WO2003040185A2 - Anti-n-glykolyl-neuraminsäure-antikörper und ihre verwendung zur bestimmung von glykoproteinen - Google Patents

Anti-n-glykolyl-neuraminsäure-antikörper und ihre verwendung zur bestimmung von glykoproteinen Download PDF

Info

Publication number
WO2003040185A2
WO2003040185A2 PCT/EP2002/012579 EP0212579W WO03040185A2 WO 2003040185 A2 WO2003040185 A2 WO 2003040185A2 EP 0212579 W EP0212579 W EP 0212579W WO 03040185 A2 WO03040185 A2 WO 03040185A2
Authority
WO
WIPO (PCT)
Prior art keywords
antibodies
glycoproteins
dsm
antibody
antigen
Prior art date
Application number
PCT/EP2002/012579
Other languages
English (en)
French (fr)
Other versions
WO2003040185A3 (de
Inventor
Rudolf Grimm
Carsten Brockmeyer
Original Assignee
Hexal Biotech Forschungsgmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hexal Biotech Forschungsgmbh filed Critical Hexal Biotech Forschungsgmbh
Priority to EP02785382A priority Critical patent/EP1442063A2/de
Publication of WO2003040185A2 publication Critical patent/WO2003040185A2/de
Publication of WO2003040185A3 publication Critical patent/WO2003040185A3/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H3/00Compounds containing only hydrogen atoms and saccharide radicals having only carbon, hydrogen, and oxygen atoms
    • C07H3/06Oligosaccharides, i.e. having three to five saccharide radicals attached to each other by glycosidic linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/44Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids

