WO2003056583A1 - Presse et procede de production d'aimant permanent - Google Patents

Presse et procede de production d'aimant permanent Download PDF

Info

Publication number
WO2003056583A1
WO2003056583A1 PCT/JP2002/012611 JP0212611W WO03056583A1 WO 2003056583 A1 WO2003056583 A1 WO 2003056583A1 JP 0212611 W JP0212611 W JP 0212611W WO 03056583 A1 WO03056583 A1 WO 03056583A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic field
cavity
permanent magnet
powder
magnetic
Prior art date
Application number
PCT/JP2002/012611
Other languages
English (en)
French (fr)
Inventor
Shuji Mino
Noboru Nakamoto
Tsutomu Harada
Original Assignee
Sumitomo Special Metals Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co., Ltd. filed Critical Sumitomo Special Metals Co., Ltd.
Priority to AU2002354165A priority Critical patent/AU2002354165A1/en
Priority to DE60213973T priority patent/DE60213973T2/de
Priority to KR10-2003-7010178A priority patent/KR20030070925A/ko
Priority to US10/474,546 priority patent/US7371290B2/en
Priority to EP02786003A priority patent/EP1391902B1/en
Publication of WO2003056583A1 publication Critical patent/WO2003056583A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0253Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing permanent magnets
    • H01F41/0273Imparting anisotropy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method for manufacturing a permanent magnet and a press device.
  • R—Fe—B rare earth magnets (R is a rare earth element containing Y, Fe is iron, and B is boron), which are typical high-performance permanent magnets, are ternary tetragonal compounds R 2 It has a structure containing the Fe 4 B phase as the main phase and exhibits excellent magnet properties.
  • Such R-Fe-B-based rare earth magnets are broadly classified into sintered magnets and bonded magnets.
  • Sintered magnets are manufactured by compression-molding fine powder of R-Fe-B magnet alloy (average particle size: several m) with a press machine and then sintering.
  • a bonded magnet is formed by compression molding a mixture (compound) of powder of R-Fe-B magnet alloy (particle size: about 100 Aim, for example) and a binder resin in a press machine. It is manufactured by
  • each powder particle has magnetic anisotropy. For this reason, when the powder is subjected to compression molding by a press device, an orientation magnetic field is applied to the powder, whereby a compact in which the powder particles are oriented in the direction of the magnetic field can be produced.
  • bonded magnets usually show magnetic anisotropy because the particle size of the powder particles used exceeds the critical particle size of a single magnetic domain. Therefore, each powder particle cannot be oriented by a magnetic field. Therefore, in order to produce an anisotropic bonded magnet in which powder particles are oriented in a specific direction, it is necessary to establish a technique for producing a magnetic powder in which individual powder particles exhibit magnetic anisotropy.
  • Hydrogenation-Disproportionation-Desorption-Recombination (DDR) treatment is performed.
  • HDDR means the process of sequentially performing Hydrogenation, Disproportionation, Dehydrogenation (Desorption), and Recombination (Recombination).
  • the ingot or powder of R—Fe_B alloy is maintained at a temperature of 500 ° C. to 10000 ° C.
  • the Ingo' Bokuma is after absorbing hydrogen to the powder, the temperature 500 ° C until an inert atmosphere of 1 3 P a hereinafter example if H 2 partial pressure 1 3 P a less vacuum or H 2 partial pressure
  • the alloy magnet powder is obtained by dehydrogenating at 11000 ° C. and then rejecting.
  • the RFeB alloy powder produced by the HDDR treatment shows a large coercive force and has magnetic anisotropy.
  • the reason for having such a property is that the metal structure is substantially an aggregate of very fine crystals of 1 to 1 m. More specifically, since the particle size of the ultrafine crystal obtained by the HDDR treatment is close to the single-domain critical particle size of the tetragonal R 2 Fe 14 B compound, a high coercive force is exhibited.
  • the aggregate of very fine crystals of the tetragonal R 2 Fe 14 B compound is called “recrystallized aggregated structure” ⁇ .
  • a method of producing an R—Fe—B-based alloy powder having a recrystallized texture by performing an HDDR process is disclosed in, for example, Japanese Patent Publication Nos. Teshiru
  • HDDR powder magnetic powder produced by HDR treatment
  • a mixture (compound) of the HDR powder and the binder resin is pressed in an orientation magnetic field, and the formed body is strongly magnetized by the orientation magnetic field. If the magnetization remains on the molded body, the magnetic powder will be attracted to the surface of the molded body, or the molded bodies will be damaged by suction collision, which will greatly hinder the subsequent handling.
  • the magnetization must be sufficiently removed before removing the compact from the press. Therefore, before removing the magnetized compact from the press, a demagnetizing magnetic field such as a magnetic field opposite to the direction of the orientation magnetic field (demagnetizing field), an alternating damping magnetic field, is applied to the compact. Need to do.
  • the present invention has been made in view of the above points, and a main purpose of the present invention is to avoid a problem due to residual magnetization of a molded product, and to realize a low cost and excellent magnetizable permanent magnet (particularly an anisotropic bond). And a press device capable of manufacturing the magnet. Disclosure of the invention
  • a method of manufacturing a permanent magnet according to the present invention is a method of manufacturing a permanent magnet by supplying magnetic powder into a cavity of a press device and forming the permanent magnet, wherein a weak magnetic field including a static magnetic field is formed in a space including the cavity. Moving the magnetic powder into the cavity while orienting the magnetic powder in a direction parallel to the direction of the weak magnetic field, and compressing the magnetic powder in the cavity to produce a molded body.
  • the weak magnetic field is formed by using a constantly magnetized magnetic member in a bent state.
  • the weak magnetic field is also applied when compressing the magnetic powder in the cavity.
  • the weak magnetic field is adjusted so that the surface magnetic flux density of the molded body immediately after molding by the press device is 0.0 ⁇ 5 Tesla or less.
  • the strength of the weak magnetic field within the Kiyabiti the strength limit of c the weak magnetic field is adjusted to below S k AZ m or more 1 2 0 k A / m is, 1 0 0 k AZ m It is preferably adjusted to the following, more preferably adjusted to 80 kAZm or less.
  • the demolding process is not performed on the molded body, The compact is removed from the cavity.
  • the magnetic member is a component constituting a die of a press device.
  • At least a part of the magnetic member is formed of a permanent magnet.
  • At least a part of the magnetic powder is HDR powder.
  • the press device includes: a die having a through hole; a core that reciprocates relative to the through hole inside the through hole; an inner peripheral surface of the through hole and the core. And a lower punch reciprocating with respect to the die between the outer peripheral surface and the lower punch, wherein the step of moving the magnetic powder into the cavity includes closing the through-hole by the lower punch.
  • the press device according to the present invention includes: a die having a through hole; an upper punch and a lower punch that can reciprocate relative to the die inside the through hole; and a die formed inside the through hole of the die.
  • a pressurizing device for supplying magnetic powder to the cavity further comprising: a weak magnetic field comprising a static magnetic field with respect to the magnetic powder when the magnetic powder is moved into the cavity.
  • a member to be applied and magnetized for orientation is provided.
  • At least one of said magnetized members for orientation is formed from a permanent magnet.
  • the permanent magnet of the present invention is a permanent magnet manufactured by compression molding, and is obtained by orienting and compressing a magnetic powder in a press device in a weak magnetic field composed of a static magnetic field, and removing the magnetic powder from the press device without performing demagnetization. It is characterized in that the remanence level at the time of the surface magnetic flux density is not more than 0.005 Tesla.
  • FIGS. 1A to 1D are process cross-sectional views showing the operation of a main part of a press device according to an embodiment of the present invention.
  • FIG. 2 is a diagram showing a configuration using a permanent magnet as a magnetic member for forming a weak alignment magnetic field.
  • FIGS. 3A to 3D are process cross-sectional views illustrating the operation of the main part of the press apparatus according to the second embodiment of the present invention.
  • FIG. 4 is a diagram showing a configuration of a press device used in the second embodiment of the present invention.
  • FIG. 5 is a diagram showing a thin ring-shaped anisotropic bonded magnet produced according to the present invention.
  • FIGS. 6A to 6E are process cross-sectional views showing the operation of the main part of the press apparatus according to another embodiment of the present invention.
  • FIG. 8 is a diagram showing another configuration of the press device that can be used in the second embodiment of the present invention.
  • FIG. 9 is a diagram showing still another configuration of the press device that can be used in the second embodiment of the present invention.
  • Figure 10 shows the relationship between the strength of the weak magnetic field formed in the cavity and the maximum magnetic energy product (BH) max of the finally obtained anisotropic bonded magnet. It is a graph which shows a relationship.
  • Figure 11 is a graph showing the relationship between the strength of the weak magnetic field formed in the cavity and the flux (magnetic flux) per unit weight of the finally obtained anisotropic bonded magnet.
  • the present inventor has found that when supplying a magnetic powder into the cavity of a press device, if a weak magnetic field consisting of a static magnetic field is applied to the magnetic powder, the magnetic powder can be sufficiently applied without applying a strong orientation magnetic field as in the related art.
