WO2003050618A1 - Method for manufacturing wiring board - Google Patents

Method for manufacturing wiring board Download PDF

Info

Publication number
WO2003050618A1
WO2003050618A1 PCT/JP2002/012101 JP0212101W WO03050618A1 WO 2003050618 A1 WO2003050618 A1 WO 2003050618A1 JP 0212101 W JP0212101 W JP 0212101W WO 03050618 A1 WO03050618 A1 WO 03050618A1
Authority
WO
WIPO (PCT)
Prior art keywords
photomask
wiring
wiring board
pattern
manufacturing
Prior art date
Application number
PCT/JP2002/012101
Other languages
French (fr)
Japanese (ja)
Inventor
Toshihiko Tanaka
Akira Shimada
Mamoru Okano
Norio Hasegawa
Takashi Hattori
Original Assignee
Renesas Technology Corp.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp. filed Critical Renesas Technology Corp.
Priority to AU2002357582A priority Critical patent/AU2002357582A1/en
Priority to JP2003551613A priority patent/JPWO2003050618A1/en
Publication of WO2003050618A1 publication Critical patent/WO2003050618A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2002Exposure; Apparatus therefor with visible light or UV light, through an original having an opaque pattern on a transparent support, e.g. film printing, projection printing; by reflection of visible or UV light from an original such as a printed image
    • G03F7/2014Contact or film exposure of light sensitive plates such as lithographic plates or circuit boards, e.g. in a vacuum frame
    • G03F7/2016Contact mask being integral part of the photosensitive element and subject to destructive removal during post-exposure processing
    • G03F7/2018Masking pattern obtained by selective application of an ink or a toner, e.g. ink jet printing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G13/00Electrographic processes using a charge pattern
    • G03G13/22Processes involving a combination of more than one step according to groups G03G13/02 - G03G13/20
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/06Apparatus for electrographic processes using a charge pattern for developing
    • G03G15/10Apparatus for electrographic processes using a charge pattern for developing using a liquid developer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/22Apparatus for electrographic processes using a charge pattern involving the combination of more than one step according to groups G03G13/02 - G03G13/20
    • G03G15/221Machines other than electrographic copiers, e.g. electrophotographic cameras, electrostatic typewriters
    • G03G15/224Machines for forming tactile or three dimensional images by electrographic means, e.g. braille, 3d printing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G15/00Apparatus for electrographic processes using a charge pattern
    • G03G15/65Apparatus which relate to the handling of copy material
    • G03G15/6582Special processing for irreversibly adding or changing the sheet copy material characteristics or its appearance, e.g. stamping, annotation printing, punching
    • G03G15/6585Special processing for irreversibly adding or changing the sheet copy material characteristics or its appearance, e.g. stamping, annotation printing, punching by using non-standard toners, e.g. transparent toner, gloss adding devices
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03GELECTROGRAPHY; ELECTROPHOTOGRAPHY; MAGNETOGRAPHY
    • G03G7/00Selection of materials for use in image-receiving members, i.e. for reversal by physical contact; Manufacture thereof
    • G03G7/0093Image-receiving members, based on materials other than paper or plastic sheets, e.g. textiles, metals
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0002Apparatus or processes for manufacturing printed circuits for manufacturing artworks for printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0502Patterning and lithography
    • H05K2203/0517Electrographic patterning
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/05Patterning and lithography; Masks; Details of resist
    • H05K2203/0548Masks
    • H05K2203/056Using an artwork, i.e. a photomask for exposing photosensitive layers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/10Using electric, magnetic and electromagnetic fields; Using laser light
    • H05K2203/107Using laser light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/12Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns
    • H05K3/1266Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern using thick film techniques, e.g. printing techniques to apply the conductive material or similar techniques for applying conductive paste or ink patterns by electrographic or magnetographic printing

