不飽和 C i 一 C 5。脂肪族 ヒ ドロカルビル基、 C 6— C 5。ァリール基、 ベンジル基、 飽和又は不飽和 C 一 C 5。脂肪酸残基、 又は飽和又は不飽 和脂肪酸エステル残基を表し、 R 7 is a saturated or unsaturated C _ C 5 . Aliphatic arsenide Dorokarubiru group, containing a hydroxyl group, a saturated or unsaturated C i one C 5. Aliphatic hydrocarbyl groups, C 6 —C 5 . Ariru group, a benzyl group, a saturated or unsaturated C one C 5. Represents a fatty acid residue or a saturated or unsaturated fatty acid ester residue,
p及び qは、 以下の関係を満足する整数である。  p and q are integers satisfying the following relationship.
1 0 ≤ p ≤ 1 0 , 0 0 0 、 及び  1 0 ≤ p ≤ 1 0, 0 0 0, and
1 0 ≤ Q ≤ 1 0 , 0 0 0 。 )  1 0 ≤ Q ≤ 1 0, 0 0 0. )
1 0 . 前項 1 〜 9 のいずれかに記載の微生物捕捉剤を担持し てなる担体を含む微生物捕捉用複合体であって、 該微生物捕 捉剤の重量が該担体の重量に対して 0 . 0 0 1 〜 2 0重量% である こ とを特徴とする微生物捕捉用複合体。 10. A microorganism capturing complex comprising a carrier carrying the microorganism capturing agent according to any one of the above items 1 to 9, wherein the weight of the microorganism capturing agent is 0 to the weight of the carrier. 0.1 to 20% by weight of the complex for capturing microorganisms.
1 1 . 該担体が、 繊維、 織物、 不織布、 膜、 中空糸および粒 子からなる群よ り選ばれる少なく とも一種である ことを特徴 とする前項 1 0 に記載の微生物捕捉用複合体。 11. The composite for capturing microorganisms according to the above item 10, wherein the carrier is at least one selected from the group consisting of a fiber, a woven fabric, a nonwoven fabric, a membrane, a hollow fiber, and a particle.
1 2 . 該担体が、 ポリ エステル、 ポリ アク リル酸又はその誘 導体、 ポリ アミ ド、 ポリ塩化ビニリデン、 ポリ フッ化ビニリ デン、 ポリ ウ レタン、 多糖、 ポリ オキシアルキレン、 及びポ リエチレンテレフ夕レー トからなる群よ り選ばれる少なく と も一種の化合物から製造されたものである こ とを特徴とする 前項 1 0 に記載の微生物捕捉用複合体。 12. The carrier comprises a polyester, a polyacrylic acid or a derivative thereof, a polyamide, a polyvinylidene chloride, a polyvinylidene fluoride, a polyurethane, a polysaccharide, a polyoxyalkylene, and a polyoxyalkylene. 10. The microorganism capturing complex according to the above item 10, wherein the complex is produced from at least one compound selected from the group consisting of ethylene terephthalate.
1 3 . 該担体が、 微生物吸着能を有する担体である ことを特 徴とする前項 1 0 に記載の微生物捕捉用複合体。  13. The complex for capturing microorganisms according to the above item 10, wherein the carrier is a carrier having an ability to adsorb microorganisms.
1 4. 下記の工程 ( 1 ) 及び ( 2 ) を含むことを特徴とする 微生物の捕捉方法。 1 4. A method for capturing microorganisms, comprising the following steps (1) and (2).
( 1 ) 前項 1 〜 9 のいずれかに記載の微生物捕捉剤を提 供する。  (1) Provide the microorganism capturing agent according to any one of the above items 1 to 9.
( 2 ) 該微生物捕捉剤を、 微生物を含有する液体又は気 体と接触させて、 該微生物を捕捉する。  (2) The microorganisms are captured by bringing the microorganism capture agent into contact with a liquid or a gas containing the microorganisms.
1 5 . 下記の工程 ( 1 ) 及び ( 2 ) を含むこ とを特徴とする 微生物の捕捉方法。 15. A method for capturing microorganisms, comprising the following steps (1) and (2).
( 1 ) 前項 1 0 〜 1 3 のいずれかに記載の微生物捕捉用 複合体を提供する。  (1) A composite for capturing microorganisms according to any one of (10) to (13) above.
( 2 ) 該微生物捕捉用複合体を、 微生物を含有する液体 又は気体と接触させて、 該微生物を捕捉する。  (2) Contact the complex for capturing microorganisms with a liquid or a gas containing the microorganisms to capture the microorganisms.
1 6 . 式 ( 1 2 ) で表される第 4級アンモニゥム塩。 16. Quaternary ammonium salt represented by the formula (12).
Figure imgf000019_0001
Figure imgf000019_0001
CH3 7 CH 3 7
7 . 式 ( 2 ) で表される第 4級アンモニゥム塩含有重合体 7. Quaternary ammonium salt-containing polymer represented by formula (2)
Figure imgf000020_0001
Figure imgf000020_0001
(式中、  (Where
R 4は、 該重合体鎖の側鎖の C H 2—基と結合してアンモ ニゥムイオンを形成する窒素含有化合物であって、 ピリ ジンR 4 is a nitrogen-containing compound which forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain,
4 ジメチルァミ ノ ピリ ジン、 2 , 4 , 6 —コ リ ジン、 24 Dimethylaminopyridine, 2, 4, 6—collidine, 2
3 , 5 — コ リ ジン、 ト リ (飽和又は不飽和 C 3 _ C 8脂肪 族ヒ ドロカルビル) ァミ ン、 及びキノ リ ンからなる群よ り選 ばれる窒素含有化合物を表し、 3, 5 — a nitrogen-containing compound selected from the group consisting of collidine, tri (saturated or unsaturated C 3 _C 8 aliphatic hydrocarbyl) amine, and quinoline;
X一は、 ハロゲン化物イオンを表し、  X represents a halide ion,
k及び β は、 下記の条件を満足する整数である。  k and β are integers satisfying the following conditions.
1 0 ≤ k ≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤ k ≤ 1 0 0, 0 0 0, and
1 0 ≤ & ≤ 1 0 0 , 0 0 0 。 ) 。 以下本発明を詳細に説明する。 - 本発明において、 「ヒ ドロカルビル (hydrocarbyl) 基」 とは、 炭化水素に由来する 1価の基を表し、 この用語は IUPAC (International Union of Pure and Applied 1 0 ≤ & ≤ 1 0 0, 0 0 0. ). Hereinafter, the present invention will be described in detail. -In the present invention, the term "hydrocarbyl group" refers to a monovalent group derived from hydrocarbon, and the term IUPAC (International Union of Pure and Applied
Chemistry (国際純正応用化学連合)) の命名法に従ったもの である。 Chemistry (International Union of Pure and Applied Chemistry)).
本発明の微生物捕捉剤は、 少なく とも 2個のカルボキシル 基を有する化合物、 ベンゾ ト リ アゾ一ル系化合物、 アミ ド系 化合物、 非水溶性ァゾ化合物、 後述する特定の構造を有する 第 4級アンモニゥム塩、 及び後述する特定の構造を有する第 4級ア ンモニゥム塩含有重合体か らなる群よ り選ばれる少な く とも 1 種の化合物を含む。  The microorganism capturing agent of the present invention includes a compound having at least two carboxyl groups, a benzotriazole-based compound, an amide-based compound, a water-insoluble azo compound, and a quaternary compound having a specific structure described below. It includes at least one compound selected from the group consisting of an ammonium salt and a quaternary ammonium salt-containing polymer having a specific structure described below.
本発明の微生物捕捉剤を用いる と、 微生物の活性状態を維 持したままで捕捉する こ とができる。 こ こで活性状態の微生 物とは、 例えば汚水浄化能力を有した状態の微生物 (即ち、 活性汚泥菌) の こ とをい う 。  The use of the microorganism capturing agent of the present invention enables capturing while maintaining the active state of the microorganism. Here, the active microorganisms are, for example, microorganisms having a sewage purification ability (ie, activated sludge bacteria).
少な く と も 2個の力ルポキシル基を有する化合物 (以後、 屡々 、 単に 「力ルポキシル基含有化合物」 と称す) と しては 例えば、 エチレンジァミ ン四酢酸、 クェン酸、 ヒ ド ロキシェ チルエチレンジァミ ン三酢酸、 ジヒ ド ロキシェチルエチレン ジァミ ン二酢酸、 1 , 3 プロパンジァミ ン四酢酸、 ジェチレ ン ト リ アミ ン五酢酸および ト リ エチレンテ ト ラ ミ ン六酢酸が 挙げられ、 好ま し く はクェン酸やエチレンジァミ ンである。  Examples of the compound having at least two propyloxyl groups (hereinafter, often referred to simply as a “compound containing a propyloxyl group”) include, for example, ethylenediaminetetraacetic acid, citric acid, and hydroxyethylethylenediamine. Miner triacetic acid, dihydroxyshetyl ethylene diamin diacetate, 1,3 propane diamine tetra acetic acid, methylentriamine pentaacetic acid and triethylene tetramin hexaacetic acid, preferably or These are citric acid and ethylenediamine.
例えば、 クェン酸の場合、 クェン酸の微生物捕捉の機構は 必ずしも明 らかではないが、 排水や汚水中に存在する金属ィ オンに対してカルボキシル基が配位結合して金属イ オンを捕 捉し、 さ らにこの陽荷電を有する金属イオンを介し、 微生物 の細胞表面の負電荷と相互作用するものと推定される。 した がって、 金属イオンに対し、 力ルポキシル基が配位結合し得 る構造を有する化合物が優れた微生物捕捉効果を発揮する と 考えられる。 For example, in the case of citric acid, although the mechanism of trapping citrate by microorganisms is not always clear, carboxyl groups coordinate with metal ions present in wastewater and sewage to trap metal ions. It is presumed that this interacts with the negative charge on the cell surface of the microorganism via the positively charged metal ion. Therefore, it is considered that a compound having a structure in which a lipoxyl group can be coordinated to a metal ion exhibits an excellent microbial capturing effect.
上記したよう に、 従来技術においては、 微生物捕捉剤は 非水溶性である ことが必要である と考えられていた。 本発明 者は、 本発明で用いる上記のカルボキシル基含有化合物は、 水溶性であるにもかかわらず、 上記のような化合物を担体に 担持してなる微生物捕捉用複合体は、 優れた微生物捕捉能を 発揮するのみならず、 そのような優れた微生物捕捉能を長時 間にわたって維持する ことが可能である こ とを見出した。 そ の理由は明らかではないが、 以下のようなことと考えられる 例えば、 上記のような微生物捕捉用複合体を用いて排水や汚 水中の微生物を捕捉する場合、 該複合体表面上に有機分子が 吸着し、 これによつて該複合体表面が変性される。 この変性 された複合体表面に微生物が吸着され、 担体上に吸着された 微生物に更に微生物が吸着する。 本発明の微生物捕捉剤を用 いた場合には、 微生物捕捉処理中に微生物捕捉剤が担体から 脱離しても、 処理開始後数日〜約一週間の微生物の吸着量 As described above, in the related art, it was considered that the microorganism capturing agent had to be insoluble in water. The present inventor has reported that, despite the fact that the above-mentioned carboxyl group-containing compound used in the present invention is water-soluble, the microorganism-capturing complex comprising the above-described compound supported on a carrier has excellent microorganism-capturing ability. It has been found that it is possible to maintain such excellent microorganism-capturing ability over a long period of time, in addition to exerting the same. Although the reason is not clear, it is considered to be as follows.For example, when using the above-described complex for capturing microorganisms to capture microorganisms in wastewater or sewage, organic molecules are present on the surface of the complex. Is adsorbed, thereby denaturing the complex surface. The microorganisms are adsorbed on the surface of the denatured complex, and the microorganisms are further adsorbed on the microorganisms adsorbed on the carrier. When the microorganism-capturing agent of the present invention is used, even if the microorganism-capturing agent is detached from the carrier during the microorganism-capturing treatment, the amount of adsorbed microorganisms from several days to about one week after the start of the treatment
(初期吸着量) が多いため、 長時間にわた り優れた微生物捕 捉能を維持する こ とができる。 (Initial adsorption amount), it is possible to maintain excellent microbial trapping ability for a long time.
ベンゾ ト リ アゾール系化合物としては、 従来、 紫外線吸収 剤として使用されているものが挙げられる。 ベンゾト リ アゾ ール系化合物の具体例としては、 2 — ( 2 '— ヒ ドロキシ— 5 '—メチルフエニル) ベンゾト リ アゾ一ル , 2 ― ( 2 ' - ヒ ドロキシ一 3 ,一 t —ブチル一 5,ーメチルフエニル) 一 5 — ク ロ口べンゾ ト リ ァゾール, 2 — ( 2 '— ヒ ド ロキシー 5 '— t 一ブチルフエニル) ベンゾト リ アゾ一ル , 2 ― ( 2 ' ヒ ドロキシ一 3 ' , 5 '—ジー t 一ブチルフエニル) ベンゾト リ ァゾ一ル, 2 — ( 2 '— ヒ ドロキシー 3 ', 5 '—ジ一 t —プチ ルフエニル) 一 5 —ク ロ口べンゾ卜 リ アゾーリレおよび ( 2 ' — ヒ ドロキシー 3 ' , 5 '—ジ一 t —ァミルフエニル) ベンゾ ト リ ァゾールが挙げられ、 好ま しく は 2 — ( 2 ' —ヒ ドロキ シ一 3 ' — t 一プチルー 5 ' —メチルフエニル) — 5 —ク ロ 口べンゾト リ アゾ一ルなどが挙げられる。 Conventionally, benzotriazole-based compounds have And those used as agents. Specific examples of benzotriazole compounds include 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2- (2'-hydroxy-13,1t-butyl-5 , -Methylphenyl) 1 5 —Cro-benzotriazole, 2 — (2'-Hydroxy 5'-t-Butylphenyl) benzotriazole, 2 ― (2'Hydroxy-1 3 ', 5 '—Di-tert-butylphenyl) benzotriazole, 2 — (2'-hydroxy 3', 5 '-di-t-butylphenyl) 1 5 —Cross-opening benzotriazole and (2 '— Hydroxy 3', 5 '-di-t-amylphenyl) benzotriazole, preferably 2 — (2' -hydroxy 3 '-t-butyl-5' -methylphenyl) — 5 —Black mouth benzotriazole and the like.
ベンゾト リ アゾール系化合物は、 骨格分子であるベンゾ ト リ ァゾ一ルによる陽荷電部分と微生物の細胞表面の負電荷と が相互作用 しているものと推定される。  It is presumed that the benzotriazole-based compound interacts with the positively charged part of the skeletal molecule benzotriazole and the negative charge on the cell surface of the microorganism.
アミ ド系化合物の例と しては、 従来、 帯電防止剤と して使 用されているものが挙げられる。 アミ ド系化合物の好ましい 具体例としては、 式 ( 1 1 ) で示される N, N —ジ (ポリ オ キシエチレン) 置換アミ ドアミ ド化合物が挙げられる。  Examples of the amide-based compounds include those conventionally used as antistatic agents. Preferred specific examples of the amide compound include an N, N-di (polyoxyethylene) -substituted amide amide compound represented by the formula (11).
R¾ON^(CH2CH2°)pH (I D R¾ON ^ (CH2CH2 ° ) pH (ID
、 <CH2CH2〇)qH (式中、 , <CH 2 CH 2 〇) qH (Where
R 7は、 飽和又は不飽和 C 一 C 5。脂肪族ヒ ドロカルビル 基、 水酸基を含有する、 飽和又は不飽和( ェ 一 C 5。脂肪族 ヒ ドロカルビル基、 C 6— C 5。ァリ一ル基、 ベンジル基、 飽和又は不飽和 C i 一 C 5。脂肪酸残基、 又は飽和又は不飽 和脂肪酸エステル残基を表し、 R 7 is a saturated or unsaturated C 1 C 5 . Aliphatic arsenide Dorokarubiru group, containing a hydroxyl group, a saturated or unsaturated (E one C 5 aliphatic arsenide Dorokarubiru group, C 6 -.. C 5 § Li Ichiru group, a benzyl group, a saturated or unsaturated C i one C 5. represents a fatty acid residue or a saturated or unsaturated fatty acid ester residue,
p及び Q は、 以下の関係を満足する整数である。  p and Q are integers satisfying the following relationship.
1 0 ≤ p≤ 1 0 , 0 0 0 、 及び  1 0 ≤ p≤ 1 0, 0 0 0, and
1 0 ≤ Q ≤ 1 0 , 0 0 0 。 ) 式 ( 1 1 ) で表される N, N —ジ (ポリオキシエチレン) 置換アミ ド化合物は、 構成成分中に R 7基における疎水性の 炭化水素部分と親水性のポリ オキシエチレン部分を有する こ とから界面活性効果を発揮する。 従って、 N, N —ジ (ポリ ォキシエチレン) 置換アミ ド化合物を担体表面に被覆した場 合、 疎水性担体表面における水との親和性を向上させる こと で微生物の初期吸着を促進し、 微生物を捕捉する ものと考え られる。 1 0 ≤ Q ≤ 1 0, 0 0 0. The N, N-di (polyoxyethylene) -substituted amide compound represented by the formula (11) has a hydrophobic hydrocarbon moiety and a hydrophilic polyoxyethylene moiety in the R 7 group in the constituent components. Therefore, it exerts a surfactant effect. Therefore, when the N, N-di (polyethylene) -substituted amide compound is coated on the carrier surface, the initial adsorption of microorganisms is promoted by improving the affinity with water on the hydrophobic carrier surface, and the microorganisms are captured. It is considered to be done.
非水溶性 7ゾ化合物の例と しては、 従来、 ァゾ顔料と して 使用されているものが挙げられる。 ァゾ顔料に関しては、 ジ ァゾ成分やカ ップリ ング成分の組み合わせによ り黄、 橙、 赤 紫など幅広い色相の含量がある。 ァゾ顔料の具体例と しては フ ァス トエロー、 ジスァゾエロー、 ジスァゾオレンジ、 ナフ トールレツ ドなどが挙げられる。 Examples of the water-insoluble 7azo compound include those conventionally used as azo pigments. The azo pigment has a wide range of hues, such as yellow, orange, and reddish purple, depending on the combination of the diazo component and the coupling component. Specific examples of azo pigments include Fast Yellow, Disazo Yellow, Disazo Orange, and Naf Examples include tall red.
例えば、 非水溶性ァゾ化合物の一つであるジスァゾオレン ジはその分子中にジァゾ基およびィ ミダゾールを有する こ と から担体表面にジスァゾオレンジを被覆した場合、 捕捉材表 面は水中では正荷電を呈する。 その結果水中で負に帯電して いる微生物との間に静電相互作用が働き微生物を捕捉する と 考えられる。  For example, disazo orange, one of the water-insoluble azo compounds, has a diazo group and imidazole in the molecule, so when the carrier surface is coated with disazo orange, the surface of the capturing material exhibits a positive charge in water. . As a result, it is thought that the electrostatic interaction between the microorganism and the negatively charged microorganism in water works to capture the microorganism.
本発明で用いることができる第 4級アンモニゥム塩は、 下 記式 ( 1 ) で表される化合物である。  The quaternary ammonium salt that can be used in the present invention is a compound represented by the following formula (1).
R1 -N+ - -CH。 X" (1) R 1 -N +--CH. X "(1)
(式中、 (Where
R 1、 R 2及び R 3はそれぞれ独立して飽和又は不飽和 C , 一 C 5。脂肪族ヒ ドロカルビル基、 水酸基を含有する、 飽和 又は不飽和 C i— C 5。脂肪族ヒ ドロカルビル基、 C 6— C 5 。ァリール基、 4 — ピリ ジル基、 2 —ジメチルアミ ノエチルR 1 , R 2 and R 3 are each independently saturated or unsaturated C, one C 5 . Aliphatic arsenide Dorokarubiru group, containing a hydroxyl group, a saturated or unsaturated C i-C 5. Aliphatic hydrocarbyl groups, C 6 —C 5 . Aryl group, 4-pyridyl group, 2-dimethylaminoethyl
、 2 ( N—ベンジルー N , N — ジメチルアンモニゥム) ェチル基、 ベンジル基、 飽和若しく は不飽和 C ェ— C 5。脂 肪酸残基、 及び飽和又は不飽和脂肪酸エステル残基からなる 群よ り選ばれる基を表し ; · X一は、 ハロゲン化物イオン、 アルキルスルホン酸イオン 芳香族スルホン酸イオン、 硫酸イオン及び硝酸イオンからな る群よ り選ばれるイオンを表す。 ) 。 , 2 (N-benzyl-N, N - dimethyl ammonium Niu beam) Echiru group, a benzyl group, a saturated young properly unsaturated C E - C 5. A group selected from the group consisting of a fatty acid residue and a saturated or unsaturated fatty acid ester residue; X represents a halide ion, an alkylsulfonate ion Represents an ion selected from the group consisting of aromatic sulfonate, sulfate and nitrate. ).
式 ( 1 ) のアンモニゥム塩の R 1 R 2及び R 3はそれぞ . れ独立して飽和又は不飽和 C ェ一 C 2。脂肪族ヒ ドロカルビ ル基、 水酸基を含有する飽和又は不飽和 C ェ一 C 2。脂肪族 ヒ ド ロカルビル基、 C 6— C ェ 2ァリ一ル基、 4 — ピリ ジル 基、 2 —ジメチルアミ ノエチル基、 2 — ( N —ベンジルー N N —ジメチルアンモニゥム) ェチル基、 ベンジル基、 飽和又 は不飽和 C ェ一 C 2。脂肪酸残基、 若しく は飽和又は不飽和 脂肪酸エステル残基である ことが好まし く 、 飽和又は不飽和 C — C ェ 。脂肪族ヒ ドロカルビル基、 水酸基を含有する飽 和又は不飽和 C 一 C i 。脂肪族ヒ ドロカルビル基、 C 6— C i 2ァリール基、 4 一 ピリ ジル基、 2 —ジメチルアミ ノエチ ル基、 2 — ( N —ベンジル一 Ν , Ν —ジメチルアンモニゥ ム) ェチル基、 ベンジル基、 飽和又は不飽和 C 一 C i 。脂 肪酸残基、 若しく は飽和又は不飽和脂肪酸エステル残基であ る こ とがよ り好ましい。 R 1 R 2 and R 3 of the ammonium salt of the formula (1) are each independently saturated or unsaturated C 1 C 2 . Saturated or unsaturated C 1 -C 2 containing an aliphatic hydrocarbyl group or a hydroxyl group. Aliphatic hydrocarbyl group, C 6 -C 2 aryl group, 4 —pyridyl group, 2 —dimethylaminoethyl group, 2 — (N —benzyl-NN —dimethylammonium) ethyl group, benzyl group, Saturated or unsaturated C 1 C 2 . It is preferably a fatty acid residue or a saturated or unsaturated fatty acid ester residue, and is preferably a saturated or unsaturated C—C ester. Saturated or unsaturated C-Ci containing an aliphatic hydrocarbyl group or a hydroxyl group. Aliphatic hydrocarbyl group, C 6 —Ci 2 aryl group, 41-pyridyl group, 2—dimethylaminoethyl group, 2 — (N—benzyl mono, Ν—dimethyl ammonium) ethyl group, benzyl group, Saturated or unsaturated C-Ci. More preferably, it is a fatty acid residue or a saturated or unsaturated fatty acid ester residue.
式 ( 1 ) のアンモニゥム塩の X—は塩化物イオンであるこ とが好ましい。  X— of the ammonium salt of the formula (1) is preferably a chloride ion.
また、 本発明で用いる こ とができる第 4級アンモニゥム 塩含有重合体は、 下記式 ( 2 ) 〜 ( 5 ) で表される重合体鎖 をそれぞれ有する重合体である。
Figure imgf000027_0001
The quaternary ammonium salt-containing polymer that can be used in the present invention is a polymer having polymer chains represented by the following formulas (2) to (5).
Figure imgf000027_0001
(式中、  (Where
R 4は、 該重合体鎖の側鎖の C H 2 —基と結合してアンモ ニゥムイ オンを形成する窒素含有化合物であって、 ピ リ ジン 4 ージメ チルァミ ノ ピ リ ジン、 2, 4 , 6 — コ リ ジン、 2 , 3 , 5 — コ リ ジン、 ト リ (飽和又は不飽和 C 3— C ェ 8脂肪 族ヒ ドロカルビル) ァミ ン、 及びキノ リ ンか らなる群よ り選 ばれる窒素含有化合物を表し、 R 4 is a nitrogen-containing compound that forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain, and is a pyrimidine 4 dimethylaminopyridine, 2, 4, 6 — co lysine, 2, 3, 5 - co lysine, Application Benefits (saturated or unsaturated C 3 - C E 8 fatty Zokuhi Dorokarubiru) § Mi emissions, and nitrogen-containing Bareru election Ri by Kino Li down or Ranaru group Represents a compound,
X一は、 ハロゲン化物イオンを表し、  X represents a halide ion,
k及び β は、 下記の条件を満足する整数である。  k and β are integers satisfying the following conditions.
1 0 ≤ k≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤ k≤ 1 0 0, 0 0 0, and
1 0≤ fl ≤ 1 0 0 , 0 0 0 。 ) 、  1 0 ≤ fl ≤ 1 0 0, 0 0 0. ),
Figure imgf000027_0002
Figure imgf000027_0002
(式中、 R 5は、 該重合体鎖の側鎖の C H 2—基と結合してアンモ ゥムイオンを形成する窒素含有化合物であって、 ピリ ジン(Where R 5 is a nitrogen-containing compound which forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain,
4 ージメチルァミ ノ ピリ ジン、 2 , 4 , 6 —コ リ ジン、 2 ,4-dimethylaminopyridine, 2,4,6—collidine, 2,
3 , 5 —コ リ ジン、 ト リ (飽和又は不飽和 C 3 — C ェ 8脂肪 族ヒ ドロカルビル) ァミ ン、 及びキノ リ ンからなる群よ り選 ばれる窒素含有化合物を表し、 3,5—a nitrogen-containing compound selected from the group consisting of collidine, tri (saturated or unsaturated C 3 —C 8 aliphatic carboxy) amine, and quinoline;
R 6は、 水素原子又は C ェ 一 C 3アルキル基を表し、 R 6 represents a hydrogen atom or a C 1 -C 3 alkyl group,
X —は、 ハロゲン化物イオンを表し、  X — represents a halide ion,
Yは、 水素原子、 飽和又は不飽和 C ェ — C 5。脂肪族ヒ ド 口カルビル基、 飽和又は不飽和 C ェ一 C 5。脂肪族ヒ ドロ力 ルビロキシ基、 (飽和又は不飽和 C ェ一 C 5 Q脂肪族ヒ ドロ カルビ口キシ) カルボ二ル基、 飽和又は不飽和 C 一 C 5。 脂肪酸残基、 C 6Y is a hydrogen atom, a saturated or unsaturated C E - C 5. Aliphatic lipocarbyl group, saturated or unsaturated C 1 C 5 . Aliphatic hydrolyl rubyoxy group, (saturated or unsaturated C 1 C 5 Q aliphatic hydrocarbyl) carboxy group, saturated or unsaturated C 1 C 5 . Fatty acid residue, C 6
C 5 。ァ リ ール基、 ベンジル基、 及び力ルポキシル基を表し m及び nは、 下記の条件を満足する整数である。 C 5. M and n represent an aryl group, a benzyl group, and a lipoxyl group, and m and n are integers satisfying the following conditions.
1 0 ≤ m≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤ m≤ 1 0 0, 0 0 0, and
