WO2002058915A1 - Core material for fiber-reinforced resin composite structure and method for producing fiber-reinforced resin composite structure using the same - Google Patents

Core material for fiber-reinforced resin composite structure and method for producing fiber-reinforced resin composite structure using the same Download PDF

Info

Publication number
WO2002058915A1
WO2002058915A1 PCT/JP2002/000539 JP0200539W WO02058915A1 WO 2002058915 A1 WO2002058915 A1 WO 2002058915A1 JP 0200539 W JP0200539 W JP 0200539W WO 02058915 A1 WO02058915 A1 WO 02058915A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
composite structure
core material
liquid resin
resin composite
Prior art date
Application number
PCT/JP2002/000539
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuhiro Imamura
Yoshihiro Kimura
Original Assignee
Kaneka Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corporation filed Critical Kaneka Corporation
Priority to KR1020027009337A priority Critical patent/KR20020086473A/en
Priority to JP2002559232A priority patent/JPWO2002058915A1/en
Publication of WO2002058915A1 publication Critical patent/WO2002058915A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • B29C70/546Measures for feeding or distributing the matrix material in the reinforcing structure
    • B29C70/547Measures for feeding or distributing the matrix material in the reinforcing structure using channels or porous distribution layers incorporated in or associated with the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/06Fibrous reinforcements only
    • B29C70/08Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers
    • B29C70/086Fibrous reinforcements only comprising combinations of different forms of fibrous reinforcements incorporated in matrix material, forming one or more layers, and with or without non-reinforced layers and with one or more layers of pure plastics material, e.g. foam layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/46Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs
    • B29C70/48Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using matched moulds, e.g. for deforming sheet moulding compounds [SMC] or prepregs and impregnating the reinforcements in the closed mould, e.g. resin transfer moulding [RTM], e.g. by vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary

Definitions

  • the present invention relates to a fiber-reinforced resin composite structure (hereinafter, referred to as a “FRP (Fiber Reinforced Plastic) composite structure”) widely used as a material for ships, vehicles, marine buoyant bodies, pools, aircraft, wind power blades, and the like.
  • FRP Fiber Reinforced Plastic
  • the present invention relates to a core material used in (1) and a method for producing an FRP composite structure using the core material for an FRP structure.
  • a vacuum-assisted resin transfer method using a vacuum bag is known.
  • a reinforcing fiber layer made of glass fiber or the like is covered with a vacuum bag made of a synthetic resin or the like, a liquid resin such as a burester resin or an unsaturated polyester resin is supplied from one side of the vacuum bag, and the other side is vacuumed.
  • the air in the bag is sucked by a vacuum pump to impregnate the reinforcing fiber layer with the liquid resin, and then the liquid resin is cured to produce the FRP composite structure.
  • Japanese Patent Application Laid-Open No. 10-504501 discloses a separation sheet having a large number of dot-like or pentagon-like projections formed on a surface of a reinforcing fiber layer. It is described that a gap between adjacent protrusions on a release sheet is used as a flow path for distributing a liquid resin.
  • Japanese Patent Application Laid-Open No. 2000-501609 describes that a reinforcing fiber layer is disposed on the surface of a core material made of a foamed resin or the like, and the reinforcing fiber layer is formed by a vacuum auxiliary resin transfer method.
  • a slit groove
  • a slit for distributing the liquid resin is formed on the surface of the core material, or a slit is formed on the surface of the core material. It is described that a plurality of projecting distribution media is provided or a metal woven skin sheet having a large number of raised portions is used.
  • the liquid resin it was difficult to distribute the liquid resin evenly and simply by forming a slit on the surface of the core material. For example, if a residual air layer is formed in the vacuum bag during vacuum suction by the vacuum assisted resin transfer method, the air layer blocks the flow of the liquid resin by the slit, so that other liquid layers are formed. If the resin flow passage is not formed, the liquid resin will not be distributed to the portion of the core material on the vacuum suction side from the remaining air layer.
  • the liquid resin that flows in the slit and is distributed to the reinforcing fiber layer remains in the slit after being distributed and is cured, but the liquid resin is slightly cured by the curing.
  • Shrink The shrinkage of the portion corresponding to the slit becomes larger than the surface of the core material by the depth of the slit, and as a result, the FRP composite structure On the surface of the body, there was a problem that fine lines (small irregularities called so-called print-through) occurred along the slits, and the appearance was impaired.
  • liquid resins such as butyl ester resin and unsaturated polyester resin may erode the core material. When the liquid resin flows through the slit, it erodes the core material to soften the core material, As a result of, for example, expanding the slot width, the above-mentioned dents become more prominent.
  • An object of the present invention is to provide a core material for an FRP composite structure capable of uniformly and quickly distributing a liquid resin, and a method for producing an FRP composite structure using the core material. .
  • the present invention is a core material for an FRP composite structure, which has a slit on the surface and a through hole penetrating in a thickness direction.
  • a reinforcing fiber layer is disposed on the surface of the core material, and when the reinforcing fiber layer is impregnated with the liquid resin by the vacuum assisted resin transfer method, the liquid resin passes through the slits on the surface of the core material.
  • the liquid resin flows between the opposing surfaces of the core material through the through holes, so that the liquid resin flows more smoothly.
  • the liquid resin is uniformly and rapidly distributed to the reinforcing fiber layer on each surface of the core material.
  • the quality of the FRP composite structure can be improved, and the time required for manufacturing the FRP composite structure can be reduced.
  • the work of providing slits and through holes in the core material is performed using a rotary saw or an electric drill. Since it can be performed relatively easily, there is no need to manufacture core materials, and there is no need to prepare separate members such as conventional release sheets for distributing the liquid resin, resulting in a reduction in manufacturing costs. Can be done.
  • the slit has a width of approximately 0.5 to 2 mm, a depth of approximately 1 to 4 times the width, and a pitch of approximately 10 to 10 O. mm. If the size and pitch of the slit are within the above ranges, the flow of the liquid resin at the time of vacuum suction is performed smoothly, and the amount of resin remaining in the slit after the production of the FRP composite structure is properly adjusted. Range, and the weight of the FRP composite structure can be reduced.
  • the size of the slit is smaller than the above lower limit or the pitch is larger than the above upper limit, the flow rate of the liquid resin during production of the FRP composite structure is undesirably reduced.
  • the size of the slit is larger than the above upper limit or the pitch is smaller than the above lower limit, the amount of resin remaining in the slit after the production of the FRP composite structure becomes excessive, that is, However, the amount of the liquid resin used in the production becomes excessive and the weight of the FRP composite structure increases, which is not preferable.
  • the size of the slit is larger than the above upper limit, the unevenness may be formed on the surface of the FRP composite structure to deteriorate the appearance, which is not preferable.
  • the weight of the FRP composite structure may increase.
  • the cross-sectional area of the slit is larger than when the slit has a substantially rectangular cross-section.
