WO2003035240A1 - Systeme et dispositif de traitement de fluide supercritique et sous-critique - Google Patents

Systeme et dispositif de traitement de fluide supercritique et sous-critique Download PDF

Info

Publication number
WO2003035240A1
WO2003035240A1 PCT/JP2002/010509 JP0210509W WO03035240A1 WO 2003035240 A1 WO2003035240 A1 WO 2003035240A1 JP 0210509 W JP0210509 W JP 0210509W WO 03035240 A1 WO03035240 A1 WO 03035240A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
fluid
flow path
processing
super
Prior art date
Application number
PCT/JP2002/010509
Other languages
English (en)
French (fr)
Inventor
Kunio Arai
Hiroshi Inomata
Richard Lee Smith, Jr.
Original Assignee
Tohoku Techno Arch Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Techno Arch Co., Ltd. filed Critical Tohoku Techno Arch Co., Ltd.
Priority to US10/486,907 priority Critical patent/US7335296B2/en
Priority to DE10297192T priority patent/DE10297192T5/de
Publication of WO2003035240A1 publication Critical patent/WO2003035240A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/008Processes carried out under supercritical conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/004Multifunctional apparatus for automatic manufacturing of various chemical products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J3/00Processes of utilising sub-atmospheric or super-atmospheric pressure to effect chemical or physical change of matter; Apparatus therefor
    • B01J3/006Processes utilising sub-atmospheric pressure; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00027Process aspects
    • B01J2219/00038Processes in parallel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00162Controlling or regulating processes controlling the pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00049Controlling or regulating processes
    • B01J2219/00171Controlling or regulating processes controlling the density
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention provides a high-pressure field for various high-pressure fluid utilization processes that do not require high-pressure pumps or compressors to perform extraction separation, reaction synthesis, crystallization, etc. using a supercritical or subcritical fluid.
  • the present invention relates to a supercritical fluid processing system and apparatus. Background art
  • Carbon dioxide and water are extremely safe fluids and are expected to be used as environmentally compatible substances in general-purpose operations such as extraction, washing, and waste disposal. It has become a major obstacle to the spread of critical fluid processes. Furthermore, the force is being found the effectiveness of the various reactions in a supercritical fluid s, in the laboratory, the use of these high-pressure generating machine is an obstacle, which inhibits the spread of research. Furthermore, the operating and experimental pressure conditions are limited by the specifications of the high-pressure generating machine, making it difficult to select optimal conditions in many aspects. For example, in supercritical carbon dioxide extraction, the operating conditions are increasing under high pressure, and the extraction operation at 500 atm is becoming mainstream at present, but it is almost lower than this pressure in the laboratory Equipment is used. Moreover, it is desired that the pressure be further increased, and operation at 700 and 1,000 atm is also required.
  • a compressor When selecting a compressor to be used for high-pressure operation, consider the operating pressure range, fluid flow rate, etc. In general, the type of compressor is determined. However, in supercritical or subcritical fluid processes, the type of fluid, flow rate, pressure, etc., are often different from those of ordinary chemical processes, making it difficult to select a compressor. In addition, in the supercritical utilization process in which the pressure is further increased as described above, the compressor itself may be special, and its selection is one of the major factors in economic considerations.
  • Patent 3079157 Extraction washing system using supercritical fluid as a solvent.
  • the drive of fluid transport is determined based on the density difference, and there is a limit to the application of a differential pressure during fluid transport. For example, if a condenser and an evaporator are installed and a pressure difference is generated using the difference in density between gas and liquid, a considerable height difference must be taken because the head is provided at the height difference between the condenser and the evaporator. Installation location is limited.
  • fittings such as pipes for transportation and valves such as valves must be determined in consideration of pressure loss, and large-flow treatment requires considerable contrivance.
  • a pressure difference is substantially given by a change in a state quantity of a fluid due to the transfer of only thermal energy, whereby a high pressure fluid such as a supercritical or subcritical fluid can be used without using a special compression device. It is an object of the present invention to provide a super-critical fluid processing system and apparatus capable of efficiently forming a high-pressure field in a process. Disclosure of the invention
  • a super / subcritical fluid processing system of the present invention provides a high pressure field in a super or subcritical state in at least one processing vessel formed in a flow path.
  • the temperature / pressure / volume change (PVT change) of the high-pressure fluid due to thermal energy is positively used, and the change in the state quantity of the fluid, that is, the pressure difference only by thermal energy Therefore, a high-pressure field can be efficiently provided to a process using a high-pressure fluid such as a supercritical or subcritical fluid without using a special compression device.
  • the supercritical fluid processing system of the present invention heats a fluid filled in a high-pressure device connected to the processing vessel by a flow path, and thermally expands the fluid in the high-pressure device. Is generated, and a fluid at a predetermined temperature and pressure is sent out into the processing container by utilizing its own pressure generated by thermal expansion.
  • a fluid at a predetermined temperature and pressure is sent from the high-pressure device into the processing container by its own pressure in the high-pressure device caused by thermal expansion. No need to prepare.
  • a super / subcritical fluid processing system of the present invention is characterized in that at least two or more of the high-pressure devices are connected to the processing container by a flow path, and at least one high-pressure device is the processing container.
  • the other high-pressure device is in the thermal expansion process or the fluid delivery standby state in the high-pressure device.
  • a flow path including the processing vessel and the high-pressure device basically constitutes a circulation flow path.
  • the fluid that has passed through the high-pressure unit is returned to the condenser, and the fluid circulates so that it is refilled in the high-pressure unit again.
  • the used fluid can be reused, so that resource saving can be achieved and energy loss can be reduced.
  • PT / JP02 / 10509 the super / subcritical fluid processing system of the present invention comprises: a high pressure device, a flow path filled with a fluid from a condenser, a flow path connected to a processing vessel, Further, a flow path connected to the condenser is provided, and the opening / closing timing of each is controlled by a control valve device.
  • both the control valve devices are closed, the high-pressure device is heated, and when the desired pressure is reached, the valve device on the processing container side is released.
  • the fluid that has risen to above is sent into the processing container, and the inside of the processing container can be constantly maintained at a stable pressure and temperature.
  • a super- and sub-critical fluid processing apparatus of the present invention is an apparatus for setting at least one processing vessel formed in a flow path to a super- or sub-critical high-pressure field. At least two or more heatable high-pressure devices are connected to the processing vessel by a flow path, and each flow path is provided with a valve device, and at least one high-pressure device supplies a fluid into the processing vessel. At this time, the opening and closing timing of the valve device is controlled so that the other high-pressure device enters a thermal expansion process or a fluid delivery standby state in the high-pressure device.
  • the plurality of high-pressure devices (one cylinder) can sequentially and steadily send out the high-pressure fluid into the processing container sequentially.
  • the interior can be stably maintained at a desired pressure and flow rate.
  • a super / subcritical fluid treatment apparatus of the present invention has a liquid storage section connected at least to the upstream side of the high-pressure device via a valve device, and a valve section to the downstream side.
  • a processing vessel is connected via a pulp device, and at least temporarily closes both pulp apparatuses when the high-pressure device is heated, so that the pressure in the high-pressure device can be increased to a predetermined pressure.
  • both the control valve devices are closed, the high-pressure device is heated, and when the desired pressure is reached, the valve device on the processing container side is released.
  • the fluid that has risen to above is sent into the processing container, and the inside of the processing container can be constantly maintained at a stable pressure and temperature.
  • PC leak 2/10509 Used as an extractor, reactor, washing machine, dyeing machine, crystallizer, etc., or an extractor, reactor, washing machine, dyeing machine, crystallizer, etc. It is designed to be attached.
  • the high-pressure field obtained in the processing container is used as a reactor, an extractor, a washing device, and the like, the fluid flow state and the temperature distribution in the processing container can be freely controlled. Processing operations can be performed quickly and efficiently.
  • a flow path including the processing vessel and the high-pressure device is configured as a circulation flow path including an evaporator and a condenser.
  • the fluid circulates so that at least the fluid that has passed through the processing vessel and the high-pressure device is returned to the evaporator and the condensing container, and is refilled in the high-pressure device again.
  • a fluid recirculation is generated by a combination of an evaporator, a condenser, and the like, so that a pump is not required, resources can be saved by reusing used fluid, and energy loss can be reduced.
  • FIG. 1 is a block diagram showing a basic example of a circulation type super / subcritical fluid processing apparatus.
  • FIG. 2 is a processing process diagram (system flow) of the supercritical fluid processing apparatus of FIG.
  • FIG. 3 is a processing process diagram (system flow) in the super ⁇ subcritical fluid processing apparatus of FIG.
  • FIG. 4 is a processing process diagram (system flow) in the supercritical fluid processing apparatus of FIG.
  • FIG. 5 is a process flow chart (system flow) in the supercritical fluid processing apparatus of FIG.
  • FIG. 6 is a processing process diagram (system flow) in the supercritical fluid processing apparatus of FIG.
  • FIG. 7 is a processing process diagram (system flow) of the supercritical fluid processing apparatus of FIG. 02 10509