Definitions

  • the present invention relates to a printed wiring board (mother board) used for various electronic devices, a semiconductor integrated circuit chip constituting a module mounted on the mother board, and a method of manufacturing a wiring board on which various semiconductor components are mounted. Further, the present invention relates to a method for manufacturing a photomask used for the manufacture. Background art
  • the SIA (Semiconductor Industry Association) roadmap published in November 1999, describes the minimum terminal pitch prediction for BGA / CSPZ flip-chip as follows. In 1999, the IC minimum line width (nm) / BGA terminal pitch (customer) / CSP terminal pin The pitch (mm) / flip chip terminal pitch (mm) was 180 (nm) /1.0 (mm) /0.5 (mra) /0.2 (mm), respectively. , 150 (nm) /0.8 (mm) / 0.
  • the conventional subtractive method etching copper foil to create conductor patterns, stacking them together and stacking them together
  • dry film photoresists photosensitive films
  • the direct mounting of the multi-pin package on a printed wiring board manufactured by a process of exposing using a lithography method is approaching its limit. This is because in the conventional method, a wiring pitch up to about 200 ⁇ is regarded as a general accuracy.
  • a variety of printed wiring boards (build-up wiring boards) with a new manufacturing method that achieves a wiring pitch of 200 ⁇ m or less have been developed.
  • the manufacturing process of the build-up wiring board is characterized by using an already established lithography technique as an LSI manufacturing method to repeatedly form an insulating layer, form a via hole, form a pattern, and connect between the eyebrows to form a multilayer. is there.
  • an already established lithography technique as an LSI manufacturing method to repeatedly form an insulating layer, form a via hole, form a pattern, and connect between the eyebrows to form a multilayer. is there.
  • this is a sequential lamination method in which conductor patterns are sequentially formed and stacked, the process becomes complicated and expensive when the number of layers increases.
  • a method of producing a photomask used for the exposure a method of forming a silver halide emulsion layer on a base material of the mask and a method of using a metal thin film are generally used.
  • a method for forming a silver halide emulsion layer on the base material of the first mask is to draw a desired wiring pattern on the emulsion layer using a laser photoplotter, and then develop and fix the photomask.
  • the second method of using a metal thin film is to deposit a metal thin film such as Cr on the base material (glass substrate) of the mask by sputtering or the like, apply a photo resist, apply argon laser light, FD — Create a photomask by exposing the wiring pattern with a laser such as a YAG laser beam or a Hemanium-Neon laser beam, removing the resist, and etching the metal thin film.
  • a laser such as a YAG laser beam or a Hemanium-Neon laser beam
  • removing the resist and etching the metal thin film.
  • a polyester film, a glass substrate, or the like is used as the base material of the mask.
  • the laser photoplotter is configured to wind a film as a base material of the mask around a cylindrical drum, and to draw a wiring pattern by rotating the drum and shifting a laser beam head toward a cylindrical drum axis.
  • a glass substrate as a base material is placed on a flat table, a laser beam is scanned, and a wiring pattern is drawn by shifting the flat table.
  • a masking material in the form of a film is wound around a cylindrical drum and irradiated with an Ar laser or a red semiconductor laser with a beam diameter of about 4 to 12 Aim.
  • the laser beam head is shifted by a drawing pitch of about 2 to 12 ⁇ in the axial direction of the cylindrical drum. It is designed to draw line patterns, and the equipment specifications guarantee a minimum line width of about 25 ⁇ m.
  • the accuracy can be improved by changing the base material of the mask from a film to a glass substrate having good dimensional stability.
  • drawing is performed on the mask by a flat-table type laser photoplotter.
  • a glass substrate on which a silver halide emulsion layer is formed is placed on a drawing table of a plane scanning laser photoplotter, and a wiring pattern created by a printed wiring board design support system (CAD) is used.
  • CAD printed wiring board design support system
  • the plotter develops the data into data for laser beam scanning, and irradiates the glass substrate with the laser beam.
  • This glass substrate is treated with a developing solution and a fixing solution, washed with water and dried to form a photomask.
  • a laser plotter used for manufacturing a photomask draws a mask pattern on the masking material by a raster scan method to speed up drawing.
  • the laser spot focused on the masking material moves at high speed from left to right on the masking material.
  • a photomask drawn by the laser photoplotter is used for forming the conductor pattern. It is conceivable to apply the lithography technology developed as a manufacturing process.
  • the mask used in the conventional method is chromium (Cr) formed on a transparent mask substrate. It is produced by processing a metal film having a light-shielding property such as, or an inorganic film having a dimming property or a light-shielding property, such as MoSi, ZrSiO, or SiN.
  • the usual mask is formed by the metal film or the transparent mask on the transparent mask substrate.
  • An inorganic film is formed in a desired shape.
  • This metal film or inorganic film is usually formed by a sputtering method.
  • a resist film is applied on the metal film, and then a desired pattern is drawn on the resist film. Subsequently, after a resist pattern having a desired shape is formed by development, the metal film is processed by dry etching or wet etching using the resist pattern as a masking layer. Then, after removing the resist pattern, washing and the like are performed to form a light-shielding pattern made of the metal film having a desired shape on a transparent mask substrate. The same applies to the case of an inorganic film.
  • the laser photoplotter described above is used in conjunction with a CAD system, automatic film processor, etc. to apply a photomask to a photomask within two to three hours after the completion of CAD data in order to apply it to the manufacture of masks for a wide variety of printed wiring boards. Is completed. Using a photosensitive material that reacts by exposure processing with a semiconductor laser, the mask can be completed earlier with fewer steps than in the above-described Cr mask manufacturing step.
  • the time required for drawing also increases.
  • the practical minimum line width is said to be about 40 ⁇ m.
  • Low cost laser photoplotters have poor accuracy, and high cost laser photoplotters require complicated adjustments.
  • the mask manufacturing process using a laser photoplotter requires development and fixing treatments, which requires a long process time and requires large-scale equipment. Disclosure of the invention
  • an object of the present invention is to manufacture a photomask with a short TAT, It is an object of the present invention to provide a technology capable of manufacturing a wiring substrate with a short TAT using a photomask.
  • Another object of the present invention is to provide a technique for reducing the manufacturing cost of a wiring board by manufacturing a photomask at low cost.
  • the inventor of the present application has proposed a light-shielding pattern including a particulate matter and a binder as an alternative to a metal such as chrome which is generally used as a light-shielding pattern for a photomask in current LSI manufacturing. The characteristics of this as a photomask were investigated.
  • the binder binds the particulate matter to form a film.
  • the composition was incorporated into a resist, which is a photosensitive composition, and its characteristics were examined.
  • the resist R1 was spin-coated on an optical glass substrate (blanks), and beta-coated at, for example, 100 ° C. for 2 minutes to obtain a coating having a thickness of 600 nm. Thereafter, a desired pattern was drawn by an electron beam EB using an electron beam drawing apparatus.
  • TMAH Umuhidorokishido
  • the inventor of the present invention applied fine particles such as carbon and a binder to a mask base material (glass substrate or the like) by applying the principle of electrophotography used in a current laser printer.
  • a photomask printing apparatus for producing a photomask by forming a light-shielding body pattern containing the same was conceived. Excellent in snoring and cost due to dry development.
  • the principle of laser printer photography is described in, for example, "New Edition Laser One Handpuck” published by Asakura Shoten, pp.611-617, published 1989.6.
  • a photomask printing apparatus with a laser beam spot diameter of 10 m or less was studied, mainly for photomasks for wiring boards for MCM and printed wiring boards. Using a photomask printed by the photomask printing apparatus, a method of exposing and manufacturing a wiring board for MCM or a printed wiring board was studied.
  • the present invention (1) by developing a photomask manufacturing method by dry development at a low cost with a short TAT, which has a resolution of 30 m or less over the entire mask area, and manufacturing a photomask at a wiring substrate manufacturing site.
  • the purpose is to realize printed wiring board manufacturing with short TAT.
  • Another objective is (2) to obtain quality (such as defect density) that can withstand MCM applications.
  • the mask area is divided into areas with a narrow laser scanning width, and laser scanning and masking are performed within the section.
  • a scan & step method is adopted in which pattern drawing and printing are performed by scanning the board, and pattern drawing and printing are performed by stepwise feeding between the divided areas.
  • the design department sends photomask design data via a communication line to a photomask printing device installed in a clean room, prints the photomask, and uses the printed photomask in accordance with the wiring board manufacturing plan. Performs exposure and manufacturing of wiring boards.
  • FIG. 1 is a diagram showing an outline of using a photomask Ml according to the present invention to expose a resist formed on a wiring substrate through a lens to form a wiring circuit pattern.
  • FIG. 2 is a photomask printing apparatus of the present invention. Main configuration diagram of
  • FIG. 3 is a principle explanatory diagram for explaining the principle of printing of a photomask to which a charge utilization method (electrophotographic method) is applied in the photomask printing apparatus of the present invention.
  • FIG. 4 is a principle explanatory view illustrating the principle of a laser thermal transfer type photomask printing apparatus.
  • Figure 5 shows the laser beam used in the present invention scanned and focused on the rotating photosensitive drum.
  • Apparatus configuration diagram showing a scanning mechanism of an optical system to be
  • Fig. 6 is a device configuration diagram showing a stage for driving the scanning mechanism of the optical system stepwise and a driving mechanism.
  • Fig. 7 is a schematic diagram showing a surface tilt correction optical system that prevents unevenness of the scanning line interval due to the angular error of each mirror surface of the rotating polygon mirror.
  • FIG. 8A and 8B are diagrams showing an example of printing a photomask by a scan & step transfer method in the photomask printing apparatus of the present invention, wherein FIG. 8A is an overall top view, FIG. 8B
  • FIG. 9 is a view showing a scan & step transfer method in which the stitching portion due to the step feed is applied to a wiring pattern in the photomask of FIG. 8, and
  • FIG. 10 is a view showing a glass substrate (core substrate) in a process of manufacturing a wiring substrate.
  • Fig. 11 shows the process of manufacturing a wiring board by repeating the process of laminating the wiring layer and the interlayer insulating film.
  • FIG. 4 illustrates a step of forming a film;
  • FIG. 12 is a view for explaining a step of forming a hole in an insulating film and then forming a barrier metal layer inside the hole in a step of manufacturing a wiring board.
  • FIG. 13 is a diagram illustrating a process of forming a microbump inside an opening in a process of manufacturing a wiring board.
  • FIG. 14 is a diagram illustrating a process of forming an opening in the back surface of a glass plate in a process of manufacturing a wiring board.
  • FIG. 15 is a diagram illustrating a process of forming a through hole in the back surface of a glass plate in the process of manufacturing a wiring board.
  • FIG. 16 is a diagram illustrating a process of forming a barrier metal at the bottom of a through hole in a process of manufacturing a wiring board.
  • FIG 17 shows an example of a multi-chip module (MCM) by mounting multiple silicon chips with integrated circuits on a wiring board.
  • MCM multi-chip module
  • FIG. 18 is a conceptual diagram of the method of exposing and manufacturing a wiring board by creating a print mask at the wiring board manufacturing site.
  • FIG. 19 is a view for explaining an example of a defect of a toner pattern formed on a mask substrate of a print mask.
  • FIG. 20 is a diagram showing an example of a mask used for an exposure method that can obtain a good product even when a toner pattern of a photomask has a defect.
  • Figure 21 shows an exposure method (defect transfer prevention method) that can obtain a good product even if there is a defect in the toner pattern of the photomask.
  • FIG. 22 is a view for explaining a second exposure method (defect transfer prevention method) in which a non-defective product can be obtained even when the toner pattern of the photomask has a defect.
  • FIG. 23 is a diagram illustrating the principle of a photomask printing apparatus that forms a latent image on a photosensitive drum by reduction exposure using an LED.
  • FIG. 24 is an explanatory view of the principle of a photomask printing apparatus using the ink jet method.
  • Cleaner 107... AC corona, 108... Intermediate drum, 109... Glass substrate (mask blanks), 110... Table, 111... Charging device, 112... Infrared heater, 113... Tona one pattern, 120... Toner, 121 ... Rod, 122 ... Drive device, 131 ... Stage, 132 ... Collimate lens, 133 ... Multi-rotation Mirror (polygon mirror), 134: Condensing lens (f0 lens), 135: Cylindrical lens 1, 136 ... Cylindrical lens 2, 140: Laminated ink sheet, 141: Light-to-heat conversion layer, 142 ...
  • Ink Layer 143 laser light, 144 ink pattern, 150 chip defect (white defect), 151 black defect, 160 toner pattern, 161 toner pattern, 162 laminated toner pattern, 163, 164 black defect , 181 ... Transfer module, 182 ... Mask table, 183 ... Drive system for mask scan 184)
  • FIG. 1 shows an outline of forming a wiring circuit pattern by exposing a resist 1004 formed on a wiring substrate 1003 through a lens 1002 using a photomask Ml according to the present invention.
  • the photomask Ml is formed, for example, by forming a light shielding pattern 1001 made of toner or ink on a glass substrate 1000.
  • the toner is, for example carboxylic acid forces one carbon black in the main raw material on the surface thereof, phenols, quinones, c ink in which rata ton class or polyvinyl phenol is produced, for example Jisuazo system, Chiofen It consists of a disazo, trisazo or cyanuric dye.
  • Examples 1 to 5 show examples of a method of manufacturing a photomask Ml
  • Examples 6 to 8 show examples of a method of manufacturing a wiring board.
  • Fig. 2 shows the main configuration of a photomask printing device that has sufficient resolution and quality for use in wiring boards and can be manufactured in a short TAT.
  • a circuit pattern is formed on the base material of the mask (mask blanks) by the principle of the electrophotographic process.
  • 101 is a rotary photosensitive drum
  • 102 is a laser irradiation device
  • 103 is a laser beam
  • 104 is a liquid toner box
  • 105 is a charger
  • 106 is a cleaner
  • 107 is an AC corona
  • 108 is an intermediate drum
  • 109 is glass.
  • 110 is a table on which mask blanks are placed
  • 111 is a charger
  • 112 is an infrared heater
  • 113 is a pattern.
  • the rotating photosensitive drum 101 charges the surface of the drum, irradiates a laser beam to form an electrostatic latent image, and attaches the toner to the electrostatic latent image on the drum surface by development. It becomes a medium for a series of processes for visualizing and transferring the toner image to the intermediate drum.
  • the material of the rotary photosensitive drum 101 needs to have sensitivity to the laser beam 103. Examples of inorganic materials include Se, CdS, and ZnO, and organic photosensitive materials are also available. There are various.
  • the laser irradiation device 102 for example, a gas laser such as He-Ne, He-Cd, or Ar + laser, or a semiconductor laser such as (GaAl) As is used.
  • a gas laser such as He-Ne, He-Cd, or Ar + laser
  • a semiconductor laser such as (GaAl) As is used.
  • laser drawing pattern data is created based on design data such as wiring patterns created by a CAD system (not shown), and the laser irradiation device 102 is ON / OFF controlled according to the drawing pattern data. . .
  • the liquid toner box 104 contains liquid toner, and supplies the liquid toner to the surface of the rotary photoconductor drum 101 in accordance with the rotation of the rotary photoconductor drum 101 to perform development processing. Addition of a dispersant to this liquid makes it difficult for the toner to form micelles. Can be imaged.
  • the particle size of the toner is 1 ⁇ m or less in the liquid toner to which the dispersant is added, for example, there is an effect that the edge roughness when forming a wiring pattern of 30 ⁇ is reduced and the wiring dimensional accuracy is improved. Further, since the toner is hardly scattered, appearance defects of the mask are reduced.
  • the intermediate drum 108 has a structure in which a resistor is wound around the drum A1.
  • the toner image formed on the surface of the rotary photosensitive drum 101 is transferred to the surface of the intermediate drum, and the toner image is further transferred. It becomes a medium for transfer to glass substrate (mask planks) 109.
  • the intermediate drum 108 is effective in preventing the occurrence of deflate (defect in the toner pattern).
  • the table 110 on which the mask blanks are placed has a glass substrate 109 placed on its upper surface.
  • the glass substrate 109 is moved at the same speed as the peripheral speed due to the rotation of the intermediate drum 108 while maintaining a constant interval with the intermediate drum 108, and the toner image transferred to the surface of the intermediate drum 108 is transferred to the glass substrate 109.
  • the table 110 has a structure for holding the peripheral portion of the lower surface of the glass substrate 109, and the central portion of the lower surface of the glass substrate 109 is provided with a window-shaped open space in the table 110.
  • FIG. 2 shows a cross section of a table 110 that supports the glass substrate 109 at both ends with the window-shaped open space interposed therebetween.
  • the charging of the glass substrate 109 is performed by the charger 111 placed in the lower part of the table 110 near the lower surface of the glass substrate 109, and the transfer of the toner image from the intermediate drum 108 to the glass substrate 109 is induced. I do.
  • infrared rays are radiated from an infrared heater 112 placed below the table 110 through the window of the table, and the toner image transferred to the glass substrate 109 is heated and fixed to form a toner pattern 113.
  • An oven furnace or the like can also be used. Infrared heaters are efficient because infrared rays are selectively absorbed by toner instead of glass due to the absorption factor.
  • a heat-resistant optical plastic substrate can be used instead of the glass substrate 109.
  • the heat-resistant optical plastic substrate has the feature of being inexpensive.
  • glass substrates small positional distortion of the finished light shield pattern (wiring pattern) also there is a feature that can be reused a glass substrate by Asshingu play toner pattern under 0 2 plasma.
  • FIG. 3 illustrates the principle of printing a photomask using a charging method (electrophotographic method) in a photomask printing apparatus whose main configuration is shown in FIG.
  • the photoconductor drum 101 is charged negatively (ion: negative if the photoconductor is an n -type semiconductor, positive if the photoconductor is a p-type semiconductor) by using the charger 105 (ion). And charge them uniformly. Thereafter, as shown in FIG. 3 (b), a desired pattern is drawn with the laser beam 103 emitted from the laser irradiation device. At this time, the charge in the portion irradiated with the laser is lost by the discharge.
  • a positively charged toner 120 (opposite to the charge polarity of the photoreceptor surface) is supplied from the liquid toner box 104, and the toner 120 is supplied to the negative electrode on the photoreceptor drum 101. It adheres to the part where the charge is left. More Toner 1 2 0 was deposited, the wiring pattern drawn by the laser beam becomes apparent.
  • the pattern of the toner 120 deposited on the grounded photosensitive drum 101 is transferred to the surface of the intermediate drum (intermediate transfer body) 108 to which a negative bias is applied. .
  • the glass substrate 109 is brought close to or in contact with the intermediate drum 108, and the negative electrode (the same polarity as the charged photoreceptor) is charged using the charger 111 arranged on the back of the glass substrate. )
  • the negative electrode the same polarity as the charged photoreceptor
  • the charger 111 arranged on the back of the glass substrate.
  • the toner pattern 120 on the surface of the intermediate drum (intermediate transfer member) 108 is transferred to the glass substrate.
  • the toner 120 is heated and fixed using an infrared heater 112 to form a toner light shielding pattern 113 made of toner on the glass substrate.
  • a pressure treatment may be performed to promote fixing.
  • the AC corona 107 and the cleaner 106 shown in FIG. 2 are used for removing the charged charges and the toner on the rotary photosensitive drum 101 and cleaning the intermediate drum.
  • the surface of the glass substrate 109 is preferably subjected to a surface treatment so that the toner is easily adhered.
  • the toner diameter of the powder toner used in the current laser printer is about 6 to 10 ⁇ . Since toner with a diameter of 6 ⁇ or less will aggregate as it is, use a liquid toner in which carbon black is dispersed in, for example, dispersant as a dispersant (petroleum-based solvent). .
  • the toner diameter is about 0.5 to 1.0 im, which is effective for forming a fine pattern.
  • Toners include, for example, black pigments or black dyes (particulate matter) such as car pump racks and graphite, and heat-softening resins (binders) such as nopolak resins and polystyrene. have.
  • the content of the black pigment or the black dye is preferably 30% or more, and more preferably about 30 ° / 0 to 40%.
  • a commonly used toner has a black pigment or black dye content of about 10%, and is not suitable for a mask to obtain a sufficient light-shielding property.
  • the first reason for introducing the intermediate drum (intermediate transfer member) 108 is to remove impurities.
  • a solvent adheres in addition to the toner.
  • This solvent contains impurities and also adheres to the toner of the opposite polarity.
  • the solvent may adhere to the intermediate drum (intermediate transfer member) 108, and the intermediate drum (intermediate transfer member) 108 is heated to dry the solvent.
  • the intermediate drum (intermediate transfer member) 108 by heating the intermediate drum (intermediate transfer member) 108, the toner transferred to the intermediate drum surface is melted, and the toner is easily attached to the glass substrate when subsequently transferred to the glass substrate. Has the effect of doing
  • FIG. 5 shows a photomask printing apparatus based on the principle of the electrophotographic process shown in FIG. 2, in which the laser beam 103 irradiated by the laser irradiation apparatus 102 is scanned to form an image on the rotary photosensitive drum 101.
  • 2 shows a scanning mechanism of an optical system to be operated.
  • the laser beam 103 emitted from the semiconductor laser 102 is collimated by a collimating lens 132 into a parallel beam, and is applied to the mirror surface of a high-speed rotating polygon mirror (polygon mirror 133).
  • the image is formed on the scanning surface on the rotary photosensitive drum 101 by 134.
  • the ⁇ lens 134 is manufactured such that the laser beam deflection angle 0 is proportional to the scanning position on the scanning surface, and the focal point locus is linear.
  • the laser spot diameter on the photoreceptor drum is about 50 to 60 im, but in the photomask printing apparatus of the present invention, in order to increase the resolution,
  • the factors that determine the laser spot diameter d on the photosensitive drum are the laser beam diameter 0 incident on the converging lens (f) lens) 134, the laser wavelength; and the focal length f of the f ⁇ lens 134.
  • the current A4 size compatible laser printer employs an f ⁇ lens with a focal length of 150 mm for A4 width scanning.However, in the photomask printing apparatus of the present invention, for example, a focal length of about 45 mm is used. f ⁇ Use a lens.
  • a semiconductor laser GaAlAs
  • the scanning width SL of the laser spot should be about 1.2 to 1.5 times f, considering the aperture W of the f f lens 134 (substantially the same as the focal length f), as in the current laser printer. .
  • the scanning width SL of the laser spot is 54 to 68 mm.
  • the focal length f needs to be small.
  • the angle of view of the f0 lens becomes small. That is, to increase the resolution, it is necessary to reduce the scanning width SL.
  • a stage for driving the scanning mechanism of the optical system and a driving mechanism are provided.
  • 101 is a rotary photosensitive drum
  • 131 is an optical stage, on which a laser irradiation device 102, a collimating lens 132, a polygon mirror (rotating polygon mirror) 133, and an f0 lens 134 are mounted.
  • a laser beam 103 is emitted from the laser beam, and irradiates the rotating photosensitive drum 101 via a collimating lens 132, a polygon mirror 133, and an f ⁇ lens 134.
  • a cylindrical lens for correcting surface tilt for correcting unevenness of the scanning line interval due to an angular error of each mirror surface of the polygon mirror is also provided.
  • the position of the optical system stage 131 can be step-moved by the drive unit 122 through the opening 1, and a wide drawing range is secured by using both scanning by the polygon mirror 133 and stepping by the drive unit.
  • scanning width SL is dependent as the minimum resolution described above, for example, the minimum resolution scan with a 10 m width SL is approximately 5 4 ⁇ 68 mm, the maximum as shown in FIG. 6 (a), the scan width SL Scan in range. Thereafter, as shown in FIG. 6B, drawing is performed by stepping feed by the driving device 136. This step feed amount is Monitoring with a single-interferometer and feeding back positional accuracy enables high-precision step feed.
  • Figure 7 shows that when applying a laser beam scanning system using a rotating polygon mirror (polygon mirror) 133, there is an error in the angular accuracy (high-precision verticality) of each mirror surface of the rotating polygon mirror.
  • 2 shows a surface tilt correction optical system used for correction for preventing occurrence of unevenness in scanning line intervals.
  • the cylindrical lens 1 (135) is placed between the collimating lens 132 using the laser beam 103 as a parallel beam and the rotating polygon mirror (polygon mirror 133), and the cylindrical lens 2 (136) is ⁇ ⁇ ⁇ Place it between the lens 134 and the photoconductor drum 101.
  • the imaging plane is placed on a mirror surface, and the fluctuation (tilt) of each mirror surface is corrected.
  • the principle of the correction is that the spot (object point) focused on the rotating polygon mirror (polygon mirror 133) and the imaging point (image point) on the photoreceptor surface are conjugated (the light emitted from the point is a lens). If the surface of the rotary polygon mirror is slightly tilted, the image point on the photoreceptor will not be displaced.
  • the pattern formation time when the rotation speed of the photosensitive drum 101 is set to the laser spot diameter d ⁇ 10 Aim will be described.
  • the rotation speed (peripheral speed) of the intermediate drum, which rotates while transferring the pattern from the photosensitive drum, and the feed speed of the glass substrate that receives the pattern transfer from the intermediate drum, are the same. Therefore, for example, with a mask having a size of 200 mm in the long side direction, pattern formation in this area is completed in about 10 seconds with a maximum scanning width of 54 to 68 mm.
  • the width 5 4 ⁇ 68 mm, since it covers the mask whole by four strip areas of length 200mm time according to the pattern formation of a mask over the entire surface is about 40 seconds. Almost simultaneously Since the image and fixation are completed, the manufacturing time is more than two orders of magnitude compared to 2-3 hours when using the current laser photoplotter or the average time of 32 hours for fabricating the existing Cr mask for LSI. Can be shortened.
  • a method for manufacturing a laser thermal transfer type photomask will be described with reference to FIG. First, the principle of the laser thermal transfer method will be described.
  • a laser light 143 condensed by a lens is applied to a laminated ink sheet 140 composed of a light-to-heat conversion layer 141 having a base film coated with a light-to-heat conversion material and an ink layer 142
  • the laser light is emitted by the light-to-heat conversion layer 141. It is absorbed and converted to heat, which heats the ink layer.
  • the pigment such as carbon black in the ink layer is transferred to the mask substrate 109, and the ink pattern 144 is formed.
  • the laser thermal transfer method uses the focused laser light as a heat source, it can form dots on the order of several meters corresponding to the spot diameter of the laser light, and is suitable for configuring high-resolution photomask printing equipment. ing.
  • the light-to-heat conversion layer desirably has high absorbance at the laser oscillation wavelength. This is because the higher the absorbance, the better the laser beam is absorbed and the better the heat is generated.
  • the laminated ink sheet 140 is supplied from an ink sheet supply unit (not shown) like an ink ribbon, and moves the laminated ink sheet 140 and the mask substrate 109 close to and in synchronization with each other at a transfer position.
  • the laser thermal transfer method has the feature that maintenance is easy because charging and a cleaner are not required.
  • FIG. 8A shows an example in which a photomask is manufactured by the scan & step transfer method shown in FIGS. It is the figure which looked at the photomask from the upper surface.
  • Glass substrate 109 masks This wiring pattern 210, Chi-up which a wiring pattern is formed (from the printed circuit board, called an individual wiring board to be cut out by application and chip) 211, mark 21 combined use in mask alignment 2 , an identification mark 213 indicating the type of mask, a mouth number, and the like, and a light-shielding band 220 serving as a scribe area.
  • the light-shielding band 220 is formed with toner or ink.
  • W is the width in the short side direction of the chip 211
  • L is the length in the long side direction.
  • the stitching part (joining part) by step feed 214 extends over the wiring pattern.
  • the wiring pattern 210 at the stitching portion 214 is displaced 215 due to misalignment in the Y direction, the disconnection 216 is caused due to misalignment in the X direction, or a pattern portion due to overlap. Fat 217 occurs. In particular, disconnection is a fatal problem.
  • the maximum scanning width SL is expected to be approximately 54 to 68 ⁇ , so that the SL1 and SL2 are set within the range of the maximum scanning width SL.
  • Each chip was printed without straddling the stitching section 214.
  • FIG. 23 shows an example of a reduction exposure system using LED (Light Emitting Diode).
  • LED Light Emitting Diode
  • Reference numeral 191 denotes a 600 dpi LED array, for example, which is connected to a CAD system (not shown) and is controlled to blink based on design data such as a wiring pattern created by the CAD system.
  • the emission of the LED array 191 is set to be imaged on the rotary photosensitive drum 101 by the lens 192.
  • f focal length of the lens
  • L1 image point (on the photoconductor)
  • L2 image point (L E D)
  • Examples of the LED array include an infrared LED using an AlGaAs mixed crystal and a GalnPAs mixed crystal. This system has high mechanical durability because the scanning mechanism of the optical system as shown in Fig. 5 is not required.
  • FIG. 24 shows an example in which a photomask printing apparatus is realized by an ink jet system.
  • 201 is a nozzle and 202 is a cavity with ink in it.
  • 203 is a diaphragm, and 204 is a piezo element.
  • a pulse voltage is applied to the piezo element 204 to push the diaphragm 203 in a pulsed manner, and the ink contained in the cavity 202 is ejected from the nozzle 201 as a droplet 205 to form an ink pattern 206 on a glass substrate (mask blanks) 109.
  • the resolution is 50 ⁇ or more, but it is inexpensive because no optical system is required.
  • a process of manufacturing a wiring board using a photomask printed by the photomask printing apparatus of the present invention will be described.
  • a glass substrate is used for the core layer of the wiring board of the present embodiment, the present invention is not limited to this, and an epoxy resin (glass epoxy) containing glass fiber, a polyimide resin, or the like may be used as the core layer. It may be a resin substrate, a ceramic substrate, or a silicon substrate.
  • an adhesive layer 21 for increasing the adhesive strength between glass and a wiring material is formed on the main surface of the glass plate 20.
  • the adhesive layer 21 is made of, for example, a TiN (titanium nitride) film or a TiW (titanium tungsten) film deposited by a sputtering method.
  • FIG. 10 (b) after depositing an A1 alloy film 23 on the adhesive layer 21 by a sputtering method, as shown in FIG. 10 (c), the above-described photomask Ml ( Using FIG. 1), a photoresist film (not shown) formed on the substrate is exposed and By forming an image, a photoresist pattern is formed (not shown), and the first-layer wiring 3 is formed by patterning the A1 alloy film 23 by dry etching. At this time, the alignment mark 12 is formed at the same time.
  • a photomask manufactured by the method described in any one of Embodiments 1 to 5 is also an object of this embodiment.
  • the exposure method in the case of the reduced projection exposure outlined in Fig. 1, the reduction ratio is 1 to 5 to 1 Z2.5.
  • the same-size projection exposure can be used, or an enlarged projection exposure such as 1.25-1 can be used.
  • Reduced projection exposure is suitable for forming a fine pattern with high precision, and 1: 1 or enlarged projection exposure is effective in shortening the exposure time and improving throughput.
  • the photomask Ml and the wiring board 1003 can be held at an interval of about 1 to 3 m without using a lens to perform the same-size exposure.
  • the photomask Ml and the wiring substrate 1003 are exposed close to each other, the closer the exposure is, the higher the resolution is.
  • the photomask of the present invention is formed by forming a light-shielding body pattern made of, for example, the toner or the ink having the above-described composition on a glass substrate, and this light-shielding body pattern is formed on the wiring substrate 1003.
  • the degree of closeness between the photomask Ml and the wiring substrate 1003 is determined in consideration of the flatness of the photomask Ml and the wiring substrate 1003 so that the distance therebetween is set to 0.5 to 1 The range was 0 ⁇ .
  • the photomask Ml of the present invention is formed.
  • the photoresist film (not shown) formed on the substrate is exposed to light and developed to form a photoresist pattern (not shown), and the wiring is formed by dry-etching the interlayer insulating film 7.
  • a through hole 8 is formed on the interlayer insulating film 7 on the upper part of FIG.
  • the interlayer insulating film 7 may be a silicon oxide film deposited by a CVD method or a poly-oxide deposited by a coating method. It is composed of a mid film.
  • the light of the i-line (wavelength 365 nm) of an ultra-high pressure mercury lamp was used as the exposure light for the photoresist pattern.
  • g-line (wavelength 4336 nm) and h-line (wavelength 405 nm) can be used, and broadband light including these lights can also be used.
  • the wavelength is 35 Onra or less, expensive glass such as quartz glass is required. It is desirable to use ordinary optical glass or LE glass in order to reduce the mask price. When handling large patterns whose wiring pattern dimensions are coarser than 20 ⁇ , the dimensional accuracy and positional accuracy on the photomask will be loose.In such cases, use a plastic photo master blank such as polycarbonate. You can also. In this case, the blanks cost can be particularly reduced.
  • the steps 4, 5 and 6 of the second to fourth eyebrows were formed by repeating the steps shown in FIGS. 10 (b) to 10 (e) a plurality of times. Thereafter, an insulating film 9 is formed on the wiring 6.
  • the insulating film 9 is composed of a silicon oxide film, a silicon nitride film deposited by a CVD method, a polyimide film deposited by a coating method, or the like.
  • a photoresist film (not shown) formed on the substrate is exposed and developed using the photomask Ml to form a photoresist pattern (not shown).
  • the barrier metal layer 16 is formed inside the opening 11.
  • the barrier metal layer 16 is formed, for example, by depositing a Cr film and a Cu film on the insulating film 9 including the inside of the opening 11 by an evaporation method, and then using the photomask Ml to form a photoresist formed on the substrate.
  • a film (not shown) is exposed and developed to form a photoresist pattern (not shown), and is formed by removing unnecessary Cr and Cu films on the insulating film 9 by dry etching. .
  • micro bumps 10 are formed inside the openings.
  • the microbump 10 is formed, for example, by depositing an Au film or an Sn film on the insulating film 9 including the inside of the opening 11 by a vapor deposition method, and then using the photomask Ml to form a photo resist film formed on the substrate. (Not shown) is exposed and developed to form a photoresist pattern (not shown), and unnecessary Au film (or Sn film) on the insulating film 9 is removed by dry etching. Formed by
  • Wirings 3 to 6 can also be formed using a W film deposited by a sputtering method and a Cu film formed by a plating method.
  • the adhesive layer 21 formed between the glass plate 20 and the wiring 3 may be, for example, a TiN (titanium nitride) film or a C It is composed of r film.
  • the upper layer wiring and the lower layer wiring can be made of different metal materials.
  • a hole 14a is formed in the region to be formed.
  • an opening 15 is formed immediately below the alignment mark 12 and a scribe guide 22 is formed in the scribe area.
  • the back surface of the glass plate 20 is covered with a photoresist film or the like except for the areas where the openings 14a and 15 and the scribe guide 22 are formed.
  • the main surface side of the glass plate 20 on which the micro bumps 10 and the wirings 3 to 6 are formed is covered with a resist film, a power burley film, a UV film which is peeled off by irradiation of ultraviolet rays, or the like.
  • the through-hole 14 reaching the wiring 3 is formed by further etching the opening 14a.
  • the back surface of the glass plate 20 is covered with a photoresist film or the like except for the region where the through hole 14 is formed.
  • the main surface of the glass plate 20 is also covered with a resist film, cover lay film, UV film, or the like.
  • jet etching is used as a method of forming the through holes 14 in the glass plate 20, but it may be performed by a sand blast method in which an abrasive such as alumina is sprayed on the glass substrate at a high pressure. it can.
  • a sand blast method in which an abrasive such as alumina is sprayed on the glass substrate at a high pressure. it can.
  • the glass The back surface of the plate 20 is covered with a metal mask, and an abrasive such as alumina is sprayed at a high pressure to form the opening 14 a and the through hole 14.
  • a bump electrode is formed inside the through hole 14.
  • the barrier metal 17 is formed, for example, by depositing a Cr film, a Cu film, and an Au film on the back surface of the glass plate 20 including the inside of the through hole 14 by a vapor deposition method.
  • the photoresist film (not shown) formed on the substrate is exposed and developed to form a photoresist pattern (not shown), and the unnecessary Cr film, Cu film and Au film are removed by dry etching.
  • the barrier metal 17 may be formed so as to cover the entire inner wall of the through hole 14.
  • eutectic solder Pb37 / S163: 183D
  • solder ball supply method or screen printing method
  • solder is formed by reflow.
  • the shape of the bump electrode 13 is not limited to a pole shape, but may be a land shape.
  • FIG. 17 shows an example in which a plurality of silicon chips 40 on which an integrated circuit is formed are mounted on a circuit board 1 to form a multi-chip module (MCM).
  • MCM multi-chip module
  • the electrical connection between the circuit board 1 and the silicon chip 40 via the micro bumps 10 is made of Au / Sn eutectic (Au80 / Sn20: 280 ° C, AuO / Sn90: (217 ° C) or AuZAu thermocompression (450-550.C).
  • the combinations of metal materials include A 1 — Al, A 1 — Si, Cu — Sn, S i—Ga As, Si—In P, Ga As—In P, and the like.
  • Reference numeral 13 in the figure is a bump electrode.
  • the photomask of the present invention (referred to as a print mask) is used as a photomask in all the exposure steps, and a laser writer or an EB is used for the lower layer process with less pattern change.
  • a method that uses a Cr mask drawn by using a print mask in the upper layer process where the pattern changes depending on the product type. In the latter, for a common general-purpose pattern, repeated use of a durable Cr mask eliminates the need for mask creation, and the total TAT can be shortened by using a print mask in the upper layer where mask production TAT is required.
  • FIG. 18 shows a conceptual diagram of a method of producing a print mask of the present invention at a wiring board manufacturing site and exposing and manufacturing the wiring board.
  • the printer 503 for the print mask 504 is installed in a clean room where the exposure apparatus 505 for manufacturing a wiring board is placed.
  • the printer 503 is connected online with a personal computer or a design place where the workstation 501 is installed by a communication line 502 or wirelessly. Based on the wiring board manufacturing plan, the design data is supplied online to the printer 503 and the print mask 504 is manufactured prior to the introduction of a new type of wiring board to the production line. This print mask is used for the exposure of the wiring board of the corresponding model, and after manufacturing is completed, the glass substrate (planks) is reprocessed to a completely blank state by assuring and solvent treatment without stocking. In this way, the management cost of the photomask can be reduced.
  • Liquid toner is used as the toner for the printer. Powder toner scatters during toner-based maintenance, lowers cleanliness and adheres to masks and wafer substrates, causing defects and lowering yield. Since liquid toner is hard to scatter, defects are unlikely to occur.
  • FIG. 19 shows an example of a toner pattern 113 formed on a mask substrate 109 of a print mask.
  • defects defate
  • a defect 150 in the toner pattern called a white defect
  • a toner defect 151 called a black defect in the opening surface occur.
  • the following shows an exposure method capable of obtaining a good product even when the toner pattern 113 of the photomask has a defect.
  • FIG. 20 shows a mask used for the exposure, and A, B, C, and D having the same pattern are arranged on the mask.
  • Reference numeral 1010 denotes a light-shielding body surface.
  • 2 x 2 arrangement is shown, but they may be arranged in one horizontal row or one vertical column. They may be arranged diagonally.
  • this mask is masked by using a masking blade 1011 that limits the exposure area in the Y direction and a masking blade 1012 that limits the exposure area in the X direction (a), (b), and ( c)
  • select A, B, C and D in order and perform exposure.
  • the same position on the wafer 1013 is exposed.
  • Four overlapping exposures are performed by this method. Detailed examination revealed that if any pattern area, such as A, had a defect, but there was no defect in the remaining area, it would not be transferred to the resist as a defect due to exposure intensity. .
  • this method prevents the transfer of the defect. Therefore, it is possible to omit the defect inspection after the pattern is formed on the wiring substrate and the defect repairing step.
  • Figure 22 shows another method for preventing defect transfer.
  • the masks are A, The same pattern is placed on B, C, and D.
  • a shift exposure is performed as shown in (a), (b), (c), and (d), and the locations shown in Fig. 22 (f) are defined by A, B, C, and D patterns.
  • Four overlapping exposures are performed. Exposure time is relatively short since four chips are exposed in one shot.
  • the wiring pattern is overlaid on a silicon substrate and exposed.However, the wiring pattern is overlaid and exposed on a glass substrate or resin substrate to manufacture a wiring substrate. The same method can be adopted when performing the above. Industrial applicability
  • the present invention can form a fine pattern such as a 30 m pattern, and can manufacture a photomask in about 40 minutes while obtaining a sufficiently fine pattern as a photomask for a wiring board.
  • a very short photomask supply TAT can be obtained compared to 2-3 hours when using a current laser photoplotter or an average time of 32 hours for fabricating an existing LSI Cr mask.
  • Photomask supply T A reduction in T A speeds up product (wiring board) development. In addition, product launch during mass production is accelerated, and product competitiveness is enhanced.
  • the equipment is compact with dry development, and the production cost is low. Since the liquid toner is not easily scattered, foreign matter which is a source of a defect of the toner pattern on the mask is hardly generated. For this reason, it can be installed in a clean room, and adjacent to the process of exposing a wiring substrate, a series of mask production and exposure can be performed to produce a wiring substrate with a short TAT and a high yield.
  • the pattern formed on the glass substrate is made of only an organic substance as compared with a conventional metal film (Cr or the like) mask or a mask formed with a silver halide emulsion layer.
  • the substrate (planks) can be completely reprocessed into blanks by assuring and solvent treatment.