  • the amount of resin remaining in the slit after the production of the FRP composite structure is reduced. Therefore, liquid trees at the time of production It has the advantage of reducing the cost by reducing the amount of fat used and reducing the weight of the FRP composite structure. Also, there is an advantage that the above-mentioned uneven pattern generated on the surface of the FRP composite structure due to contraction of the liquid resin is suppressed.
  • the diameter of the through hole is approximately 1 to 4 mm, and the pitch is approximately 20 to 200 mm. If the diameter and pitch of the through holes are within the above ranges, the flow of the liquid resin through the through holes during the production of the FRP composite structure is smoothly performed, and the amount of the liquid resin remaining in the through holes after the production is reduced. There is an advantage that the FRP composite structure can be reduced in weight so that it is not excessively large.
  • the diameter of the through hole near the end is expanded. This facilitates the flow of the liquid resin from the surface of the core material into the through hole during the manufacture of the FRP composite structure, and further facilitates the flow of the liquid resin through the through hole.
  • an end of the through-hole communicates with the slit. This allows the liquid resin to move from the through hole to the slit or from the slit to the through hole during the production of the FRP composite structure, so that the distribution of the liquid resin to each part of the reinforcing fiber layer as a whole is further improved. It will be done smoothly.
  • the core material for an FRP composite structure according to the present invention has the above-mentioned slits along at least two directions on the surface, and the above-mentioned slits are provided at the intersections of the slits in different directions from each other.
  • the ends of the through holes communicate with each other.
  • the core material for an FRP composite structure according to the present invention comprises a hard plastic. It is made of a plastic foam or wood, and it is particularly preferable that the hard plastic foam is a hard vinyl chloride foam.
  • a hard plastic foam is a relatively inexpensive and lightweight core material.
  • a plastic material is used, sufficient strength can be imparted to the FRP composite structure by using a rigid plastic foam.
  • rigid vinyl chloride-based foams are not easily attacked by liquid resin (vinyl ester resin, unsaturated polyester resin, etc.) impregnated in the reinforcing fiber layer during the production of the FRP composite structure. Performance can be improved.
  • the method for producing an FRP composite structure comprises disposing a reinforcing fiber layer along the surface of the core material for an FRP composite structure, and further comprising disposing the reinforcing fiber layer and the core material for the FRP composite structure.
  • the air in the synthetic resin film is sucked by a vacuum pump, and the liquid resin is passed through the slits and through holes of the core material for the FRP composite structure to each part of the reinforcing fiber layer.
  • the reinforcing fiber layer is impregnated with the liquid resin, and then the liquid resin is cured.
  • the synthetic resin film is a nylon film.
  • an end of the liquid resin supply pipe is connected to an end of the slit, and the supply of the liquid resin is performed from an end of the slit. It is particularly preferable to increase the cross-sectional area at least in the vicinity of the end portion.
  • a part of the liquid resin passes through the slit.
  • the fiber is distributed substantially uniformly over the entire area of the fiber reinforced layer covering the surface of the core material provided with the slit, and is impregnated over substantially the entire area of the fiber reinforced layer.
  • Another part of the liquid resin is sent to the other surface of the core material through the through-hole and distributed to almost the entire area of the fiber reinforced layer covering the other surface through slits on this other surface.
  • the fiber reinforcing layer is impregnated.
  • the liquid resin can be easily distributed to substantially the entire region of the fiber reinforcing layer only by supplying the liquid resin to the end of the slit.
  • the liquid resin can smoothly flow into the slit from the supply pipe having a larger cross-sectional area than the slit.
  • the slit receiving the liquid resin is supplied to each part of the fiber reinforcing layer. This has the advantage that the liquid resin is quickly distributed.
  • a liquid resin supply pipe is arranged between the reinforcing fiber layer and the synthetic resin film in a width direction of the reinforcing fiber layer, and the liquid resin is supplied to the reinforcing fiber layer from a plurality of positions of the supply pipe.
  • the supply pipe is a spiral pipe having a gap for supplying a liquid resin along its longitudinal direction, or a perforated pipe having holes for discharging the liquid resin in its longitudinal direction. It is a tube.
  • the liquid resin is an unsaturated polyester resin or a bullet ester resin.
  • the liquid resin is contained in the unsaturated polyester resin or the vinyl ester resin.
  • the styrene monomer content is 20 to 40% by weight. / 0 is particularly preferred.
  • the content of the styrene monomer in the unsaturated polyester resin is, for example, about 45%, the fluidity of the unsaturated polyester resin is high, and the unsaturated polyester resin can be rapidly distributed to the fiber reinforcing layer.
  • the erosion of the core material increases.
  • by controlling the content of the styrene monomer to preferably 20 to 40% by weight, more preferably 25 to 35% by weight erosion of the core material by the unsaturated polyester or vinyl ester resin is suppressed. Therefore, there is an advantage that the surface property of the FRP composite structure can be improved, and the unsaturated polyester or vinyl ester resin can be distributed quickly.
  • the air in the synthetic resin film is sucked from near one end of the core for the FRP composite structure, and the liquid resin is supplied from near the other end to near one end of the core for the FRP composite structure. It is preferable to perform the steps sequentially.
  • the suction force is effectively applied to the area where the liquid resin is supplied at each point in time, and the liquid resin is applied over substantially the entire area of the core material. Almost uniformly distributed to the fiber reinforcement layer.
  • the liquid resin when the liquid resin is simultaneously supplied to the entire area of the core material, the liquid resin can be uniformly distributed to the fiber reinforcing layer in the vicinity of one end of the core material for performing the vacuum suction. In the vicinity, it is difficult to distribute the liquid resin uniformly because it is hindered by the liquid resin during that time and the suction effect by vacuum suction is not sufficient.
  • the air sucked from the inside of the synthetic resin film is passed through the liquid resin trap, and the separated liquid resin is returned to the liquid resin to be distributed to each part of the reinforcing fiber layer.
  • surplus liquid resin can be reused, and FRP composite structures can be manufactured at lower cost. It is possible to do.
  • the liquid resin is distributed to each part of the reinforcing fiber layer while sucking the air in the synthetic resin film, a residual air layer generated between the reinforcing fiber layer and the synthetic resin film is removed. It is preferable that a needle-shaped suction nozzle is penetrated to remove by suction, and thereafter, the perforation hole formed in the synthetic resin film is sealed by the suction nozzle.
  • the residual air layer prevents impregnation of the reinforcing fiber layer with the liquid resin and causes defects in the FRP composite structure in which no resin is present. There is an advantage that it can be prevented.
  • the reinforcing fiber layer is a glass fiber layer
  • the glass fiber layer is formed of a first glass fiber layer made of only glass fiber extending in one direction and a glass fiber layer extending in another direction substantially orthogonal to the one direction. It must be formed by laminating a second glass fiber layer consisting only of extended glass fiber, be composed of chopped strand mat, or be composed of continuous stainless steel mat Particularly preferred.