Definitions

  • the present invention relates to antibodies for the determination of
  • Glycoproteins and hybridoma cells that produce these antibodies are Glycoproteins and hybridoma cells that produce these antibodies.
  • the invention further relates to specific antigens that induce the formation of these antibodies.
  • the invention relates to the use of these antibodies in immunoassays for the determination of glycoproteins.
  • Naturally occurring biological substances such as proteins play an important role in numerous fields of application, for example in medicine and in food technology.
  • Such substances are either isolated from animal or vegetable sources or, not least because of the associated economic advantages, by methods of genetic engineering, in particular by overexpression of recombinant DNA in a suitable host cell.
  • glycoproteins are an important group of proteins in eukaryotic cells.
  • the glycoproteins include, for example, many serum and plasma proteins, the blood group substances, antibodies, lectins, and many enzymes, receptors and proteohormones, some of which are already used in human and veterinary medicine.
  • Important known glycoproteins that are already used in medicine include: Erythropoietin (EPO), intrinsic factor and interferons.
  • EPO Erythropoietin
  • Glycoproteins are proteins with a number covalently attached to the
  • Bound oligosaccharide polypeptide chain These are generally shorter branched heteropolysaccharides which are linked to the peptide portion by O- or N-glycosidic bonds.
  • the attachment of the sugar residues to the polypeptide chains with the formation of the glycoproteins is a co- and post-translational modification of the polypeptides, which is carried out in eukaryotic cells by specific glycosyltransferases and predominantly in the endoplasmic Reticulum and in the Golgi apparatus.
  • the heteropolysaccharides bound to the polypeptide chain almost always contain
  • N-acetylhexosamine and hexoses usually galactose, mannose and / or glucose
  • N-acetylneuraminic acid usually galactose, mannose and / or glucose
  • N-acetylneuraminic acid usually galactose, mannose and / or glucose
  • N-acetylneuraminic acid usually galactose, mannose and / or glucose
  • Devine et al. also a monoclonal antibody that specifically binds to mucins expressed in tumor cells with O-linked carbohydrate residues containing an N-glycolylneuraminic acid residue.
  • glycosylation is often important for the biological function of the glycoproteins
  • recombinantly produced human proteins should be largely identical to the corresponding naturally occurring endogenous proteins.
  • host cells that are able to generate glycosylation patterns that are as similar as possible to human proteins are generally used in the production by genetic engineering.
  • the advantageous and desirable genetic engineering production of glycoproteins which are not only functionally identical but structurally almost identical to the corresponding naturally occurring proteins, often also leads to the problem that the artificially produced product is no longer analytically or only very difficult can be distinguished from the protein in its natural form.
  • the object of the present invention is therefore to rapidly and specifically detect glycoproteins expressed in non-human eukaryotic cells or in degenerate human cells, for example recombinant human glycoproteins.
  • the invention therefore relates to monoclonal antibodies which bind specifically to glycoproteins, the N-glycan chains with a include terminal glycosidically bound N-glycolylneuraminic acid, and which do not bind glycoproteins with N-glycan chains that do not carry terminally glycosidically bound N-glycolylneuraminic acid, and derivatives of these antibodies.
  • N-glycan chains are to be understood as the naturally occurring oligosaccharides which are linked via N-glycosidic to the polypeptide chain via asparagine residues and which have an N-acetylneuraminic acid in the form of a Neu5Ac- ⁇ - (2-> 3) at their free end.
  • N-Galactose-ß- (1- »4) N-acetylglucosamine residues.
  • N-Glycan chains with a terminally glycosidically bound N-glycolylneuraminic acid “are to be understood as the corresponding oligosaccharides, in which the terminal N-acetylneuraminic acid by N-glycolylneuraminic acid is substituted.
  • Derivatives of the antibodies according to the invention are understood to mean fragments of these antibodies and modified antibodies or antibody fragments in which the binding specificity of the antibodies or fragments is retained. Fragments of the antibodies according to the invention are, in particular, those which comprise the antigen binding region of the antibodies, for example Fab, Fab 'or F (ab') 2 fragments.
  • Modified antibodies or fragments are - for example chemically or enzymatically - modified antibodies or fragments, for example radioactive, for example with iodine ( 125 l or 131 l), carbon ( 14 C) or sulfur ( 35 S), or with a fluorochrome, for example fluorescein isothiocyanate (FITC), tetramethylrhodamine isothiocyanate (TRITC) phycoerythrin (PE) or dichlorotriazine fluorescein (DTAF), labeled antibodies or antibody fragments, and conjugates of the antibodies or fragments with enzymes such as horseradish peroxidase, alkaline phosphatase, ß-D-galucose oxidase, Glucoamylase, carbonic anhydrase or acetylcholinesterase.
  • enzymes such as horseradish peroxidase, alkaline phosphatase, ß-D-galucose oxidase
  • Glycoproteins which comprise N-glycan chains with a terminally glycosidically bound N-glycolylneuraminic acid are almost all glycoproteins with N-glycan chains which are expressed in non-human eukaryotic cells and in degenerate human cells, since the terminally occurring almost exclusively in healthy human cells N-acetylneuraminic acid of the N-glycan chain in non-human eukaryotic cells and in degenerate human cells is partially substituted by N-glycolylneuraminic acid.
  • the N-glycan chains of recombinant human glycoproteins expressed in non-human eukaryotic cells also contain terminal N-glycolylneuraminic acid residues, while the corresponding homologous endogenous glycoproteins from healthy human cells contain only N-acetylneuraminic acid residues wear.
  • the antibodies according to the invention are now able, regardless of the protein structure, to bind to N-glycan chains with a terminally glycosidically bound N-glycolylneuraminic acid, so that, for example, recombinant human glycoproteins can be distinguished from the corresponding endogenous human proteins using the antibodies according to the invention.
  • the antibodies according to the invention can bind to the sugar structures with a terminal N-glycolylneuraminic acid regardless of the structure of the total protein, these antibodies can be used to specifically detect glycoproteins that have been expressed in non-human or degenerate human cells.
  • the antibodies according to the invention react specifically with recombinant glycoproteins produced in non-human cells, for example CHO cells, BHK cells or insect cells, for example recombinant human glycoproteins such as erythropoietin, tissue plasminogen activator and colony-stimulating factors (CSF ), Follicle-stimulating hormone, intrinsic factor, factor VII, factor VIII or interferons and interleukins, for example ⁇ -interferon (IFN- ⁇ ), while they do not bind to the corresponding endogenous glycoproteins from healthy human cells.
  • non-human cells for example CHO cells, BHK cells or insect cells
  • human glycoproteins such as erythropoietin, tissue plasminogen activator and colony-stimulating factors (CSF ), Follicle-stimulating hormone, intrinsic factor, factor VII, factor VIII or interferons and interleukins, for example ⁇ -interferon (IFN- ⁇ )
  • IFN- ⁇ ⁇ -interferon
  • the antibodies according to the invention bind with high specificity to oligosaccharide structures which have terminal N-glycolylneuraminic acid residues which are linked via an ⁇ - (2-3) glycosidic bond to the neighboring monosaccharide unit, a galactosyl residue.
  • the antibodies according to the invention bind to oligosaccharides with three or more monosaccharide units which carry a Neu5Gc- ⁇ - (2-> 3) ⁇ galactose- ß- (1 -> 4) -N-acetylglucosamine residue.
  • the antibodies according to the invention can belong to any class of immunoglobuins, but are preferably IgG or IgM antibodies, particularly preferably IgG antibodies, for example the IgG ⁇ subclass.
  • the present invention therefore also relates to synthetic oligosaccharide antigens which comprise an oligosaccharide which is optionally coupled to a support via a spacer and which contains a terminally glycosidically bound N-glycolylneuraminic acid.
  • Preferred oligosaccharide antigens are those in which the terminal N-glycolylneuraminic acid is linked via an ⁇ -glycosidic bond to the adjacent monosaccharide unit, for example a D-galactosyl residue.
  • the N-glycolylneuraminic acid is preferably linked to a D-galactosyl radical via an ⁇ - (2 ⁇ 3) -, an ⁇ - (2 ⁇ 4) - or an ⁇ - (2-> 6) -glycosidic bond.
  • the oligosaccharide coupled to the support has at least three monosaccharide units, and particularly preferred oligosaccharide antigens include as the trisaccharide group a Neu5Gc- ⁇ - (2-3) -galactose- ⁇ - (1-4) -N-acetylglucosamine group of the Formula I.
  • Suitable carrier molecules are, for example, numerous natural or synthetic high-molecular proteins. Proteins that are usually used for the production of antigens are, for example, serum albumin, such as bovine serum albumin (BSA), human serum albumin, or rabbit serum albumin, serum globulin, thyroglobulin, hemocyanine, such as keyhole limpet hemocyanin (KLH), polylysine, polyglutaminic acid or lycine copolymers. Preferred carrier molecules are BSA and KLH. Carrier molecules which are themselves not or only weakly immunogenic are advantageously used, so that the immune response is directed preferably or exclusively against the trisaccharide structure. A preferred carrier molecule in this sense is, for example, BSA.
  • the oligosaccharide structure can also be coupled to the carrier via a spacer.
  • a “spacer” is to be understood here as bridge members which are inserted between the oligosaccharide and the carrier.
  • the spacers are expediently bridge members with 1 to 20, in particular with 2 to 10, atoms.
  • the spacer groups can be selected from a large number of groups known to the person skilled in the art.
  • Suitable spacers are, for example, alkylene groups with 1 to 20 carbon atoms, preferably with 2 to 15, for example 2 to 10 carbon atoms. Alkylene groups with 3 carbon atoms have proven to be very suitable.
  • the oligosaccharide (hapten) can be coupled to the carrier in various ways.
  • the hapten can be bound to a carrier molecule like a protein by isothiocyanate coupling, coupling with diazo compounds, coupling via amide bonds, coupling by means of reductive amination, coupling by means of glutaraldehyde or coupling by means of guanidine (see also Advances in Carbohydrate Chemistry and Biochemistry, Vol. 37, pp.
  • the present invention also relates to trisaccharides of the general formula II
  • Z represents a hydrogen atom or a group B-X, where X represents a reactive group via which the trisaccharide can be coupled to a support, and B represents a single bond or the above-mentioned spacer group.
  • the reactive group X via which the trisaccharide can be coupled to the carrier, can be selected from a large number of reactive groups, for example -NH 2 , -CHO, -NCS, -I, -S0 2 -Hal, in which Hai F, Cl , Br or I means, or -COOH.
  • a particularly suitable trisaccharide or hapten molecule which can be coupled to a carrier is, for example, the trisaccharide Neu5Gc- ⁇ - (2- »3 ') - lactosamine-3-aminopropylglycoside of the formula III provided with a spacer
  • the carriers are the above-mentioned carrier molecules known to those skilled in the art, and the haptens can be coupled as described above.
  • oligosaccharides according to the invention can be prepared, for example, in accordance with the process described in the following example using the preparation of the trisaccharide of the formula III according to the invention (cf. Sherman et al. (Carbohydr. Res. 330: 445-458, 2001).
  • the trisaccharides thus obtained can then be coupled to a carrier, for example BSA or KLH, in a manner known per se, preferably by means of reductive amination or by means of glutaraldehyde.
  • a carrier for example BSA or KLH
  • oligosaccharide antigens according to the invention can be prepared in a manner known per se
  • Antibodies are used. For this purpose, mammals who have become
  • mice in particular Balb / c mice and NMRI mice,
  • antigens are those which comprise a trisaccharide of the formula I which is coupled to KLH or BSA as a carrier.
  • the antigen is usually immunized with a physiological condition
  • an adjuvant for example incomplete or complete Freund's adjuvant or Gerbu adjuvant is added.
  • the resulting dilution or emulsion can be, for example, subcutaneously, intramuscularly, intraperitoneally, intravenously or to the mammal can also be administered in other ways.
