WO2003029497A1 - Procede de dephosphorisation de fer en fusion - Google Patents

Procede de dephosphorisation de fer en fusion Download PDF

Info

Publication number
WO2003029497A1
WO2003029497A1 PCT/JP2002/010105 JP0210105W WO03029497A1 WO 2003029497 A1 WO2003029497 A1 WO 2003029497A1 JP 0210105 W JP0210105 W JP 0210105W WO 03029497 A1 WO03029497 A1 WO 03029497A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen
flux
blown
hot metal
dephosphorization
Prior art date
Application number
PCT/JP2002/010105
Other languages
English (en)
French (fr)
Inventor
Hiroshi Hirata
Hiromi Ishii
Hiroaki Hayashi
Yuji Ogawa
Naoto Sasaki
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to AT02770227T priority Critical patent/ATE538219T1/de
Priority to EP02770227A priority patent/EP1445337B1/en
Priority to KR1020047004547A priority patent/KR100658806B1/ko
Publication of WO2003029497A1 publication Critical patent/WO2003029497A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • C21C1/02Dephosphorising or desulfurising
    • C21C1/025Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/064Dephosphorising; Desulfurising
    • C21C7/0645Agents used for dephosphorising or desulfurising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C7/00Treating molten ferrous alloys, e.g. steel, not covered by groups C21C1/00 - C21C5/00
    • C21C7/04Removing impurities by adding a treating agent
    • C21C7/076Use of slags or fluxes as treating agents
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • C21C5/32Blowing from above
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the present invention relates to a method for de-phosphorizing hot metal by using a refining vessel capable of being blown from above and below, while blowing oxygen upward and injecting flux from the bottom.
  • the desiliconization and dephosphorization of the hot metal are performed in a separate vessel prior to decarburization.
  • Hot metal pretreatment methods have been used. In the hot metal pretreatment, it was common practice to add silicon oxide and other solid oxygen sources to the hot metal for desiliconization, and then to add a dephosphorizing flux to the hot metal for dephosphorization. . In dephosphorization, a lime source is added as a flux to form a highly basic dephosphorized slag, and a solid oxygen source such as iron oxide is also added as a flux to perform dephosphorization.
  • a preliminarily dephosphorizing vessel a method of preliminarily dephosphorizing by injecting a dephosphorizing flux into a hot car in a torpedo car or a ladle was used.
  • a converter-type scouring vessel capable of top-bottom blowing has been used as a hot metal pretreatment vessel, and hot metal pretreatment that simultaneously performs desiliconization and dephosphorization has been used. Since strong stirring by top and bottom blowing is used, dephosphorization can be promoted even with a slag having a low basicity, so that desiliconization and dephosphorization can be performed simultaneously. Since gaseous oxygen can be used as the oxidation source, it can be used in comparison with the conventional method using only solid oxygen. The hot metal temperature after the pretreatment can be kept high, and the heat tolerance of the entire refining including the decarburization treatment can be secured.
  • the pretreatment refining flux in addition to the method of adding the refining vessel from above into the refining vessel, it is also possible to adopt an injection in which the bottom-blown gas is added as carrier gas by blowing into hot metal. By adopting the flux blowing, the dephosphorization efficiency in the pretreatment can be improved.
  • Japanese Patent No. 2958848 describes a refining method in which a top and bottom blown converter is used, first, dephosphorization is performed, slag is discharged, and then decarburization is performed in the same converter.
  • the CaO / S i 0 2 is 2.5 under the following conditions in the slag, the sum of iron and manganese oxide concentration in iron oxide (T. Fe + MnO) by a 15% to 35% Promotes the dephosphorization reaction.
  • Flux based on quicklime powder is blown in from the bottom blowing tuyere using an inert gas as a carrier gas to perform dephosphorization.
  • the dephosphorization reaction rate can be increased by mixing the iron oxide powder into the quicklime powder or by blowing oxygen gas through the same tuyere.
  • dephosphorization can also be achieved by blowing oxygen gas from the top blowing lance and adding flux by blowing, blowing, or spraying from above to control the iron oxide concentration in the generated slag. Can be promoted.
  • the method of adding an oxygen source during the dephosphorization treatment includes addition of top-blown oxygen and iron oxide and gas from the bottom-blowing nozzle. Since the addition of oxygen can be used in combination, the problem is how to select the proportion of oxygen to be added in the bottom blow.
  • the ratio of the mass of CaO in the flux injected together with the carrier gas to the total mass of oxygen contained in the iron oxide in the flux and oxygen contained in the carrier gas is defined here as CaO 2 O.
  • Japanese Patent Laid-Open Publication No. Sho 60-26608 states that when CaO / ⁇ is set at 1.5 to 2.5, the efficiency of dephosphorization of quicklime and oxygen is maximized, resulting in a high dephosphorization rate. .
  • the present invention uses a scouring vessel capable of top-bottom blowing, and performs a top-blowing injection of a flux and a bottom-blowing injection to remove phosphorus from hot metal without using fluorite. It is an object of the present invention to provide a dephosphorization method capable of performing a dephosphorization treatment. Disclosure of the invention The present invention has been made to achieve the above object, and the gist thereof is as follows. '
  • Oxygen or inert gas or a flux containing at least one of quicklime, limestone and iron oxide and at least a component containing iron oxide in hot metal In the method of dephosphorizing hot metal in which the mixed gas of the above is blown as a carrier gas, the ratio of the mass of CaO in the blown flux to the total mass of iron oxide in the blown flux and oxygen contained in the carrier gas (CaO / O)
  • a method for dephosphorizing hot metal characterized in that the flux is blown into the hot metal so that the flux is greater than 2.5.
  • the molten iron contains at least one of calcined lime, limestone and iron oxide, and at least a flux containing iron oxide as a main component.
  • the ratio of solid oxygen to the total oxygen added is expressed as mass ° /.
  • the hot metal dephosphorization method characterized in that the hot metal content is 5% or more and 40% or less.
  • FIG. 1 is a diagram showing the relationship between CaOZO and [P] after dephosphorization treatment.
  • FIG. 2 is a diagram showing an upper-bottom blow converter used for hot metal dephosphorization of the present invention.
  • Hot metal having the components and temperatures shown in Table 2 was introduced into the converter, and the above flux was injected from the bottom-blowing tuyere with nitrogen gas as carrier gas while acid was blown upward.
  • the unit flux input was set at 15kg / t.
  • the slag basicity after treatment (CaOZSi0 2) mass ratio
  • the target was 1.7, in the case of insufficient only CaO was Injection down, the magnitude Up to 25 massive quicklime was added from above.
  • the temperature after the dephosphorization treatment was controlled to be 1335 to 1340 ° C.
  • the total oxygen source unit which is the sum of the oxygen in the top-blown oxygen and the oxygen in the flux iron oxide, was 17 Nm 3 Zt, and the mass ratio of the oxygen in the flat irons oxide to the total oxygen, that is, the solid oxygen ratio, was 20%. .