  • the glass fiber layer a first glass fiber layer made of only glass fiber extending in one direction, and a second glass fiber layer made of only glass fiber extending in another direction substantially orthogonal to the one direction
  • the liquid resin flows in only one direction in the first glass fiber layer, and the other liquid flows in the second glass fiber layer.
  • the liquid resin quickly spreads throughout the glass fiber layer.
  • a chopped strand mat is used for the above glass fiber layer, the rigidity per thickness of the glass fiber layer is increased, and continuous strand is used.
  • the use of mat has the advantage that the flow of the liquid resin in the glass fiber layer becomes faster and the impregnation time of the liquid resin is further reduced.
  • FIG. 1 is a plan view showing a core material for an FRP composite structure according to a first embodiment.
  • FIG. 2 is an enlarged perspective sectional view showing a part of the core material.
  • FIG. 3 is an enlarged partial cross-sectional view taken along the line III-III of FIG.
  • FIG. 4 is an enlarged partial sectional view showing a modification of the slit.
  • FIG. 5 is a plan view showing a manufacturing facility for manufacturing an FRP composite structure using the above core material.
  • FIG. 6 is a partially enlarged sectional view taken along the line VI-VI of FIG.
  • FIG. 7 is a partially enlarged sectional view corresponding to FIG. 6 and showing a state in which the liquid resin is distributed.
  • FIG. 8 is a partially enlarged sectional view showing a modification of the manufacturing equipment of the above embodiment.
  • FIG. 9 is an enlarged partial cross-sectional view showing a dent formed along the slit.
  • FIG. 10 is a sectional view showing a schematic structure of a filter for separating a liquid resin.
  • FIG. 11 is a schematic diagram showing a circuit for returning the liquid resin separated using the filter to a supply device.
  • FIG. 12 is a schematic perspective view showing an external configuration of the suction nozzle.
  • FIG. 13 is a partial perspective sectional view showing the configuration of the slit tube.
  • FIG. 14 is a partial perspective sectional view showing a configuration of a perforated pipe.
  • FIG. 15 is a schematic diagram showing an apparatus for manufacturing an FRP composite structure in Examples 2 to 5 and Comparative Examples 2 to 4.
  • FIG. 1 is a plan view of a core material 1 (hereinafter simply referred to as a core material 1) for an FRP composite structure
  • FIG. 2 is an enlarged perspective view of the core material 1 showing the vicinity of an upper left corner in FIG. It is sectional drawing.
  • the core material 1 is formed in a substantially rectangular parallelepiped shape as a whole, and a plurality of vertical slits 2 and a plurality of horizontal slits 3 intersect each other on an upper surface which is one surface of the core material 1. It is formed as follows.
  • a plurality of vertical slits 2 and a plurality of horizontal slits 3 are formed on the lower surface which is the other surface of the core material 1 at positions corresponding to the slits 2 and 3 on the upper surface side. .
  • These slits 2 and 3 are provided, for example, by shaving the surface of the core 1 with a predetermined width and depth using a rotary saw blade (not shown) after the core 1 is formed.
  • a through hole 4 having a substantially circular cross section is connected to an electric drill (not shown) so as to connect some of the intersections of the slits 2 and 3 corresponding to each other on the upper surface and the lower surface. It is formed by piercing the core material 1 by using a hole.
  • the slits 2 and 3 are provided with a fiber-reinforcing layer (not shown) along the upper surface and the lower surface of the core material 1, respectively.
  • a flow path is formed in which the liquid resin flows along the upper surface and the lower surface of the core 1, and the through hole 4 allows the liquid resin to have a lower degree of vacuum on either the upper surface or the lower surface of the core 1.
  • a flow path from the side to the side with the higher degree of vacuum is formed.
  • FIG. 3 is an enlarged sectional partial view including the slit 3 along the line III-III in FIG.
  • the slits 2 and 3 have a rectangular cross section. If the width W or depth D of the slits 2 and 3 is too small, or the pitch P1, P If 2 is too large, the liquid resin cannot smoothly flow through the slits 2 and 3 during production of the FRP composite structure by the vacuum assisted resin transfer method, which is not preferable.
  • the smoother the flow of the liquid resin during the above manufacturing there is a problem that the amount of resin remaining in the slits 2 and 3 after the production increases, the production cost increases, and the weight of the FRP composite structure increases.
  • the depth of the slits 2 and 3 increases, the liquid resin in the slits 2 and 3 hardens and shrinks.
  • the FRP composite structure A dent S along the slit 3 occurs on the surface of the FRP composite, and the appearance of the FRP composite structure is impaired.
  • stress may be concentrated on the wire S, and there is a concern that the rigidity of the ERP composite structure may be reduced.
  • the core material 1 may be eroded by the styrene monomer in the liquid resin.
  • the core material 1 is softened or the widths and depths of the slits 2 and 3 are increased, so that the above-mentioned problem is remarkably exhibited.
  • the width of each slit 2 and 3 is approximately 0.5 to 2 mm, the depth is approximately 1 to 4 times the width, and the pitches P 1 and P 2 are 10 to 1 O Om m More preferably, the width is approximately 0.7 to 1.5 mm, the depth is approximately 1.3 to 3 times the width, and the pitches Pl and P2 are approximately 20 to 70 mm.
  • the through hole 4 has a diameter of about 1 to 4 mm, and the vertical and horizontal pitches P 3 and P 4 of about 20 to 20 Omm, and more preferably, The diameter is approximately 1.5 to 3 mm, the pitches P3 and P4 are approximately 40 to 140 mm, and most preferably, the diameter is approximately 2 to 2.5 mm and the pitches P3 and P4 are approximately 60 to 140 mm. It shall be 100 mm.
  • the end of the through-hole 4 shown in FIGS. 1 and 2 is connected to the intersection of the two-way slits 2 and 3 so that the liquid between the through-hole 4 and the two-way slits 2 and 3 is formed.
  • the resin can be moved, but the end of the through hole 4 may be connected to only one of the slits 2 or 3 in one direction.
  • the diameter of the through hole 4 is constant, but the diameter near the end of the through hole 4 communicating with the slits 2 and 3 is, for example, a tapered cross section near the end.
  • the continuous expansion as described above allows the liquid resin to move smoothly between the through hole 4 and the slits 2 and 3.
  • the slits 2 and 3 may have a substantially V-shaped cross section instead of a rectangular cross section.
  • the cross-sectional area of the slits 2 and 3 is about 1/2 of that of the rectangular cross section.
  • the thickness T of the core material 1 may be determined according to the thickness dimension of the FRP composite structure to be manufactured, and the longitudinal and lateral dimensions L 1 and L 2 of the core material 1 are also the same as those of the FRP composite structure. And the lateral direction.
  • the FRP composite structure is large, for example, in which at least one of the vertical or horizontal dimensions L1 and L2 is about 200 mm or more, as described later, a plurality of core materials are used.