  • the frequency of administration can be determined in the usual way. For example, subcutaneous administration is customary every two to four weeks for 1 to 10 months, for example 1 to 3 months.
  • the animals are killed.
  • the antibodies are obtained from the blood of the immunized animals by centrifuging the blood and separating the serum. If necessary, the antibodies can be removed from the serum, for example by salting out, by absorption.
  • the formation of specific anti-N-glycolylneuraminic acid antibodies in the serum of the mammals is detected with the aid of the antigen.
  • the immunization was carried out, for example, with a trisaccharide of formula I coupled to KLH, then specifically the Hapten-binding antibodies were detected by testing with trisaccharides coupled to BSA, and cells from the animals with the highest antibody titer and the lowest cross-reactivity were selected for cell fusion to produce hybridoma cells.
  • the monoclonal antibodies according to the invention and the hybridoma cells producing them can be prepared by conventional methods known in the art (G. Koehler and C. Milstein, Nature 256: 495, 1975).
  • antibody-producing cells of the selected immunized animals for example B lymphocytes or spleen cells
  • myeloma cells of a suitable cell line in the presence of known fusion promoters, for example paramyxoviruses, Ca ions, lysolecithin or in particular polyethylene glycol.
  • myeloma cell lines which lack the gene hypoxanthine guanine phosphoribosyl transferase (HGPRT) or the enzyme thymidine kinase (TK) and which therefore contain hypoxanthine, aminophene and thymidine in a selective culture medium (HAT medium), not survive.
  • HGPRT hypoxanthine guanine phosphoribosyl transferase
  • TK thymidine kinase
  • Myeloma cell lines which do not secrete immunoglobulins or parts thereof are particularly preferred.
  • Suitable myeloma cell lines are, for example, the PAI cell lines which are available from J.W. Stocker et al. (Res. Disclos. 217: 155; 1982).
  • the cells are divided and cultivated in selective HAT medium, only hybridoma cell lines surviving because they are from the myeloma cell lines have acquired the ability to grow in vitro and, from the antibody-producing cells of the immunized animals, the missing HGPRT or TK genes and thus the ability to survive in HAT medium.
  • the hybridoma cells are then unsupplemented or supplemented, for example with fetal calf serum, in conventional standard culture media, for example DMEM or RPMI 1640 medium.
  • the cell culture supernatants are examined to determine whether they contain the desired monoclonal antibodies.
  • the specificity of the new antibodies can be demonstrated by a positive reaction with the oligosaccharide antigen according to the invention, or with glycoproteins which comprise N-glycan chains with a terminally glycosidically bound N-glycolylneuraminic acid.
  • antibodies which bind specifically to the hapten are preferably detected by testing with trisaccharides of the formula I which are coupled to BSA. Positive clones which specifically recognize the antigen are then subsequently tested differentially for their cross-reactivity with glycoproteins which only comprise N-glycan chains with terminal N-acetylneuraminic acid, but no N-glycan chains with terminal N-glycolylneuraminic acid. Antibodies that specifically bind to glycoproteins with terminal N-glycolylneuraminic acid are selected.
  • Antibodies with the properties according to the invention are preferred, those of hybridoma cells obtained by fusion of mouse spleen cells with PAI cells, for example the hybridoma cells NGNA-1A3, NGNA-3H5, NGNA-6G5 obtained by fusion of spleen cells of NMRI mice with PAI cells and NGNA-7A4.
  • the hybridoma cells NGNA-1A3, NGNA-3H5, NGNA-6G5 and NGNA-7A4 were sold on September 10, 2002 according to the Budapest contract at the "DSMZ - German Collection of Microorganisms and Cell Cultures GmbH", Mascheroder Weg 1 b, D-38124 Braunschweig, Germany, and received the accession numbers DSM ACC2573, DSM ACC2574, DSM ACC2575 and DSM ACC2576.
  • the invention further relates to the use of the antibodies or derivatives according to the invention formed by the hybridoma cells in an immunoassay for the quantitative or qualitative determination of glycoproteins which comprise N-glycan chains with a terminally glycosidically bound N-glycolylneuraminic acid.
  • Immunoassay is understood here to mean any determination method in which use is made of the antigen-antibody reaction between glycoproteins which comprise N-glycan chains with a terminally glycosidically bound N-glycolylneuraminic acid and the antibodies according to the invention or their derivatives. Such glycoproteins can also be determined in the presence of appropriate homologous endogenous human proteins. The determination of glycoproteins in biological material, for example human or non-human body fluids such as blood and urine, is of particular interest.
  • Glycoproteins that can be determined and detected in this way are, for example, recombinant glycoproteins produced in non-human eukaryotic cells, for example CHO cells, BHK cells or insect cells with baculoviruses as expression systems, for example recombinant human glycoproteins such as recombinant human EPO ,
  • the antibodies or derivatives according to the invention can be used in any of the immunoassays known per se, for example in radioimmunoassays (RIA), enzyme immunoassays (EIA or ELISA), immunofluorescence assays (IFA) and immuno-PCR or -LCR.
  • RIA radioimmunoassays
  • EIA enzyme immunoassays
  • IFA immunofluorescence assays
  • immuno-PCR or -LCR immuno-PCR or -LCR.
  • the assays can be used in any of the known embodiments, for example as homogeneous phase assays, as solid phase assays, as indirect or direct assays, as sandwich assays, as assays with competitive inhibition, in immunoblot methods such as "Western blotting" or as temporally
  • the determination of the glycoproteins can also be carried out by measuring the shift in the elution or migration time of a complex of glycoprotein and antibody compared to its pure elution or migration time in liquid chromatographic and electrophoretic methods.
  • Recombinant human EPO expressed in CHO cells can be advantageously detected, for example, by adding one Examining sample first either directly or indirectly, for example via polyclonal or monoclonal anti-EPO antibodies, which are specific for EPO but cannot differentiate the target molecules, covalently or non-covalently to a suitable carrier, for example plastic surfaces made of polystyrene or polypropylene, nitrocellulose - Membranes or glass beads bind. The mixture is then incubated with monoclonal antibodies according to the invention, for example mouse antibodies. The bound antibodies are then detected with an anti-mouse antibody.
  • a suitable carrier for example plastic surfaces made of polystyrene or polypropylene, nitrocellulose - Membranes or glass beads bind.
  • monoclonal antibodies according to the invention for example mouse antibodies.
  • the bound antibodies are then detected with an anti-mouse antibody.
  • an anti-mouse antibody can be used which is conjugated with alkaline phosphatase or with peroxidase or is provided with a fluorescent marker or a radioactive marker, as a result of which a measurable staining, fluorescence or chemiluminescence reaction takes place or that Radioactivity is detected.
  • the antibodies or the immunoassays of the present invention are therefore particularly suitable for detecting recombinant human glycoproteins in the presence of the corresponding homologous endogenous proteins. They can therefore be used to advantage in medical research and doping analysis.
  • the Neu5Gc- ⁇ - (2- 3 ') - lactosamine-3-aminopropylglycoside of the formula III was prepared in accordance with reaction scheme I, in which Bz is a benzoyl radical, Bn is a benzyl radical and Boc is a tert-butoxycarbonyl radical, starting from the sialyl donor Phenyl [methyl-5-acetamido-4,7,8,9-tetra-0-acetyl-3,5-dideoxy-2-thio-D-glycero- ⁇ , ⁇ -D-galacto-2-nonulopyranoside ionate ( 2), which is available as described by A. Marra and P. Sinay (Carbohydr.
  • the starting material 2 is refluxed with Boc 2 0 and 4-dimethylaminopyridine (DMAP) in dry THF, as in AA Sherman et al. (Carbohydr. Res. 330: 445-458, 2001), to phenyl [methyl-4,7,8,9-tetra-0-acetyl-5- (N-tert-butoxy-carbonylacetamido) -3,5- dideoxy-2-thio-D-glycero-, ß-D-galacto-2-nonulo- pyranoside ionate (3) reacted (i), which is subsequently converted into compound 4 by complete N- and O-deacetylation in MeOH / MeONa (ii) and per-O-acetylation with Ac 2 0 in pyridine (iii).
  • DMAP 4-dimethylaminopyridine
  • the Neu5Gc- ⁇ - (2 ⁇ 3 ') -lactosamine-3-aminopropylglycoside of the formula III obtained as described above was coupled with KLH as a carrier for the production of antigen conjugates.
  • this oligosaccharide antigen was also coupled with BSA as a carrier.
  • the coupling to the carrier was carried out using glutaraldehyde / NaBH 3 CN (GT Hermanson, loc. Cit.).
  • the conjugates were purified by gel filtration (Superdex 75).
  • sialyllactose-BSA conjugate was prepared using commercially available ⁇ 2,3-sialyllactose.
  • mice 2 strains, Balb / c and NMRI were immunized 4 x at intervals of 14 days with the KLH conjugate and adjuvant prepared as above (100 ⁇ g per mouse and injection). Complete Freund's adjuvant was used as adjuvant. The immune response was tested in the ELISA for BSA-NGNA conjugate. 14 days later, two selected NMRI mice with which the best results had been obtained received 3 injections on successive days (KLH conjugate in PBS (10 mM sodium / potassium phosphate, pH 7.2, 0.8% NaCl, 0.02 % KCI); 100 ⁇ g per mouse and injection). These follow-up injections were made with incomplete Freund's adjuvant.
  • PBS 10 mM sodium / potassium phosphate, pH 7.2, 0.8% NaCl, 0.02 % KCI
  • mice were sacrificed and the spleens removed.
  • the spleen cells were isolated and used to produce hybridomas with non-producing myeloma cells (PAI cells, JW Stocker et al., Res. Disclos. 21713, 1982) according to the method of Köhler and Milstein (G. Köhler and C. Milstein, op. Cit.) merged.
  • Hybridomas which recognized the NGNA-BSA conjugate and the recombinant EPO were recloned, stabilized and cryopreserved in a manner known per se.
  • NGNA-1A3 (DSM ACC2573), NGNA-3H5 (DSM ACC2574), NGNA-6G5 (DSM ACC2575) and NGNA-7A4 (DSM ACC2576)
  • monoclonal antibodies were isolated from serum-free cell culture supernatants by means of thiophilic adsorption chromatography (AT-POROS 50-OH, nanoTools Antibodytechnik GmbH and Co KG, Teningen, Germany) and subsequent gel filtration (Superdex 200). The quality of the antibodies was checked by the Lämmli method using SDS-PAGE under reducing conditions and the antibody concentration was determined by measuring the OD 280 . The antibodies could all be assigned to the IgG1 K subclass.
  • the immune response was tested and the reactivity of the antibodies against NGNA was determined by means of ELISA.
  • the ELISA plates were coated with NGNA-BSA conjugate, sialyllactose-BSA conjugate or with various glycoproteins.
  • Dilution series of the mouse sera (in 1% BSA / PBS) were used to test the immune response in the ELISA.
  • Cell culture supernatants of the hybridoma cells for the identification of positive fusion products in the ELISA were used undiluted.
  • Defined antibody concentrates were used to characterize the respective antibodies in the ELISA, whereby dilution series were prepared starting from a starting dilution of 4 ⁇ g / ml.
  • Ready-to-use ELISA plates were incubated with serum dilutions, cell culture supernatants or antibody dilutions (50 ⁇ l per well) for 1 h at room temperature and washed 5 times with PBS. After incubation with the second antibody, goat-anti-mouse-IgG-HRPO (dilution 1: 5000, 1 h, room temperature), the mixture was washed again 5 times with PBS and with 2,2'-azino-bis (3-ethylbenzthiazolinesulfonic acid) (ABTS) developed (OD 415 ).
  • ABTS 2,2'-azino-bis (3-ethylbenzthiazolinesulfonic acid)
  • NGNA-1A3 (DSM ACC2573), NGNA-3H5 (DSM ACC2574), NGNA-6G5 (DSM ACC2575) and NGNA-7A4 (DSM ACC2576) were analyzed by ELISA for their reactivity with NGNA -BSA and silyllactose-BSA conjugates compared. The reactivity was determined by means of dilution series (starting concentration 4 ⁇ g / ml). The results are summarized in Table 2 below. The antibody concentration required to generate a signal> twice the background is given in nanograms per milliliter. Table 2
  • NGNA-1A3 2.0ng / ml 1000ng / ml
  • NGNA-6G5 2.0ng / ml 1000ng / ml
  • NGNA-7A4 2.0ng / ml 1000ng / ml
  • the above monoclonal antibodies were further compared by ELISA as described above with regard to their reactivity to recombinant EPO and IFN-ß protein produced in CHO cells.
  • NGNA-1A3 0.5 ug / ml 2.0 ug / ml
  • NGNA-3H5 0.5 ug / ml 2.0 ug / ml
  • NGNA-6G5 0.5 ug / ml 1,0 ug / ml
  • NGNA-7A4 1.0 ⁇ g / ml 2.0 ⁇ g / ml
  • glycoproteins mucin type II Sigma M 1778
  • glycophorin MM Sigma G7903
  • glycophorin NN Sigma G5017
  • These glycoproteins contain O- and N-linked oligosaccharides with N-acetylneuraminic acid (NANA) in the ⁇ .2.3 and ⁇ 2.6 positions, respectively.
  • NANA N-acetylneuraminic acid