  • the iron oxide concentration in the treated slag is controlled, and the sum of the iron content in the treated iron oxide and the manganese oxide concentration (T.Fe + MnO) is reduced to zero. /.
  • the adjustment was made so that there were three cases: 8 11% 22 27% 38 41%.
  • FIG. 1 shows the relationship between CaOZO and [P] after treatment.
  • (T.Fe + MnO) 8 11% is indicated by ⁇
  • 22 27% is exposed
  • 38-41% is indicated by ⁇ .
  • [P] was stabilized at a low level after treatment in the region where the CaO / O of the blown flux was more than 2.5.
  • (T.Fe + MnO) 2227% of the cases showed good dephosphorization ability, and the other cases could not sufficiently lower [P] after treatment.
  • the second, the conventional yo urchin CaO / O defines the fluxes composition so that the lower value, since the flux or we CaO supplied blowing amount is limited, the CaOZ S i0 2 of slag 1.7 In order to secure a sufficient amount, the amount of lump lime input will increase. It is probable that because the slag formation speed of the lump lime was slow, the slag was not sufficiently slagged and the actual basicity after the dephosphorization treatment was reduced, resulting in deterioration of the dephosphorization.
  • the above (1) of the present invention is based on the above findings, and is a ratio (CaO / O) of the mass of CaO in the blown flux to the total mass of iron oxide and oxygen contained in the carrier gas in the blown flux.
  • the oxygen source to be added is top-blown oxygen gas.
  • Gaseous oxygen can be added in the form of oxygen gas contained in the bottom blown gas.
  • the solid oxygen source can be added in the form of iron oxide.
  • the mass ratio of oxygen from the solid oxygen source to the total oxygen to be added is referred to as a solid oxygen ratio.
  • iron oxide FeO, Fe 2 0 3
  • solid oxygen source flux and coolant and to iron ore and Dust used, mill A material containing iron oxide, such as a scale.
  • the above (3) of the present invention is a combination of the above (1) and (2) of the present invention, and both effects can be obtained simultaneously.
  • the sum of the manganese oxide concentrations (T. Fe + MnO) should be 15% or more and 35% or less. & 0/310 to 2 to 2.5 or less, CaOZSi0 2 If it is> 2.5, slag formation is poor unless fluorite is added.
  • the dephosphorization treatment of the present invention was carried out using a 300-ton scale top-bottom blow converter as a refining vessel 1 as shown in FIG. From the bottom blow nozzle 2, a dephosphorizing flux consisting of quicklime powder and sintered ore powder cut from the flux hopper 4 is blown into the hot metal 5 as nitrogen gas as a carrier gas 7, and gas oxygen is blown from the top blow lance 3. Gas 8 was blown onto hot metal 5. Reduce the target of [P] concentration after dephosphorization to 0.014% or less. Since the hot metal [Si] before dephosphorization is 0.35%, the desiliconization reaction also proceeds during the dephosphorization.
  • the amount of CaO blown as the blown flux is determined from the CaO / ⁇ target.
  • the basicity (C) of the CaO which is the sum of the blown flux and the upper charging material, when all the injected CaO turns into slag 6 by slagging aO / Si0 2) is urchin I to be 1.8, to determine the amount of molten iron amount and initial molten iron [Si] concentration, no amount that insufficient by Injection main routine CaO, quicklime massive and upwardly turned.
  • the size of the lump lime was 20-50, and the particle size of the injected lime was less than 1.5 mm.
  • the mass ratio of solid oxygen (solid oxygen ratio) to the sum of the solid oxygen added as the top blown gas oxygen and iron oxide was set to 15%.
  • the hot metal temperature after dephosphorization can be set to the target of 1340 ° C. If solid oxygen from the sinter ore injected by bottom injection is insufficient, mill scale was introduced from above. Some comparative examples use values other than 15% as the solid oxygen ratio.
  • the concentration of iron oxide in the slag is controlled by adjusting the oxygen supply rate from the top blowing lance and the height of the lance, and the sum of iron and manganese oxide concentrations in iron oxide after dephosphorization (T. Fe + (MnO) was adjusted to be 15% or more and 35% or less.
  • T. Fe + MnO iron oxide after dephosphorization
  • Example 1 of the present invention Flip 3 0/0 and 5.4
  • Example 2 of the present invention was 15.5 C aOZO.
  • the concentration of [P] could be stably reduced to 0.014% or less after dephosphorization without using fluorite as the dephosphorization flux.
  • Comparative Example 1 is an example performed in a conventionally used CaO / ⁇ region. Except that CaO / O was set to 0.87, the same conditions as in the example of the present invention were adopted. Since CaO / O was low, the amount of Ca 0 as the blowing flux was small, and the agglomerated lime intensity was 12.6 kg / t. To achieve the target [P] concentration without causing slag formation, 0.5 kg / fluoride t had to be added, and fluorite could not be used. In Comparative Examples 2 and 3, the lance slag (T.Fe + MnO) concentration after the dephosphorization treatment was intentionally deviated from the normally used range by adjusting the lance height of the top blow lance. It is a thing.
  • Comparative Examples 4 and 5 are Comparative Examples in which the solid oxygen ratio was varied.
  • Comparative Example 4 since the solid oxygen ratio was reduced to 4% and the top blown oxygen ratio was increased, the temperature increased to 1352 ° C after the dephosphorization treatment, and the dephosphorization ability decreased, thereby obtaining the target [P] concentration.
  • the decarburization of hot metal during the dephosphorization process progressed due to the increase in oxygen blown up.
  • Comparative Example 5 since the solid oxygen ratio was increased to 50% and the top blown oxygen ratio was lowered, the heat generated by the top blown oxygen was reduced, and the temperature after the dephosphorization treatment was lowered to 1314 ° C. Since fluorite was not added, poor slag formation occurred, and the target [P] concentration could not be obtained.
  • Example 1 of the present invention Under the conditions of Example 1 of the present invention and the conditions of Comparative Example 2, continuous operation was performed for each of 20 channels, and the amounts of refractory erosion were compared. As a result, it was confirmed that Example 1 of the present invention, in which fluorite was not used, had a 20% lower amount of erosion than Comparative Example 2 in which fluorite was used, which helped to reduce the cost of refractory.
  • Industrial applicability
  • the present invention uses a refining vessel capable of top-bottom blowing to remove oxygen from the molten iron by performing a top-blowing injection of the flux and a bottom-blowing injection of the flux, to determine the mass of CaO in the flux and the amount of CaO in the flux. Blowing flux into hot metal so that the ratio (CaOZO) to the total mass of oxygen contained in iron oxide and carrier gas becomes 2.5 or more, thereby performing good dephosphorization without using fluorite It became possible. As a result, the amount of refractory erosion was reduced and the cost of refractory was reduced.
  • the present invention also makes it possible to easily control the hot metal temperature in the dephosphorization treatment by setting the proportion of solid oxygen in the total oxygen added to 5% or more and 40% or less.
  • the present invention is a CaOZSi0 2 in slag dephosphorization process end 2.5 hereinafter, and the sum of the iron oxide in the iron and manganese oxides concentration in the slag (T. Fe + MnO) below 35% or more 15% By doing so, stable dephosphorization can be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