Abstract

A method for manufacturing a wiring board for manufacturing a printed wiring board, an MCM wiring board, etc. in a short manufacturing time and at a low cost. A toner pattern is formed over a whole mask substrate by electrophotography by scan-and-step drawing with a resolution improved by limiting the scanning width of the laser beam used. The thus produced photomask is used directly in the manufacturing process of a wiring board. Specifically, any one or a combination of some or all of the steps of (1) forming a toner pattern by scan-and-step lithography, (2) using a liquid toner, and (3) performing overlapping exposure by shift exposure of the same pattern.

Description

明細書 配線基板の製造方法 技術分野  Description Wiring board manufacturing method
本発明は、 各種電子機器に使われるプリント配線板(マザ一ボード)、 および 前記マザ一ポード上に実装されるモジュールを構成する半導体集積回路チップ および各種半導体部品を搭載する配線基板の製造方法に関する。 また、 その製 造に使用されるフォトマスクの製造方法に関する。 背景技術  The present invention relates to a printed wiring board (mother board) used for various electronic devices, a semiconductor integrated circuit chip constituting a module mounted on the mother board, and a method of manufacturing a wiring board on which various semiconductor components are mounted. . Further, the present invention relates to a method for manufacturing a photomask used for the manufacture. Background art
典型的な多種多様の製品であるプリント配線板の製造プロセスでは、 これま でほぼ一色であった 「銅張り積層板 +サブトラクティブ法」 力 搭載する I C パッケージのサイズ、 ピッチの小型化の傾向に対応できなくなつてきたため、 新たな製法のビルドアップ基板の採用が進んでいる。  In the process of manufacturing printed wiring boards, which are a typical and diverse product, the “copper-clad laminate + subtractive method”, which has been almost one color, has been trending toward smaller IC package sizes and smaller pitches. Since it is no longer possible, the adoption of build-up boards using new manufacturing methods is progressing.
(1) I Cパッケージ形態の小型化傾向  (1) Trend of miniaturization of IC package form
近年、 通信 ·情報■マルチメディア技術の発展に伴い、 携帯電話やノートブ ック型パソコンに代表されるように、 電子機器の小型■軽量化が急速に進んで いる。 そのため、 半導体デバイスの高集積化が進むとともに、 そのパッケージ 形態においても、 高密度実装に適した形態の採用が進んでいる。 例えば、 Q F P (Quad Flat Package)に代わって、 小型 多ピン化された B G A (Ball Grid Array) , あるいは C S P (Chip Size Package)の採用が進んでいる。 C S Pは 多種多様あるが、 その外部端子形態はエリアアレイ状に配列した小型の B G A と言える。 B G A、 C S Pともにその最小端子ピッチは今後さらに狭ピッチ化 していくことが予想されている。  In recent years, with the development of communication, information and multimedia technologies, electronic devices, such as mobile phones and notebook PCs, are rapidly becoming smaller and lighter. As a result, semiconductor devices are becoming more highly integrated, and their packages are being adopted in forms suitable for high-density mounting. For example, the use of small multi-pin BGAs (Ball Grid Arrays) or CSPs (Chip Size Packages) in place of QFPs (Quad Flat Packages) is progressing. Although there are many types of CSP, the external terminal form can be said to be a small BGA arranged in an area array. It is expected that the minimum terminal pitch of both BGA and CSP will be further narrowed in the future.
1999年 11月に発行された S I A (米国半導体工業会)のロードマップでは、 B G A/ C S P Zフリップチップの最小端子ピッチ予測を以下のように記して いる。 1999年には、 IC最小線幅(nm) / B G A端子ピッチ(顧) / C S P端子ピ ツチ(mm) /フリップチップ端子ピッチ(mm)が、 それぞれ 180 (nm) /1. 0 (mm) / 0, 5 (mra) /0. 2 (mm)であったものが、 2001 年には、 150 (nm) /0. 8 (mm) /0. (mm) /0. 2 ( )となり、 2006 年には、 100 (nm) /0. 65 (mm) /0. 35 (mm) /0. 15 (ram) なり、 2009 年には、 70 (nm) Z0. 6 (mm) /0. 3 (mm) Z0, 15 (醒)となり、 · 2012 年に は、 50 (nm)ノ 0. 5 (瞧) / 25 (瞧) /0. 15 (mm)となると予測されている。 The SIA (Semiconductor Industry Association) roadmap, published in November 1999, describes the minimum terminal pitch prediction for BGA / CSPZ flip-chip as follows. In 1999, the IC minimum line width (nm) / BGA terminal pitch (customer) / CSP terminal pin The pitch (mm) / flip chip terminal pitch (mm) was 180 (nm) /1.0 (mm) /0.5 (mra) /0.2 (mm), respectively. , 150 (nm) /0.8 (mm) / 0. (Mm) /0.2 (), and in 2006, 100 (nm) /0.65 (mm) /0.35 (mm) / 0.15 (ram), 70 (nm) Z0.6 (mm) /0.3 (mm) Z0, 15 (wake) in 2009, and 50 (nm) in 2012 It is expected to be 5 (瞧) / 25 (瞧) /0.15 (mm).
(2) プリント配線基板の高密度実装対応化  (2) High-density mounting of printed wiring boards
これらアレイ状の端子をもつ多ピン ·パッケージの登場により、 従来のサブ トラクティブ法 〔銅箔をエッチングして導体パターンをつくり、 これを重ねて 一括積層する〕 で、 ドライフィルムフォトレジスト 〔感光膜〕 を用いて露光す る工程によって製造するプリント配線板で前記多ピン■パッケージを直接実装 することが限界に近づいてきた。 これは、 従来方法では配線ピッチが 200〃πι 程度までが一般的な精度と見なされているためである。  With the advent of multi-pin packages with these array-like terminals, the conventional subtractive method (etching copper foil to create conductor patterns, stacking them together and stacking them together) has been used to dry film photoresists (photosensitive films). However, the direct mounting of the multi-pin package on a printed wiring board manufactured by a process of exposing using a lithography method is approaching its limit. This is because in the conventional method, a wiring pitch up to about 200〃πι is regarded as a general accuracy.
配線ピツチが 200 μ m以下の領域を実現する新たな製法のプリント配線板 (ビルドアップ配線板)が各種開発されている。 前記ビルドアップ配線板の製造 プロセスは、 L S Iの製法として既に確立されたリソグラフィ技術を利用して、 絶縁層形成、 ビアホール形成、 パターン形成 ·眉間接続を連続的に繰り返して 多層化することが特徴である。 しカゝし、 導体パターン形成を順次繰り返して積 み上げていくシーケンシャル積層方式であるため、 層数が増すと工程が複雑で 高価になる問題点がある。  A variety of printed wiring boards (build-up wiring boards) with a new manufacturing method that achieves a wiring pitch of 200 μm or less have been developed. The manufacturing process of the build-up wiring board is characterized by using an already established lithography technique as an LSI manufacturing method to repeatedly form an insulating layer, form a via hole, form a pattern, and connect between the eyebrows to form a multilayer. is there. However, since this is a sequential lamination method in which conductor patterns are sequentially formed and stacked, the process becomes complicated and expensive when the number of layers increases.
今後のビルドアップ配線板には、 半導体チップの密度は今後とも上がり、 入 出力端子数も増加することより、 より狭ピッチの配線基板が要求されていくこ とが予測される。 それに対し、 ビルドアップ構造のプロセス要素技術はコスト 等の問題はあるが、 現時点のビルドァップ配線板の精度から半導体チップのレ ベルまで、 すでにその多くが確立されている。 ビルドアップ配線板は、 従来の プリント配線板のようなマザ一ボードとしての役割よりもむしろ、 半導体部品 を搭載し、 機能そのものを実現する M C M (Multi Chip Module)モジュールの 一部としての役割が重要視されている。  As the density of semiconductor chips increases and the number of input / output terminals increases in future build-up wiring boards, it is expected that wiring boards with a narrower pitch will be required. On the other hand, although the process element technology of the build-up structure has problems such as cost, many of them have already been established from the current accuracy of the build-up wiring board to the level of the semiconductor chip. The role of the build-up wiring board as a part of an MCM (Multi Chip Module) module that mounts semiconductor components and realizes the function itself is more important than the role of a mother board like a conventional printed wiring board Have been watched.
(3) プリント配線板の配線パターン形成における露光方法 前述したサブトラクティブ法による従来のプリント配線板上の導体パターン の形成では、 Cu 箔を張った絶縁基材(銅張積層板)にエッチング用レジス トを 塗布し、 該エッチング用レジストに配線パターンを露光し、 現像した後、 配線 とならない Cu箔部分をェツチングによって除去し、 配線となる Cu箔部分を残 すプロセスが行われている。 (3) Exposure method for forming wiring patterns on printed wiring boards In the conventional formation of a conductor pattern on a printed wiring board by the subtractive method described above, an etching resist is applied to an insulating base material (copper-clad laminate) covered with Cu foil, and the wiring pattern is formed on the etching resist. After exposure and development, a process is performed in which the Cu foil portions that do not become wiring are removed by etching, leaving the Cu foil portions that become wiring.
その露光のために使用されるフォトマスクの製法は、 一般にマスクのベース 材にハロゲン化銀乳剤層を形成する方法と、 金属薄膜を使用する方法等が使わ れている。  As a method of producing a photomask used for the exposure, a method of forming a silver halide emulsion layer on a base material of the mask and a method of using a metal thin film are generally used.
第 1のマスクのベース材にハロゲン化銀乳剤層を形成する方法は、 該乳剤層 に対して、 レーザフォトプロッタによって所望の配線パターンを描画して、 そ の後、 現像、 定着処理によってフォトマスクを作成する。  A method for forming a silver halide emulsion layer on the base material of the first mask is to draw a desired wiring pattern on the emulsion layer using a laser photoplotter, and then develop and fix the photomask. Create
第 2の金属薄膜を使用する方法は、 マスクのベース材(ガラス基板)上にスパ ッタリング等により C r 等の金属の薄膜を被着、 フォトフアプリケーションレ ジストを塗布し、 アルゴンレーザ光、 F D— Y A Gレーザ光、 ヘリゥムーネオ ンレーザ光等のレーザによって配線パターンを露光、 レジス トの除去、 金属薄 膜のエッチングなどの工程によってフォトマスクを作成する。 前記マスクのベ ース材としては、 ポリエステルフィルム、 ガラス基板などが使用される。  The second method of using a metal thin film is to deposit a metal thin film such as Cr on the base material (glass substrate) of the mask by sputtering or the like, apply a photo resist, apply argon laser light, FD — Create a photomask by exposing the wiring pattern with a laser such as a YAG laser beam or a Hemanium-Neon laser beam, removing the resist, and etching the metal thin film. As the base material of the mask, a polyester film, a glass substrate, or the like is used.
(4) レーザフォ トプロッタによるフォ トマスク製作  (4) Photomask production by laser photoplotter
前記レーザフォ トプロッタは、 前記マスクのベース材としてのフィルムを円 筒ドラムに巻きつけ、 ドラムの回転とレーザービームヘッドの円筒ドラム軸方 向へのシフト動作によって配線パターンを描画するタイプと、 前記マスクのベ 一ス材としてのガラス基板をフラットテーブルに载置して、 レーザビームをス キャン、 フラッ トテーブルのシフ ト動作によって配線パターンを描画するタイ プに分けられる。  The laser photoplotter is configured to wind a film as a base material of the mask around a cylindrical drum, and to draw a wiring pattern by rotating the drum and shifting a laser beam head toward a cylindrical drum axis. A glass substrate as a base material is placed on a flat table, a laser beam is scanned, and a wiring pattern is drawn by shifting the flat table.
例えば、 円筒ドラムタイプのレーザフォトプロッタでは、 フィルム形態のマ スキング材料を円筒ドラムに卷きつけ、 Ar レーザ、 又は赤色半導体レーザ等 を、 4〜 1 2 Ai m程度のビーム径にて照射して、 2〜 1 2 μ ΐη程度の描画ピッ チでレーザビームへッドを円筒ドラム軸方向へシフト動作することによって配 線パターンの描画を行う仕様になっており、 装置スペックでは最小線幅 2 5 μ m程度を保証している。 フィルムベースのマスクでは、 温湿度などの影響によ るマスク自身の伸縮量も無視できないので、 前記マスクのベース材をフィルム から寸法安定性の良いガラス基板に変えることで精度を上げることが見込める。 前記マスクのベース材をガラス基板とした場合には、 フラッ トテーブルタイ プのレーザフォトプロッタにてマスクに描画をする。 例えば、 ハロゲン化銀乳 剤層を形成したガラス基板を、 平面走査型レーザフォトプロッタの描画テープ ルに載置して、 プリント配線板設計支援システム(C AD )により作成された配 線パターンなどの C A Dデータをプロッタ用データに変換した後、 プロッタ側 のメモリに転送される。 そして、 プロッタが、 該データをレーザ光走査用のデ ータに展開し、 前記ガラス基板上にレーザ光を照射する。 このガラス基板を、 現像液、 及び定着液により処理した後、 水洗、 乾燥させてフォ トマスクを作成 する。 For example, in a cylindrical drum type laser photoplotter, a masking material in the form of a film is wound around a cylindrical drum and irradiated with an Ar laser or a red semiconductor laser with a beam diameter of about 4 to 12 Aim. The laser beam head is shifted by a drawing pitch of about 2 to 12 μΐη in the axial direction of the cylindrical drum. It is designed to draw line patterns, and the equipment specifications guarantee a minimum line width of about 25 μm. In the case of a film-based mask, since the amount of expansion and contraction of the mask itself due to the influence of temperature and humidity cannot be ignored, it is expected that the accuracy can be improved by changing the base material of the mask from a film to a glass substrate having good dimensional stability. When the base material of the mask is a glass substrate, drawing is performed on the mask by a flat-table type laser photoplotter. For example, a glass substrate on which a silver halide emulsion layer is formed is placed on a drawing table of a plane scanning laser photoplotter, and a wiring pattern created by a printed wiring board design support system (CAD) is used. After converting the CAD data to plotter data, it is transferred to the plotter memory. Then, the plotter develops the data into data for laser beam scanning, and irradiates the glass substrate with the laser beam. This glass substrate is treated with a developing solution and a fixing solution, washed with water and dried to form a photomask.
フォトマスク製造用に使用されているレーザープロッタは、 描画の高速化の ためラスタースキャン法で、 前記マスキング材料にマスクパターンを描画して いる。  A laser plotter used for manufacturing a photomask draws a mask pattern on the masking material by a raster scan method to speed up drawing.
前記マスキング材料上に集光されたレーザースポットが、 前記マスキング材 料上を、 左から右等に高速で移動するようになっている。 前記ビルドアップ配 線基板の製造プロセスにおいても、 導体パターンの形成には前記レーザフォト プロッタによって描画されたフォ トマスクが使用されているが、 配線ピッチ微 細化の要求に対応して、 既に L S Iの製造プロセスとして開発されたリソダラ フィ技術を適用することが考えられる。  The laser spot focused on the masking material moves at high speed from left to right on the masking material. In the manufacturing process of the build-up wiring board as well, a photomask drawn by the laser photoplotter is used for forming the conductor pattern. It is conceivable to apply the lithography technology developed as a manufacturing process.
L S Iの製造のために開発されたリソグラフィ技術を、 前記ビルドアップ配 線板の製造プロセスに適用する場合に、 従来の工法のマスクとしては、 透明な マスク基板上に形成されたクロム (C r ) 等のような遮光性を有する金属膜あ るいは M o S i、 Z r S i Oまたは S i N等のような減光性または遮光性を有 する無機膜を加工して作製される。  When applying the lithography technology developed for the manufacture of LSIs to the build-up wiring board manufacturing process, the mask used in the conventional method is chromium (Cr) formed on a transparent mask substrate. It is produced by processing a metal film having a light-shielding property such as, or an inorganic film having a dimming property or a light-shielding property, such as MoSi, ZrSiO, or SiN.
すなわち、 通常のマスクは、 前記透明なマスク基板上に前記金属膜あるいは 無機膜が所望の形状で形成されて構成されている。 この金属膜または無機膜は、 通常スパッタリング法で形成される。 That is, the usual mask is formed by the metal film or the transparent mask on the transparent mask substrate. An inorganic film is formed in a desired shape. This metal film or inorganic film is usually formed by a sputtering method.
その金属膜の加工は、 まず、 金属膜上にレジスト膜を塗布した後、 そのレジ ス ト膜に所望のパターンを描画する。 続いて、 現像により所望の形状のレジス トパターンを形成した後、 そのレジストパターンをマスキング層としてドライ エッチングやウエットエッチングで金属膜を加工する。 その後、 レジストパタ ーンを除去した後、 洗浄等を行い、 所望の形状の前記金属膜からなる遮光パタ ーンを透明なマスク基板上に形成する。 無機膜の場合も同様である。  In processing the metal film, first, a resist film is applied on the metal film, and then a desired pattern is drawn on the resist film. Subsequently, after a resist pattern having a desired shape is formed by development, the metal film is processed by dry etching or wet etching using the resist pattern as a masking layer. Then, after removing the resist pattern, washing and the like are performed to form a light-shielding pattern made of the metal film having a desired shape on a transparent mask substrate. The same applies to the case of an inorganic film.
しかし、 これらの構成のマスクでは、 製造工程数が多く、 コストが高くなる 問題がある。 前述した M C M (Multi Chip Module)などを構成する配線基板は、 将来はより多品種少量生産傾向になると予測され、 また、 製品開発期間の短縮 の要求から、 フォトマスクを低コス トで、 および短期間(短 T A T : Turn Around Time)で作製する必要が高まっている。  However, these masks have the problem that the number of manufacturing steps is large and the cost is high. Wiring boards that make up the aforementioned MCM (Multi Chip Module) etc. are expected to have a tendency to produce more products in a smaller quantity in the future.In addition, due to demands for shorter product development time, photomasks can be manufactured at low cost and in a short time. There is a growing need to produce in a short time (short TAT: Turn Around Time).
前述したレーザフォトプロッタは、 多種多様なプリント配線板のマスク製造 に適用するために、 C A Dシステム、 フィルム自動現像機などと連動して、 C A Dデータ完成後 2〜 3時間でフォ トマスクが完成するシステムが出来上がつ ている。 半導体レーザによる露光処理によって反応する感光材料を使用して、 前記の C rマスクの製造工程に比べて、 より少ない工程にて早くマスクが完成 する。  The laser photoplotter described above is used in conjunction with a CAD system, automatic film processor, etc. to apply a photomask to a photomask within two to three hours after the completion of CAD data in order to apply it to the manufacture of masks for a wide variety of printed wiring boards. Is completed. Using a photosensitive material that reacts by exposure processing with a semiconductor laser, the mask can be completed earlier with fewer steps than in the above-described Cr mask manufacturing step.
しかし、 前記レーザフォ トプロッタの描画の解像度を上げるためには、 描画 の所要時間も大きくなる。 前記の処理時間でフォ トマスクを作製すると、 実用 的な最小線幅は 40 μ m程度と言われている。 低価格なレーザフォトプロッタ は精度が悪く、 高価格なレーザフォトプロッタは複雑な調整が必要となる。 また、 レーザフォ トプロッタを使用したマスク製造プロセスにも現像、 定着 処理が必要であって、 工程時間も長く、 設備も大掛かりなものとなる。 発明の開示  However, in order to increase the resolution of drawing by the laser photoplotter, the time required for drawing also increases. When a photomask is manufactured in the processing time described above, the practical minimum line width is said to be about 40 μm. Low cost laser photoplotters have poor accuracy, and high cost laser photoplotters require complicated adjustments. Also, the mask manufacturing process using a laser photoplotter requires development and fixing treatments, which requires a long process time and requires large-scale equipment. Disclosure of the invention
したがって、 本発明の目的は、 フォ トマスクを短い T A Tで製造して、 その フォトマスクを使用して、 配線基板を短い T A Tで製造することのできる技術 を提供することにある。 Therefore, an object of the present invention is to manufacture a photomask with a short TAT, It is an object of the present invention to provide a technology capable of manufacturing a wiring substrate with a short TAT using a photomask.
また、 本発明の他の目的は、 フォ トマスクを安価に製造することによって、 配線基板の製造コストを低減する技術を提供することにある。  Another object of the present invention is to provide a technique for reducing the manufacturing cost of a wiring board by manufacturing a photomask at low cost.
本願発明等者は、 現行の L S Iの製造においてフォトマスクの遮光体パター ンとして一般的に使用されているクロム等のようなメタルに代わるものとして、 微粒子状物質とバインダ一とを含む遮光体パターンのフォトマスクとしての特 性を調べた。  The inventor of the present application has proposed a light-shielding pattern including a particulate matter and a binder as an alternative to a metal such as chrome which is generally used as a light-shielding pattern for a photomask in current LSI manufacturing. The characteristics of this as a photomask were investigated.
微粒子状物質で光を散乱、 吸収し、 遮光性を得る。 バインダーは前記微粒子 状物質を結び付けて膜とするものである。 まず手始めに感光性組成物であるレ ジストに組み込んで特性を調べた。  Light is scattered and absorbed by the particulate matter to obtain light-shielding properties. The binder binds the particulate matter to form a film. First, the composition was incorporated into a resist, which is a photosensitive composition, and its characteristics were examined.
具体的には、 ポリヒドロキシスチレン(重量平均分子量約 20, 000) 1 0 g、 2, 6 -ビス (4-アジドベンザル) アセ トン- 2 , 2' -ジスルホン酸- Ν, Ν-ジエチレン ォキシェチルアミ ド 4 g、 溶剤をプロピレングリ コールメチルエーテルァセテ ート (P G M E A) としたカーボンプラック分散液 (カーボンブラック粒径約 2 0 n m、 含率 2 0重量0 /0) 7 5 g、 へキサメ トキシメチルメラミン 1 . 5 g に、 さらに溶剤として P GM E Aを加えて、 固形分が 1 6 %のカーボンを分散 させたレジスト(R 1 )である。 カーボンブラックが微粒子状物質である。 Specifically, 10 g of polyhydroxystyrene (weight average molecular weight of about 20,000), 2,6-bis (4-azidobenzal) acetone-2,2'-disulfonic acid-Ν, Ν-diethylene oxicetyl amide 4 g, solvent propylene glycol methyl ether § cetearyl over preparative (PGMEA) and the carbon plaques dispersion (carbon black particle size of about 2 0 nm, content: 2 0 weight 0/0) 7 5 g, to Kisame butoxy methyl melamine A resist (R 1) in which 1.5 g of GMEA as a solvent was further added to disperse carbon having a solid content of 16%. Carbon black is the particulate matter.