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biotechnology (AREA)
  • Engineering & Computer Science (AREA)
  • Immunology (AREA)
  • Biophysics (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

Die Erfindung betrifft monoklonale Antikörper, welche spezifisch an Glykoproteine binden, die N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure umfassen, und Hybridoma-Zellen, die solche Antikörper produzieren. Die Antikörper können in Immunoassays verwendet werden, um beispielsweise rekombinante humane Glykoproteine zu bestimmen.

Description

Beschreibung
Anti-N-Glvkolyl-Neuraminsäure-Antikörper und ihre Verwendung zur Bestimmung von Glvkoproteinen
Die vorliegende Erfindung betrifft Antikörper zur Bestimmung von
Glykoproteinen sowie Hybridoma-Zellen, die diese Antikörper produzieren.
Die Erfindung betrifft ferner spezifische Antigene, die die Bildung dieser Antikörper induzieren. Schließlich betrifft die Erfindung die Verwendung dieser Antikörper in Immunoassays zur Bestimmung von Glykoproteinen.
Natürlich vorkommende biologische Substanzen wie Proteine spielen auf zahlreichen Anwendungsgebieten, beispielsweise in der Medizin und in der Lebensmitteltechnologie, eine wichtige Rolle. Solche Substanzen werden entweder aus tierischen oder pflanzlichen Quellen isoliert oder aber, nicht zuletzt wegen der damit verbundenen wirtschaftlichen Vorteile, durch Methoden der Gentechnik, insbesondere durch Überexpression rekombinanter DNA in einer geeigneten Wirtszelle, hergestellt.
Glykoproteine sind eine wichtige Gruppe von Proteinen in eukaryontischen Zellen. Zu den Glykoproteinen gehören beispielsweise viele Serum- und Plasmaproteine, die Blutgruppensubstanzen, Antikörper, Lektine, und viele Enzyme, Rezeptoren und Proteohormone, von denen einige auch bereits in der Human- und Veterinärmedizin zum Einsatz kommen. Wichtige bekannte Glykoproteine, die bereits in der Medizin eingesetzt werden, sind u.a. Erythropoietin (EPO), Intrinsic-Faktor und Interferone.
Glykoproteine sind Proteine mit einer Anzahl kovalent an die
Polypeptidkette gebundener Oligosaccharide. Dabei handelt es sich im allgemeinen um kürzere verzweigte Heteropolysaccharide, die durch O- oder N-glykosidische Bindungen mit dem Peptidanteil verknüpft sind. Die Anheftung der Zuckerreste an die Polypeptidketten unter Bildung der Glykoproteine ist eine co- und post-translationale Modifikation der Polypeptide, die in eukarontischen Zellen durch spezifische Glycosyltransferasen erfolgt und überwiegend im endoplasmatischen Retikulum und im Golgi-Apparat stattfindet. Die an die Polypeptidkette gebundenen Heteropolysaccharide enthalten fast immer
N-Acetylhexosamine und Hexosen (gewöhnlich Galactose, Mannose und/oder Glucose) und als endständigen Zuckerrest N-Acetylneuraminsäure. Von zahlreichen nicht-humanen eukaryontischen Zellen und manchen malignen entarteten humanen Zellen ist auch bekannt, daß sie Glykoproteine produzieren, in denen die N-Acetylneuraminsäure (Neu5Ac, NANA) in gewissem Umfang, d.h. üblicherweise nicht zu mehr als 10% und in der Regel nicht zu mehr als 5%, durch eine andere Sialinsäure, nämlich N-Glykolylneuraminsäure (Neu5Gc, NGNA) substituiert ist (C. H. Hokke et al., FEBS Lett. 275:9-14, 1990; A. A. Bergwerff et al„ Eur. J. Biochem. 212:639-656, 1993; Y. Fujii et al., Mol. Immunol. 19:87-94, 1982; P. L. Devine et al., Cancer Res. 51 :5826-5836, 1991 ). So offenbaren Devine et al. (a.a.O.) auch einen monoklonalen Antikörper, der spezifisch an in Tumorzellen exprimierte Mucine mit O-verknüpften Kohlenhydratresten bindet, die einen N-Glykolylneuraminsäure-Rest enthalten.
Da die Glykosylierung häufig für die biologische Funktion der Glykoproteine von Bedeutung ist, sollten beispielsweise rekominant hergestellte humane Proteine mit den entsprechenden natürlich vorkommenden endogenen Proteinen weitgehend identisch sein. Daher werden bei der Herstellung auf gentechnischem Wege in der Regel Wirtszellen verwendet, die in der Lage sind, Glykosylierungsmuster zu erzeugen, die den humanen Proteinen möglichst ähnlich sind. Die an sich vorteilhafte und wünschenswerte gentechnische Herstellung von Glykoproteinen, die mit den entsprechenden natürlich vorkommenden Proteinen nicht nur funktionsgleich sondern strukturell auch nahezu identisch sind, führt jedoch häufig auch zu dem Problem, daß sich das künstlich hergestellte Produkt analytisch nicht mehr oder nur noch sehr schwer von dem Protein in seiner natürlichen Form unterscheiden läßt. So ist es beispielsweise für die medizinische Forschung und für medizinische Untersuchungen wichtig, ein medikamentös verabreichtes Protein von einem entsprechenden homologen endogenen Protein unterscheiden und in dessen Gegenwart nachweisen zu können. Das Problem des Nachweises nicht-körpereigener Substanzen tritt zunehmend auch in Fällen der unerlaubten Substitution auf, beispielsweise beim Doping mit körpereigenen Substanzen, in denen der unerlaubte Gebrauch dieser Substanzen nachgewiesen werden muß.
Die bislang verfügbaren Techniken zum Nachweis von rekombinant hergestellten Glykoproteinen wie EPO in Gegenwart des entsprechenden endogenen Proteins sind nicht zufriedenstellend (vgl. L. Rivier and M. Saugy, J. Toxicol., 18:145-175, 1999, zur Übersicht). Beispielsweise messen die meisten Immunoassays zum Nachweis von EPO nur die Gesamtmenge EPO im Serum, ohne zwischen exogenem und endogenem Protein unterscheiden zu können. Der Nachweis von exogenem Protein wird daher indirekt im Vergleich mit Referenzgruppen geführt (s. z.B. M. Tanabe et al., Clin. Chem. 38:1752-1755). Solche Methoden sind jedoch unzuverlässig und daher juristisch nicht haltbar. L. Wide und C. Bengtsson (Br. J. Haematol. 76:121-127) beschreiben eine elektrophoretische Methode, die die unterschiedliche Verteilung der Isoformen von endogenem und rekombinantem EPO nutzt, wobei sich der elektophoretischen Auftrennung ein Immunoassay anschließt. Dieses Verfahren ist jedoch langwierig und für Schnelltests nicht anwendbar. F. Lasne und J. de Ceaurriz (Nature, 405:635, 2000) beschreiben ein Verfahren zum Nachweis von rekombinantem EPO im Urin. Dieses Verfahren nutzt ebenfalls Ladungsunterschiede zwischen den Isoformen von natürlichem und rekombinantem EPO, als deren Ursache eine unterschiedliche Glycosylierung angesehen wird. Das unterschiedliche Bandenmuster von natürlichem und rekombinantem Protein wird durch Immuno-Blotting sichtbar gemacht. Auch dieses Verfahren ist jedoch zeitaufwendig und läßt sich nur von entsprechend ausgerüsteten Labors durchführen.
Die Aufgabe der vorliegenden Erfindung besteht daher darin, in nichthumanen eukaryontischen Zellen oder in entarteten humanen Zellen exprimierte Glykoproteine, beispielsweise rekombinante humane Glykoproteine, rasch und spezifisch nachzuweisen.
Diese Aufgabe wurde mit den monoklonalen Antikörpern nach Anspruch 1 gelöst.
Gegenstand der Erfindung sind daher monoklonale Antikörper, welche spezifisch an Glykoproteine binden, die N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure umfassen, und welche Glykoproteine mit N-Glykanketten, die keine endständige glykosidisch gebundene N-Glykolylneuraminsäure tragen, nicht binden, sowie Derivate dieser Antikörper.
Unter „N-Glykanketten" sind hier und im folgenden die natürlich auftretenden, über Asparaginreste N-glykosidisch mit der Polypeptidkette verknüpften Oligosaccharide zu verstehen, die an ihrem freien Ende eine N-Acetylneuraminsäure in Form eines Neu5Ac-α-(2->3)-Galactose-ß-(1-»4)- N-Acetylglucosamin-Rests tragen. Unter „N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure" sind die entsprechenden Oligosaccharide zu verstehen, worin die endständige N-Acetylneuraminsäure durch N-Glykolylneuramihsäure substituiert ist.
Unter Derivaten der erfindungsgemäßen Antikörper werden Fragmente dieser Antikörper sowie modifizierte Antikörper oder Antikörperfragmente verstanden, bei denen die Bindungsspezifität der Antikörper oder Fragmente erhalten bleibt. Fragmente der erfindungsgemäßen Antikörper sind insbesondere solche, die die Antigen-Bindungsregion der Antikörper umfassen, beispielsweise Fab, Fab' oder F(ab')2-Fragmente. Modifizierte Antikörper oder Fragmente sind - beispielsweise chemisch oder enzymatisch - modifizierte Antikörper oder Fragmente, beispielsweise radioaktiv, z.B. mit lod (125l oder 131l), Kohlenstoff (14C) oder Schwefel (35S), oder mit einem Fluorochrom, beispielsweise Fluoresceinisothiocyanat (FITC), Tetramethylrhodaminisothiocyanat (TRITC) Phycoerythrin (PE) oder Dichlortriazinfluorescein (DTAF), markierte Antikörper oder Antikörperfragmente, und Konjugate der Antikörper oder Fragmente mit Enzymen wie Meerrettich-Peroxidase, alkalischer Phosphatase, ß-D-Galactosidase, Glucose-Oxidase, Amylase, Glucoamylase, Carboanhydrase oder Acetylcholinesterase.
Glykoproteine, die N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure umfassen, sind nahezu alle Glykoproteine mit N-Glykanketten, die in nicht-humanen eukaryontischen Zellen und in entarteten humanen Zellen exprimiert werden, da die in gesunden humanen Zellen nahezu ausschließlich auftretende endständige N-Acetylneuraminsäure der N-Glykankette in nicht-humanen eukaryontischen Zellen und in entarteten humanen Zellen partiell durch N-Glykolylneuraminsäure substituiert ist. Daher enthalten die N-Glykanketten von rekombinanten humanen Glykoproteinen, die in nichthumanen eukaryontischen Zellen exprimiert werden, außer endständigen N-Acetylneuraminsäure-Resten auch endständige N-Glykolylneuraminsäure- Reste, während die entsprechenden homologen endogenen Glykoproteine aus gesunden humanen Zellen nur N-Acetylneuraminsäure-Reste tragen. Die erfindungsgemäßen Antikörper sind nun in der Lage, unabhängig von der Proteinstruktur an N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure zu binden, so daß sich mit den erfindungsgemäßen Antikörpern beispielsweise rekombinante humane Glykoproteine von den entsprechenden endogenen humanen Proteinen unterscheiden lassen.
Da die erfindungsgemäßen Antikörper an die Zuckerstrukturen mit einer endständigen N-Glykolylneuraminsäure unabhängig von der Struktur des Gesamtproteins binden können, lassen sich mit diesen Antikörpern spezifisch Glykoproteine nachweisen, die in nicht-humanen oder entarteten humanen Zellen exprimiert wurden. So reagieren die erfindungsgemäßen Antikörper beispielsweise spezifisch mit rekombinanten, in nicht-humanen Zellen, beispielsweise CHO-Zellen, BHK-Zellen oder Insektenzellen, hergestellten Glykoproteinen, beispielsweise rekombinanten humanen Glykoproteinen, wie Erythropoietin, Gewebe-Plasminogen-Aktivator, Kolonie-stimulierende Faktoren (CSF), Follikel-stimulierendes Hormon, Intrinsic-Faktor, Faktor VII, Faktor VIII oder Interferone und Interleukine, beispielsweise ß-lnterferon (IFN-ß), während sie an die entsprechenden endogenen Glykoproteine aus gesunden humanen Zellen nicht binden.
Die erfindungsgemäßen Antikörper binden mit hoher Spezifität an Oligosaccharidstrukturen, die endständige N-Glykolylneuraminsäure-Reste aufweisen, die über eine α-(2- 3)-glykosidische Bindung mit der benachbarten Monosaccharideinheit, einem Galactosyl-Rest, verknüpft sind. So binden die erfindungsgemäßen Antikörper an Oligosaccharide mit drei oder mehr Monosaccharideinheiten, die einen Neu5Gc-α-(2-»3)~Galactose- ß-(1 ->4)-N-Acetylglucosamin-Rest tragen. Die erfindungsgemäßen Antikörper können jeder Klasse von Immunglobuiinen angehören, bevorzugt handelt es sich jedoch um IgG- oder IgM-, besonders bevorzugt um IgG-Antikörper, beispielsweise der Subklasse lgG κ.
Es wurde überraschend gefunden, daß sich die Bildung von Antikörpern, die in der Lage sind, spezifisch an N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure zu binden, mit Hilfe synthetisch hergestellter Oligosaccharide induzieren läßt, die eine endständige, glykosidisch gebundene N-Glykolylneuraminsäure tragen. Bei den Oligosacchariden selbst handelt es sich um inkomplette Antigene oder Haptene, die per se nicht groß genug sind, um eine Immunantwort hervorzurufen. Daher werden solche Oligosaccharide an geeignete Träger gekoppelt, und diese Oligosaccharid-Antigene oder Hapten-Träger- Konjugate werden anschließend zur Immunisierung verwendet.