明 細 書 溶銑の脱りん方法 技術分野
本発明は、 上底吹き可能な精鍊容器を用いて、 酸素を上吹きする とともにフラックスを底吹きィンジェクショ ンして溶銑を脱りんす る方法に関するものである。 背景技術
溶銑の脱珪、 脱りん、 脱炭をすベて同一の転炉内で同時に行う転 炉製鋼法にかわり、 脱炭に先立って溶銑の脱珪、 脱りんを脱炭とは 別の容器で行う溶銑予備処理方法が用いられるようになった。 溶銑 予備処理においては、 溶銑に酸化鉄をはじめとする固体酸素源を添 加して脱珪を行い、 次いで溶銑に脱りん用フラックスを添加して脱 りん精鍊を行う方法が一般的であった。 脱りん精鍊においては、 フ ラックスと して石灰源を添加して高塩基度の脱りんスラグを形成し 、 酸化鉄をはじめとする固体酸素源を同じく フラックスとして添カロ して脱りんを行っていた。 また、 予備脱りん精鍊容器と しては、 ト 一ピードカーや取鍋内の溶銑に脱りん用フラックスをィンジェクシ ョ ンして予備脱りんを行う方法が用いられていた。
最近は、 溶銑予備処理容器と して上底吹きが可能な転炉型の精練 容器を用い、 脱珪と脱りんを同時に行う溶銑予備処理が用いられる ようになつてきた。 上底吹きによる強攪拌を利用するため、 塩基度 の低いスラグを用いても脱りんを促進させることができるので、 脱 珪と脱りんを同時に行う こ とが可能である。 酸化源と して気体酸素 を用いることができるので、 固体酸素のみを用いる従来に比較して 予備処理後の溶銑温度を高く保つことができ、 脱炭処理を含めた精 鍊全体での熱裕度を確保することができる。 予備処理精鍊用フラッ タスは、 精鍊容器内に上方から添加する方法の他、 底吹きガスをキ ャリァガスと して溶銑中に吹き込んで添加するィンジェクショ ンを 採用することも可能である。 フラックス吹き込みを採用することに より、 予備処理における脱りん効率を向上することができる。
特許第 2958848 号公報においては、 上底吹き転炉を用い、 まず脱 りん精鍊を行い、 スラグを排出し、 次いで同一転炉にて脱炭を行う 精鍊方法が記載されている。 脱りん工程において、 スラグ中の CaO / S i 02が 2. 5 以下の条件では、 酸化鉄中鉄分とマンガン酸化物濃度 の和 (T . Fe + MnO )を 15〜35 %とすることによって脱りん反応を促 進する。 底吹き羽口より生石灰粉をベースと したフラックスを不活 性ガスを搬送ガスと して吹き込み脱りん処理を行う。 このとき、 酸 化鉄粉を生石灰粉に混入するか、 あるいは酸素ガスを同一羽口を通 して吹き込むことによ り、 脱りん反応速度を高めることができる。 もしく は、 上吹きランスから酸素ガスを吹き付け、 上方より フラッ クスを投入、 吹き込み、 吹きつけ等の方法で添加して、 生成スラグ の酸化鉄濃度をコントロールするこ とによつても、 脱りんを促進す るこ とができる。
上底吹き転炉を用いフラックス吹き込みを行う脱りん処理におい ては、 脱りん処理時における酸素源の添加方法と しては、 上吹き酸 素による添加と、 底吹きノズルからの酸化鉄 · 気体酸素による添加 を複合して用いることができるので、 底吹きで添加する酸素の比率 をどのように選択するかが問題となる。 キャリ アガスと ともに吹き 込むフラックス中の CaO 質量と、 フラックス中の酸化鉄に含まれる 酸素及びキャリアガスに含まれる酸素の総質量との比を、 ここでは CaO Oと して定義する。 特開昭 60— 26608 号公報においては、 CaO/Οを 1, 5〜2.5 にす ると、 生石灰および酸素の脱りん利用効率が最大となり、 その結果 高い脱りん率が得られると している。
特開 2000— 212622号公報においては、 CaO/Οが 1.0 より大きい 場合には脱りん時に必要以上の生石灰を用いるため脱りん反応自体 は進むものの脱りん効率が低下するとし、 CaO/Οの適正範囲を 0 .5〜: 1.0 としている。
上底吹き転炉を用いた脱りん方法においても、 上記知見に基づき 、 &0 0としては2.5 以下の範囲が用いられていた。
脱りん反応を促進するには、 溶銑温度が低いほど有利である。 し かし、 例えば 1350°C以下の低温で脱りん処理を行う場合、 特許第 29 58848 号公報に示されたよ うに Ca0/Si02≤2.5 とするに際して C a0/Si02≥1.8 になると、 滓化不良が生じ、 むしろ脱りんを阻害す る問題が存在する。 そのため、 スラグの滓化促進を目的として蛍石 を添加する必要があった。
精練において、 蛍石を使用することによ り予備処理や脱炭処理に 使用する精練容器の耐火物の溶損が激しくなる。 例えば、 特開平 8 — 157921号公報の図 6に示されているように、 スラグ中フッ素濃度 が高くなるほど耐火物溶損指数が高くなり、 耐火物溶損が急激に増 大することが知られている。 従って、 耐火物寿命延長の観点から蛍 石を使用しないことが好ましい。
本発明は、 上底吹き可能な精練容器を用いて、 酸素を上吹きする と ともにフラ ッ クスを底吹きインジヱクショ ンして溶銑を脱りんす るに際し、 蛍石を使用することなしに良好な脱りん処理を行うこと のできる脱りん方法を提供することを目的とする。 発明の開示 本発明は、 上記の目的を達成するためになされたものであり、 そ の要旨とするところは、 以下のとおりである。 '