1 0 ≤ η≤ 1 0 0 , 0 0 0 。 ) 、  1 0 ≤ η≤ 1 0 0, 0 0 0. ),
Figure imgf000028_0001
Figure imgf000028_0001
(式中、 R 2及び R 3は、 式 ( 1 ) で定義した通りであ る。 ) 、 及び (5)(Wherein R 2 and R 3 are as defined in formula (1)), and (Five)
Figure imgf000029_0001
Figure imgf000029_0001
(式中、 R 3は、 式 ( 1 ) で定義した通 りである。 ) 。 式 ( 2 ) 中の R 4は、 ピ リ ジン、 4 ージメチルァミ ノ ピ リ ジン、 又は ト リ (飽和または不飽和 C 3— C 2脂肪族ヒ ド 口カルビル) ァミ ンである こ とが好ま しい。 (In the formula, R 3 is as defined in the formula (1).) R 4 in the formula (2) is preferably pyridine, 4-dimethylaminopyridine, or tri (saturated or unsaturated C 3 —C 2 aliphatic lipocarbyl) amine. New
式 ( 2 ) 中の X _は、 塩化物イ オンである こ とが好ま しい 式 ( 3 ) 中の R 5は、 ピ リ ジン、 4 ージメチルァミ ノ ピ リ ジン、 又は ト リ (飽和または不飽和 C 3— C ェ 2脂肪族ヒ ド 口カルビル) ァ ミ ンである こ とが好ま しい。 X_ in the formula (2) is preferably a chloride ion. R 5 in the formula (3) is preferably pyridin, 4-dimethylaminopyridine, or tri (saturated or unsaturated). C 3 —C 2 aliphatic lip mouth carbyl) It is preferred that this be an amiline.
式 ( 3 ) 中の R 6は、 水素原子又はメチル基である こ とが 好ま しい。 R 6 in the formula (3) is preferably a hydrogen atom or a methyl group.
式 ( 3 ) 中の X —は、 塩化物イ オンである こ とが好ま しい 式 ( 3 ) 中の Yは、 飽和又は不飽和 C i 一 C 2 。脂肪族ヒ ド ロカルビル基、 水酸基を含有する飽和又は不飽和 C ェ 一 C 2 。脂肪族ヒ ド ロカルビル基、 飽和又は不飽和 C 一 C 2 。脂 肪族ヒ ド ロカルビロキシ基、 (飽和又は不飽和 C ェ — C 2 0 脂肪族ヒ ド ロカルビ口キシ) カルボ二ル基、 飽和又は不飽和 C i 一 C 2 。脂肪酸残基、 C 6— C i 2ァ リ 一ル基、 ベンジル 基、 若し く は力ルポキシル基である こ とが好ま しい。 X in the formula (3) is preferably a chloride ion. Y in the formula (3) is a saturated or unsaturated C i -C 2 . Saturated or unsaturated C 1 -C 2 containing an aliphatic hydrocarbyl group or a hydroxyl group. Aliphatic arsenide de Rokarubiru group, saturated or unsaturated C one C 2. Fat aliphatic arsenide de Rokarubirokishi group (saturated or unsaturated C E - C 2 0 aliphatic arsenide de Rokarubi port carboxymethyl) carboxymethyl group, a saturated or unsaturated C i one C 2. It is preferably a fatty acid residue, a C 6 -Ci 2 aryl group, a benzyl group, or a lipoxyl group.
式 ( 4 ) 及び ( 5 ) における R 2及び R 3の好ま しい例と しては、 式 ( 1 ) に関連して上記したものと同様である。 該式 ( 1 ) の第 4級アンモニゥム塩の好ましい例として は、 下記式 ( 6 ) で表される第 4級アンモニゥムク ロライ ド 下記式 ( 7 ) で表される第 4級アンモニゥムサルフェー ト、 及び下記式 ( 8 ) で表される第 4級アンモニゥムナイ ト レ一 トが挙げられ、 Preferred examples of R 2 and R 3 in equations (4) and (5) Then, it is the same as that described above in relation to equation (1). Preferred examples of the quaternary ammonium salt of the formula (1) include a quaternary ammonium chloride represented by the following formula (6): a quaternary ammonium sulfate represented by the following formula (7): , And a quaternary ammonium nitrate represented by the following formula (8):
該式 ( 4 ) の重合体の好ましい例としては、 下記式  Preferred examples of the polymer of the formula (4) include the following:
( 9 ) で表されるポリ カチオンが挙げられ、  A polycation represented by (9),
該式 ( 5 ) の重合体の好ましい例としては、 下記式  Preferred examples of the polymer of the formula (5) include the following:
( 1 0 ) で表されるポリカチオンが挙げられる。  And a polycation represented by (10).
R、 ,CH3 R,, CH 3
CI (6)  CI (6)
ゝ CH3 ゝ CH 3
R\ /CH。CH2OH R \ / CH. CH 2 OH
〉N+ CH3OSO3 . (7) 〉 N + CH3OSO3. (7)
CH( ぐ XCH2CH2OH CH ( XX CH 2 CH 2 OH
RCOOC3H6\ ,CH2CH2OH RCOOC 3 H 6 \, CH 2 CH 2 OH
NO (8)  NO (8)
CHc 、CH2CH2OH J CHc, CH 2 CH 2 OH J
Figure imgf000030_0001
、 及び
Figure imgf000031_0001
Figure imgf000030_0001
, as well as
Figure imgf000031_0001
(式中、  (Where
Rは、 飽和又は不飽和 C 一 C 5 Q脂肪族ヒ ドロカルビル 基、 水酸基を含有する、 飽和又は不飽和 一 C 5。脂肪族 ヒ ドロカルビル基、 C 6— C 5。ァリ一ル基、 ベンジル基、 飽和又は不飽和 C ェ一 C 5 Q脂肪酸残基、 又は飽和又は不飽 和脂肪酸エステル残基を表し R represents a saturated or unsaturated C 1 -C 5 Q aliphatic hydrocarbyl group, a hydroxyl group-containing, saturated or unsaturated 1 -C 5 . Aliphatic hydrocarbyl groups, C 6 —C 5 . Represents a aryl group, a benzyl group, a saturated or unsaturated C 5 C fatty acid residue, or a saturated or unsaturated fatty acid ester residue.
r及び s は、 以下の関係を満足する整数である。  r and s are integers satisfying the following relationship.
1 0 ≤ r ≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤ r ≤ 1 0 0, 0 0 0, and
1 0 ≤ s ≤ 1 0 0 , 0 0 0 。 ) 。 式 ( 6 ) ( 8 ) で表される第 4級アンモニゥム塩におい て、 好ま しい Rは飽和又は不飽和 C — C 5。脂肪族ヒ ドロ カルビル基、 水酸基を含有する、 飽和又は不飽和 C — C 5 1 0 ≤ s ≤ 1 0 0, 0 0 0. ). In the quaternary ammonium salts represented by the formulas (6) and (8), preferred R is saturated or unsaturated C—C 5 . Aliphatic inhibit mud carbyl group, containing a hydroxyl group, a saturated or unsaturated C - C 5
0脂肪族ヒ ドロカルピル基、 C 6 C ^ 5; 0 nァリ ール基、 及びべ ンジル基であ り 、 更に好ま しい例は C i _ C 。脂肪族ヒ ド 口カルビル基、 水酸基を含有する、 飽和又は不飽和 一 C 0脂肪族ヒ ドロカルビル基、 C 6— C 2ァ リール基、 及び ベンジル基である。 0 aliphatic arsenide Dorokarupiru group, C 6 C ^ 5; 0 n § Li Lumpur group, and Ri base Njiru group Der further preferred correct example C i _ C. Aliphatic carboxy group, saturated or unsaturated mono-C 0 aliphatic hydrocarbyl group containing hydroxyl group, C 6 -C 2 aryl group, and benzyl group.
式 ( 9 ) で表される第 4級アンモニゥム塩含有重合体とし ては公知のものを用いる ことができ、 その具体例としては、A quaternary ammonium salt-containing polymer represented by the formula (9) Can be used, and specific examples thereof include:
{ 2 - (メタク リ ロイルォキシ) ェチル } ト リ メチルアンモ ニゥムクロ リ ド (日本国、 三菱レイ ヨ ン (株) 製) が挙げら れる。 ' {2- (methacryloyloxy) ethyl} trimethylammonium chloride (manufactured by Mitsubishi Rayon Co., Ltd., Japan). '
式 ( 1 0 ) で示される第 4級アンモニゥム塩含有重合体と しては公知のものを用いる ことができ、 その具体例としては ポリ塩化ジメチルメチレンピベリ ジ,ゥム (商品名 : PD- 5 0 ; 日本国、 旭電化工業 (株) 製) が挙げられる。  As the quaternary ammonium salt-containing polymer represented by the formula (10), known polymers can be used, and specific examples thereof include poly (dimethyl methylene methylene piperidium), dimethyl (trade name: PD- 50; Japan, manufactured by Asahi Denka Kogyo Co., Ltd.).
一般に、 第 4級アンモニゥム塩は、 官能基が正に帯電して いる。 一般に微生物の細胞表面は負に帯電している こ とから 考えて、 本発明で用いる第 4級アンモニゥム塩及び第 4級ァ ンモニゥム塩含有重合体は、 目的とする微生物表面と静電気 的な相互作用をしているものと推定される。 本発明で用いる 第 4級アンモニゥム塩及び第 4級アンモニゥム塩含有重合体 は、 ァミ ノ基の 4級化によ り次式で表せられる構造を有して いる ものが多い。  Generally, quaternary ammonium salts have a positively charged functional group. Generally, considering that the cell surface of a microorganism is negatively charged, the quaternary ammonium salt and the quaternary ammonium salt-containing polymer used in the present invention have an electrostatic interaction with the target microorganism surface. It is presumed that you are doing. The quaternary ammonium salt and the quaternary ammonium salt-containing polymer used in the present invention often have a structure represented by the following formula due to quaternization of the amino group.
R 3 N + X - この 4級化ァミ ノ基の具体的な構造の例として以下の 3個 の構造が考えられる。 R 3 N + X-The following three structures are considered as specific examples of the quaternized amino group.
N+X-
Figure imgf000032_0001
この 4級化ァミ ノ基が主体となって微生物の活性状態を維 持したままで捕捉する働きをしているものと考えられる。 し かし、 同様の 4級化アミ ノ基を含む化合物であっても、 本発 明の要件を満たさないもの、 例えば、 陽イオン型界面活性剤 である塩化べンゼトニゥム (Benzethonium Chloride) や、 塩化ベンザルコニゥム ( Benzalkonium Chloride) は、 通常 外皮用殺菌消毒剤と して用いられる ことからも、 4級化アミ ノ基は場合によっては殺菌作用を呈する ことが予想される。 このよう な殺菌作用を有する化合物は、 本発明の微生物捕捉 剤用途と して不適当である。 さ らに、 日本国特許 3 1 1 8 6 0 4号明細書に微生物吸着樹脂として記載されているポリ ビ ニルピリ ジニゥムハライ ド誘導体 (日本国特許 3 1 1 8 6 0 4号明細書) にも、 殺菌作用がある ことが報告されている ( J 0 e r g Ti l ler, Chun— Jen Liao, Kim Lewis, and Ale ander M. K 1 i b anov, Pr oc . Nat l . Acad. Sc i . U S A , 9 8 , 5 9 8 1 - 5 9 8 5 , 2 0 0 1 ) 。 一方、 本発明 で用いる第 4級アンモニゥム塩及び第 4級アンモニゥム塩含 有重合体は、 実施例に示すよう に微生物に対し殺菌作用が弱 く 、 且つ優れた捕捉作用を有する。
N + X-
Figure imgf000032_0001
It is considered that the quaternized amino group is mainly responsible for capturing the microorganism while maintaining the active state of the microorganism. However, even a compound containing a similar quaternized amino group that does not satisfy the requirements of the present invention, such as the cationic surfactant Benzethonium Chloride or chloride Since benzalkonium (Benzalkonium Chloride) is usually used as a bactericidal disinfectant for hulls, it is expected that the quaternized amino group may exhibit a bactericidal action in some cases. Compounds having such a bactericidal action are unsuitable for use as the microorganism capturing agent of the present invention. Further, a polyvinylpyridinium halide derivative (Japanese Patent No. 3118604) described as a microorganism-adsorbing resin in Japanese Patent No. 3118604 is also described. It has been reported that it has a bactericidal action (J 0 erg Tiller, Chun—Jen Liao, Kim Lewis, and Ale ander M. K 1 ib anov, Proc. Natl. Acad. Sc i. USA, 9 8, 5981-5985, 2001). On the other hand, the quaternary ammonium salt and the quaternary ammonium salt-containing polymer used in the present invention have a weak bactericidal action against microorganisms and have an excellent trapping action as shown in Examples.
式 ( 2 ) 及び式 ( 3 ) で表される重合体鎖を有する第 4級 アンモニゥム塩含有重合体は、 重合開始剤存在下、 4 ー ビニ ルペンジルク ロ リ ド と、 塩化ビニリデン、 置換ビニル化合物 等、 例えば、 スチレン等とを加熱下で共重合させ、 その後、 これにピ リ ジン、 4 ー ジメチルァミ ノ ピ リ ジン、 3級有機ァ ミ ン等の塩基を作用させる こ とによ り 製造する こ とができる 式 ( 2 ) で表される重合体鎖を有する第 4級アンモニゥム 塩含有重合体は、 例えばモノマーと して 4 — ビニルベンジル ク ロ ライ ド ( 4 一 Vinyl benzyl chloride) および塩化ビニリ デン (Vinylidene chloride) を、 重合開始剤と して The quaternary ammonium salt-containing polymer having the polymer chains represented by the formulas (2) and (3) is prepared by adding 4-vinylpentyl chloride, vinylidene chloride, and a substituted vinyl compound in the presence of a polymerization initiator. For example, it is produced by copolymerizing styrene and the like under heating, and then reacting with a base such as pyridine, 4-dimethylaminopyridine, and tertiary organic amine. The quaternary ammonium salt-containing polymer having a polymer chain represented by the formula (2) that can be used is, for example, 4-vinyl benzyl chloride or vinyl chloride as a monomer. Deny (Vinylidene chloride) as a polymerization initiator
AIBN (2, 2'-Azob i s isobu tyroni t r i le)ァゾビスイ ソプチロニ ト リ ルなどのラジカル開始剤を用いて共重合した後、 4 一 ビ 二ルペンジルク 口 ライ ドに対して約等モル量の上記の窒素含 有化合物 (例えば、 ピリ ジン) をエタ ノールなどの極性溶媒 中で反応させる こ とで得られる。 4 - ビエルベンジルク ロ ラ ィ ド と塩化ビニ リ デンとの共重合の際の反応条件と しては、 反応圧力が大気圧〜 2 0 気圧である こ とが好ま し く 、 大気圧 〜 1 0気圧である こ とが更に好ま し く 、 反応温度が一 8 0 〜 3 0 0 °Cである こ とが好まし く 、 一 2 0 〜 8 0 °Cである こ と が更に好ま しい。 上記の窒素含有化合物を反応させる際の反 応条件と しては、 反応圧力が大気圧〜 5気圧である こ とが好 ま し く 、 大気圧〜 2気圧である こ とが更に好ま しく 、 反応温 度が 0 〜 2 0 0 °Cである こ とが好ま し く 、 2 0 〜 1 0 0 °Cで ある こ とが更に好ま しい。 After copolymerizing with a radical initiator such as AIBN (2,2'-Azob is isobutyroni trile) azobis isopyronitrile, an equimolar amount of the above It can be obtained by reacting a nitrogen-containing compound (eg, pyridine) in a polar solvent such as ethanol. The reaction conditions for the copolymerization of 4-bibenzylbenzyl chloride with vinylidene chloride are preferably such that the reaction pressure is between atmospheric pressure and 20 atm, and between atmospheric pressure and 1 atm. The pressure is more preferably 0 atm, the reaction temperature is preferably from 180 to 300 ° C, and more preferably from 120 to 80 ° C. As the reaction conditions for the reaction of the nitrogen-containing compound, the reaction pressure is preferably from atmospheric pressure to 5 atm, more preferably from atmospheric pressure to 2 atm. The reaction temperature is preferably from 0 to 200 ° C., more preferably from 20 to 100 ° C.
式 ( 3 ) で表される it合体鎖を有する第 4級アンモニゥム 塩含有重合体は、 例えばモノマ一と して 4 一 ビエルべンジル ク ロ リ ドおよびスチレンを、 重合開始剤として A I などの ラジカル開始剤を用いて共重合した後、 4 一ビニルベンジル ク ロライ ドに対して約等モル量の上記の窒素含有化合物 (例 えば、 ピリ ジン) をエタノールなどの極性溶媒中で反応させ る ことで得られる。 4 一ビニルベンジルク ロライ ドとスチレ ンとの共重合の際の反応条件としては、 反応圧力が大気圧〜 1 0気,圧である ことが好ましく 、 大気圧〜 2気圧であるこ と が更に好ま しく 、 反応温度が 0 〜 2 0 0 °Cである ことが好ま しく 、 5 0 〜 1 5 0 °Cである ことが更に好ましい。 上記の窒 素含有化合物を反応させる際の反応条件としては、 反応圧力 が大気圧〜 5気圧である ことが好ましく 、 大気圧〜 2気圧で ある ことが更に好ましく 、 反応温度が 0 ~ 2 0 0 °Cである こ とが好まし く 、 2 0 〜 1 0 0 °Cである こ とが更に好ましい。 例えば、 式 ( 2 ) で表される重合体鎖を有する第 4級アン モニゥム塩含有重合体を構成するモノマー単位の数 kは、 1 0 ≤ k≤ 1 0 0 , 0 0 0 、 好ましく は 1 0 ≤ k≤ 1 0 , 0 0 0 、 よ り好ましく は 1 0 ≤ k≤ 5 , 0 0 0 、 β は、 1 0 ≤β ≤ 1 0 0 , 0 0 0 、 好ま しく は 1 0 ≤β ≤ 1 0 , 0 0 0 、 よ り好ましく は 1 0 ≤β ≤ 5 , 0 0 0 である。 4 一 ビニルベン ジルク ロ リ ドと塩化ピニリ デンとの比率、 すなわち、 k : β の割合は 5 : 9 5 〜 9 5 : 5 の範囲にあるのが好ましく 、 2 : 8 〜 9 : 1 がよ り好ま しい。 この範囲よ り も 4 — ビニル ベンジルク ロ リ ドの割合が少ないと十分に良好な微生物捕捉 性能が得られにく く 、 これよ り多いと得られる共重合体の水 溶性が高く なりすぎる傾向がある。 A quaternary ammonium salt-containing polymer having an it-incorporated chain represented by the formula (3) is, for example, a polymer of 4-bibenzylbenzene as a monomer. Chloride and styrene are copolymerized using a radical initiator such as AI as a polymerization initiator, and then about an equimolar amount of the above-mentioned nitrogen-containing compound with respect to 4-vinylbenzyl chloride (for example, It can be obtained by reacting pyridine in a polar solvent such as ethanol. 4 As the reaction conditions for the copolymerization of monovinylbenzyl chloride and styrene, the reaction pressure is preferably from atmospheric pressure to 10 atmospheres, more preferably from atmospheric pressure to 2 atmospheres. The reaction temperature is preferably from 0 to 200 ° C, more preferably from 50 to 150 ° C. The reaction conditions for reacting the above-mentioned nitrogen-containing compound are preferably a reaction pressure of atmospheric pressure to 5 atm, more preferably atmospheric pressure to 2 atm, and a reaction temperature of 0 to 200 atm. ° C is preferred, and more preferably from 20 to 100 ° C. For example, the number k of monomer units constituting a quaternary ammonium salt-containing polymer having a polymer chain represented by the formula (2) is 10 ≤ k ≤ 100, preferably 100 0 ≤ k ≤ 1 0, 0 0 0, more preferably 10 ≤ k ≤ 5, 0 0 0, β is 10 ≤ β ≤ 1 0 0, 0 0 0, preferably 1 0 ≤ β ≤ 10 0, 0 0 0, more preferably 10 ≤β ≤5, 0 0 0. 41. The ratio of vinylbenzyl chloride to pinylidene chloride, that is, the ratio of k: β is preferably in the range of 5:95 to 95: 5, and more preferably 2: 8 to 9: 1. I like it. 4—Better than this range, low percentage of vinylbenzyl chloride provides good microbial capture It is difficult to obtain the performance, and if it is more than this, the water solubility of the obtained copolymer tends to be too high.
例えば、 式 ( 3 ) で示される本発明の重合体鎖を有する第 4級アンモニゥム塩含有重合体を構成するモノマ一単位の単 位の数 mは、 1 0 ≤m≤ 1 0 0 , 0 0 0 、 好ましく は 1 0 ≤ m≤ 1 0 , 0 0 0 、 よ り好ましく は 1 0 ≤m≤ 5 , 0 0 0 、 n は、 1 0 ≤ n≤ 1 0 0 , 0 0 0 、 好ましく は 1 0 ≤ n≤ l 0 , 0 0 0 、 よ り好ましく は 1 0 ≤ n≤ 5 , 0 0 0である。  For example, the number m of monomer units constituting the quaternary ammonium salt-containing polymer having a polymer chain of the present invention represented by the formula (3) is 10 ≤m≤10 0, 00 0, preferably 10 ≤ m ≤ 10, 0 00, more preferably 10 ≤ m ≤ 5, 0 0, n is 10 ≤ n ≤ 1 0 0, 0 0 0, preferably 1 0 ≤ n ≤ l 0, 0 0 0, and more preferably 10 ≤ n ≤ 5, 0 0 0.
4 — ビニルベンジルク ロ リ ド とスチレンとの比率、 すなわち m : nの割合は 5 : 9 5 〜 9 5 : 5 の範囲にあるのが好ま し く 、 2 : 8 〜 9 : 1 がよ り好ましい。 この範囲よ り も 4 ー ビ 二ルペンジルク ロ リ ドの割合が少ないと十分に良好な微生物 捕捉が得られにく く 、 これよ り多いと得られる共重合体が水 溶性の高いものとな りやすい。 ' 4 — The ratio of vinylbenzyl chloride to styrene, that is, the ratio of m: n, is preferably in the range of 5:95 to 95: 5, more preferably 2: 8 to 9: 1. preferable. If the proportion of 4-vinylpentyl chloride is smaller than this range, it is difficult to obtain sufficiently good microorganism capture, and if it is larger than this range, the obtained copolymer becomes highly water-soluble. Cheap. '
式 ( 2 ) および ( 3 ) で表される第 4級アンモニゥム塩含 有重合体の重合度は、 好ましく は 1 0 0 以上 9 , 0 0 0 以下 である。 重合度が 1 0 0未満になると、 得られる重合体の水 溶性が増す傾向にあ り 、 9 , 0 0 0 を超える と有機溶媒に対 する溶解性が低下する。 この第 4級アンモニゥム塩含有重合 体の重量平均分子量は、 ポリスチレンを標準とする G P C分 析によれば、 1 , 0 0 0 〜 1 , 0 0 0, 0 0 0 が好ましく 、 有機溶媒に対する溶解性を考慮する と 1 , 0 0 0 〜 5 0 0 , 0 0 0 がよ り好ましい。 分子量が 5 0 0 , 0 0 0 を越えても 本発明の微生物捕捉効果は達成される。 The degree of polymerization of the quaternary ammonium salt-containing polymer represented by the formulas (2) and (3) is preferably 100 or more and 9,000 or less. If the degree of polymerization is less than 100, the water solubility of the obtained polymer tends to increase, and if it exceeds 9,000, the solubility in organic solvents decreases. According to GPC analysis using polystyrene as a standard, the weight average molecular weight of the quaternary ammonium salt-containing polymer is preferably from 1,000 to 1,000,000, and the solubility in an organic solvent is high. In consideration of the above, 1, 000 to 50,000, 0000 is more preferable. Even if the molecular weight exceeds 500,000 The microorganism capturing effect of the present invention is achieved.
式 ( 2 ) および ( 3 ) で示される第 4級アンモニゥム塩含 有重合体は、 そのポリマー骨格自体が化学的安定性に優れる ものの、 これだけでは微生物捕捉効果は十分に発揮されない ポリマー骨格に含まれるベンジルク ロ リ ドに対し、 種々の含 窒素化合物、 例えば、 ピリ ジン、 2 , 4 , 6 —コ リ ジン、 2 3 , 5 —コ リ ジン、 4 ージメチルァミ ノ ピリ ジン、 ト リ ェチ ルァミ ン、 ト リ プチルァミ ン等のアミ ン化合物を反応させて 第 4級アンモニゥム塩を構築する こ とによ り、 微生物捕捉効 果が十分に発揮きれる。  The quaternary ammonium salt-containing polymers represented by the formulas (2) and (3) are contained in a polymer skeleton that does not sufficiently exhibit a microbial trapping effect by itself, although the polymer skeleton itself has excellent chemical stability. For benzyl chloride, various nitrogen-containing compounds such as pyridine, 2,4,6—collidine, 23,5—collidine, 4-dimethylaminopyridine, triethylamine, By constructing a quaternary ammonium salt by reacting an amine compound such as triplimamine, the effect of capturing microorganisms can be sufficiently exerted.
本発明の他の 1 つの態様によれば、 上記の微生物捕捉剤を 担持してなる担体を含む微生物捕捉用複合体であって、 該微 生物捕捉剤の重量が該担体の重量に対して 0 . 0 0 1 〜 2 0 重量%、 好ましく は 0 . 0 1 〜 1 0 重量%、 更に好ま しく は 0 . 0 1 〜 5 重量%である こ とを特徴とする微生物捕捉用複 合体が提供される。  According to another aspect of the present invention, there is provided a microorganism capturing complex comprising a carrier carrying the above-described microorganism capturing agent, wherein the weight of the microorganism capturing agent is 0 with respect to the weight of the carrier. 0.1 to 20% by weight, preferably 0.01 to 10% by weight, more preferably 0.01 to 5% by weight, is provided. You.
上記式 ( 2 ) および ( 3 ) で表される第 4級アンモニゥム 塩含有重合体を、 添加または被覆して調製した微生物捕捉用 複合体表面は、 水相中においては、 陽荷電に帯電している も のと考え られる。 上記したよう に、 微生物の細胞表面は、 一 般的に負に帯電しており、 微生物ー微生物捕捉剤の間におけ る静電気的な相互作用を利用 し、 微生物を複合体表面に捕捉 する ことが可能となる (微生物細胞表面の状態については、 編集委員 : 森崎久雄、 大島広行および磯部賢治、 "バイオフ イルム"、 日本国 (株) サイエンスフォーラム発行 ( 1 9 9 8 ) 参照) 。 同様に細胞も複合体表面に捕捉する ことが可能 である。 The surface of the complex for capturing microorganisms prepared by adding or coating the quaternary ammonium salt-containing polymer represented by the above formulas (2) and (3) is positively charged in the aqueous phase. It is thought that there is. As described above, the cell surface of microorganisms is generally negatively charged, and the microorganisms are trapped on the surface of the complex by utilizing the electrostatic interaction between the microorganism and the microorganism trapping agent. (For the state of the surface of the microbial cells, Editor-in-chief: Hisao Morisaki, Hiroyuki Oshima and Kenji Isobe, "Biofilm", published by Science Forum, Japan (1998)). Similarly, cells can be captured on the complex surface.