  • the present inventors have found that a permanent magnet having a high degree of orientation can be obtained, and have arrived at the present invention.
  • the magnetic field strength required for orientation is weak, and the residual magnetization of the compact immediately after compression molding can be sufficiently reduced, so that it is not necessary to perform additional demagnetization treatment.
  • an anisotropic bonded magnet is manufactured.
  • a press device 10 shown in FIG. 1 includes a die 2 having a through hole 1, an upper punch 3 and a lower punch 4 that can reciprocate relative to the through hole 1 inside the through hole 1.
  • a powder supply device (feeder box) 6 for supplying magnetic powder (compound) 5 to the cavity formed in the through hole 1 of the die 2 is provided.
  • a small part of the magnetic member (ferromagnetic material) constituting the die 2 is magnetized, and when the magnetic powder 5 is moved into the cavity, the magnetic powder 5 is statically moved.
  • a weak magnetic field consisting of a magnetic field can be applied.
  • the degree of magnetization is set so that the strength of the weak magnetic field formed in the cavity is within the range of about 8 to 12 ⁇ k A Zm (measured value at the center of the cavity).
  • the magnetized magnetic member forms a weak magnetic field (indicated by the reference symbol “M” in the figure) that constantly consists of a static magnetic field in the cavity, so that the compound during powdering can be properly oriented. it can.
  • the magnetic member used to form such a weak magnetic field composed of a static magnetic field is preferably arranged near the cavity, but the specific arrangement and configuration are appropriately designed according to the intended magnetic field distribution. Is done.
  • the dies provided in ordinary presses contain parts (parts) made of ferromagnetic material, and if the parts (parts) are magnetized in a strong magnetic field, the required level of Magnetization is obtained.
  • the magnetization of the magnetic member may be performed before setting the die in the press device, or in a state where the die is set in the press device.
  • a conventional anisotropic pound magnet press machine produces a strong orientation magnetic field to be applied after powdering.
  • a coil is provided, it is also possible to magnetize a part of the die using the strong magnetic field created by the coil.
  • a permanent magnet may be incorporated in the die 2, or a permanent magnet may be arranged around the die 2.
  • 2 (a) and 2 (b) show an example in which a pair of permanent magnets (for example, rare earth sintered magnets) are arranged on both sides of the die 2.
  • FIG. In this example, two permanent magnets form an orientation magnetic field in the cavity space.
  • the orientation magnetic field is formed by the arrangement of permanent magnets, the number of permanent magnets used and the degree of magnetization are adjusted as appropriate, and if the arrangement is devised, a new orientation magnetic field distribution that cannot be realized by the conventional method is formed. It is also possible to do.
  • a mixture (compound) 5 of the HDDR powder and a binder (binding resin) is prepared as described above, and after filling the compound 5 into the feeder box 6, as shown in FIGS. 1 (a) and (b), The feeder box 6 is moved onto the die 2 cavity of the press. Compound 5 falls into the cavity and fills the cavity.
  • the powder particles constituting the compound 5 are effectively oriented in a weak magnetic field consisting of a static magnetic field. This is thought to be because the individual powder particles that move into the cavity can relatively easily rotate when falling.
  • the feeder box 6 is moved from above the cavity to the retracted position, and then the upper punch 3 is lowered as shown in Fig. 1 (d), and the compound in the cavity is removed. 5 is compression molded to produce a compact.
  • the magnetic field is oriented at the time of powder feeding, a sufficiently high degree of orientation can be achieved even with a relatively weak magnetic field of about 8 to 12 kAZm.
  • the magnetic field strength is too strong to exceed 800 kA / m, as in the conventional orientation magnetic field, magnetic cross-linking of the powder particles will fail and smooth powder feeding will be hindered.
  • the magnetization (residual magnetization) of the molded body immediately after compression molding can be reduced by one digit or more compared to the conventional case. Therefore, the orientation is performed by a strong magnetic field after the completion of the feeding, and the operation required in the conventional technology, for example, once the powder in the cavity is used to facilitate the orientation of the powder.
  • the operation of forming a small space in the upper part and the operation of orienting in this state and then pressing and compressing the powder to form a compact are unnecessary, and the demagnetization treatment for the compact 7 is not required. It becomes unnecessary.
  • the cycle time of the pressing process is reduced to about the same as the cycle time of the isotropic magnet (less than half the cycle time of the conventional anisotropic bonded magnet). It becomes possible to do.
  • an orientation magnetic field is formed by a weakly-magnetized magnetic member
  • the application of the orientation magnetic field is performed not only at the time of powder supply, but also by compressing the compound 5 by the upper punch 3 and the lower punch 4. This is continued even when the molding is performed, and the disturbance of the orientation that is likely to occur during compression molding is suppressed.
  • a radially oriented ring-shaped anisotropic pod magnet is manufactured. Specifically, using the die 2 shown in FIGS. 4 (a) and 4 (b), a thin ring-shaped anisotropic bonded magnet 1+ substantially radially oriented as shown in FIG. 5 can be obtained.
  • the die 2 used in the present embodiment is formed of a ferromagnetic material, and has a through hole at the center as shown in FIG. 4, and is formed of a ferromagnetic material at the center of the through hole.
  • the arranged cylindrical core 8 is arranged.
  • a permanent magnet 9 magnetized in the same direction as the movement direction of the core 8 is arranged below the core 8, and the core 8 itself is also magnetized.
  • the cavity is formed between the inner wall of the die through hole and the outer peripheral surface of the core 8.
  • the core 8 and the die 2 form a radial alignment magnetic field in the cavity.
  • a mixture (compound) 5 of the HDDR powder and the binder (binder resin) is prepared in the same manner as in the first embodiment, and after filling the compound 5 into the feeder box 6, FIG.
  • the feeder box 6 is moved onto the die 2 of the press device 10 as shown in FIG. More specifically, the feeder box 6 is arranged directly above a portion of the die 2 where the cavity is formed.
  • the upper surface of the die 2, the upper surface of the lower punch 4, and the upper surface of the core 8 are located at substantially the same level, no cavity space is formed.
  • the method of this embodiment is effective when applied to a cavity having a shape that is difficult to feed, and is particularly suitable for producing a thin ring-shaped anisotropic bonded magnet.
  • the magnetic field orientation is performed at the time of powder feeding, a sufficiently high degree of orientation can be achieved with a weak magnetic field, and the magnetization (residual magnetization) of the compact immediately after compression molding is at least one digit higher than in the past. It can be lower.
  • the compound 5 is formed by the upper punch and the lower punch 4 in addition to the powder supply.
  • An orientation magnetic field can be continuously applied even during compression.
  • the core is moved into the feeder box before forming the cavity space after moving the feeder box 6 right above the portion where the cavity is formed. It is not limited to the form of feeding.
  • the core 8 and the die 2 are raised relatively to the lower punch 4, so that the cavities are located directly below the feeder box 6.
  • the compound 5 may be filled into the cavity as it is being formed, or as shown in FIGS. 7 (a) to 7 (e), the feeder box 6 may be placed directly above the cavity that has been formed in advance. May be moved so that compound 5 is dropped from feeder box 6 into the cavity.
  • FIG. 8 shows another configuration of a press device that can be used in the present embodiment.
  • a ring-shaped permanent magnet 9 radially oriented on the inner wall side of the through hole of the die 2 (in the example of FIG. Are magnetized so that the S pole and the outer peripheral surface are N poles), and a cavity is formed between the inner peripheral surface of the permanent magnet 9 and the outer peripheral surface of the core 8.
  • the inner peripheral surface of the permanent magnet 9 is strongly rubbed by the compound 5.
  • the material of the thin member may be a non-magnetic material or a magnetic material, and may be a non-metal such as metal or ceramics.
  • a configuration is shown in which a radially oriented ring-shaped permanent magnet 9 is arranged on the inner wall side of the through hole of the die 2, but a radially oriented ring-shaped permanent magnet is provided on the outer peripheral surface of the core 8.
  • a configuration in which the cavity is formed between the outer peripheral surface of the ring-shaped permanent magnet and the inner wall of the through hole of the die 2 may be adopted.
  • a radially oriented ring-shaped permanent magnet is arranged on the outer peripheral surface of the core 8 together with the inner wall of the through hole of the die 2, and the intended radial orientation can be realized.
  • the inner surface or the outer surface of the radially oriented ring-shaped permanent magnet is configured to be magnetized so as to be a single pole of the N pole or the S pole.
  • a ring-shaped permanent magnet to be arranged different magnetic poles are adjacent to the intersection g in the circumferential direction of the inner peripheral surface.
  • a configuration in which a plurality of poles are formed may be employed.
  • the orientation of a ring-shaped permanent magnet having a multipolar anisotropy on the outer peripheral surface for example, Japanese Patent Application Laid-Open No. H08-210208 is also possible.
  • a configuration in which a plurality of magnetic poles are alternately formed adjacent to each other in the circumferential direction of the outer peripheral surface may be adopted.