( 1 ) 酸素を上吹きすると ともに、 溶銑中に生石灰、 石灰石、 酸化 鉄の 1又は 2以上であって少なく とも酸化鉄を含む成分を主成分と するフラ ッ クスを酸素もしくは不活性ガスまたはそれらの混合ガス をキャリアガスと して吹き込む溶銑の脱りん方法において、 吹き込 みフラックス中の CaO 質量と、 吹き込みフラックス中の酸化鉄及び キヤリァガスに含まれる酸素の総質量との比(CaO/ O ) が 2. 5 超に なるようにフラ ッ クスを溶銑中に吹き込むことを特徴とする溶銑の 脱りん方法。
( 2 ) 酸素を上吹きする と ともに、 溶銑中に生石灰、 石灰石、 酸化 鉄の 1又は 2以上であって少なく とも酸化鉄を含む成分を主成分と するフラ ックスを酸素もしくは不活性ガスまたはそれらの混合ガス をキャリアガスと して吹き込む溶銑脱りん方法において、 添加する 全酸素中に占める固体酸素比率を質量 °/。で 5 %以上 40%以下とする ことを特徴とする溶銑の脱りん方法。
( 3 ) 酸素を上吹きする と ともに、 溶銑中に生石灰、 石灰石、 酸化 鉄の 1又は 2以上であって少なく とも酸化鉄を含む成分を主成分と するフラ ックスを酸素もしくは不活性ガスまたはそれらの混合ガス をキャリアガスと して吹き込む溶銑の脱りん方法において、 吹き込 みフラ ッ クス中の CaO 質量と、 吹き込みフラ ックス中の酸化鉄及び キヤリァガスに含まれる酸素の総質量との比(CaOZ O ) が 2. 5 超に なるようにフラ ッ クスを溶銑中に吹き込むと ともに、 添加する全酸 素中に占める固体酸素比率を質量%で 5 %以上 40%以下とすること を特徴とする溶銑の脱りん方法。
( 4 ) 脱りん処理終了時点のスラグ中の CaOZ S i02を 2. 5以下、 か っスラグ中の酸化鉄中鉄分とマンガン酸化物濃度の和 (T . Fe + Mn 0)を質量%で 15%以上 35%以下にすることを特徴とする、 上記 ( 1 ) 〜 ( 3 ) のいずれか 1つに記載の溶銑の脱りん方法。
( 5 ) フラックスに蛍石を使用しないことを特徴とする上記 ( 1 ) 〜 ( 4 ) のいずれか 1つに記載の溶銑の脱りん方法。 図面の簡単な説明
図 1は、 CaOZOと脱りん処理後 [P] との関係を示す図である 図 2は、 本発明の溶銑脱りんに用いる上底吹き転炉を示す図であ る。 発明を実施するための最良の形態
まず、 本発明の上記 ( 1 ) について説明する。 なお、 本明細書に おいては、 比率、 %は、 全て質量比率、 質量%を表わすものとする 1 トン規模の上底吹き転炉を用い、 脱りん反応に及ぼす吹き込み フラ ッ クス配合比の影響を調査した。 吹き込みフラ ッ クスには、 生 石灰粉と表 1 に示す焼結ダス ト粉の混合物を用いた。 焼結ダス ト 1 kg中における酸化鉄中の酸素は 0.2kgである。 生石灰粉と焼結ダス 卜の配合比は、 吹き込みフラックス中の CaO 質量と酸化鉄中酸素質 量の比(CaO/Ο) が 0, 8〜22の範囲となるよ うに変化させて脱りん に最適な CaOZO比を評価した。
表 2に示す成分と温度の溶銑を転炉に揷入し、 上吹き送酸しなが ら底吹き羽口から上記フ ラ ッ クスを窒素ガスをキャ リアガスとして インジヱクショ ンした。 フラックス投入原単位は 15kg/ t と した。 なお、 処理後のスラグ塩基度(CaOZSi02) (質量比) 目標を 1.7 と し、 インジェクショ ンした CaO のみでは不足する場合には、 大きさ 25 以下の塊状の生石灰を上部から添加した。 また、 脱りん処理後 の温度は 1335 1340°Cになるように制御した。 上吹き酸素とフラッ クス酸化鉄中の酸素を合計した全酸素源単位は 17Nm3Z tであり、 全酸素に占めるフラッタス酸化鉄中酸素の質量の割合、 即ち固体酸 素比率は 20%と した。 上吹きラ ンス高さを調整することで、 処理後 のスラグ中の酸化鉄濃度を制御し、 処理後の酸化鉄中鉄分とマンガ ン酸化物濃度の和 (T . Fe + MnO)が質量0/。で、 8 11% 22 27% 38 41%の 3ケース となるように調整した。
表 1
Figure imgf000008_0001
表 2
Figure imgf000008_0002
(質量%)
CaOZOと処理後 [P ] との関係を図 1 に示す。 図 1において、 ( T . Fe + MnO) 8 11%を△、 22 27%を暴、 38-41%を□と して 表示している。 3ケースとも、 吹き込みフラックスの CaO/ Oが 2. 5超の領域において、 処理後 [P] が低位に安定することがわかつ た。 また、 (T . Fe + MnO)については 22 27%のケースが良好な脱 りん能力を示し、 それ以外のケースは処理後 [P ] を十分に下げる ことができなかった。