光学ガラス基体 (ブランクス) 上に、 レジス ト R 1を回転塗布し、 例えば 1 0 0 °Cで 2分ベータして膜厚 6 0 0 n mの塗膜を得た。 その後、 所望のパター ンを電子線描画装置を用いて電子線 E Bにて描画した。  The resist R1 was spin-coated on an optical glass substrate (blanks), and beta-coated at, for example, 100 ° C. for 2 minutes to obtain a coating having a thickness of 600 nm. Thereafter, a desired pattern was drawn by an electron beam EB using an electron beam drawing apparatus.
電子線描画の後、 界面活性剤として、 ドデシルスルホン酸ナトリウム 0 . 3 重量0 /0を含む 2 . 3 8重量%テトラメチルァンモ-ゥムヒドロキシド(TMAH)水 溶液によって現像を行い、 カーボンを少なくとも含む遮光体パターンを形成し た。 After the electron beam lithography, as a surfactant, 2 3 8 wt% tetramethylammonium § Nmo sodium dodecyl sulfonate 0 3 by weight 0/0 -.. And developed by Umuhidorokishido (TMAH) aqueous solution, containing at least carbon A light shield pattern was formed.
レジスト膜中に分散しているカーボン微粒子により光が散乱され、 透過が妨 げられる。 これによつて、 カーボンブラックの微粒子を含む所望の形状の遮光 体パターンを有するフォトマスクが形成できた。 作製されたフォトマスクは、 波長が 36 5 nmの光での OD値(OD値とは、 入射光を I IN、 透過光を I OUT としたとき、 一 LOG10( I 0UTZ I IN)で表される 値のこと)は 3. 0であり、 透過率(T%= 1 0 Οχ I OUT/ I INである)は 0. 1 0%であった。 Light is scattered by carbon fine particles dispersed in the resist film, and transmission is hindered. As a result, a photomask having a light-shielding body pattern of a desired shape containing fine particles of carbon black could be formed. The fabricated photomask has an OD value of light with a wavelength of 365 nm (OD value is expressed as one LOG10 (I0UTZ IIN), where IIN is the incident light and IOUT is the transmitted light. Was 3.0, and the transmittance (T% = 10 Οχ I OUT / I IN) was 0.10%.
さらにブロードな遮光特性を持っていることから、 36 5 nmの光に限らず、 405 nmの光や 436 nmの光も遮光することができた。 さらに波長の長い 光も遮光することができる。 このため i線のような単一波長の光だけでなく、 水銀ランプ等のような多波長の光を使った露光も可能であった。  Because of its broad light-blocking properties, it was possible to block not only light at 365 nm but also light at 405 nm and 436 nm. Even longer wavelength light can be blocked. For this reason, exposure using not only single wavelength light such as i-line but also multi-wavelength light such as a mercury lamp was possible.
以上の評価の結果、 本願発明者は、 現行のレーザプリンタで使用されている 電子写真の原理を応用して、 マスクのベース材(ガラス基板等)上に、 カーボン などの微粒子状物質とバインダーとを含む遮光体パターンを形成することによ りフォトマスクを作製するフォトマスク印刷装置を着想した。 乾式現像である ためスノレープッ ト、 コス ト面で優れる。  As a result of the above evaluations, the inventor of the present invention applied fine particles such as carbon and a binder to a mask base material (glass substrate or the like) by applying the principle of electrophotography used in a current laser printer. A photomask printing apparatus for producing a photomask by forming a light-shielding body pattern containing the same was conceived. Excellent in snoring and cost due to dry development.
ここでレーザプリンタ写真原理としては例えば、 朝倉書店発行 「新版レーザ 一ハンドプック」 1989.6 出版 pp.611〜pp.617 に記載がある。 ただし、 現行 のレーザプリンタの解像度では、 例えば MCM用配線基板などに要求される目 標仕様:配線幅/配線間隔(Line/Space) = 30 m/30 / m (現状は 75 μ m /75/xmでも可) の印刷は不可であるので、 高解像度化の対策が必要である。 本願発明では、 M C M用配線基板用、 およびプリント配線板用のフォトマス クを主な対象とするため、 レーザビームスポッ ト径を 10 m以下とするフォ トマスク印刷装置を検討した。 そして、 このフォ トマスク印刷装置によって印 刷したフォ トマスクを使用して、 M C M用配線基板、 またはプリント配線板な どを露光 ·製造する方法を検討した。  Here, the principle of laser printer photography is described in, for example, "New Edition Laser One Handpuck" published by Asakura Shoten, pp.611-617, published 1989.6. However, with the resolution of current laser printers, the target specifications required for wiring boards for MCM, for example, are: wiring width / interval (Line / Space) = 30 m / 30 / m (currently 75 μm / 75 / xm is also possible), so it is necessary to take measures to increase the resolution. In the present invention, a photomask printing apparatus with a laser beam spot diameter of 10 m or less was studied, mainly for photomasks for wiring boards for MCM and printed wiring boards. Using a photomask printed by the photomask printing apparatus, a method of exposing and manufacturing a wiring board for MCM or a printed wiring board was studied.
従って、 本願発明では、 (1)マスク全域にわたって 30 m以下の解像度を得 た、 短 TATで、 低コストな乾式現像によるフォトマスク製造方法を開発して、 配線基板の製造現場にてフォトマスクを印刷して、 短 T ATの配線基板製造を 実現することが目的である。 また、 もう 1つの目的は、 (2)MCM用途に耐え る品質(欠陥密度など)を得ることである。 上記課題を解決し、 目的を達成するための手段は下記の通りである。 Therefore, in the present invention, (1) by developing a photomask manufacturing method by dry development at a low cost with a short TAT, which has a resolution of 30 m or less over the entire mask area, and manufacturing a photomask at a wiring substrate manufacturing site. The purpose is to realize printed wiring board manufacturing with short TAT. Another objective is (2) to obtain quality (such as defect density) that can withstand MCM applications. The means to solve the above problems and achieve the objectives are as follows.
(1) 簡易な光学系で高い解像度を得つつマスク全域に渡ってパターン形成を可 能にするため、 マスク領域をレーザ走査幅を絞った領域に区分し、 区分内をレ 一ザ走査とマスク基板スキャンによりパターン描画、 印刷するとともに、 区分 領域間をステップ送りしてパターン描画、 印刷を行なうスキャン &ステップ方 式を採用する。  (1) In order to enable pattern formation over the entire mask area while obtaining high resolution with a simple optical system, the mask area is divided into areas with a narrow laser scanning width, and laser scanning and masking are performed within the section. A scan & step method is adopted in which pattern drawing and printing are performed by scanning the board, and pattern drawing and printing are performed by stepwise feeding between the divided areas.
(2) クリーンルーム内に設置したフォ トマスク印刷装置に、 設計部署より通信 回線を介してフォトマスク設計データを送りフォトマスクを印刷し、 配線基板 の製造計画に従って、 前記印刷したフォトマスクを使用して配線基板の露光 · 製造を行なう。  (2) The design department sends photomask design data via a communication line to a photomask printing device installed in a clean room, prints the photomask, and uses the printed photomask in accordance with the wiring board manufacturing plan. Performs exposure and manufacturing of wiring boards.
また、 もう一つの目的である低欠陥化のために、  Also, for another purpose, low defectivity,
(3) 微細(0. 5〜1. 0 μ m程度)なトナーでも発塵の問題を解決するため液体トナ 一を採用する。  (3) Use a liquid toner to solve the problem of dust generation even with fine toner (about 0.5 to 1.0 μm).
(4) トナーパターンの欠陥 (デフエタト) による露光されたパターンの不良を 防止するために、 フォトマスク上に複数の同一パターンを形成して、 各パター ンによる重ね露光を行う。  (4) In order to prevent the defect of the exposed pattern due to the defect (defate) of the toner pattern, a plurality of identical patterns are formed on a photomask, and the pattern is overlap-exposed.
(5) 液体トナーの中の不純物、 異物などによるトナーパターンの欠陥 (デフエ タ ト) の発生を予防するために、 中間ドラム(中間転写体)を導入する。 図面の簡単な説明  (5) Introduce an intermediate drum (intermediate transfer member) to prevent the occurrence of defects (defate) in the toner pattern due to impurities and foreign substances in the liquid toner. BRIEF DESCRIPTION OF THE FIGURES
図 1は本願発明によるフォトマスク Ml を用いて、 配線基板上に形成された レジストをレンズを介して露光して配線回路パターンを作成する概要を示す図- 図 2は本発明のフォトマスク印刷装置の主要構成図、  FIG. 1 is a diagram showing an outline of using a photomask Ml according to the present invention to expose a resist formed on a wiring substrate through a lens to form a wiring circuit pattern. FIG. 2 is a photomask printing apparatus of the present invention. Main configuration diagram of
図 3は本発明のフォ トマスク印刷装置における帯電利用方式(電子写真方式) を応用したフォトマスクの印刷の原理を説明する原理説明図、  FIG. 3 is a principle explanatory diagram for explaining the principle of printing of a photomask to which a charge utilization method (electrophotographic method) is applied in the photomask printing apparatus of the present invention.
図 4はレーザ熱転写方式のフォトマスク印刷装置の原理を説明する原理説明 図、  FIG. 4 is a principle explanatory view illustrating the principle of a laser thermal transfer type photomask printing apparatus.
図 5は本発明で採用したレーザ光を走査して回転式感光体ドラム上に結像さ せる光学系のスキャン機構を示す装置構成図、 Figure 5 shows the laser beam used in the present invention scanned and focused on the rotating photosensitive drum. Apparatus configuration diagram showing a scanning mechanism of an optical system to be
図 6は光学系のスキャン機構をステップ送りするためのステージ、 駆動機構 を示す装置構成図、  Fig. 6 is a device configuration diagram showing a stage for driving the scanning mechanism of the optical system stepwise and a driving mechanism.
図 7は回転多面鏡の各鏡面の角度誤差に起因する走査線間隔のムラを防止す る面倒れ補正光学系を示す概要図、  Fig. 7 is a schematic diagram showing a surface tilt correction optical system that prevents unevenness of the scanning line interval due to the angular error of each mirror surface of the rotating polygon mirror.
図 8は本発明のフォトマスク印刷装置において、 スキャン &ステップ転写方 式によってフォトマスクを印刷した例を示す図であり、 (a)は上面全体図、 (b) は要部上面図、  8A and 8B are diagrams showing an example of printing a photomask by a scan & step transfer method in the photomask printing apparatus of the present invention, wherein FIG. 8A is an overall top view, FIG.
図 9は図 8のフォトマスクにおいて、 ステップ送りによるスティツチング部 が配線パターンにかかる問題を解決したスキャン &ステツプ転写方法を示す図、 図 1 0は配線基板を製造する工程において、 ガラス基板(コア基板)上に配線 層、 層間絶縁膜を積層して、 スルーホールを形成する工程を説明する図、 図 1 1は配線基板を製造する工程において、 配線層、 層間絶縁膜の積層工程 を繰り返し、 絶縁膜を形成する工程を説明する図、  FIG. 9 is a view showing a scan & step transfer method in which the stitching portion due to the step feed is applied to a wiring pattern in the photomask of FIG. 8, and FIG. 10 is a view showing a glass substrate (core substrate) in a process of manufacturing a wiring substrate. ) A diagram illustrating the process of forming a through-hole by laminating a wiring layer and an interlayer insulating film on top. Fig. 11 shows the process of manufacturing a wiring board by repeating the process of laminating the wiring layer and the interlayer insulating film. FIG. 4 illustrates a step of forming a film;
図 1 2は配線基板を製造する工程において、 絶縁膜に開孔を形成した後、 開 孔の内部にバリアメタル層を形成する工程を説明する図、  FIG. 12 is a view for explaining a step of forming a hole in an insulating film and then forming a barrier metal layer inside the hole in a step of manufacturing a wiring board.
図 1 3は配線基板を製造する工程において、 開孔の内部にマイクロバンプを 形成する工程を説明する図、  FIG. 13 is a diagram illustrating a process of forming a microbump inside an opening in a process of manufacturing a wiring board.
図 1 4は配線基板を製造する工程において、 ガラス板の裏面に開孔を形成す る工程を説明する図、  FIG. 14 is a diagram illustrating a process of forming an opening in the back surface of a glass plate in a process of manufacturing a wiring board.
図 1 5は配線基板を製造する工程において、 ガラス板の裏面に貫通孔を形成 する工程を説明する図、  FIG. 15 is a diagram illustrating a process of forming a through hole in the back surface of a glass plate in the process of manufacturing a wiring board.
図 1 6は配線基板を製造する工程において、 貫通孔の底部にバリアメタルを 形成する工程を説明する図、  FIG. 16 is a diagram illustrating a process of forming a barrier metal at the bottom of a through hole in a process of manufacturing a wiring board.
図 1 7は集積回路が形成された複数のシリコンチップを配線基板上に実装し てマルチチップモジュール(M C M)を構成した例を示す図、  Figure 17 shows an example of a multi-chip module (MCM) by mounting multiple silicon chips with integrated circuits on a wiring board.
図 1 8は配線基板の製造現場においてプリントマスクを作成して、 配線基板 を露光 ·製造する方法の概念図、 図 1 9はプリ ントマスクのマスク基板上に形成されたトナーパターンの欠陥 の例を説明する図、 Fig. 18 is a conceptual diagram of the method of exposing and manufacturing a wiring board by creating a print mask at the wiring board manufacturing site. FIG. 19 is a view for explaining an example of a defect of a toner pattern formed on a mask substrate of a print mask.
図 2 0はフォトマスクのトナーパターンに欠陥がある場合でも良品がとれる 露光法に使用するマスクの例を示す図、  FIG. 20 is a diagram showing an example of a mask used for an exposure method that can obtain a good product even when a toner pattern of a photomask has a defect.
図 2 1はフォトマスクのトナーパターンに欠陥がある場合でも良品がとれる 露光法(欠陥転写防止法)を説明する図、  Figure 21 shows an exposure method (defect transfer prevention method) that can obtain a good product even if there is a defect in the toner pattern of the photomask.
図 2 2はフォトマスクのトナーパターンに欠陥がある場合でも良品がとれる 第 2の露光法(欠陥転写防止法)を説明する図、  FIG. 22 is a view for explaining a second exposure method (defect transfer prevention method) in which a non-defective product can be obtained even when the toner pattern of the photomask has a defect.
図 2 3は L E Dによる縮小露光によって、 感光体ドラム上に潜像を形成する フォ トマスク印刷装置の原理説明図、  FIG. 23 is a diagram illustrating the principle of a photomask printing apparatus that forms a latent image on a photosensitive drum by reduction exposure using an LED.
図 2 4はィンクジエツト方式によるフォトマスク印刷装置の原理説明図であ る。  FIG. 24 is an explanatory view of the principle of a photomask printing apparatus using the ink jet method.
なお、 各図面の符号の説明は次の通りである。  The description of the reference numerals in each drawing is as follows.
3…第 1層目の配線、 4,5,6…第 2〜第 4層目の配線、 7…層間絶縁膜、 8…スル 一ホール、 9…絶縁膜、 10…マイクロバンプ、 11…開孔、 12…ァライメントマ ーク、 13…バンプ電極、 14…貫通孔、 14a,15…開孔、 16…バリアメタル層、 17…バリアメタル、 20…ガラス板、 21 ···接着層、 22…スクライブガイ ド、 23 A 1合金膜、 40…シリ コンチップ、 101…回転式感光体ドラム、 102…レー ザ照射装置、 103 · ··レーザ光、 104…液体トナーボックス、 105…帯電器、 106 …クリーナ、 107…交流コロナ、 108…中間ドラム、 109 ···ガラス基板 (マスク ブランクス)、 110…テーブル、 111…帯電器、 112…赤外線加熱器、 113· ··トナ 一パターン、 120··· トナー、 121…ロッド、 122 ···駆動装置、 131…ステージ、 132 ···コリメートレンズ、 133…回転多面鏡 (ポリ ゴンミラー)、 134…集光レン ズ (f 0 レンズ)、 135…円筒レンズ 1、 136 ···円筒レンズ 2、 140…積層型イン クシート、 141…光熱変換層、 142···インク層、 143···レーザ光、 144…インク パターン、 150…欠け欠陥(白欠陥)、 151…黒欠陥、 160…トナーパターン、 161…トナーパターン、 162…積層トナーパターン、 163, 164…黒欠陥、 181··· 転写モジュール、 182···マスクテーブル、 183…マスクスキャン用駆動系( 方 向駆動系)、 184…マスクステッピング用駆動系(Y方向駆動系)、 191〜L E D アレイ、 192 ··· 1/4 の縮小光学系レンズ、 201 ···ノズル、 202···キヤビティ、 203…ダイァフラム、 204·· ·ピエゾ素子、 205···インクの液滴、 206···インクパ ターン、 210…配線パターン、 211…チップ、 212…合わせマーク、 213…識別、 214…スティツチング部、 215…ずれ、 216…断線、 217…パターン部分太り、 220…スクライブ領域となる遮光帯、 301…印刷モジュール 1、 302…印刷モジ ユール 2、 313…トナーパターン、 401···印刷モジュール 1、 402···印刷モジュ ール 2、 413…積層トナーパターン、 501 ···パソコンやワークステーション、 502 ···通信回線、 503 ···プリ ン トマスクのプリ ンタ、 504···プリントマスク、 505…露光装置、 1000…ガラス基板、 1001 ···遮光体パターン、 1002 ···レンズ、 1003…配線基板、 1004…レジス ト、 1010…遮光体面、 101 ·· Υ方向の露光領 域を制限するマスキングブレード、 1012—X方向の露光領域を制限するマス キングプレード、 1013 ···ウェハ、 1014…露光領域、 1015…ずらし露光マスク 位置、 1016〜4 回重なり露光領域、 A , Β , C, D…マスク上に配置された 同じトナーパターン、 W…チップ短辺幅、 L…チップ長さ、 S L…最大スキヤ ン幅。 発明を実施するための最良の形態 3: 1st layer wiring, 4, 5, 6 ... 2nd to 4th layer wiring, 7 ... interlayer insulating film, 8 ... through one hole, 9 ... insulating film, 10 ... microbump, 11 ... open Hole, 12… Alignment mark, 13… Bump electrode, 14… Through hole, 14a, 15… Open hole, 16… Barrier metal layer, 17… Barrier metal, 20… Glass plate, 21… Adhesive layer, 22… Scribe guide, 23 A1 alloy film, 40 ... silicon chip, 101 ... rotating photosensitive drum, 102 ... laser irradiation device, 103 ... laser beam, 104 ... liquid toner box, 105 ... charger, 106 ... Cleaner, 107… AC corona, 108… Intermediate drum, 109… Glass substrate (mask blanks), 110… Table, 111… Charging device, 112… Infrared heater, 113… Tona one pattern, 120… Toner, 121 ... Rod, 122 ... Drive device, 131 ... Stage, 132 ... Collimate lens, 133 ... Multi-rotation Mirror (polygon mirror), 134: Condensing lens (f0 lens), 135: Cylindrical lens 1, 136 ... Cylindrical lens 2, 140: Laminated ink sheet, 141: Light-to-heat conversion layer, 142 ... Ink Layer, 143 laser light, 144 ink pattern, 150 chip defect (white defect), 151 black defect, 160 toner pattern, 161 toner pattern, 162 laminated toner pattern, 163, 164 black defect , 181 ... Transfer module, 182 ... Mask table, 183 ... Drive system for mask scan 184) Driving system for mask stepping (Y-direction driving system), 191 to LED array, 192 ... 1/4 reduction optical system lens, 201 ... Nozzle, 202 ... Cavity, 203 … Diaphragm, 204 ·· Piezo element, 205 ·· Ink droplet, 206 ·· Ink pattern, 210… Wiring pattern, 211… Chip, 212… Alignment mark, 213… Identification, 214… Stitching part, 215 … Slippage, 216… Disconnection, 217… Pattern part thickening, 220… Shadow band to be scribe area, 301… Print module 1, 302… Print module 2, 313… Toner pattern, 401… Print module 1, 402 · Print module 2, 413… Laminated toner pattern, 501… PC and workstation, 502… Communication line, 503… Print mask printer, 504… Print mask, 505… Exposure equipment, 1000… Glass substrate, 1001 ···· Light shield pattern, 1002 ··· Lens, 1003 ··· Wiring board, 1004 ·· Rist, 1010 ··· Light shield surface, 101 ··· Masking blade to limit the exposure area in the レ ン ズ direction, Masking blade, 1013 ... wafer, 1014 ... exposure area, 1015 ... offset exposure mask position, 1016 to 4 times overlapping exposure area, A, Β, C, D ... the same toner pattern arranged on the mask , W: Chip short side width, L: Chip length, SL: Maximum scan width. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 図面を用いた実施例により本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail with reference to embodiments using the drawings.
図 1に本願発明によるフォトマスク Mlを用いて、 配線基板 1003上に形成さ れたレジスト 1004をレンズ 1002を介して露光して配線回路パターンを作成す る概要を示す。 ただしレンズを介さず近接露光でパターンを形成することも可 能である。 フォ トマスク Mlは、 例えばガラス基板 1000上にトナーあるいはィ ンクからなる遮光体パターン 1001 が形成されて構成される。 ここでトナーと は、 例えば力一ボンブラックを主原料にその表面にカルボン酸、 フエノール類、 キノン類、 ラタ トン類あるいはポリビニルフエノールが生成されたものである c インクは、 例えばジスァゾ系、 チォフェンジスァゾ系、 トリスァゾ系あるいは シァヌル酸系染料からなるものである。 . 以下実施例 1から 5にてフォトマスク Mlの製造方法の実施例を示し、実施例 6から 8において配線基板製造方法の実施例を示す。 FIG. 1 shows an outline of forming a wiring circuit pattern by exposing a resist 1004 formed on a wiring substrate 1003 through a lens 1002 using a photomask Ml according to the present invention. However, it is also possible to form a pattern by proximity exposure without using a lens. The photomask Ml is formed, for example, by forming a light shielding pattern 1001 made of toner or ink on a glass substrate 1000. Here, the toner is, for example carboxylic acid forces one carbon black in the main raw material on the surface thereof, phenols, quinones, c ink in which rata ton class or polyvinyl phenol is produced, for example Jisuazo system, Chiofen It consists of a disazo, trisazo or cyanuric dye. . Examples 1 to 5 show examples of a method of manufacturing a photomask Ml, and Examples 6 to 8 show examples of a method of manufacturing a wiring board.
く実施例 1〉 Example 1>
図 2に配線基板用途として十分な解像度と品質を持ち、 かつ短 T A Tに製造 が可能なフォ トマスク印刷装置の主要構成を示す。 電子写真プロセスの原理に よりマスクのベース材(マスクブランクス)上に回路パターンを形成する。  Fig. 2 shows the main configuration of a photomask printing device that has sufficient resolution and quality for use in wiring boards and can be manufactured in a short TAT. A circuit pattern is formed on the base material of the mask (mask blanks) by the principle of the electrophotographic process.
図 2の 101 は回転式感光体ドラム、 102 はレーザ照射装置、 103はレーザ光、 104は液体トナーボックス、 105は帯電器、 106はクリーナ、 107は交流コロナ、 108 は中間ドラム、 109 はガラス基板(マスクブランクス)、 110 はマスクブラ ンクスを載置するテーブル、 111 は帯電器、 112 は赤外線加熱器そして 113 は ト "一パターンを示す。  In FIG. 2, 101 is a rotary photosensitive drum, 102 is a laser irradiation device, 103 is a laser beam, 104 is a liquid toner box, 105 is a charger, 106 is a cleaner, 107 is an AC corona, 108 is an intermediate drum, and 109 is glass. Substrate (mask blanks), 110 is a table on which mask blanks are placed, 111 is a charger, 112 is an infrared heater, and 113 is a pattern.
回転式感光体ドラム 101は、 ドラムの表面を帯電させ、 レーザ光を照射して 静電的な潜像を形成して、 現像により ドラムの表面の静電的潜像にトナーを付 着させて可視化して、 該トナー像を中間ドラムへ転写する一連の処理の媒体と なる。 回転式感光体ドラム 101の材料は、 レーザ光 103に感度を持たせること が必要であり、 無機系の材料としては Se系、 CdS系、 ZnO系などがあり、 また 有機系の感光体材料も各種ある。  The rotating photosensitive drum 101 charges the surface of the drum, irradiates a laser beam to form an electrostatic latent image, and attaches the toner to the electrostatic latent image on the drum surface by development. It becomes a medium for a series of processes for visualizing and transferring the toner image to the intermediate drum. The material of the rotary photosensitive drum 101 needs to have sensitivity to the laser beam 103. Examples of inorganic materials include Se, CdS, and ZnO, and organic photosensitive materials are also available. There are various.