  • a configuration in which a plurality of magnetic poles are alternately formed adjacent to each other in the circumferential direction of the outer peripheral surface may be adopted.
  • the multipolar anisotropic orientation it is not necessary to use a ring-shaped permanent magnet as the orientation magnet as described above, and a plurality of bow-shaped magnets are arranged in a ring shape such that the Tatsumi magnetic poles are alternately adjacent to each other.
  • a known configuration such as forming a coil housing groove for forming a weak magnetic field for orientation on the inner wall surface of the die through hole can be employed.
  • the orientation of the orientation magnetic field is horizontal, and is perpendicular to the pressing direction (uniaxial compression direction). is there.
  • the powder particles filled into the cavity are oriented horizontally.
  • the powder particles are linked in a chain along the horizontal direction due to magnetic interaction.
  • the powder particles located on the upper surface of the filling powder are also connected in a horizontal direction, so that the powder does not protrude outside the cavity and is easily contained in the cavity.
  • the permanent magnet 9 can be arranged on the side of the lower punch 4 as shown in FIG. According to such an arrangement, the magnetization on the lower punch 4 side can be strengthened as compared with the upper punch 3 side, so that the supply of the compound 5 into the cavity can be performed smoothly.
  • ⁇ 9 has a permanent magnet 9
  • the relative position of the permanent magnet 9 changes in accordance with the relative movement of the lower punch 4 with respect to the die 2, but the lower punch 4 can move during compound powdering. Accordingly, the direction and intensity of the alignment magnetic field existing in the cavity formed by the upper surface of the lower punch 4 and the inner wall of the through hole of the die 2 do not change.
  • the term “static magnetic field” in the present specification refers to a magnetic field in which the direction and intensity are kept substantially constant in a coordinate system based on the position of the cavity during magnetic powder supply. Therefore, the permanent magnet and the magnetic member magnetized by the permanent magnet move together with the mechanical operation of the pressing device, and the magnetic field is formed in the cavity when the magnetic powder is supplied. If the direction strength of the is almost constant without changing over time, the orientation magnetic field is "static magnetic field".
  • the center axis of the cabidi of the press may be inclined with respect to the vertical direction, or the direction of the alignment magnetic field may be inclined with respect to the horizontal direction. These arrangements can be appropriately designed depending on the shape of the permanent magnet to be produced.
  • a configuration using a permanent magnet magnetized in a predetermined direction will be described.
  • the same effect can be obtained by performing magnetization using a coil instead of a permanent magnet.
  • a coil-based magnetic field may be additionally applied.
  • an additional magnetic field assist magnetic field
  • the residual magnetization of the molded body is reduced to 0.000. It is desirable to set the orientation magnetic field strength in the cavity between 8 kAZm and 120 kAZm in order to keep it low at 5 T or less.
  • the orientation magnetic field strength in the cavity is an optimal value depending on the shape and dimensions of the target compact, the magnetic properties of the magnetic powder, the orientation direction, the powder supply rate when supplying the magnetic powder, and the like. It is desirable to select In order to achieve perfect orientation, it is preferable to set the orientation magnetic field strength high. However, as will be apparent from the description of the embodiment described later, even if the intensity of the alignment magnetic field is increased to a predetermined intensity or more, the effect is saturated and only the residual magnetization of the molded body is increased. According to the experiments of the present inventor, in order to achieve the target orientation, a magnetic field strength of at least 8 kAZm is necessary, but the upper limit is set at 120 kAZ from the viewpoint of remanent magnetization and the like.
  • the upper limit of the orientation magnetic field strength is preferably 100 kAZ / m or less, more preferably 80 kA / m or less.
  • the assist magnetic field, without Rukoto limited to static magnetic field may be an oscillating magnetic field such as an AC magnetic field or a pulse magnetic field c
  • HDD R powder of Nd-FeB-based rare earth alloy containing 15% by weight of ⁇ r—balance of Fe was prepared. Specifically, first, the rare earth alloy raw material having the above composition was heat-treated in an atmosphere A at 130 ° C. for 15 hours, and then subjected to collapse and sizing by hydrogen absorption. The average particle size of the powder (measured by laser diffraction method). Value) was about 120 m.
  • the HDDR compound was prepared by mixing a binder (binder resin) of virphenol A type epoxy resin with the above-mentioned HDR powder using a biaxial kneader while heating it to 60 ° C.
  • the binder weight ratio was about 2.5% of the whole.
  • the HDR compound was compression molded using a press as shown in FIGS.
  • the substantial magnetic properties of the magnet were adjusted by changing the amount of magnetization of the permanent magnets arranged on both sides of the die 2, thereby setting the magnetic field strength in the cavity to a desired value.
  • the shape of the die cavity of the press machine at the opening surface (the die top surface) was a rectangle of 5 mm x 20 mm, and the depth of the cavity was 4 Omm.
  • the cavities were filled with about 1 Og (gram) of the above compound.
  • the shape of the molded body made with such a cavity was a rectangular parallelepiped, and the size was 5 mm long ⁇ 2 Omm wide ⁇ 1 mm thick.
  • Figure 10 shows the relationship between the strength of the weak magnetic field formed in the cavity (measured at the center of the cavity) and the maximum magnetic energy product of the finally obtained anisotropic bonded magnet.
  • Figure 1 1 shows data for two examples of powder feeding under different conditions, and an anisotropic bonded magnet manufactured by the conventional method of applying a strong magnetic field of 12 k ⁇ e during compression molding (comparative example). ) Is described.
  • the unit of magnetic field strength indicated on the horizontal axis of the graph is O e (Erusutetsu de) 1 0 3 Roh (4 [pi]) multiplied by the value of this number is the Contact Keru magnetic field strength SI units.
  • 10 3 Z (4 v) is about 80, so for example, 10 ⁇ e is about 8 kAZm in SI unit system.
  • Example 1 The powder supply rate at the time of powder supply was kept low in Example 1, and Was set as high as possible.
  • FIG. 10 in the case of Example 1 (indicated by the solid line in the figure), if the magnetic field intensity in the cavity is 1 ⁇ OOe or more, a high maximum magnetic energy product of 90% or more of the comparative example is achieved. Was done.
  • Example 2 indicated by the broken line in the figure, when the magnetic field intensity in the cavity was set to about 400 Oe or more, the maximum magnetic energy product of 90% or more of the comparative example was obtained. The maximum magnetic energy product was small in the region where was low.
  • Example 2 having a high powder supply rate, if the intensity of the alignment magnetic field is increased (for example, 400 Oe or more (two about 32 kA / m or more)), practical magnetic properties can be realized. However, if the intensity of the alignment magnetic field is too high. It is not preferable because the magnetization remaining in the molded body increases and the same problem as in the related art occurs. In order to suppress the residual magnetization to a level at which the above problem does not occur ( ⁇ ⁇ .005T or less), it is preferable that the intensity of the alignment magnetic field be at most 150 ⁇ Oe (120 kA / m) or less.
  • the orientation magnetic field strength is preferably set to 1260 ⁇ e (1 ⁇ O kAZm) or less, more preferably 10000O (8 ⁇ kA / m) or less, and 400Oe or less. It is most preferable to set the following.
  • a ring-shaped anisotropic bonded magnet which was radially oriented was produced using the press apparatus shown in FIGS. 3 and 4.
  • the compound used is the same as that used in Example 1.
  • the shape of the compact was 25 mm in outer diameter, 23 mm in inner diameter, and 5 mm in height.
  • FIG. 11 shows the relationship with the weight (per unit weight).
  • Fig. 11 shows, as a comparative example, the flux of an anisotropic bonded magnet subjected to compression molding by applying a conventional strong magnetic field (pulse magnetic field: strength: 120 kA nom).
  • the flux increases with increasing magnetic field strength, but saturates at about 400 to 500 ⁇ e.
  • the magnetic material In order to keep the remanent magnetization low and obtain a flux large enough for practical use, the magnetic material must be set so that the magnetic field strength in the cavity is about 40 ⁇ to 60 ⁇ Oe (d 32-32 kAZm). It is preferable that the surface magnetic flux density (residual magnetism) of the compact immediately after pressing (in the case where demagnetization is not performed) is such that the orientation magnetic field strength in the cavity is 100 000 ⁇ (80 k A / m), the value was about 10 ⁇ 0.001 3 Tesla (10 ⁇ 13 Gauss).
  • the remanence is 0.0001 Tesla (10 Gauss) or less, and the orientation magnetic field strength in the cavity is, for example, about 50 ° Oe. In the case of (40 kA / m), the remanence was about 0.0005 (5 Gauss).
  • the magnetic powder can be oriented in the direction of the orientation magnetic field while filling the cavity into the cavity. Magnetization that remains in the compact after compression molding while achieving a sufficient degree of magnetic field orientation due to the low intensity of the orientation magnetic field Can be greatly reduced. As a result, it is possible to omit the demagnetization treatment, so that while avoiding various problems caused by residual magnetization, the cycle time of the press process is reduced, and permanent magnets with excellent characteristics can be manufactured at low cost. can do.
  • the size of the pressing device can be reduced, and the power consumed by the coil for forming a magnetic field can be saved. The cost required for can be reduced.