CaO/ O 2.5超が良好である理由は明確ではないが、 以下のよう な理由が考えられる。 第 1 に、 フラ ックス吹き込みによ り溶銑内で 脱りん反応が生じ、 脱りん生成物である 3 CaO · Ρ205が生成する。 この 3 CaO · Ρ 05は 2Ca0 · Si02のみに固溶するこ とができる。 従 つて、 吹き込みフラックスの組成は、 P2 05が生成するに足る酸素を 供給すると ともに、 3 CaO · Ρ2 05と 2 CaO · Si 02が生成するに足る CaO を供給することが必要である。 焼結ダス ト中には、 表 1に示す ように S i02が 5 %程度含まれている。 吹き込みフラックスの CaO/ Oが 2. 5超の場合には、 CaO 供給量が十分にあるので、 CaO と焼結 ダス ト中の S i02とによって 2 CaO ' S i02が生成し、 これが 3 CaO - P2 05を固定するために高い脱りん効率を得るこ とができる。 一方、 じ&0 〇が2. 5 以下の場合、 焼結ダス 卜から供給される S i02の比率 が高くなり、 2 CaO · S i02の生成量が少なくなるので、 脱りん効率 が低下するのである。 また、 第 2に、 従来のよ うに CaO/ Oが低い 値となるようにフラ ックス組成を定めると、 吹き込みフラックスか ら CaO 供給量が制限されるので、 スラグの CaOZ S i02を 1. 7 程度に 確保しよう とすると塊生石灰投入量が増加する。 塊生石灰は滓化速 度が遅いため、 スラグが十分に滓化せずに脱りん処理後の実績塩基 度が低下し、 脱りんが悪化したものと考えられる。
本発明の上記 ( 1 ) は上記知見に基づいてなされたものであり、 吹き込みフラックス中の CaO 質量と、 吹き込みフラックス中の酸化 鉄及びキヤリァガスに含まれる酸素の総質量との比(CaO/ O ) が 2. 5 超になるようにフラックスを溶銑中に吹き込むことにより、 蛍石 を使用することなく良好な脱りん効率を有する脱りん方法を実現す ることができた。
次に、 本発明の上記 ( 2 ) について説明する。
上底吹き可能な精練容器を用いて、 酸素を上吹きするとともにフ ラックスを底吹きィンジェクショ ンして溶銑を脱りんする方法にお いては、 添加する酸素源と しては、 上吹き酸素ガスおよび底吹きガ ス中に含む酸素ガスの形で気体酸素を添加することができる。 また 、 吹き込みフラックス中に含む酸化鉄および転炉に上方から添加す る酸化鉄の形で固体酸素源を添加することができる。 ここでは、 添 加する全酸素中に占める固体酸素源からの酸素の質量比率を固体酸 素比率という。
なお、 固体酸素とは、 酸化鉄(FeO, Fe203 )中に含まれる酸素のこ とであり、 固体酸素源とは、 フラックスや冷却材と して用いられる 鉄鉱石やダス ト、 ミルスケールなど酸化鉄を含むものをいう。
気体酸素を用いて溶銑の脱珪 ·脱りん ·脱炭を行う場合にはいず れも発熱反応であり、 溶銑温度を上昇させる。 一方、 固体酸素と し て酸化鉄を用いた場合にはいずれも吸熱反応であるため、 全酸素中 に占める固体酸素比率が高いほど、 脱りん処理後における溶銑温度 が低下する。 脱りん反応と しては溶銑温度が低いほど有利であるが 、 温度が低すぎる と滓化不良でむしろ脱りんの能力が悪化する。 そ のため、 全酸素中に気体酸素を適度に混入して溶銑温度を確保する 必要がある。
本発明の上記 ( 2 ) においては、 添加する全酸素中に占める固体 酸素比率を 5 %以上 40%以下とすることによ り、 脱りん処理におけ る溶銑温度制御を容易にすることが可能になる。 固体酸素比率が 5 %未満では、 溶銑温度上昇が大きく、 脱りん反応効率が悪化する。 一方、 固体酸素比率が 40%を超えると、 溶銑温度低下が大きく、 ス ラグの滓化不良によって脱りん反応効率が悪化する。 また、 溶銑温 度が低い場合にはスラグの酸化度の制御も困難となる。
本発明の上記 ( 3 ) は、 本発明の上記 ( 1 ) と ( 2 ) を組み合わ せたものであり、 両者の効果を同時に得ることができる。
本発明の上記 ( 4 ) は、 上記 ( 1 ) 〜 ( 3 ) の発明に加え、 脱り ん処理終了時点のスラグ中の じ&0ノ3 2を2.5 以下、 かつスラグ中 の酸化鉄中鉄分とマンガン酸化物濃度の和 (T . Fe + MnO)を 15%以 上 35%以下にする。 &0/3102を2.5 以下とするのは、 CaOZSi02 >2.5 では蛍石を添加しないと滓化不良となるからである。 また、 スラグ中の じ30/3;102が2.5 以下の条件において、 スラグ中の酸化 鉄中鉄分とマンガン酸化物濃度の和 (T . Fe + MnO)を 15%以上 35% 以下にする理由は、 酸化鉄およびマンガン酸化物はともに溶銑中の りんを酸化し、 溶銑からスラグ中に除去する作用があるため、 脱り ん反応を促進するにはスラグ中の酸化鉄中鉄分とマンガン酸化物濃 度の和を少なく とも 15%以上にする必要があり、 またスラグ中の酸 化鉄中鉄分とマンガン酸化物濃度の和が 35%を超える と、 スラグ中 に移行したりんを安定化するのに必要な CaO 濃度が減少し、 脱りん 反応が阻害されるためである。
本発明の上記 ( 1 ) 〜 ( 4 ) は、 いずれも良好な脱りん能力を有 している。 そのため、 本発明の上記 ( 5 ) にあるように、 フラック ス中に蛍石を使用することなく必要な りん処理を行う ことが可能 である。 実施例
図 2に示すような精鍊容器 1 と して 300 トン規模の上底吹き転炉 を用いて本発明の脱りん処理を実施した。 底吹きノズル 2からは、 フラックスホッパー 4から切出した生石灰粉と焼結鉱粉からなる脱 りんフラックスを窒素ガスをキヤリ ァガス 7 と して溶銑 5中に吹き 込み、 上吹きラ ンス 3から気体酸素ガス 8を溶銑 5に吹き付けた。 脱りん処理後 [P ] 濃度の目標を 0.014%以下とする。 脱りん処理 前の溶銑 [Si] が 0.35%であるため、 脱りん処理においては同時に 脱珪反応も進行する。