本発明の微生物捕捉剤と して用いる こ とができる化合物は その大半が水分含量 2 0重量%以下の有機溶剤に可溶である この性質を利用 して、 上記化合物を、 エステル、 ェ一テル、 アルコール等の有機溶剤に溶解して溶液とする こ とができる このため、 本発明の微生物捕捉剤の溶液に各種の担体を含浸 させた り、 この溶液を担体に噴霧する こ となどによ り コーテ ィ ングを行う こ とによ り本発明の微生物捕捉用複合体を製造 する こ とができる。  Most of the compounds that can be used as the microbial scavenger of the present invention are soluble in organic solvents having a water content of not more than 20% by weight. It can be dissolved in an organic solvent such as alcohol to form a solution. Therefore, the solution of the microorganism capture agent of the present invention can be impregnated with various carriers, or the solution can be sprayed on the carrier. By performing the coating, the complex for capturing microorganisms of the present invention can be produced.
また、 本発明の微生物捕捉剤が上記式 ( 2 ) 〜 ( 5 ) で現 される重合体を含む場合、 微生物捕捉剤自体を微生物捕捉用 担体製造のための素材あるいは基材と して用いることが可能 である。  When the microorganism capturing agent of the present invention contains the polymer represented by any of the above formulas (2) to (5), the microorganism capturing agent itself may be used as a material or a substrate for producing a carrier for capturing microorganisms. Is possible.
上記の有機溶剤と しては T H F 、 D M F (ジメチルホルム アミ ド) 、 D M A (ジメチルァセ トアミ ド)などが好ま しく 、 その中でも沸点の低い T H Fが最も好ましい。  As the above-mentioned organic solvent, THF, DMF (dimethylformamide), DMA (dimethylacetamide) and the like are preferable, and among them, THF having a low boiling point is most preferable.
微生物捕捉用複合体の担体に用いる素材としては、 ポリ エ ステル系樹脂、 ポリ アミ ド系樹脂、 ポリ ウ レタン系樹脂、 ァ ク リル系樹脂、 ポリ塩化ビニリ デン、 ポリ フ ッ化ビ二リ デン ポリ オキシアルキレンポリ オキシアルキレン系化合物、 セル ロース、 キチン等の天然多糖等が用い られる。 化合物の耐久 性や化学的安定性、 および水中に設置して使用する場合、 そ の化合物からなる繊維の比重が大きい方が速く沈むという点 からポリ塩化ビニリデンが好ましい。 しかし、 必ずしも これ らの素材にはと らわれる必要はなく 、 繊維、 織物、 編物、 不 織布、 膜、 中空糸、 粒子等、 微生物捕捉用複合体の形態を構 成できるものであればよい。 Materials used for the carrier of the microorganism capture complex include polyester resins, polyamide resins, polyurethane resins, acrylic resins, polyvinylidene chloride, and polyvinylidene fluoride. Polyoxyalkylene polyoxyalkylene compound, cell Natural polysaccharides such as loin and chitin are used. Polyvinylidene chloride is preferred in view of the durability and chemical stability of the compound and, when used in water, the greater the specific gravity of the fiber made of the compound, the faster it sinks. However, it is not necessary to be limited to these materials, and any material can be used as long as it can form a complex for capturing microorganisms, such as a fiber, a woven fabric, a knitted fabric, a nonwoven fabric, a membrane, a hollow fiber, and a particle. .
本発明の微生物捕捉剤を微生物捕捉用担体に付与する方法 としては、 微生物捕捉用担体を微生物捕捉剤溶液に含浸させ る方法、 微生物捕捉剤溶液を担体に噴霧などによ り コ一ティ ングする方法、 微生物捕捉剤を担体原料に混ぜて溶融し、 成 形する方法等が挙げられる。  Examples of the method of applying the microorganism capturing agent of the present invention to the microorganism capturing carrier include a method of impregnating the microorganism capturing carrier with the microorganism capturing agent solution, and coating the microorganism capturing agent solution on the carrier by spraying or the like. And a method in which a microorganism capturing agent is mixed with a carrier raw material, melted, and shaped, and the like.
本発明の微生物捕捉剤が付与された微生物捕捉用複合体の 形態としては、 繊維、 織物、 編物、 不織布、 膜、 中空糸、 粒 子、 およびそれらをもとにして構築された吸着担体があ り、 織物や編物の形態と して用いるのが好ましい。 上記の繊維は 通常、 繊維を単に纏めた集合体として用い、 例えば、 網目バ ッグ状やネッ ト状の容器に短繊維、 長繊維を詰めたり した形 態として用いる。  Examples of the form of the composite for capturing microorganisms provided with the microorganism capturing agent of the present invention include fibers, woven fabrics, knitted fabrics, nonwoven fabrics, membranes, hollow fibers, particles, and adsorption carriers constructed based on them. It is preferably used as a woven or knitted fabric. The above-mentioned fibers are usually used as an aggregate obtained by simply combining the fibers, for example, in a state in which short fibers and long fibers are packed in a mesh bag-like or net-like container.
また、 本発明の微生物捕捉用複合体に用いる担体は、 微生 物吸着能を有する担体である ことが好ましい。 そのような担 体の例と してはポリ塩化ビニリデン、 及びポリ エチレンテレ フタ レー トなどが挙げられる。 JP03/01322 Further, the carrier used in the complex for capturing microorganisms of the present invention is preferably a carrier having an ability to adsorb microorganisms. Examples of such carriers include polyvinylidene chloride, polyethylene terephthalate, and the like. JP03 / 01322
3 7 本発明の更に他の 1 つの態様によれば、 本発明の微生物捕 捉剤を、 微生物を含有する液体又は気体と接触させて、 微生 物を捕捉する方法が提供される。 37 According to still another aspect of the present invention, there is provided a method for capturing a microorganism by bringing the microorganism capturing agent of the present invention into contact with a liquid or a gas containing a microorganism.
上記の微生物を含む液体の例としては上水、 下水、 工業用 水、 廃水、 し尿などを挙げる こ とができ、 微生物を含む気体 の例としては無菌室、 ク リーンルーム、 病室、 手術室、 微生 物の育種栽培場、 医薬工場、 食品工場、 精密機械工場などに 使用する空気を挙げる こ とができる。  Examples of the above-mentioned liquid containing microorganisms include clean water, sewage, industrial water, wastewater, human waste, and the like.Examples of the gas containing microorganisms include aseptic rooms, clean rooms, hospital rooms, operating rooms, The air used for breeding and cultivation of microbes, pharmaceutical factories, food factories, precision machinery factories, etc. can be mentioned.
本発明の方法において用いる上記の微生物捕捉剤に関し ては、 既に説明した通りである。 具体的な微生物捕捉操作に 関しては、 公知の方法で行なう ことができる。 例えば、 本発 明の微生物捕捉剤が上記式 ( 2 ) 〜 ( 5 ) で表される重合体 の場合、 繊維状の重合体を用いて、 その繊維状の重合体を網 やボール状にして水中に沈めて微生物を捕捉する ことができ る。 詳細な捕捉操作に関しては 「水質浄化マニュアル一技術 と実例一」 ( 2 0 0 1 年、 日本国、 海文堂出版株式会社) な どの公知文献を参照する ことができる。  The microorganism capturing agent used in the method of the present invention is as described above. A specific operation for capturing microorganisms can be performed by a known method. For example, when the microorganism capturing agent of the present invention is a polymer represented by the above formulas (2) to (5), a fibrous polymer is used, and the fibrous polymer is formed into a net or a ball. Submerged in water to capture microorganisms. For details of the capture operation, reference can be made to publicly known documents such as “Water Purification Manual-One Technology and Practical Example-” (2001, Kaibundo Shuppan Co., Ltd., Japan).
更に、 上記の本発明の微生物捕捉剤を担体に担持させて得 られる上記の微生物捕捉用複合体を、 微生物を含有する液体 又は気体と接触させて、 微生物を捕捉する こ ともできる。 この方法において用いる上記微生物捕捉用複合体に関しては 既に説明 した通りである。 具体的な微生物捕捉操作に関して は公知の方法で行う こ とができる。 該微生物捕捉用複合体の 3/01322 Furthermore, the above-mentioned complex for capturing microorganisms obtained by supporting the above-mentioned microorganism-capturing agent of the present invention on a carrier may be brought into contact with a liquid or gas containing microorganisms to capture the microorganisms. The microorganism capturing complex used in this method is as described above. A specific method for capturing microorganisms can be performed by a known method. Of the complex for capturing microorganisms 3/01322
3 8 担体が繊維、 織物、 編物、 膜、 中空糸等の形態の場合には、 それらの繊維表面または膜表面に吸着させる方法、 不織布の 形態の場合には、 不織布表面または不織布内部において、 ろ 過によ り吸着する方法等がある。 この場合、 不織布内部にま で微生物が入り込み、 微生物を内部にまで吸着するので表面 積を有効に使う ことができる。 粒子形態の場合には、 粒子表 面または粒子内部に吸着する方法があ り、 カラム等に粒子を 充填して使用する こ とができる。 詳細な捕捉操作に関しては 「環境微生物工学研究法」 ( 1 9 9 3年、 日本国、 技報堂出 版株式会社) などの公知文献を参照する こ とができる。 38 When the carrier is in the form of fiber, woven fabric, knitted fabric, membrane, hollow fiber, etc., a method of adsorbing on the surface of the fiber or membrane, or in the case of non-woven fabric, filter on the surface of or inside the non-woven fabric There is a method of adsorption by excess. In this case, the microorganisms enter the nonwoven fabric and adsorb the microorganisms inside, so that the surface area can be used effectively. In the case of the particle form, there is a method of adsorbing on the particle surface or inside the particle, and the particle can be used by filling the column or the like with the particle. For details of the capture operation, reference can be made to publicly known documents such as the “Environmental Microbial Engineering Research Method” (1993, Gihodo Publishing Co., Ltd., Japan).
上述したよう に、 本発明の微生物捕捉剤は、 それ単独で、 若しく は担体に担持させて微生物捕捉に用いる こ とができる さ らに、 担体として微生物吸着能を有するものを用いて、 該 担体の微生物吸着能を向上させるために用いる こ ともできる また、 上記の本発明の微生物捕捉用複合体は、 バイオリ アク 夕一やバイオセンサ一での使用を目的と して、 微生物、 菌体 の吸着担体等に利用する こ とができる。 またバイオリ アクタ 一用途と して、 細胞捕捉や細胞固定用に用いる こともできる 本発明の微生物捕捉剤を微生物捕捉用担体に付与するこ と によって得られる微生物捕捉用複合体は、 表面が、 水相およ び気相中において正に帯電する ことが可能となる。 したがつ て、 微生物の細胞表面が一般的に負に帯電している こ とを利 用 し、 微生物一材料表面の間における静電気的な相互作用を 利用して、 微生物を材料表面に捕捉する ことが可能となる。 微生物捕捉剤および微生物捕捉用複合体の捕捉対象である 微生物には、 細菌、 真菌、 藻類、 ウィルス、 活性汚泥菌、 脱 窒素菌等が含まれる。 さ らに細胞も捕捉対象と して含まれる 微生物については、 例えば日本国、 岩波書店 「岩波 生物 学事典 第 4版」 ( 2 0 0 2年 7 月 1 5 日第 4版 7刷発行) に収載されている生物分類表などの記載を参考にする。 As described above, the microorganism capturing agent of the present invention can be used alone or supported on a carrier and used for capturing microorganisms. The complex for capturing microorganisms of the present invention can be used to improve the ability of the carrier to absorb microorganisms. It can be used as an adsorption carrier. It can also be used as a bioreactor for cell capture and cell fixation.The microorganism capture complex obtained by applying the microorganism capture agent of the present invention to a microorganism capture carrier has a surface with water. It becomes possible to charge positively in the phase and the gas phase. Therefore, taking advantage of the fact that the cell surface of a microorganism is generally negatively charged, the electrostatic interaction between the microorganism and the surface of the material is reduced. Utilizing it, it becomes possible to capture microorganisms on the material surface. The microorganisms to be captured by the microorganism capturing agent and the composite for capturing microorganisms include bacteria, fungi, algae, viruses, activated sludge bacteria, and denitrifying bacteria. Microorganisms that also include cells as capture targets are described in, for example, Iwanami Shoten, “Iwanami Biological Encyclopedia, 4th Edition” (issued 4th edition, July 15, 2002, July 15, 2002) in Japan. Refer to the description of the listed biological classification table.
細菌の例として、 通性嫌気性細菌群である  Examples of bacteria include facultative anaerobic bacteria
S t aohv 1 ococcus aureus (黄色ブドウ状球菌) 、 無胞子球菌 で通性嫌気性桿菌である腸内細菌科 (Enterobacteriaceae) の Bschericia Col i (大腸菌) 、 ビブリ オ科 Stachohv 1 ococcus aureus, Staphylococcus aureus, Bschericia Col i (Escherichia coli) of enterobacteriaceae (Enterobacteriaceae), which are facultative anaerobic bacilli and facultative anaerobic bacilli
(Vibrionaceae) の Vibrio c o 1 e r a e 、コ レラ菌) およひシ ユー ドモナス属 (Pseudomonas) 細菌の一種でグラム陰性好 気性である Pseudomonas aeruginosa (緑膿菌) などが挙げ られる。  (Vibrionaceae) and Pseudomonas aeruginosa (Pseudomonas aeruginosa), a bacterium belonging to the genus Pseudomonas, which is a gram-negative aerobic bacterium.
真菌の例として、 不完全菌に属する Trichophytonや. Microsporumなどが挙げられる。 また一般にカ ビと呼ばれる ものも真菌であ り、 ク ラ ドスポリ ゥム属(Cladospori umu)の 黒カ ビ、 ァスペルギルス属(Aspergi 1 lus)、 ぺニシリ ウム属 (P e n i c i 1 i um)の青カビなどが挙げられる。  Examples of fungi include Trichophyton and .Microsporum belonging to incomplete bacteria. Fungi, also commonly called molds, are fungi such as black mold of the genus Cladospori umu, blue mold of the genus Aspergilus (Aspergi 1 lus), and blue mold of the genus Penicillium (Penici 1 i um). Is mentioned.
藻類の例として、 藍藻綱に属する Microcystis (ァォコ) や 0 s c i 11 a t 0 r i a (ュレモ) などが挙げられる。  Examples of algae include Microcystis belonging to the class Cyanobacteria and 0 sci 11 a t 0 ria (uremo).
ウィルスの例として、 細菌ウィルス (バクテリ オフ ァー ジ) 、 Col i phage T4 (大腸菌フ ァージ T4) 、 Col i phage T7 (大腸菌フ ァージ T7) や Col i phage 1 amb d a (大腸菌フ ァー ジ lambda) および M 13大腸菌フ ァージなどが挙げられる。 活性汚泥菌の例として、 Zoogloeaおよび ramigeraなどが挙 げられる。 Examples of viruses include bacterial viruses (bacterial And Colphage T4 (Escherichia coli phage T4), Colphage T7 (Escherichia coli phage T7), Colphage 1 ambda (Escherichia coli phage lambda) and M13 Escherichia coli phage. Examples of activated sludge include Zoogloea and ramigera.
脱窒素細菌の例として、 Pseudomonas aeruginosa, L_ s t u t z e r i および Par acoccus deni tri f ic ns が挙けられる。  Examples of denitrifying bacteria include Pseudomonas aeruginosa, L_stuttzeri, and Par acoccus deni trific ns.
下水に代表される有機性の汚濁物質が含まれる廃水の処理 には活性汚泥法等が広く用い られるが、 微生物による これら の方法は、 有機性物質を効率よく 、 短時間に、 経済的に処理 できる方法として広く利用されている。 本発明の微生物捕捉 剤を用いる と、 水中の活性汚泥菌ゃ脱窒菌等の微生物を速や かに効率よく 吸着する ことができる。 そのために、 微生物に よる廃水の浄化をよ り高速に、 よ り効率よ く行う ことができ る。 特に、 活性汚泥菌ゃ脱窒菌等の微生物の初期吸着量増加 に著しい効果が期待される。 また、 本発明の微生物捕捉剤に よ り製造した微生物捕捉用複合体は、 時間が経過してもその 微生物捕捉能は低下しにく い。  Activated sludge method is widely used for the treatment of wastewater containing organic pollutants such as sewage.However, these methods using microorganisms efficiently and economically treat organic substances in a short time. It is widely used as a possible method. By using the microorganism capturing agent of the present invention, microorganisms such as activated sludge bacteria and denitrifying bacteria in water can be quickly and efficiently adsorbed. Therefore, purification of wastewater by microorganisms can be performed faster and more efficiently. In particular, a significant effect is expected to increase the initial adsorption amount of microorganisms such as activated sludge bacteria and denitrifying bacteria. Further, the microorganism-capturing complex produced by the microorganism-capturing agent of the present invention does not easily deteriorate in its ability to capture microorganisms even after a lapse of time.
本発明の微生物捕捉剤によ り製造した微生物捕捉用複合体 をバイオセンサーやバイオリ アクターと して用いた場合、 微 生物や細胞を生きたままの活性の高い状態で、 高い効率で捕 捉し固定化する こ とができる。 このため、 測定感度の向上、 さ らには、 これら菌体に含まれる酵素を働かせて反応生成物 を得たり 、 物質の選別を行ったりする こ とができ、 優れた生 体触媒機能を十分に活用するこ とができる。 When the complex for capturing microorganisms produced by the microorganism capturing agent of the present invention is used as a biosensor or a bioreactor, the microorganisms and cells can be captured with high activity in a living state with high activity. Can be immobilized. As a result, the measurement sensitivity is improved, and the reaction products are produced by utilizing the enzymes contained in these cells. And the selection of substances can be performed, and the excellent biocatalytic function can be fully utilized.
本発明の更に他の 1 つの目的は、 上記式 ( 2 ) で表される 第 4級アンモン二ゥム塩含有重合体を提供する ことである。 この第 4級アンモン二ゥム塩含有重合体の具体的な構造及び その製造方法に関しては上記した通りである。 この第 4級ァ ンモン二ゥム塩含有重合体は、 微生物捕捉剤と して特に有用 な化合物である。  Still another object of the present invention is to provide a quaternary ammonium salt-containing polymer represented by the above formula (2). The specific structure of the quaternary ammonium salt-containing polymer and the production method thereof are as described above. This polymer containing a quaternary ammonium salt is a compound that is particularly useful as a microorganism capturing agent.
本発明の更に他の 1 つの目的は、 下記式 ( 1 2 ) で表さ れる第 4級アンモン二ゥム塩を提供する ことである。  Still another object of the present invention is to provide a quaternary ammonium salt represented by the following formula (12).
Figure imgf000044_0001
上記式 ( 1 2 ) の第 4級アンモニゥム塩は、 上記式 ( 1 ) の 第 4級アンモニゥム塩の特に好ましい 1例であり、 微生物捕捉 剤として極めて有用である。 式 ( 1 2 ) で示される第 4級アン モニゥム塩は、 4ージメチルァミノ ピリジンと当モルあるいは 過剰量 (通常 1 〜 2当量) のべンジルクロライ ドを常圧下、 ェ 夕ノールなどの極性溶媒中で加熱下 (エタノール溶媒の場合 5 0 〜 8 0 °C ) で数時間〜数十時間反応させることで得られる。 反応点はピリジンの窒素原子ではなく、 ジメチルァミノ基の窒 素原子であることが NMR等により確認された。 発明を実施するための最良の形態
Figure imgf000044_0001
The quaternary ammonium salt of the above formula (12) is a particularly preferred example of the quaternary ammonium salt of the above formula (1), and is extremely useful as a microorganism capturing agent. The quaternary ammonium salt represented by the formula (12) is obtained by heating benzyl chloride in an equimolar amount or an excess amount (usually 1 to 2 equivalents) with 4-dimethylaminopyridine under a normal pressure in a polar solvent such as ethanol. It is obtained by reacting for several hours to several tens of hours under a temperature of 50 to 80 ° C in the case of an ethanol solvent. NMR confirmed that the reaction site was not a pyridine nitrogen atom but a dimethylamino group nitrogen atom. BEST MODE FOR CARRYING OUT THE INVENTION
以下に挙げる参考例、 実施例及び比較例によ り本発明をよ り具体的に説明するが、 本発明はこれらによって何ら限定さ れるものではない。 次の実施例及び比較例における、 ファージ粒子数の測定及 び 6 6 0 n mの吸光係数の算出は以下のよう にして行った。  The present invention will be described more specifically with reference to the following Reference Examples, Examples and Comparative Examples, but the present invention is not limited thereto. In the following Examples and Comparative Examples, the measurement of the number of phage particles and the calculation of the extinction coefficient of 660 nm were performed as follows.
( 1 ) フ ァージ粒子数の測定方法 (1) Method of measuring the number of fuzz particles
フ ァージ捕捉処理後の液を被検液とし、 その一部を取り リ ン酸緩衝液中にて希釈する。 被検液および希釈液各 5 0 β をそれぞれ L Β培地 (蒸留水に対して、 パク ト ト リプ ト ン 1 0 g /ΰ 、 酵母エキス 5 g Z£ 、 塩化ナ ト リ ウム 5 g Zfi を 加えて調製する) にて 3 7 °Cで一昼夜培養した大腸菌 J M 1 0 9 の培養液 2 0 0 a β に添加し、 得られた混合液を 3 7 °C にて 1 0分間静置する。 これら混合液を、 あ ら.かじめ溶解し 5 0 °Cに保温しておいた 3 m 1 の L B軟寒天培地 ( L B培地 中に 0. 7重量%になるよう に寒天を加えて調製する) に全 量移し、 L B寒天培地 (L B培地中に 1 . 5重量%になるよ う に寒天を加えて調製する) プレー トに重層する。 これらプ レー トを 3 7 °Cにて一昼夜培養し、 生じたプラークを計数す る。 被検液 1 m 1 中に残存するフ ァージ粒子数を求める。 ( 2 ) 6 6 O n mにおける吸光係数 (PET不織布に捕捉され た菌体の量の評価) The solution after the phage capture process is used as the test solution, and a part of the solution is taken and diluted in a phosphate buffer. Each 50 β of the test solution and the diluent was added to an LΒ medium (10 g / kg of Paktotripton, 5 g of yeast extract, 5 g of Zinc, 5 g of NaCl, in distilled water). Add to E. coli JM109 culture solution 200 aβ cultured overnight at 37 ° C at 37 ° C, and allow the resulting mixture to stand at 37 ° C for 10 minutes. . Prepare a 3 ml LB soft agar medium (prepared by adding 0.7% by weight of agar in the LB medium), which was previously dissolved and kept at 50 ° C. ), And overlay on LB agar medium (prepared by adding agar to 1.5% by weight in LB medium). Incubate these plates overnight at 37 ° C and count the resulting plaques. Determine the number of phage particles remaining in 1 ml of the test solution. (2) Absorption coefficient at 66 O nm (Evaluation of the amount of bacterial cells captured on PET non-woven fabric)
菌体の付着した P E T不織布をメチレンブル一溶液に 2分 間浸漬して該菌体を染色し、 その後余分な色素を水洗によ り 除去し、 一定量の 1 0 % S D S (sodium dodecy 1 sulfate) 溶液を加えて色素を抽出し試料溶液とする。 吸光度測定にお ける対照液として上記 1 0 % S D S溶液を用いる。 U V— 1 6 0 A分光光度計 (日本国、 島津製作所製) を用い、 試料溶 液の 6 6 0 n mにおける吸光度を長さ 1 c mの石英セルを用 いて測定する。 下記の式に従い、 吸光度から 6 6 0 n mにお ける吸光係数を算出する。  The PET non-woven fabric with the cells attached is immersed in a methylene blue solution for 2 minutes to stain the cells, and then the excess dye is removed by washing with water, and a certain amount of 10% SDS (sodium dodecy 1 sulfate) The dye is extracted by adding the solution to obtain a sample solution. Use the above 10% SDS solution as a control solution for absorbance measurement. Using a UV-160A spectrophotometer (manufactured by Shimadzu Corporation, Japan), measure the absorbance at 660 nm of the sample solution using a 1 cm long quartz cell. Calculate the extinction coefficient at 660 nm from the absorbance according to the following formula.
1 og100/Ι) = ε cd 1 og 100 / Ι) = ε cd
(式中、 I。 は入射光の強度であ り 、 I は透過光の強度であ り 、 ε は 6 6 0 n mにおける吸光係数であ り、 c は試料溶液の濃 度であ り 、 d は吸光度の測定に用いたセルの長さ ( c m) で ある。 ) 実施例 1 (Where I is the intensity of the incident light, I is the intensity of the transmitted light, ε is the extinction coefficient at 660 nm, c is the concentration of the sample solution, d Is the cell length (cm) used for the absorbance measurement.) Example 1