  • One may be arranged vertically or horizontally to form one FRP composite structure.
  • the longitudinal and lateral dimensions L 1 and L 2 of the core material 1, which is a constituent unit can be set to, for example, about 500 to 200 mm.
  • the manufacturing equipment 5 includes a molding die 6 made of fiber reinforced resin (FRP) or the like.
  • the shape of the molding die 6 is determined according to the product shape.Here, for example, in order to use the FRP composite structure in a substantially rectangular parallelepiped shape, the planar shape of the molding die 6 is set to be substantially rectangular. I have.
  • FIG. 6 which is an enlarged cross-sectional view taken along the line VI—VI in FIG. 5, a rising portion 7 is provided on the periphery of the molding die 6, and the upper surface of the rising portion 7 is provided on the upper surface.
  • a groove 7a is formed.
  • the groove 7a is filled with a putty 8 (adhesive) made of polyester or the like.
  • the putty 8 is adapted to adsorb so that the peripheral portion of the synthetic resin film 10 used at the time of vacuum suction can be peeled off.
  • the peripheral portion of the synthetic resin film 10 can be sealed using a double-sided adhesive tape instead of the putty 8.
  • a plurality of liquid resin supply devices 11 each composed of a tub or the like in which the liquid resin is stored are arranged on the side of the molding die 6.
  • Each feeder 11 has multiple feeders.
  • One end of the supply pipe 12 is connected, and an on-off valve 13 is attached to each supply pipe 12.
  • Each feed pipe 12 extends to one end in the width direction (upper end in FIG. 5) in the molding die 6, and the other end of each feed pipe 12 has a spiral pipe 14 (supply pipe). ) Is connected at one end.
  • each spiral tube 14 extends along the width direction of the mold 6, and the other end is located at the other end in the width direction within the mold 6.
  • the spiral tube 14 is, for example, a spirally wound metal wire rod 14a, and has a small gap 14 for allowing the liquid resin to leak out. b around the metal wire rod 14a. That is, the spiral tube 14 does not have such a large elasticity as a coil spring, but has a shape in which the gap between the spiral wires in the coil spring is formed extremely small.
  • the size of the gap 14b is such that when the liquid resin is sent from one end to the other end in the spiral tube 14, the amount of liquid resin leakage per unit length of the spiral tube 14 is It is set so that it is almost uniform over the entire area in the longitudinal direction of 14.
  • the pitch P5 of the adjacent spiral tubes 14 is, for example, about 300 to 100 mm, and more preferably about 400 to 600 mm.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of the filter 16. As shown in the figure, the filter 16 has a so-called trap-like configuration.
  • a suction pipe 15 is inserted into the vacuum chamber 16 with its tip directed downward, and a vacuum pipe 161, which communicates with the vacuum pump 20, has a tip near the upper end. It is introduced to become.
  • the positions and directions of the tips of the suction pipe 15 and the vacuum pipe 16 are not limited to the above, but the liquid resin sucked from the suction pipe 15 into the vacuum chamber 160 is scattered or the like, and the vacuum is generated. It is preferable that the positional relationship is set so that it is not sucked into the pipe 16 1.
  • a drain tube 162 for flowing out the liquid resin stored in the vacuum chamber 160 is inserted so that its tip is near the bottom of the vacuum chamber 160.
  • the drain tube 162 is provided with a valve A, and the liquid resin sucked together with air from the suction tube 15 is stored in a vacuum chamber 160, and then the valve A is opened. Thereby, it is possible to flow out from the drain tube 16 2 as appropriate.
  • a valve B for returning the pressure in the vacuum chamber 160 to the atmospheric pressure is provided above the vacuum chamber 160. By closing the valve B during suction and opening it after vacuum suction, the reduced pressure in the vacuum chamber 160 can be quickly returned to the atmospheric pressure.
  • a pump or the like is provided if necessary to allow the liquid resin stored in the vacuum chamber 160 to flow out of the drain tube 162.
  • suction pipe 15 is branched and inserted into a pair of filters 16A and 16B, respectively, and the vacuum inserted into each filter 16A and 16B.
  • the pipes 161 are appropriately joined to communicate with the vacuum pump 20.
  • an on-off valve 163 will be provided for each suction pipe 15, vacuum pipe 161, and drain pipe 162.
  • each on-off valve 16 3 By operating each on-off valve 16 3 as appropriate, one of the filters 16 A and 16 B is used to separate the liquid resin that is sucked in by being mixed with air, and is placed in the vacuum chamber 160.
  • the liquid resin When the liquid resin is stored in a predetermined amount or more, operate each on-off valve 16 3 to switch to use the other of the filter 16 A or the filter 16 B, and switch to vacuum.
  • the discharged liquid resin is discharged into the supply device 11. By repeating this, the liquid resin can be trapped in the filters 16A and 16B without interrupting the production of the FRP composite structure, and the liquid resin can be reused.
  • a vinyl ester resin or an unsaturated polyester resin can be used as the liquid resin.
  • unsaturated polyester resins are preferable because they are relatively inexpensive and can secure the strength of the FRP composite structure after production.
  • the Bier ester resin is more expensive than the unsaturated polyester resin, it has an advantage that it is relatively easy to suppress the uneven pattern generated on the surface of the FRP composite structure. It is a preferred resin in that the surface properties of the body can be improved.
  • the core material 1 is more likely to be eroded as the styrene monomer content increases, whereas if the content is low, the viscosity of the liquid resin increases and the fluidity deteriorates. Therefore, emphasis is placed on the surface properties of the FRP composite structure.
  • the content of the styrene monomer is preferably about 20 to 40% by weight, particularly preferably 25 to 35% by weight.
  • Wood such as hard plastic foam or pulsar can be used as the core material 1.
  • the use of a rigid plastic foam makes it easier to secure the strength of the FRP composite structure after production than a soft plastic foam, and the core has a shape corresponding to the shape of the FRP composite structure to be produced. There is an advantage that the material 1 can be easily formed.
  • a rigid plastic foam a rigid chloride foam, a rigid urethane foam, a rigid acrylic foam, etc. can be used.
  • Crosslinked hard vinyl chloride foams which are difficult to form, are preferred.
  • Examples of the synthetic resin film 10 include a nylon film, a polyvinyl alcohol resin, a Teflon film (trade name: tetrafluoroethylene resin), a butyl rubber film, and the like. Nylon films, which are relatively inexpensive and hardly cause tearing, are particularly suitable.
  • a manufacturing procedure of the FRP composite structure will be described.
  • Each of the feed pipes 12 has flexibility, and although not shown, each feed pipe 12 is bent so that the spiral pipe 14 can be taken out of the molding die 6.
  • the periphery of the synthetic resin film 10 is separated from the putty 8 and the synthetic resin film 10 is removed from the mold 6 and, if necessary, each spiral tube 14 is formed into a mold 6.