吹き込みフラックスと して吹き込む CaO 量は CaO/Ο目標から定 める。 吹き込みフラックスと上方投入材を合計した CaO について、 投入したすべての CaO が滓化してスラグ 6 となった場合の塩基度(C aO/Si02) が 1.8 となるよ うに、 溶銑量および初期溶銑 [Si] 濃度 から添加量を決定し、 インジェクショ ンする CaO で足りない分は、 塊状の生石灰を上方投入した。 塊生石灰の大きさは 20〜50 、 イン ジェクションした生石灰の粒度は 1.5mm以下であった。
上吹き気体酸素および酸化鉄と して添加する固体酸素の合計に占 める固体酸素の質量比率 (固体酸素比率) を 15%と した。 これによ つて脱りん処理後の溶銑温度を目標の 1340°Cとするこ とができる。 底吹きインジェクショ ンする焼結鉱からの固体酸素では不足する場 合には、 上方からミルスケールを投入した。 一部の比較例では、 固 体酸素比率として 15%以外の値を採用している。
上吹きランスからの酸素供給速度およびランス高さを調整するこ とにより、 スラグ中の酸化鉄濃度を制御し、 脱りん処理後の酸化鉄 中鉄分とマンガン酸化物濃度の和 (T. Fe + MnO)を 15%以上 35%以 下となるように調整した。 一部の比較例では、 上記の範囲から外れ るように調整して (T. Fe + MnO)制御の効果を確認した。
• 処理条件および結果を表 3に示す。
表 3
Figure imgf000013_0001
本発明の実施例 1 は じ30/0を5.4 とし、 本発明の実施例 2は C aOZOを 15.5とした。 いずれも、 脱りんフラ ックスと して蛍石を使 用することなく、 安定して脱りん処理後 [P] 濃度を 0.014%以下 とすることができた。
比較例 1 は、 従来用いられていた CaO/Οの領域において実施し た例である。 CaO/Oを 0.87と した以外は本発明の実施例と同じ条 件を採用した。 CaO/ Oが低いので吹き込みフラックスと しての Ca 0 量が少なく、 塊生石灰原単位が 12.6kg/ t となった。 滓化不良を 起こさずに目標の [P ] 濃度を達成するためには、 蛍石を 0.5kg/ t添加する必要があり、 蛍石不使用とすることはできなかった。 比較例 2、 比較例 3は、 上吹きラ ンスのラ ンス高さを調整して、 脱りん処理後のスラグ中 (T . Fe + MnO)濃度を意図的に通常用いら れる範囲から逸脱させたものである。 比較例 2は (T . Fe + MnO)濃 度を 7 %と したため、 スラグの滓化不良が生じ、 蛍石を添加したも のの目標の [P] 濃度を得ることができなかった。 比較例 3は (T . Fe + MnO)濃度を 40%と したため、 スラグの滓化は良好であつたが 、 CaO が希釈され、 目標の [P] 濃度を得ることができなかった。
比較例 4、 比較例 5は、 固体酸素比率を変動させた比較例である 。 比較例 4においては固体酸素比率を 4 %に下げて上吹き酸素比率 を上げたため、 脱りん処理後温度が 1352°Cまで上昇して脱りん能力 が低下し、 目標の [P ] 濃度を得ることができなかったと同時に、 上吹き酸素の増大によって脱りん処理中における溶銑の脱炭が進行 してしまった。 比較例 5は固体酸素比率を 50%に上げて上吹き酸素 比率を下げたため、 上吹き酸素による発熱が減少し、 脱りん処理後 温度が 1314°Cと低くなつた。 蛍石を添加しなかったため滓化不良が 生じ、 目標の [P] 濃度を得ることができなかった。
比較例 6は、 スラグの滓化不良を防止するために塊生石灰原単位 は本発明の実施例と同じ 5.4kg/ t と した上で、 CaO/Oを本発明 の範囲外の 1.49とした。 このため、 固体酸素比率が 26%となったが 、 転炉二次燃焼率の調整などによって脱りん処理後温度は 1337°Cに 調整した。 CaO/Oが本発明範囲外であるため、 脱りん能力が低下 し、 目標の [P] 濃度を得ることができなかった。
本発明の実施例 1の条件と比較例 2の条件で各々 20chづっ連続し た操業を実施し、 耐火物溶損量を比較した。 その結果、 蛍石を使用 した比較例 2に比べ、 蛍石を使用しない本発明の実施例 1の方が 20 %溶損量が少ないことが確認でき、 耐火物コス ト低減に役立った。 産業上の利用可能性
本発明は、 上底吹き可能な精鍊容器を用いて、 酸素を上吹きする と ともにフラ ックスを底吹きィ ンジェクショ ンして溶銑を脱りんす るに際し、 フラックス中の CaO 質量と、 フラックス中の酸化鉄及び キヤリ ァガスに含まれる酸素の総質量との比(CaOZO) が 2.5 以上 になるよ うにフラックスを溶銑中に吹き込むことにより、 蛍石を使 用することなしに良好な脱りん処理を行うことが可能になった。 こ れによ り、 耐火物溶損量を削減し、 耐火物コス トを低減することが できた。
本発明はまた、 添加する全酸素中に占める固体酸素比率を 5 %以 上 40%以下とすることにより、 脱りん処理における溶銑温度制御を 容易にすることが可能になった。
本発明は、 脱りん処理終了時点のスラグ中の CaOZSi02を 2.5 以 下、 かつスラグ中の酸化鉄中鉄分とマンガン酸化物濃度の和 (T. Fe + MnO)を 15%以上 35%以下にすることにより、 安定した脱りん処 理を行う ことができる。