  • Fig. 8 is a process flow diagram (system flow) in a one-way type super / subcritical fluid processing apparatus.
  • Fig. 9 is a process flow diagram (system flow) in a one-way type super / subcritical fluid processing apparatus.
  • FIG. 10 is a processing process diagram (system flow) in a one-way type super / subcritical fluid processing apparatus. .
  • Fig. 11 is a process flow diagram (system flow) in a one-way type super / subcritical fluid processing apparatus.
  • Fig. 12 is a process flow diagram (system flow) of a one-to-one type super / subcritical fluid processing apparatus.
  • Fig. 13 is a process flow diagram (system flow) in a one-way type super / subcritical fluid processing apparatus.
  • FIG. 1 shows a basic example of a circulation type super / subcritical fluid processing apparatus
  • FIGS. 2 to 7 show partially abstracted processing steps (system flow).
  • 8 to 13 show the partially abstracted processing steps (system flow) of the one-way type super'subcritical fluid processing apparatus.
  • the fluid used in the supercritical fluid processing system of this example that is, the solvent, is water, methanol, ethanol, propanol, etc., hydrocarbons such as paraffin, olefin, carbon dioxide, ammonia, etc. Liquefied gas and mixtures thereof.
  • the apparatus in Fig. 1 has a closed circuit that constitutes a circulation flow path, and the processing vessel 1, which functions as an extractor, reactor, washing machine, dyeing machine, crystallizer, etc., that contributes to the process field, and High-pressure unit 3 (31, 32, 3) that functions like a four-cylinder cylinder as a high-pressure generator
  • a circulation channel including an evaporator 5, a condenser 4, and a preheating precooler 2 disposed between the high-pressure unit 3 and the processing vessel 1, and each is connected by a closed channel.
  • the high-pressure unit 3 (31, 32, 33, 34) and high-pressure fluid utilization processing are performed.
  • the interior of the extractor, reactor, washing machine, dyeing machine, crystallizer, etc. as the processing vessel 1 is heat-insulated, and polymers, ceramics, etc. are used for this heat insulating material.
  • the high-pressure unit 3 (31, 32, 33, 34) is provided with a heating unit inside, and electric heating, hot water, steam, heat medium, high frequency, etc. are used as these heating sources.
  • the fluid circulates so that at least the fluid that has passed through the high-pressure unit 3 and the processing vessel 1 is returned to the evaporator 5 and the condenser 4, and is refilled in the high-pressure unit 3 again.
  • a heat transfer tube 141 is installed in the evaporator as shown in FIG.
  • the first condenser is stored in the condenser 4 from the condenser 4 for storing the fluid returned in the flow path 12 from the evaporator 5 via the pipe 13.
  • the condenser 4 may be appropriately provided with a cooling device to cool the high-temperature fluid circulated from the evaporator 5 to a predetermined temperature.
  • the fluid is automatically circulated by the mutual function of the evaporator 5 and the condenser 4, so that a driving device such as a pump can be omitted.
  • a flow path connecting the first high pressure device 31, the second high pressure device 32, the third high pressure device 33, and the fourth high pressure device 34 to the processing vessel 1, and a flow path 14 directly connecting to the evaporator are provided.
  • Pressure control valves 91, 92, 93, 94 are provided in the flow path leading to the processing vessel 1, and valves 101, 102, 103, 104 are provided in the flow path 14 leading directly to the evaporator. Is provided. Downstream of the pressure control valves 91, 92, 93, and 94, a preheating precooler 2 is provided via a pressure regulating valve 8, and the preheating precooler 2 is connected to the processing vessel via a pressure regulating valve 7. Connected to 1. The processing vessel 1 is connected to the evaporator 5 via a pressure regulating valve 6.
  • At least one or more raw material supply lines and the like are provided in a downstream vessel of a reactor or the like provided for a high-temperature high-pressure field, in addition to a high-pressure fluid supply line that is a closed flow path. ⁇ table 1 ⁇
  • the temperature and pressure of carbon dioxide in each component were 15 ° C and 5.087 Pa, respectively.
  • heating of the first high-pressure device 31 is started (cycle 2).
  • the valve 111 between the first high-pressure unit 31 and the condenser is closed, and the valve 1 between the second high-pressure unit 32, the third high-pressure unit 33 and the fourth high-pressure unit 34 and the condenser 4 is closed.
  • 1 2, 1 13, 1 14 are open.
  • the pressure control valve 91 92 93 94 and the valve 101 1 02 103 104 are also closed.
  • the first high-pressure device 31 is instantaneously brought to a predetermined pressure because it is heated in the adiabatic container.
  • the heating until the pressure (primary pressure release pressure) set by the pressure control valve 91 to reach 21 MPa was 45 ° C. sand That is, as shown in Fig. 4, when the first high pressure device reaches 21 MPa, the accompanying pressure control valve 91 operates, and the carbon dioxide (supercritical carbon dioxide) in the first high pressure device 31 becomes 40 °. It is supplied adiabatically to the reactor, which is the processing vessel 1 whose temperature is set to C (cycle 3). In the third stage of this cycle, the first high-pressure unit 31 is in a discharge state for supplying supercritical carbon dioxide to the reactor 1, and the operation is performed up to the set temperature of the first high-pressure unit 31 of 150 ° C. You can continue. At the same time, in this process, the valve 112 is closed, and the second high-pressure device 32 is in a heated state.
  • the valve 101 is released, and the fluid in the first high-pressure unit 31 flows through the flow path 14 as shown in FIG. It flows to the condenser 4 through the evaporator 5, and the pressure is reduced to the same pressure as the condenser 4 (cycle 4).
  • the temperature and pressure of the carbon dioxide in the first high-pressure unit 31 return to 31 ° C and 5.087 MPa.
  • the pressure control valve 92 is opened, and the supply of carbon dioxide to the reactor 1 is switched to the second high-pressure unit 32 that has reached a predetermined pressure.
  • the first high-pressure unit 31 then enters a reheating operation (cycle 6) as shown in FIG. 7, and the second high-pressure unit 32 is connected to the condenser 4 to supply liquefied carbon dioxide.
  • the high pressure device 33 has shifted to the pressure reducing operation. In the six stages of this cycle, the supply of carbon dioxide to the reactor 1 has been switched to the fourth high-pressure unit 34.
  • At least one or more raw material supply lines and the like are provided in a downstream vessel such as a reactor provided for a high temperature and high pressure field, in addition to a high pressure fluid supply line which is a closed flow path.
  • It consists of a four-cylinder cylinder (high-pressure unit), a reactor 1 that contributes to the process field, and an evaporator 5 and a condenser 4 that are used for water circulation. Also, in this example, a heat transfer tube 141 was installed so that the heat energy of the high-pressure generator was recovered by the heater so that it could be used effectively.
  • the first high-pressure device 31 is instantaneously brought to a predetermined pressure because it is heated in the adiabatic container.
  • the heating up to the pressure set by the pressure control valve 91 (primary pressure release pressure) 3 IMPa was 402 ° C. That is, as shown in FIG. 4, when the first high pressure device reaches 3 IMPa, the accompanying pressure control valve 91 operates, and the water (supercritical water) in the first high pressure device 31 becomes 400 ° C.
  • the heat is supplied adiabatically to the reactor, which is the processing vessel 1 whose temperature has been set at a predetermined temperature (cycle 3).
  • the first high pressure vessel 31 supplied supercritical water to reactor 1.
  • the operation is continued up to the preset temperature of the first high-pressure unit 31 of 500 ° C.
  • the valve 1 12 is closed, and the second high-pressure device 32 is in a heated state.
  • the valve 101 is released, and the fluid in the first high-pressure unit 31 flows as shown in FIG.
  • the fluid flows to the condenser 4 through the passage 14 and the evaporator 5, and the pressure is reduced to the same pressure as the condenser 4 (cycle 4).
  • the temperature and pressure of the water in the first high-pressure unit 31 return to 203 ° (: 1.655 Mpa.
  • the pressure control valve 92 is turned off. The supply of water to the opening reactor 1 is switched to the second high-pressure unit 32 which has reached a predetermined pressure.
  • the first high-pressure unit 31 then enters a heating operation (cycle 6) again as shown in FIG. 7, and the second high-pressure unit 32 is connected to the condenser 4 in a saturated water supply state. 3 3 has shifted to step-down operation. In the sixth stage of this cycle, the water supply to the reactor 1 was switched to the fourth high-pressure unit 34.
  • the process consists of a four-cylinder cylinder (high-pressure device) as a high-pressure generator, a reaction tube 1 as a processing vessel, a liquid receiving tank 16 and a preheating tube 2, as in the previous embodiment. Further, in the present embodiment, the structure of the circulation system is not adopted, and the structure is such that the flow of water is one-through. [Table 3]
  • the first high-pressure device 31 instantaneously reaches a predetermined pressure for heating the inside of the insulated container.
  • the heating up to 31 MPa set by the pressure control valve 91 was 56 ° C.
  • the accompanying pressure control valve 91 operates, and the water (supercritical water) in the first high pressure unit 31 becomes 400 MPa. It is supplied adiabatically to the preheating tube 2 and the reaction tube 1 whose temperature is set to ° C (cycle 3).
  • the first high-pressure unit 31 is in a discharge state for supplying high-pressure water to the preheating tube 2 and the reaction tube 1, and its operation is continued until the set temperature of the first high-pressure unit 31 reaches 500 ° C. Continues. At the same time, in this step, the second high-pressure device 32 is heated.
  • the first high-pressure unit 31 then enters a heating operation (cycle 6) again, and the second high-pressure unit 32 is connected to the reaction water storage tank 15 to supply water.
  • the high-pressure unit 33 has shifted to the step-down operation. In the six stages of this cycle, the water supply to the preheating tube 2 and the reaction tube 1 has been switched to the fourth high-pressure device 34.
  • the present invention is configured as described above, and when using a supercritical or subcritical fluid as various process solvents, the processing can be performed extremely efficiently without using a conventional compressor such as a pump. It became so.
  • Such inventions will enable the process to be more efficient and the resulting reduction in equipment costs in the industrialization of processes using supercritical fluids, which are expected from environmental issues, etc.
  • Special high-pressure equipment which was difficult to manufacture due to restrictions, can also be manufactured.
  • it can be an effective means of realizing the development of various synthesis processes using microreactors.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Extraction Or Liquid Replacement (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