Description

明 細 書 永久磁石の製造方法およびプレス装置 技術分野
本発明は、 永久磁石の製造方法およびプレス装置に関している。 背景技術
高性能永久磁石として代表的な R— F e— B系希土類磁石 (Rは Yを含 希土類元素、 F eは鉄、. Bはホウ素) は、 三元系正方晶化 合物である R 2 F e 4 B相を主相として含む組織を有し、 優れた磁 石特性を発揮する。
このような R— F e— B系希土類磁石は、 焼結磁石とボンド磁石 とに大別される。 焼結磁石は、 R— F e— B系磁石合金の微粉末 (平均粒径 : 数 m ) をプレス装置で圧縮成形し 後、 焼結するこ とによって製造される。 これに対して、 ボンド磁石は、 R— F e— B系磁石合金の粉末 (粒径 :例えば 1 0 0 Ai m程度) と結合樹脂と の混合物 (コンパウンド) をプレス装置内で圧縮成形することによ つて製造される。
焼結磁石の場合、 比較的粒径の小さい粉末を用いる め、 個々の 粉末粒子が磁気的異方性を有している。 このため、 プレス装置で粉 末の圧縮成形を行 とき、 粉末に対して配向磁界を印加し、 それに よって、 粉末粒子が磁界の向きに配向しだ成形体を作製することが できる。
一方、 ボンド磁石の場合は、 用いる粉末粒子の粒径が単磁区臨界 粒径を超えた大きさを持っため、 通常、 磁気的異方性を示すことが なく、 各粉末粒子を磁界で配向させることはできなかっ 。 従って、 粉末粒子が特定方向に配向した異方性ボンド磁石を作製するには、 個々の粉末粒子が磁気的異方性を示す磁性粉末を作製する技術を確 立する必要がある。
異方性ボンド磁石用の希土類合金粉末を製造するため、 現在、 H
D D R (hydrogenation-Disproportionation-Desorption-Reco mbination) 処理法が行われる。 「HDDR」 は、 水素化 (Hydro genation 、 不均化 (Disproportionation) 、 脱水素化 (Desor ption) 、 および再結合 (Recombination) を順次実行するプロセ スを意味している。 この H D D R処理によれば、 R— F e_B系合 金のインゴッ 卜または粉末を H2ガス雰囲気または H2ガスと不活 性ガスとの混合雰囲気中で温度 500°C〜1 000°Cに保持し、 そ れによって、 上記インゴッ 卜ま は粉末に水素を吸蔵させた後、 例 えば H2分圧 1 3 P a以下の真空雰囲気または H2分圧 1 3 P a以 下の不活性雰囲気になるまで温度 500°C〜1 000°Cで脱水素処 理し、 次いで)令却することによって合金磁石粉末を得る。
HDDR処理を施して製造された R— F e— B系合金粉末は、 大 きな保磁力を示し、 磁気的な異方性を有している。 このような性質 を有する理由は、 金属組織が実質的に〇. 1〜1 mの非常に微細 な結晶の集合体となる めである。 より詳細には、 HDDR処理に よって得られる極微細結晶の粒径が正方晶 R2F e 14B系化合物の 単磁区臨界粒径に近いために高い保磁力を発揮する。 この正方晶 R 2F e 14B系化合物の非常に微細な結晶の集合体を 「再結晶集合組 織」 とよ^。 HDDR処理を施すことによって、 再結晶集合組織を 持つ R— F e— B系合金粉末を製造する方法は、 例えば、 特公平 6 一 825了 5号公報および特公平了一 68561号公報に開示され てし、る。
H D D R処理によって作製され 磁性粉末 (以下、 「H D D R粉 末」 と称する) を用いて異方性ボンド磁石を製造しょうとすると、 以下のような問題が発生している。
H D D R粉末と結合樹脂との混合物 (コンパウンド) を配向用磁 界中でプレスして作製し 成形体は、 配向磁界によって強く磁化さ れる。 成形体に磁化が残留していると、 成形体の表面に磁粉が吸着 され、 あるいは、 成形体どうしが吸引衝突によって破損するなどし て、 その後の取り扱いに大きな支障をき すので、 成形体の磁化は、 成形体をプレス装置から取り出す前に充分に除去しておく必要があ る。 このため、 磁化された成形体をプレス装置から取り出す前に、 配向磁界の向きと逆向きの磁界 (減磁界) ゆ交番減衰磁界などの脱 磁用磁界を成形体に印加する 「脱磁処理」 を行う必要がある。 しか し、 このような脱磁処理には、 通常、 数+秒ちの時間がかかるため、 プレス工程のサイクルタイムが脱磁処理を行わない場合 (等方的ボ ンド磁石のサイクルタイム) に比べて 2倍以上にも長くなつてしま う。 このようにサイクルタイムが長くなると、 量産性が低下し、 磁 石の製造コス卜が増大してしまラ。
なお、 焼結磁石の場合は、 成形体の脱磁が不充分であっても、 も ともと磁石粉末の保磁力が低く、 成形体に残留する磁化が小さい。 また、 焼結工程で磁石粉末がキュリー点以上の高温にさらされるた め、 着磁工程の前には完全な脱磁が行われることになる。 これに対 し、 異方性ボンド磁石の場合は、 成形体をプレス装置から取り出す ときに磁化が残留していると、 この残留磁化が着磁工程まで残って しまうことになる。 着磁工程のとき、 ボンド磁石に磁化が残留して いると、 磁石のヒステリシス特性の め、 着磁が極めて困難になる。 本発明は、 かかる諸点に鑑みてなされたものであり、 その主な目 的は、 成形体の残留磁化による問題を回避し、 低コス卜で着磁性に 優れた永久磁石 (特に異方性ボンド磁石) を製造することができる 方法およびプレス装置を提供することにある。 発明の開示
本発明による永久磁石の製造方法は、 プレス装置のキヤビティ 内に磁性粉末を供給し、 成形する永久磁石の製造であって、 前記キ ャビティを含 空間に静磁界からなる弱磁界を形成し、 前記磁性粉 末を前記弱磁界の向きに平行な方向に配向させながら前記磁性粉末 を前記キヤビティの内部へ移動させる工程と、 前記キヤビディ内で 前記磁性粉末を圧縮し、 成形体を作製する工程とを包含する。
好ましい実施形態において、 前記弱磁界は、 定常的に磁化された 伏態にある磁性部材を用いて形成される。
好ましい実施'形態において、 前記弱磁界は、 前記キヤビティ内で 前記磁性粉末を圧縮ずるときにも印加される。 - - - - 好ましい実施形態において、 前記プレス装置による成形直後にお ける前記成形体の表面磁束密度が 0. 0〇 5テスラ以下となるょラ に前記弱磁界が調節されている。
好ましい実施形態において、 前記キヤビティ内における前記弱磁 界の強度は、 S k A Z m以上 1 2 0 k A / m以下に調節されている c 前記弱磁界の強度上限は、 1 0 0 k A Z m以下に調節されている ことが好ましく、 8 0 k A Z m以下に調節されていることが更に好 ましし、。
好ましい実施形態において、 前記キヤビティ内で前記磁性粉末を 圧縮した後、 前記成形体に対して脱磁処理を行ろことなく、 前記キ ャビティから前記成形体を取り出す。
好ましい実施形態において、 前記磁性部材は、 プレス装置の ダイを構成する部品である。
好ましい実施形態において、 前記磁性部材の少なくとち一部 は永久磁石から形成されている。
好ましい実施形態において、 前記磁性粉末の少なくとち一部は H D D R粉末である。
好ましい実施形態において、 前記プレス装置は、 貫通孔を有する ダイと、 前記貫通孔の内部において前記貫通孔に対して相対的に往 復動作するコアと、 前記貫通孔の内周面と前記コアの外周面との間 において、 前記ダイに対して相対的に往復動作する下パンチとを備 えており、 前記磁性粉末を前記キヤビティの内部へ移動させる工程 は、 前記下パンチによって前記貫通孔が塞がれた状態の前記ダイの 上において、 前記磁性粉末を含 ¾フィーダボックスを前記貫通孔の 上方に配置する工程と、 前記ダイに対して前記コアを上方に移動さ せる工程と、 前記コアに対して前記ダイを上方に移動させ、 前記フ ィーダボックスの下方に前記キヤビティを形成する工程とを含む。 ' 本発明によるプレス装置は、 貫通孔を有するダイと、 前記貫通孔 の内部において前記ダイに対して相対的に往復動作し得る上パンチ および下パンチと、 前記ダイの貫通孔の内部に形成され キヤビテ ィに磁性粉末を供給する給粉装置とを備えたプレス装置であって、 更に、 前記磁性粉末を前記キヤビティの内部へ移動させるときに前 記磁性粉末に対して静磁界からなる弱磁界を印加する、 配向用に磁 化された部材を備えている。
好ましい実施形態において、 前記配向用に磁化され 部材の少な くとも 1つは、 永久磁石から形成されている。 本発明の永久磁石は、 圧縮成形によって製造され 永久磁石であ つて、 プレス装置内の磁性粉末を静磁界からなる弱磁界中で配向、 圧縮し、 脱磁処理を行うことなぐ前記プレス装置から取り出された 時の残磁レベルが表面磁束密度で 0. 0 0 5テスラ以下であること を特徴とする。
図面の簡単な説明