  • a fiber reinforcing layer 21 made of glass fiber or the like on the lower surface side is laid on the mold 6.
  • the core material 1 having the slits 2 and 3 and the through hole 4 is disposed on the fiber reinforcing layer 21.
  • the core material 1 having the slits 2 and 3 and the through hole 4 is disposed on the fiber reinforcing layer 21.
  • a plurality of cores 1 are arranged in the vertical or horizontal direction.
  • the fiber reinforcing layer 22 on the upper surface side is laid on the core material 1.
  • each spiral tube 14 is set at the position shown in FIG. 5, and the spiral tubes 14 are arranged on the fiber reinforcing layer 22 so as to extend over substantially the entire region in the width direction of the mold 6.
  • the upper part of the molding die 6 is covered with a synthetic resin film 10 and the peripheral portion of the synthetic resin film 10 is adhered to the putty 8, and the fiber reinforcing layers 21, 22, the core material 1 therebetween, and each spiral The tube 14 is sealed between the mold 6 and the synthetic resin film 10.
  • FIG. 6 shows this state. In FIG. 6, for convenience, the number of the through holes 4 per one core material 1 is shown smaller than that in FIG.
  • each feed pipe 12 and each suction pipe 15 are drawn out from the gap between the molding die 6 and the synthetic resin film 10 to the outside.
  • the synthetic resin film 10 adheres tightly to the periphery of the mold 6 and the surfaces of the feed pipe 12 and the suction pipe 15, air leaks from the periphery of the feed pipe 12 and the suction pipe 15 to the outside.
  • the liquid resin is supplied to the spiral pipe 14 of (1) via the feed pipe 12.
  • the supply device 11 closest to the other end in the longitudinal direction is driven, and the on-off valve 13 of the supply pipe 12 connected to the spiral pipe 14 at the position (1) may be opened.
  • the spiral tube 1 at the position (1) is drawn according to the suction force.
  • the liquid resin 23 leaked from the gap 14 of 4 is impregnated in the fiber reinforcing layer 22 around the spiral tube 14 and the liquid resin 23 that has passed through the fiber collecting layer 22 in the thickness direction is formed. It flows into the slits 2 and 3 on the upper surface side of the core material 1.
  • the liquid resin 23 flowing into the slits 2 and 3 flows through the slits 2 and 3 due to the suction force described above, and further overflows from the slits 2 and 3 into the fiber reinforcing layer 22. Then, the fiber reinforcing layer 22 in the region not yet impregnated with the liquid resin 23 is impregnated.
  • a part of the liquid resin 23 in the slits 2 and 3 flows into the through-hole 4, flows downward in the through-hole 4, and the slits 2 and 3 on the lower surface side of the core material 1. Flows into.
  • the liquid resin 23 flows through the slits 2 and 3 on the lower surface side, and overflows from the slits 2 and 3 into the fiber reinforcing layer 21 to be impregnated in the fiber reinforcing layer 21.
  • the degree of impregnation of the liquid resin 23 into the fiber reinforcing layers 22 and 21 depends on the fiber reinforcement on the surface side.
  • the state in which the layer 22 is impregnated with the liquid resin 23 can be grasped by visual observation through the synthetic resin film 10.
  • the liquid resin 23 is sequentially supplied from the spiral tube 14 on the other end (the left end in FIG.
  • the suction force of the vacuum pump 20 can be effectively applied to the periphery of the portion where the liquid resin is being supplied at that time, and as a result, air
  • the liquid resin 23 can be uniformly impregnated into substantially the entire area of the fiber reinforcing layers 22 and 21 without leaving any layers.
  • the suction nozzle 24 is a needle-shaped tube having a tip cut at an acute angle.
  • the suction nozzle 24 is provided, for example, at a tip of a syringe 25 communicating with a suction pump or the like, and can suck air from the tip of the suction nozzle 24. It has become something.
  • the suction pump and the like and the syringe 25 are connected to each other by a flexible tube or the like having a required length, and the suction nozzle 24 and the syringe 25 are placed on the mold 6. Preferably, it can be easily moved to a desired position. Further, it is preferable to provide a filter or the like in the syringe 25 in order to prevent the liquid resin from flowing into the suction pump or the like.
  • the air layer remains when the liquid resin is supplied, first, the position of the air layer is checked from above the synthetic resin film 10. Since the synthetic resin film 10 is transparent, the air layer can be easily visually confirmed.
  • the suction nozzle 24 is pierced through the synthetic resin film 10 with respect to the air layer, and the tip of the suction nozzle 24 is positioned in the air layer. Then, a suction pump or the like is operated to operate the tip of the suction nozzle 24. Suction residual air. After all the remaining air is sucked, the suction nozzle 24 is pulled out, and the hole created by the penetration is sealed with an adhesive tape or the like. Thus, when the liquid resin was supplied The air layer can be removed.
  • the liquid resin After impregnating the entire area of the fiber reinforced layers 22 and 21 with the liquid resin, the liquid resin is cured so that the fiber reinforced layers 22 and 21 and the cured resin are integrated, and The resin containing the fiber reinforcing layers 22 and 21 is joined to the core 1 to complete the FRP composite structure.
  • core materials 1 When a plurality of core materials 1 are used, adjacent core materials 1 are also integrated with the above resin. This state is shown in FIG.
  • an on-off valve 13 is provided for each feed pipe 12 so that the on / off of the liquid resin supply can be controlled for each spiral pipe 14 so that the suction effect is individual.
  • the supply and the supply of the liquid resin may be controlled by each individual supply device 11.
  • the on-off valve 13 for each feed pipe 12 is not required, so the number of parts can be reduced, the time required for impregnation of the liquid resin can be shortened, and the effect of uniformly impregnating the liquid resin can be obtained. Does not drop much.
  • the spiral resin 14 is used to supply the liquid resin, so that the liquid resin can be supplied substantially uniformly over the entire area of the spiral tube 14 in the longitudinal direction.
  • a slit pipe 26 or a perforated pipe 27 can also be used.
  • the slit pipe 26 is formed by arranging circumferential slit holes 261 on a side peripheral surface of a pipe body 260.
  • the perforated pipe 27 has a plurality of through-holes 271, which are formed on the side peripheral surface of the pipe 27.
  • the width of the slit hole 261, the diameter of the through hole 271, and the distance between the slit holes 261, for example, are the same as the pitches P1 and P2 of the slits 2 and 3 of the core material 1, and the liquid resin It is preferable to set the amount of leakage so as to be substantially uniform over the entire area in the longitudinal direction. Further, the feed pipe 12 is extended so as to extend over the entire area in the width direction of the molding die 6, and the feed pipe 12 is connected to the pipe body. The functions of 260 and 270 may be combined. In this manner, the liquid resin can be supplied onto the fiber reinforcing layer 22 from the slit hole 261 or the through hole 271.