4 —ジメチルァミ ノ ピリ ジン ( 3 . 0 5 g、 2 5 mmol) とべ ンジルク ロ リ ド ( 3 . 1 6 g、 2 5 mmol) をェタノ一リレ 2 0 m 1 中、 常圧下 8 0 °Cで 1 5 時間反応させ、 その後反応液をエーテ ル中に加え生じた沈殿をェ一テルで洗浄し、 減圧下乾燥する こ とによ り化学式 ( 1 3 ) で示される第 4級アンモニゥム化合物 ( 6 . 1 5 g、 2 4. 7 mmol) を得た。 4-Dimethylaminopyridine (3.05 g, 25 mmol) and benzyl chloride (3.16 g, 25 mmol) in ethanol (20 ml) at 80 ° C under normal pressure After reacting for 15 hours, the reaction mixture was added to ether, and the resulting precipitate was washed with ether and dried under reduced pressure to obtain a quaternary ammonium compound represented by the chemical formula (13). (6.15 g, 24.7 mmol) was obtained.
C H 3 C H 3
I  I
[ C 6 H 5 - C H 2 - N + - C 5 H 4 N ] C I [C 6 H 5 -CH 2 -N + -C 5 H 4 N] CI
I I
C H 3 ( 1 3 ) C H 3 (1 3)
この化合物は、 テ ト ラメチルシランを標準とする D M S O (ジメチルスルフォキシ ド) 一 d 6溶媒による 1 H— N M R 分析によ り、 4 —ジメチルァミ ノ基の窒素原子がベンジル基 This compound was analyzed by 1 H-NMR analysis using tetramethylsilane as the standard in DMSO (dimethylsulfoxide) -d6 solvent to find that the nitrogen atom of the 4-dimethylamino group was a benzyl group.
( C 6 H 5 - C H 2 - ) によ り 4級化されている こ とが確認 された。 また、 δ 3 . 1 9 にジメチルによる 2重線ピーク、 δ 5 . 4 8 にベンジルメチレンの単線ピークが観察された。 一方、 ポリエチレンテレフ夕 レー ト ( P E T ) (繊度 0 . 0 1 6 デシテッ クス) からなる不織布を 2 c m Φ に打抜いた 微生物捕捉用担体を得た。 この P E T不織布に、 上記第 4級 ア ンモニゥム化合物を溶解した T H F溶液 ( 1 O m g Z m 1 ) を 3 0秒含浸させた後、 室温で減圧下 1 時間乾燥して微 生物捕捉用複合体を得た。 また、 不織布に対する上記第 4級 アンモニゥム化合物の付着率 { (付着後の不織布の重量一付 着前の不織布の重量) / (付着前の不織布の重量) X 1 0 0 } は 1 . 0重量%であった。 この微生物捕捉用複合体を、 内径 2 c mのカラムに 3 2枚 積層充填した後、 ェシエリ キア コ リ (Escherichia Col Π を生理食塩水に 5 X I 0 8個/ m .1 の濃度に懸濁させた液を 4 5 m 1 Z h rの速度でカラムに通液した。 通液して得た濾 液中の生菌数を寒天平板混釈法 (第 1 4改正 日本薬局方(C 6 H 5 -CH 2- ) was confirmed to be quaternized. A double line peak due to dimethyl was observed at δ 3.19, and a single line peak of benzylmethylene was observed at δ 5.48. On the other hand, a nonwoven fabric made of polyethylene terephthalate (PET) (density: 0.016 decitex) was punched out to 2 cmΦ to obtain a carrier for capturing microorganisms. The PET nonwoven fabric was impregnated with a THF solution (1 Omg Zm1) in which the above quaternary ammonium compound was dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour to form the composite for capturing microorganisms. Obtained. The adhesion rate of the quaternary ammonium compound to the nonwoven fabric is {(weight of nonwoven fabric after adhesion / weight of nonwoven fabric before adhesion) / (weight of nonwoven fabric before adhesion) X 100} is 1.0% by weight. Met. The microorganism capture complex, after 3 2 stacked packed in a column having an inner diameter of 2 cm, were suspended to a concentration of 5 XI 0 8 pieces / m .1 to saline Eshieri Kia co Li (Escherichia Col [pi Liquid The solution was passed through the column at a rate of 45 m 1 Z hr. The number of viable bacteria in the filtrate obtained by passing through the plate was determined by the agar plate pour method (the 14th revision of the Japanese Pharmacopoeia).
( The Japanese Pharmacopoeia Fourteenth Edition) 、 一 般試験法、 50. 微生物限度試験法に準拠して実施) によ り経 時的に測定し、 除菌率 { (除菌前溶液中の菌数ー除菌後溶液 中の菌数) Z除菌前溶液中の菌数) x l 0 0 } を求めた。 糸ポロ 果を表 1 に示す。 実施例 2 (The Japanese Pharmacopoeia Fourteenth Edition), general test method, 50.Performed in accordance with the microbial limit test method). The number of bacteria in the solution after the bacteria)) The number of bacteria in the solution before the eradication of bacteria) xl 00} was determined. Table 1 shows the results. Example 2
N, N, N', N'—テ ト ラメチルエチレンジァ ミ ン ( 2 . 3 2 g 2 0 mmol) とべンジルク ロ リ ド ( 7 . 5 9 g、 6 0 mmol) を エタノール 3 0 ml 中、 常圧下 8 0 °Cで 3 0 時間反応させ、 その後反応液をェ一テル中に加え生じた沈殿をエーテルで洗 浄し、 減圧下乾燥する ことによ り化学式 ( 1 4 ) で示される 第 4級アンモニゥム化合物 ( 6 . 8 0 g、 1 8 . 4 mmol) を 得た。  N, N, N ', N'-tetramethylethylenediamine (2.32 g 20 mmol) and benzyl chloride (7.59 g, 60 mmol) in 30 ml of ethanol The reaction was carried out at 80 ° C for 30 hours under normal pressure and medium pressure, then the reaction mixture was added to a ether, and the resulting precipitate was washed with ether and dried under reduced pressure to give the compound of the formula (14). A quaternary ammonium compound (6.80 g, 18.4 mmol) was obtained.
C H C H C H C H
[C 6H5- CH2-N + - CH CH?-N + - CH - C fiH ] 2 C 1 [C 6 H 5 -CH 2 -N + -CH CH ? -N + -CH-C fi H] 2 C 1
C H C H  C H C H
( 1 4) の化合物は、 テ トラメチルシラ ンを標準とする D M S 〇 — d 6溶媒による 1 H— N M R分析によ り ジメチルァミ ノ基 がべンジル基によ り 4級化されている ことが確認された。 ま た、 δ 3 . 1 5 にジメチルによる 1 重線ピーク、 δ 4. 1 9 にエチレンによる 1 重線ピーク、 0 4. 7 6 にべンジルメチ レンによる 1 重線ピーク、 δ Ί . 5 3 〜 7 . 7 0 にフエニル による ピークが観察された。 The compound of (14) is a DMS with tetramethylsilane as standard. - It was confirmed to be by Ri quaternized Jimechiruami amino group Gabe Njiru group Ri by the 1 H- NMR analysis d 6 solvent. Also, a singlet peak due to dimethyl at δ 3.15, a singlet peak due to ethylene at δ 4.19, a singlet peak due to benzylmethylene at 0.47.66, and δ 55.33 to A peak due to phenyl was observed at 7.70.
一方、 P E T (繊度 0 . 0 1 6 デシテッ クス) からなる不 織布を 2 c m に打抜いた微生物捕捉用担体を得た。 この P E T不織布に、 上記第 4級アンモニゥム化合物を溶解した T H F溶液 ( 1 0 m g / m 1 ) を 3 0秒含浸させた後、 室温で 減圧下 1 時間乾燥して微生物捕捉用複合体を得た。 不織布に 対する第 4級アンモニゥム化合物 ( 1 4 ) の付着率は 1 . 0 重量%であった。  On the other hand, a carrier for capturing microorganisms was obtained by punching a nonwoven cloth made of PET (0.016 decitex fineness) into 2 cm. The PET nonwoven fabric was impregnated with a THF solution (10 mg / m 1) in which the quaternary ammonium compound was dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour to obtain a composite for capturing microorganisms. . The adhesion rate of the quaternary ammonium compound (14) to the nonwoven fabric was 1.0% by weight.
この微生物捕捉用複合体を、 内径 2 c mのカラムに 3 2枚 積層充填した後、 ェシエリ キア コ リ (Escherichia Col 0 を生理食塩水に 5 X I 0 8個 / m 1 の濃度に懸濁させた液を 4 5 m 1 Z h r の速度でカラムに通液した。 通液して得た濾 液中の生菌数を寒天平板混釈法によ り経時的に測定し、 除菌 率を求めた。 結果を表 1 に示す。 実施例 3 The microorganism capture complex, after 3 2 stacked packed in a column having an inner diameter of 2 cm, were suspended to a concentration of 5 XI 0 8 pieces / m 1 in physiological saline Eshieri Kia co Li (Escherichia Col 0 The filtrate was passed through the column at a rate of 45 m 1 Z hr.The viable cell count in the filtrate obtained through the passage was measured over time by the agar plate pour method, and the eradication rate was determined. The results are shown in Table 1. Example 3
実施例 1 と同様の P E T不織布 (繊度 0 . 0 1 6デシテツ クス) に、 クェン酸を溶解した T H F溶液 ( 1 0 m g / m 1 ) を 3 0秒含浸させた後、 室温で減圧下 1 時間乾燥して微 生物捕捉材を得た。 不織布に対するクェン酸の付着率は 1 . 0重量%であった。 A solution of citrate in THF (10 mg / m2) was added to the same PET non-woven fabric (fineness: 0.016 decitex) as in Example 1. After 1) was impregnated for 30 seconds, it was dried at room temperature under reduced pressure for 1 hour to obtain a microorganism capturing material. The adhesion ratio of citric acid to the nonwoven fabric was 1.0% by weight.
この微生物捕捉用複合体を、 内径 2 c mのカ ラムに 3 2枚 積層充填した後、 ェシエリキア コ リ (Escherichia Col i) を生理食塩水に 5 X I 0 8個 / m 1 の濃度に懸濁させた液を 4 5 m 1 Z h r の速度でカラムに通液した。 通液して得た濾 液中の生菌数を寒天平板混釈法によ り経時的に測定し、 除菌 率を求めた。 結果を表 1 に示す。 実施例 4 The microorganism capture complex, after 3 2 stacked filling the column with an inner diameter of 2 cm, are suspended in a concentration of Eshierikia co Li (Escherichia Col i) the saline 5 XI 0 8 pieces / m 1 The solution was passed through the column at a rate of 45 m 1 Z hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 1 shows the results. Example 4
実施例 1 と同様の P E T不織布 (繊度 0 . 0 1 6デシテツ クス) に、 化学式 ( 1 5 ) で示される 2 — ( 2 '—ヒ ドロキ シ一 3 '— t —ブチル— 5 '—メチルフエニル) 一 5 —ク ロ口 ベンゾト リ アゾ一ル (商品名 : J F — 7 9 、 日本国、 城北化 学工業株式会社製) を溶解した T H F溶液 ( 1 O m g /m 1 ) を 3 0秒含浸させた後、 室温で減圧下 1 時間乾燥して、 微生物捕捉用複合体を得た。 不織布に対するベンゾ ト リ アゾ —ル誘導体 ( 1 5 ) の付着率は約 1 . 0重量%であった。  A PET nonwoven fabric (fineness: 0.016 decitex) similar to that of Example 1 was added with 2— (2′-hydroxyl-3′-t-butyl-5′-methylphenyl) represented by the chemical formula (15). I 5 —Cross-mouth benzotriazole (trade name: JF-79, manufactured by Johoku Chemical Co., Ltd., Japan) dissolved in a THF solution (1 O mg / m 1) for 30 seconds After drying at room temperature under reduced pressure for 1 hour, a complex for capturing microorganisms was obtained. The adhesion rate of the benzotriazole derivative (15) to the nonwoven fabric was about 1.0% by weight.
(15)(15)
Figure imgf000050_0001
この微生物捕捉用複合体を内径 2 c mのカラムに 3 2枚積 層充填した後、 ェシエリ キア コ リ (Escherichia Col i) を 生理食塩水に 5 X 1 0 8個/ m 1 の濃度に懸濁させた液を、 4 5 m 1 / h r の速度でカラムに通液した。 通液して得た濾 液中の生菌数を寒天平板混釈法によ り経時的に測定し、 除菌 率を求めた。 結果を表 1 に示す。 実施例 5
Figure imgf000050_0001
After packing the microbe-capturing complex in a two-layer column with a 2 cm inner diameter, the Escherichia Coli was suspended in physiological saline at a concentration of 5 × 10 8 cells / m 1. The solution was passed through the column at a rate of 45 ml / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 1 shows the results. Example 5
実施例 1 と同様の P E T不織布 (繊度 0 . 0 1 6 デシテツ クス) に、 化学式 ( 9 ) で示されるポリ カチオン [ { 2 — The same PET nonwoven fabric (fineness: 0.016 decitex) as in Example 1 was added to the polycation [{2 —
(メタク リ ロイルォキシ) ェチル } ト リ メチルアンモニゥム ク ロ リ ド (日本国、 三菱レイ ヨ ン (株) 製) ]を溶解した T H F溶液 ( l O m g Zm l ) を 3 0秒含浸させた後、 室温で 減圧下 1 時間乾燥して微生物捕捉用複合体を得た。 不織布に 対するポリ カチオン ( 9 ) の付着率は約 1 . 0 重量%であつ た。
Figure imgf000051_0001
(Methacryloyloxy) ethyl} trimethylammonium chloride (manufactured by Mitsubishi Rayon Co., Ltd., Japan)] was impregnated with a THF solution (10 mg Zml) for 30 seconds. Thereafter, the resultant was dried at room temperature under reduced pressure for 1 hour to obtain a complex for capturing microorganisms. The adhesion rate of the polycation (9) to the nonwoven fabric was about 1.0% by weight.
Figure imgf000051_0001
この微生物捕捉用複合体を、 内径 2 c mのカ ラムに 3 2枚 積層充填した後、 ェシエリ キア コ リ (Escherichia Col i) を生理食塩水に 5 X I 0 8個/ m 1 の濃度に懸濁させた液を 4 5 m 1 / h r の速度でカ ラムに通液した。 通液して得た濾 液中の生菌数を寒天平板混釈法によ り経時的に測定し除菌率 を求めた。 結果を表 1 に示す。 実施例 6 Suspending the microorganism capture complex, after 3 2 stacked filling the column with an inner diameter of 2 cm, Eshieri Kia co Li a (Escherichia Col i) in physiological saline to a concentration of 5 XI 0 8 pieces / m 1 The solution was passed through a column at a rate of 45 m 1 / hr. Filter obtained by passing through The number of viable bacteria in the solution was measured over time by the agar plate pour method to determine the eradication rate. Table 1 shows the results. Example 6
4 ビニルベンジルク ロ リ ド ( 3 . 8 2 g、 2 5 mmol) と 塩化ピニリ デン ( 9 . 6 9 g、 1 0 0 mrao 1 ) を トルエン 2 0 m 1 に溶解 し、 AIBN ( 2, 2'-azobisisobutyroni trile) ( 4 l m g、 0 . 2 5 mmol) 存在下、 常圧 4 0 °Cで 1 5時間反応 し、 その後常圧 8 0 °Cで 1 5時間反応した。 反応液をェ夕ノ ールに加え生じた沈殿を減圧下乾燥し、 (塩化ビニリ デン Z 4 -ピニルベンジルク ロ リ ド) モル比が 3 Z 2 の割合で共重 合した化合物 ( 2 . 9 6 g ) を得た。 上記モル比は NMR によ り確認した。 次に、 4 -ビニルベンジルク ロ リ ドに対し等モ ル量のピリ ジン ( 1 . 9 8 g、 2 5 mmo 1) を加え、 ェタノ一 ル溶媒中、 常圧下 8 0 °Cで 1 5 時間反応し、 反応液をエーテ ルに加え生じた沈殿を減圧下乾燥し、 目的とする第 4級アン モニゥム塩含有重合体 ( 2 . 4 9 g ) を得た。  4 Dissolve vinylbenzyl chloride (3.82 g, 25 mmol) and pinylidene chloride (9.69 g, 100 mrao 1) in 20 ml of toluene, and add AIBN (2,2 In the presence of '-azobisisobutyroni trile) (4 lmg, 0.25 mmol), the reaction was carried out at normal pressure of 40 ° C for 15 hours, and then at normal pressure of 80 ° C for 15 hours. The reaction mixture was added to ethanol, and the resulting precipitate was dried under reduced pressure. A compound (2.96) having a molar ratio of (vinylidene chloride Z4-pinylbenzyl chloride) of 3 Z2 (2.96) was obtained. g) was obtained. The above molar ratio was confirmed by NMR. Next, an equimolar amount of pyridine (1.98 g, 25 mmo1) was added to 4-vinylbenzyl chloride, and the mixture was added to ethanol at 150 ° C under normal pressure in ethanol solvent. After reacting for an hour, the reaction solution was added to ether, and the resulting precipitate was dried under reduced pressure to obtain the desired quaternary ammonium salt-containing polymer (2.49 g).
一方、 P E T (繊度 0 . 0 1 6 デシテックス) からなる不 織布を 2 c m φ に打抜いた微生物捕捉用担体を得た。 この P E T不織布に、 上記第 4級アンモニゥム塩含有重合体を溶解 した T H F溶液 ( 1 0 m g / m 1 ) を 3 0秒含浸させた後、 室温で減圧下 1 時間乾燥して、 微生物捕捉用複合体を得た。 不織布に対する ビニル系共重合体の付着率は 1 . 0重量%で あった。 On the other hand, a carrier for capturing microorganisms was obtained by punching a nonwoven cloth made of PET (0.016 decitex) into a 2 cm diameter. The PET nonwoven fabric was impregnated with a THF solution (10 mg / m 1) in which the quaternary ammonium salt-containing polymer was dissolved for 30 seconds, and dried at room temperature under reduced pressure for 1 hour to obtain a composite material for capturing microorganisms. I got a body. The adhesion rate of the vinyl copolymer to the nonwoven fabric was 1.0% by weight. there were.
この微生物捕捉用複合体を、 内径 2 c mのカラムに 3 2枚 積層充填した後、 ェシエリ キア コ リ (Escherichia Col i) を生理食塩水に 5 X I 0 8個 Z m 1 の濃度に懸濁させた液を 4 5 m l / h r の速度でカ ラムに通液した。 通液して得た濾 液中の生菌数を寒天平板混釈法によ り経時的に測定し、 除菌 率を求めた。 結果を表 1 に示す。 実施例 7 The microbial capture complex, after 3 2 stacked packed in a column having an inner diameter of 2 cm, are suspended in a concentration of Eshieri Kia co Li (Escherichia Col i) the saline 5 XI 0 8 or Z m 1 The solution was passed through a column at a rate of 45 ml / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 1 shows the results. Example 7
4 -ビニルベンジリレク ロ リ ド ( 4 . 1 9 g、 2 7 . 5 mmo 1) とスチレン ( 2 . 6 0 g、 2 5画 1 ) を トルエン 2 0 m l に溶解し、 AIBN ( 4 1 m g、 0 . 2 5 mmo 1) 存在下、 常 圧 8 0 °Cで 1 5 時間反応した。 反応液をエタノールに加え生 じた沈殿を減圧下乾燥し、 ( 4 -ビニルベンジルク ロ リ ド Z スチレン) モル比が 3 Z 2 の割合で共重合した化合物 ( 1 . 6 5 g ) を得た。 上記モル比は NMRによ り確認した。 次に、 4 -ビニルベンジルク ロ リ ドに対し等モル量のピ リ ジン ( 2 1 8 g、 2 7 . 5 minol) を加え、 エタノール溶媒中、 常圧下 8 0 Cで 1 5 時間反応し、 反応液をエーテルに加え生じた沈 殿を減圧下乾燥し、 目的とする第 4級アンモニゥム塩含有重 合体 ( 2 . 6 6 g ) を得た。 これ以外は実施例 6 と同様にし て微生物捕捉用複合体を得た。  4-vinyl benzylyl chloride (4.19 g, 27.5 mmo1) and styrene (2.60 g, 25 strokes 1) were dissolved in 20 ml of toluene, and AIBN (411 The reaction was carried out at normal pressure of 80 ° C for 15 hours in the presence of mg, 0.25 mmo1). The reaction solution was added to ethanol, and the resulting precipitate was dried under reduced pressure to obtain a compound (1.65 g) copolymerized at a molar ratio of (4-vinylbenzyl chloride Z styrene) of 3 Z 2. Was. The above molar ratio was confirmed by NMR. Next, an equimolar amount of pyridine (21.8 g, 27.5 minol) was added to 4-vinylbenzyl chloride, and the mixture was reacted at 80 C under normal pressure in an ethanol solvent for 15 hours. The reaction solution was added to ether, and the resulting precipitate was dried under reduced pressure to obtain the desired quaternary ammonium salt-containing polymer (2.666 g). Otherwise in the same manner as in Example 6, a complex for capturing microorganisms was obtained.
こ の微生物捕捉用複合体を実施例 1 と同様にしてカラムに 充填した後、 ェシエリキア コ リ (Escherichia Col i) を生 理食塩水に 5 X I 0 8個 Z m 1 の濃度に懸濁させた液を、 4 5 m 1 / h r の速度でカラムに通液した。 通液して得た濾液 中の生菌数を寒天平板混釈法によ り経時的に測定し、 除菌率 を求めた。 結果を表 1 に示す。 比較例 1 This microorganism capturing complex was applied to a column in the same manner as in Example 1. After filling, the Eshierikia co Li (Escherichia Col i) was suspended in a concentration of 5 XI 0 8 or Z m 1 in physiology saline solution was passed through the column at a rate of 4 5 m 1 / hr . The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 1 shows the results. Comparative Example 1
本発明の化合物を用いず、 実施例 1 で用いた微生物捕捉用 担体の P E T不織布のみをカラムに充填し、 これに、 ェシェ リ キア コ リ (Escherichia Coli) を生理食塩水に 5 X  Without using the compound of the present invention, only the PET nonwoven fabric of the carrier for capturing microorganisms used in Example 1 was packed in a column, and Escherichia Coli was added to a saline solution at a concentration of 5 ×.
1 0 8個 Zm l の濃度に懸濁させた液を、 4 5 m l Z h r の 速度でカラムに通液した。 通液して得た濾液中の生菌数を寒 天平板混釈法によ り経時的に測定し、 除菌率を求めた。 結果 を表 1 に示す。 1 0 8 Zm l solution suspended in a concentration of, was passed through the column at a rate of 4 5 ml Z hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 1 shows the results.
表 1 力ゝら明 かなよう に、 実施例 1 、 2 、 3 、 4、 5 、 6 および 7 の微生物捕捉剤を付着させた Ρ Ε Τ不織布を用いた 微生物捕捉用複合体は、 菌の吸着力に優れ、 高い除菌率を示 した。 本発明の微生物捕捉剤を付着させていない比較例 1 の ものは、 菌の吸着力が弱く 、 しかも時間の経過と共に著しく 低下し、 わずか 1 0 %程度の除菌率しか示さなかった。 Table 1 As can be clearly seen, the microorganism-trapping complex using the nonwoven fabric with the microorganism-trapping agents of Examples 1, 2, 3, 4, 5, 6 and 7 adhered to the bacteria. Excellent power and high eradication rate. In the case of Comparative Example 1 to which the microorganism-capturing agent of the present invention was not adhered, the adsorbing power of the bacterium was weak, and the bacterium was remarkably reduced with the passage of time.
Figure imgf000055_0001
Figure imgf000055_0001
*VBC 4 一 ビニルベンジルク ロ リ ド VC 塩化ビニ リ デン S t スチレン  * VBC 4 Vinyl benzyl chloride VC Vinylidene chloride St Styrene
Col i Escherichia Co 1 i Col i Escherichia Co 1 i
実施例 8 Example 8
実施例 1 〜 7 と同様の方法で得られた 2 c m d)の微生物捕 捉用複合体を、 それぞれ、 内径 2 c mのカラムに 3 2枚積層 充填した後、 スタフイ ロコッカス ァゥレウス  Each of the 2 cm d) microbial capturing complexes obtained in the same manner as in Examples 1 to 7 was stacked and packed in a column having an inner diameter of 2 cm on 32 columns each, and then Staphylococcus aureus was prepared.
(Staphylococcus aureus) を生理食塩水に 3 X 1 0 8 M m 1 の濃度に懸濁させた液を、 6 0 m 1 / h r の速度でカラム に通液した。 通液して得た濾液中の生菌数を寒天平板混釈法 によ り経時的に測定し、 除菌率を求めた。 結果を表 2 に示す 比較例 2 The (Staphylococcus aureus) was suspended in a concentration of the saline 3 X 1 0 8 M m 1 solution was passed through the column at a rate of 6 0 m 1 / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. The results are shown in Table 2.Comparative Example 2
本発明の微生物捕捉剤を用いず、 実施例 1 で用いた微生物 捕捉用担体の P E T不織布のみをカラムに充填し、 スタフィ ロコ ッカス ァゥレウス (Staphylococcus aureus) を生理 食塩水に 3 X 1 0 8個ノ m 1 の濃度に懸濁させた液を、 6 0 m 1 / h r の速度でカラムに通液した。 通液して得た濾液中 の生菌数を寒天平板混釈法によ り経時的に測定し、 除菌率を 求めた。 結果を表 2 に示す。 Without using a microorganism scavenger of the present invention, only the PET nonwoven microbial trapping carrier used in Example 1 was packed into a column, 3 X 1 0 8 or Sutafi loco Kkasu Aureusu the (Staphylococcus aureus) in saline Bruno The liquid suspended at a concentration of m 1 was passed through the column at a rate of 60 m 1 / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 2 shows the results.
表 2から明らかなように、 実施例 1、 2、 3、 4、 5、 6お よび 7の微生物捕捉剤を付着させた P E T不織布を用いた微生 物捕捉用複合体は、 菌の吸着力に優れ、 良好な除菌率を示した が、 本発明の微生物捕捉剤を付着させていない比較例 2 のもの は、 菌の吸着力が弱く、 しかも時間の経過と共に著しく低下し わずか 1 0 %程度の除菌率しか示さなかった。 表 2 As is evident from Table 2, the composites for capturing microorganisms using the PET nonwoven fabric to which the microorganism capturing agents of Examples 1, 2, 3, 4, 5, 6, and 7 were adhered exhibited a bacterial adsorption capacity. In Comparative Example 2 to which the microbial scavenger of the present invention was not adhered, the adsorbing power of the bacteria was weak, and it decreased remarkably with the passage of time. It showed only a moderate eradication rate. Table 2
tn tn
Figure imgf000057_0001
Figure imgf000057_0001
fVBC 4 — ビニ レベ ンジルク ロ リ ド  fVBC 4 — Vinyl-benzil chloride
VC 塩化 ビニ リ デン  VC Vinylidene chloride
S t スチレ ン S t Styrene
実施例 9 Example 9