図 1 は、 (a ) 〜 ( d ) は、 本発明の実施形態におけるプレス装 置の主要部の動作を示す工程断面図である。
図 2は、 弱い配向磁界を形成するための磁性部材として永^磁石 を用い 構成を示す図である。
図 3は、 (a ) 〜 (d ) は、 本発明の第 2の実施形態におけるプ レス装置の主要部の動作を示す工程断面図である。
図 4は、 本発明の第 2の実施形態で用いるプレス装置の構成 を示す図である。
図 5は、 本発明によって作製され 薄肉リング状の異方性ボンド 磁石を示す図である。 - 図 6は、 (a ) 〜 (e ) は、 本発明の他の実施形態におけるプレ ス装置の主要部の動作を示す工程断面図である。
図了は、 (a ) 〜 (e ) は、 本発明の更に他の実施形態における プレス装置の主要部の動作を示す工程断面図である。
図 8は、 本発明の第 2の実施形態で用いることができるプレス装 置の他の構成を示す図である。
図 9は、 本発明の第 2の実施形態で用いることができるプレス装 置の更に他の構成を示す図である。
図 1 0は、 キヤビティ内に形成した弱磁界の強度と、 最終的に得 られた異方性ボンド磁石の最大磁気エネルギー積 (B H ) m a xとの 関係を示すグラフである。
図 1 1 は、 キヤビティ内に形成した弱磁界の強度と、 最終的に得 られた異方性ボンド磁石の単位重量あ りのフラックス (磁束量) との関係を示すグラフである。 発明を実施するための最良の形態
本発明者は、 プレス装置のキヤビティ内に磁性粉末を供給すると き、 磁性粉末に対して静磁界からなる弱磁界を印加すれば、 その後 に従来のような強い配向磁界を印加しないでも、 充分に高い配向度 を持った永久磁石が得られることを見出して、 本発明を想到するに いたった。
本発明によれば、 配向の めに必要な磁界強度が弱く、 圧縮成形 直後における成形体の残留磁化を充分に低減することができるので、 付加的な脱磁処理を行ラ必要がなくなる。
なお、 磁性粉末をキヤビティに移動 (落下) させる際、 移動しつ つある磁性粉末に配向磁界を印加することにより、 効果的に磁性粉 末を配向させる技術は、 特開平 2〇〇 1 - 9 3 7 1 2号公報ゃ特開 平 2 0 0 1— 2 2 6了 0 1号公報に記載されている。 本発明では、 これらの公報に開示されている磁界に比べて格段に小さな磁界を用 いて永久磁石の成形を行ろことにより、 成形体に残留する磁化に起 因する表面磁束密度を〇. 0 0 5テスラ以下に低減し、 脱磁工程を 不要なものとする点に大きな特徴を有している。 本発明によれば、 従来のよ に大型の配向用磁界発生装置が不要となり、 また、 プレ ス工程のサイクルタイムを大幅に短縮することができる。
(第 1 の実施形態)
以下、 図面を参照しながら、 本発明の第 1の実施形態を説明する。 本実施形態では、 異方性ボンド磁石を作製する。
図 1 ( a ) 〜 (d ) は、 本発明による磁石製造方法における主要 工程 (配向磁界中給粉—圧縮成形) を示している。 図 1 に示すプレ ス装置 1 0は、 貫通孔 1 を有するダイ 2と、 貫通孔 1 の内部におい て貫通孔 1 に対して相対的に往復動作し得る上パンチ 3および下パ ンチ 4と、 ダイ 2の貫通孔 1 の内部に形成されたキヤビティに磁性 粉末 (コンパウンド) 5を供給する給粉装置 (フィーダボックス) 6とを備えている。
本実施形態では、 ダイ 2を構成する磁性部材 (強磁性体) の少な <とち一部が磁化されており、 磁性粉末 5をキヤビティの内部へ移 動させるとき、 磁性粉末 5に対して静磁界からなる弱磁界を印加す ることができる。 上記磁化の程度は、 キヤビティ内に形成する弱磁 界の強度が 8〜 1 2〇 k A Z m程度 (キヤビティ中央部での測定 値) の範囲内に含まれるよ に設定される。 磁化された磁性部材は、 キヤビティ内に定常的に静磁界からなる弱い磁界 (図中、 「M」 の 参照符号で示す) を形成しており、 給粉時のコンパウンドを適切に 配向させることができる。
このよろな静磁界からなる弱磁界の形成に用いる磁性部材は、 キ ャビティの近傍に配置されることが好ましいが、 その具体的な配置 ゆ構成は、 目的とする磁界分布に じて適切に設計される。 通常の プレス装置に備えられているダイは強磁性体材料から形成された部 品 (部分) を含んでいるため、 その部品 (部分) を強い磁界中に置 いて磁化すれば、 必要なレベルの磁化が得られる。 磁性部材の磁化 は、 ダイをプレス装置にセッ トする前に行ってもよいし、 ダイをプ レス装置にセッ 卜した状態で行ってちょい。 従来の異方性ポンド磁 石用プレス装置には、 給粉後に印加すべき強い配向磁界を形成する コイルが備え付けられているが、 このコイルの生み出す強い磁界を 用いてダイの一部を磁化することも可能である。
なお、 ダイ 2の一部を磁化する代わりに、 ダイ 2に永久磁石を組 み込んだり、 ダイ 2の周辺部に永久磁石を配置するようにしても良 し、。 図 2 ( a ) および (b ) は、 ダイ 2の両側に一対の永久磁石 (例えば希土類焼結磁石) 了を配置した例を示している。 この例で は、 2つの永久磁石了によってキヤビディ空間内に配向磁界を形成 する。 永^磁石了の配置によって配向磁界を形成する場合、 用いる 永久磁石の個数や磁化の程度を適宜調節し、 配置を工夫すれば、 従 来の方法によって実現できなかった新規な配向磁界分布を形成する ことも可能になる。
以下、 図 1 の装置を用いて異方性ボンド磁石を製造する方法を説 明する。
まず、 前述し H D D R粉末とバインダ (結合樹脂) との混合物 (コンパウンド) 5を用意し、 このコンパウンド 5をフィーダボッ クス 6内に充填し 後、 図 1 ( a ) および (b ) に示すように、 フ ィーダボックス 6をプレス装置のダイ 2のキヤビティ上に移動させ る。 コンパウンド 5は、 キヤビティの内部へ落下し、 キヤビティ内 に充填される。 このよラしてキヤビティへの粉末充填が行われると き、 コンパウンド 5を構成する粉末粒子は、 静磁界からなる弱磁界 中で効果的に配向させられる。 これは、 キヤビティ内に移動する 個々の粉末粒子が落下に際して比較的容易に回転できる めと考え られる。
本発明者の実験によれば、 コンパウンド 5をキヤビティに充填す るとき、 大量のコンパウンド 5を一度にキヤビティ内に落とし込 よりも、 少量づっ比較的長い時間をかけてキヤビティ内に落下させ ることが好ましいことがわかっ 。 これは、 コンパウンド 5がある 程度の大きさを持つ塊となって給粉される場合には、 個々の粉末粒 子の自由な運動 (特に回転) が妨げられて配向度が低下するが、 コ ンパウンド 5を少量つづ給粉する場合は、 個々の粉末粒子が比較的 自由に回転し得るため、 弱い磁界中でもスムーズに配向し得る^め と考えられる。
コンパウンド 5をキヤビティ内に充填するとき、 仮に、 従来の配 向磁界印加用コイルを用いて強い静磁界を給粉中のコンパウンド 5 に印加すると、 粉末粒子がキヤビティの内壁面間で配向磁界の方向 に沿って架橋状に連結し、 キヤビティを部分的に塞いでしま 。 こ のため、 均一な粉末充填が達成できなくなる。 これに対して、 本実 施形態のょラに比較的弱い磁界をコンパウンド 5に印加する場合に は、 このような粉末粒子の磁気的架橋が形成されにくい。
次に、 図 1 ( c ) に示すように、 フィーダボックス 6をキヤビテ ィの上方から退避位置へ移動させた後、 図 1 ( d ) に示すように上 パンチ 3を下降させ、 キヤビティ内のコンパゥンド 5を圧縮成形し、 成形体了を作製する。
本実施形態によれば、 給粉時に磁界配向を行うため、 8〜1 2〇 k A Z m程度の比較的弱い磁界であっても充分に高い配向度を達成 できる。 逆に、 磁界強度が従来の配向磁界のように 8 0 0 k A/ m を超えるように強くなりすぎると、 粉末粒子の磁気的架橋のだめ、 スムーズな給粉が妨げられてしまうことになる。
本実施形態によれば、 圧縮成形し 直後における成形体了の磁化 (残留磁化) を従来よりち 1桁以上低くすることが可能である。 従 つて、 給粉完了後に強磁界で配向を行ラ従来技術で必要とされ 動 作、 例えば、 粉末の配向を容易にする めに一旦キヤビティ内の粉 末上部に僅かな空間を形成する動作や、 その状態で配向した後、 引 き続き粉末を加圧 ·圧縮して成形体とする動作などが不要となると ともに、 成形体 7に対する脱磁処理が不要になる。 このため、 本実 施形態によれば、 プレス工程のサイクルタイムを、 等方性磁石の場 合のサイクルタイムと同程度 (従来の異方性ボンド磁石の場合のサ ィクルタイムの半分以下) に短縮することが可能になる。
なお、 本実施形態では、 弱 <磁化された磁性部材によって配向磁 界を形成する め、 配向磁界の印加は、 給粉時のみならず、 上パン チ 3と下パンチ 4とによってコンパゥンド 5を圧縮するときにも継 続し、 圧縮成形時に生じやすい配向の乱れが抑制される。