  • the bifurcated end 12a may be connected to the end of the slit 2 in one direction on the upper surface and the lower surface of the core material 1, and the liquid resin may be supplied from the end of the slit 2.
  • the liquid resin will diffuse into the fiber reinforcing layer 22 and the like via the slit 2, but since the cross-sectional area of the slit 2 is usually smaller than the cross-sectional area of the feed pipe 12 By gradually increasing the width and depth near the end 2 a of the slit 2 connected to the feed pipe 12, the cross-sectional area near the end of the slit 2 is almost the same as that of the feed pipe 12. Extension is preferred.
  • the spiral pipe described above can be obtained.
  • the supply efficiency of the liquid resin is substantially the same as that in the case where the liquid resin is supplied from above the fiber reinforcing layer 22 by using 14 or the like.
  • the fiber reinforcing layers 22 and 21 are glass fiber layers
  • a first glass fiber layer composed of only glass fibers extending in one direction for example, in the longitudinal direction of the mold 6
  • a second glass fiber layer made of only glass fibers extending in the other direction substantially perpendicular to the one direction for example, the width direction of the molding die 6
  • the fiber reinforcing layers 22 and 21 are formed.
  • the liquid resin is impregnated into the first glass fiber layer, the liquid resin flows smoothly in the longitudinal direction of the molding die 6 along the direction of the glass fiber in the first glass fiber layer, and the glass resin flows in the second glass fiber layer.
  • the above-mentioned fiber reinforcing layers 22 and 21 are formed into a sheet by processing glass fiber cut to a predetermined length into a sheet-like strand mat, and a continuous fiber having no glass fiber directionality.
  • a strand mat or a combination thereof can also be used. If chopped strand mat is used, the rigidity per thickness increases, and if continuous strand mat is used, the flow of the liquid resin in the fiber reinforcement layers 22 and 21 becomes even faster, and the liquid The resin impregnation time is further reduced.
  • the slits 2 and 3 are provided in the two directions of the upper surface and the lower surface of the core material 1.
  • the slits 2 and 3 may be provided in three or more directions.
  • a diagonal slit can be formed in addition to the vertical and horizontal slits shown in FIGS. 1 and 2. In this case, the flow of the liquid resin through the slit is performed more smoothly.
  • the slits 2 and 3 are provided only on the upper surface and the lower surface of the core material 1 which is the main surface (the surface having a large surface area) of the FRP composite structure to be manufactured.
  • the fiber reinforced layer was placed only on the upper and lower surfaces of the core material 1, but instead of this, slits 2 and 3 were also provided on the side surface of the core material 1, and the core located at the peripheral edge of the FRP composite structure A fiber reinforcing layer may be provided on the side surface of the material 1.
  • the side slits 2 and 3 of the core 1 located at a portion other than the periphery of the FRP composite structure have the same function as the through-hole 4.
  • the core material 1 has a substantially rectangular parallelepiped shape, but the shape of the core material 1 can be arbitrarily changed according to the shape of the FRP composite structure to be manufactured. Since the thickness of the fiber reinforcing layers 22 and 21 is substantially constant, the core 1 is usually What is necessary is just to make the FRP composite structure one size smaller and have a similar shape.
  • the cores 1 arranged in each part may have different shapes according to the shape of the FRP composite structure.
  • a through-hole 4 of 5 mm was formed.
  • the vertical and horizontal pitches P 3 and P 4 of the through holes 4 are each 70 mm.
  • the molding die 6 has a rectangular shape when viewed from above, and the area of the portion where the fiber reinforcement layers 21 and 22 are laid on the inner side of the raised portion 7 is 200 One having a size of 0 mm ⁇ 250 mm was used.
  • the fiber reinforcing layer 21 is laid in the above-mentioned mold 6, a plurality of cores 1 of the above-mentioned size are laid out on the fiber reinforcing layer 21 in rows and columns, and the fiber reinforcing layer 22 is placed on these cores 1.
  • the core material 1 obtained by cutting the core material 1 so as to have a width of approximately 1 Z2 was arranged.
  • the fiber reinforcing layers 21 and 22 five glass mats each having a basis weight of 450 g / m 2 were laminated and used. Was.
  • the upper part of the mold 6 was covered with a nip film 10 having a thickness of about 50 ⁇ , and then, from the left end side in FIG.
  • An unsaturated polyester resin (liquid resin) having a styrene monomer content of 45% by weight was sequentially supplied using a spiral tube 14. The time required for the unsaturated polyester resin to reach the entire surface of the mold 6 was approximately 3 hours. After the impregnation of the unsaturated polyester resin was completed, the curing reaction was completed and the nylon film 10 was released. The unsaturated polyester resin was uniformly dispersed, and the FRP composite structure had a good appearance without air layers. I got
  • the unsaturated polyester resin flows only from the upper surface side to the lower surface side through a small gap at the abutting portion of the adjacent core material 1, so that the unsaturated polyester resin
  • the time required for the resin to spread over substantially the entire surface of the molding die 6 was approximately 5 hours, which was much longer than in Example 1.
  • the unsaturated polyester resin was interrupted in some places, and an air layer was observed.
  • the slit pipe 26 is formed by using a motorized band saw on the circumferential surface of the tubular chloride biel pipe at circumferential intervals of 1 mm in width at intervals of 35 mm.
  • a rectangular glass mat large enough to lay one core material 1 is used, and the fiber reinforcing layer 21 is spread over the mold 6, and the fiber reinforcing layer 21 is placed on the fiber reinforcing layer 21.
  • the above core material 1 was laid, and a fiber reinforcing layer 22 was laid on the core material 1.
  • two chopped strand mats having a basis weight of 450 g / m 2 were laminated and used.
  • the upper portion of the mold 6 was covered with a nylon film 10 having a thickness of about 50, and the peripheral portion was sealed with a double-sided adhesive tape 28 as shown in FIG.
  • the unsaturated polyester resin having a styrene monomer content of 45% by weight was sequentially drawn from the left end side in FIG. 15 using the slit tube 26 while performing suction by the vacuum pump 20.
  • Example 2 100 parts by weight of an unsaturated polyester resin having a styrene monomer content of 30% by weight (Example 3) 1 part by weight of a curing agent MEK peroxide was added to 100 parts by weight. Supplied things.
  • the FRP composite structure was formed in the same manner as in Example 3 except that two layers of continuous strand mat of ASO gZm 2 were used as the fiber reinforcing layers 21 and 22. Obtained.
  • the content of the styrene monomer is 3 0 wt 0/0 of unsaturated polyester resin
  • the time required to reach the entire surface of the mold 6 was 7 minutes.
  • the unevenness pattern that appeared on the surface corresponding to the slits 2 and 3 of the FRP composite structure and the so-called print-through degree were visually observed. The results are shown in Table 1.
  • Mer content the content of the styrene monomer in the unsaturated polyester resin used as the liquid resin weight 0/0 c supply time showed: minutes an unsaturated polyester resin used as the liquid resin is spread over the entire surface of the mold Shown in units.