実施例 1 〜 7 と同様の方法で得られた 2 c m の微生物捕 捉用複合体を、 それぞれ、 内径 2 c mのカラムに 3 2枚積層 充填した後、 シユー ドモナス ァエルギノ一ザ ( P s e u d o m o n a s a e r u g i n o s a ) を生理食塩水に 6 X 1 0 8個/ m l の濃度に懸濁させた液を、 3 O m l / h r の 速度でカ ラムに通液した。 通液して得た濾液中の生菌数を寒 天平板混釈法によ り経時的に測定し、 除菌率を求めた。 結果 を表 3 に示す。 比較例 3 Each of the 2 cm-complexes for capturing microorganisms obtained in the same manner as in Examples 1 to 7 was stacked and packed on three columns of 2 cm in inner diameter, and then Pseudomonasaeruginosa was used. A suspension of physiological saline at a concentration of 6 × 10 8 cells / ml was passed through the column at a rate of 30 ml / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 3 shows the results. Comparative Example 3
本発明の微生物捕捉剤を用いず、 実施例 1 で用いた微生物 捕捉用担体の P E T不織布のみをカラムに充填し、 シユー ド ' モナス ァエリレギノ一ザ J seudomonas aeruginosa) を生理 食塩水に 6 X I 0 8個 Z m 1 の濃度に懸濁させた液を、 3 0 m \ / r の速度でカ ラムに通液した。 通液して得た濾液中 の生菌数を寒天平板混釈法によ り経時的に測定し、 除菌率を 求めた。 結果を表 3 に示す。 Without using a microorganism scavenger of the present invention, only the PET nonwoven microbial trapping carrier used in Example 1 was packed into a column, the shoes de 'Sphingomonas Aeriregino one The J seudomonas aeruginosa) with saline 6 XI 0 8 The liquid suspended at a concentration of Zm1 was passed through the column at a speed of 30 m \ / r. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time by the agar plate pour method, and the eradication rate was determined. Table 3 shows the results.
表 3力、 ら明らかなよう に、 実施例 1 、 2 、 3 、 4、 5 、 6 および 7 の微生物捕捉剤を付着させた P E T不織布を用いた 微生物捕捉用複合体は、 菌の吸着力に優れ、 良好な除菌率を 示したが、 本発明の微生物捕捉剤を付着させていない比蛟例 3 のものは、 菌の吸着力が弱く 、 しかも時間の経過と共に著 しく低下し、 わずか 8 %程度の除菌率しか示さなかった。 As is evident from Table 3, the microorganism-trapping complex using the PET nonwoven fabric to which the microorganism-trapping agents of Examples 1, 2, 3, 4, 5, 6, and 7 were attached has a lower absorption capacity for bacteria. Although excellent and good eradication rate was exhibited, Comparative Example 3 to which the microorganism trapping agent of the present invention was not adhered had a weak bacterial adsorbing power, and was significantly improved with time. The eradication rate was only about 8%.
表 3 Table 3
Figure imgf000060_0001
Figure imgf000060_0001
fYBC 4 — ピニルベ ンジルク ロ リ ド  fYBC 4 — Pinylbenzyl chloride
VC 塩化ビニ リ デン  VC Vinylidene chloride
S t スチ レ ン S t Styrene
実施例 1 0 Example 10
実施例 1 、 2 、 3 、 5および 7 と同様の方法で製造した 2 πι φ の微生物捕捉用複合体を、 それぞれ、 内径 2 c mの力 ラムに 3 2 枚積層充填した後、 M 1 3バクテリ オフ ァージを 生理食塩水に 5 X 1 0 6粒子 Z m 1 の濃度に懸濁させた液を 4 0 m 1 / h r の速度でカラムに通液した。 通液して得た濾 液中のフ ァージ粒子数を上記の方法によ り経時的に測定し、 除去率を求めた。 結果を表 4 に示す。 比較例 4 Each of the 2πιφ microbial capturing complexes produced in the same manner as in Examples 1, 2, 3, 5 and 7 was stacked and packed in 32 pieces on a power ram having an inner diameter of 2 cm. A suspension obtained by suspending an off-phase in physiological saline at a concentration of 5 × 10 6 particles Z m 1 was passed through the column at a rate of 40 m 1 / hr. The number of phage particles in the filtrate obtained by passing the solution was measured over time by the above method, and the removal rate was determined. Table 4 shows the results. Comparative Example 4
本発明の微生物捕捉剤を用いず、 実施例 1 で用いた微生物 捕捉用担体の P E T不織布のみをカラムに充填し、 M l 3バ クテリオフ ァ一ジを生理食塩水に 5 X I 0 6粒子 Z m 1 の濃 度に懸濁させた液を、 4 0 m 1 / r の速度でカ ラムに通液 した。 通液して得た濾液中のフ ァージ粒子数を経時的に測定 し、 除去率を求めた。 結果を表 4 に示す。 Without using a microorganism scavenger of the present invention, examples only PET nonwoven microbial trapping carrier used in 1 was packed into a column, M l 3 bar Kuteriofu § one di saline 5 XI 0 6 particles Z m The liquid suspended at a concentration of 1 was passed through the column at a speed of 40 m 1 / r. The number of phage particles in the filtrate obtained by passing the solution was measured over time to determine the removal rate. Table 4 shows the results.
表 4 .から明 らかなよう に、 実施例 1 、 2 、 3 、 5および 7 の微生物捕捉剤を付着させた P E T不織布を用いた微生物捕 捉用複合体は菌体に比べて微小なウィルスに対しても有効に 働く こ とが判つた。 表 4 As is evident from Table 4, the complexes for capturing microorganisms using the PET nonwoven fabric to which the microorganism capturing agents of Examples 1, 2, 3, 5, and 7 were adhered to viruses smaller than bacterial cells. It turned out to work effectively. Table 4
CDCD
Figure imgf000062_0001
Figure imgf000062_0001
fVBC: 4 一 ビニルベンジルク ロ リ ド  fVBC: 4-vinylbenzyl chloride
St : スチ レン St: styrene
実施例 1 1 Example 1 1
実施例 1 〜 7 と同様の方法で得られた 2 c m ci) の微生物捕 捉用複合体を、 活性汚泥菌含有液に 1 4時間もしく は 4 8時 間浸漬し、 活性汚泥菌槽を 5 0 r p mの速度で往復振とう し た。 上記の微生物捕捉用複合体に付着した菌体をメチレンブ ルーで染色し、 吸光度 ( 6 6 0 n m ) を経時的に測定し、 付 '着量を求めた。 結果を表 5 に示す。 こ こで、 菌体付着量はメ チレンブルーの吸光度に比例し、 吸光度 ( 6 6 0 n m ) の数 値が高いほど菌体付着量が多いと判断する。 比較例 5  A 2 cm ci) microbial capturing complex obtained in the same manner as in Examples 1 to 7 was immersed in an activated sludge-containing liquid for 14 hours or 48 hours, and the activated sludge tank was immersed. It was shaken back and forth at a speed of 50 rpm. The cells adhering to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of adhered cells. Table 5 shows the results. Here, the amount of adhered cells is proportional to the absorbance of methylene blue, and the higher the value of the absorbance (660 nm), the greater the amount of adhered cells is determined. Comparative Example 5
本発明の微生物捕捉剤を用いず、 実施例 1 で用いた P E T 不織布のみを、 活性汚泥菌含有液に 1 4時間もしく は 4 8時 間浸漬し、 活性汚泥菌槽を 5 0 r p mの速度で往復振とう し た。 上記の P E T不織布に付着した菌体をメチレンブルーで 染色し、 吸光度 ( 6 6 0 n m ) を経時的に測定し、 付着量を 求めた。 結果を表 5·に示す。  Without using the microorganism capturing agent of the present invention, only the PET nonwoven fabric used in Example 1 was immersed in a solution containing activated sludge for 14 hours or 48 hours, and the activated sludge tank was rotated at 50 rpm. Shake back and forth. The cells attached to the PET nonwoven fabric were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the attached cells. The results are shown in Table 5 ·.
表 5 か ら明 らかなよう に、 実施例 1 〜 7 の微生物捕捉剤を 付着させて調製した P E T不織布を用いた微生物捕捉用複合 体は菌の捕捉力に優れるが、 本発明の微生物捕捉化合物を付 着させていない比較例 5 のものは菌の捕捉力が弱いこ とが分 かる。 表 5 As is clear from Table 5, the microorganism-trapping complex using the PET nonwoven fabric prepared by adhering the microorganism-trapping agents of Examples 1 to 7 is excellent in the ability to capture bacteria, but the microorganism-trapping compound of the present invention. It can be seen that the sample of Comparative Example 5 to which no is attached has a weaker ability to capture bacteria. Table 5
CD
Figure imgf000064_0001
CD
Figure imgf000064_0001
fVBC 4 一 ビニルベ ンジルク ロ リ  fVBC 4 Vinyl vinyl chloride
VC 塩化 ビニ リ デン  VC Vinylidene chloride
S t スチ レ ン S t Styrene
実施例 1 2 Example 1 2
微量ア ンモニアおよび硝酸含有廃液処理の検討のために、 実施例 1 〜 7 と同様の方法で製造した 2 ε πι φ の微生物捕捉 用複合体を、 脱窒素菌含有液に 1 4時間も しく は 4 8時間浸 漬し、 脱窒素菌槽を 5 0 r p mの速度で往復振とう した。 上 記の微生物捕捉用複合体に付着した菌体をメチレンブルーで 染色し、 吸光度 ( 6 6 0 n m ) を経時的に測定し、 付着量を 求めた。 結果を表 6 に示す。 こ こで、 菌体付着量はメチレン ブル一の吸光度に比例し、 吸光度 ( 6 6 0 n m ) の数値が高 いほど菌体付着量が多いと判断する。 比較例 6  In order to study the treatment of waste liquid containing trace amounts of ammonia and nitric acid, the complex for capturing microorganisms of 2επιφ produced in the same manner as in Examples 1 to 7 was added to the solution containing denitrifying bacteria for 14 hours or more. It was immersed for 48 hours, and the denitrifying bacteria tank was shaken back and forth at a speed of 50 rpm. The cells adhered to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the adhered cells. Table 6 shows the results. Here, the amount of attached cells is proportional to the absorbance of methylene blue, and the higher the value of the absorbance (660 nm), the larger the amount of attached cells is determined. Comparative Example 6
本発明の微生物捕捉剤を用いず、 実施例 1 で用いた P E T 不織布のみを、 脱窒素菌含有液に 1 4時間もしく は 4 8 時間 浸漬し、 脱窒素菌槽を 5 0 r p mの速度で往復振とう した。 上記の P E T不織布に付着した菌体をメチレンブルーで染色 し、 吸光度 ( 6 6 0 n m ) を経時的に測定し、 付着量を求め た。 結果を表 6 に示す。  Without using the microorganism capturing agent of the present invention, only the PET nonwoven fabric used in Example 1 was immersed in a denitrifying bacteria-containing solution for 14 hours or 48 hours, and the denitrifying bacteria tank was rotated at a speed of 50 rpm. Shake back and forth. The cells adhered to the PET nonwoven fabric were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the adhered cells. Table 6 shows the results.
表 6か ら明らかなよう に、 実施例 1 〜 7 の微生物捕捉剤を 付着させて調製した P E T不織布 'を用いた微生物捕捉用複合 体は菌の捕捉力に優れるが、 本発明の微生物捕捉剤を付着さ せていない比較例 6 のものは菌の捕捉力が弱いことが分かる , 表 6 As is clear from Table 6, the microorganism-trapping complex using the PET nonwoven fabric prepared by attaching the microorganism-trapping agent of Examples 1 to 7 is excellent in the ability to capture bacteria, but the microorganism-trapping agent of the present invention It can be seen that in the case of Comparative Example 6 where no bacteria were attached, the ability to capture bacteria was weak. Table 6
COCO
Figure imgf000066_0001
Figure imgf000066_0001
4 一 ビニルベンジルク ロ リ ド  4 Vinyl benzyl chloride
VC 塩化ビニリ デン  VC vinylidene chloride
S t スチレン St styrene
実施例 1 3 Example 13
4 -ビニルベンジルク ロ リ ド ( 3 . 8 2 g、 2 5 mmol) と 塩化ビニリ デン ( 1 2 . 1 2 g、 1 2 5 mmo 1 ) および A I BN 4-vinylbenzyl chloride (3.82 g, 25 mmol), vinylidene chloride (12.12 g, 125 mmo1) and AIBN
( 4 1 m g、 0 . 2 5 mmol) を実施例 6 と同様の条件下で反 応させ、 4 -ビニルベンジルクロ リ ド と塩化ビニリデンとが モル比 1 Z 1 の割合で共重合した化合物を得た。 上記モル比 は NMRによ り確認した。 次に、 4 -ビニルベンジルク ロ リ ド に対し等モル量のピリ ジンで 4級化処理して第 4級アンモニ ゥム塩含有重合体を得た。 (41 mg, 0.25 mmol) was reacted under the same conditions as in Example 6 to obtain a compound obtained by copolymerizing 4-vinylbenzyl chloride and vinylidene chloride at a molar ratio of 1 Z 1. Obtained. The above molar ratio was confirmed by NMR. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a quaternary ammonium salt-containing polymer.
一方、 ポリエチレンテレフタ レ一 ト ( P E T ) (繊度 0 . 0 1 6 デシテッ クス) からなる不織布を 2 c m φ に打抜いた 微生物捕捉用担体を準備した。  On the other hand, a carrier for capturing microorganisms was prepared by punching a non-woven fabric made of polyethylene terephthalate (PET) (fineness: 0.016 decitex) into 2 cm φ.
P E T不織布に、 上記第 4級アンモニゥム塩含有重合体を 溶解した T H F溶液 ( 1 0 m g Z m 1 ) を 3 0秒含浸させた 後、 室温で減圧下 1 時間乾燥して、 不織布に対するビニル系 共重合体の付着率が約 1 . 0重量%の微生物捕捉用複合体を 作成した。  The PET non-woven fabric was impregnated with a THF solution (10 mg Zm 1) in which the quaternary ammonium salt-containing polymer was dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour, to obtain a vinyl-based non-woven fabric. A complex for capturing microorganisms having an adhesion rate of the polymer of about 1.0% by weight was prepared.
この微生物捕捉用複合体を、 内径 2 c mのカラムに 3 2枚 積層充填した後、 ェシエリキア コ リ (Escherichia Col i) を生理食塩水に 5 X I 0 8個/ m 1 の濃度に懸濁させた液を 4 5 m 1 / h r の速度でカラムに通液した。 The microorganism capture complex, after 3 2 stacked packed in a column having an inner diameter of 2 cm, were suspended to a concentration of Eshierikia co Li (Escherichia Col i) the saline 5 XI 0 8 pieces / m 1 The liquid was passed through the column at a rate of 45 m 1 / hr.
通液して得た濾液中の生菌数を寒天平板混釈法を用いて経 時的に測定し、 除菌率を求めた。 結果を表 7 に示す。 比較例 Ί The number of viable bacteria in the filtrate obtained by passing the solution was measured over time using the agar plate pour method, and the eradication rate was determined. Table 7 shows the results. Comparative example Ί
本発明の第 4級アンモニゥム塩含有重合体を用いず、 実施 例 1 3 で用いた P E T不織布のみをカラムに充填し、 これに ェシエリ キア コ リ (Escherichia Col i) を生理食塩水に 5 X I 0 8個/ m l の濃度に懸濁させた液を、 4 5 m 1 / h r の速度でカラムに通液した。 通液して得た濾液中の生菌数を 経時的に測定し、 除菌率を求めた結果を表 7 に示す。 実施例 1 4 Without using the quaternary ammonium salt-containing polymer of the present invention, only the PET non-woven fabric used in Example 13 was packed in a column, and Escherichia Coli was added to a physiological saline solution. The liquid suspended at a concentration of 8 cells / ml was passed through the column at a rate of 45 ml / hr. Table 7 shows the results obtained by measuring the number of viable bacteria in the filtrate obtained by passage over time and determining the eradication rate. Example 14
4 _ビニルベンジルク ロ リ ド ( 3 . 8 2 g、 2 5 mraol) と 塩化ビニリ デン ( 1 6 . 9 6 g、 1 7 5 mmol) および AIBN 4_vinylbenzyl chloride (3.82 g, 25 mraol), vinylidene chloride (16.966 g, 175 mmol) and AIBN
( 4 1 m g、 0 . 2 5 mmol) を実施例 6 と同様の条件下で反 応させ ( 4 -ピニルベンジルク ロ リ ドノ塩化ビニリデン) モ ル比が 2 / 3 の割合で共重合した化合物を得た。 上記モル比 は NMRにより確認した。 次に、 4 -ビニルベンジルクロ リ ド に対し等モル量のピリ ジンで 4級化処理してなる第 4級アン モニゥム塩含有重合体を用いたこと以外は、 実施例 1 3 と同 様にして微生物捕捉用複合体を得た。 (41 mg, 0.25 mmol) was reacted under the same conditions as in Example 6 to give a compound obtained by copolymerizing (4-pinylbenzylchloridnovinylidene chloride) at a molar ratio of 2/3. Obtained. The above molar ratio was confirmed by NMR. Next, in the same manner as in Example 13 except that a quaternary ammonium salt-containing polymer obtained by quaternizing 4-vinylbenzyl chloride with an equimolar amount of pyridine was used. Thus, a complex for capturing microorganisms was obtained.
この微生物捕捉用複合体を実施例 1 3 と同様にしてカラム に充填した後、 ェシエリ キア コ リ (Escherichia Col i) を 生理食塩水に 5 X I 0 8個/ m 1 の濃度に懸濁させた液を、 4 5 m 1 / h r の速度でカラムに通液し、 濾液中の生菌数を 経時的に測定した結果を表 7 に示す。 After this microorganism capture complex was packed in a column in the same manner as in Example 1 3 was suspended in a concentration of Eshieri Kia co Li (Escherichia Col i) the saline 5 XI 0 8 pieces / m 1 The solution is passed through the column at a rate of 45 ml / hr, and the viable cell count in the filtrate is determined. Table 7 shows the results measured over time.
表 7 から明らかなよう に、 実施例 1 3および 1 4の微生物 捕捉剤 (第 4級アンモニゥム塩含有重合体) を付着させた P E T不織布を用いた微生物捕捉用複合体は、 菌の捕捉力に優 れ、 高い除菌率を示したが、 本発明の微生物捕捉剤を付着さ せていない比較例 7 のものは、 菌の捕捉力が弱く 、 しかも時 間の経過と共に著しく低下し、 わずか 1 0 %程度の除菌率し か示さなかった。 As is clear from Table 7, the composites for capturing microorganisms using the PET non-woven fabric to which the microorganism capturing agents (quaternary ammonium salt-containing polymers) of Examples 13 and 14 were attached had a lower ability to capture bacteria. In Comparative Example 7, which exhibited an excellent and high eradication rate, but did not have the microorganism-capturing agent of the present invention attached thereto, the ability to capture bacteria was weak, and also decreased significantly with time. It showed only about 0% eradication rate.
0301322 0301322
67 67
表 7 Table 7
Figure imgf000070_0001
Figure imgf000070_0001
*VBC 4 一 ビニルベ ンジルク ロ リ ド  * VBC 4-vinyl benzyl chloride
VC 塩化 ビニ リ デン  VC Vinylidene chloride
Έ. Col i Escherichia Co 1 i Έ. Col i Escherichia Co 1 i
実施例 1 5 Example 15
実施例 1 3 と同様の方法で得られた 2 c m φ の微生物捕捉 用複合体を、 内径 2 c mカラムに 3 2枚積層充填した後、 ス タフイ ロコ ッカス ァゥ レウス (Staphylococcus aureus) を生理食塩水に 3 X I 0 8個/ m 1 の濃度に懸濁させた液を 6 O m l Z h r の速度でカラムに通液した。 通液して得た濾 液中の生菌数を経時的に測定し、 除菌率を求めた。 結果を表 8 に示す。 実施例 1 6 After stacking three 2 cm-diameter microorganism-complexes obtained in the same manner as in Example 13 in a 2 cm-diameter column in a stack, Staphylococcus aureus was replaced with physiological saline. water 3 XI 0 8 pieces / m 1 of a liquid suspended in a concentration was passed through the column at a rate of 6 O ml Z hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time, and the eradication rate was determined. Table 8 shows the results. Example 16
実施例 1 3 と同様の方法で得られた 2 c m φの微生物捕捉 用複合体を、 内径 2 c mのカラムに 3 2 枚、 積層充填した後 シユー ドモナス ァエルギノーザ (Pseudomonas  A 2 cm φ complex for capturing microorganisms obtained in the same manner as in Example 13 was packed in a stack of 32 pieces in a column having an inner diameter of 2 cm, and then packed in a stack. Pseudomonas aeruginosa (Pseudomonas
aeruginosa) を生理食塩水に 6 X 1 0 8個 Zm 1 の濃度に懸 濁させた液を、 3 0 m 1 / h r の速度でカラムに通液した。 通液して得た濾液中の生菌数を経時的に測定し、 除菌率を求 めた。 結果を表 8 に示す。 aeruginosa) was suspended in physiological saline at a concentration of 6 × 10 8 Zm 1 and passed through the column at a rate of 30 m 1 / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time, and the eradication rate was determined. Table 8 shows the results.
表 8から明らかなよう に、 菌の種類にかかわらず、 本発明 の微生物捕捉剤を用いた微生物捕捉用複合体は良好な菌の捕 捉カを示した。 . 表 8 As is evident from Table 8, regardless of the type of bacteria, the complex for capturing microorganisms using the microorganism capturing agent of the present invention showed a good ability to capture bacteria. . Table 8
Figure imgf000072_0001
実施例 1 7
Figure imgf000072_0001
Example 17
実施例 1 3 と同様の方法で得られた 2 c m φ の微生物捕捉 用複合体を、 内径 2 c mのカラムに 3 2枚、 積層充填した後 M l 3ノ クテリ オフ ァージを生理食塩水に 5 X I 0 6粒/ m 1 の濃度に懸濁させた液を、 4 0 m 1 / h r の速度でカラム に通液した。 通液して得た濾液中のファージ粒子数を経時的 に測定し、 除去率を求めた。 結果を表 9 に示す。 比較例 8 実施例 1 と同様の P E T不織布を用い、 これを実施例 1 7 と同じく 2 c m <i)の大きさに打抜き、 これを内径 2 c mの力 ラムに 3 2 枚、 積層充填した後、 M 1 3バクテリオファージ を生理食塩水に 5 X 1 0 6粒 Zm l の濃度に懸濁させた液を 4 0 m 1 / h r の速度でカラムに通液した。 A 2 cm φ microbial capture complex obtained in the same manner as in Example 13 was packed in a stack of 2 or 2 pieces in a column with an inner diameter of 2 cm. the XI 0 6 grains / liquid suspended in a concentration of m 1, was passed through the column at a rate of 4 0 m 1 / hr. The number of phage particles in the filtrate obtained by passing the solution was measured over time to determine the removal rate. Table 9 shows the results. Comparative Example 8 Using the same PET non-woven fabric as in Example 1, this was punched out to a size of 2 cm <i) as in Example 17, and 32 pieces were stacked and filled in a ram having an inner diameter of 2 cm. A solution of 3 bacteriophages suspended in saline at a concentration of 5 × 10 6 particles Zml was passed through the column at a rate of 40 m 1 / hr.
通液して得た濾液中の粒子数を経時的に測定し、 除去率を 求めた。 結果を表 9 に示す。 ' 表 9から、 本発明の微生物捕捉剤を用いた微生物捕捉用複 合体が、 菌体に比べて微小なウィルスに対しても有効に働く こ とがわかる。 The number of particles in the filtrate obtained by passing the solution was measured over time, and the removal rate was determined. Table 9 shows the results. 'From Table 9, it can be seen that the complex for capturing microorganisms using the microorganism capturing agent of the present invention works more effectively on microscopic viruses than bacterial cells.
表 9 Table 9
Figure imgf000074_0001
実施例 1 8
Figure imgf000074_0001
Example 18
4一ビニルベンジリレク ロ リ ド ( 3 . 8 2 g、 2 5 mmol) と 塩化ビニリ デン ( 3 3 . 9 3 g、 3 5 0 mmol) および AIBN 4 Vinyl benzylyl chloride (3.82 g, 25 mmol), vinylidene chloride (33.933 g, 350 mmol) and AIBN
( 4 1 m g 、 0 . 2 5 mmol) を実施例 6 と同様の条件下で反 応させ ( 4 -ビニルベンジルク ロ リ ド Z塩化ビニリデン) モ ル比 1 Z 4 の割合で共重合した化合物を得た。 上記モル比は NMR によ り確認した。 次に、 これを 4 -ビニルベンジルクロ リ ドに対し等モル量のピリ ジンで 4級化処理して第 4級アン モニゥム塩含有重合体を得た。 得られた第 4級アンモニゥム 塩含有重合体を用いたこと以外は、 実施例 1 3 と同様にして 微生物捕捉用複合体を得た。 (41 mg, 0.25 mmol) was reacted under the same conditions as in Example 6 to give a compound obtained by copolymerizing (4-vinylbenzyl chloride Z vinylidene chloride) at a molar ratio of 1 Z 4. I got The above molar ratio was confirmed by NMR. Next, this was quaternized with an equimolar amount of pyridine based on 4-vinylbenzyl chloride to obtain a quaternary ammonium salt-containing polymer. A composite for capturing microorganisms was obtained in the same manner as in Example 13 except that the obtained quaternary ammonium salt-containing polymer was used.