(第 2の実施形態)
次に、 図 3から図 7を参照しながら、 本発明の第 2の実施形態を 説明する。 本実施形態では、 ラジアル配向したリング状の異方性ポ ンド磁石を作製する。 具体的には、 図 4 ( a ) および (b ) に示す ダイ 2を用いて、 図 5に示すような略ラジアル配向した薄肉リング 伏の異方性ボンド磁石 1 +を得ることができる。
本実施形態で使用するダイ 2は、 強磁性体材料から形成され、 図 4に示すように、 中央部に貫通孔が設けられており、 その貫通孔内 の中心部に強磁性体材料から形成された円柱状のコア 8が配置され ている。 本実施形態では、 このコア 8の下方部にコア 8の移動方向 と同じ方向に磁化された永久磁石 9を配置しており、 その めにコ ァ 8自体も磁化されている。 キヤビティは、 ダイ貫通孔の内壁とコ ァ 8の外周面との間に形成される。 コア 8とダイ 2とにより、 キヤ ビティ内にはラジアル配向磁界が形成される。
図 3を参照して、 本実施形態におけるプレス装置の動作を説明す まず、 第 1 の実施形態と同様にして H D D R粉末とバインダ (結 合樹脂) との混合物 (コンパウンド) 5を用意し、 このコンパゥン ド 5をフィーダボックス 6内に充填した後、 図 3 ( a ) に示すよう に、 フィーダボックス 6をプレス装置 1 0のダイ 2の上に移動させ る。 より具体的には、 ダイ 2においてキヤビティが形成される部分 の真上にフィーダボックス 6を配置させる。 このとき、 本実施形態 では、 ダイ 2の上面と下パンチ 4の上面とコア 8の上面とをほぽ等 しいレベルに位置させているため、 キヤビティ空間は形成されてい なし、。
次に、 図 3 ( b ) に示すように、 コア 8をダイ 2および下パンチ
4に対して相対的に上昇させる。 その後、 図 3 ( c ) に示すよ 5に、 ダイ 2をコア 8および下パンチ 4に対して相対的に上昇させること により、 コア 8の上面とダイ 2の上面とを同一レベルに合わせる。 上記の動作により、 キヤビティが形成されるとともに、 キヤビティ 内にコンパウンド 5が充填される。
このようしてキヤビティへの粉末充填が行ねれるとき、 コンパゥ ンド 5を構成する粉末粒子は、 永久磁石 9 (図 4参照) によって磁 化されたコア 8とダイ 2との間に形成される静磁界からなる弱磁界 中で効果的にラジアル配向させられることになる。
本実施形態によれば、 コンパウンド 5をキヤビティ内に充填する ときにキヤビティの内壁面間を粉末粒子が架橋状態に連結してキヤ ビティを部分的に塞ぐという問題が生じない。 この め、 最初の実 施形態に比べて、 粉末充填がより均一かつ速ゆかに進行する。 故に、 本実施形態の方法は、 給粉の困難な形状を持つキヤビティに適用し て効果的であり、 特に薄いリング状の異方性ボンド磁石の作製に適 してし)る。 次に、 図 3 ( d ) に示すように、 フィーダボックス 6をキヤビテ ィの上方から退避位置へ移動させた後、 不図示の上パンチを下降さ せ、 キヤビティ内のコンパウンド 5を圧縮成形し、 成形体を作製す る。
本実施形態によれば、 給粉時に磁界配向を行 5ため、 弱い磁界で ち充分に高い配向度を達成でき、 圧縮成形した直後における成形体 の磁化 (残留磁化) を従来よりち 1桁以上低くすることが可能であ る。
なお、 本実施形態においても、 前述の実施形態と同様に弱く磁化 された磁性部材によって配向磁界の印加を行ラため、 給粉時のみな らず、 上パンチと下パンチ 4とによってコンパゥンド 5を圧縮する ときにも継続的に配向磁界を印加することができる。
本実施形態では、 キヤビティが形成される部分の真上にフィーダ ボックス 6を移動させた後、 キヤビティ空間を形成する前に、 コア をフィーダボックス内に進入させているが、 本発明は、 このような 給粉形態に限定されない。 例えば、 図 6 ( a ) から (e ) に示すよ うにして、 コア 8とダイ 2とを下パンチ 4に対して相対的に上昇さ せ、 それによつて、 フィーダボックス 6の真下でキヤビティを形成 しながらコンパウンド 5をキヤビティ内に充填してもよいし、 また、 図 7 ( a ) から (e ) に示すよラに、 予め形成しておいたキヤビテ ィの真上にフィ一ダボックス 6を移動させ、 それによつてフィーダ ボックス 6の中からコンパウンド 5をキヤビティ内に落とし込むよ うにして充填してもよい。
図 8は、 本実施形態で使用し得るプレス装置の他の構成を示して いる。 図 8の構成を有するプレス装置では、 ダイ 2の貫通孔の内壁 側にラジアル配向したリング状の永久磁石 9 (図の例では、 内周面 が S極、 外周面が N極になるよ に磁化されている) を配置してお り、 この永^磁石 9の内周面とコア 8の外周面との間にキヤビティ が形成される。 キヤビティに充填され コンパウンド 5が圧縮成形 されるとき、 永久磁石 9の内周面はコンパウンド 5によって強く摩 擦されることになる。 この め、 永久磁石 9の破壊を防止する目的 で、 永^磁石 9の内局面と下パンチ 4との間に薄肉部材を配置する ことが好ましい。
なお、 薄肉部材の材料は、 非磁性材料であっても磁性材料であつ てもよく、 金属、 あるいはセラミックスなどの非金属であってもよ し、。
図 8の構成を採用しても、 図 4の構成を有する場合と同様に、 効 果的なラジアル配向が可能である。 なお、 図 8の構成と図 4の構成 を併せ持つプレス装置を用いても良い。 2種類の永久磁石が適切な 配向磁界分布を生成するため、 より効果的なラジアル配向を実現で さる。
また、 図 8の構成では、 ラジアル配向したリング状の永久磁石 9 をダイ 2の貫通孔の内壁側に配置した形態を示し が、 コア 8の外 周面にラジアル配向したりング状永久磁石を配置し、 このりング状 永久磁石の外周面とダイ 2の貫通孔内壁との間にキヤビティを形成 する構成も採用できる。 さらに、 これらを組み合わせ、 ラジアル配 向したリング状の永久磁石をダイ 2の貫通孔内壁とともにコア 8の 外周面にも配置しても、 目的とするラジアル配向を実現できる。 上記の実施形態において、 ラジアル配向したりング状永久磁石の 内周面または外周面は、 N極ま は S極の単極になるよ 磁化され た構成からなるが、 例えば、 ダイス貫通孔内壁に配置するリング状 永^磁石として、 その内周面周方向に異磁極が交 gに隣接するよラ に複数極形成した構成を採用してもよい。 このような構成を採用す れぱ、 外周面に多極異方性を存するリング状永久磁石 (例えば特閧 平 1 一 2了 2 0 8号公報) の配向も可能となる。 同様に、 コア外周 に配置するリング状永久磁石として、 その外周面周方向に異磁極が 交互に隣接するよラに複数極形成した構成を採用してもよい。 この ような構成を採用すれば、 内周面に多極異方性を有するリング状永 久磁石の配向が可能となる。 なお、 多極異方性の配向には、 上記の 如く配向用磁石としてりング状永^磁石を用いる必要はなく、 複数 の弓型磁石を巽磁極が交互に隣接するようにリング状に配置し り、 ダイス貫通孔内壁面に配向用弱磁界形成用のコイル収納溝を形成す るなど、 公知の構成を採用できる。
以上説明してきた実施形態 (直角配向、 ラジアル配向、 または多 極異方性配向の場合) では、 いずれも配向磁界の向きは水平方向で あり、 プレス方向 (1軸圧縮方向) に対して垂直である。 このため、 キヤビティに充填され 粉末粒子は水平方向に配向する。 粉末粒子 は磁気的相互作用のため水平方向に沿って鎖状に連なる。 充填粉末 の上面に位置する粉末粒子も水平方向に連なる結果、 粉末はキヤビ ティの外側にはみだすことなく、 キヤビティ内に完全に収まりやす い。
配向磁界の向きがプレス方向と平行になる場合、 図 9に示す よろに下パンチ 4の側に永久磁石 9を配置することができる。 このような配置によれば、 上パンチ 3の側に比べて下パンチ 4 の側の磁化を強めることができるため、 キヤビティ内へのコン パゥンド 5の供給を円滑に行うことが可能となる。
なお、 囡9は永久磁石 9を配置し 下パンチ 4の上面とダイ
2の貫通孔内壁とによって形成されるキヤビティ内にコンパゥ ンドを給粉し、 図中矢印方向 (M方向) の配向が完了した後、 上パンチ 3を下降させ、 キヤビティ内のコンパゥンドを圧縮成 形する状態を示している。
囡 9に示す構成例では、 ダイ 2に対する下パンチ 4の相対的 な上昇/下降動作に従って永久磁石 9の相対的な位置関係が変 化するが、 コンパウンド給粉時には、 下パンチ 4は移動するこ となく、 下パンチ 4の上面とダイ 2の貫通孔内壁内によって形 成されるキヤビティ空間に存在する配向磁界の向きおよび強度 は変化しない。 本明細書における 「静磁界」 とは、 磁性粉末給 粉時におけるキヤビティの位置を基準とする座標系において、 向きや強度が略一定に保たれる磁界を指すものとする。 従って、 プレス装置の機械的な動作に伴って永久磁石ゆ、 永久磁石によ つて磁化された磁性部材が移動する揚合であってち、 磁性粉末 給粉時においてキヤビティ内に形成される配向磁界の向きゆ強 度が時間的に変化することなく略一定であれば、 その配向磁界 は 「静磁界」 である。