  • Example 4 the supply time of the unsaturated polyester resin was shortened by using continuous strand mat for the fiber reinforcing layers 22 and 21.
  • An FRP composite structure was obtained in the same manner as in Example 2 except that a vinyl ester resin having a styrene monomer content of 40% by weight was used as the liquid resin.
  • An FRP composite structure was manufactured in the same manner as in Example 2 except that the upper part of the mold 6 was covered with a polyethylene film having a thickness of about 5 O ⁇ m. However, about one minute after the start of vacuum suction, the polyethylene film broke, and the subsequent steps could not be continued.
  • the on-off valve 16 3 on the filter 16 A side is opened and the unsaturated polyester resin having a styrene monomer content of 30% by weight is sucked by the vacuum pump 20.
  • close the on-off valve 16 3 on the filter 16 A side open the on-off valve 16 3 on the filter 16 B side, and switch to suction from the filter 16 B side.
  • the valve A After opening the valve B of the filter 16 A to return the pressure in the vacuum chamber 160 to atmospheric pressure, the valve A is opened and the above unsaturated gas trapped in the filter 16 A from the drain tube 16 2 The polyester resin was fed back, mixed with the unsupplied unsaturated polyester resin, and supplied again from the slit tube 26.
  • the recycled unsaturated polyester resin can be used for the production of an FRP composite structure in the same manner as the unsupplied unsaturated polyester resin, and an FRP composite structure equivalent to that of Example 3 above was obtained.
  • the fiber reinforcing layer 21, the plurality of core materials 1, and the fiber reinforcing layer 22 are sequentially laid in the mold 6, and the upper portion of the mold 6 has a thickness of about 50. / _im of nylon finolem 10 and supplied an unsaturated polyester resin having a styrene monomer content of 45% by weight. At this time, the remaining air layer generated between the fiber reinforcing layer 22 and the nylon film 10 was suctioned and removed using the suction nozzle 24 shown in FIG.
  • the remaining air layer portion is made of the unsaturated polyester resin.
  • Fiber reinforcement layer 21 before resin impregnation Color was approximately 10 to 30 awake.
  • the suction nozzle 24 was inserted into the remaining air layer visually confirmed by penetrating the nylon film 10 at the corresponding location, and suction was removed. The suction time required to remove the residual air layer was within about 1 minute.
  • the present invention provides a core material for an FRP composite structure in which the flow of the liquid resin is smoothly performed, and the liquid resin is uniformly and rapidly distributed to the reinforcing fiber layer laminated on the surface of the core material. This is useful as a method for manufacturing a core material for an FRP composite structure, which can improve the quality of the body and reduce the time required for manufacturing the FRP composite structure.

Abstract

A core material for a fiber-reinforced resin composite structure, characterized in that it has slits (2,3) on the surface thereof and also through holes (4) which pass through it in the thickness direction. The arrangement of a reinforcing fiber layer on the surface of the above core material and impregnation of the reinforcing fiber layer with a liquid resin by the vacuum-assisted resin transfer method allows the liquid resin to be distributed uniformly and rapidly to the reinforcing fiber layer present on each surface of the core material, which results in the improvement in the quality of the resultant FRP composite structure, shortening the time required for the production of the structure, and reducing the production cost therefor.

Description

明 細 書 繊維強化樹脂複合構造体用芯材、 及びそれを用いた繊維強化樹脂複合構 造体の製造方法 技術分野  Description Core material for fiber-reinforced resin composite structure and method for producing fiber-reinforced resin composite structure using the same
本発明は、 船舶、 車両、 海洋浮力体、 プール、 航空機、 風力発電ブ レード等の材料として幅広く用いられている繊維強化樹脂複合構造体 (以下、 「 F R P ( Fiber Reinforced Plastic ) 複合構造体」 とレ、 う。 ) に使用される芯材並びに係る F R P構造体用芯材を用いた F R P 複合構造体の製造方法に関するものである。 背景技術  The present invention relates to a fiber-reinforced resin composite structure (hereinafter, referred to as a “FRP (Fiber Reinforced Plastic) composite structure”) widely used as a material for ships, vehicles, marine buoyant bodies, pools, aircraft, wind power blades, and the like. The present invention relates to a core material used in (1) and a method for producing an FRP composite structure using the core material for an FRP structure. Background art
従来、 特に大型の F R P複合構造体を製造する方法として、 ヴァ キュームバッグを用いた真空補助樹脂トランスファ一法が知られている。 この方法では、 ガラス繊維等からなる補強繊維層を合成樹脂等からなる ヴァキュームバッグで覆い、 ヴァキュームバッグ内の一側からビュルェ ステル樹脂や不飽和ポリエステル樹脂等の液状樹脂を供給し、 他側から ヴァキュームバッグ内の空気を真空ポンプで吸引することにより、 補強 繊維層内に液状樹脂を含浸させた後、 この液状樹脂を硬化させて F R P 複合構造体を製造する。  Conventionally, as a method of manufacturing a particularly large FRP composite structure, a vacuum-assisted resin transfer method using a vacuum bag is known. In this method, a reinforcing fiber layer made of glass fiber or the like is covered with a vacuum bag made of a synthetic resin or the like, a liquid resin such as a burester resin or an unsaturated polyester resin is supplied from one side of the vacuum bag, and the other side is vacuumed. The air in the bag is sucked by a vacuum pump to impregnate the reinforcing fiber layer with the liquid resin, and then the liquid resin is cured to produce the FRP composite structure.
上記の真空吸引に際して、 ヴァキュームバッグが補強繊維層の表面に 密着した状態では、 補強繊維層の全域に液状樹脂を均一かつ迅速に含浸 させることが困難である。 そのため、 通常、 ヴァキュームバッグ内に、 真空吸引に伴って液状樹脂が流れる流路を形成し、 液状樹脂を補強繊維 層の各部へ均一に分配できるようにしている。 係る流路の形成方法として、 特表平 1 0— 5 0 4 5 0 1号公報には、 表面に多数のドット状又はペンタゴン状等の突起を形成した剥離用シー トを補強繊維層上に敷設し、 剥離用シート上の隣接する突起間の隙間を 液状樹脂の分配用の流路とすることが記載されている。 When the vacuum bag is in close contact with the surface of the reinforcing fiber layer during the above vacuum suction, it is difficult to uniformly and quickly impregnate the entire area of the reinforcing fiber layer with the liquid resin. For this reason, a flow path through which the liquid resin flows in accordance with the vacuum suction is usually formed in the vacuum bag, so that the liquid resin can be uniformly distributed to each part of the reinforcing fiber layer. As a method for forming such a flow path, Japanese Patent Application Laid-Open No. 10-504501 discloses a separation sheet having a large number of dot-like or pentagon-like projections formed on a surface of a reinforcing fiber layer. It is described that a gap between adjacent protrusions on a release sheet is used as a flow path for distributing a liquid resin.