レーザ照射装置 102 としては、 例えば He- Ne、 He- Cd、 Ar+レーザなどのガス レーザや、 (GaAl) As などの半導体レーザが使用される。 レーザ照射装置 102 によって照射されたレーザ光 103を走査することにより、 回転式感光体ドラム 101 上に配線パターンなどを露光する。 ここで、 C A Dシステム(図示なし)に よって作成された配線パターンなどの設計データに基づき、 レーザの描画パタ ーンデータを作成して、 該描画パターンデータに従ってレーザ照射装置 102が ON - OFF制御されている。 .  As the laser irradiation device 102, for example, a gas laser such as He-Ne, He-Cd, or Ar + laser, or a semiconductor laser such as (GaAl) As is used. By scanning the laser beam 103 irradiated by the laser irradiation device 102, a wiring pattern or the like is exposed on the rotary photosensitive drum 101. Here, laser drawing pattern data is created based on design data such as wiring patterns created by a CAD system (not shown), and the laser irradiation device 102 is ON / OFF controlled according to the drawing pattern data. . .
液体トナーボックス 104には、 液体トナーが入っていて、 回転式感光体ドラ ム 101の回転に合わせて、 液体トナーを回転式感光体ドラム 101の表面に供給 して、 現像処理を行う。 この液体中に分散剤を添加することによってトナーが ミセル化しにくくなることから、 トナーの粒径を小さくすることが出来て高解 像化できる。 The liquid toner box 104 contains liquid toner, and supplies the liquid toner to the surface of the rotary photoconductor drum 101 in accordance with the rotation of the rotary photoconductor drum 101 to perform development processing. Addition of a dispersant to this liquid makes it difficult for the toner to form micelles. Can be imaged.
分散剤を添加した液体トナーでトナーの粒径を 1 μ m以下にすると、 例えば 30 μ πιの配線パターンを形成するときのエッジラフネスが小さくなって配線寸 法精度が良くなるという効果がある。 さらにトナーが飛散しにくくなるためマ スクの外観欠陥発生が少なくなる。  When the particle size of the toner is 1 μm or less in the liquid toner to which the dispersant is added, for example, there is an effect that the edge roughness when forming a wiring pattern of 30 μπι is reduced and the wiring dimensional accuracy is improved. Further, since the toner is hardly scattered, appearance defects of the mask are reduced.
装置内にトナーが組み込まれているうちは粉末トナーでもマスク外観欠陥に 繋がりにくいが、 粉末トナーの場合はトナー補充や装置メンテナンス時に装置 等に飛散し、 長期にわたってマスク外観欠陥発生に繋がることがわかった。 フ ォトマスクでは外観欠陥品質が極めて重要で、 無欠陥が要求されるので液体ト ナ一により外観欠陥不良が避けられるようになる効果は極めて大きい。  While toner is incorporated in the equipment, even powder toner does not easily lead to mask appearance defects, but powder toner scatters to equipment during toner replenishment and equipment maintenance, leading to mask appearance defects for a long time. Was. In a photomask, appearance defect quality is extremely important, and since no defect is required, the effect of avoiding appearance defect defects by liquid toner is extremely large.
中間ドラム 108は A1 のドラムに抵抗体を卷き付けた構造であり、 回転式感 光体ドラム 101の表面に形成されたトナー像を、 中間ドラムの表面に転写して、 さらにそのトナー像をガラス基板(マスクプランクス) 109 へ転写するための媒 体となる。 中間ドラム 108はデフエタ ト(トナーパターンの欠陥)発生防止に効 果がある。  The intermediate drum 108 has a structure in which a resistor is wound around the drum A1. The toner image formed on the surface of the rotary photosensitive drum 101 is transferred to the surface of the intermediate drum, and the toner image is further transferred. It becomes a medium for transfer to glass substrate (mask planks) 109. The intermediate drum 108 is effective in preventing the occurrence of deflate (defect in the toner pattern).
マスクブランクスを載置するテーブル 110は、 その上面にガラス基板 109を 載置する。 ガラス基板 109は中間ドラム 108と一定の間隔を保ちながら、 中間 ドラム 108の回転による周速と同一速度にて移動させて、 中間ドラム 108の表 面に転写されている トナー像をガラス基板 109 へ転写する。 テーブル 110は、 ガラス基板 109の下面の周辺部を保持する構造となっており、 ガラス基板 109 の下面の中央部はテーブル 110に窓状の開放空間を設けてある。 図 2では、 そ の窓状の開放空間を挟んでガラス基板 109を両端で支えるテーブル 110の断面 を示している。 そのテーブルの窓を通して、 テーブル 110の下部にガラス基板 109の下面に近接して置かれた帯電器 111 によりガラス基板 109の帯電を行い、 中間ドラム 108からガラス基板 109へのトナー像の転写を誘引する。  The table 110 on which the mask blanks are placed has a glass substrate 109 placed on its upper surface. The glass substrate 109 is moved at the same speed as the peripheral speed due to the rotation of the intermediate drum 108 while maintaining a constant interval with the intermediate drum 108, and the toner image transferred to the surface of the intermediate drum 108 is transferred to the glass substrate 109. Transcribe. The table 110 has a structure for holding the peripheral portion of the lower surface of the glass substrate 109, and the central portion of the lower surface of the glass substrate 109 is provided with a window-shaped open space in the table 110. FIG. 2 shows a cross section of a table 110 that supports the glass substrate 109 at both ends with the window-shaped open space interposed therebetween. Through the window of the table, the charging of the glass substrate 109 is performed by the charger 111 placed in the lower part of the table 110 near the lower surface of the glass substrate 109, and the transfer of the toner image from the intermediate drum 108 to the glass substrate 109 is induced. I do.
また、 テーブル 110の下部に置かれた赤外線加熱器 112から前記テーブルの 窓を通して赤外線を照射し、 ガラス基板 109に転写されたトナー像を加熱定着 させてトナーパターン 113を形成する。 加熱装置としては赤外線加熱器のほか オーブン炉なども用いることができる。 吸収率の関係で赤外線はガラスではな く トナーに選択的に吸収されるため、 赤外線加熱器は効率がよい。 Further, infrared rays are radiated from an infrared heater 112 placed below the table 110 through the window of the table, and the toner image transferred to the glass substrate 109 is heated and fixed to form a toner pattern 113. In addition to infrared heaters, An oven furnace or the like can also be used. Infrared heaters are efficient because infrared rays are selectively absorbed by toner instead of glass due to the absorption factor.
なお、 109 のガラス基板に代わって耐熱性光学プラスチック基板を用いるこ ともできる。 耐熱性光学プラスチック基板は安価という特長がある。 一方、 ガ ラス基板は出来上がった遮光体パターン (配線パターン) の位置歪みが少なく、 またトナーパターンを 02プラズマ下でァッシング再生することによりガラス 基板を再利用できるという特長がある。 Note that a heat-resistant optical plastic substrate can be used instead of the glass substrate 109. The heat-resistant optical plastic substrate has the feature of being inexpensive. On the other hand, glass substrates small positional distortion of the finished light shield pattern (wiring pattern), also there is a feature that can be reused a glass substrate by Asshingu play toner pattern under 0 2 plasma.
図 3に、 図 2に主要構成を示したフォ トマスク印刷装置における、 帯電利用 方式(電子写真方式)を応用したフォトマスクの印刷の原理を説明する。  FIG. 3 illustrates the principle of printing a photomask using a charging method (electrophotographic method) in a photomask printing apparatus whose main configuration is shown in FIG.
図 3 (a) に示すように感光体ドラム 101 を帯電器 105を用いて負(感光体が n形半導体のときは負、 感光体が; p形半導体のときは正)の電荷(イオン)を均 一に与えて帯電させる。 その後、 図 3 (b)に示すようにレーザ照射装置から発 せられたレーザ光 103にて所望のパターンを描画する。 このときレーザ照射さ れた部分の電荷は放電によって消失する。 As shown in Fig. 3 (a), the photoconductor drum 101 is charged negatively (ion: negative if the photoconductor is an n -type semiconductor, positive if the photoconductor is a p-type semiconductor) by using the charger 105 (ion). And charge them uniformly. Thereafter, as shown in FIG. 3 (b), a desired pattern is drawn with the laser beam 103 emitted from the laser irradiation device. At this time, the charge in the portion irradiated with the laser is lost by the discharge.
その後、 図 3 (c)に示すように液体トナーボックス 104より正(感光体表面の 電荷極性と反対)に帯電したトナー 120を供給して、 そのトナー 120が感光体ド ラム 101上の負の帯電が残されている部分に被着する。 被着したトナー 120に より、 レーザ光により描画された配線パターンが顕在化する。 Thereafter, as shown in FIG. 3C, a positively charged toner 120 (opposite to the charge polarity of the photoreceptor surface) is supplied from the liquid toner box 104, and the toner 120 is supplied to the negative electrode on the photoreceptor drum 101. It adheres to the part where the charge is left. More Toner 1 2 0 was deposited, the wiring pattern drawn by the laser beam becomes apparent.
続いて図 3 (d)に示すように、 アースされた感光体ドラム 101 上に被着した トナー 120 のパターンを、 マイナスのバイアスを印加した中間ドラム(中間転 写体) 108の表面に転写する。  Subsequently, as shown in FIG. 3D, the pattern of the toner 120 deposited on the grounded photosensitive drum 101 is transferred to the surface of the intermediate drum (intermediate transfer body) 108 to which a negative bias is applied. .
その後図 3 (e)に示すようにガラス基板 109を中間ドラム 108 に近接あるい は接触させ、 ガラス基板裏面に配置された帯電器 111 を使って負(感光体を帯 電させた極性と同じ)に帯電させて、 ガラス基板の負の電位を中間ドラム(中間 転写体) 108 の電位よりも高くする。 それによつて、 中間ドラム(中間転写 体) 108の表面上のトナーパターン 120をガラス基板に移す。  Thereafter, as shown in FIG. 3 (e), the glass substrate 109 is brought close to or in contact with the intermediate drum 108, and the negative electrode (the same polarity as the charged photoreceptor) is charged using the charger 111 arranged on the back of the glass substrate. ) To make the negative potential of the glass substrate higher than the potential of the intermediate drum (intermediate transfer member) 108. Thereby, the toner pattern 120 on the surface of the intermediate drum (intermediate transfer member) 108 is transferred to the glass substrate.
最後に図 3 (f)に示すように赤外線加熱器 112 を用いてトナー 120 を加熱定 着させてトナーからなるトナー遮光体パターン 113をガラス基板上に形成する。 このとき圧着処理を行って、 定着を促進してもよい。 なお、 図 2に記載された 交流コロナ 107とクリーナ 106は回転式感光体ドラム 101上の帯電電荷と トナ 一の除去、 中間ドラムのクリーエングに用いられる。 また、 ガラス基板 109の 表面はトナーが被着しやすいように表面処理しておく と良い。 Finally, as shown in FIG. 3 (f), the toner 120 is heated and fixed using an infrared heater 112 to form a toner light shielding pattern 113 made of toner on the glass substrate. At this time, a pressure treatment may be performed to promote fixing. The AC corona 107 and the cleaner 106 shown in FIG. 2 are used for removing the charged charges and the toner on the rotary photosensitive drum 101 and cleaning the intermediate drum. Further, the surface of the glass substrate 109 is preferably subjected to a surface treatment so that the toner is easily adhered.
本願発明のフォトマスク印刷装置では、 現行のレーザプリンタにおいて使用 されている粉体ト ? "一のトナー径が 6 ~ 10 μ πι程度であるのに対して、 解像度 を上げために、 さらに小さな径のトナーを使用する。 6 μ πι以下の径のトナー は、 そのままでは凝集してしまうため、 分散剤(石油系の溶剤)として例えばァ ィソパーの中にカーボンブラックを分散させた液体トナーを使用する。  In the photomask printing apparatus of the present invention, the toner diameter of the powder toner used in the current laser printer is about 6 to 10 μπι. Since toner with a diameter of 6 μπι or less will aggregate as it is, use a liquid toner in which carbon black is dispersed in, for example, dispersant as a dispersant (petroleum-based solvent). .
トナー径は、 0. 5〜1. 0 i m程度となり、 微細パターン形成に有効である。 ト ナ一は、 例えばカーポンプラックやグラフアイ ト等のような黒色顔料または黒 色染料 (微粒子状物質) と、 例えばノポラック樹脂やポリスチレン等のような 熱軟化性を有する榭脂 (バインダー) とを有している。 この黒色顔料または黒 色染料は、 3 0 %以上、 好ましくは 3 0 °/0〜 4 0 %程度が好ましい。 なお、 通 常使用されている トナーでは、 黒色顔料または黒色染料の含有率が 1 0 %程度 であり、 マスクには充分な遮光性を得る上で適していない。 The toner diameter is about 0.5 to 1.0 im, which is effective for forming a fine pattern. Toners include, for example, black pigments or black dyes (particulate matter) such as car pump racks and graphite, and heat-softening resins (binders) such as nopolak resins and polystyrene. have. The content of the black pigment or the black dye is preferably 30% or more, and more preferably about 30 ° / 0 to 40%. In addition, a commonly used toner has a black pigment or black dye content of about 10%, and is not suitable for a mask to obtain a sufficient light-shielding property.
この液体トナーを使用することによって、 装置のメンテ時にトナー部を外す ときなどに発塵が少なく、 このことが影響して異物付着の少ないフォトマスク を製造することができる。  By using this liquid toner, a small amount of dust is generated when the toner portion is removed during maintenance of the apparatus, and this has an effect, so that it is possible to manufacture a photomask with less foreign matter adhesion.
中間ドラム(中間転写体) 108 の導入の理由は、 第 1に不純物の除去である。 感光体ドラム 101に液体現像処理を行うと、 トナーの他に溶剤も付着する。 こ の溶剤には、 不純物が混じっており、 また、 逆極性のトナーも付着する。 感光 体ドラムをアースして、 中間ドラムに負のバイアスを印加することによって、 正に帯電したトナーだけが感光体ドラムから中間ドラムへ移り、 不純物は移ら ない。 この際に、 溶剤が中間ドラム(中間転写体) 108 に付着することがあり、 中間ドラム(中間転写体) 108 を加熱して、 溶剤を乾燥させることを行う。 また、 中間ドラム(中間転写体) 108 の加熱により、 中間ドラム面に転写されたトナー を溶かし、 続いてガラス基板に転写する時に、 ガラス基板にトナーを付き易く する効果がある。 The first reason for introducing the intermediate drum (intermediate transfer member) 108 is to remove impurities. When the liquid developing process is performed on the photosensitive drum 101, a solvent adheres in addition to the toner. This solvent contains impurities and also adheres to the toner of the opposite polarity. By grounding the photoconductor drum and applying a negative bias to the intermediate drum, only the positively charged toner moves from the photoconductor drum to the intermediate drum, and no impurities move. At this time, the solvent may adhere to the intermediate drum (intermediate transfer member) 108, and the intermediate drum (intermediate transfer member) 108 is heated to dry the solvent. In addition, by heating the intermediate drum (intermediate transfer member) 108, the toner transferred to the intermediate drum surface is melted, and the toner is easily attached to the glass substrate when subsequently transferred to the glass substrate. Has the effect of doing
図 5は、 図 2に示す電子写真プロセスの原理によるフォトマスク印刷装置に おいて、 前記レーザ照射装置 102によって照射されたレーザ光 103を走査して、 前記回転式感光体ドラム 101上に結像させる光学系のスキャン機構を示す。  FIG. 5 shows a photomask printing apparatus based on the principle of the electrophotographic process shown in FIG. 2, in which the laser beam 103 irradiated by the laser irradiation apparatus 102 is scanned to form an image on the rotary photosensitive drum 101. 2 shows a scanning mechanism of an optical system to be operated.
レーザ光の走査技術は従来より各種提案されており、 その中で回転多面鏡 (ポリゴンミラー) 133 を使う方式がレーザープリンタでは最も広く使われてい る。 半導体レーザは直接強度変調ができるために、 ガスレーザのときのような ΑΖθ変調器を必要としないうえ、 小型で低価格にできるため、 本願発明には 望ましい。  Various laser beam scanning technologies have been proposed in the past, and the method using a rotating polygon mirror (polygon mirror) 133 is the most widely used in laser printers. Since a semiconductor laser can directly perform intensity modulation, it does not require a ΑΖθ modulator unlike a gas laser, and can be small and inexpensive.
半導体レーザ 102より照射されたレーザ光 103をコリメートレンズ 132によ つて平行ビームとして、 高速回転している回転多面鏡(ポリゴンミラー 133)の 鏡面に当て、 その反射光を集光レンズ(f 0 レンズ) 134 によって前記回転式感 光体ドラム 101上の走査面に結像させている。 前記 ί θ レンズ 134は、 レーザ ビーム偏向角 0と走査面上走査位置が比例するように、 及び焦点の軌跡が直線 となるように製作される。  The laser beam 103 emitted from the semiconductor laser 102 is collimated by a collimating lens 132 into a parallel beam, and is applied to the mirror surface of a high-speed rotating polygon mirror (polygon mirror 133). The image is formed on the scanning surface on the rotary photosensitive drum 101 by 134. The ίθ lens 134 is manufactured such that the laser beam deflection angle 0 is proportional to the scanning position on the scanning surface, and the focal point locus is linear.
現行の A 4サイズ対応、 600dpi レーザプリンタにおいては、 感光体ドラム 上のレーザスポッ ト径は 50〜60 i m程度となっているが、 本願発明のフォト マスク印刷装置においては、 高解像度化のために、 感光体ドラム上のレーザス ポット径 d = 10 μ m以下とする。 感光体ドラム上のレーザスポット径 d = 10〃 mで、 20 111線幅の解像性(1^丁 )は、 0. 8以上確保できると見込まれる。 この感光体ドラム上のレーザスポット径 dを決定する要素としては、 集光レ ンズ( f Θ レンズ) 134 へ入射するレーザビーム径0、 レーザの波長; 、 f Θ レ ンズ 134の焦点距離 f が挙げられ、 レーザスポッ ト径 dは次式にて求められる c d = ( 4 · λ ■ f ) / ( π ■ D ) ......... (1) In the current A4 size compatible 600 dpi laser printer, the laser spot diameter on the photoreceptor drum is about 50 to 60 im, but in the photomask printing apparatus of the present invention, in order to increase the resolution, The laser spot diameter on the photoconductor drum shall be d = 10 μm or less. With a laser spot diameter d = 10 m on the photoreceptor drum, it is expected that the resolution (1 ^) of 20 111 line width can be secured to 0.8 or more. The factors that determine the laser spot diameter d on the photosensitive drum are the laser beam diameter 0 incident on the converging lens (f) lens) 134, the laser wavelength; and the focal length f of the fΘ lens 134. The laser spot diameter d is obtained by the following equation: cd = (4 · λ f) / (π D) ............ (1)
現行の A 4サイズ対応レーザプリンタは、 A 4幅走査のために焦点距離が 150mm の f Θレンズを採用しているが、 本願発明のフォトマスク印刷装置にお いては例えば焦点距離が約 45mm の f Θ レンズを採用する。 また、 半導体レー ザ(GaAlAs)を使用するとレーザの波長; I = 760〜850nm である。 該レーザの波 長 λに対応して、 f 0 レンズへ入射するレーザビーム径 D - 4. 35~4. 87mm と 設定すると、 レーザスポット径(1 = 10 μ πιと求められる。 The current A4 size compatible laser printer employs an fΘ lens with a focal length of 150 mm for A4 width scanning.However, in the photomask printing apparatus of the present invention, for example, a focal length of about 45 mm is used. f Θ Use a lens. When a semiconductor laser (GaAlAs) is used, the wavelength of the laser is I = 760 to 850 nm. The laser wave If the laser beam diameter incident on the f0 lens is set to D-4.35 to 4.87 mm corresponding to the length λ, the laser spot diameter (1 = 10 μπι) can be obtained.
レーザスポッ トの走査幅 S Lは、 f Θ レンズ 134 の口径 W (ほぼ焦点距離 f と同じ)を考慮して、 現行のレーザプリンタにおける換算と同じく、 f の約 1. 2から 1. 5倍とする。  The scanning width SL of the laser spot should be about 1.2 to 1.5 times f, considering the aperture W of the f f lens 134 (substantially the same as the focal length f), as in the current laser printer. .
S L = f (1. 2〜1. 5) (2)  S L = f (1.2 to 1.5) (2)
レーザスポッ トの走査幅 S Lは、 54〜68mmである。  The scanning width SL of the laser spot is 54 to 68 mm.
以上のように、 入射ビームスポット径 d は d= (4 . λ · f ) / ( π ' D)の関係があ るので、 解像度を上げる、 すなわち入射ビームスポット径 dを小さくするには 焦点距離 f を小さくする必要がある。 このとき f 0 レンズの画角は小さくなる。 すなわち解像度を上げるためには走査幅 S Lを小さくする必要がある。 As described above, since the incident beam spot diameter d has the relationship of d = (4.λ · f) / (π'D), to increase the resolution, that is, to reduce the incident beam spot diameter d, the focal length f needs to be small. At this time, the angle of view of the f0 lens becomes small. That is, to increase the resolution, it is necessary to reduce the scanning width SL.
この走査幅 S Lの制限を回避するため、 図 6に示すように、 光学系のスキヤ ン機構をステップ送りするためのステージ、 駆動機構を設けた。 101 は回転式 感光体ドラム、 131 は光学系ステージでその上にはレーザ照射装置 102、 コリ メートレンズ 132、 ポリゴンミラー(回転多面鏡) 133、 f 0 レンズ 134 が載って おり、 レーザ照射装置 102からはレーザ光 103が発せられ、 コリメートレンズ 132、 ポリ ゴンミラー 133、 f Θ レンズ 134を介して回転式感光体ドラム. 101 に 照射される。  In order to avoid the limitation of the scanning width SL, as shown in FIG. 6, a stage for driving the scanning mechanism of the optical system and a driving mechanism are provided. 101 is a rotary photosensitive drum, 131 is an optical stage, on which a laser irradiation device 102, a collimating lens 132, a polygon mirror (rotating polygon mirror) 133, and an f0 lens 134 are mounted. A laser beam 103 is emitted from the laser beam, and irradiates the rotating photosensitive drum 101 via a collimating lens 132, a polygon mirror 133, and an fΘ lens 134.
なお、 図示されていないが光学系ステージ 131上には、 ポリゴンミラーの各 鏡面の角度誤差に起因する走査線間隔のムラを補正する面倒れ補正用のシリン ドリカルレンズ(後述)も置かれている。  Although not shown, on the optical system stage 131, a cylindrical lens (to be described later) for correcting surface tilt for correcting unevenness of the scanning line interval due to an angular error of each mirror surface of the polygon mirror is also provided.
光学系ステージ 131は口ッド 1 を介して駆動装置 122でその位置をステツ プ移動させることが可能で、 ポリゴンミラー 133 によるスキャンと駆動装置に よるステッピングを併用して幅広い描画範囲を確保する。  The position of the optical system stage 131 can be step-moved by the drive unit 122 through the opening 1, and a wide drawing range is secured by using both scanning by the polygon mirror 133 and stepping by the drive unit.