明細書 超 ·亜臨界流体処理システム及び装置 技術分野
本発明は、 超臨界あるいは亜臨界流体を用いて抽出分離、 反応合成、 晶析など を進行させるにあたり、 高圧ポンプや圧縮機等の可動機械を不要とする各種高圧 流体利用プロセスに高圧場を提供する超 ·亜臨界流体処理システム及び装置に関 する。 背景技術
超臨界あるいは亜臨界流体を利用する抽出プロセスおよぴ反応などのプロセス において、 流体を超臨界あるいは亜臨界状態の高圧場とするためにポンプ、 コン プレッサ一などの各種高圧発生機械が使用される.。 このような高圧機械の使用に 際しては、高圧流体の漏れ、可動部分からの塵埃の発生、騒音等の問題を有する。 特に高圧機械類のメンテナンスは高度な専門知識を必要とすることから、 高圧プ 口セスの種々の操作への利用の障害となっている。
二酸化炭素や水は流体としては極めて安全な物で、 環境適合物質として、 抽出 や洗浄、 廃棄物処理等の汎用的な操作の応用が期待されているが、 高圧発生機械 類の使用がそれら超臨界流体プロセスの普及の大きな障害となっている。 さらに は、超臨界流体中での種々の反応の有効性が見出されつつある力 s、実験室的にも、 これら高圧発生機械の使用が障害となり、 研究分野の広がりを阻害している。 さらには、 操作や実験の圧力条件が高圧発生機械の仕様により、 制限され、 最 適な条件選定を多くの面で困難としている。 例えば、 超臨界二酸化炭素抽出にお いては、 その操作条件は高圧化が進行しており、 現在では 500気圧での抽出操作 が主流となりつつあるが、 実験室的には殆どこの圧力よりも低い装置が用いられ ている。 しかも、 この圧力はさらに高圧化が望まれており、 700気圧、 1, 000気圧 での操作も要求されつつある。
高圧操作に供する圧縮機の選定において、 操作圧力範囲、 流体流量などによつ て圧縮機の型式などが決められるのが一般的である。 しかしながら、 超臨界また は亜臨界流体プロセスにおいては通常の化学プロセスとは流体の種類、 流量、 圧 力などが異なることが多く、 そのため圧縮機の選定は容易ではない。 また、 前述 のようにさらなる高圧化が進む超臨界利用プロセスにおいては、 圧縮機自体も特 殊なものとなることがあり、 その選定は経済性検討において大きな要因の一つと なる。
一方、 上記、 超臨界あるいは亜臨界流体を利用する抽出プロセスおよぴ他プロ セスにおいてポンプを用いない方法が提案されている (特許 3079157:超臨界流 体を溶媒とする抽出おょぴ洗浄システム)。 しかしながら、 この方法は流体輸送の 駆動を密度差に求めるものであり、 流体輸送に際しての差圧の付与に限界が生じ る。 例えば、 凝縮器、 蒸発器を設置し、 気液の密度差を利用して差圧を発生させ る場合、 凝縮器と蒸発器の高低差でヘッドを付与するため、 相当な高低差を取ら なければならず、 設置場所が制限される。 しかも輸送のための配管の径ゃバルブ 等のフイッテング類も圧力損失を考慮して決定しなければならず、 大流量処理に はそれ相当の工夫を要する。
さらに、 最近、 超臨界水中での瞬間反応により力プロラタタムなど各種化学物 質合成などの開発も進められている。 しかしながら、 反応器内滞在時間が数秒以 下であること、 反応終了後、 瞬時に 100°C程度に冷却することなどが要求されて おり、 これを実現させるためには予め反応温度以上に加熱された高圧水を大過剰 に反応器に供給し、 しかもさらに大過剰の冷却水を反応後期に供給するなど経済 性をほとんど無視した操作がなされており、 これが工業化の弊害となっている。 本発明は、 熱エネルギーのみの授受による流体の状態量変化で、 実質的に圧力 差を付与させ、 これによつて特段の圧縮装置を用いることなく、 超臨界あるいは 亜臨界流体などの高圧流体利用プロセスに効率良く高圧場を形成できる超 ·亜臨 界流体処理システム及び装置を提供することを目的とする。 発明の開示
上記目的を達成するために、 本発明の超 ·亜臨界流体処理システムは、 流路内 に形成された少なくとも 1個の処理容器内を超または亜臨界状態の高圧場とする ためのシステムであり、 プロセス流体に熱操作を施し、 流体に熱膨張を与えて前 記処理容器と外部との間に圧力差を生じせしめることにより、 前記処理容器内に おいて超または亜臨界流体の処理に適した所望の温度と高圧場とを得るようにし たことを特徴とする。
この特徴によれば、 熱エネルギーによる高圧流体の温度'圧力 ·体積変化 (PVT 変化) を積極的に利用しており、 実質的に流体の状態量の変化、 すなわち熱エネ ルギ一のみで圧力差を付与させ、これによつて特段の圧縮装置を用いることなく、 超臨界あるいは亜臨界流体などの高圧流体利用プロセスに効率良く高圧場を提供 できることになる。
上記目的を達成するために、 本発明の超 ·亜臨界流体処理システムは、 前記処 理容器と流路で接続された高圧器に充填された流体を加温せしめ、 この高圧器内 に熱膨張を発生させ、 熱膨張により生じた自己の圧力を利用して所定の温度と圧 力状態の流体が前記処理容器内に送出されるようになっている。
この特徴によれば、 熱膨張により生じた高圧器内の自己の圧力で、 所定の温度 と圧力状態の流体を高圧器内から前記処理容器内に送出されるようになるため、 送り出しポンプ装置を備える必要がない。
上記目的を達成するために、 本発明の超 ·亜臨界流体処理システムは、 少なく とも 2個以上の前記高圧器が、 前記処理容器と流路で接続され、 少なくとも 1の 高圧器が前記処理容器内に流体を供給時、 他の高圧器は高圧器内で熱膨張過程も しくは流体送出待機状態にある。
この特徴によれば、複数の高圧器(シリンダー) が順次処理容器内に連続'定常 的に高圧流体を送出できるようになるため、 処理容器内を所望の圧力、 流量状態 に安定的に維持できることが可能となる。
上記目的を達成するために、 本発明の超 ·亜臨界流体処理システムは、 前記処 理容器及び高圧器を含む流路は基本的に循環流路を構成しており、 少なくとも前 記処理容器及び高圧器を通過した流体は凝縮器に戻され、 再度高圧器内に再充填 されるように流体が循環するようになっている。
この特徴によれば、 使用流体を再利用できるため、 省資源化が達成できると共 に、 エネルギーロスも少なくできる。 P T/JP02/10509 上記目的を達成するために、 本発明の超 ·亜臨界流体処理システムは、 高圧器 には、 凝縮器から流体を充填される流路と、 処理容器に繋がる流路と、 更に凝縮 器に繋がる流路とが設けられ、 それぞれ制御用のバルブ装置でその開閉タイミン グがコントロールされている。
この特徴によれば、 前記制御用の両バルブ装置を閉塞状態にしておき、 高圧器 を加熱し、 所望の圧力に達した段階で処理容器側のバルブ装置を解放するため、 所定の圧力まで十分に上昇した流体が処理容器内に送出されることになり、 前記 処理容器内を常に安定した圧力と温度に維持できることになる。