Die vorliegende Erfindung betrifft daher auch synthetische Oligosaccharid-Antigene, welche ein gegebenenfalls über einen Spacer an einen Träger gekoppeltes Oligosaccharid umfassen, das eine endständige glykosidisch gebundene N-Glykolylneuraminsäure enthält.
Bevorzugte Oligosaccharid-Antigene sind solche, worin die endständige N-Glykolylneuraminsäure über eine α-glykosidische Bindung mit der benachbarten Monosaccharideinheit, beispielsweise einem D-Galactosyl-Rest, verknüpft ist. Vorzugsweise ist die N-Glykolylneuraminsäure über eine α-(2→3)-, eine α-(2→4)- oder eine α-(2->6)-glykosidische Bindung mit einem D-Galactosylrest verknüpft.
Vorzugsweise weist das an den Träger gekoppelte Oligosaccharid wenigstens drei Monosaccharideinheiten auf, und besonders bevorzugte Oligosaccharid-Antigene umfassen als Trisaccharidgruppe eine Neu5Gc-α- (2- 3)-Galactose-ß-(1-»4)-N-Acetylglucosamin-Gruppe der Formel I
Figure imgf000008_0001
Als Träger, an den das Oligosaccharid gebunden ist, kann jedes Molekül dienen, mit dem zusammen das Oligosaccharid in der Lage ist, eine Immunantwort auszulösen. Geeignete Trägermoleküle sind beispielsweise zahlreiche natürliche oder synthetische hochmolekulare Proteine. Proteine, die üblicherweise zur Herstellung von Antigenen verwendet werden, sind beispielsweise Serumalbumine, wie Rinderserumalbumin (BSA), Humanserumalbumin, oder Kaninchenserumalbumin, Serumglobuline, Thyroglobuline, Hämocyanine, wie Keyhole-Limpet-Hämocyanin (KLH), Polylysin, Polyglutaminsäure oder Lysin-Glutaminsäure-Copolymere. Bevorzugte Trägermoleküle sind BSA und KLH. Vorteilhaft werden auch Trägermoleküle verwendet, die selbst nicht oder nur schwach immunogen sind, so daß sich die Immunantwort bevorzugt oder ausschließlich gegen die Trisaccharidstruktur richtet. Ein in diesem Sinne bevorzugtes Trägermolekül ist beispielsweise BSA.
Um eine sterische Hinderung des die antigene Determinante tragenden Oligosaccharids bei der Immunisierung durch den Träger zu verhindern und eine gewisse Bewegungsfreiheit des Oligosaccharids in Bezug auf den Träger zu erreichen, kann die Oligosaccharidstruktur auch über einen Spacer an den Träger gekoppelt werden. Unter einem "Spacer" sind hierbei Brückenglieder zu verstehen, die zwischen das Oligosaccharid und den Träger eingefügt sind. Zweckmäßig handelt es sich bei den Spacern um Brückenglieder mit 1 bis 20, insbesondere mit 2 bis 10 Atomen. Die Spacergruppen können aus einer Vielzahl dem Fachmann bekannter Gruppen ausgewählt sein. Geeignete Spacer sind beispielsweise Alkylengruppen mit 1 bis 20 Kohlenstoffatomen, vorzugsweise mit 2 bis 15, beispielsweise 2 bis 10 Kohlenstoffatomen. Alkylengruppen mit 3 Kohlenstoffatomen haben sich als sehr geeignet erwiesen. Das Oligosaccharid (Hapten) läßt sich mit dem Träger auf verschiedene Weise koppeln. Beispielsweise kann das Hapten durch Isothiocyanat-Kopplung, Kopplung mit Diazo-Verbindungen, Kopplung über Amidbindungen, Kopplung mittels reduktiver Aminierung, Kopplung mittels Glutaraldehyd oder Kopplung mittels Guanidin an ein Trägermolekül wie ein Protein gebunden werden (s.a. Advances in Carbohydrate Chemistry and Biochemistry, Bd. 37, S. 225-281 , 1980; Methods in Enzymology, Bd. 1 , Complex Carbohydrates, Part C, S. 155-175, 1978; Archives of Biochemistry and Biophysics, Bd. 205, Nr. 2, S. 338-395, 1980; und G.T. Hermanson (Hrsg.): Bioconjugate Techniques, S 453ff; Academic Press 1996).
Gegenstand der vorliegenden Erfindung sind ferner Trisaccharide der allgemeinen Formel II
Figure imgf000009_0001
worin Z ein Wasserstoffatom oder eine Gruppe B-X bedeutet, worin X eine reaktive Gruppe bedeutet, über die das Trisaccharid an einen Träger gekoppelt werden kann, und B eine Einfachbindung oder die oben genannte Spacergruppe bedeutet.
Die reaktive Gruppe X, über die das Trisaccharid an den Träger gekoppelt werden kann, kann aus einer Vielzahl reaktiver Gruppen ausgewählt sein, beispielsweise -NH2, -CHO, -NCS, -I, -S02-Hal, worin Hai F, Cl, Br oder I bedeutet, oder -COOH.
Ein besonders geeignetes Trisaccharid oder Haptenmolekül, das sich an einen Träger koppeln läßt, ist beispielsweise das mit einem Spacer versehene Trisaccharid Neu5Gc-α-(2-»3')-lactosamin-3-aminopropyl- glykosid der Formel III
Figure imgf000010_0001
Bei den Trägern handelt es sich um die oben genannten, dem Fachmann bekannten Trägermoleküle, wobei die Kopplung der Haptene wie oben beschrieben erfolgen kann.
Die Herstellung der erfindungsgemäßen Oligosaccharide kann beispielsweise entsprechend dem in nachfolgendem Beispiel anhand der Herstellung des erfindungsgemäßen Trisaccharids der Formel III beschriebenen Verfahren erfolgen (vgl. Reaktionsschema I), wobei ergänzend auf die bei A.A. Sherman et al. (Carbohydr. Res. 330:445-458, 2001 ) beschriebenen Methoden verwiesen wird.
Die so erhaltenen Trisaccharide können dann in an sich bekannter Weise, vorzugsweise mittels reduktiver Aminierung oder mittels Glutaraldehyd, an einen Träger, beispielsweise BSA oder KLH, gekoppelt werden.
Die erfindungsgemäßen Oligosaccharid-Antigene (Hapten-Träger- Konjugate) können in an sich bekannter Weise zur Herstellung von
Antikörpern verwendet werden. Hierzu werden Säuger, die sich zur
Produktion von Antikörpern eignen, beispielsweise Kaninchen,
Meerschweinchen, Mäuse, insbesondere Balb/c-Mäuse und NMRI-Mäuse,
Ratten, Schafe, Ziegen, Kühe oder Pferde, mit einem erfindungsgemäßen Antigen immunisiert. Bevorzugte Antigene sind solche, die ein Trisaccharid der Formel I umfassen, das an KLH oder BSA als Träger gekoppelt ist. Zur
Immunisierung wird das Antigen üblicherweise mit einer physiologischen
Kochsalzlösung auf eine geeignete Konzentration verdünnt und anschließend wird gegebenenfalls ein Adjuvans, beispielweise inkomplettes oder komplettes Freund'sches Adjuvans oder Gerbu-Adjuvans zugegeben.
Die resultierende Verdünnung oder Emulsion kann dem Säuger beispielsweise subcutan, intramuskulär, intraperitoneal, intravenös oder auch auf andere Weise verabreicht werden. Die Häufigkeit der Gabe kann in üblicher Weise bestimmt werden. Üblich ist beispielsweise eine subcutane Verabreichung alle zwei bis vier Wochen über 1 bis 10 Monate, beispielsweise 1 bis 3 Monate. Nach ein oder mehreren „Booster"- Immunisierungen werden die Tiere getötet. Die Antikörper werden aus dem Blut der immunisierten Tiere gewonnen, indem man das Blut abzentrifugiert und das Serum abtrennt. Gegebenenfalls können die Antikörper aus dem Serum, beispielsweise durch Aussalzen, durch Absorbtions- oder durch Affinitätschromatographie, weiter gereinigt werden. Die Bildung von spezifischen anti-N-Glykolylneuraminsäure-Antikörpern im Serum der Säuger wird mit Hilfe des Antigens nachgewiesen. Wurde die Immunisierung beispielsweise mit einem an KLH gekoppelten Trisaccharid der Formel I durchgeführt, so werden spezifisch an das Hapten bindende Antikörper durch Test mit Trisacchariden nachgewiesen, die an BSA gekoppelt sind. Für die Zellfusion zur Herstellung von Hybridoma-Zellen werden Zellen der Tiere mit dem höchsten Antikörpertiter und der geringsten Kreuzreaktivität ausgewählt.
Die Herstellung der erfindungsgemäßen monoklonalen Antikörper und der sie produzierenden Hybridoma-Zellen kann nach klassischen, im Stand der Technik bekannten Methoden erfolgen (G. Köhler und C. Milstein, Nature 256:495, 1975). Hierzu werden antikörperproduzierende Zellen der ausgewählten immunisierten Tiere, beispielsweise B-Lymphozyten oder Milzzellen, mit Myeloma-Zellen einer geeigneten Zellinie in Gegenwart bekannter Fusionspromotoren, beispielsweise Paramyxoviren, Ca-Ionen, Lysolecithin oder insbesondere Polyethylenglycol, fusioniert. Bevorzugt sind Myeloma-Zellinien, denen das Gen Hypoxanthin-Guanin-Phosphoribosyl- Transferase (HGPRT) oder das Enzym Thymidin-Kinase (TK) fehlt und die deshalb in einem selektiven Kulturmedium, das Hypoxanthin, Aminoptehn und Thymidin enthält (HAT-Medium), nicht überleben. Besonders bevorzugt sind Myeloma-Zellinien, die keine Immunglobuline oder Teile davon sezemieren. Geeignete Myeloma-Zellinien sind beispielsweise die PAI- Zellinien, die bei J.W. Stocker et al. (Res. Disclos. 217:155; 1982) beschrieben wurden.
Nach der Fusion werden die Zellen aufgeteilt und in selektivem HAT- Medium kultiviert, wobei nur Hybridoma-Zellinien überleben, weil diese von den Myeloma-Zellinien die Fähigkeit zum Wachstum in vitro und von den antikörperproduzierenden Zellen der immunisierten Tiere die fehlenden HGPRT- oder TK-Gene und damit die Fähigkeit zum Überleben in HAT- Medium erworben haben.
Die Hybridoma-Zellen werden dann in üblichen Standard-Kulturmedien, beispielsweise DMEM oder RPMI 1640-Medium, unsupplementiert oder supplementiert, beispielsweise mit fetalem Kälberserum, kultiviert. Die Zellkultur-Überstände werden daraufhin untersucht, ob sie die gewünschten monoklonalen Antikörper enthalten. Die Spezifität der neuen Antikörper kann wie oben beschrieben durch eine positive Reaktion mit dem erfindungsgemäßen Oligosaccharid-Antigen nachgewiesen werden, bzw. mit Glykoproteinen, die N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure umfassen. Wurde die Immunisierung beispielsweise mit einem an KLH gekoppelten Trisaccharid der Formel I durchgeführt, so werden spezifisch an das Hapten bindende Antikörper bevorzugt durch Test mit Trisacchariden der Formel I nachgewiesen, die an BSA gekoppelt sind. Positive Klone, die spezifisch das Antigen erkennen, werden dann nachfolgend differentiell auf ihre Kreuzreaktivität mit Glykoproteinen getestet, die nur N-Glykanketten mit endständiger N- Acetylneuraminnsäure, aber keine N-Glykanketten mit endständiger N-Glykolylneuraminsäure umfassen. Antikörper, die spezifisch an Glykoproteine mit endständiger N-Glykolylneuraminsäure binden, werden ausgewählt.
Bevorzugt sind Antikörper mit den erfindungsgemäßen Eigenschaften, die von durch Fusion von Mäuse-Milzzellen mit PAI-Zellen erhaltenen Hybridomzellen, beispielsweise den durch Fusion von Milzzellen von NMRI- Mäusen mit PAI-Zellen erhaltenen Hybridomzellen NGNA-1A3, NGNA-3H5, NGNA-6G5 und NGNA-7A4, produziert werden. Die Hybridomzellen NGNA-1A3, NGNA-3H5, NGNA-6G5 und NGNA-7A4 wurden am 10. 09. 2002 nach dem Budapester Vertrag bei der „DSMZ - Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH", Mascheroder Weg 1 b, D-38124 Braunschweig, Deutschland, hinterlegt und haben die Hinterlegungsnummern DSM ACC2573, DSM ACC2574, DSM ACC2575 bzw. DSM ACC2576 erhalten. Die Erfindung betrifft ferner die Verwendung der erfindungsgemäßen, von den Hybridoma-Zellen gebildeten Antikörper oder Derivate in einem Immunoassay zur quantitativen oder qualitativen Bestimmung von Glykoproteinen, die N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure umfassen. Unter Immunoassay wird hierbei jedes Bestimmungsverfahren verstanden, in dem von der Antigen- Antikörper-Reaktion zwischen Glykoproteinen, die N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure umfassen, und den erfindungsgemäßen Antikörpern oder deren Derivaten Gebrauch gemacht wird. Die Bestimmung solcher Glykoproteine kann dabei auch in Gegenwart entsprechender homologer endogener humaner Proteine erfolgen. Die Bestimmung von Glykoproteinen in biologischem Material, beispielsweise humanen oder nicht-humanen Körperflüssigkeiten wie Blut und Urin, ist von besonderem Interesse. Glykoproteine, die auf diese Weise bestimmt und nachgewiesen werden können, sind beispielsweise rekombinante, in nicht-humanen eukaryontischen Zellen, beispielsweise CHO-Zellen, BHK-Zellen oder Insektenzellen mit Baculoviren als Expressionssystemen, hergestellte Glykoproteine, beispielsweise rekombinante humane Glykoproteine, wie rekombinantes humanes EPO.
Die erfindungsgemäßen Antikörper oder Derivate können in irgendeinem der an sich bekannten Immunoassays verwendet werden, beispielsweise in Radioimmuno-Assays (RIA), Enzymimmuno-Assays (EIA oder ELISA), Immunfluoreszenz-Assays (IFA) und Immuno-PCR oder -LCR. Die Assays können in irgendeiner der bekannten Ausführungsformen verwendet werden, beispielsweise als Assays in homogener Phase, als Festphasenassays, als indirekte oder direkte Assays, als Sandwich-Assays, als Assays mit kompetitiver Hemmung, in Irnmunoblot-Verfahren wie „Western Blotting" oder als zeitlich aufgelöste Immunfluoreszenz-Assays. Alternativ kann die Bestimmung der Glykoproteine auch durch Messung der Verschiebung der Elutions- oder Migrationszeit eines Komplexes aus Glykoprotein und Antikörper im Vergleich zu dessen reiner Elutions- oder Migrationszeit in flüssigchromatographischen und elektrophoretischen Methoden erfolgen.