走査幅 S Lは前述した通り最小解像度に依存するが、 例えば最小解像度を 10 m とすると走査幅 S Lは 5468mm程度であり、 図 6 (a)に示すように最大、 走査幅 S Lの範囲でスキャンする。 その後図 6 (b)に示すように駆動装置 136 によってステッピング送りして描画を行なう。 なお、 このステップ送り量はレ 一ザ干渉計でモニタし、 位置精度をフィードバックすると高い精度でステップ 送りできる。 While scanning width SL is dependent as the minimum resolution described above, for example, the minimum resolution scan with a 10 m width SL is approximately 5 4 ~ 68 mm, the maximum as shown in FIG. 6 (a), the scan width SL Scan in range. Thereafter, as shown in FIG. 6B, drawing is performed by stepping feed by the driving device 136. This step feed amount is Monitoring with a single-interferometer and feeding back positional accuracy enables high-precision step feed.
図 7は、 回転多面鏡(ポリゴンミラー) 133 を用いたレーザ光走査系を適用す るときに、 回転多面鏡の各鏡面の角度精度(高精度な垂直度)に誤差があること に起因して、 走査線間隔にムラが発生することを防止するための補正に使用さ れる面倒れ捕正光学系を示す。  Figure 7 shows that when applying a laser beam scanning system using a rotating polygon mirror (polygon mirror) 133, there is an error in the angular accuracy (high-precision verticality) of each mirror surface of the rotating polygon mirror. 2 shows a surface tilt correction optical system used for correction for preventing occurrence of unevenness in scanning line intervals.
捕正のために、 円筒レンズ 1 (135)を、 レーザ光 103 を平行ビームとするコ リメ一トレンズ 132 と回転多面鏡(ポリゴンミラー 133)の間に置き、 円筒レン ズ 2 (136)を、 ί Θ レンズ 134と感光体ドラム 101との間に置く。  For correction, the cylindrical lens 1 (135) is placed between the collimating lens 132 using the laser beam 103 as a parallel beam and the rotating polygon mirror (polygon mirror 133), and the cylindrical lens 2 (136) is ί 置 く Place it between the lens 134 and the photoconductor drum 101.
円筒レンズのもつ特定方向のみの結像特性を利用して、 結像面を鏡面上に置 き、 各鏡面の変動(面倒れ)を捕正する。 その補正の原理は、 回転多面鏡(ポリ ゴンミラー 133)面上で焦点を結んだスポット(物点)と感光体面上の結像点(像 点)を共役な関係(点から発した光がレンズによってもう一度点に絞られる関 係)にしておけば、 回転多面鏡の面が多少傾いても、 感光体面上の結像点はず れることが無くなる。  Using the imaging characteristics of the cylindrical lens only in a specific direction, the imaging plane is placed on a mirror surface, and the fluctuation (tilt) of each mirror surface is corrected. The principle of the correction is that the spot (object point) focused on the rotating polygon mirror (polygon mirror 133) and the imaging point (image point) on the photoreceptor surface are conjugated (the light emitted from the point is a lens). If the surface of the rotary polygon mirror is slightly tilted, the image point on the photoreceptor will not be displaced.
感光体ドラム 101の回転速度を、 レーザスポット径 d - lO Ai m とした場合の パターン形成時間を説明する。 回転多面鏡(ポリ ゴンミラー) 133 の回転数は、 20000〜30000rpm。 ここで、 20000rpra を採用するとして、 回転多面鏡の面数は 6面とすると、 1秒間に、 20000 (rpra) x 6 (面) ÷60 (s/m) = 2000 ライン走査 することになる。 よって、 感光体ドラム 101 の回転速度(周速)は、 2000 (1/s) X 10 ( μ m) = 20000 ( μ m/s) = 2 (cm/s)程度となる。 The pattern formation time when the rotation speed of the photosensitive drum 101 is set to the laser spot diameter d−10 Aim will be described. Rotation speed of the rotating polygon mirror (poly Gonmira) 133, 20000~ 3 0000rpm. Here, assuming that 20000rpra is adopted, assuming that the number of surfaces of the rotating polygon mirror is 6, 20000 (rpra) x 6 (surfaces) ÷ 60 (s / m) = 2000 lines per second. Therefore, the rotation speed (peripheral speed) of the photosensitive drum 101 is about 2000 (1 / s) × 10 (μm) = 20000 (μm / s) = 2 (cm / s).
また、 感光体ドラムからパターンの転写を行いながら回転する中間ドラムの 回転速度(周速)、 および、 中間ドラムからパターンの転写を受けるガラス基板 の送り速度は同じである。 よって、 例えば長辺方向に 200mmのサイズのマスク であれば、 最大走査幅 54〜68mmで、 約 10秒でこの領域のパターン形成が完了 する。  The rotation speed (peripheral speed) of the intermediate drum, which rotates while transferring the pattern from the photosensitive drum, and the feed speed of the glass substrate that receives the pattern transfer from the intermediate drum, are the same. Therefore, for example, with a mask having a size of 200 mm in the long side direction, pattern formation in this area is completed in about 10 seconds with a maximum scanning width of 54 to 68 mm.
この幅 5468mm、 長さ 200mm の短冊領域 4個でマスク全域をカバー出来る のでマスク全面のパターン形成にかかる時間は約 40秒である。 ほぼ同時に現 像、 定着も終わるので、 現行のレーザフォ トプロッタを使用した時の 2〜 3時 間、 あるいは既存の L S I用 C r マスクを作製するための平均時間 32 時間と 比較して 2桁以上も製造時間を短縮することが出来る。 The width 5 4 ~ 68 mm, since it covers the mask whole by four strip areas of length 200mm time according to the pattern formation of a mask over the entire surface is about 40 seconds. Almost simultaneously Since the image and fixation are completed, the manufacturing time is more than two orders of magnitude compared to 2-3 hours when using the current laser photoplotter or the average time of 32 hours for fabricating the existing Cr mask for LSI. Can be shortened.
<実施例 2 > <Example 2>
第 2の実施例として、 レーザ熱転写方式のフォ トマスクの製造法を図 4を用 いて説明する。 まず最初にレーザ熱転写方式の原理を説明する。 ベースフィル ムに光熱変換材料を塗布した光熱変換層 141 と、 インク層 142からなる積層型 インクシ一ト 140に、 レンズによって集光されたレーザ光 143を照射すると、 光熱変換層 141でレーザ光が吸収されて熱に変換されィンク層を加熱する。 こ れにより、 インク層中のカーボンブラックなどの顔料がマスク基板 109に転写 されてィンクパターン 144が形成される。  As a second embodiment, a method for manufacturing a laser thermal transfer type photomask will be described with reference to FIG. First, the principle of the laser thermal transfer method will be described. When a laser light 143 condensed by a lens is applied to a laminated ink sheet 140 composed of a light-to-heat conversion layer 141 having a base film coated with a light-to-heat conversion material and an ink layer 142, the laser light is emitted by the light-to-heat conversion layer 141. It is absorbed and converted to heat, which heats the ink layer. As a result, the pigment such as carbon black in the ink layer is transferred to the mask substrate 109, and the ink pattern 144 is formed.
レーザ熱転写方式は、 集光されたレーザ光を熱源としているため、 レーザ光 のスポット径に対応した数/ mオーダーのドット形成が可能であり、 高解像度 のフォトマスク印刷装置を構成するのに適している。 光熱変換層としては、 レ 一ザの発振波長における吸光度が高いことが望ましい。 吸光度が高いほどよく レーザ光を吸収しよく発熱するためである。  Since the laser thermal transfer method uses the focused laser light as a heat source, it can form dots on the order of several meters corresponding to the spot diameter of the laser light, and is suitable for configuring high-resolution photomask printing equipment. ing. The light-to-heat conversion layer desirably has high absorbance at the laser oscillation wavelength. This is because the higher the absorbance, the better the laser beam is absorbed and the better the heat is generated.
積層型インクシ一ト 140は、 図示しないインクシ一ト供給部よりインクリポ ンのように供給され、 転写位置において、 この積層型インクシート 140とマス ク基板 109とを近接、 及び同期させて動かす。 レーザ熱転写方式は、 帯電およ ぴクリーナが不要となるためメンテナンスが容易という特徴がある。  The laminated ink sheet 140 is supplied from an ink sheet supply unit (not shown) like an ink ribbon, and moves the laminated ink sheet 140 and the mask substrate 109 close to and in synchronization with each other at a transfer position. The laser thermal transfer method has the feature that maintenance is easy because charging and a cleaner are not required.
<実施例 3 > <Example 3>
図 8 (a)は、 図 2および図 6に示したスキャン &ステップ転写方式によって フォトマスクを製造した例を示す。 フォトマスクを上面から見た図である。 こ のマスクはガラス基板 109、 配線パターン 210、 配線パターンが形成されたチ ップ(プリント配線板より、 用途別に切り出される個別の配線基板をチップと 呼ぶ) 211、 マスク合わせに用いる合わせマーク 212、 およびマスクの品種や口 ット番号などを示す識別マーク 213およぴスクライブ領域となる遮光帯 220か らなる。 この遮光帯部 220にはトナーあるいはインクが形成されている。 ここで Wは チップ 211の短辺方向の幅で、 Lは長辺方向の長さである。 今、 チップ 211の 長辺方向が水平方向に並んだマスクを作る場合で、 スキャン &ステップ転写機 の最大スキャン幅 S Lよりチップ長 Lの方が長い場合、 ステップ送りによるス ティツチング部(つなぎ部) 214が配線パターンの上にかかる。 FIG. 8A shows an example in which a photomask is manufactured by the scan & step transfer method shown in FIGS. It is the figure which looked at the photomask from the upper surface. Glass substrate 109 masks This wiring pattern 210, Chi-up which a wiring pattern is formed (from the printed circuit board, called an individual wiring board to be cut out by application and chip) 211, mark 21 combined use in mask alignment 2 , an identification mark 213 indicating the type of mask, a mouth number, and the like, and a light-shielding band 220 serving as a scribe area. The light-shielding band 220 is formed with toner or ink. Here, W is the width in the short side direction of the chip 211, and L is the length in the long side direction. Now, when making a mask in which the long sides of the chip 211 are aligned in the horizontal direction, and the chip length L is longer than the maximum scan width SL of the scan & step transfer machine, the stitching part (joining part) by step feed 214 extends over the wiring pattern.
このような場合、 図 8 (b)に示すようにステイッチング部 214 で配線パター ン 210は Y方向の位置合わせずれによるずれ 215、 X方向の位置合わせずれに よる断線 216、 あるいは重なりによるパターン部分太り 217が生じる。 特に断 線は致命的な問題である。  In such a case, as shown in FIG. 8 (b), the wiring pattern 210 at the stitching portion 214 is displaced 215 due to misalignment in the Y direction, the disconnection 216 is caused due to misalignment in the X direction, or a pattern portion due to overlap. Fat 217 occurs. In particular, disconnection is a fatal problem.
図 8に示す問題を解決する方法として、 図 9に示すように 9 0度回転したマ スクを作り、 チップ 211の短辺方向をスキャン &ステップ転写のスキャン方向 にすれば、 各チップの配置がスキャン幅 SL1および SL2内に収まって、 スティ チング部 (スキャン繋ぎ部) 214にまたがらないようにした。  As a method for solving the problem shown in FIG. 8, by making a mask rotated 90 degrees as shown in FIG. 9 and setting the short side direction of the chip 211 to the scan direction of the scan & step transfer, the arrangement of each chip is changed. It fits within the scan widths SL1 and SL2 and does not straddle the stitching section (scan connection section) 214.
前記したように、 焦点距離 f =45瞧 の f Θ レンズを採用すると最大走查幅 S L =約 54〜68瞧と見込まれるので、 前記 SL1および SL2を前記最大走査幅 S L以内の範囲に収めて、 スティチング部 214にまたがらないようにして、 各 チップの印刷を行なった。  As described above, if an f 查 lens with a focal length f = 45 瞧 is adopted, the maximum scanning width SL is expected to be approximately 54 to 68 瞧, so that the SL1 and SL2 are set within the range of the maximum scanning width SL. Each chip was printed without straddling the stitching section 214.
<実施例 4 > <Example 4>
第 4の実施例として、 L E D (Light Emitting Diode)による縮小露光系の例 を図 23に示す。 図 5に示す回転式感光体ドラム 101上にレーザ光 103を走査 して静電的な潜像を形成する光学系の代わりに、 図 23 の方式が考えられる。 191 は例えば 600dpi の L E Dアレイであり、 図示しない C A Dシステムと接 続され、 C A Dシステムによって作成された配線パターンなどの設計データに 基づき、 点滅制御される。  As a fourth embodiment, FIG. 23 shows an example of a reduction exposure system using LED (Light Emitting Diode). Instead of the optical system for forming an electrostatic latent image by scanning the rotary photosensitive drum 101 with the laser beam 103 shown in FIG. 5, a system shown in FIG. 23 can be considered. Reference numeral 191 denotes a 600 dpi LED array, for example, which is connected to a CAD system (not shown) and is controlled to blink based on design data such as a wiring pattern created by the CAD system.
L E Dアレイ 191の発光が、 192のレンズによって回転式感光体ドラム 101 上に結像されるように設定する。 ここで、 f : レンズの焦点距離、 L1:結像点 (感光体上)、 L2 :像点(L E D )とすると、  The emission of the LED array 191 is set to be imaged on the rotary photosensitive drum 101 by the lens 192. Where f: focal length of the lens, L1: image point (on the photoconductor), L2: image point (L E D),
1/f = 1/L1 + 1/L2 , L1/L2 = 1/4 を満たす 1 4 の縮小光学系レンズ 192 を採用すると、 回転式感光体ドラム 101への結像は、 2400dpi のドットになり、 約 10 mのレーザスポットで描画 した場合とほぼ同等の潜像が得られる。 1 / f = 1 / L1 + 1 / L2, L1 / L2 = 1/4 If a reduction optical lens 192 of 14 is adopted, the image formed on the rotating photosensitive drum 101 will be 2400 dpi dots, and a latent image almost equivalent to that drawn with a laser spot of about 10 m will be obtained. Can be
なお、 L E Dアレイとしては、 例えば AlGaAs 混晶、 GalnPAs 混晶を用いた 赤外 L E Dなどがある。 本方式は、 図 5に示すような光学系のスキャン機構が 不要となるため、 機械的耐久性が高い。  Examples of the LED array include an infrared LED using an AlGaAs mixed crystal and a GalnPAs mixed crystal. This system has high mechanical durability because the scanning mechanism of the optical system as shown in Fig. 5 is not required.
<実施例 5 > <Example 5>
第 5の実施例として、 フォトマスク印刷装置をインクジエツト方式によって 実現した例を図 24に示す。 201はノズル、 202はキヤビティでその中にはイン クが入れられている。 203はダイァフラムで、 204はピエゾ素子である。  As a fifth embodiment, FIG. 24 shows an example in which a photomask printing apparatus is realized by an ink jet system. 201 is a nozzle and 202 is a cavity with ink in it. 203 is a diaphragm, and 204 is a piezo element.
ピエゾ素子 204にパルス電圧を印加してダイアフラム 203をパルス的に押し、 キヤビティ 202に入っているインクをノズル 201から液滴 205として噴出させ、 ガラス基板(マスクブランクス) 109上にィンクパターン 206 を形成する。 分解 能は 50μιη以上であるが、 光学系が不要となる'ため安価である。 . <実施例 6〉  A pulse voltage is applied to the piezo element 204 to push the diaphragm 203 in a pulsed manner, and the ink contained in the cavity 202 is ejected from the nozzle 201 as a droplet 205 to form an ink pattern 206 on a glass substrate (mask blanks) 109. . The resolution is 50μιη or more, but it is inexpensive because no optical system is required. <Example 6>
図 1 0乃至図 1 7において、 本願発明のフォトマスク印刷装置において印刷 したフォトマスクを使用して、 配線基板を製造する工程を説明する。 なお、 本 実施例の配線基板のコア層にはガラス基板を使用しているが、 本発明はこれに 限定されず、 コア層として、 ガラス繊維を含有するエポキシ樹脂(ガラエポ)や ポリイミ ド樹脂などの樹脂基板、 セラミック基板、またはシリコン基板であつ てもよい。  10 to 17, a process of manufacturing a wiring board using a photomask printed by the photomask printing apparatus of the present invention will be described. Although a glass substrate is used for the core layer of the wiring board of the present embodiment, the present invention is not limited to this, and an epoxy resin (glass epoxy) containing glass fiber, a polyimide resin, or the like may be used as the core layer. It may be a resin substrate, a ceramic substrate, or a silicon substrate.
図 1 0 ( a )に示すように、 ガラス板 20 の主面にガラスと配線材料との接着 力を増すための接着層 2 1を形成する。 接着層 21 は、 例えばスパッタリング 法で堆積した T i N (窒化チタン) 膜や T i W (チタンタングステン) 膜など によって構成する。  As shown in FIG. 10A, an adhesive layer 21 for increasing the adhesive strength between glass and a wiring material is formed on the main surface of the glass plate 20. The adhesive layer 21 is made of, for example, a TiN (titanium nitride) film or a TiW (titanium tungsten) film deposited by a sputtering method.
次に、 図 1 0 ( b )に示すように、 接着層 21 の上部にスパッタリング法で A 1合金膜 23 を堆積した後、 図 1 0 ( c )に示すように、 前記したフォトマスク Ml (図 1 )を用い、 基板上に形成したフォトレジスト膜 (図示せず) を露光、 現 像して、 フォトレジストパターンを形成し (図示せず) 、 ドライエッチングで A 1合金膜 23 をパターニングすることにより、 第 1層目の配線 3 を形成する。 また、 このとき同時にァライメントマーク 12を形成する。 Next, as shown in FIG. 10 (b), after depositing an A1 alloy film 23 on the adhesive layer 21 by a sputtering method, as shown in FIG. 10 (c), the above-described photomask Ml ( Using FIG. 1), a photoresist film (not shown) formed on the substrate is exposed and By forming an image, a photoresist pattern is formed (not shown), and the first-layer wiring 3 is formed by patterning the A1 alloy film 23 by dry etching. At this time, the alignment mark 12 is formed at the same time.
前記したフォトマスク Ml としては、 実施の形態 1乃至実施の形態 5のいず れの実施例に記載した方法によって製作されたフォトマスクであっても、 本実 施例の対象となる。 露光方法は、 図 1に概要を示す縮小投影露光の場合には、 縮小率は 1ノ 5から 1 Z2. 5などである。  As the above-described photomask Ml, a photomask manufactured by the method described in any one of Embodiments 1 to 5 is also an object of this embodiment. As for the exposure method, in the case of the reduced projection exposure outlined in Fig. 1, the reduction ratio is 1 to 5 to 1 Z2.5.
ここで、 等倍投影露光を用いることも出来るし、 1. 25ノ 1のような拡大投影 露光を用いることも出来る。 縮小投影露光は微細なパターンを高精度に形成す るのに適し、等倍や拡大投影露光は露光時間の短縮、スループットの向上に効果 がある。  Here, the same-size projection exposure can be used, or an enlarged projection exposure such as 1.25-1 can be used. Reduced projection exposure is suitable for forming a fine pattern with high precision, and 1: 1 or enlarged projection exposure is effective in shortening the exposure time and improving throughput.
また、 レンズを介さずにフォトマスク Mlと配線基板 1003 とを 1〜 3 m程 度の間隔で保持して、 等倍露光を行なうことも出来る。 前記フォトマスク Ml と配線基板 1003 とを近接して露光する場合には、 接近させるほど解像度は高 くなる。  Also, the photomask Ml and the wiring board 1003 can be held at an interval of about 1 to 3 m without using a lens to perform the same-size exposure. When the photomask Ml and the wiring substrate 1003 are exposed close to each other, the closer the exposure is, the higher the resolution is.
しかし、 本願発明のフォトマスクは、 例えばガラス基板上に前記した組成の トナーあるいはィンクからなる遮光体パターンが形成されて構成されるもので あり、 この遮光体パターンが前記配線基板 1003 上に形成されたフォトレジス ト膜 1004 と接触する場合には、 前記遮光体パターンが破損する恐れがある。 そのため、 本願発明では近接露光を行なう場合には、 前記フォトマスク Ml と 配線基板 1003 の平坦性を考慮して、 両者が接触しない接近度合いを調節する ことにして、 その間隔を 0 . 5〜 1 0 μ ΐηの範囲とした。  However, the photomask of the present invention is formed by forming a light-shielding body pattern made of, for example, the toner or the ink having the above-described composition on a glass substrate, and this light-shielding body pattern is formed on the wiring substrate 1003. When it comes into contact with the photoresist film 1004, the light-shielding body pattern may be damaged. Therefore, in the present invention, when performing the proximity exposure, the degree of closeness between the photomask Ml and the wiring substrate 1003 is determined in consideration of the flatness of the photomask Ml and the wiring substrate 1003 so that the distance therebetween is set to 0.5 to 1 The range was 0 μΐη.
次に、 図 1 0 ( d )に示すように、 第 1層目の配線 3の上部に層間絶縁膜 7を 形成した後、 図 1 0 ( e )に示すように、 本発明のフォトマスク Ml を用い、 基 板上に形成したフォトレジスト膜 (図示せず) を露光、 現像して、 フォトレジ ストパターンを形成し (図示せず) 、 層間絶縁膜 7をドライエッチングするこ とにより、 配線 3の上部の層間絶縁膜 7にスルーホ ル 8を形成する。 層間絶 縁膜 7は、 C V D法で堆積した酸化シリコン膜または塗布法で堆積したポリィ ミ ド膜などによって構成する。 Next, as shown in FIG. 10 (d), after forming an interlayer insulating film 7 on the first layer wiring 3, as shown in FIG. 10 ( e ), the photomask Ml of the present invention is formed. The photoresist film (not shown) formed on the substrate is exposed to light and developed to form a photoresist pattern (not shown), and the wiring is formed by dry-etching the interlayer insulating film 7. A through hole 8 is formed on the interlayer insulating film 7 on the upper part of FIG. The interlayer insulating film 7 may be a silicon oxide film deposited by a CVD method or a poly-oxide deposited by a coating method. It is composed of a mid film.
なお、 ここではフォトレジス トパターンの露光光として超高圧水銀灯の i線 (波長 3 6 5 nm) の光を用いた。 この他に g線 (波長 4 3 6 nm) や h線 (波長 4 0 5 nm) も用いることができるし、 これらの光を含んだブロードバンドの光 を用いることもできる。 ただし露光光としては 3 5 O nm より波長の長い光を 用いることが、 マスクブランクスの価格を抑えるうえで好ましい。  Here, the light of the i-line (wavelength 365 nm) of an ultra-high pressure mercury lamp was used as the exposure light for the photoresist pattern. In addition, g-line (wavelength 4336 nm) and h-line (wavelength 405 nm) can be used, and broadband light including these lights can also be used. However, it is preferable to use light having a wavelength longer than 35 O nm as exposure light in order to suppress the cost of mask blanks.
波長が 3 5 O nra以下では石英ガラスのような高価なガラスが必要となるた めである。 マスク価格を抑えるうえで通常の光学ガラスや LE ガラスを用いる ことが望ましい。 配線パターン寸法が 2 0 μ πιより粗い大きなパターンを扱う 場合にはフォトマスク上の寸法精度や位置精度もゆるくなるのでそのような場 合にはポリカーボネィトのようなプラスチックのフォトマスタブランクスを用 いることもできる。 この場合には特にブランクスコストを下げることが可能と なる。  If the wavelength is 35 Onra or less, expensive glass such as quartz glass is required. It is desirable to use ordinary optical glass or LE glass in order to reduce the mask price. When handling large patterns whose wiring pattern dimensions are coarser than 20 μπι, the dimensional accuracy and positional accuracy on the photomask will be loose.In such cases, use a plastic photo master blank such as polycarbonate. You can also. In this case, the blanks cost can be particularly reduced.