上記目的を達成するために、 本発明の超,亜臨界流体処理装置は、 流路内に形 成された少なくとも 1個の処理容器内を超または亜臨界状態の高圧場とするため の装置であり、 少なくとも 2個以上の加熱可能な前記高圧器が前記処理容器と流 路で接続され、 それぞれの流路にはバルブ装置が設けられ、 少なくとも 1の高圧 器が前記処理容器内に流体を供給時、 他の高圧器は高圧器内で熱膨張過程もしく は流体送出待機状態になるように、 前記バルブ装置の開閉タイミングがコント口 ールされるようになつている。
この特徴によれば、 前記バルブ装置の開閉タイミングをコントロールすること によって、 複数の高圧器 (シリンダ一) が順次処理容器内に連続'定常的に高圧流 体を送出できるようになるため、 処理容器内を所望の圧力、 流量状態に安定的に 維持できることが可能となる。
上記目的を達成するために、 本発明の超 ·亜臨界流体処理装置は、 少なくも高 圧器の上流側には液体貯留部がバルブ装置を介して接続され、 かつ下流側にはバ ルプ装置を介して処理容器が接続されており、 前記高圧器の加熱時に少なくとも 一時的に両パルプ装置を閉塞し、 高圧器内の圧力を所定圧まで高められるように なっている
この特徴によれば、 前記制御用の両バルブ装置を閉塞状態にしておき、 高圧器 を加熱し、 所望の圧力に達した段階で処理容器側のバルブ装置を解放するため、 所定の圧力まで十分に上昇した流体が処理容器内に送出されることになり、 前記 処理容器内を常に安定した圧力と温度に維持できることになる。
上記目的を達成するために、本発明の超 ·亜臨界流体処理装置は、処理容器が、 PC漏 2/10509 抽出器、 反応器、 洗浄器、 染色機、 晶析機などとして利用されるか、 もしくは前 記処理容器に抽出器、 反応器、 洗浄器、 染色機、 晶析機などを付帯させるように なっている。
この特徴によれば、 前記処理容器で得られる高圧場を、 反応器、 抽出器、 洗浄 器等として利用するため、 処理容器内において流体の流動状態、 温度分布を自由 にコントロール可能であり、 その処理作業が迅速かつ効能率で可能となる。
上記目的を達成するために、 本発明の超 ·亜臨界流体処理装置は、 前記処理容 器及ぴ高圧器を含む流路が、 蒸発器、 凝縮器を含む循環流路として構成されてお り、 少なくとも前記処理容器及び高圧器を通過した流体が蒸発器および凝縮容器 に戻され、再度高圧器内に再充填されるように流体が循環するようになっている。 この特徴によれば、 蒸発器、 凝縮器等の組み合わせにより流体環流が発生し、 ポンプを不要とし、 使用流体の再利用で省資源化が達成できると共に、 エネルギ 一ロスも少なくできる。 図面の簡単な説明
第 1図は、 循環型の超 ·亜臨界流体処理装置の基本的例を示すプロック図であ る。
第 2図は、 図 1の超 ·亜臨界流体処理装置における処理工程図 (システムフロ 一) である。
第 3図は、 図 1の超♦亜臨界流体処理装置における処理工程図 (システムフロ 一) である。
第 4図は、 図 1の超 ·亜臨界流体処理装置における処理工程図 (システムフロ 一) である。
第 5図は、 図 1の超 ·亜臨界流体処理装置における処理工程図 (システムフロ 一) である。
第 6図は、 図 1の超 .亜臨界流体処理装置における処理工程図 (システムフロ 一) である。
第 7図は、 図 1の超 ·亜臨界流体処理装置における処理工程図 (システムフロ 一) である。 02 10509 第 8図は、 ワンウェイ型の超 ·亜臨界流体処理装置における処理工程図 (シス テムフロー) である。
第 9図は、 ワンゥヱイ型の超 ·亜臨界流体処理装置における処理工程図 (シス テムフロー) である。
第 1 0図は、 ワンウェイ型の超 ·亜臨界流体処理装置における処理工程図 (シ ステムフロー) である。 .
第 1 1図は、 ワンウェイ型の超 ·亜臨界流体処理装置における処理工程図 (シ ステムフロー) である。
第 1 2図は、 ワンゥニイ型の超 ·亜臨界流体処理装置における処理工程図 (シ ステムフロー) である。
第 1 3図は、 ワンウェイ型の超 ·亜臨界流体処理装置における処理工程図 (シ ステムフロー) である。 発明を実施するための最良の形態
本発明の実施例を図面に基づいて説明すると、 図 1は循環型の超 ·亜臨界流体 処理装置の基本的例であり、 図 2ないし図 7には一部抽象化した処理工程 (シス テムフロー) が示され、 図 8ないし図 1 3にはワンゥヱイ型の超 '亜臨界流体処 理装置における一部抽象化した処理工程 (システムフロー) が示されている。 本例の超 ·亜臨界流体処理システムに使用される流体、 すなわち溶媒は、 水、 メタノーノレ、 エタノール、 プロパノ一ルなどのァノレコール類、 パラフィン、 ォレ フィンなどの炭化水素類および二酸化炭素、 アンモニアなどの液化ガスおよびこ れらの混合物である。
図 1の装置は、 循環流路を構成する閉回路になっており、 プロセス場に寄与す る抽出器、 反応器、 洗浄器、 染色機、 晶析機などして機能する処理容器 1、 及び 高圧発生装置としての 4気筒シリンダーのように機能する高圧器 3 ( 3 1 , 3 2,
3 3 , 3 4 ) 、 さらに蒸発器 5、 凝縮器 4、 そして高圧器 3と処理容器 1間に配 置された予熱予冷器 2を含む循環流路として構成され、 それぞれが閉流路で連絡 されている。
前記高圧器 3 ( 3 1 , 3 2, 3 3 , 3 4 ) および高圧流体利用処理を実施する 処理容器 1としての抽出器、 反応器、 洗浄器、 染色機、 晶析機などの内部は断熱 処理されており、 この断熱材には、 ポリマー, セラミックスなどが使用されてい る。
さらに高圧器 3 (3 1, 32, 33, 34) は、 その内部に加熱部が設けられ、 これら加熱源として電熱ヒーター、 温水、 スチーム、 熱媒、 高周波などが使用さ れる。 少なくとも前記高圧器 3及び処理容器 1を通過した流体が蒸発器 5および 凝縮器 4に戻され、 再度高圧器 3内に再充填されるように流体が循環するように なっており、 高圧発生装置の熱エネルギーを有効利用に加熱器で回収するため、 図 2に示されるように蒸発器内に伝熱管 141が設置されている。
より詳しく説明すると、 蒸発器 5から流路 1 2で戻された流体を貯留しておく 凝縮器 4からは、管路 1 3を介して本実施例では 4個の高圧器(第 1高圧器 3 1、 第 2高圧器 32、 第 3高圧器 33、 第 4高圧器 34) へ流路が形成され、 それぞ れバルブ 1 1 1、 1 1 2、 1 1 3、 1 1 4が設けられている。 なお凝縮器 4には 適宜冷却装置が設けられ、 蒸発器 5から環流される高温の流体を所定の温度まで 冷却するようにしても良い。 この蒸発器 5と凝縮器 4の相互機能によって流体が 自動環流され、 ポンプなどの駆動装置を省略できることになる。