この微生物捕捉用複合体を実施例 1 3 と同様にしてカラム に充填した後、 ェシエリキア コ リ (Escherichia Col i) を 生理食塩水に 5 X I 0 8個 / m 1 の濃度に懸濁させた液を、 4 5 m l Z h r の速度でカラムに通液し、 濾液中の生菌数を 経時的に測定し、 除菌率を求めた。 結果を表 1 0 に示す。 After packing the microorganism capturing complex into a column in the same manner as in Example 13, Escherichia coli was added to the column. The liquid was suspended in physiological saline to a concentration of 5 XI 0 8 pieces / m 1, was passed through the column at a rate of 4 5 ml Z hr, over time to measure the number of viable bacteria in the filtrate, dividing The bacterial rate was determined. The results are shown in Table 10.
表 1 0から本発明の微生物捕捉剤の原料物質である 4 ー ビ 二ルペンジルク ロ リ ド と塩化ビニリ デンの割合によつて、 微 生物捕捉用複合体の微生物の捕捉力に差が生じることが判つ た。 表 1 0  From Table 10, it can be seen that the ratio of 4-vinylpentyl chloride and vinylidene chloride, which are the raw materials of the microorganism capturing agent of the present invention, causes a difference in the capturing ability of the microorganism capturing complex for the microorganism. I understand. Table 10
Figure imgf000075_0001
Figure imgf000075_0001
fYBC : 4一ビニルベンジルク ロ リ ド  fYBC: 4-vinylbenzyl chloride
VC : 塩化ビニ リ デン  VC: Vinylidene chloride
実施例 1 9 4ービニリレベンジゾレク ロ リ ド ( 3 . 8 2 g、 2 5 mmol) と 塩化ビニリデン ( 2 . 1 2 g、 1 2 5 mmol) および AIBNExample 19 4-vinylylbenzodiolechloride (3.82 g, 25 mmol), vinylidene chloride (2.12 g, 125 mmol) and AIBN
( 4 1 m g、 0 . 2 5 mmol) を実施例 6 と同様の条件下で反 応させ、 4 -ビニルベンジルク ロ リ ドと塩化ビニリデンとが モル比 1 Z 1 の割合で共重合した化合物を得た。 組成比は NMR によ り確認した。 次に、 4 -ビニルベンジルク ロ リ ドに 対し等モル量のピリ ジンで 4級化処理して第 4級アンモニゥ ム塩含有重合体を得た。 (41 mg, 0.25 mmol) was reacted under the same conditions as in Example 6 to give a compound in which 4-vinylbenzyl chloride and vinylidene chloride were copolymerized in a molar ratio of 1 Z 1. I got The composition ratio was confirmed by NMR. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a quaternary ammonium salt-containing polymer.
一方、 ポリ エチレンテレフ夕 レー ト ( P E T ) (繊度 0 . 0 1 6 デシテックス) からなる不織布を 2 c m φ に打抜いた 微生物捕捉用担体を準備した。  On the other hand, a carrier for capturing microorganisms was prepared by punching a nonwoven fabric made of polyethylene terephthalate (PET) (fineness: 0.016 dtex) into 2 cm φ.
P E T不織布に、 上記第 4級アンモニゥム塩含有重合体を 溶解した T H F溶液 ( l O m g Zm l ) を 3 0秒含浸させた 後、 室温で減圧下 1 時間乾燥して、 不織布に対するビニル系 共重合体の付着率が約 1 . 0重量%の微生物捕捉用複合体を 作成した。  A PET non-woven fabric is impregnated with a THF solution (10 mg Zml) in which the above quaternary ammonium salt-containing polymer is dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour to obtain a vinyl copolymer for the non-woven fabric. A composite for capturing microorganisms having a coalescence rate of about 1.0% by weight was prepared.
この微生物捕捉用複合体を、 活性汚泥菌含有液に 1 4時間 もしく は 4 8時間浸漬し、 活性汚泥菌槽を 5 0 r p mの速度 で往復振と う した。 上記の微生物捕捉用複合体に付着した菌 体をメチレンブルーで染色し、 吸光度 ( 6 6 0 n m) を経時 的に測定し、 付着量を求めた。 結果を表 1 1 に示す。 比較例 9 本発明の微生物捕捉剤を用いず、 実施例 1 3 で用いた P E T不織布のみを、 活性汚泥菌を懸濁させた液に浸漬し、 活性 汚泥菌槽を 5 0 r p mの速度で往復振とう した。 上記の微生 物捕捉用複合体に付着した菌体をメチレンブルーで染色し、 吸光度 ( 6 6 0 n m ) を経時的に測定し、 付着量を求めた。 結果を表 1 1 に示す。 実施例 2 0 The microorganism capturing complex was immersed in a solution containing activated sludge for 14 hours or 48 hours, and the activated sludge tank was shaken back and forth at a speed of 50 rpm. The cells adhering to the above complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the adhering cells. Table 11 shows the results. Comparative Example 9 Only the PET non-woven fabric used in Example 13 was immersed in a liquid in which activated sludge was suspended without using the microorganism capturing agent of the present invention, and the activated sludge tank was reciprocally shaken at a speed of 50 rpm. . The cells adhering to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the adhering cells. Table 11 shows the results. Example 20
4一ビニルベンジルク ロ リ ド ( 3 . 8 2 g、 2 5 mmol) と 塩化ビニリデン ( 1 6 . 9 6 g、 1 7 5 ramol) および AIBN 4) Vinyl benzyl chloride (3.82 g, 25 mmol), vinylidene chloride (16.966 g, 175 ramol) and AIBN
( 4 1 m g、 0 . 2 5 mmo〖) を実施例 6 と同様の条件下で反 応させ ( 4 -ビニルベンジルク ロ リ ド /塩化ビニリデン) モ ル比が 2 Z 3 の割合で共重合した化合物を得た。 上記モル比 は NMR によ り確認した。 次に、 4 -ビニルベンジルク ロ リ ド に対し等モル量のピリ ジンで 4級化処理して、 第 4級アンモ 二ゥム塩含有重合体を得た。 得られた第 4級アンモニゥム塩 含有重合体を用いたこ と以外は、 実施例 1 9 と同様にして微 生物捕捉用複合体を得た。 (41 mg, 0.25 mmo 〖) was reacted under the same conditions as in Example 6 to copolymerize (4-vinylbenzyl chloride / vinylidene chloride) at a molar ratio of 2 Z 3. The obtained compound was obtained. The above molar ratio was confirmed by NMR. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a quaternary ammonium salt-containing polymer. A composite for capturing microorganisms was obtained in the same manner as in Example 19, except that the obtained quaternary ammonium salt-containing polymer was used.
この微生物捕捉用複合体を実施例 1 9 と同様にして活性汚 泥菌含有液に 1 4時間も しく は 4 8 時間浸漬し、 活性汚泥菌 槽を 5 0 r p mの速度で往復振と う した。 上記の微生物捕捉 用複合体に付着した菌体をメチレンブルーで染色し、 吸光度 This complex for capturing microorganisms was immersed in a solution containing activated sludge for 14 hours or 48 hours in the same manner as in Example 19, and the activated sludge tank was reciprocated at 50 rpm. . The cells adhering to the above-mentioned complex for capturing microorganisms are stained with methylene blue, and the absorbance is measured.
( 6 6 0 n m ) を経時的に測定し、 付着量を求めた。 結果を 表 1 1 に示す。 (660 nm) was measured over time to determine the amount of adhesion. The result Table 11 shows them.
表 1 1 から明 らかなよう に、 実施例 1 9 および 2 0 の微生 物捕捉剤を付着させた P E T不織布を用いた微生物捕捉用複 合体は、 菌の捕捉力に優れるが、 本発明の微生物捕捉剤を付 着させていない比較例 9 のものは、 菌の捕捉力が弱いことが 分かる。 表 1 1  As is clear from Table 11, the composites for capturing microorganisms using the PET nonwoven fabric to which the microorganism capturing agents of Examples 19 and 20 were adhered were excellent in the ability to capture bacteria, but the present invention It can be seen that in the case of Comparative Example 9 to which no microorganism trapping agent was attached, the ability to trap bacteria was weak. Table 11
Figure imgf000078_0001
Figure imgf000078_0001
*VBC : 4 一 ビニルベンジルク ロ リ ド  * VBC: 4-vinylbenzyl chloride
VC: 塩化ビニリ デン 実施例 2 1  VC: Vinylidene chloride Example 2 1
4 -ビニルベンジルク ロ リ ド ( 7 . 0 4 g、 4 6 mmol) と スチレン ( 4. 8 0 g、 4 6 mmol) を トルエン 2 0 m l に溶 解し、 M BN ( 7 2 m g、 0 . 4 4 mmo 1 ) 存在下、 常圧 8 0 °C で 1 5時間反応した。 反応液をエタノールに加え生じた沈殿 を減圧下乾燥し、 4 -ビニルベンジルク ロ リ ドとスチレンと がモル比 1 Z 1 の割合で共重合した化合物 ( 5 . 9 8 g ) を 得た。 組成比は NMR によ り確認した。 次に、 4 -ビニルベン ジルク ロ リ ドに対し等モル量のピリ ジン ( 3 . 6 3 g '、 4 6 mmol) を加え、 エタノール溶媒中、 常圧下 8 0 °Cで 1 5 時間 反応し、 反応液をエーテルに加え生じた沈殿を減圧下乾燥し 目的とする第 4級アンモニゥム塩含有重合体 ( 7 . 3 0 g ) を得た。 4-vinylbenzyl chloride (7.04 g, 46 mmol) and styrene (4.80 g, 46 mmol) were dissolved in 20 ml of toluene, and MBN (72 mg, 0 The reaction was carried out at normal pressure at 80 ° C for 15 hours in the presence of 4.4 mmo 1). The reaction mixture was added to ethanol and the resulting precipitate Was dried under reduced pressure to obtain a compound (5.98 g) in which 4-vinylbenzyl chloride and styrene were copolymerized at a molar ratio of 1 Z1. The composition ratio was confirmed by NMR. Next, an equimolar amount of pyridine (3.63 g ', 46 mmol) was added to 4-vinylbenzyl chloride, and the mixture was reacted at 80 ° C under normal pressure in an ethanol solvent for 15 hours. The reaction solution was added to ether, and the resulting precipitate was dried under reduced pressure to obtain a desired quaternary ammonium salt-containing polymer (7.30 g).
一方、 ポリ エチレンテレフ夕 レー ト ( P E T ) (繊度 0 . 0 1 6デシテッ クス) からなる不織布を 2 c m φ に打抜いて 微生物吸着用担体を得た。  On the other hand, a nonwoven fabric made of polyethylene terephthalate (PET) (fineness: 0.016 decitex) was punched into 2 cmφ to obtain a carrier for adsorbing microorganisms.
P E T不織布に、 上記第 4級アンモニゥム塩含有重合体を 溶解した T H F溶液 ( 1 0 m g m 1 ) を 3 0秒含浸させた 後、 室温で減圧下 1 時間乾燥して、 不織布に対する第 4級ァ ンモニゥム塩含有重合体の付着率が約 1 . 0質量%の微生物 捕捉用複合体を得た。  A PET non-woven fabric was impregnated with a THF solution (10 mgm 1) in which the above quaternary ammonium salt-containing polymer was dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour to obtain a quaternary ammonium solution for the non-woven fabric. A complex for capturing microorganisms having an adhesion rate of the salt-containing polymer of about 1.0% by mass was obtained.
この微生物捕捉用複合体を、 内径 2 c mのカ ラムに 3 2 枚 積層充填した後、 ェシエリ キア コ リ (Escherichia Col i) を生理食塩水に 5 X 1 0 8個/ m 1 の濃度に懸濁させた液を 4 5 m 1 / r の速度でカラムに通液した。 After stacking and stacking 32 of this microorganism-capturing complex in a column with an inner diameter of 2 cm, Escherichia coli was suspended in saline at a concentration of 5 × 10 8 cells / m 1. The turbid solution was passed through the column at a rate of 45 m 1 / r.
通液して得た濾液中の生菌数を寒天平板混釈法を用いて経 時的に測定し、 除菌率を求めた。 結果を表 1 2 に示す。 比較例 1 0 The number of viable bacteria in the filtrate obtained by passing the solution was measured over time using the agar plate pour method, and the eradication rate was determined. The results are shown in Table 12. Comparative Example 10
本発明の第 4級アンモニゥム塩含有重合体を用いず、 実施 例 2 1 で用いた P E T不織布のみをカ ラムに充填し、 これに ェシエリキア コ リ (Escherichia Col i) を生理食塩水に 5 X I 0 8個 Z m 1 の濃度に懸濁させた液を、 .4 5 m 1 / h r の速度で力 ラムに通液した。 通液して得た濾液中の生菌数を 経時的に測定し、 除菌率を求めた。 結果を表 1 2 に示す。 実施例 2 2 Without using the quaternary ammonium salt-containing polymer of the present invention, only the PET nonwoven fabric used in Example 21 was filled in a column, and Escherichia coli (Escherichia Coli) was added to physiological saline. Eight suspensions having a concentration of Zm 1 were passed through a column at a rate of .45 m 1 / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time to determine the eradication rate. The results are shown in Table 12. Example 22
4一ビニルベンジリレク ロ リ ド ( 6 . 1 0 g、 4 0 mmo 1 ) と スチレン ( 6 . 2 5 g、 6 0 mmol) を トルエン 6 0 ml に溶 解し AIBN ( 8 2 m g、 0 . 5 mmo 1 ) 存在下、 常圧 8 0 °Cで 1 5時間反応させ ( 4 -ビニルベンジルクロ リ ド /スチレ ン) モル比が 2 / 3 の割合で共重合した化合物 ( 7 . 2 3 g ) を得た。 上記モル比は NMR によ り確認した。 次に、 4 - ビニルベンジルク ロ リ ドに対し等モル量のピリ ジンで 4級化 処理して第 4級アンモニゥム塩含有重合体を得た。 得られた 第 4級アンモニゥム塩含有重合体を用いたこ と以外は、 実施 例 2 1 と同様にして微生物捕捉用複合体を得た。  4 Vinyl benzylyl chloride (6.10 g, 40 mmo1) and styrene (6.25 g, 60 mmol) were dissolved in 60 ml of toluene, and AIBN (82 mg, 0 The compound (7.23) reacted in the presence of 0.5 mmo 1) at normal pressure at 80 ° C for 15 hours and copolymerized at a molar ratio of (4-vinylbenzyl chloride / styrene) of 2/3 (7.23 g) was obtained. The above molar ratio was confirmed by NMR. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a quaternary ammonium salt-containing polymer. A composite for capturing microorganisms was obtained in the same manner as in Example 21 except that the obtained quaternary ammonium salt-containing polymer was used.
この微生物捕捉用複合体を実施例 2 1 と同様にしてカラム に充填した後、 ェシエリキア コ リ (Escherichia Col i) を 生理食塩水に 5 X 1 0 8個/ m 1 の濃度に懸濁させた液を、 4 5 m 1 / r の速度でカラムに通液し、 濾液中の生菌数を 経時的に測定した。 結果を表 1 2 に示す。 After filling this microbial complex into a column in the same manner as in Example 21, Escherichia coli was suspended in physiological saline at a concentration of 5 × 10 8 cells / m 1. The solution is passed through the column at a rate of 45 m 1 / r, and the viable cell count in the filtrate is determined. Measured over time. The results are shown in Table 12.
表 1 2から明 らかなよう に、 実施例 2 1 および 2 2 の微生 物捕捉剤を付着させた P E T不織布を用いた微生物捕捉用複 合体は、 菌の吸着力に優れ、 高い除菌率を示したが、 本発明 の微生物捕捉樹脂を付着させていない比較例 1 0 のものは、 菌の捕捉力が弱く、 しかも時間の経過と共に著しく低下し、 わずか 1 0 %程度の除菌率しか示さなかった。 表 1 2  As is evident from Table 12, the microorganism-trapping composites using the PET nonwoven fabric to which the microbial trapping agents of Examples 21 and 22 were attached were excellent in the ability to adsorb bacteria and had a high eradication rate. However, in the case of Comparative Example 10 to which the microorganism-capturing resin of the present invention was not adhered, the ability to capture bacteria was weak, and also significantly decreased with time, and the eradication rate was only about 10%. Not shown. Table 1 2
Figure imgf000081_0001
Figure imgf000081_0001
*VBC 4 — ビニルベ ンジルク ロ リ ド * VBC 4 — vinyl benzyl chloride
S t スチ レ ン  S t Styrene
Col i Escherichia Co 1 i 実施例 2 3 Col i Escherichia Co 1 i Example 2 3
実施例 2 1 と同様の方法で得られた 2 c m φ の微生物捕捉 用複合体を、 内径 2 c mのカラムに 3 2枚積層充填した後、 スタフイ ロコ ッカス ァゥレウス (Staphylococcus aureus) を生理食塩水に 3 X 1 0 8個 Zm 1 の濃度に懸濁さ せた液を、 6 0 m 1 / h r の速度でカラムに通液した。 通液 して得た濾液中の生菌数を経時的に測定し、 除菌率を求めた 結果を表 1 3 に示す。 実施例 2 4 Example 2 After stacking two 2 cm-diameter complex for microbial capture obtained in the same manner as in a column of 2 cm in diameter on a column of 2 cm in diameter, Staphylococcus aureus (Staphylococcus aureus) was added to physiological saline. The liquid suspended at a concentration of 3 × 10 8 Zm 1 was passed through the column at a rate of 60 m 1 / hr. The number of viable bacteria in the filtrate obtained through the passage was measured over time, and the eradication rate was determined. Table 13 shows the results. Example 2 4
実施例 2 1 と同様の方法で得られた 2 c m φ の微生物捕捉 用複合体を、 内径 2 c mのカラムに 3 2枚積層充填した後、 シユー ドモナス ァエリレギノーサ ( Ps eudomonas  Example 2 After 2 layers of 2 cm φ of the microorganism-capturing complex obtained in the same manner as in Example 1 were packed in a column having an inner diameter of 2 cm by three layers, Pseudomonas aerialeginosa (Ps eudomonas
aeruginosa) を生理食塩水に 6 X 1 0 8個 / m 1 の濃度に懸 濁させた液を、 3 0 m l / h r の速度でカラムに通液した。 通液して得た濾液中の生菌数を経時的に測定し、 除菌率を求 めた。 結果を表 1 3 に示す。 aeruginosa) was suspended in physiological saline to a concentration of 6 × 10 8 particles / m 1 and passed through the column at a rate of 30 ml / hr. The number of viable bacteria in the filtrate obtained by passing the solution was measured over time, and the eradication rate was determined. Table 13 shows the results.
表 1 3 から明 らかなよう に、 菌の種類にかかわらず、 本発 明の微生物捕捉剤を用いた微生物捕捉用複合体は良好な菌の 捕捉力を示した。 表 1 3 As is evident from Table 13, regardless of the type of bacteria, the complex for capturing microorganisms using the microorganism capturing agent of the present invention exhibited a good ability to capture bacteria. Table 13
Figure imgf000083_0001
Figure imgf000083_0001
実施例 2 5 Example 2 5
実施例 2 1 と同様の方法で得られた 2 c m φの微生物捕捉 用複合体を、 内径 2 c mのカラムに 3 2枚積層充填した後、 After stacking 2 layers of the 2 cm φ microbial capturing complex obtained in the same manner as in Example 21 into a 2 cm inner diameter column,
M l 3バクテリ オファ一ジを生理食塩水に 5 X 1 0 6粒子 Z m 1 の濃度に懸濁させた液を、 4 0 m 1 / h r の速度でカラ ムに通液した。 通液して得た濾液中のフ ァージ粒子数を経時 的に測定し、 除菌率を求めた。 結果を表 1 4 に示す。 比較例 1 1 T/JP03/01322 A suspension of M13 bacteriophage in physiological saline at a concentration of 5 × 10 6 particles Z m 1 was passed through the column at a rate of 40 m 1 / hr. The number of phage particles in the filtrate obtained by passing the solution was measured over time to determine the bactericidal rate. The results are shown in Table 14. Comparative Example 1 1 T / JP03 / 01322
81 81
実施例 2 1で用いたものと同様の P E T不織布を用い、 こ れを実施例 2 5 と同じく 2 c m <i)の大きさに打抜き、 これを 内径 2 c mのカラムに 3 2枚積層充填した後、 M l 3パクテ リオフ ァ一ジを生理食塩水に 5 X 1 0 6粒子 Zm l の濃度に 懸濁させた液を、 4 0 m l / h r の速度でカラムに通液した 通液して得た濾液中の粒子数を経時的に測定し、 除菌率を 求めた。 結果を表 1 4に示す。 A PET nonwoven fabric similar to that used in Example 21 was punched out into a size of 2 cm <i) as in Example 25, and this was packed into a column having an inner diameter of 2 cm in a stack of 32 pieces. After that, a suspension of Ml 3 pacteriophage at a concentration of 5 x 10 6 particles Zml in physiological saline was passed through the column at a flow rate of 40 ml / hr. The number of particles in the obtained filtrate was measured over time, and the bacteria removal rate was determined. The results are shown in Table 14.
表 1 4から、 本発明の微生物捕捉剤を用いた微生物捕捉用 複合体が、 菌体に比べて微小なウィルスに対しても有効に働 く ことがわかる。  Table 14 shows that the complex for capturing microorganisms using the microorganism capturing agent of the present invention works more effectively on microscopic viruses than bacterial cells.
表 1 4 実施例 2 5 比較例 1 1 捕捉剤の含浸 有 り 無し Table 1 4 Example 2 5 Comparative Example 1 1 Impregnation with scavenger Yes No
ウィルスの種類 Bacteriophage B a c t e r i oPh age  Virus type Bacteriophage B a c t e r i oPh age
M 1 3 M 1 3  M 1 3 M 1 3
ウィルス 粒子数  Virus particle count
(粒子/ m 1 ) 5 x 1 0 s 5 x 1 0 6 (Particles / m 1) 5 x 10 s 5 x 10 6
1 時間後の通液中の  1 hour later
ウィルス 粒子数  Virus particle count
(粒子/ m 1 ) 1 . 1 1 0 4 2 . 9 x 1 0 6 除去率 (Particles / m 1) 1. 1 1 0 4 2. 9 x 1 0 6 REJECTION
( % ) 9 9 . 7 8 4 2 . 0 0 実施例 2 6 (%) 99.7 8 42.0 .0 0 Example 26
4ービニリレベンジリレク ロ リ ド ( 3 . 0 5 g、 2 0 mmol) と スチレン ( 8 . 3 3 g、 8 0 mmol) を トルエン 6 0 lid に溶 解し AIBN ( 8 2 m g、 0 . 5 mmol) 存在下、 常圧 8 0 °Cで 1 5 時間反応させ、 ( 4 -ビニルベンジルク ロ リ ド /スチレ ン) モル比が 1 Z 4 の割合で共重合した化合物 ( 6 . 2 8 g ) を得た。 上記のモル比は NMRによ り確認した。 次に、 4 -ビニルベンジルクロ リ ドに対し等モル量のピリ ジンで 4 級化処理して、 第 4級アンモニゥム塩含有重合体を得た。 得 られた第 4級アンモニゥム塩含有重合体を用いたこと以外は 実施例 2 1 と同様にして微生物捕捉用複合体を得た。  4-Vinylyl benzylyl chloride (3.05 g, 20 mmol) and styrene (8.33 g, 80 mmol) were dissolved in toluene 60 lid, and AIBN (82 mg, 0 mmol) was dissolved. The reaction was carried out at 80 ° C under normal pressure for 15 hours in the presence of (5.5 mmol), and the compound (6.2) having a (4-vinylbenzyl chloride / styrene) molar ratio of 1 Z4 was copolymerized. 8 g) were obtained. The above molar ratio was confirmed by NMR. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a quaternary ammonium salt-containing polymer. A composite for capturing microorganisms was obtained in the same manner as in Example 21 except that the obtained quaternary ammonium salt-containing polymer was used.
この微生物捕捉用複合体を実施例 2 1 と同様にしてカラム に充填した後、 ェシエリキア コ リ (Escherichia Col i) を 生理食塩水に 5 X 1 0 8個 Z m 1 の濃度に懸濁させた液を、 4 5 m l / h r の速度でカ ラムに通液し、 濾液中の生菌数を 経時的に測定し、 除菌率を求めた。 結果を表 1 5 に示す。 実施例 2 7 After filling this microbial capturing complex into a column in the same manner as in Example 21, Escherichia coli (Escherichia Coli) was suspended in physiological saline to a concentration of 5 × 10 8 Zm 1. The solution was passed through a column at a rate of 45 ml / hr, and the number of viable bacteria in the filtrate was measured over time to determine the eradication rate. The results are shown in Table 15. Example 2 7
4ービニリレベンジルク ロ リ ド ( 6 . 8 7 g、 4 5 mmol) と メタク リル酸メチル ( 5 . 5 1 g、 5 5 fflmol) を トルエン 6 0 ml に溶解し AIBN ( 8 2 m g、 0 . 5 mmol) 存在下、 常圧 8 0 °Cで 1 5時間反応させ、 ( 4 -ビニルベンジルク ロ リ ド Zメタク リル酸メチル) モル比が 2 Z 3 の割合で共重合した 化合物 ( 6 . 4 3 g ) を得た。 上記のモル比は NMRによ り確 認した。 次に、 4 -ビニルベンジルク ロ リ ドに対し等モル量 のピリ ジンで 4級化処理して第 4級アンモニゥム塩含有重合 体を得た。 得られたを用いたこ と以外は、 実施例 2 1 と同様 にして微生物捕捉用複合体を得た。 4-vinylylbenzyl chloride (6.87 g, 45 mmol) and methyl methacrylate (5.51 g, 55 fflmol) were dissolved in 60 ml of toluene, and AIBN (82 mg, (0.5 mmol) at normal pressure of 80 ° C for 15 hours, and copolymerized at a molar ratio of (4-vinylbenzyl chloride Z methyl methacrylate) of 2 Z 3 The compound (6.43 g) was obtained. The above molar ratio was confirmed by NMR. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a quaternary ammonium salt-containing polymer. A complex for capturing microorganisms was obtained in the same manner as in Example 21 except that the obtained product was used.
この微生物捕捉用複合体を実施例 2 1 と同様に してカ ラム に充填した後、 ェシエリ キア コ リ (Escherichia Co 1 i) を 生理食塩水に 5 X I 0 8個/ m 1 の濃度に懸濁させた液を、 4 5 m l / h r の速度でカ ラムに通液し、 濾液中の生菌数を 経時的に測定し、 除菌率を求めた。 結果を表 1 5 に示す。 After filling the column with this microorganism capture complexes in the same manner as in Example 2 1, Eshieri Kia co Li a (Escherichia Co 1 i) in saline suspension to a concentration of 5 XI 0 8 pieces / m 1 The turbid solution was passed through a column at a rate of 45 ml / hr, and the number of viable bacteria in the filtrate was measured over time to determine the eradication rate. The results are shown in Table 15.