次に、 図 1 1に示すように、 上記図 1 0 ( b )〜図 1 0 ( e )に示す工程を複数 回繰り返すことによって第 2〜第 4眉目の配線 4、 5、 6を形成した後、 配線 6 の上部に絶縁膜 9を形成する。 絶縁膜 9は、 C V D法で堆積した酸化シリコン 膜、 窒化シリコン膜または塗布法で堆積したポリイミ ド膜などによって構成す る。  Next, as shown in FIG. 11, the steps 4, 5 and 6 of the second to fourth eyebrows were formed by repeating the steps shown in FIGS. 10 (b) to 10 (e) a plurality of times. Thereafter, an insulating film 9 is formed on the wiring 6. The insulating film 9 is composed of a silicon oxide film, a silicon nitride film deposited by a CVD method, a polyimide film deposited by a coating method, or the like.
次に、 図 1 2に示すように、 前記フォトマスク Ml を用い、 基板上に形成し たフォトレジスト膜 (図示せず) を露光、 現像して、 フォトレジストパターン を形成し (図示せず) 、 絶縁膜 9をドライエッチングすることにより、 配線 6 の上部の絶縁膜 9 に開孔 11 を形成した後、 開孔 11 の内部にバリアメタル層 16 を形成する。 バリアメタル層 16 は、 例えば開孔 11 の内部を含む絶縁膜 9 上に蒸着法で C r膜および C u膜を堆積し、 続いて前記フォトマスク Ml を用 い、 基板上に形成したフォトレジスト膜 (図示せず) を露光、 現像して、 フォ トレジストパターンを形成し (図示せず) 、 ドライエッチングで絶縁膜 9上の 不要な C r膜および C u膜を除去することによって形成する。  Next, as shown in FIG. 12, a photoresist film (not shown) formed on the substrate is exposed and developed using the photomask Ml to form a photoresist pattern (not shown). After the opening 11 is formed in the insulating film 9 above the wiring 6 by dry-etching the insulating film 9, the barrier metal layer 16 is formed inside the opening 11. The barrier metal layer 16 is formed, for example, by depositing a Cr film and a Cu film on the insulating film 9 including the inside of the opening 11 by an evaporation method, and then using the photomask Ml to form a photoresist formed on the substrate. A film (not shown) is exposed and developed to form a photoresist pattern (not shown), and is formed by removing unnecessary Cr and Cu films on the insulating film 9 by dry etching. .
次に、 図 1 3に示すように、 開孔 ί ΐの内部にマイクロバンプ 10を形成する。 マイクロバンプ 10は、 例えば開孔 11の内部を含む絶縁膜 9上に蒸着法で A u 膜または S n膜を堆積し、 続いて前記フォ トマスク Ml を用い、 基板上に形成 したフォ トレジス ト膜 (図示せず) を露光、 現像して、 フォトレジス トパター ンを形成し (図示せず) 、 ドライエッチングで絶縁膜 9上の不要な A u膜 (ま たは S n膜) を除去することによって形成する。 Next, as shown in FIG. 13, micro bumps 10 are formed inside the openings. The microbump 10 is formed, for example, by depositing an Au film or an Sn film on the insulating film 9 including the inside of the opening 11 by a vapor deposition method, and then using the photomask Ml to form a photo resist film formed on the substrate. (Not shown) is exposed and developed to form a photoresist pattern (not shown), and unnecessary Au film (or Sn film) on the insulating film 9 is removed by dry etching. Formed by
配線 3〜6 は、 スパッタリング法で堆積した W膜ゃメッキ法で形成した C u 膜を使って形成することもできる。 メツキ法で形成した C u膜を配線材料に用 いる場合、 ガラス板 20と配線 3との間に形成する接着層 21は、 例えばスパッ タリング法で堆積した T i N (窒化チタン) 膜や C r膜によって構成する。 ま た、 上層の配線と下層の配線とを異なるメタル材料で構成することもできる。 次に、 図 1 4に示すように、 フッ酸を含むエッチング液を用いてガラス板 20 の裏面 (下面) を板厚の半分程度までウエットエッチングするごとにより、 後の工程でバンプ電極 13が接続される領域に開孔 1 4 aを形成する。 また、 こ のとき同時にァライメントマーク 12の直下に開孔 15を形成し、 スクライブ領 域にスクライブガイド 22を形成する。 ガラス板 20の裏面をウエットエツチン グする際は、 開孔 14 a、 15およびスクライブガイド 22を形成する領域を除き、 ガラス板 20 の裏面をフォトレジスト膜などで覆っておく。 また、 マイクロバ ンプ 10および配線 3〜6が形成されたガラス板 20の主面側もレジスト膜、 力 バーレイフィルム、 紫外線の照射によつて剥離が生じる U Vフィルムなどで覆 つておく。  Wirings 3 to 6 can also be formed using a W film deposited by a sputtering method and a Cu film formed by a plating method. When a Cu film formed by the plating method is used as a wiring material, the adhesive layer 21 formed between the glass plate 20 and the wiring 3 may be, for example, a TiN (titanium nitride) film or a C It is composed of r film. Further, the upper layer wiring and the lower layer wiring can be made of different metal materials. Next, as shown in FIG. 14, each time the back surface (lower surface) of the glass plate 20 is wet-etched to about half the plate thickness using an etching solution containing hydrofluoric acid, the bump electrodes 13 are connected in a later step. A hole 14a is formed in the region to be formed. At the same time, an opening 15 is formed immediately below the alignment mark 12 and a scribe guide 22 is formed in the scribe area. When performing wet etching on the back surface of the glass plate 20, the back surface of the glass plate 20 is covered with a photoresist film or the like except for the areas where the openings 14a and 15 and the scribe guide 22 are formed. Also, the main surface side of the glass plate 20 on which the micro bumps 10 and the wirings 3 to 6 are formed is covered with a resist film, a power burley film, a UV film which is peeled off by irradiation of ultraviolet rays, or the like.
次に、 図 1 5に示すように、 開孔 14 aをさらにゥエツトエッチングするこ とによって配線 3 に達する貫通孔 14を形成する。 このゥエツトエッチングを 行う.際は、 貫通孔 14を形成する領域を除き、 ガラス板 20の裏面をフォ トレジ スト膜などで覆っておく。 また、 ガラス板 20 の主面側もレジスト膜、 カバー レイフイルム、 U Vフィルムなどで覆っておく。  Next, as shown in FIG. 15, the through-hole 14 reaching the wiring 3 is formed by further etching the opening 14a. When this wet etching is performed, the back surface of the glass plate 20 is covered with a photoresist film or the like except for the region where the through hole 14 is formed. The main surface of the glass plate 20 is also covered with a resist film, cover lay film, UV film, or the like.
なお、 本実施例では、 ガラス板 20に貫通孔 14を形成する方法としてゥエツ トエッチングを用いていたが、 アルミナなどの研磨剤をガラス基板に高圧で吹 き付けるサンドブラスト法を用いて行なうこともできる。 この場合は、 ガラス 板 20 の裏面をメタルマスクで覆い、 アルミナなどの研磨剤を高圧で吹き付け て、 開孔 14 a、 貫通孔 14を形成する。 In the present embodiment, jet etching is used as a method of forming the through holes 14 in the glass plate 20, but it may be performed by a sand blast method in which an abrasive such as alumina is sprayed on the glass substrate at a high pressure. it can. In this case, the glass The back surface of the plate 20 is covered with a metal mask, and an abrasive such as alumina is sprayed at a high pressure to form the opening 14 a and the through hole 14.
次に、 図 1 6に示すように、 貫通孔 14の底部にバリアメタル 17を形成した 後、 貫通孔 14の内部にバンプ電極を形成する。 バリアメタル 17は、 例えば貫 通孔 14の内部を含むガラス板 20の裏面に蒸着法で C r膜、 C u膜おょぴ Au 膜を堆積し、 続いて前記フォトマスク Ml を用い、 基板上に形成したフオトレ ジスト膜 (図示せず) を露光、 現像して、 フォトレジストパターンを形成し (図示せず) 、 ドライエッチングで不要な C r膜、 C u膜および Au膜を除去 することによって形成する。 バリアメタル 17は、 貫通孔 14の内壁全体を覆う ように形成してもよい。  Next, as shown in FIG. 16, after forming a barrier metal 17 at the bottom of the through hole 14, a bump electrode is formed inside the through hole 14. The barrier metal 17 is formed, for example, by depositing a Cr film, a Cu film, and an Au film on the back surface of the glass plate 20 including the inside of the through hole 14 by a vapor deposition method. The photoresist film (not shown) formed on the substrate is exposed and developed to form a photoresist pattern (not shown), and the unnecessary Cr film, Cu film and Au film are removed by dry etching. Form. The barrier metal 17 may be formed so as to cover the entire inner wall of the through hole 14.
バンプ電極は、 マイクロバンプ 10 よりも低融点の共晶半田 (P b 3 7/S 1 6 3 : 1 8 3D) や低温半田 ( S n l 7 /B i 5 7 / I n 2 6 : 7 8. 9口) などを半田ボール供給法やスクリーン印刷法で貫通孔 14 の内部に供給 した後、 この半田をリフローすることによって形成する。 バンプ電極 13 の形 状は、 ポール状に限らず、 ランド状とすることもできる。  For the bump electrodes, eutectic solder (Pb37 / S163: 183D) with a lower melting point than microbump 10 or low-temperature solder (Snl7 / Bi57 / In26: 78) 9) are supplied into the through holes 14 by solder ball supply method or screen printing method, and then the solder is formed by reflow. The shape of the bump electrode 13 is not limited to a pole shape, but may be a land shape.
図 1 7は、 集積回路が形成された複数のシリコンチップ 40 を回路基板 1上に 実装してマルチチップモジュール(M C M)を構成した例である。 FIG. 17 shows an example in which a plurality of silicon chips 40 on which an integrated circuit is formed are mounted on a circuit board 1 to form a multi-chip module (MCM).
マイクロバンプ 10を介した回路基板 1とシリコンチップ 40との電気的接続は、 Au/S n共晶 (Au 8 0/S n 20 : 2 8 0 °C、 Au l O/S n 9 0 : 2 1 7°C) あるいは AuZAu熱圧着 (4 5 0〜5 5 0。C) により行う。 The electrical connection between the circuit board 1 and the silicon chip 40 via the micro bumps 10 is made of Au / Sn eutectic (Au80 / Sn20: 280 ° C, AuO / Sn90: (217 ° C) or AuZAu thermocompression (450-550.C).
また、 A u/S i共晶 (Au 9 8/S i 2 : 3 7 0 °C) 接合、 Au/G e共 晶 (Au 8 8/S i 1 2 : 3 5 6°C) 接合、 高温半田 (P b 9 7. 5 /A g 2. 5 : 304°C) リフロー、 P bフリー半田 (3119 6ノ八§ 3. 5/C u O. 5 : 2 6 0 °C) リフロー、 Wプラグ Z I nプール ( I n融点: 1 5 6. 6。C) 埋め込みなどにより行うこともできる。 ' Au / Si eutectic (Au98 / Si2: 370 ° C) bonding, Au / Ge eutectic (Au88 / Si12: 356 ° C) bonding, high-temperature solder (P b 9 7. 5 / A g 2. 5: 304 ° C) reflow, P b-free solder (3119 6 Roh eight § 3. 5 / C u O. 5 : 2 6 0 ° C) reflow, W plug ZIn pool (In melting point: 156.6.C) It can also be performed by embedding. '
さらに、 表面が清浄 (高真空下) であれば、 金属同士を接近させると常温で 互いに接合する性質を利用した表面活性化接合法を用いることもできる。  Furthermore, if the surface is clean (under high vacuum), it is possible to use a surface activated bonding method that utilizes the property of bringing metals together and joining them at room temperature.
金属材料の組み合わせとしては、 A 1 — A l、 A 1 — S i、 C u— S n、 S i— G a A s、 S i— I n P、 G a A s - I n Pなどを挙げることができる。 なお図中の 13はバンプ電極である。 The combinations of metal materials include A 1 — Al, A 1 — Si, Cu — Sn, S i—Ga As, Si—In P, Ga As—In P, and the like. Reference numeral 13 in the figure is a bump electrode.
本実施例においてフォトマスクとして本発明のフォトマスク(プリントマス クと呼ぶ)をすベての露光工程に用い、 コストを削減する方法と、 パターン変 更の少ない下層の工程にはレーザライタや EBを用いて描画した Crマスクを用 い、 品種によってパターン変更が生じる上層の工程にはプリントマスクを用い る方法がある。 後者では共通の汎用パターンに対し、 耐久力のある Cr マスク を繰り返し使うことでマスク作成の手間を省き、 マスク製造 TATの必要な上層 ではプリントマスクとすることでトータルの TATを短くできる。  In this embodiment, the photomask of the present invention (referred to as a print mask) is used as a photomask in all the exposure steps, and a laser writer or an EB is used for the lower layer process with less pattern change. There is a method that uses a Cr mask drawn by using a print mask in the upper layer process where the pattern changes depending on the product type. In the latter, for a common general-purpose pattern, repeated use of a durable Cr mask eliminates the need for mask creation, and the total TAT can be shortened by using a print mask in the upper layer where mask production TAT is required.
<実施例 7 > <Example 7>
第 7の実施例としては、 配線基板の製造現場において本発明のプリントマス クを作成して、 配線基板を露光 ·製造する方法の概念図を図 1 8に示す。  As a seventh embodiment, FIG. 18 shows a conceptual diagram of a method of producing a print mask of the present invention at a wiring board manufacturing site and exposing and manufacturing the wiring board.
新たな仕様の配線基板に対応する特定のフォトマスクに関しては、 製造現場 にフォトマスクをストックしておくことは、 管理上非常に効率が悪い。 そこで、 プリントマスク 504用プリンタ 503を配線基板製造用の露光装置 505が置かれ ているクリーンルームに設置する。  For specific photomasks corresponding to new specification wiring boards, stocking photomasks at the manufacturing site is very inefficient in management. Therefore, the printer 503 for the print mask 504 is installed in a clean room where the exposure apparatus 505 for manufacturing a wiring board is placed.
プリンタ 503はパソコンやワークステーション 501が設置されている設計所 と通信回線 502あるいは無線でオンライン接続される。 配線基板の製造計画に 基づき、 製造ラインへの新たな機種の配線基板の投入に先立ち、 設計データを プリンタ 503へオンライン供給して、 プリントマスク 504を製作する。 このプ リントマスクを該当機種の配線基板の露光に使用して、 製造終了後にはストッ クせずに、 ガラス基板(プランクス)をアツシングゃ溶剤処理によって完全にブ ランクスの状態に再生処理する。 このようにすれば、 フォトマスクの管理上の コストを低減することができる。  The printer 503 is connected online with a personal computer or a design place where the workstation 501 is installed by a communication line 502 or wirelessly. Based on the wiring board manufacturing plan, the design data is supplied online to the printer 503 and the print mask 504 is manufactured prior to the introduction of a new type of wiring board to the production line. This print mask is used for the exposure of the wiring board of the corresponding model, and after manufacturing is completed, the glass substrate (planks) is reprocessed to a completely blank state by assuring and solvent treatment without stocking. In this way, the management cost of the photomask can be reduced.
プリンタのトナーとして液体トナーを用いる。 粉体トナーはトナー系メンテ 時に粉体が飛散し、 クリーン度が低下してマスクやウェハ基板に被着し、 欠陥 となって歩留まりを低下させる。 液体トナーは飛散しにくいので欠陥が発生し にくい。 液体トナーを用いたプリンタ 503を露光装置 505と同一クリーンルーム内で 稼働させることにより、 TAT が短く歩留まりの高い配線基板製造が可能となる。 この特長は設計所と配線基板製造工程とをオンライン接続し、 設計、 マスク 製造、 露光を一連で行うことによってさらに活かされる。 Liquid toner is used as the toner for the printer. Powder toner scatters during toner-based maintenance, lowers cleanliness and adheres to masks and wafer substrates, causing defects and lowering yield. Since liquid toner is hard to scatter, defects are unlikely to occur. By operating the printer 503 using the liquid toner in the same clean room as the exposure apparatus 505, it is possible to manufacture a wiring board with a short TAT and a high yield. This feature is further exploited by connecting the design lab and the wiring board manufacturing process online, and performing a series of design, mask manufacturing and exposure.
<実施例 8 > <Example 8>
第 8の実施例としては、 プリントマスクの製造過程においてトナーパターン に欠陥が生じた場合でも、 マスクを破棄せずに使用可能とする方法を示す。 図 1 9は、 プリントマスクのマスク基板 109上に形成されたトナーパターン 113の例を示す。 正常なトナーパターン 113 の他、 白欠陥と呼ばれるトナーパ ターンの欠け 150や、 黒欠陥と呼ばれる開口面上のトナー付着 151といった欠 陥 (デフエタト) が発生する。 フォトマスクのトナーパターン 113に欠陥があ る場合でも良品がとれる露光法を示す。  As an eighth embodiment, a method will be described in which even when a defect occurs in a toner pattern in the process of manufacturing a print mask, the mask can be used without being discarded. FIG. 19 shows an example of a toner pattern 113 formed on a mask substrate 109 of a print mask. In addition to the normal toner pattern 113, defects (defate) such as a defect 150 in the toner pattern called a white defect and a toner defect 151 called a black defect in the opening surface occur. The following shows an exposure method capable of obtaining a good product even when the toner pattern 113 of the photomask has a defect.
図 2 0はその露光に用いるマスクを示したものであり、 マスク上に同じパタ ーンが配置された A, B, C, Dを配置する。 1010は遮光体面である。 ここでは 2 x 2で配列した場合を示したが、 横 1列に並べても、 縦 1列に並べた場合で もかまわない。 斜めに配列してもかまわない。  FIG. 20 shows a mask used for the exposure, and A, B, C, and D having the same pattern are arranged on the mask. Reference numeral 1010 denotes a light-shielding body surface. Here, the case of 2 x 2 arrangement is shown, but they may be arranged in one horizontal row or one vertical column. They may be arranged diagonally.
次ぎに、 このマスクを図 2 1に示すように Y方向の露光領域を制限するマス キングブレード 1011 と、 X 方向の露光領域を制限するマスキングブレード 1012を用いて(a), (b), (c) , (d)の左図に示すように A, B, C, Dを順次選択 し、 露光を行う。 この際(a) , (b) , (c), (d)の右図に示すようにウェハ 1013 上の同じ位置にそれぞれ露光する。 この方法により 4回重なり露光を行う。 このようにすれば、 いずれかのパターン領域、 例えば Aに欠陥があっても残 りの領域に欠陥がない場合、 露光強度の関係からレジストには欠陥として転写 されないことが詳細な検討からわかった。 欠陥が A, B, C, D各領域の対応す る場所 (転写した際に重なる場所) にある確率は極めて小さいため、 本方法で 欠陥転写は防止される。 そのため、 配線基板上にパターン生成後の欠陥検査と、 欠陥修正工程を省くことができる。  Next, as shown in Fig. 21, this mask is masked by using a masking blade 1011 that limits the exposure area in the Y direction and a masking blade 1012 that limits the exposure area in the X direction (a), (b), and ( c) As shown in the left figure of (d), select A, B, C and D in order and perform exposure. At this time, as shown in the right figure of (a), (b), (c), and (d), the same position on the wafer 1013 is exposed. Four overlapping exposures are performed by this method. Detailed examination revealed that if any pattern area, such as A, had a defect, but there was no defect in the remaining area, it would not be transferred to the resist as a defect due to exposure intensity. . Since the probability that a defect exists at the corresponding place (the place where it overlaps when transferred) in each of the A, B, C, and D regions is extremely small, this method prevents the transfer of the defect. Therefore, it is possible to omit the defect inspection after the pattern is formed on the wiring substrate and the defect repairing step.
図 2 2ではもう 1つの欠陥転写防止法を示す。 マスクは図 2 0のマスクで A, B, C, D に同じパターンを配置しておく。 (a) , (b), (c) , (d)に示すようにず らし露光を行い、 図 2 2 (f)に示される各場所には、 A, B, C, D の各パターン によって 4回重なり露光が行われるようにする。 1ショッ トで 4チップを露光 するので露光時間が比較的短くてすむ。 Figure 22 shows another method for preventing defect transfer. The masks are A, The same pattern is placed on B, C, and D. A shift exposure is performed as shown in (a), (b), (c), and (d), and the locations shown in Fig. 22 (f) are defined by A, B, C, and D patterns. Four overlapping exposures are performed. Exposure time is relatively short since four chips are exposed in one shot.
上記の図 2 1、 図 2 2に示す例では、 シリコン基板上に配線パターンを重ね 露光する方法を示しているが、 ガラス基板、 または樹脂基板上に配線パターン を重ね露光して配線基板を製造する場合にも同様の方法が採用できる。 産業上の利用可能性  In the examples shown in Figs. 21 and 22 above, the wiring pattern is overlaid on a silicon substrate and exposed.However, the wiring pattern is overlaid and exposed on a glass substrate or resin substrate to manufacture a wiring substrate. The same method can be adopted when performing the above. Industrial applicability
以上に詳しく説明した様に、 本願発明により 30 mパターンというような 微細パターン形成が可能で、 配線基板用フォトマスクとして十分微細なパター ンを得ながらフォトマスクを 40 分程度で製造することが可能となる。 現行の レーザフォトプロッタを使用した時の 2〜 3時間、 あるいは既存の L S I用 C r マスクを作製するための平均時間 3 2時間と比較して極めて短いフォトマス ク供給 T A Tが得られる。 フォ トマスク供給 T A Tの短縮は製品 (配線基板) 開発の速度を速める。 また、 量産時の製品立ち上がりを早め製品競争力が高ま る。  As described in detail above, the present invention can form a fine pattern such as a 30 m pattern, and can manufacture a photomask in about 40 minutes while obtaining a sufficiently fine pattern as a photomask for a wiring board. Becomes A very short photomask supply TAT can be obtained compared to 2-3 hours when using a current laser photoplotter or an average time of 32 hours for fabricating an existing LSI Cr mask. Photomask supply T A reduction in T A speeds up product (wiring board) development. In addition, product launch during mass production is accelerated, and product competitiveness is enhanced.
また、 乾式現像で装置もコンパク トで、 製造コス トも低い。 液体トナーは飛 散しにくいのでマスク上のトナーパターンの欠陥の発生源となる異物が発生し にくい。 このため、 クリーンルーム内への設置が可能であり、 配線基板の露光 工程に隣接して、 マスク製造、 露光を一連で行い T A Tが短く歩留まりの高い 配線基板製造が可能となる。  Also, the equipment is compact with dry development, and the production cost is low. Since the liquid toner is not easily scattered, foreign matter which is a source of a defect of the toner pattern on the mask is hardly generated. For this reason, it can be installed in a clean room, and adjacent to the process of exposing a wiring substrate, a series of mask production and exposure can be performed to produce a wiring substrate with a short TAT and a high yield.
さらに、 本願発明では、 従来の金属膜(Cr など)マスクや、 ハロゲン化銀乳 剤層を形成したマスクと比べて、 ガラス基板上に形成するパターンは有機物の みなので、 マスクの使用後はガラス基板(プランクス)をアツシングゃ溶剤処理 によって完全にブランクスの状態に再生処理することができる。  Furthermore, in the present invention, the pattern formed on the glass substrate is made of only an organic substance as compared with a conventional metal film (Cr or the like) mask or a mask formed with a silver halide emulsion layer. The substrate (planks) can be completely reprocessed into blanks by assuring and solvent treatment.
再生処理によって廃出される物質に環境汚染対策を要するものは特になく、 環境に優しく、 資源再利用の効果がある。 フォトマスクをストックしておいて 繰り返し使用するのではなく、 必要時期に、 プリント配線板(配線基板)などの 製造現場において印刷して製作することにより、 マスク管理に伴う手続きとコ ストを削減することも可能となる。 There is no particular need for environmental pollution measures for the substances that are discharged by reprocessing, and they are environmentally friendly and have the effect of reusing resources. Stock photo mask By printing and manufacturing at the manufacturing site such as a printed wiring board (wiring board) when necessary, instead of using it repeatedly, it is also possible to reduce the procedures and costs associated with mask management.