なお、 プレス装置のキヤビディ中心軸が鉛直方向に対して傾斜し ていても良いし、 配向磁界の向きが水平方向に対して傾斜していて ちょい。 これらの配置構成は、 どのような形状の永久磁石を作製す るかに依存して適切に設計され得る。
なお、 上記の実施形態では、 いずれち、 所定方向に磁化され 永 ^磁石を用いた構成を説明し が、 永久磁石に代えてコイルを用い て磁化を行っても同様な効果を得ることができる。 また、 上記の永 久磁石によって磁化された部材が作る弱い配向磁界に加えて、 コィ ルによる磁界を付加的に印加してち良い。 このように付加的な磁界 (アシスト磁界) を用いる場合でも、 成形体の残留磁化を 0 . 0 0 5 T以下に低く維持するため、 キヤビティ内の配向磁界強度は 8 k AZm以上 1 20 kAZm以下に設定することが望ましい。 すなわ ち、 キヤビティ内の配向磁界強度は、 目的とする成形体の形状 ·寸 法、 磁性粉末の磁気特性、 配向方向、 磁性粉末給粉時の粉末供給レ 一卜などに麻じて最適値に選定することが望ましい。 完全な配向を 実現する めには、 配向磁界強度を高く設定することが好ましい。 しかし、 後述する実施例の説明から明らかなよラに、 配向磁界強度 を所定強度以上に大きくしても、 その効果は飽和し、 成形体の残留 磁化を大きくするだけである。 本発明者の実験によれば、 目的とす る配向を達成するためには、 少なくとも 8 k AZm以上の磁界強度 が必要であるが、 その上限については、 残留磁化等の観点から 1 2 0 k AZm以下に設定することが好ましい。 配向磁界強度の上限は、 1 00 k AZm以下であることが好ましく、 80 kA/m以下であ ることが更に好ましい。 なお、 アシスト磁界は、 静磁界に限定され ることなく、 交流磁界やパルス磁界などの振動磁界であってもよい c
【実施例】 - -
(実施例 1 )
以下、 本発明の実施例を説明する。
まず、 本実施例では、 27. 5重量 ¾>の Nd— 1. 0了重量%の B— 1 4. 了重量%の〇 0— 0. 2重量%の〇リ一 0. 3重量%の G a-O. 1 5重量%の∑ r—残部 F eを含有する Nd— F e-B 系希土類合金の HDD R粉末を用意しだ。 具体的には、 まず、 上記 組成を有する希土類合金原料を A「雰囲気中で 1 30°C1 5時間 の条件で熱処理した後、 水素吸蔵による崩壊 ·整粒を行った。 その 後、 HDDR処理を行うことより、 磁気的異方性を有する HDDR 粉末を作製した。 粉末の平均粒径 (レーザ回折法によって測定した 値) は、 1 20 m程度であった。
上記 H D D R粉末に対して、 ビルフェノール A型エポキシ樹脂の バインダ (結合樹脂) を 60度に加熱しつつ二軸ニーダを用いて混 ぜ合わせることにより、 HDDRコンパウンドを作製しだ。 バイン ダの重量比率は、 全体の 2. 5%程度とした。
この H D D Rコンパゥンドを図 1および図 2に示すようなプレス 装置を用い、 圧縮成形しだ。 なお、 ダイ 2の両側に配置した永久磁 石の磁化量を変化させることによって当該磁石の実質的な磁気特性 を調節し、 それによつてキヤビティ内の磁界強度を所望の値に設定 し 。 プレス装置のダイキヤビティの開口面 (ダイ上面) での形伏 (プレス方向に垂直なキヤビティの断面形状) は、 5mmX20m mの長方形であり、 キヤビティの深さは 4 Ommであった。
キヤビティには、 上記コンパウンドを約 1 O g (グラム) 充填し た。 このようなキヤビティで作製した成形体の形状は、 直方体であ り、 そのサイズは縦 5mm X横 2 OmmX高さ 1 了 mmであった。 キヤビティ内に形成した弱磁界の強度 (キヤビティ中央部での測 定値) と、 最終的に得られた異方性ボンド磁石の最大磁気エネルギ 一積との関係を図 1 0に示す。 図 1 〇では、 異なる条件で給粉を行 つた 2種類の実施例についてのデータと、 圧縮成形時に 1 2 k〇e の強磁界を印加する従来方法で作製した異方性ボンド磁石 (比較 例) についてのデータとを記載している。
なお、 グラフの横軸に示す磁界強度の単位は O e (ェルステツ ド) であり、 この数値を 1 03ノ (4π ) 倍し 値が S I単位にお ける磁界強度となる。 1 03Z (4兀) は約 80であるので、 例え ば、 1 0〇〇eは、 S I単位系で約 8 k AZmとなる。
給粉時の粉末供給レートは、 実施例 1では低く抑え、 実施例 2で は可能な限り高く設定した。 図 1 0からわかるように、 実施例 1の 場合 (図中、 実線で示す) 、 キヤビティ内の磁界強度が 1 〇OOe 以上であれば、 比較例の 90%以上の高い最大磁気エネルギー積が 達成された。 一方、 実施例 2の場合 (図中、 破線で示す) は、 キヤ ビティ内の磁界強度を約 400Oe以上にすれば、 比較例の 90% 以上の最大磁気エネルギー積が得られたが、 磁界強度が低い領域で は 最大磁気エネルギー積は小さかった。 これらの結果から、 給粉 時の粉末供給レー卜を低く設定することが好ましいことがわかる。 なお、 粉末供給レー卜の高い実施例 2の場合でも、 配向磁界の強 度を高めれば (例えば 400Oe以上 (二約 32 k A/m以上) ) 、 実用化可能な磁気特性を実現できる。 ただし、 配向磁界の強度を高 くし過ぎると。 成形体に残留する磁化が増加して、 従来と同様の問 題が発生するので好ましくない。 残留磁化を上記問題が生じないレ ベル (〇. 005T以下) に抑えるには、 配向磁界の強度を最大で も 1 50〇Oe (1 20 k A/m) 以下とすることが好ましい。 残 留磁化を更に小さくするに-は、 配向磁界強度を 1 260〇e (1 〇 O kAZm) 以下にすることが好ましく、 1 000Oe (8〇 kA /m) 以下とすることが更に好ましく、 400Oe以下に設定する ことが最も好ましい。
(実施例 2)
図 3および図 4に示すプレス装置を用いてラジアル配向させだリ ング状異方性ボンド磁石を作製し 。 用いたコンパウンドは、 実施 例 1で用いたものと同様である。 成形体の形状は、 外径が 25mm、 内径が 23mm、 高さが 5mmであった。
キヤビティ内に形成した弱磁界の強度 (キヤビティ中央部での測 定值) と、 最終的に得られ 着磁工程後の異方性ボンド磁石のフラ ックス (単位重量あたり) との関係を図 1 1に示す。 図 1 1には、 比較例として、 従来の強磁界 (パルス磁界 : 強度 1 20〇 k Aノ m) を印加して圧縮成形を行なっ 異方性ボンド磁石のフラックス が示されている。
図 1 1からわかるように、 フラックスは磁界強度の上昇に伴って 増加するが、 400〜500〇e程度で飽和する。 残留磁化を低く 抑え、 かつ、 実用に耐える大きさのフラックスを得るためには、 キ ャビティ内の磁界強度が 40〇〜6〇0Oe程度 (ニ32〜48 k AZm程度) となるように磁性部材を磁化しておくことが好ましい: なお、 プレス直後における (脱磁処理を行わない場合の) 成形体 の表面磁束密度 (残磁) は、 キヤビティ内の配向磁界強度が 1 00 0O Θ (80 k A/m) を超える場合、 〇. 〇〇1 0〜0. 001 3テスラ (1 0〜1 3ガウス) 程度であった。 一方、 キヤビティ内 の配向磁界強度が 1 OOOOe (80 k AZm) 以下の場合は、 残 磁は 0. 001 0テスラ (1 0ガウス) 以下となり、 キヤビティ内 の配向磁界強度が例えば約 50〇O e (40 k A/m) の場合は、 残磁は 0. 0005 (5ガウス) 程度であった。
本実施例では、 囡 3に示す方法で給粉するため、 粉末粒子の磁気 的架橋が形成されず、 強度が比較的強い配向磁界を形成してち速ゆ かな粉末充填が可能であった。 産業上の利用可能性
本発明によれば、 給粉時に静磁界からなる弱い配向磁界を印加す るため、 磁性粉末をキヤビティ内に充填しながら配向磁界の方向に 配向させることができる。 配向磁界の強度が小さし、 め、 充分な程 度の磁界配向を実現しながら、 圧縮成形後に成形体に残留する磁化 を大幅に低減できる。 その結果、 脱磁処理を省略することが可能と なるため、 残留磁化に起因する種々の問題を回避しつつ、 プレスェ 程のサイクルタイムを低減し、 特性に優れた永久磁石を低コス卜で 製造することができる。
また、 本発明よれば、 従来の強い配向磁界形成用コイルが不要に なるため、 プレス装置の小型化が可能になり、 また、 配向磁界形成 用コイルが消費していた電力をセーブでき、 プレス工程に要するコ ス卜を低減できる。