Claims

請 求 の 範 囲
1 . 酸素を上吹きするとともに、 溶銑中に生石灰、 石灰石、 酸化 鉄の 1又は 2以上であって少なく とも酸化鉄を含む成分を主成分と するフラックスを酸素もしく は不活性ガスまたはそれらの混合ガス をキャリアガスとして吹き込む溶銑の脱りん方法において、 吹き込 みフラックス中の CaO 質量と、 吹き込みフラックス中の酸化鉄及び キヤリ ァガスに含まれる酸素の総質量との比(CaO/ O ) が 2. 5 超に なるようにフラ ッ クスを溶銑中に吹き込むことを特徴とする溶銑の 脱りん方法。
2 . 酸素を上吹きするとともに、 溶銑中に生石灰、 石灰石、 酸化 鉄の 1又は 2以上であって少なく とも酸化鉄を含む成分を主成分と するフラッタスを酸素もしく は不活性ガスまたはそれらの混合ガス をキャリ アガスと して吹き込む溶銑脱りん方法において、 添加する 全酸素中に占める固体酸素比率を質量%で 5 %以上 40 %以下とする こ とを特徴とする溶銑の脱りん方法。
3 . 酸素を上吹きするとともに、 溶銑中に生石灰、 石灰石、 酸化 鉄の 1又は 2以上であって少なく とも酸化鉄を含む成分を主成分と するフラックスを酸素もしくは不活性ガスまたはそれらの混合ガス をキャリ アガスとして吹き込む溶銑の脱りん方法において、 吹き込 みフラ ッ クス中の CaO 質量と、 吹き込みフラ ックス中の酸化鉄及び キヤ リ ァガスに含まれる酸素の総質量との比(CaO Z O ) が 2. 5 超に なるよ うにフラ ックスを溶銑中に吹き込むと ともに、 添加する全酸 素中に占める固体酸素比率を質量%で 5 %以上 40 %以下とすること を特徴とする溶銑の脱りん方法。
4 . 脱りん処理終了時点のスラグ中の じ30 3 :102を2. 5 以下、 か っスラグ中の酸化鉄中鉄分とマンガン酸化物濃度の和 (T . Fe + Mn 0 )を質量%で 15%以上 35%以下にすることを特徴とする、 請求の範 囲第 1項〜第 3項のいずれか 1項に記載の溶銑の脱りん方法。
5 . フラックスに蛍石を使用しないことを特徴とする請求の範囲 第 1項〜第 4項のいずれか 1項に記載の溶銑の脱りん方法。
PCT/JP2002/010105 2001-09-27 2002-09-27 Procede de dephosphorisation de fer en fusion WO2003029497A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AT02770227T ATE538219T1 (de) 2001-09-27 2002-09-27 Verfahren zur entphosphorisierung von geschmolzenem eisen
EP02770227A EP1445337B1 (en) 2001-09-27 2002-09-27 Method for dephosphorization of molten iron
KR1020047004547A KR100658806B1 (ko) 2001-09-27 2002-09-27 용선의 탈인 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-295875 2001-09-27
JP2001295875A JP3940280B2 (ja) 2001-09-27 2001-09-27 溶銑の脱りん方法