さちに、 第 1高圧器 3 1、 第 2高圧器 32、 第 3高圧器 33、 第 4高圧器 34 から処理容器 1に繋がる流路と、 直接蒸発器に繋がる流路 14とがそれぞれ設け られ、 処理容器 1に繋がる流路には、 圧力制御弁 9 1、 92、 93、 94が、 ま た直接蒸発器に繋がる流路 14には、 バルブ 1 0 1、 1 02、 103、 1 04が 設けられている。 さらに圧力制御弁 9 1、 92、 9 3、 94の下流には、 圧力調 整弁 8を介して予熱予冷器 2が設けられ、 この予熱予冷器 2は圧力調整弁 7を介 して処理容器 1に繋がっている。 前記処理容器 1は圧力調整弁 6を介して前記蒸 発器 5に繋がっている。
ここで図 2から図 7に基づいて、 二酸化炭素をプロセス溶媒として用いる超臨 界二酸化炭素処理実施例について説明する。 ここで高温高圧場に供する反応器等 の後段容器に閉流路である高圧流体供給ラインのほかに少なくとも一つ以上の原 料供給ラインなどが備えられている。 【表 1】
Figure imgf000010_0001
操作例が表 1に示され、 まず、 運転準備として全系に液化二酸化炭素を供給す る(サイクル 1 )。この時点で、図 2に示されるように全バルブは開となっており、 全系は連通している。 ここで本実施例では、 バルブ 101 102 103 1 04さらにバルブ 1 1 1 1 12 113 1 14は全てコンピュータ制御され ており、 開閉タイミングが制御されている。 なお、 一部のバルブをマニュアル操 作にしても良いことは明らかである。 この実施例では、 圧力制御弁 91 92 93 94および圧力調整弁 6は一次圧、 すなわち上流側の圧が設定圧に到達す ると自動的に流体を二次側すなわち下流側に解放する機能を有する自動圧力制御 弁である。 図において、 白抜きのバルブは開状態、 塗りつぶしで表現されている バルブは閉状態を表現することとする。
この図 2の状態で、 各構成機器内の二酸化炭素の温度、 圧力はそれぞれ 15°C 5.087 Pa であった。 次いで、 第 1高圧器 31の加温を開始する (サイクル 2)。 この場合、 第 1高圧器 31と凝縮器との間のバルブ 1 1 1は閉とし、 第 2高圧器 32、 第 3高圧器 33および第 4高圧器 34と凝縮器 4との間のバルブ 1 1 2, 1 13, 1 14は開である。 また、 圧力制御弁 91 92 93 94、 バルブ 101 1 02 103 104も閉状態にしている。 第 1高圧器 31は断熱容 器内加温されるため瞬時に所定の圧力となる。 この場合、 圧力制御弁 91によつ て設定した圧力 (一次圧解放圧力) 21MPa到達までの加温は 45°Cであった。 すな わち図 4に示されるように第 1高圧器が 21MPa到達すると、 これに付帯する圧力 制御弁 9 1が作動し、第 1高圧器 3 1内の二酸化炭素(超臨界二酸化炭素)は 40°C に温度設定がなされている処理容器 1である反応器に断熱的に供給される (サイ クル 3 )。また、 このサイクル 3段階で第 1高圧器 3 1は反応器 1へ超臨界二酸化 炭素供給のための吐出状態にあり、第 1高圧器 3 1の設定温度である 150°Cまで、 その操作は続けられる。 同時にこの工程においてバルブ 1 1 2が閉まり、 第 2高 圧器 3 2が加温状態移行している。
一方、 第 1高圧器 3 1の設定温度である 150°Cに到達後、 バルブ 1 0 1が解放 され、 図 5に示されるように第 1高圧器 3 1内の流体を流路 1 4と蒸発器 5を介 するように凝縮器 4へ流れ、 凝縮器 4と同圧となるように降圧操作が実施される (サイクル 4)。 このサイクル 4段階終了時点において、第 1高圧器 3 1内の二酸 化炭素の温度、 圧力は 31°C、 5. 087Mpaに戻る。 このサイクル 4段階において、 圧 力制御弁 9 2が開き反応器 1への二酸化炭素供給は、 所定圧力に達した第 2高圧 器 3 2へと切り替えられている。
第 1高圧器 3 1が凝縮器 4と同圧となると図 6に示されるように、 バルブ 1 1 1が開放され、 凝縮器 4と連結し、 液化二酸化炭素が第 1高圧器 3 1に供給され る (サイクル 5)。 このサイクル 5段階において、 反応器 1への二酸化炭素供給 は第 3高圧器 3 3へと切り替えられており、 第 2高圧器 3 2は先の第 1高圧器 3 1同様、 降圧操作へ移行している。
第 1高圧器 3 1はその後、 図 7に示されるように再ぴ加温操作 (サイクル 6) に入り、 第 2高圧器 3 2は凝縮器 4との連結による液化二酸化炭素供給状態、 第 3高圧器 3 3は降圧操作へと移行している。 このサイクル 6段階において、 反応 器 1への二酸化炭素供給は第 4高圧器 3 4へと切り替えられている。
以降、 上記操作が繰り替えされることで、 反応器 1には連続的に超臨界二酸化 炭素が供給された。
次に、 水をプロセス溶媒として用いる超臨界水処理実施例について説明する。 ここで高温高圧場に供する反応器等の後段容器に閉流路である高圧流体供給ライ ンのほかに少なくとも一つ以上の原料供給ラインなどが備えられている。
このプロセスは前述の超臨界二酸化炭素実施例と同様に高圧発生装置としての
9 4気筒シリンダー(高圧器)、プロセス場に寄与する反応器 1および水の循環使用 に供する蒸発器 5および凝縮器 4によって構成される。 また、 本実施例において も高圧発生装置の熱エネルギーを有効利用に加熱器で回収すべく伝熱管 1 4 1を 設置した。
【表 2】
超臨 水処理操作例 (温度: 、 圧力 MPa〉
Figure imgf000012_0001
操作例が表 2に示され、まず、運転準備として全系にまず圧力 1.555MPaにおけ る飽和水を供給する (サイクル 1)。 この時点で、 全バルブは開となっており、 全 系は連通している。なお、この時、各構成機器内の水の温度、圧力はそれぞれ 200°C 1.555MPa であった。 次いで、 第 1高圧器 3 1の加温を開始する (サイクル 2)。 この場合、 第 1高圧器 3 1と凝縮器との間のバルブ 1 1 1は閉とし、 第 2高圧器 32、 第 3高圧器 3 3および第 4高圧器 34と凝縮器 4との間のバルブ 1 1 2, 1 1 3, 1 14は開である。 また、 圧力制御弁 9 1 92 93 94、 バルブ 1 01、 1 02、 1 03、 1 04も閉状態にしている。 第 1高圧器 3 1は断熱容 器内加温されるため瞬時に所定の圧力となる。 この場合、 圧力制御弁 9 1によつ て設定した圧力(一次圧解放圧力) 3 IMPa到達までの加温は 402°Cであった。 すなわち図 4に示されるように第 1高圧器が 3 IMPa 到達すると、 これに付帯す る圧力制御弁 9 1が作動し、 第 1高圧器 3 1内の水 (超臨界水) は 400 °Cに温 度設定がなされている処理容器 1である反応器に断熱的に供給される (サイクル 3)。また、 このサイクル 3段階で第 1高圧器 3 1は反応器 1へ超臨界水供給のた 10509 めの吐出状態にあり、 第 1高圧器 3 1の設定温度である 5 0 0 °Cまで、 その操作 は続けられる。 同時にこの工程においてバルブ 1 1 2が閉まり、 第 2高圧器 3 2 が加温状態移行している。