表 1 5 か ら、 本発明の微生物捕捉剤の原料物質である 4 — ビニルベンジルク ロ リ ド と ビニルモノ マーの割合によつ て、 微生物捕捉用複合体の微生物の捕捉力に差が生じる こ とが'判 つた。 尚、 表 1 5 か ら、 ビニルモノ マー成分を変更しても、 良好な捕捉力を持つ微生物捕捉剤が得られる こ とがわかる。 From Table 15, it can be seen that there is a difference in the ability of the complex for capturing microorganisms to capture microorganisms depending on the ratio of the raw materials of the microorganism capturing agent of the present invention, 4—vinylbenzyl chloride and vinyl monomer. And 'he knew. From Table 15, it can be seen that even if the vinyl monomer component is changed, a microorganism-capturing agent having good capturing power can be obtained.
表 1 5 Table 15
Figure imgf000087_0001
実施例 2 8
Figure imgf000087_0001
Example 2 8
実施例 2 1 と同様の方法によ り 、 4 -ビニルベンジルク 口 リ ド とスチレンがモル比 1 : 1 の割合で共重合した化合物を 得た。 次に、 4 -ビニルベンジルク ロ リ ド に対し等モル量の ピ リ ジンで 4級化処理して、 目的とする第 4級アンモニゥム 塩含有重合体を得た。  By a method similar to that of Example 21, a compound in which 4-vinylbenzyl chloride and styrene were copolymerized in a molar ratio of 1: 1 was obtained. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a desired quaternary ammonium salt-containing polymer.
一方、 ポリ エチレンテレフタ レー ト ( P E T) (繊度 0. 1322 On the other hand, polyethylene terephthalate (PET) (fineness of 0. 1322
85 85
0 1 6 デシテックス) からなる不織布を 2 c m φ に打抜いた 微生物吸着用担体を得た。  A nonwoven fabric made of 0. 16 decitex) was punched into 2 cmφ to obtain a carrier for adsorbing microorganisms.
P E T不織布に、 上記第 4級アンモニゥム塩含有重合体を 溶解した T H F溶液 ( 1 0 m g /m l ) を 3 0秒含浸させた 後、 室温で減圧下 1 時間乾燥して、 不織布に対するビニル系 共重合体の付着率が約 1 . 0質量%の微生物捕捉用複合体を 得た。  The PET non-woven fabric was impregnated with a THF solution (10 mg / ml) in which the quaternary ammonium salt-containing polymer was dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour to obtain a vinyl copolymer for the non-woven fabric. A complex for capturing microorganisms having a coalescence rate of about 1.0% by mass was obtained.
この微生物捕捉用複合体を、 活性汚泥菌含有液に 1 4時間 もし く は 4 8 時間浸漬し、 活性汚泥菌槽を 5 0 r p mの速度 で往復振とう した。 上記の微生物捕捉用複合体に付着した菌 体をメチレンブル一で染色し、 吸光度 ( 6 6 0 n m) を経時 的に測定し、 付着量を求めた。 結果を表 1 6 に示す。 比較例 1 2  This complex for capturing microorganisms was immersed in a liquid containing activated sludge for 14 hours or 48 hours, and the activated sludge tank was shaken back and forth at a speed of 50 rpm. The cells adhering to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount adhering. The results are shown in Table 16. Comparative Example 1 2
本発明の微生物捕捉剤 (第 4級アンモニゥム塩含有重合 体) を用いず、 実施例 2 1 で用いた P E T不織布のみを、 活 性汚泥菌含有液に 1 4時間もしく は 4 8時間浸漬し、 活性汚 泥菌槽を 5 0 r p mの速度で往復振とう した。 上記の微生物 捕捉用複合体に付着した菌体をメチレンブルーで染色し、 吸 光度 ( 6 6 0 n m ) を経時的に測定し、 付着量を求めた。 結 果を表 1 6 に示す。 実施例 2 9 実施例 2 2 と同様の方法によ り、 ( 4 -ビエルベンジルク ロ リ ド Zスチレン) モル比が 2 Z 3 の割合で共重合した化合 物を得た。 次に、 4 -ビニルベンジルク ロ リ ドに対し等モル 量のピリ ジンで 4級化処理して、 目的とする第 4級アンモニ ゥム塩含有重合体を得、 更に実施例 2 8 と同様にして微生物 捕捉用複合体を得た。 Without using the microorganism scavenger of the present invention (quaternary ammonium salt-containing polymer), only the PET nonwoven fabric used in Example 21 was immersed in a liquid containing active sludge for 14 hours or 48 hours. Then, the activated sludge tank was shaken back and forth at a speed of 50 rpm. The cells attached to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the attached cells. Table 16 shows the results. Example 2 9 By a method similar to that in Example 22, a compound copolymerized at a molar ratio of (4-Bielbenzyl chloride Z styrene) of 2 Z 3 was obtained. Next, 4-vinylbenzyl chloride was quaternized with an equimolar amount of pyridine to obtain a desired quaternary ammonium salt-containing polymer. Thus, a complex for capturing microorganisms was obtained.
この微生物捕捉用複合体を実施例 2 8 と同様にして活性汚 泥菌含有液に 1 4時間もしく は 4 8 時間浸漬し、 活性汚泥菌 槽を 5 0 r p mの速度で往復振とう した。 上記の微生物捕捉 用複合体に付着した菌体をメチレンブルーで染色し、 吸光度 ( 6 6 0 n m ) を経時的に測定し、 付着量を求めた。 結果を 表 1 6 に示す。  The complex for capturing microorganisms was immersed in a liquid containing activated sludge for 14 hours or 48 hours in the same manner as in Example 28, and the activated sludge tank was reciprocated at a speed of 50 rpm. The cells attached to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the attached cells. The results are shown in Table 16.
表 1 6 から明 らかなよう に、 実施例 2 8 および 2 9 の微生 物捕捉剤を付着させた P E T不織布を用いた微生物捕捉用複 合体は、 菌の捕捉力に優れるが、 本発明の微生物捕捉樹脂を 付着させていない比較例 1 2 のものは、 菌の捕捉力が弱いこ とがわかる。 実施例 2 8 実施例 2 9 比較例 1 2 捕捉剤の含浸 有 り 有 り 共重合体組成比 As is clear from Table 16, the composites for capturing microorganisms using the PET nonwoven fabric to which the microorganism capturing agents of Examples 28 and 29 were attached were excellent in the ability to capture bacteria, but the present invention It can be seen that Comparative Example 12 in which no microorganism-capturing resin was adhered had a weaker ability to capture bacteria. Example 2 8 Example 2 9 Comparative Example 1 2 Impregnation of scavenger Yes Yes Yes Copolymer composition ratio
( V B C / S t ) * 1 / 1 2 / 3 (V B C / St) * 1/1 2/3
4時間後の不織布への  After 4 hours
活性汚泥菌の付着量 Activated sludge adhesion amount
( U V 6 6 0 n m ) 1 . 8 1 3 1 . 7 2 2 0 . 0 6 3 (U V 660 nm) 1.8 1 3 1 .7 2 2 0 .0 6 3
4 8 時間後の不織布へ 4 To nonwoven fabric after 8 hours
の活性汚泥菌の付着量 Of activated sludge bacteria
( U V 6 6 0 n m ) 1 . 8 9 5 1 . 8 0 3 0 . 0 7 5 fVBC: 4 一 ビニルベ ンジルク ロ リ ド  (U V 660 nm) 1.895 1.8 0 3 0 .075 fVBC: 4-vinyl benzyl chloride
St : スチ レ ン  St: Styrene
実施例 3 0 Example 30
実施例 1 3および実施例 1 4 と同様の方法によ り、 それぞ れ ( 4 -ビニルベンジルク ロ リ ド /塩化ビニリデン) モル比 が 2ノ 3 の割合で共重合した化合物及び上記モル比が 1 / 1 の割合で共重合した化合物を得た。 次に、 4 -ビエルべンジ ルク ロ リ ドに対し等モル量のピリ ジンで 4級化処理して、 目 的とする第 4級アンモニゥム塩含有重合体として化合物 1 6 (上記モル比が 2 3での生成物) 及び化合物 1 7 (上記モ ル比が 1 Z 1での生成物) ) を得た。  According to the same method as in Examples 13 and 14, a compound obtained by copolymerizing (4-vinylbenzyl chloride / vinylidene chloride) at a molar ratio of 2 to 3 and the above molar ratio were used. Was obtained in a ratio of 1/1. Next, 4-bierbenzyl chloride is quaternized with an equimolar amount of pyridine to give compound 16 (the above molar ratio of 2 3) and compound 17 (product with the above molar ratio of 1 Z1)).
一方、 ポリエチレンテレフ夕 レー ト ( P E T ) (繊度 0. 0 1 6デシテッ クス) からなる不織布を 2 c m Φに打抜いた P T /舅超 22 On the other hand, a non-woven fabric made of polyethylene terephthalate (PET) (fineness: 0.016 decitex) was punched to 2 cmΦ. PT / my father super 22
88 微生物吸着用担体を得た。 88 A carrier for adsorbing microorganisms was obtained.
P E T不織布に、 上記第 4級アンモニゥム塩含有重合体を 溶解した T H F溶液 ( l O m g /m l ) を 3 0秒含浸させた 後、 室温で減圧下 1 時間乾燥して、 不織布に対するビニル系 共重合体の付着率が約 1 . 0質量%の微生物捕捉用複合体を 得た。  The PET non-woven fabric is impregnated with a THF solution (10 mg / ml) in which the above quaternary ammonium salt-containing polymer is dissolved for 30 seconds, and then dried at room temperature under reduced pressure for 1 hour to obtain a vinyl copolymer for the non-woven fabric. A complex for capturing microorganisms having a coalescence rate of about 1.0% by mass was obtained.
この微生物捕捉用複合体を、 脱窒素菌含有液に 1 4時間も しく は 4 8 時間浸漬し、 脱窒素菌槽を 5 0 r p mの速度で往 復振とう した。 上記の微生物捕捉用複合体に付着した菌体を メチレンブルーで染色し、 吸光度 ( 6 6 0 n m) を経時的に 測定し、 付着量を求めた。 結果を表 1 7 に示す。 実施例 3 1  The microorganism capturing complex was immersed in a liquid containing denitrifying bacteria for 14 hours or 48 hours, and the denitrifying bacteria tank was shaken back and forth at a speed of 50 rpm. The cells adhered to the above-described complex for capturing microorganisms were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the adhered cells. The results are shown in Table 17. Example 3 1
実施例 2 1 及び実施例 2 2 と同様の方法によ り、 それぞれ ( 4 -ビニルベンジルク ロ リ ド /スチレン) モル比 2 / 3及 び 1 / 1 の割合で共重合した化合物を得た。 次に、 4 -ビニ ルペンジルク ロ リ ドに対し等モル量のピリ ジンで 4級化処理 して、 目的とする第 4級アンモニゥム塩含有重合体と して化 合物 1 8 (上記モル比が 2 Z 3 での生成物) 及び化合物 1 9 (上記モル比が 1 Z 1 による生成物) を得、 その後、 実施例 3 0 と同様にして微生物捕捉用複合体を得た。  In the same manner as in Examples 21 and 22, compounds (4-vinylbenzyl chloride / styrene) copolymerized at a molar ratio of 2/3 and 1/1 respectively were obtained. . Next, 4-vinylvinyl chloride is quaternized with an equimolar amount of pyridine to give the desired quaternary ammonium salt-containing polymer as a compound 18 (the above molar ratio is 2 Z 3) and compound 19 (product with the above molar ratio of 1 Z 1) were obtained. Thereafter, a complex for capturing microorganisms was obtained in the same manner as in Example 30.
この微生物捕捉用複合体を実施例 3 0 と同様にして脱窒素 菌含有液に 1 4時間も しく は 4 8 時間浸漬し、 脱窒素菌槽を 5 0 r ; p mの速度で往復振とう した。 上記の微生物捕捉用複 合体に付着した菌体をメチレンブルーで染色し、 吸光度 ( 6This complex for capturing microorganisms was immersed in a denitrifying bacteria-containing solution for 14 hours or 48 hours in the same manner as in Example 30. Reciprocal shaking was performed at a speed of 50 r; pm. The cells adhering to the above complex for capturing microorganisms are stained with methylene blue, and the absorbance (6
6 0 n m ) を経時的に測定し、 付着量を求めた。 結果を表 1 7 に示す。 比較例 1 3 60 nm) was measured over time to determine the amount of adhesion. The results are shown in Table 17. Comparative Example 1 3
本発明の微生物捕捉剤を用いず、 実施例 3 0で用いた P E T不織布のみを、 脱窒素菌含有液に 1 4時間もしく は 4 8時 間浸漬し、 脱窒素菌槽を 5 0 r p mの速度で往復振とう した 上記の微生物捕捉用複合体に付着した菌体をメチレンブルー で染色し、 吸光度 ( 6 6 0 n m ) を経時的に測定し、 付着量 を求めた。 結果を表 1 7 に示す。 こ こで、 菌体付着量はメチ レンブル一の吸光度に比例し、 吸光度 ( 6 6 0 n m ) の数値 が高いほど菌体付着量が多いと判断する。  Without using the microorganism-capturing agent of the present invention, only the PET nonwoven fabric used in Example 30 was immersed in a denitrifying bacteria-containing solution for 14 hours or 48 hours, and the denitrifying bacteria tank was rotated at 50 rpm. The cells adhered to the above-mentioned complex for capturing microorganisms, which were reciprocally shaken at a constant speed, were stained with methylene blue, and the absorbance (660 nm) was measured over time to determine the amount of the adhered cells. The results are shown in Table 17. Here, the amount of bacterial cells attached is proportional to the absorbance of the methylelene, and the higher the value of the absorbance (660 nm), the greater the amount of bacterial cells attached is determined.
表 1 7 から明 らかなよう に、 実施例 3 0および実施例 3 1 の微生物捕捉剤を付着させた P E T不織布を用いた微生物捕 捉用複合体は、 比較例 1 3 に比べ脱窒素菌の捕捉力に優れる が、 その中でも実施例 3 0 の本発明の微生物捕捉剤を付着さ せた微生物捕捉用複合体は実施例 3 1 の微生物捕捉剤を付着 させた微生物捕捉用複合体よ り も脱窒素菌の捕捉力に優れる こ とが分かる。 さ らに微生物捕捉剤を付着させていない比較 例 1 3 のものは、 菌の捕捉力が弱いことがわかる。 表 1 7 As is clear from Table 17, the microorganism-trapping complex using the PET nonwoven fabric to which the microorganism-trapping agents of Examples 30 and 31 were attached was more effective than the comparative example 13 in denitrifying bacteria. Among them, the composite for capturing microorganisms of Example 30 to which the microorganism capturing agent of the present invention is attached is superior to the composite for capturing microorganisms of Example 31 to which the microorganism capturing agent of Example 31 is attached. It can be seen that the ability to capture denitrifying bacteria is excellent. In addition, it can be seen that Comparative Example 13 in which no microorganism-capturing agent was attached had a weaker ability to capture bacteria. Table 17
o o
Figure imgf000093_0001
Figure imgf000093_0001
^BC 4 一 ビニルベンジルク ロ リ ^ BC 4 Vinyl benzyl chloride
VC 塩化ビニリ デン  VC vinylidene chloride
VP 4 ー ビニルピ リ ジン  VP 4-vinyl pyridine
S t スチ レ ン S t Styrene
実施例 3 2 Example 3 2
実施例 2 0 で得られた第 4級アンモニゥム塩含有重合体を 用い、 単軸押出機によ り押出温度 1 8 0 °Cで紡口よ り溶融紡 出し、 冷水機.で急冷した後、 温度差口一ラーで 4倍延伸して 断面円形の直径約 1 0 0 / mの単糸 1 0 本よ りなる繊維を得 た。 この繊維を長さ 5 0 c m、 5 0本の束にして微生物捕捉 用繊維束を得た。 得られた微生物捕捉用繊維束を活性汚泥菌 含有液に浸漬し、 活性汚泥菌槽を 5 0 r p mの速度で往復振 とう した。 6 8 時間経過後、 微生物捕捉用繊維束を常圧下、 1 0 5 °Cで 3時間乾燥させ、 微生物捕捉用繊維束に付着した 菌体量の乾燥重量を測定した。  The quaternary ammonium salt-containing polymer obtained in Example 20 was melt-extruded from a spinneret at an extrusion temperature of 180 ° C by a single screw extruder using a single screw extruder, and quenched by a water cooler. The fiber was drawn four times by a temperature difference nozzle to obtain a fiber consisting of 10 single yarns having a circular cross section of about 100 / m in diameter. These fibers were bundled into 50 bundles each having a length of 50 cm to obtain a fiber bundle for capturing microorganisms. The obtained fiber bundle for capturing microorganisms was immersed in a liquid containing activated sludge bacteria, and the activated sludge tank was reciprocated at a speed of 50 rpm. After a lapse of 68 hours, the fiber bundle for capturing microorganisms was dried at 105 ° C. for 3 hours under normal pressure, and the dry weight of the amount of cells attached to the fiber bundle for capturing microorganisms was measured.
微生物捕捉用繊維束への菌体付着量は、 微生物捕捉用繊維 束の単位繊維重量当たり の菌体付着量で計算した。 比較例に 対する菌体付着量を 1 0 0 %と した場合における菌体の吸着 量で評価した。 その結果を表 1 8 に示す。  The amount of adhered cells on the fiber bundle for capturing microorganisms was calculated as the amount of adhered cells per unit fiber weight of the fiber bundle for capturing microorganisms. The evaluation was based on the amount of cells adsorbed when the amount of cells attached to the comparative example was 100%. The results are shown in Table 18.
菌体付着量の算出方法 : Calculation method of bacterial cell adhesion:
{ (菌体付着後の繊維束乾燥重量 -菌体付着前の繊維束乾燥 重量) /菌体付着前の繊維束乾燥重量 } X 1 0 0 比較例 1 4  {(Dry weight of fiber bundle after cell adhesion-dry weight of fiber bundle before cell adhesion) / dry weight of fiber bundle before cell adhesion} X 100 Comparative Example 14
市販のポリ塩化ビニリデンよ り なる素材 (登録商標、 サラ ンラ ップ ; 日本国、 旭化成株式会社製) を用い、 上記実施例 3 2 と同様の手法で溶融紡出し、 断面円形の直径約 1 0 0 mの単糸 1 0本よ りなる繊維を得た。 この繊維を長さ 5 0 c m、 5 0本の朿にして実施例 3 2 と同様の手法で菌体付着量 を測定した。 Using a commercially available material made of polyvinylidene chloride (registered trademark, Saran Lap; manufactured by Asahi Kasei Corporation, Japan), melt-spinning was performed in the same manner as in Example 32 above, and the diameter of the circular section was about 10 mm. 0 Thus, a fiber composed of 10 m single yarns was obtained. The fibrous mass was measured using the same method as in Example 32, using this fiber as a fifty cm long and fifty fifty rods.
微生物捕捉用繊維束への菌体付着量は、 微生物捕捉用繊維 束の単位繊維重量当たり の菌体付着量で計算した。 比較例に 対する菌体付着量を 1 0 0 %とした場合における菌体の吸着 量で評価した。 その結果を表 1 8 に示す。 実施例 3 3  The amount of cells attached to the fiber bundle for capturing microorganisms was calculated as the amount of cells attached per unit fiber weight of the fiber bundle for capturing microorganisms. The evaluation was based on the amount of adsorbed cells when the amount of cells attached to the comparative example was 100%. The results are shown in Table 18. Example 3 3
実施例 3 2で得られた繊維を長さ 5 0 c m、 5 0本の束に して脱窒菌懸濁液に浸漬し、 脱窒菌槽を 5 0 r p mの速度で 往復振と う した。 6 8 時間経過後、 微生物捕捉用繊維束に付 着した菌体量の乾燥重量を常圧下、 1 0 5 °Cで 3 時間乾燥さ せ、 微生物捕捉用繊維束に付着した菌体量の乾燥重量を測定 した。  The fiber obtained in Example 32 was bundled into 50 bundles of 50 cm in length and immersed in a denitrifying bacteria suspension, and the denitrifying bacteria tank was shaken back and forth at a speed of 50 rpm. 6 After the lapse of 8 hours, dry the amount of cells attached to the microbe bundle for microorganism capture under normal pressure at 105 ° C for 3 hours, and dry the amount of bacteria attached to the microbe bundle. The weight was measured.
微生物捕捉用繊維束への菌体付着量は、 微生物捕捉用繊維 束の単位繊維重量当た り の菌体付着量で計算した。 比較例に 対する菌体付着量を 1 0 0 %と した場合における菌体の吸着 量で評価した。 その結果を表 1 8 に示す。  The amount of adhered cells on the fiber bundle for capturing microorganisms was calculated as the amount of adhered cells per unit fiber weight of the bundle of fibers for capturing microorganisms. The evaluation was based on the amount of cells adsorbed when the amount of cells attached to the comparative example was 100%. The results are shown in Table 18.
表 1 8 から明らかなよう に、 実施例 3 2 で示される微生物 捕捉繊維は活性汚泥菌および脱窒菌の捕捉に優れた効果を発 揮した。 比較例 1 5 As is evident from Table 18, the microorganism-trapping fibers shown in Example 32 exhibited an excellent effect on capturing activated sludge bacteria and denitrifying bacteria. Comparative Example 15
市販のポ リ塩化ビニリデン (登録商標、 サラ ンラッ プ ; 日 本国、 旭化成株式会社製) を用い、 これを上記実施例 3 2 と 同様の手法で溶融紡出し、 断面円形の直径約 1 0 0 /i mの単 糸 1 0 本よ り なる繊維を得た。 この繊維を長さ 5 0 c m、 5 0 本の束に して実施例 3 3 と同様の手法で菌体付着量を測定 した。  Using commercially available polyvinylidene chloride (registered trademark, Saran Wrap; manufactured by Asahi Kasei Corporation, Japan), this was melt-spun in the same manner as in Example 32 above to obtain a circular cross section having a diameter of about 100/100. A fiber consisting of 10 single yarns of im was obtained. The fibers were formed into 50 bundles of 50 cm in length, and the amount of adhered cells was measured in the same manner as in Example 33.
微生物捕捉用繊維束への菌体付着量は、 微生物捕捉用繊維 束の単位繊維重量当た り の菌体付着量で計算した。 比較例に 対する菌体付着量を 1 0 0 % と した場合における菌体の吸着 量で評価した。 その結果を表 1 8 に示す。  The amount of adhered cells on the fiber bundle for capturing microorganisms was calculated as the amount of adhered cells per unit fiber weight of the bundle of fibers for capturing microorganisms. The evaluation was based on the amount of cells adsorbed when the amount of cells attached to the comparative example was 100%. The results are shown in Table 18.
表 1 8 Table 18
Figure imgf000096_0001
Figure imgf000096_0001
* V B C : 4 —ビニルベンジルク ロ リ ド  * V B C: 4—vinylbenzyl chloride
V C : 塩化ビニリ デン 産業上の利用可能性 VC: vinylidene chloride Industrial applicability
本発明の微生物捕捉剤は、 優れた微生物捕捉能を有する のみならず、 そのような優れた微生物捕捉能を長時間維持で きるので、 水処理における水中の微生物の捕捉並びに気相中 の微生物の捕捉に有効に用いる こ とができる。 さ らに、 本発 明の微生物捕捉剤は、 有機溶媒及び/又は含水有機溶媒に可 溶なため、 該微生物捕捉剤の溶液を用いて、 該捕捉剤が担持 されてなる担体を含む微生物捕捉用複合体を容易に製造する ことができる。 本発明の微生物捕捉剤を用いて微生物捕捉用 複合体を製造する と、 微生物捕捉用複合体の微生物捕捉能を 左右する微生物捕捉用複合体の単位重量当 り の表面積を、 担 体を適宜選択する こ とによ り、 自由に設定する ことができ、 所望の微生物捕捉能を備えた微生物捕捉用複合体を得る こ と ができる。 本発明の微生物捕捉剤を用いた微生物捕捉用複合 体は、 バイオリ アクターおよびバイオセンサーにおける微生 物及び 菌体の保持担体等として有利に用いる こ とができる  The microorganism capturing agent of the present invention not only has excellent microorganism capturing ability, but also can maintain such excellent microorganism capturing ability for a long time. It can be used effectively for capture. Furthermore, since the microorganism capturing agent of the present invention is soluble in an organic solvent and / or a water-containing organic solvent, a microorganism capturing agent containing a carrier on which the capturing agent is supported is used using a solution of the microorganism capturing agent. The composite for use can be easily manufactured. When a microorganism-trapping complex is produced using the microorganism-trapping agent of the present invention, the surface area per unit weight of the microorganism-trapping complex that determines the microorganism-trapping ability of the microorganism-trapping complex is appropriately selected. By doing so, the complex can be set freely, and a complex for capturing microorganisms having a desired ability to capture microorganisms can be obtained. The complex for capturing microorganisms using the microorganism capturing agent of the present invention can be advantageously used as a carrier for holding microorganisms and cells in bioreactors and biosensors.