Publications (1)

Publication Number Publication Date
WO2003029497A1 true WO2003029497A1 (fr) 2003-04-10

Family

ID=19117230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/010105 WO2003029497A1 (fr) 2001-09-27 2002-09-27 Procede de dephosphorisation de fer en fusion

Country Status (5)

Country Link
EP (1) EP1445337B1 (ja)
JP (1) JP3940280B2 (ja)
KR (1) KR100658806B1 (ja)
AT (1) ATE538219T1 (ja)
WO (1) WO2003029497A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100909691B1 (ko) * 2002-12-18 2009-07-29 주식회사 포스코 진공탈가스설비에서 고순도 산화철을 이용한 용강탈린방법
JP5438527B2 (ja) * 2010-01-15 2014-03-12 株式会社神戸製鋼所 極低りん鋼溶製のための脱りん方法
JP5438543B2 (ja) * 2010-02-18 2014-03-12 株式会社神戸製鋼所 脱りん方法
JP6191437B2 (ja) * 2013-12-16 2017-09-06 新日鐵住金株式会社 溶銑の精錬方法
EP3564396B1 (en) 2016-12-27 2022-10-12 JFE Steel Corporation Method for dephosphorization of molten iron, and refining agent
KR102406956B1 (ko) * 2018-03-07 2022-06-10 닛폰세이테츠 가부시키가이샤 용선의 탈인 방법
CN109371200A (zh) * 2018-10-29 2019-02-22 甘肃酒钢集团宏兴钢铁股份有限公司 一种通过转炉底喷氧化铁红使铁水快速脱磷的冶炼方法
CN113337673B (zh) * 2021-04-21 2022-06-21 新疆八一钢铁股份有限公司 一种转炉炼钢高效脱磷剂的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215916A (ja) * 1988-02-24 1989-08-29 Nippon Steel Corp 溶銑の脱燐処理法
JPH0270014A (ja) * 1988-09-06 1990-03-08 Nippon Steel Corp 溶銑の脱燐処理法
JPH0293011A (ja) * 1988-09-28 1990-04-03 Nippon Steel Corp 溶銑の同時脱珪・脱燐方法
EP0714989A1 (en) * 1993-06-30 1996-06-05 Nippon Steel Corporation Steel manufacturing method using converter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0043238B1 (en) * 1980-06-28 1984-10-10 Kawasaki Steel Corporation Method of dephosphorizing molten pig iron
JPS5816009A (ja) * 1981-07-22 1983-01-29 Nippon Steel Corp 溶湯の脱燐方法
JPH0673427A (ja) * 1992-08-26 1994-03-15 Nippon Steel Corp 復燐を抑制した高炭素溶鉄の精錬方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01215916A (ja) * 1988-02-24 1989-08-29 Nippon Steel Corp 溶銑の脱燐処理法
JPH0270014A (ja) * 1988-09-06 1990-03-08 Nippon Steel Corp 溶銑の脱燐処理法
JPH0293011A (ja) * 1988-09-28 1990-04-03 Nippon Steel Corp 溶銑の同時脱珪・脱燐方法
EP0714989A1 (en) * 1993-06-30 1996-06-05 Nippon Steel Corporation Steel manufacturing method using converter

Also Published As

Publication number Publication date
KR100658806B1 (ko) 2006-12-19
EP1445337B1 (en) 2011-12-21
KR20040033325A (ko) 2004-04-21
JP2003105417A (ja) 2003-04-09
JP3940280B2 (ja) 2007-07-04
ATE538219T1 (de) 2012-01-15
EP1445337A4 (en) 2005-09-21
EP1445337A1 (en) 2004-08-11

Similar Documents

Publication Publication Date Title
KR101648652B1 (ko) 용선의 예비 처리 방법
WO1995001458A1 (fr) Procede de production et d'acier au moyen d'un convertisseur
WO2003029497A1 (fr) Procede de dephosphorisation de fer en fusion
JP5983492B2 (ja) 溶銑の予備処理方法
JP5408379B2 (ja) 溶銑の予備処理方法
CN114457204A (zh) 铁水的脱磷方法
CN104531948A (zh) 铁水脱磷方法
JP4695312B2 (ja) 溶銑の予備処理方法
JP3888264B2 (ja) 低燐溶銑の製造方法
JPH07278644A (ja) 高クロム高マンガン溶融合金鉄の脱りん方法
WO2003029498A1 (fr) Procede de pretraitement de fer fondu et procede de raffinage
JP2001288507A (ja) 低燐溶銑の製造方法
JP2001131625A (ja) 転炉を用いた溶銑の脱燐方法
JP2001107124A (ja) 溶銑の脱燐方法
JP3297997B2 (ja) 溶銑の脱p方法
JP2002275521A (ja) 高炭素溶鋼の脱燐精錬方法
JPS5847450B2 (ja) 酸素上吹製鋼法における脱燐促進方法
JPH10102120A (ja) 製鋼方法
JPS6126752A (ja) 溶融還元による低りん高マンガン鉄合金の製造方法
JP2004107735A (ja) 効率の高い溶銑脱りん方法
JP2001131624A (ja) 脱炭滓を用いた溶銑脱燐方法
JP2002212615A (ja) 溶銑脱リン方法
JPH03122210A (ja) 複合転炉を用いた2段向流精錬製鋼法
JPH0841519A (ja) 製鋼方法
JP2001192724A (ja) 溶銑の脱りん方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FR GB GR IE IT LU MC NL PT SE SK TR

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2002770227

Country of ref document: EP

Ref document number: 1020047004547

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2002770227

Country of ref document: EP