Claims

請 求 の 範 囲
1 . プレス装置のキヤビティ内に磁性粉末を供給し、 成形する永 久磁石の製造であって、
前記キヤビティを含 ¾空間に静磁界からなる弱磁界を形成し、 前 記磁性粉末を前記弱磁界の向きに平行な方向に配向させながら前記 磁性粉末を前記キヤビティの内部へ移動させる工程と、
前記キヤビディ内で前記磁性粉末を圧縮し、 成形体を作製するェ 程と、
を包含する永久磁石の製造方法。
2. 前記弱磁界は、 定常的に磁化された状態にある磁性部材を用 いて形成される請求項 1 に記載の永久磁石の製造方法。
3. 前記弱磁界は、 前記キヤビティ内で前記磁性粉末を圧縮する ときにも印加される請求項 1 ま は 2に記載の永久磁石の製造方法。
4. 前記プレス装置による成形直後における前記成形体の表面磁 束密度が〇. 0〇 5テスラ以下となるように前記弱磁界が調節され ている請求項 1から 3のいずれかに記載の永久磁石の製造方法。
5. 前記キヤビティ内における前記弱磁界の強度は、 8 k A / m 以上 1 2 0 k AZ m以下に調節されている請求項 4に記載の永久磁 石の製造方法。
6. 前記キヤビティ内における前記弱磁界の強度は、 8 k A Z m 以上 10〇 kAZm以下に調節されている請求項 5に記載の永久磁 石の製造方法。
7. 前記キヤビティ内における前記弱磁界の強度は、 8 kAZm 以上 80 k AZm以下に調節されている請求項 6に記載の永久磁石 の製造方法。
8. 前記キヤビティ内で前記磁性粉末を圧縮した後、 前記成形体 に対して脱磁処理を行 οことなく、 前記キヤビティから前記成形体 を取り出す請求項 1から 7のいずれかに記載の永久磁石の製造方法 c
9. 前記磁性部材は、 プレス装置のダイを構成する部品であ る請求項 2から 8のいずれかに記載の永久磁石の製造方法。
1 0. 前記磁性部材の少なくとも一部は永久磁石から形成さ れている請求項 2から 9のいずれかに記載の永久磁石の製造方 法。
1 1. 前記磁性粉末の少なくとも一部は HDD R粉末である請求 項 1から 1 0のいずれかに記載の永久磁石の製造方法。
12. 前記プレス装置は、
貫通孔を有するダイと、
前記貫通孔の内部において前記貫通孔に対して相対的に往復動作 するコアと、
前記貫通孔の内周面と前記コアの外周面との間において、 前記ダ ィに対して相対的に往復動作する下パンチとを備えており、 前記磁性粉末を前記キヤビティの内部へ移動させる工程は、 前記下パンチによって前記貫通孔が塞がれ 状態の前記ダイの上 において、 前記磁性粉末を含 ¾フィーダボックスを前記貫通孔の上 方に配置する工程と、
前記ダイに対して前記コアを上方に移動させる工程と、
前記コアに対して前記ダイを上方に移動させ、 前記フィーダボッ クスの下方に前記キヤビティを形成する工程と、
を含 ¾、 請求項 1から 1 1 のいずれかに記載の永久磁石の製造方法
1 3. 貫通孔を有するダイと、
前記貫通孔の内部において前記ダイに対して相対的に往復動作し 得る上パンチおよび下パンチと、
前記ダイの貫通孔の内部に形成されたキヤビティに磁性粉末を供 給する給粉装置と、
を備え^プレス装置であって、 更に、
前記磁性粉末を前記キヤビティの内部へ移動させるときに前記磁 性粉末に対して静磁界からなる弱磁界を印加する、 配向用に磁化さ れた部材を備えているプレス装置。
1 4. 前記配向用に磁化された部材の少なくとも 1つは、 永久磁 石から形成されている請求項 1 3に記載のプレス装置。
1 5. 圧縮成形によって製造された永久磁石であって、 プレス装 置内の磁性粉末を静磁界からなる弱磁界中で配向、 圧縮し、 脱磁処 理を行ラことなく前記プレス装置から取り出された時の残磁レベル が表面磁束密度で 0. 005テスラ以下であることを特徴とする永 久磁石。
PCT/JP2002/012611 2001-12-26 2002-12-02 Presse et procede de production d'aimant permanent WO2003056583A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
AU2002354165A AU2002354165A1 (en) 2001-12-26 2002-12-02 Production method for permanent magnet and press device
DE60213973T DE60213973T2 (de) 2001-12-26 2002-12-02 Herstellungsverfahren für einen permanentmagneten und presseinrichtung
KR10-2003-7010178A KR20030070925A (ko) 2001-12-26 2002-12-02 영구자석의 제조방법 및 프레스장치
US10/474,546 US7371290B2 (en) 2001-12-26 2002-12-02 Production method for permanent magnet and press device
EP02786003A EP1391902B1 (en) 2001-12-26 2002-12-02 Production method for permanent magnet and press device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001393880 2001-12-26
JP2001-393880 2001-12-26

Publications (1)

Publication Number Publication Date
WO2003056583A1 true WO2003056583A1 (fr) 2003-07-10

Family

ID=19188810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012611 WO2003056583A1 (fr) 2001-12-26 2002-12-02 Presse et procede de production d'aimant permanent

Country Status (7)

Country Link
US (1) US7371290B2 (ja)
EP (1) EP1391902B1 (ja)
KR (1) KR20030070925A (ja)
CN (1) CN1271650C (ja)
AU (1) AU2002354165A1 (ja)
DE (1) DE60213973T2 (ja)
WO (1) WO2003056583A1 (ja)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100452252C (zh) * 2006-12-22 2009-01-14 姚燕 稀土永磁体的取向压制成型方法及用于该方法的制备装置
CN101477866A (zh) * 2008-09-19 2009-07-08 广州金南磁塑有限公司 一种各向异性柔性粘结钕铁硼磁体及其制造方法
DE102013205101A1 (de) * 2013-03-22 2014-09-25 Siemens Aktiengesellschaft Presswerkzeug zum Herstellen eines Magneten, insbesondere eines Permanentmagneten
CN103978208A (zh) * 2014-06-04 2014-08-13 董中天 各向异性粘结钕铁硼磁环一次成型工艺的磁粉送料装置
CN106881460B (zh) * 2015-12-15 2021-05-25 天津三环乐喜新材料有限公司 一种磁性粉末快速均匀填充的方法和装置
KR102629385B1 (ko) * 2018-01-25 2024-01-25 삼성전자주식회사 바지-인 관련 직접 경로를 지원하는 저전력 보이스 트리거 시스템을 포함하는 애플리케이션 프로세서, 이를 포함하는 전자 장치 및 그 동작 방법

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192705A (ja) * 1999-10-25 2001-07-17 Sumitomo Special Metals Co Ltd 希土類合金粉末の成形体製造方法、成形装置および希土類磁石
JP2001226701A (ja) * 1999-12-09 2001-08-21 Sumitomo Special Metals Co Ltd 磁性粉末供給方法および装置ならびに磁石の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0828293B2 (ja) 1987-04-07 1996-03-21 日立金属株式会社 円筒状永久磁石、それを用いたモータ及びその製造方法
CN1012477B (zh) 1987-08-19 1991-05-01 三菱金属株式会社 稀土-铁-硼磁体粉末及其制备方法
JP2001093712A (ja) 1999-09-20 2001-04-06 Sumitomo Special Metals Co Ltd 磁気異方性永久磁石とその製造方法並びに製造装置
US6432158B1 (en) 1999-10-25 2002-08-13 Sumitomo Special Metals Co., Ltd. Method and apparatus for producing compact of rare earth alloy powder and rare earth magnet
CN1176476C (zh) * 1999-12-09 2004-11-17 株式会社新王磁材 磁粉的供给方法与装置及磁铁的制造方法
US7344606B2 (en) * 2001-10-31 2008-03-18 Neomax Co., Ltd. Permanent magnet manufacturing method and press apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001192705A (ja) * 1999-10-25 2001-07-17 Sumitomo Special Metals Co Ltd 希土類合金粉末の成形体製造方法、成形装置および希土類磁石
JP2001226701A (ja) * 1999-12-09 2001-08-21 Sumitomo Special Metals Co Ltd 磁性粉末供給方法および装置ならびに磁石の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1391902A4 *

Also Published As

Publication number Publication date
AU2002354165A1 (en) 2003-07-15
US7371290B2 (en) 2008-05-13
US20040112467A1 (en) 2004-06-17
DE60213973T2 (de) 2006-12-14
DE60213973D1 (de) 2006-09-28
CN1271650C (zh) 2006-08-23
KR20030070925A (ko) 2003-09-02
CN1557008A (zh) 2004-12-22
EP1391902A1 (en) 2004-02-25
EP1391902B1 (en) 2006-08-16
EP1391902A4 (en) 2005-04-06

Similar Documents

Publication Publication Date Title
KR100518067B1 (ko) 영구자석의 제조방법 및 프레스 장치
US7045092B2 (en) Method for press molding rare earth alloy powder and method for producing sintered object of rare earth alloy
WO2003056583A1 (fr) Presse et procede de production d&#39;aimant permanent
JP2003203818A (ja) 永久磁石の製造方法およびプレス装置
US20050006005A1 (en) Method and apparatus for producing granulated powder of rare earth alloy and method for producing rare earth alloy sintered compact
JP4370877B2 (ja) 永久磁石粉末の配向方法および永久磁石の製造方法
JP2003257767A (ja) 永久磁石の製造方法およびプレス装置
JP2003193107A (ja) 希土類合金粉末のプレス成形方法および希土類合金焼結体の製造方法
JP2000182867A (ja) 異方性ボンド磁石およびその製造方法ならびにプレス装置
JPH0935977A (ja) 異方性焼結磁石の製造方法
JP4774652B2 (ja) 希土類焼結磁石の製造方法
JP3151604B2 (ja) ラジアル異方性ボンド磁石の製造方法およびボンド磁石
JPH1174143A (ja) 磁性粉末の成形方法
JPH09148165A (ja) ラジアル異方性ボンド磁石の製造方法およびボンド磁石
JPH04143221A (ja) 永久磁石の製造方法
JP3614545B2 (ja) 異方性焼結磁石の製造方法
JP4057075B2 (ja) 磁石粉末の成形方法
JP3526493B2 (ja) 異方性焼結磁石の製造方法
JPH0935978A (ja) 異方性焼結永久磁石の製造方法
JPH09306767A (ja) 異方性永久磁石の製造方法
JPH10193189A (ja) 磁性粉末成形機及びそれを用いた成形方法
JPH01202805A (ja) R―tm―b系塑性加工磁石の製造方法
JPH01114010A (ja) 永久磁石粉体の充填方法
JPH01245503A (ja) 希土類磁石の製造方法
JPH023209A (ja) 永久磁石およびその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 02805382.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 1020037010178

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020037010178

Country of ref document: KR

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10474546

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2002786003

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002786003

Country of ref document: EP

WWR Wipo information: refused in national office

Ref document number: 1020037010178

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 2002786003

Country of ref document: EP