In CHO-Zellen exprimiertes rekombinantes humanes EPO kann beispielsweise vorteilhaft nachgewiesen werden, indem man eine zu untersuchende Probe zunächst entweder direkt oder indirekt, beispielsweise via polyklonale oder monoklonale anti-EPO-Antikörper, die für EPO spezifisch sind, die Zielmoleküle aber nicht unterscheiden können, kovalent oder nicht-kovalent an einen geeigneten Träger, beispielsweise Plastikoberflächen aus Polystyrol oder Polypropylen, Nitrocellulose- Membranen oder Glasperlen bindet. Anschließend wird mit erfindungsgemäßen monoklonalen Antikörpern, beispielsweise Maus- Antikörpern, inkubiert. Die gebundenen Antikörper werden dann mit einem anti-Maus-Antikörper detektiert. Zur Sichtbarmachung der Anwesenheit von rekombinantem EPO kann ein anti-Maus-Aπtikörper verwendet werden, der mit alkalischer Phosphatase oder mit Peroxidase konjugiert oder mit einem Fluoreszenzmarker oder einem radioaktiven Marker versehen ist, wodurch eine meßbare Färb-, Fluoreszenz- oder Chemilumineszenzreaktion erfolgt bzw. die Radioaktivität nachgewiesen wird.
Die Antikörper bzw. die Immunoassays der vorliegenden Erfindung eignen sich daher besonders, um rekombinante humane Glykoproteine in Gegenwart der entsprechenden homologen endogenen Proteine nachzuweisen. Sie können daher vorteilhaft in der medizinischen Forschung und bei Dopinganalysen eingesetzt werden.
Beispiele
Herstellung eines Neu5Gc-α-(2→3')-lactosamin-3-aminopropylglvkosids
Die Herstellung des Neu5Gc-α-(2- 3')-lactosamin-3-aminopropylglykosids der Formel III erfolgte entsprechend dem Reaktionsschema I, worin Bz einen Benzoylrest, Bn einen Benzylrest und Boc einen tert-Butoxycarbonylrest bedeutet, ausgehend von dem Sialyl-Donor Phenyl[methyl-5-acetamido- 4,7,8,9-tetra-0-acetyl-3,5-dideoxy-2-thio-D-glycero-α,ß-D-galacto-2-nonulo- pyranosidjonat (2), das wie bei A. Marra und P. Sinay (Carbohydr. Res., 187:35-42; 1989) beschrieben erhältlich ist. Das Ausgangsmaterial 2 wird mit Boc20 und 4-Dimethylaminopyridin (DMAP) in trockenem THF unter Rückfluß, wie bei A.A. Sherman et al. (Carbohydr. Res. 330:445-458, 2001 ) beschrieben, zum Phenyl[methyl-4,7,8,9-tetra-0-acetyl-5-(N-tert-butoxy- carbonylacetamido)-3,5-dideoxy-2-thio-D-glycero- ,ß-D-galacto-2-nonulo- pyranosidjonat (3) umgesetzt (i), welches anschließend durch vollständige N- und O-Deacetylierung in MeOH/MeONa (ii) und Per-O-Acetylierung mit Ac20 in Pyridin (iii) in Verbindung 4 überführt wird. Verbindung 4 wird dann durch Abspaltung der Boc-Gruppe mit 90%iger wäßriger CF3C02H in Verbindung 5 überführt (iv) und dann mit AcOCH2C(0)CI in Gegenwart von Et3N bei 0°C in CH2CI2 zu einer Mischung der Verbindungen 6 und 7 umgesetzt (v).
3-Trifluoracetamidopropyl-(2,3,4,6-tetra-0-benzoyl-ß-D-galactopyrano-syl)- (1-»4)-2-acetamido-3,6-di-0-benzyl-2-deoxy-ß-D-glucopyranosid (11 ), hergestellt aus einer Mischung aus Benzobromgalactose (8) und Thiogalactosid (9) durch Umsetzung mit 3-Trifluoracetamidopropyl-2- acetamido-3,6-di-0-benzyl-2-deoxy-ß-D-glucopyranosid (10) unter Zugabe von MS-4 A und AgOTf in CH2CI2 wie bei A.A. Sherman et al. (a.a.O.) beschrieben, wird durch Abspaltung der Benzoylgruppen in MeOH/MeONa in den geschützten Triolakzeptor 3-Trifluoracetamidopropyl-2-acetamido- 3,6-di-0-benzyl-2-deoxy-4-0-(6-0-benzyl-ß-D-galactopyranosyl)-ß-D-gluco- pyranosid (12) überführt (ii). Das erhaltene Produkt 12 wird mit der wie oben beschrieben hergestellten Verbindung 6 mit NIS, TfOH, MS-3 A, MeCN 18 h bei -20°C regio- und stereoselektiv zum Trisaccharid 13 sialyliert, wobei Verbindung 14 als Nebenprodukt anfällt. Verbindung 13 wird dann mit H2 an einem Pd-C-Katalysator in MeOH hydriert (viii) und mit KOH/H20 in das gewünschte Endprodukt der Formel III überführt.
Die erhaltene Verbindung der Formel III wurde mittels 13C-NMR und 1H-NMR untersucht. Die Ergebnisse sind in Tabelle 1 wiedergegeben.
Figure imgf000016_0001
Figure imgf000017_0001
Herstellung von Glykoneokonjugaten
Zur Immunisierung von Mäusen wurde das wie oben beschrieben erhaltene Neu5Gc-α-(2→3')-lactosamin-3-aminopropylglykosid der Formel III zur Herstellung von Antigen-Konjugaten mit KLH als Träger gekoppelt. Zum Test der Immunantwort und der Fusionsprodukte bzw. der monoklonalen Antikörper wurde dieses Oligosaccharid-Antigen ferner mit BSA als Träger gekoppelt. Die Kopplung an die Träger erfolgte mittels Glutaraldehyd/NaBH3CN (G.T. Hermanson, a.a.O.). Die Konjugate wurden mittels Gelfiltration (Superdex 75) gereinigt.
In analoger Weise wurde mit kommerziell erhältlicher α2,3-Sialyllactose ein Sialyllactose-BSA-Konjugat hergestellt.
Herstellung monoklonaler Antikörper gegen N-glvcosidisch gebundene NGNA
Zur Herstellung monoklonaler Antikörper gegen NGNA wurden insgesamt 9 Mäuse (2 Stämme, Balb/c und NMRI) 4 x im Abstand von 14 Tagen mit dem wie oben hergestellten KLH-Konjugat und Adjuvans (100 μg pro Maus und Injektion) immunisiert. Als Adjuvans wurde komplettes Freund'sches Adjuvans verwendet. Die Immunantwort wurde im ELISA auf BSA-NGNA- Konjugat getestet. 14 Tage später erhielten zwei ausgewählte NMRI-Mäuse, mit denen die besten Ergebnisse erhalten worden waren, 3 Injektionen an aufeinanderfolgenden Tagen (KLH-Konjugat in PBS (10mM Natrium/Kaliumphosphat, pH 7,2, 0,8 % NaCI, 0,02 % KCI); 100 μg pro Maus und Injektion). Diese Folgeinjektionen erfolgten mit inkomplettem Freund'schen Adjuvans. Einen Tag nach der letzten Injektion wurden die Mäuse getötet und die Milzen entnommen. Die Milzzellen wurden isoliert und zur Herstellung von Hybridomen mit nicht produzierenden Myelomzellen (PAI-Zellen, J.W. Stocker et al., Res. Disclos. 21713, 1982) nach der Methode von Köhler und Milstein (G. Köhler und C. Milstein, a.a.O.) fusioniert.
Die Selektion positiver Hybridome erfolgte wiederum im ELISA auf NGNA-BSA-Konjugat sowie auf rekombinantem EPO (ERYPO®, Janssen Cilag). Hybridome, die das NGNA-BSA-Konjugat und das rekombinante EPO erkannten, wurden in an sich bekannter Weise rekloniert, stabilisiert und cryokonserviert.
Von 4 ausgewählten Hybridomzellinien, NGNA-1A3 (DSM ACC2573), NGNA-3H5 (DSM ACC2574), NGNA-6G5 (DSM ACC2575) und NGNA-7A4 (DSM ACC2576), wurden aus serumfreien Zellkulturüberständen monoklonale Antikörper mittels thiophiler Adsorptionschromatographie (AT-POROS 50-OH, nanoTools Antikörpertechnik GmbH und Co KG, Teningen, Deutschland) und nachfolgender Gelfiltration (Superdex 200) gereinigt. Die Qualität der Antikörper wurde nach der Methode von Lämmli mittels SDS-PAGE unter reduzierenden Bedingungen überprüft und die Antikörperkonzentration mittels Messung der OD280 bestimmt. Die Antikörper konnten sämtlich der Subklasse lgG1 K zugeordnet werden.
ELISA
Der Test der Immunantwort und die Bestimmung der Reaktivität der Antikörper gegen NGNA erfolgte mittels ELISA. Hierzu wurden die ELISA- Platten mit NGNA-BSA-Konjugat, Sialyllactose-BSA-Konjugat oder mit verschiedenen Glycoproteinen beschichtet.
Zur Beschichtung mit NGNA-BSA-Konjugat und Sialyllactose-BSA-Konjugat wurden jeweils 0,5 μg Konjugat in 50 μl 0,1 M Na2HP0 pro Vertiefung eingestzt (2 h, 37°C). Die Platten wurden 1 h mit 1 % BSA blockiert und waren dann gebrauchsfertig.
Glykoproteine, mit denen die ELISA-Platten beschichtet wurden, waren rekombinantes EPO (ERYPO®; c = 84 μg/ml), rekombinantes IFN-ß aus CHO-Zellen (c = 133 μg/ml), Mucin (Sigma M 1778), Glycophorin MM (Sigma G7903) und Glycophorin NN (Sigma G5017). Von den genannten Proteinen wurden Proteinverdünnungen (c = μg/ml in 0,1 M Na2HP04) hergestellt. Pro Vertiefung wurden 50 μl (= 0,5 μg) appliziert. Zum Test der Immunantwort im ELISA wurden Verdünnungsreihen der Mausseren (in 1 % BSA/PBS) eingesetzt. Zellkulturüberstände der Hybridomzellen zur Identifizierung positiver Fusionsprodukte im ELISA wurden unverdünnt eingesetzt. Zur Charakterisierung der jeweiligen Antikörper im ELISA wurden definierte Antikörperkonzentrate verwendet, wobei Verdünnungsreihen ausgehend von einer Startverdünnung von 4 μg/ml hergestellt wurden.
Alle verwendeten getesteten Antikörper sowie das als Zweit-Antikörper eingesetzte, mit Meerrettichperoxidase (HRPO) gekoppelte Ziege-anti-Maus- IgG-HRPO (Jackson Laboratories, INC., No. 115-036-008) wurden zur Herstellung einer gebrauchsfertigen Lösung mit der obigen Blockierlösung verdünnt.
Gebrauchsfertige ELISA-Platten wurden mit Serumverdünnungen, Zellkulturüberständen oder Antikörperverdünnungen (50 μl pro Vertiefung) 1 h bei Raumtemperatur inkubiert und 5 x mit PBS gewaschen. Nach Inkubation mit dem Zweit-Antikörper, Ziege-anti-Maus-lgG-HRPO (Verdünnung 1 :5000, 1 h, Raumtemperatur), wurde nochmals 5 x mit PBS gewaschen und mit 2,2'Azino-bis(3-ethylbenzthiazolinsulfonsäure) (ABTS) entwickelt (OD415).
Reaktivität der Antikörper auf den GIvkoneokoniugaten NGNA-BSA und Sialyllactose-BSA
Die aus den Hybridomzellinien, NGNA-1A3 (DSM ACC2573), NGNA-3H5 (DSM ACC2574), NGNA-6G5 (DSM ACC2575) und NGNA-7A4 (DSM ACC2576) resultierenden monoklonalen Antikörper wurden mittels ELISA wie oben beschrieben hinsichtlich ihrer Reaktivität mit NGNA-BSA- und Silyllactose-BSA-Konjugaten verglichen. Die Reaktivität wurde über Verdünnungsreihen bestimmt (Startkonzentration 4 μg/ml). Die Ergebnisse sind in der nachfolgenden Tabelle 2 zusammengefaßt. Angegeben ist jeweils die zur Erzeugung eines Signals > doppelter Background erforderliche Antikörperkonzentration in Nanogramm pro Milliliter. Tabelle 2
Antikörper-Reaktivität gegenüber NGNA-BSA- und α2,3-Sialyllactose-BSA-
Konjugaten
Klon NGNA-BSA Sialyllactose-BSA
NGNA-1A3 2,0 ng/ml 1000 ng/ml
NGNA-3H5 2,0 ng/ml 1000 ng/ml
NGNA-6G5 2,0 ng/ml 1000 ng/ml
NGNA-7A4 2,0 ng/ml 1000 ng/ml
Die Ergebnisse zeigen, daß die erhaltenen Antikörper spezifisch für NGNA sind.
Reaktivität der Antikörper mit in CHO-Zellen produziertem rekombinantem EPO und IFN-ß
Zum Test der Spezifität wurden die obigen monoklonalen Antikörper mittels ELISA ferner wie oben beschrieben hinsichtlich ihrer Reaktivität gegenüber in CHO-Zellen produziertem rekombinantem EPO- und IFN-ß-Protein verglichen.
Die Reaktivität wurde wie oben beschrieben über Verdünnungsreihen bestimmt. Die Ergebnisse sind in der nachfolgenden Tabelle 3 zusammengefaßt. Angegeben ist jeweils die zur Erzeugung eines Signals > doppelter Background erforderliche Antikörperkonzentration in Mikrogramm pro Milliliter. Tabelle 3
Antikörper-Reaktivität gegenüber in CHO-Zellen produzierten rekombinanten Proteinen
Klon EPO IFN-ß
NGNA-1A3 0,5 μg/ml 2,0 μg/ml
NGNA-3H5 0,5 μg/ml 2,0 μg/ml
NGNA-6G5 0,5 μg/ml 1 ,0 μg/ml
NGNA-7A4 1 ,0 μg/ml 2,0 μg/ml
Die Ergebnisse zeigen, daß beide rekombinanten Proteine erkannt wurden, wobei das rekombinante EPO eine niedrigere Antikörperkonzentration erfordert als das rekombinante IFN-ß.
Reaktivität der Antikörper mit kommerziell erhältliche Glykoproteinen
Die obigen monoklonalen Antikörper wurden mittels ELISA ferner wie oben beschrieben hinsichtlich ihrer Reaktivität gegenüber den kommerziell erhältlichen Glykoproteinen Mucin Typ II (Sigma M 1778), Glycophorin MM (Sigma G7903) und Glycophorin NN (Sigma G5017) unterucht. Diese Glycoproteine enthalten O- und N-gebundene Oligosaccharide mit N- Acetylneuraminsäure (NANA) in α.2,3- bzw. α2,6-Stellung.
Die Reaktivität wurde wie oben beschrieben über Verdünnungsreihen (Startkonzentration 4 μg/ml) bestimmt. Die Ergebnisse sind in der nachfolgenden Tabelle 4 zusammengefaßt. Angegeben ist jeweils die zur Erzeugung eines Signals > doppelter Background erforderliche Antikörperkonzentration in Mikrogramm pro Milliliter. Tabelle 4
Antikörper-Reaktivität gegenüber kommerziell erhältliche Glykoproteinen
Klon Glycophorin MM Glycophorin NN Mucin Typ II
NGNA-1A3 > 4 μg/ml > 4,0 μg/ml > 4 μg/ml
NGNA-3H5 > 4 μg/ml > 4,0 μg/ml > 4 μg/ml
NGNA-6G5 > 4 μg/ml > 4,0 μg/ml > 4 μg/ml
NGNA-7A4 > 4 μg/ml > 4,0 μg/ml > 4 μg/ml
e Ergebnisse zeigen, daß die Signale nicht über dem Background liegen.