—方、 第 1高圧器 3 1の設定温度である 5 0 0 °Cに到達後、 バルブ 1 0 1が解 放され、 図 5に示されるように第 1高圧器 3 1内の流体を流路 1 4と蒸発器 5を 介するように凝縮器 4へ流れ、 凝縮器 4と同圧となるように降圧操作が実施され る (サイクル 4)。 このサイクル 4段階終了時点において、 第 1高圧器 3 1内の水 の温度、圧力は 2 0 3 ° (:、 1 . 6 5 5 Mpaに戻る。 このサイクル 4段階において、 圧力制御弁 9 2が開き反応器 1への水供給は、 所定圧力に達した第 2高圧器 3 2 へと切り替えられている。
第 1高圧器 3 1が凝縮器 4と同圧となると図 6に示されるように、 バルブ 1 1 1が開放され、凝縮器 4と連結し、水が第 1高圧器 3 1に供給される(サイクル 5) c このサイクル 5段階において、反応器 1への水供給は第 3高圧器 3 3へと切り替 えられており、 第 2高圧器 3 2は先の第 1高圧器 3 1同様、 降圧操作へ移行して いる。
第 1高圧器 3 1はその後、 図 7に示されるように再び加温操作 (サイクル 6) に入り、 第 2高圧器 3 2は凝縮器 4との連結による飽和水供給状態、 第 3高圧器 3 3は降圧操作へと移行している。 このサイクル 6段階において、 反応器 1への 水供給は第 4高圧器 3 4へと切り替えられている。
以降、 上記操作が繰り替えされることで、 反応器 1には連続的に超臨界水が供 糸口 ci "れ
次に、 水をプロセス溶媒として用い、 かつ 0. Iceのマイクロリアクターに超臨 界水を供給する超臨界水マイクロリアクター実施例について図 8ないし図 1 3に 基づいて説明する。 プロセスは前述の実施例と同様に高圧発生装置としての 4気 筒シリンダー (高圧器) のほか、 処理容器としての反応管 1、 受液槽 1 6および 予熱管 2によって構成される。 また、 本実施例においては、 循環系の構造は採ら ず、 水の流れをはワンスルーとした構造になっている。 【表 3】
超臨 水マイクロリアクター処理操作例 (温度: Χ 圧力: MPa)
Figure imgf000014_0001
操作例が表 3に示され、 まず、 図 8に示されるように、 運転準備として全系に 温度 20°Cの水を供給する (サイクル 1)。 この時点で、 全バルブは開となってお り、 全系は連通している。 次いで、 図 9に示されるように第 1高圧器 3 1の加温 を開始する (サイクル 2)。 この場合、第 1高圧器 3 1と反応水貯槽 1 5との間の パルプ 1 0 1 1 1 1は閉とし、 第 2高圧器 3 2、 第 3高圧器 3 3および第 4高 圧器 3 4と反応水貯槽と 1 5の間のバルブ 1 0 2 , 1 1 2 , 1 0 3 1 1 3 , 1 0 4 1 1 4は開である。
第 1高圧器 3 1は断熱容器内加温のため瞬時に所定の圧力となる。 この場合、 圧力制御弁 9 1によって設定した 31MPa到達までの加温は 56°Cであった。第 1高 圧器 3 1が 31MPa到達すると、 図 1 0に示されるように、 これに付帯する圧力制 御弁 9 1が作動し、 第 1高圧器 3 1内の水 (超臨界水) は 400°Cに温度設定がな されている予熱管 2および反応管 1に断熱的に供給される (サイクル 3)。 また、 このサイクル 3段階で第 1高圧器 3 1は予熱管 2および反応管 1 高圧水供給の ための吐出状態にあり、 第 1高圧器 3 1の設定温度である 500°Cまで、 その操作 は続けられる。 同時にこの工程において第 2高圧器 3 2が加温状態となる。
第 1高圧器 3 1が、 その設定温度である 500°Cに到達すると、 図 1 1に示され るように、 パルプ 1 0 1が開放され降圧操作が開始される (サイクル 4)。 このサ ィクル 4段階において、予熱管 2および反応管 1への水供給は第 2高圧器 3 2 と切り替えられている。
第 1高圧器 3 1が反応水貯槽 1 5と同圧となったのち、 図 1 2に示されるよう に 20°Cの水が反応水貯槽 1 5から第 1高圧器 3 1に供給される (サイクル 5)。 こ のサイクル 5段階において、予熱管 2および反応管 1への水供給は第 3高圧器 3 3へと切り替えられており、 第 2高圧器 3 2はバルブ 1 0 2が開放され、 降圧操 作へ移行している。
図 1 3に示されるように、第 1高圧器 3 1はその後、再び加温操作(サイクル 6) に入り、 第 2高圧器 3 2は反応水貯槽 1 5との連結による水供給状態、 第 3高圧 器 3 3は降圧操作へと移行している。 このサイクル 6段階において、 予熱管 2お よび反応管 1への水供給は第 4高圧器 3 4へと切り替えられている。
以降、 上記操作が繰り替えされることで、 予熱管.2および反応管 1には連続的 に超臨界水が供給された。 また、 反応器出口の減圧後の水は約 100°Cであった。
本発明は以上のように構成されており、 超臨界あるいは亜臨界流体を各種プ ロセス溶媒として使用するにおいて、 ポンプなどの従来の圧縮機を使用すること なく、 しかも極めて効率的に処理が実施できるようになった。 このような発明は 今後、 環境問題などから期待されている超臨界流体利用プロセスの工業化におい て、 プロセスの効率化およびこれに伴う装置コス トの低減などを可能とし、 また これまで各種法規的な制約から製作困難であった特殊高圧装置の製作も可能とす る。 さらに、 マイクロリアクター利用の各種合成プロセスの開発を具体化させる 有効な手段にもなりうる。 符号の説明
1 反応器、 反応管 (処理容器)
2 予熱予冷器、 予熱管
3 高圧器
3 1 第 1高圧器
3 2 第 2高圧器
3 3 第 3高圧器
3 4 第 4高圧器 凝縮器 7, 8 圧力調整弁 、 92, 93, 94 圧力調整弁1, 102, 103, 104 バルブ1, 1 12, 1 1 3, 1 14 バルブ 、 13、 14 流路 反応水貯槽 圧力調整弁