Claims

請求の範囲 The scope of the claims
1 . 感光体に電荷を帯電させ、 レーザ光によって所望の配線パターンを前記感 光体上に描画して、 前記レーザ光が照射された前記感光体上の部位の電荷を放 電させて潜像を形成し、 光を散乱する微粒子状物質から成るトナーを溶剤に分 散させた液体トナーを前記感光体上の配線パターンの潜像に供給して、 トナー が付着したトナーパターンを形成し、 1. Charge the photoreceptor, draw a desired wiring pattern on the photoreceptor with laser light, and discharge the charge on the photoreceptor irradiated with the laser light to form a latent image. And supplying a liquid toner obtained by dispersing a toner composed of light-scattering particulate matter in a solvent to a latent image of a wiring pattern on the photoreceptor to form a toner pattern to which the toner adheres;
前記感光体上のトナーパターンをマスクのベース基体に転写してフォ トマス クを形成し、  Transferring a toner pattern on the photoreceptor to a base substrate of a mask to form a photomask,
前記フォ トマスクを使用してレジス トを露光して、 配線パターンを作成する ことを特徴とする配線基板の製造方法。  A method for manufacturing a wiring board, comprising: exposing a resist using the photomask to form a wiring pattern.
2 . 前記光を散乱する微粒子状物質が黒色顔料または黒色染料であることを特 徴とする請求の範囲第 1項記載の配線基板の製造方法。  2. The method for manufacturing a wiring board according to claim 1, wherein the light-scattering particulate matter is a black pigment or a black dye.
3 .前記黒色顔料または黒色染料がカーボンブラックまたはグラフアイトであ ることを特徴とする請求の範囲第 2項記載の配線基板の製造方法。  3. The method according to claim 2, wherein the black pigment or the black dye is carbon black or graphite.
4 . レーザ光の最大走査幅以内の走查幅 SLを決め、 複数回の走查幅 SL位置を マスクのベース基体の送り方向に対し垂直方向にステップして決め、  4. Determine the scanning width SL within the maximum scanning width of the laser beam, and determine the scanning width SL positions for multiple times by stepping in the direction perpendicular to the feed direction of the mask base substrate.
各走査幅 SL位置において、 前記マスクのベース基体を送り方向に移動させ ながら、 前記感光体上のトナーパターンを前記マスクのベース基体に転写して 形成したフォトマスクを使用することを特徴とする請求の範囲第 1項記載の配 線基板の製造方法。  At each scanning width SL position, a photomask formed by transferring the toner pattern on the photoreceptor to the base substrate of the mask while moving the base substrate of the mask in the feed direction is used. 2. The method for manufacturing a wiring board according to claim 1, wherein
5 .感光体上にレーザ光によって所望の配線パターンを描画して、 前記感光体 上に光を散乱する微粒子状物質から成るトナーパターンを形成し、 マスクのベ ース基体に前記トナーパターンを転写してフォトマスクを製造する工程におい て、 フォトマスクを形成するマスクのベース基体領域を、 一辺がレーザ光の最 大走査幅以下の複数の領域に区分し、  5. Draw a desired wiring pattern on the photoreceptor with a laser beam to form a toner pattern made of particulate matter that scatters light on the photoreceptor, and transfer the toner pattern to a base substrate of a mask. In the step of manufacturing a photomask by dividing the base substrate region of the mask for forming the photomask into a plurality of regions each side of which is smaller than the maximum scanning width of the laser beam,
前記区分された各々の領域に対し、 前記マスクのベース基体を同一方向に送 りながら、 感光体上に前記レーザ光を最大走査幅以下の走査幅 SL でレーザ光 の照射を行い潜像を形成し、 While sending the base substrate of the mask in the same direction to each of the divided areas, the laser light is irradiated on the photoreceptor with a scanning width SL smaller than the maximum scanning width. Irradiation to form a latent image,
前記潜像に対応して、 リソグラフィに用いる露光光を散乱する微粒子状物質 からなるトナーパターンを形成し、  Corresponding to the latent image, forming a toner pattern composed of particulate matter that scatters exposure light used for lithography,
前記マスクのベース基体にトナーパターンを転写して、 前記マスクのベース 基体全領域にわたって所望の遮光パターンを形成し、 前記フォ トマスクを使用 してレジス トを露光して、 配線パタ一ンを作成することを特徴とする配線基板 の製造方法。  A toner pattern is transferred to a base substrate of the mask, a desired light-shielding pattern is formed over the entire region of the base substrate of the mask, and a resist is exposed using the photomask to form a wiring pattern. A method for manufacturing a wiring board, comprising:
6 .前記走査幅 SLは、 被転写体の幅に応じて、 各走査毎に適宜可変であること を特徴とする請求の範囲第 4項または請求の範囲第 5項記載の配線基板の製造 方法。  6. The method for manufacturing a wiring board according to claim 4 or claim 5, wherein the scanning width SL is appropriately changed for each scan depending on the width of the transfer object. .
7 .前記マスクのベース基体が、 光学ガラス基体、 耐熱性光学プラスチック基 板、 またはポリエステルフィルムであることを特徴とする請求の範囲第 1項乃 至請求の範囲第 5項のいずれか一つに記載の配線基板の製造方法。  7. The method according to any one of claims 1 to 5, wherein the base substrate of the mask is an optical glass substrate, a heat-resistant optical plastic substrate, or a polyester film. The method for manufacturing the wiring board according to the above.
8 .ベースフィルムに光熱変換材料を塗布した光熱変換層と、 光を散乱する微 粒子状物質を含むインク層とから構成された積層型インクシートに、 所望の配 線パターンに従ってレーザ光を照射して前記光熱変換層を加熱し、  8.Laser light is applied to the laminated ink sheet composed of a light-to-heat conversion layer in which a light-to-heat conversion material is applied to a base film, and an ink layer containing fine particles that scatter light, according to a desired wiring pattern. To heat the light-to-heat conversion layer,
前記光熱変換層の加熱によって、 前記インク層中の微粒子状物質を含む顔料 をマスク基板上に転写して配線パターンを形成したフォ トマスクを形成し、 前記フォトマスクを使用してレジストを露光して、 配線パターンを作成する ことを特徴とする配線基板の製造方法。 :' By heating the photothermal conversion layer, the pigment containing the particulate matter in the ink layer is transferred onto a mask substrate to form a photomask on which a wiring pattern is formed, and the resist is exposed using the photomask. A method for manufacturing a wiring board, comprising: forming a wiring pattern. : '
9 .フォトマスクを使用して配線基板上のレジストを露光して、 配線パターン を形成する配線基板の製造方法において、 9. A method of manufacturing a wiring board, comprising exposing a resist on the wiring board using a photomask to form a wiring pattern.
前記フォトマスクに同一の配線パターンよりなる第 1の配線パターンと、 第 2の配線パターンを形成し、 前記フォトマスクの第 1の配線パターンを使用し て配線基板上のレジストを露光し、  Forming a first wiring pattern and a second wiring pattern made of the same wiring pattern on the photomask, exposing a resist on a wiring board using the first wiring pattern of the photomask,
前記フォトマスクを移動させて、 前記第 2の配線パターンを前記第 1の配線 パターンの露光位置へ重なるように位置決めして、 前記第 2の配線パターンを 使用して前記配線基板上のレジストを重ね露光することを特徴とする配線基板 の製造方法。 By moving the photomask, the second wiring pattern is positioned so as to overlap the exposure position of the first wiring pattern, and the resist on the wiring substrate is overlaid using the second wiring pattern. Wiring board characterized by exposure Manufacturing method.
1 0 .前記第 1、 第 2の配線パターンの他にさらに同一の配線パターンよりな る第 3、 第 4の配線パターンを前記フォトマスクに形成し、  10. In addition to the first and second wiring patterns, third and fourth wiring patterns made of the same wiring pattern are further formed on the photomask.
前記フォトマスクの第 1乃至第 4の配線パターンを順次同一位置へ位置決め して、 前記配線基板上のレジストを重ね露光することを特徴とする請求の範囲 第 9項記載の配線基板の製造方法。  10. The method for manufacturing a wiring board according to claim 9, wherein the first to fourth wiring patterns of the photomask are sequentially positioned at the same position, and a resist on the wiring board is overlaid and exposed.
1 1 .前記フォトマスクの前記第 1乃至第 4の配線パターンを順次同一位置へ 位置決めして露光する際に、 複数の配線パターンを同一ショットで露光し、 前記フォトマスク上の複数の配線パターンの配置間隔だけ前記フォトマスク をシフトさせて、 重ね露光を繰り返すことを特徴とする請求の範囲第 1 0項記 載の配線基板の製造方法。  11.When the first to fourth wiring patterns of the photomask are sequentially positioned at the same position and exposed, a plurality of wiring patterns are exposed by the same shot, and a plurality of wiring patterns on the photomask are exposed. 10. The method for manufacturing a wiring board according to claim 10, wherein the photomask is shifted by an arrangement interval, and overlapping exposure is repeated.
1 2 .前記レーザ光によって所望の配線パターンを前記感光体上に描画して、 潜像を形成する処理に代わって、  12.In place of the process of drawing a desired wiring pattern on the photoreceptor by the laser beam and forming a latent image,
L E Dアレイを配線パターンなどの設計データに基づき点滅制御し、 該点滅 光によって前記感光体を露光して前記感光体上に配線パターンを描画して、 潜 像を形成することを特徴とする請求の範囲第 1項記載の配線基板の製造方法。 The LED array is controlled to blink based on design data such as a wiring pattern, and the flashing light is used to expose the photoconductor and draw a wiring pattern on the photoconductor to form a latent image. 2. The method for manufacturing a wiring board according to claim 1.
1 3 .前記フォトマスクを配線基板の上層の露光工程に使用し、 13.Use the photomask in the upper layer exposure step of the wiring board,
金属膜によつて配線パタ一ンを形成したフォトマスクを前記配線基板の下層 の露光工程に使用することを特徴とする請求の範囲第 1項記載の配線基板の製 造方法。  2. The method for manufacturing a wiring board according to claim 1, wherein a photomask in which a wiring pattern is formed by a metal film is used in an exposure step of a lower layer of the wiring board.
1 4 .前記フォトマスクを使用して配線基板上のレジストを露光して、 配線パ ターンを形成する配線基板の製造方法において、  14. A method of manufacturing a wiring board, comprising: forming a wiring pattern by exposing a resist on the wiring board using the photomask.
線幅が 50 m以上の配線パターンを形成する領域には、 インクジェット方 式のフォトマスク印刷装置によって作製されたフォトマスクを使用することを 特徴とする請求の範囲第 1項記載の配線基板の製造方法。  2. The manufacturing method according to claim 1, wherein a photomask produced by an ink jet type photomask printing apparatus is used in a region where a wiring pattern having a line width of 50 m or more is formed. Method.
1 5 .配線基板用フォトマスク印刷装置と、 配線基板用露光装置を同一タリー ンルーム内に設置し、  15 5.Install the photomask printing device for wiring boards and the exposure device for wiring substrates in the same
設計部署よりフォトマスク設計データを通信回線を介して前記配線基板用フ ォトマスク印刷装置へ転送して、 フォトマスクを印刷し、 Photomask design data is sent from the design department via the communication line to the wiring board To a photomask printer to print a photomask,
前記印刷されたフォトマスクを前記配線基板用露光装置へ直接装着して、 配 線基板を露光することを特徴とする配線基板の製造方法。  A method for manufacturing a wiring board, wherein the printed photomask is directly mounted on the wiring board exposure apparatus, and the wiring board is exposed.
1 6.前記フォトマスクを使用してレジストを露光する方法が、 レンズを介し た縮小率が 1/5から 1/2.5 である縮小投影露光か、 等倍投影露光か、 1.25 /1である拡大投影露光あるいはレンズを介さずにフォトマスクと配線基板と を 0. 5〜10 mの間隔で保持して行なう近接露光であることを特徴とする 請求の範囲第 1項乃至請求の範囲第 1 5項のいずれか一つに記載の配線基板の 製造方法。 1 6. The method of exposing the resist using the photomask is a reduction projection exposure with a reduction ratio of 1/5 to 1 / 2.5 through a lens, a 1: 1 projection exposure, or an enlargement of 1.25 / 1. Claims 1 to 15 wherein projection exposure or proximity exposure is performed by holding the photomask and the wiring board at an interval of 0.5 to 10 m without using a lens. Item 13. The method for manufacturing a wiring board according to any one of the items.
PCT/JP2002/012101 2001-12-11 2002-11-20 Method for manufacturing wiring board WO2003050618A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2002357582A AU2002357582A1 (en) 2001-12-11 2002-11-20 Method for manufacturing wiring board
JP2003551613A JPWO2003050618A1 (en) 2001-12-11 2002-11-20 Wiring board manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-376584 2001-12-11
JP2001376584 2001-12-11

Publications (1)

Publication Number Publication Date
WO2003050618A1 true WO2003050618A1 (en) 2003-06-19

Family

ID=19184741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/012101 WO2003050618A1 (en) 2001-12-11 2002-11-20 Method for manufacturing wiring board

Country Status (3)

Country Link
JP (1) JPWO2003050618A1 (en)
AU (1) AU2002357582A1 (en)
WO (1) WO2003050618A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059715A (en) * 2005-08-25 2007-03-08 Sumitomo Heavy Ind Ltd Pattern forming method and pattern forming apparatus
JP2007298805A (en) * 2006-05-01 2007-11-15 Seiko Epson Corp Photomask, method for manufacturing photomask, device for manufacturing photomask, and circuit board

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117383A (en) * 1977-03-23 1978-10-13 Nec Corp Production of photo mask

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53117383A (en) * 1977-03-23 1978-10-13 Nec Corp Production of photo mask

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007059715A (en) * 2005-08-25 2007-03-08 Sumitomo Heavy Ind Ltd Pattern forming method and pattern forming apparatus
JP2007298805A (en) * 2006-05-01 2007-11-15 Seiko Epson Corp Photomask, method for manufacturing photomask, device for manufacturing photomask, and circuit board

Also Published As

Publication number Publication date
JPWO2003050618A1 (en) 2005-06-23
AU2002357582A1 (en) 2003-06-23

Similar Documents

Publication Publication Date Title
TW514998B (en) Wiring substrate manufacturing method
US6977130B2 (en) Method of manufacturing an electronic circuit and manufacturing apparatus of an electronic circuit
US8222532B2 (en) Method for manufacturing a wiring board
US20050205524A1 (en) Method of manufacturing tape wiring substrate
JP5157896B2 (en) Light emitting element array with microlens and optical writing head
US20080223839A1 (en) Laser Machining Apparatus
JPH06232135A (en) Semiconductor device with bump electrode and manufacture thereof
US5641597A (en) Circuit forming method and apparatus therefor
TW200404451A (en) Descriptive device and descriptive method
JP2006179862A (en) Light emitting diode array package structure and method thereof
WO2003050618A1 (en) Method for manufacturing wiring board
KR100432794B1 (en) Process for the formation of wiring pattern
JPH0274022A (en) Aligner and pattern formation
JP2003173016A (en) Method of manufacturing photomask
US8877431B2 (en) Process for producing liquid ejection head
JP2006201434A (en) Photomask for exposure of solder resist and wiring substrate exposed using the same or method for producing the same
JP5323442B2 (en) Pattern formation method
JP5357450B2 (en) Composite semiconductor device, print head, and image forming apparatus
KR20120071794A (en) High definition printing plate of liquid crystal display and method for manufacture using the same
CN1591180A (en) Mask mfg. method
CN106941760A (en) A kind of ceramic multilayer circuit based on photosensitive material and preparation method thereof
JP7391762B2 (en) Conductive paste and method for manufacturing ceramic wiring board
US7759687B2 (en) Multi-wavelength LED array package module and method for packaging the same
JP2000216110A (en) Metallic-pattern forming method by optical recording, and electronic and optical elements using the same
Jain et al. Low-cost patterning and etching systems for production of microelectronic modules

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003551613

Country of ref document: JP

122 Ep: pct application non-entry in european phase