Claims

1 . 少なく とも 2個の力ルポキシル基を有する化合物、 ベンゾト リ アゾール系化合物、 1. Compounds having at least two propyloxyl groups, benzotriazole compounds,
アミ ド系化合物、 百一  Amide compounds, Hyakuichi
非水溶性ァゾ化合物、  Water-insoluble azo compounds,
下記式 ( 1 ) で表される第 4級アンモニゥム塩、 及び 下記式 ( 2 ) 〜 ( 5 ) で表される重合体鎖をそれぞれ有す る 、 第 4級アンモニゥム塩含有重合体囲  A quaternary ammonium salt represented by the following formula (1) and a quaternary ammonium salt-containing polymer having polymer chains represented by the following formulas (2) to (5), respectively:
からなる群よ り選ばれる少なく とも 1 種の化合物を含むこと を特徴とする微生物捕捉剤。 A microorganism trapping agent comprising at least one compound selected from the group consisting of:
Figure imgf000098_0001
Figure imgf000098_0001
(式中、  (Where
R 1、 R 2及び R 3はそれぞれ独立して飽和又は不飽和 R 1 , R 2 and R 3 are each independently saturated or unsaturated
C 一 C 5 Q脂肪族ヒ ドロカルビル基、 水酸基を含有する、 飽和又は不飽和 C , _ C 5。脂肪族ヒ ドロカルビル基、 C 6 C one C 5 Q aliphatic arsenide Dorokarubiru group, containing a hydroxyl group, a saturated or unsaturated C, _ C 5. Aliphatic hydrocarbyl group, C 6
C 5 0ァ リール基、 4 一 ピリ ジル基、 2 —ジメチルアミ ノエ チル基、 2 — ( N —べンジルー N , N —ジメチルアンモニゥ ム) ェチル基、 ベンジル基、 飽和若しく は不飽和 C i 一C 50 aryl group, 4-pyridyl group, 2-dimethylaminoethyl group, 2- (N-benzylamine, N-dimethylammonium) ethyl group, benzyl group, saturated or unsaturated C i one
C s。脂肪酸残基、 及び飽和又は不飽和脂肪酸エステル残基 か らなる群よ り選ばれる基を表し ; C s . Fatty acid residues and saturated or unsaturated fatty acid ester residues Represents a group selected from the group consisting of:
X _は、 ノ、ロゲン化物イ オン、 アルキルスルホン酸イ オン 芳香族スルホン酸イオン、 硫酸イ オン及び硝酸イオンからな る群よ り選ばれるイ オンを表す。 ) 、  X_ represents an ion selected from the group consisting of nitrogen, a logenide ion, an alkyl sulfonate ion, an aromatic sulfonate ion, a sulfate ion and a nitrate ion. ),
Figure imgf000099_0001
Figure imgf000099_0001
(式中、  (Where
R 4は、 該重合体鎖の側鎖の C H 2 —基と結合してアンモ ニゥムイオンを形成する窒素含有化合物であって、 ピリ ジン 4 ージメチルァミ ノ ピリ ジン、 2 , 4 , 6 -コ リ ジン、 2 , 3 , 5 — コ リ ジン、 ト リ (飽和又は不飽和 C 3— C 8脂肪 族ヒ ド ロカルビル) ァミ ン、 及びキノ リ ンか らなる群よ り選 ばれる窒素含有化合物を表し、 R 4 is a nitrogen-containing compound that forms an ammonium ion by bonding to a CH 2 — group in a side chain of the polymer chain, and includes pyridin 4-dimethylaminopyridine, 2,4,6-collidine, 2,3,5 — Represents nitrogen-containing compounds selected from the group consisting of collidine, tri (saturated or unsaturated C 3 —C 8 aliphatic hydrocarbyl) amines, and quinoline;
X _は、 ハロゲン化物イ オンを表し、  X _ represents a halide ion,
k及び β は、 下記の条件を満足する整数である。  k and β are integers satisfying the following conditions.
1 0 ≤ k≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤ k≤ 1 0 0, 0 0 0, and
1 0 ≤ β ≤ 1 0 0 , 0 0 0 。 ) 、 97 1 0 ≤ β ≤ 1 0 0, 0 0 0. ), 97
Figure imgf000100_0001
Figure imgf000100_0001
(式中、  (Where
R 5は、 該重合体鎖の側鎖の C H 2—基と結合してアンモ ニゥムイオンを形成する窒素含有化合物であって、 ピリ ジン 4 —ジメチルァミ ノ ピリ ジン、 2 , 4 , 6 -コ リ ジン、 2 , 3 , 5 — コ リ ジン、 ト リ (飽和又は不飽和 C 3— C 8脂肪 族ヒ ドロカルビル) ァミ ン、 及びキノ リ ンからなる群より選 ばれる窒素含有化合物を表し、 R 5 is a nitrogen-containing compound that forms an ammonium ion by bonding to a CH 2 — group on the side chain of the polymer chain, and includes pyridin 4 —dimethylaminopyridine, 2,4,6-collidine A nitrogen-containing compound selected from the group consisting of, 2,3,5—collidine, tri (saturated or unsaturated C 3 —C 8 aliphatic hydrocarbyl) amine, and quinoline;
R 6は、 水素原子又は(: ェ一 C 3アルキル基を表し、 R 6 represents a hydrogen atom or (: C 3 alkyl group;
X一は、 八ロゲン化物イオンを表し、' .  X represents an octogenide ion;
Yは、 水素原子、 飽和又は不飽和 C ェ 一 C 5。脂肪族ヒ ド 口カルピル基、 飽和又は不飽和 C — C 5。脂肪族ヒ ドロ力 ルビロキシ基、 (飽和又は不飽和 C ェ 一 C 5 Q脂肪族ヒ ドロ カルビ口キシ) カルボニル基、 飽和又は不飽和 C 一 C 5。 脂肪酸残基、 C 6— C 5。ァリール基、 ベンジル基、 及 び力ルポキシル基を表し、 Y is a hydrogen atom, saturated or unsaturated C 1 -C 5 . Aliphatic hydr carbyl group, saturated or unsaturated C — C 5 . Aliphatic hydrolyl rubyoxy group, (saturated or unsaturated C 1 -C 5 Q aliphatic hydrocarbyl) carbonyl group, saturated or unsaturated C 1 -C 5 . Fatty acid residues, C 6 —C 5 . Represents an aryl group, a benzyl group, and a sulfoxyl group,
m及び nは、 下記の条件を満足する整数である。  m and n are integers satisfying the following conditions.
1 0 ≤ m≤ l 0 0 , 0 0 0 、 及び  1 0 ≤ m≤ l 0 0, 0 0 0, and
1 0 ≤ n≤ 1 0 0 , 0 0 0。 ) 、 98 1 0 ≤ n ≤ 1 0 0, 0 0 0. ), 98
Figure imgf000101_0001
Figure imgf000101_0001
(式中、 R 2及び R 3は、 式 ( 1 ) で定義した通りであ る。 ) 、 及び (Wherein R 2 and R 3 are as defined in formula (1)), and
Figure imgf000101_0002
Figure imgf000101_0002
(式中、 R 3は、 式 ( 1 ) で定義した通りである。 ) (In the formula, R 3 is as defined in the formula (1).)
2 . 該式. ( 1 ) の第 4級アンモニゥム塩が、 下記式 ( 6 ) で 表される第 4級アンモニゥムク ロライ ド、 下記式 ( 7 ) で表 される第 4級アンモニゥムサルフエ一 ト、 及び下記式 ( 8 ) で表される第 4級アンモニゥムナイ ト レー トであ り、 2. The quaternary ammonium salt of the formula (1) is a quaternary ammonium chloride represented by the following formula (6), and a quaternary ammonium salt represented by the following formula (7): And a quaternary ammonium nitrate represented by the following formula (8):
該式 ( 4 ) のポリマーが下記式 ( 9 ) で表されるポリ 力 チオンであ り、  The polymer of the formula (4) is a polythione represented by the following formula (9),
該式 ( 5 ) のポリ マーが下記式 ( 1 0 ) で表されるポリ カチオンである、  The polymer of the formula (5) is a polycation represented by the following formula (10):
こ とを特徴とする請求項 1 に記載の微生物捕捉剤。 9 9 2. The microorganism-capturing agent according to claim 1, wherein: 9 9
R、 ,CH3 R,, CH 3
CI (6)  CI (6)
ゝ CH3 ゝ CH 3
R、 ,CH2CH2OH R,, CH 2 CH 2 OH
•N+< CH3OSO3" (7) • N + <CH3OSO3 "(7)
CHi 、CH2CH2OH CHi, CH 2 CH 2 OH
(8)(8)
Figure imgf000102_0001
Figure imgf000102_0001
Figure imgf000102_0002
及び
Figure imgf000102_0002
as well as
Figure imgf000102_0003
Figure imgf000102_0003
(式中、 (Where
Rは、 飽和又は不飽和 C i — C 5。脂肪族ヒ ドロカルビル 基、 水酸基を含有する、 飽和又は不飽和 C 一 C 5 Q脂肪族 ヒ ドロカルビル基、 C C 5。ァリ一ル基、 ベンジル基、 飽和又は不飽和 C - C 5。脂肪酸残基、 又は飽和又は不飽 和脂肪酸エステル残基を表し r 及び s は、 以下の関係を満足する整数である。 1 0 ≤ r ≤ 1 0 0 , 0 0 0 、 及び R is a saturated or unsaturated C i —C 5 . Aliphatic arsenide Dorokarubiru group, containing a hydroxyl group, a saturated or unsaturated C one C 5 Q aliphatic arsenide Dorokarubiru group, CC 5. § Li Ichiru group, a benzyl group, a saturated or unsaturated C - C 5. R and s represent a fatty acid residue or a saturated or unsaturated fatty acid ester residue, and are integers satisfying the following relationship. 1 0 ≤ r ≤ 1 0 0, 0 0 0, and
1 0 ≤ s ≤ 1 0 0 , 0 0 0 。 )  1 0 ≤ s ≤ 1 0 0, 0 0 0. )
3 . 該式 ( 2 ) の重合体を構成するモノマーの ( k : fi ) モ ル比が 5 : 9 5 〜 9 5パ 5 の範囲であることを特.徴とする請 求項 1 に記載の微生物捕捉剤。 3. The claim 1 characterized in that the monomer constituting the polymer of the formula (2) has a (k: fi) mole ratio in the range of 5:95 to 95 95. Microorganism capture agent.
4 . 該式 ( 3 ) の重合体を構成するモノマーの (m : n ) モ ル比が 5 : 9 5 〜 9 5 : 5 の範囲であることを特徴とする請 求項 1 に記載の微生物捕捉剤。 4. The microorganism according to claim 1, wherein the (m: n) mole ratio of the monomers constituting the polymer of the formula (3) is in the range of 5:95 to 95: 5. Capture agents.
5 . 式 ( 2 ) のポリ マーの重量平均分子量が、 1 , 0 0 0 〜 1 , 0 0 0 , 0 0 0 である ことを特徴とする請求項 1 〜 3 の いずれかに記載の微生物捕捉剤。 5. The microorganism capture according to any one of claims 1 to 3, wherein the polymer of the formula (2) has a weight average molecular weight of 1,000 to 1,000,000. Agent.
6 . 式 ( 3 ) のポリ マーの重量平均分子量が、 1 , 0 0 0 〜 1 , 0 0 0 , 0 0 0 である ことを特徴とする請求項 1 、 2 及 び 4 のいずれかに記載の微生物捕捉剤。 6. The polymer according to any one of claims 1, 2 and 4, wherein the weight average molecular weight of the polymer of the formula (3) is from 1,000 to 1,000,000. Microorganism capture agent.
7 . 少なく とも 2個の力ルポキシル基を有する該化合物が、 エチレンジァミ ン四酢酸、 クェン酸、 ヒ ドロキシェチルェチ レンジアミ ン三酢酸、 ジヒ ドロキシェチルエチレンジアミ ン 二酢酸、 1 , 3 プロパンジァミ ン四酢酸、 ジエチレン ト リ ア ミ ン五酢酸およびト リエチレンテ ト ラミ ン六酢酸からなる群 よ り選ばれる少なく とも 1 種である請求項 1 に記載の微生物 捕捉剤。 ' 7. The compound having at least two hydroxyl groups is ethylenediaminetetraacetic acid, citric acid, hydroxyshethylethylenediaminetriacetic acid, dihydroxylshethylethylenediaminediacetic acid, 1,3 propanediamine. Tetraacetic acid, diethylene tria 2. The microorganism-capturing agent according to claim 1, wherein the agent is at least one member selected from the group consisting of pentapentaacetic acid and triethylenetetramine hexaacetic acid. '
8 . 該ベンゾト リ アゾール化合物が、 2 一 ( 2 '—ヒ ドロキ ン メチルフエニル) ベンゾト リ アゾ一ル ( 28. The benzotriazole compound is converted to 2- (2-hydroxymethylphenyl) benzotriazole (2
—ヒ ドロキシ— 3 '_ t —プチルー 5 '—メチルフエニル) 一 5 —ク ロ 口べンゾト リ ァゾール、 2 一 ( 2 '—ヒ ドロキシー 5 '— t —ブチルフエニル) ベンゾ 卜 リ アゾ一ル、 2 — ( 2 ' ー ヒ ドロキシー 3 ' , 5 '—ジー t —ブチルフエニル) ベンゾ ト リ ァゾ一ル、 2 一 ( 2 '— ヒ ドロキシ一 3 ', 5 '—ジー t 一 ブチルフエニル) 一 5 —ク ロ口べンゾト リ アゾール及び ( 2 '—ヒ ドロキシ一 3 ', 5 '—ジー t —ァミルフエニル) ベ ンゾ ト リ アゾ一ルからなる群よ り選ばれる少なく とも 1種の 化合物である こ とを特徴とする請求項 1 に記載の微生物捕捉 剤。 . . —Hydroxy— 3′_t—Ptyl-5′-Methylphenyl) 1 5—Cro-Venzotriazole, 21 (2′—Hydroxy 5′—t—Butylphenyl) benzotriazole, 2— (2'-Hydroxy 3 ', 5'-di-tert-butylphenyl) benzotriazole, 21 (2'-Hydroxy-1 3', 5'-di-tert-butylphenyl) 1-5-chloro It must be at least one compound selected from the group consisting of benzotriazole and (2'-hydroxy-3 ', 5'-di-amylphenyl) benzotriazole. The microorganism-capturing agent according to claim 1, wherein the agent is a microorganism-capturing agent. .
9 . 該アミ ド化合物が、 式 ( 1 1 ) で表される N , N—ジ (ポリオキシエチレン) 置換アミ ド化合物である ことを特徴 とする請求項 1 に記載の微生物捕捉剤。 9. The microorganism capturing agent according to claim 1, wherein the amide compound is an N, N-di (polyoxyethylene) -substituted amide compound represented by the formula (11).
R7CON^(CH2CH2°)pH (ID R 7 CON ^ (CH2CH2 ° ) pH (ID
(CH2CH20)qH (式中、 (CH 2 CH 2 0) q H (Where
R 7は、 飽和又は不飽和 C ェ— C 5。脂肪族ヒ ドロカルビル 基、 水酸基を含有する、 飽和又は不飽和 C ェ _ C 5。脂肪族 ヒ ドロカルピル基、 C 6 — C 5。ァリ ール基、 ベンジル基、 飽和又は不飽和 C ェ— C 5。脂肪酸残基、 又は飽和又は不飽 和脂肪酸エステル残基を表し、 R 7 is a saturated or unsaturated C E - C 5. Saturated or unsaturated C _ C 5 containing an aliphatic hydrocarbyl group or a hydroxyl group; Aliphatic hydrocarbyl groups, C 6 —C 5 . § Li Lumpur group, a benzyl group, a saturated or unsaturated C E - C 5. Represents a fatty acid residue or a saturated or unsaturated fatty acid ester residue,
P及び q は、 以下の関係を満足する整数である。  P and q are integers satisfying the following relationship.
1 0 ≤ ΐ ≤ 1 0 , 0 0 0 、 及び  1 0 ≤ ≤ ≤ 1 0, 0 0 0, and
1 0 ≤ q ≤ 1 0 , 0 0 0 。 ) '  1 0 ≤ q ≤ 1 0, 0 0 0. ) '
1 0 . 請求項 1 〜 9 のいずれかに記載の微生物捕捉剤を担持 してなる担体を含む微生物捕捉用複合体であって、 該微生物 捕捉剤の重量が該担体の重量に対して 0 . 0 0 1 〜 2 0重 量%である ことを'特徴とする微生物捕捉用複合体。 10. A microorganism capturing complex comprising a carrier carrying the microorganism capturing agent according to any one of claims 1 to 9, wherein the weight of the microorganism capturing agent is 0. 0.1 to 20% by weight.
1 1 . 該担体が、 繊維、 織物、 不織布、 膜、 中空糸および粒 子からなる群よ り選ばれる少なく とも一種である こ とを特徴 とする請求項 1 0 に記載の微生物捕捉用複合体。 11. The microorganism capturing complex according to claim 10, wherein the carrier is at least one selected from the group consisting of a fiber, a woven fabric, a nonwoven fabric, a membrane, a hollow fiber, and a particle. .
1 2 . 該担体が、 ポリ エステル、 ポリ アク リル酸又はその誘 導体、 ポリ アミ ド、 ポリ塩化ビニリ デン、 ポリ フッ化ビニリ デン、 ポリ ウレタン、 多糖、 ポリ オキシアルキレン、 及びポ リ エチレンテレフ夕 レー トからなる群よ り選ばれる少なく と も一種の化合物から製造されたものである ことを特徴とする 請求項 1 0 に記載の微生物捕捉用複合体。 12. The carrier is made of a polyester, a polyacrylic acid or a derivative thereof, a polyamide, a polyvinylidene chloride, a polyvinylidene fluoride, a polyurethane, a polysaccharide, a polyoxyalkylene, and a polyethylene terephthalate. At least selected from the group consisting of The complex for capturing microorganisms according to claim 10, wherein the complex is also produced from one kind of compound.
1 3 . 該担体が、 微生物吸着能を有する担体である こ とを特 徴とする請求項 1 0 に記載の微生物捕捉用複合体。 13. The complex for capturing microorganisms according to claim 10, wherein the carrier is a carrier having an ability to adsorb microorganisms.
1 4 . 下記の工程 ( 1 ) 及び ( 2 ) を含むこ とを特徴とする 微生物の捕捉方法。 14. A method for capturing microorganisms, comprising the following steps (1) and (2).
( 1 ) 請求項 1 〜 9 のいずれかに記載の微生物捕捉剤を 提供する。  (1) A microorganism-capturing agent according to any one of claims 1 to 9 is provided.
( 2 ) 該微生物捕捉剤を、 微生物を含有する液体と接触 させて、 該微生物を捕捉する。  (2) The microorganisms are captured by bringing the microorganism capture agent into contact with a liquid containing the microorganisms.
1 5 . 下記の工程 ( 1 ) 及び ( 2 ) を含むことを特徴とする 微生物の捕捉方法。 15. A method for capturing microorganisms, comprising the following steps (1) and (2).
( 1 ) 請求項 1 0 〜 1 3 のいずれかに記載の微生物捕捉 用複合体を提供する。  (1) A composite for capturing microorganisms according to any one of claims 10 to 13 is provided.
( 2 ) 該微生物捕捉用複合体を、 微生物を含有する液体 と接触させて、 該微生物を捕捉する。  (2) Contact the complex for capturing microorganisms with a liquid containing microorganisms to capture the microorganisms.
1 6 . 式 ( 1 2 ) で表される第 4級アンモニゥム塩。
Figure imgf000107_0001
16. Quaternary ammonium salt represented by the formula (12).
Figure imgf000107_0001
1 7 . 式 ( 2 ) で表される第 4級ア ンモニゥム塩含有重合体 17. A quaternary ammonium salt-containing polymer represented by the formula (2)
(2)
Figure imgf000107_0002
(2)
Figure imgf000107_0002
(式中、  (Where
R 4は、 該重合体鎖の側鎖の C Η 2 —基と結合してアンモ ニゥムイオンを形成する窒素含有化合物であっ て、 ピ リ ジンR 4 is a nitrogen-containing compound that forms an ammonium ion by bonding to a C 2 — group on the side chain of the polymer chain,
4 ジメチルァミ ノ ピリ ジン、 2 , 4, 6 -コ リ ジン、 2 ,4 dimethylamino pyridine, 2,4,6-collidine, 2,
3 , 5 — コ リ ジン、 ト リ (飽和又は不飽和 C 3— C 8脂肪 族ヒ ド ロカルビル) ァミ ン、 及びキノ リ ンか らなる群よ り選 ばれる窒素含有化合物を表し、 3, 5 — represents a nitrogen-containing compound selected from the group consisting of collidine, tri (saturated or unsaturated C 3 — C 8 aliphatic hydrocarbyl) amine, and quinoline;
X一は、 ノ、ロゲン化物イオンを表し、  X represents a no, a logenide ion,
k及び β は、 下記の条件を満足する整数である。  k and β are integers satisfying the following conditions.
1 0 ≤ k≤ 1 0 0 , 0 0 0 、 及び  1 0 ≤ k≤ 1 0 0, 0 0 0, and
1 0 ≤ ΰ ≤ 1 0 0 , 0 0 0 。 )  1 0 ≤ ΰ ≤ 1 0 0, 0 0 0. )
PCT/JP2003/001322 2002-02-07 2003-02-07 Microorganism-trapping agent WO2003066192A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003565612A JP4522707B2 (en) 2002-02-07 2003-02-07 Microbial scavenger
AU2003207181A AU2003207181A1 (en) 2002-02-07 2003-02-07 Microorganism-trapping agent

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2002/30954 2002-02-07
JP2002030954 2002-02-07
JP2002/141158 2002-05-16
JP2002141158 2002-05-16
JP2002/309541 2002-10-24
JP2002309541 2002-10-24

Publications (1)

Publication Number Publication Date
WO2003066192A1 true WO2003066192A1 (en) 2003-08-14

Family

ID=27738896

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2003/001322 WO2003066192A1 (en) 2002-02-07 2003-02-07 Microorganism-trapping agent

Country Status (4)

Country Link
JP (1) JP4522707B2 (en)
AU (1) AU2003207181A1 (en)
TW (1) TW593385B (en)
WO (1) WO2003066192A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9969885B2 (en) 2014-07-31 2018-05-15 Kimberly-Clark Worldwide, Inc. Anti-adherent composition
US10028899B2 (en) 2014-07-31 2018-07-24 Kimberly-Clark Worldwide, Inc. Anti-adherent alcohol-based composition
US10238107B2 (en) 2014-07-31 2019-03-26 Kimberly-Clark Worldwide, Inc. Anti-adherent composition
US11737458B2 (en) 2015-04-01 2023-08-29 Kimberly-Clark Worldwide, Inc. Fibrous substrate for capture of gram negative bacteria

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018123418A1 (en) * 2016-12-26 2018-07-05 パナソニックIpマネジメント株式会社 Air filter medium

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260622A (en) * 1975-11-13 1977-05-19 Eastman Kodak Co Photographic element
JPS61112005A (en) * 1984-11-05 1986-05-30 Nitto Kasei Kk Anti-fouling agent
JPS637785A (en) * 1986-06-26 1988-01-13 Kyoritsu Yuki Co Ltd Immobilization of microorganism
JPS63160584A (en) * 1986-12-24 1988-07-04 Kibun Kk Production of immobilized enzyme or immobilized microorganism
JPS6440506A (en) * 1987-08-07 1989-02-10 Agency Ind Science Techn Antimicrobial and microorganism removing high polymer
JPH01257412A (en) * 1988-04-08 1989-10-13 Nippon Steel Chem Co Ltd Artificial granular compost
JPH02195882A (en) * 1988-10-18 1990-08-02 Fuji Photo Film Co Ltd Production of membrane immobilizing bioactive substance and membrane obtained thereby
JPH03754A (en) * 1989-05-29 1991-01-07 Otsuka Pharmaceut Factory Inc Styrene polymer and carrier for adhesive cell culture
EP0586268A1 (en) * 1992-07-06 1994-03-09 Terumo Kabushiki Kaisha A pathogenic substance removing material and a blood filter comprising said material
EP0602254A1 (en) * 1992-07-06 1994-06-22 Otsuka Kagaku Kabushiki Kaisha Polymerizable monomer, polymer thereof, and process for producing the same
JPH06335382A (en) * 1993-03-31 1994-12-06 Iatron Lab Inc Cell culture base and method for cell culture
JP2000333672A (en) * 1999-05-26 2000-12-05 Nippon Shokubai Co Ltd Production of immobilized biocatalyst
WO2001007090A1 (en) * 1999-07-21 2001-02-01 The Procter & Gamble Company Microorganism filter and method for removing microorganism from water
JP2001087782A (en) * 1999-09-27 2001-04-03 Baioseru:Kk Foamed carrier for microorganism immobilizing treatment and method for treating waste water such as organic waste water and eutrophicated water using the foamed carrier
JP2001213706A (en) * 2000-01-31 2001-08-07 Japan Organo Co Ltd Immobilized bactericidal and antibacterial agent
JP2002122954A (en) * 2000-08-08 2002-04-26 Fuji Photo Film Co Ltd Photosensitive silver halide photographic emulsion, silver halide photographic material containing the same and method for enhancing sensitivity of photosensitive silver halide photographic emulsion

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0632824B2 (en) * 1985-02-27 1994-05-02 三菱樹脂株式会社 Microorganism support
JPS62116612A (en) * 1985-11-18 1987-05-28 Mitsubishi Petrochem Co Ltd Linear polymer having vinylimidazolinium salt group in side chain and its production
JPH025852A (en) * 1988-06-25 1990-01-10 Nippon Steel Chem Co Ltd Carrier of microorganism
JPH0615167A (en) * 1992-07-06 1994-01-25 Terumo Corp Porous separating membrane
JP3171691B2 (en) * 1992-08-31 2001-05-28 大塚化学株式会社 Copolymer and method for producing the same
JPH06264056A (en) * 1993-03-11 1994-09-20 Kankyo Riyokuka Shigen Kaihatsu Center:Kk Soil conditioner and microorganism carrier
JP3539650B2 (en) * 1995-10-05 2004-07-07 ゴールド興産株式会社 Ceramics for water treatment
JP3118604B2 (en) * 1998-03-10 2000-12-18 日本バイリーン株式会社 Microbial adsorption resin

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5260622A (en) * 1975-11-13 1977-05-19 Eastman Kodak Co Photographic element
JPS61112005A (en) * 1984-11-05 1986-05-30 Nitto Kasei Kk Anti-fouling agent
JPS637785A (en) * 1986-06-26 1988-01-13 Kyoritsu Yuki Co Ltd Immobilization of microorganism
JPS63160584A (en) * 1986-12-24 1988-07-04 Kibun Kk Production of immobilized enzyme or immobilized microorganism
JPS6440506A (en) * 1987-08-07 1989-02-10 Agency Ind Science Techn Antimicrobial and microorganism removing high polymer
JPH01257412A (en) * 1988-04-08 1989-10-13 Nippon Steel Chem Co Ltd Artificial granular compost
JPH02195882A (en) * 1988-10-18 1990-08-02 Fuji Photo Film Co Ltd Production of membrane immobilizing bioactive substance and membrane obtained thereby
JPH03754A (en) * 1989-05-29 1991-01-07 Otsuka Pharmaceut Factory Inc Styrene polymer and carrier for adhesive cell culture
EP0586268A1 (en) * 1992-07-06 1994-03-09 Terumo Kabushiki Kaisha A pathogenic substance removing material and a blood filter comprising said material
EP0602254A1 (en) * 1992-07-06 1994-06-22 Otsuka Kagaku Kabushiki Kaisha Polymerizable monomer, polymer thereof, and process for producing the same
JPH06335382A (en) * 1993-03-31 1994-12-06 Iatron Lab Inc Cell culture base and method for cell culture
JP2000333672A (en) * 1999-05-26 2000-12-05 Nippon Shokubai Co Ltd Production of immobilized biocatalyst
WO2001007090A1 (en) * 1999-07-21 2001-02-01 The Procter & Gamble Company Microorganism filter and method for removing microorganism from water
JP2001087782A (en) * 1999-09-27 2001-04-03 Baioseru:Kk Foamed carrier for microorganism immobilizing treatment and method for treating waste water such as organic waste water and eutrophicated water using the foamed carrier
JP2001213706A (en) * 2000-01-31 2001-08-07 Japan Organo Co Ltd Immobilized bactericidal and antibacterial agent
JP2002122954A (en) * 2000-08-08 2002-04-26 Fuji Photo Film Co Ltd Photosensitive silver halide photographic emulsion, silver halide photographic material containing the same and method for enhancing sensitivity of photosensitive silver halide photographic emulsion

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9969885B2 (en) 2014-07-31 2018-05-15 Kimberly-Clark Worldwide, Inc. Anti-adherent composition
US10028899B2 (en) 2014-07-31 2018-07-24 Kimberly-Clark Worldwide, Inc. Anti-adherent alcohol-based composition
US10238107B2 (en) 2014-07-31 2019-03-26 Kimberly-Clark Worldwide, Inc. Anti-adherent composition
US10292916B2 (en) 2014-07-31 2019-05-21 Kimberly-Clark Worldwide, Inc. Anti-adherent alcohol-based composition
US11737458B2 (en) 2015-04-01 2023-08-29 Kimberly-Clark Worldwide, Inc. Fibrous substrate for capture of gram negative bacteria

Also Published As

Publication number Publication date
JP4522707B2 (en) 2010-08-11
JPWO2003066192A1 (en) 2005-05-26
TW593385B (en) 2004-06-21
TW200305586A (en) 2003-11-01
AU2003207181A1 (en) 2003-09-02

Similar Documents

Publication Publication Date Title
Lu et al. Studies on the synthesis and antibacterial activities of polymeric quaternary ammonium salts from dimethylaminoethyl methacrylate
Tashiro Antibacterial and bacterium adsorbing macromolecules
CN102712700B (en) There is the aquagel derivative as coating agent of broad spectrum antibiotic activity
Mirizadeh et al. Fabrication of denture base materials with antimicrobial properties
EP1830639B1 (en) Antimicrobial and antiviral product
JP2001504531A (en) Antibacterial polymer
JP5320008B2 (en) Antifouling / antibacterial agent, antifouling / antibacterial coating material, antifouling / antibacterial agent composition and antifouling / antibacterial treatment method
Shekh et al. Electrospun nanofibers of poly (NPEMA-co.-CMPMA): used as heavy metal ion remover and water sanitizer
CN107286355B (en) Cation-zwitterion copolymer and polycaprolactone blended membrane and preparation method and application thereof
Chang et al. N-Halamine polymer from bipolymer to amphiphilic terpolymer with enhancement in antibacterial activity
CN102131836A (en) Antimicrobial polymers and coatings
US20200368270A1 (en) Branched polyamino acid bacteriostatic agent and application thereof
Nigmatullin et al. Onium‐functionalised polymers in the design of non‐leaching antimicrobial surfaces
Wang et al. Antimicrobial cationic acrylate-based hybrid coatings against microorganism contamination
Sha et al. Surface grafting of a quaternary ammonium salt on macroporous polyvinyl alcohol-formaldehyde sponges and their highly efficient antibacterial performance
Xu et al. Quaternized poly (2-(dimethylamino) ethyl methacrylate)-grafted agarose copolymers for multipurpose antibacterial applications
CN107033274A (en) A kind of amphoteric ion copolymer thin-film material and preparation method thereof
CN111454653A (en) Environment-friendly antibacterial water-based wood coating and preparation method thereof
Wang et al. Quaternary ammonium compound functionalized activated carbon electrode for capacitive deionization disinfection
Payne et al. Comparison of cross-linked branched and linear poly (ethylene imine) microgel microstructures and their impact in antimicrobial behavior, copper chelation, and carbon dioxide capture
US20030054185A1 (en) Biocidal controlled-release formulations
CZ286597B6 (en) Polymer exhibiting antiseptic properties, antiseptic protection method of solid base material by making use of this polymer, cotton fabric in which the polymer is comprised and use of this polymer for protection of emulsion
CN109485897B (en) Material with durable composite antibacterial synergistic anti-bacterial adhesion function in brush structure
WO2003066192A1 (en) Microorganism-trapping agent
He et al. A highly antifouling and eco-friendly hydrogel coating based on capsaicin derivative-functionalized polymer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003565612

Country of ref document: JP

122 Ep: pct application non-entry in european phase