Claims

請求の範囲
1 . 流路内に形成された少なくとも 1個の処理容器内を超または亜臨界状態の高 圧場とするためのシステムであり、 プロセス流体に熱操作を施し、 流体に熱膨張 を与えて前記処理容器と外部との間に圧力差を生じせしめることにより、 前記処 理容器内において超または亜臨界流体の処理に適した所望の温度と高圧場とを得 るようにしたことを特徴とする超 ·亜臨界流体処理システム。
2 . 前記処理容器と流路で接続された高圧器に充填された流体を加温せしめ、 こ の高圧器内に熱膨張を発生させ、 熱膨張により生じた自己の圧力を利用して所定 の温度と圧力状態の流体が前記処理容器内に送出されるようになっている請求項 1に記載の超 ·亜臨界流体処理システム。
3 . 少なくとも 2個以上の前記高圧器が、 前記処理容器と流路で接続され、 少な くとも 1の高圧器が前記処理容器内に流体を供給時、 他の高圧器は高圧器内で熱 膨張過程もしくは流体送出待機状態にある請求項 2に記載の超 ·亜臨界流体処理
4 . 前記処理容器及ぴ高圧器を含む流路は基本的に循環流路を構成しており、 少 なくとも前記処理容器及び高圧器を通過した流体は凝縮器に戻され、 再度高圧器 内に再充填されるように流体が循環するようになっている請求項 1または 2に記 載の超 ·亜臨界流体処理システム。
5 .高圧器には、凝縮器から流体を充填される流路と、処理容器に繋がる流路と、 更に凝縮器に繋がる流路とが設けられ、 それぞれ制御用のバルブ装置でその開閉 タイミングがコントロールされている請求項 4に記載の超 ·亜臨界流体処理シス テム。
6 . 流体が、 水、 およびメタノール、 エタノール、 プロパノールなどのアルコー ル類、 パラフィン、 ォレフィンなどの炭化水素類おょぴ二酸化炭素、 アンモニア などの液化ガスおよびこれらの混合物である請求項 1ないし 5のいずれかに記載 の超 ·亜臨界流体処理システム。
7 . 流路内に形成された少なくとも 1個の処理容器内を超または亜臨界状態の高 圧場とするための装置であり、 少なくとも 2個以上の加熱可能な前記高圧器が前 記処理容器と流路で接続され、 それぞれの流路にはバルブ装置が設けられ、 少な くとも 1の圧力器が前記処理容器内に流体を供給時、 他の圧力器は高圧器内で熱 膨張過程もしくは流体送出待機状態になるように、 前記バルブ装置の開閉タイミ ングがコントロールされるようになっていることを特徴とする超 ·亜臨界流体処
8 . 少なくとも高圧器の上流側には液体貯留部がバルブ装置を介して接続され、 かつ下流側にはバルブ装置を介して処理容器が接続されており、 前記高圧器の加 熱時に少なくとも一時的に両バルブ装置を閉塞し、 高圧器内の圧力を所定圧まで 高められるようになつている請求項 7に記載の超 ·亜臨界流体処理装置。
9 . 処理容器が、 抽出器、 反応器、 洗浄器、 染色機、 晶析機などとして利用され る力、 もしくは前記処理容器に抽出器、 反応器、 洗浄器、 染色機、 晶析機などを 付帯させるようにした請求項 7または 8に記載の超 ·亜臨界流体処理装置。
1 0 . 前記処理容器及び高圧器を含む流路が、 蒸発器、 凝縮器を含む循環流路と して構成されており、 少なくとも前記処理容器及び高圧器を通過した流体が蒸発 器および凝縮器に戻され、 再度高圧器内に再充填されるように流体が循環するよ うになっている請求項 7ないし 9のいずれかに記載の超 ·亜臨界流体処理装置。
PCT/JP2002/010509 2001-10-26 2002-10-09 Systeme et dispositif de traitement de fluide supercritique et sous-critique WO2003035240A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/486,907 US7335296B2 (en) 2001-10-26 2002-10-09 System and device for processing supercritical and subcritical fluid
DE10297192T DE10297192T5 (de) 2001-10-26 2002-10-09 System und Vorrichtung für die Verarbeitung von überkritischem und unterkritischem Fluid