Claims

Ansprüche
1. Monoklonaler Antikörper, welcher spezifisch an Glykoproteine bindet, die N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure umfassen, sowie Derivate dieser Antikörper.
2. Antikörper nach Anspruch 1 , wobei das Glykoprotein ein rekombinantes humanes Glykoprotein ist.
3. Antikörper nach Anspruch 1 oder 2, welcher ein IgG-Antikörper ist.
4. Antikörper nach irgendeinem der Ansprüche 1 bis 3, erhältlich aus einer Hybridomazelle wie hinterlegt unter der Hinterlegungsnummer DSM ACC2573, DSM ACC2574, DSM ACC2575 bzw. DSM ACC2576.
5. Oligosaccharid-Antigen, welches ein gegebenenfalls über einen Spacer an einen Träger gekoppeltes Oligosaccharid umfaßt, das eine endständige glykosidisch gebundene N-Glykolylneuraminsäure trägt.
6. Antigen nach Anspruch 5, wobei die endständige N-Glykolylneuraminsäure über eine α-glykosidische Bindung mit der benachbarten Monosaccharideinheit, insbesondere einem Galactosyl- Rest, verknüpft ist.
7. Antigen nach Anspruch 5 oder 6, wobei das Oligosaccharid eine Trisaccharidstruktur der Formel I
Figure imgf000024_0001
umfaßt.
8. Antigen nach irgendeinem der Ansprüche 5 bis 7, wobei der Träger ein nichtimmunogener Träger ist.
Antigen nach Anspruch 8, wobei der nichtimmunoge Träger Rinderserumalbumin (BSA) ist.
10. Trisaccharid der allgemeinen Formel II
Figure imgf000025_0001
worin Z ein Wasserstoffatom oder eine Gruppe B-X bedeutet, wobei X eine reaktive Gruppe bedeutet, über die das Trisaccharid an einen Träger gekoppelt werden kann, und B eine Einfachbindung oder eine Spacergruppe bedeutet.
11. Trisaccharid nach Anspruch 10 der Formel III
Figure imgf000025_0002
12. Hybridoma-Zelle, die einen monoklonalen Antikörper nach irgendeinem der Ansprüche 1 bis 4 produziert, erhältlich durch Fusion antikörperproduzierender Zellen eines zuvor mit einem Antigen nach irgendeinem der Ansprüche 5 bis 9 immunisierten Säugers mit einer Myeloma-Zelle und anschließende Selektion.
13. Hybridoma-Zelle nach Anspruch 12, wobei die antikörperproduzierende Zelle die Milzzelle einer Maus ist.
14. Hybridoma-Zelle nach irgendeinem der Ansprüche 12 oder 13, wie hinterlegt unter den Hinterlegungsnummern DSM ACC2573, DSM ACC2574, DSM ACC2575 und DSM ACC2576.
15. Verwendung eines monoklonalen Antikörpers nach irgendeinem der Ansprüche 1 bis 4 oder eines Derivats davon in einem Immunoassay zur Bestimmung von Glykoproteinen, die N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glykolylneuraminsäure umfassen.
16. Verwendung nach Anspruch 15, wobei das Glykoprotein ein rekombinantes Glykoprotein ist.
17. Verwendung nach Anspruch 15 oder 16, wobei das Glykoprotein ein rekombinantes humanes Glykoprotein ist, beispielsweise Erythropoietin, Gewebe-Plasminogen-Aktivator, Follikel- stimulierendes Hormon, Intrinsic-Faktor, ein Kolonie-stimulierender Faktor (CSF), Faktor VII, Faktor VIII oder ein Interferon oder Interleukin ist.
18. Testkit für einen Immunoassay zur Bestimmung von Glykoproteinen, die N-Glykanketten mit einer endständigen glykosidisch gebundenen N-Glycolylneuraminsäure umfassen, enthaltend einen monoklonalen Antikörper nach irgendeinem der Ansprüche 1 bis 4 oder ein Derivat davon.
19. Testkit nach Anspruch 18, wobei der Assay ein Festphasenassay ist.
20. Testkit nach Anspruch 18 oder 19, wobei der Assay ein Sandwich- Assay, vorzugsweise ein ELISA, RIA oder IFA ist.
21. Verwendung eines Antigens nach irgendeinem der Ansprüche 5 bis 9 zur Herstellung von Antikörpern.
PCT/EP2002/012579 2001-11-09 2002-11-11 Anti-n-glykolyl-neuraminsäure-antikörper und ihre verwendung zur bestimmung von glykoproteinen WO2003040185A2 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP02785382A EP1442063A2 (de) 2001-11-09 2002-11-11 Anti-n-glykolyl-neuraminsäure-antikörper und ihre verwendung zur bestimmung von glykoproteinen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10155081 2001-11-09
DE10155081.2 2001-11-09

Publications (2)

Publication Number Publication Date
WO2003040185A2 true WO2003040185A2 (de) 2003-05-15
WO2003040185A3 WO2003040185A3 (de) 2003-09-25

Family

ID=7705189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2002/012579 WO2003040185A2 (de) 2001-11-09 2002-11-11 Anti-n-glykolyl-neuraminsäure-antikörper und ihre verwendung zur bestimmung von glykoproteinen

Country Status (2)

Country Link
EP (1) EP1442063A2 (de)
WO (1) WO2003040185A2 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261255A1 (de) * 2003-07-15 2010-12-15 The Regents of The University of California Verfahren zur Reinigung von Sialinsäure-spezifischen Antikörpern und Zusammensetzung, die die affinitätsgereinigten Antikörper enthält
US9879087B2 (en) 2014-11-12 2018-01-30 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
US11028181B2 (en) 2015-11-12 2021-06-08 Seagen Inc. Glycan-interacting compounds and methods of use
US11253609B2 (en) 2017-03-03 2022-02-22 Seagen Inc. Glycan-interacting compounds and methods of use
US11401330B2 (en) 2016-11-17 2022-08-02 Seagen Inc. Glycan-interacting compounds and methods of use

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013151649A1 (en) 2012-04-04 2013-10-10 Sialix Inc Glycan-interacting compounds
CA2967595A1 (en) 2014-11-12 2016-05-19 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
DEVINE P L ET AL: "THE BREAST TUMOR-ASSOCIATED EPITOPE DEFINED BY MONOCLONAL ANTIBODY 3E1.2 IS AN O-LINKED MUCIN CARBOHYDRATE CONTAINING N GLYCOLYLNEURAMINIC ACID" CANCER RESEARCH, Bd. 51, Nr. 21, 1991, Seiten 5826-5836, XP001121854 ISSN: 0008-5472 in der Anmeldung erw{hnt *
MORENO E ET AL: "DELINEATION OF THE EPITOPE RECOGNIZED BY AN ANTIBODY SPECIFIC FOR N-GLYCOLYLNEURAMINIC ACID-CONTAINING GANGLIOSIDES" GLYCOBIOLOGY, IRL PRESS,, GB, Bd. 8, Nr. 7, 1998, Seiten 695-705, XP000700252 ISSN: 0959-6658 *
OZAWA H ET AL: "Generation of murine monoclonal antibodies specific for N-glycolylneuraminic acid-containing gangliosides" ARCHIVES OF BIOCHEMISTRY AND BIOPHYSICS, NEW YORK, US, US, Bd. 294, Nr. 2, 1. Mai 1992 (1992-05-01), Seiten 427-433, XP002102251 ISSN: 0003-9861 *
SHERMAN A A ET AL: "Preparative route to N-glycolylneuraminic acid phenyl 2-thioglycoside donor and synthesis of Neu5Gc-alpha-(2->3')-lactosamine 3-aminopropyl glycoside" CARBOHYDRATE RESEARCH, ELSEVIER SCIENTIFIC PUBLISHING COMPANY. AMSTERDAM, NL, Bd. 337, Nr. 5, 1. M{rz 2002 (2002-03-01), Seiten 451-457, XP004349736 ISSN: 0008-6215 *
SHERMAN A A ET AL: "Synthesis of Neu5Ac- and Neu5Gc-alpha-(2->6')-lactosamine 3-aminopropyl glycosides" CARBOHYDRATE RESEARCH, ELSEVIER SCIENTIFIC PUBLISHING COMPANY. AMSTERDAM, NL, Bd. 330, Nr. 4, 28. Februar 2001 (2001-02-28), Seiten 445-458, XP004231155 ISSN: 0008-6215 *
USUBA O ET AL: "ESTABLISHMENT OF A HUMAN MONOCLONAL ANTIBODY TO HANGANUTZIU-DEICHER ANTIGEN AS A TUMOR-ASSOCIATED CARBOHYDRATE ANTIGEN" JAPANESE JOURNAL OF CANCER RESEARCH, Bd. 79, Nr. 12, 1988, Seiten 1340-1348, XP009004005 ISSN: 0910-5050 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2261255A1 (de) * 2003-07-15 2010-12-15 The Regents of The University of California Verfahren zur Reinigung von Sialinsäure-spezifischen Antikörpern und Zusammensetzung, die die affinitätsgereinigten Antikörper enthält
US9879087B2 (en) 2014-11-12 2018-01-30 Siamab Therapeutics, Inc. Glycan-interacting compounds and methods of use
US11028181B2 (en) 2015-11-12 2021-06-08 Seagen Inc. Glycan-interacting compounds and methods of use
US11401330B2 (en) 2016-11-17 2022-08-02 Seagen Inc. Glycan-interacting compounds and methods of use
US11253609B2 (en) 2017-03-03 2022-02-22 Seagen Inc. Glycan-interacting compounds and methods of use

Also Published As

Publication number Publication date
WO2003040185A3 (de) 2003-09-25
EP1442063A2 (de) 2004-08-04

Similar Documents

Publication Publication Date Title
CN101432301B (zh) 具有增强的抗炎性和降低的细胞毒性特性的多肽以及相关方法
DE3922873A1 (de) Spezifische antikoerper gegen troponin t, ihre herstellung und verwendung in einem reagenz zur bestimmung von hermuskelnekrosen
Richards et al. The binding of IgE to murine Fc epsilon RII is calcium-dependent but not inhibited by carbohydrate.
AT400577B (de) Verfahren zur herstellung eines monoklonalen antikörpers und verfahren zum nachweisen von malignen zellen
Atkinson et al. Characterization of placentation-specific binucleate cell glycoproteins possessing a novel carbohydrate. Evidence for a new family of pregnancy-associated molecules.
Wyss et al. Composition and Sequence Specific Resonance Assignments of the Heterogeneous N-Linked Glycan in the 13.6 kDa Adhesion Domain of Human Cluster of Differentiation 2 (CD2) as Determined by NMR on the Intact Glycoprotein
Zhang et al. Glycosylation of IgA is required for optimal activation of the alternative complement pathway by immune complexes.
KR0181948B1 (ko) 인체 IgE에 대한 모노클론 항체
Ito et al. Carbohydrates as antigenic determinants of tumor‐associated antigens recognized by monoclonal anti‐tumor antibodies produced in a syngeneic system
EP0339443B1 (de) Monoklonaler Antikörper zur selektiven immunologischen Bestimmung von intaktem Prokollagen Peptid (Typ III) und Prokollagen (Typ III) in Körperflüssigkeiten
WO2003040185A2 (de) Anti-n-glykolyl-neuraminsäure-antikörper und ihre verwendung zur bestimmung von glykoproteinen
DE19828466A1 (de) Entstörung von Immunoassays durch Substanzen, die aus den Framework-Regionen von Antikörpern abgeleitet sind
EP0955361B1 (de) Monoklonale Antikörper gegen tumorassoziierte Antigene, Verfahren zu ihrer Herstellung sowie ihre Verwendung
US20150191544A1 (en) Glycoprotein
KR960014441B1 (ko) 알파 2-3 결합을 인지하는 단일클론성 항체
EP0696597B1 (de) Monoklonale Antikörper zur selektiven immunologischen Bestimmung von hochmolekularen, intakten Lamininformen in Körperflüssigkeiten
EP0262571B1 (de) Neue monoklonale Antikörper gegen IFN-omega, Verfahren zu ihrer Herstellung und deren Verwendung zur Reinigung sowie zum Nachweis von IFN-omega
EP0289930B1 (de) Monoklonaler Antikörper zur selektiven immunologischen Bestimmung von intaktem Prokollagen Peptid (Typ III) und Prokollagen (Typ III) in Körperflüssigkeiten
JP3150991B2 (ja) ハイブリドーマの製造法
EP0406259B1 (de) Antikörper, verfahren zu ihrer herstellung, klone zur erzeugung der antikörper sowie verwendung der antikörper zur diagnose und therapie von tumoren
DE4329004A1 (de) Monoklonale Antikörper gegen das Thomsen-Friedenreich-Antigen, ihre Herstellung und ihre Verwendung zum Tumornachweis
Ishikawa et al. Involvement of Cell Surface Carbohydrates in the Sexual Cell Fusion of Dictyostelium discoideum: (Dictyostellium discoideum/sexual cell fusion/monoclonal antibodies/surface carbohydrates)
DE19529026C2 (de) Monoklonale Antikörper gegen humanes Interleukin-10
DE3844628C2 (en) New antibodies reactive with N-glycan structures of cell membrane surf
EP1829894A1 (de) Monoklonale Antikörper gegen Kollagen XVII

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A2

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SC SD SE SG SI SK SL TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A2

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LU MC NL PT SE SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2002785382

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2002785382

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP

WWW Wipo information: withdrawn in national office

Ref document number: 2002785382

Country of ref document: EP