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-329638 2001-10-26
JP2001329638A JP3557588B2 (ja) 2001-10-26 2001-10-26 超・亜臨界流体処理システム及び装置

Publications (1)

Publication Number Publication Date
WO2003035240A1 true WO2003035240A1 (fr) 2003-05-01

Family

ID=19145507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010509 WO2003035240A1 (fr) 2001-10-26 2002-10-09 Systeme et dispositif de traitement de fluide supercritique et sous-critique

Country Status (4)

Country Link
US (1) US7335296B2 (ja)
JP (1) JP3557588B2 (ja)
DE (1) DE10297192T5 (ja)
WO (1) WO2003035240A1 (ja)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1819863A (zh) * 2003-06-10 2006-08-16 大正制药株式会社 放射形球状晶析物及其制造方法以及使用它的干粉制剂
JP2005246325A (ja) * 2004-03-05 2005-09-15 National Institute Of Advanced Industrial & Technology 高圧流体発生制御方法及びその装置
JP4659387B2 (ja) * 2004-04-27 2011-03-30 株式会社ササクラ 超臨界水又は亜臨界水の製造方法及びその装置
JP4811984B2 (ja) * 2004-12-10 2011-11-09 独立行政法人産業技術総合研究所 熱駆動型超臨界流体供給装置
JP5037054B2 (ja) 2006-07-28 2012-09-26 株式会社日立製作所 反応装置
DE102007052325A1 (de) * 2007-03-29 2009-05-07 Erk Eckrohrkessel Gmbh Verfahren zum gleitenden Temperieren chemischer Substanzen mit definierten Ein- und Ausgangstemperaturen in einem Erhitzer und Einrichtung zur Durchführung des Verfahrens
JP5435875B2 (ja) * 2008-01-18 2014-03-05 昭和電工ガスプロダクツ株式会社 高温高圧流体処理試験装置
ES2339321B1 (es) * 2008-11-17 2011-03-31 Ingelia, S.L. Sistema de control de la presion y temperatura de un reactor o conjunto de reactores quimicos.
JP5576445B2 (ja) * 2012-08-22 2014-08-20 ダイダン株式会社 成分抽出システム
WO2014081881A2 (en) 2012-11-20 2014-05-30 Andrew Paul Joseph Fluid-based extractor
US9908062B2 (en) 2012-11-20 2018-03-06 Andrew Paul Joseph Extraction apparatus and method
CN103741414B (zh) * 2014-01-25 2015-09-09 侯梦斌 一种利用高沸醇作介质的亚临界布匹印染设备与工艺
WO2015166298A1 (en) * 2014-04-30 2015-11-05 Anthony George Hurter Supercritical water used fuel oil purification apparatus and process
US10221488B2 (en) * 2015-09-18 2019-03-05 General Electric Company Supercritical water method for treating internal passages
US10857482B1 (en) * 2016-12-07 2020-12-08 Rien Havens Botanical super heated processing equipment
TWI650167B (zh) * 2017-11-30 2019-02-11 財團法人金屬工業研究發展中心 萃取方法及裝置
CN108532187B (zh) * 2018-06-22 2024-01-26 亚临界(上海)技术有限公司 一种亚临界流体无水染色方法及设备
DE102020104937B4 (de) 2020-02-25 2023-09-28 Lufthansa Technik Aktiengesellschaft Verfahren und Vorrichtung zur Reinigung von Bauteilen
CN111944605A (zh) * 2020-07-28 2020-11-17 华陆工程科技有限责任公司 超临界萃取植物油生产中控制萃取程序的***
WO2022246516A1 (en) * 2021-05-26 2022-12-01 Pressure Pulse Systems Pty Ltd Liquid delivery system

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117222A (ja) * 1998-10-15 2000-04-25 Japan Organo Co Ltd 有機成分の回収装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2586938B1 (fr) * 1985-09-06 1989-10-20 Commissariat Energie Atomique Procede et dispositif pour l'extraction de constituants par un fluide supercritique
WO1996015304A1 (en) * 1994-11-09 1996-05-23 R.R. Street & Co. Inc. Method and system for rejuvenating pressurized fluid solvents used in cleaning substrates
US5783243A (en) * 1996-06-24 1998-07-21 Benado; Adam L. Process for extracting and desolventizing natural oil-containing food products with minimum structural damage
US5938927A (en) * 1996-09-30 1999-08-17 Aluminum Company Of America Process for extracting oil from contaminated filter media
US6312528B1 (en) * 1997-03-06 2001-11-06 Cri Recycling Service, Inc. Removal of contaminants from materials
ATE393658T1 (de) * 2000-09-29 2008-05-15 Univ Minnesota Verfahren zum extrahieren von verbindungen aus pflanzen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000117222A (ja) * 1998-10-15 2000-04-25 Japan Organo Co Ltd 有機成分の回収装置

Also Published As

Publication number Publication date
US20040232072A1 (en) 2004-11-25
DE10297192T5 (de) 2004-08-19
US7335296B2 (en) 2008-02-26
JP2003126673A (ja) 2003-05-07
JP3557588B2 (ja) 2004-08-25

Similar Documents

Publication Publication Date Title
WO2003035240A1 (fr) Systeme et dispositif de traitement de fluide supercritique et sous-critique
RU99128094A (ru) Регенерация тепла выхлопных газов в преобразователе органической энергии с помощью промежуточного жидкостного цикла
CN109723510B (zh) 无泵式恒定功率输出的有机朗肯循环发电方法和装置
US5613362A (en) Apparatus and method for energy conversion using gas hydrates
CN218075189U (zh) 用于冷冻消融的复温***
WO2019114536A1 (zh) 构造冷源能量回收***、热力发动机***及能量回收方法
CN111271146A (zh) 超临界co2布雷顿循环发电***及其工作方法
KR20190010038A (ko) 하이브리드 발전 시스템
KR101628611B1 (ko) 작동 유체의 다단 압축 및 팽창을 이용한 초임계 이산화탄소 발전 시스템
WO2009035326A1 (en) Installation and method for the conversion of heat into mechanical energy
KR100399241B1 (ko) 응축물의가스를제거하는방법및장치
RU2647179C2 (ru) Система регенерации энергии, способ и полимеризационная установка, содержащая такую систему регенерации
CN110793369B (zh) 一种超临界水氧化反应产物余热余压利用***
CN205593223U (zh) 发动机驱动水源压缩式热泵水蒸气调制机
CN208168940U (zh) 一种大型lng接收站利用液化天然气冷能发电的***
JP2009085565A (ja) ヒートポンプ給湯機
US20220235988A1 (en) Systems and Methods for Compressing Gas Using Heat as Energy Source
US10202873B2 (en) Supercritical CO2 generation system applying plural heat sources
KR101628619B1 (ko) 열교환기용 온도 제어 장치를 갖는 발전 시스템
CN105737127A (zh) 水蒸汽调制机
JP4811984B2 (ja) 熱駆動型超臨界流体供給装置
JP5269006B2 (ja) 液体空気を再利用する発電装置
US20220372893A1 (en) Mechanical energy generation system with energy recovery and a method thereof
RU2263826C2 (ru) Способ работы эжекторной установки тепло- и горячего водоснабжения
CN117627744B (zh) 耦合固体储热的超临界二氧化碳储能发电***及方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN DE US

WWE Wipo information: entry into national phase

Ref document number: 10486907

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8607