また、 特表 2 0 0 0— 5 0 1 6 5 9号公報には、 発泡樹脂等からなる 芯材の表面に補強繊維層を配置し、 真空補助樹脂トランスァァ一法に よって上記補強繊維層に液状樹脂を含浸させて芯材と捕強繊維層とを一 体化するに際して、 上記芯材の表面に液状樹脂を分配するためのスリ ッ ト (溝) を形成したり、 芯材の表面に複数の突起状の分配媒体を設けた り、 多数の***部を有する金属製織地肌シートを用いることが記載され ている。  In addition, Japanese Patent Application Laid-Open No. 2000-501609 describes that a reinforcing fiber layer is disposed on the surface of a core material made of a foamed resin or the like, and the reinforcing fiber layer is formed by a vacuum auxiliary resin transfer method. When the liquid material is impregnated to integrate the core material and the reinforcing fiber layer, a slit (groove) for distributing the liquid resin is formed on the surface of the core material, or a slit is formed on the surface of the core material. It is described that a plurality of projecting distribution media is provided or a metal woven skin sheet having a large number of raised portions is used.
ところが、 上記の剥離用シートゃ金属製織地肌シートを用いる場合、 これらの製造に多くのコス トと時間とを要する問題があり、 また、 芯材 の表面に突起状の分配媒体を設ける場合も、 分配媒体の作製に手間が掛 かる問題があった。  However, when the above-mentioned peeling sheet ゃ metal woven skin sheet is used, there is a problem that the production thereof requires a lot of cost and time, and also in the case where a projecting distribution medium is provided on the surface of the core material, There was a problem that it took time to make the distribution medium.
一方、 芯材の表面にスリ ッ トを形成するのみでは、 液状樹脂を十分均 一に分配することが困難なものであった。 例えば、 上記真空補助樹脂ト ランスファー法における真空吸引時に、 ヴァキュームバッグ内に残存空 気層が生じた場合には、 該空気層がスリッ トによる液状樹脂の流通を遮 断するので、 他に液状樹脂の流通路が形成されていなければ、 芯材のう ち残存空気層から真空吸引側の部分には液状樹脂が分配されないことと なる。  On the other hand, it was difficult to distribute the liquid resin evenly and simply by forming a slit on the surface of the core material. For example, if a residual air layer is formed in the vacuum bag during vacuum suction by the vacuum assisted resin transfer method, the air layer blocks the flow of the liquid resin by the slit, so that other liquid layers are formed. If the resin flow passage is not formed, the liquid resin will not be distributed to the portion of the core material on the vacuum suction side from the remaining air layer.
また、 スリ ッ ト内を流動して補強繊維層に分配される液状樹脂は、 分 配後、 スリ ッ ト内にも残存して硬化されることとなるが、 該液状樹脂は 硬化により幾分収縮する。 スリ ッ トに対応する箇所の収縮は、 芯材の表 面等よりスリ ッ トの深さ分だけ大きくなり、 その結果、 F R P複合構造 体の表面にはスリットに沿った囬み (所謂プリン トスルーと称される微 小な凹凸模様) が生じ、 外観が損なわれるという問題があった。 さらに、 ビュルエステル樹脂や不飽和ポリエステル樹脂等の液状樹脂は芯材を侵 食するおそれがあり、 液状樹脂がスリ ットを流通する際に芯材を侵食し て芯材を軟化したり、 スリ ッ ト幅を拡張したり等した結果、 上記凹みが 一層顕著に表れる。 In addition, the liquid resin that flows in the slit and is distributed to the reinforcing fiber layer remains in the slit after being distributed and is cured, but the liquid resin is slightly cured by the curing. Shrink. The shrinkage of the portion corresponding to the slit becomes larger than the surface of the core material by the depth of the slit, and as a result, the FRP composite structure On the surface of the body, there was a problem that fine lines (small irregularities called so-called print-through) occurred along the slits, and the appearance was impaired. Furthermore, liquid resins such as butyl ester resin and unsaturated polyester resin may erode the core material. When the liquid resin flows through the slit, it erodes the core material to soften the core material, As a result of, for example, expanding the slot width, the above-mentioned dents become more prominent.
また、 スリ ツ トの幅や深さを大きくすれば液状樹脂の流通は迅速なも のとなる一方、 上記凹みが顕著に表れる他、 スリ ッ ト内に充填されて硬 化する液状樹脂の量が増大し、 F R P複合構造体の重量が増大するとい う問題が生じる。 発明の開示  In addition, if the width and depth of the slits are increased, the flow of the liquid resin becomes quicker, but the above-mentioned dents are noticeable, and the amount of liquid resin that fills the slits and hardens. And the weight of the FRP composite structure increases. Disclosure of the invention
本発明は、 液状樹脂を均一かつ迅速に分配することができる F R P複 合構造体用芯材、 及び該芯材を用いた F R P複合構造体の製造方法を提 供することを目的とするものである。  An object of the present invention is to provide a core material for an FRP composite structure capable of uniformly and quickly distributing a liquid resin, and a method for producing an FRP composite structure using the core material. .
即ち、 本発明は、 表面にスリ ットを有するとともに、 厚み方向に貫通 する貫通孔を有することを特徴とする F R P複合構造体用芯材である。 本発明によれば、 上記芯材の表面に捕強繊維層を配置し、 真空補助樹脂 トランスファ一法で補強繊維層に液状樹脂を含浸させる際に、 液状樹脂 が芯材の表面のスリット内を流通しながら当該表面を覆う補強繊維層の 各部に分配されるばかりでなく、 貫通孔を通して芯材の相対する側の表 面間で液状樹脂が流れる結果、 液状樹脂の流通が一層円滑に行われ、 液 状樹脂は芯材の各表面の補強繊維層に均一かつ迅速に分配されるように なる。 これにより、 F R P複合構造体の品質向上を実現でき、 かつ F R P複合構造体の製造に要する時間を短縮できる。 また、 芯材にスリット と貫通孔とを設ける作業は、 各々回転鋸や電動式のドリル等を用いて比 較的容易に行えるから、 芯材の製造に手間が掛かることもなく、 液状樹 脂の分配のために従来の剥離用シート等の別部材を準備する必要もなく なる結果、 製造コス トも低減させることができる。 That is, the present invention is a core material for an FRP composite structure, which has a slit on the surface and a through hole penetrating in a thickness direction. According to the present invention, a reinforcing fiber layer is disposed on the surface of the core material, and when the reinforcing fiber layer is impregnated with the liquid resin by the vacuum assisted resin transfer method, the liquid resin passes through the slits on the surface of the core material. In addition to being distributed to each part of the reinforcing fiber layer covering the surface while flowing, the liquid resin flows between the opposing surfaces of the core material through the through holes, so that the liquid resin flows more smoothly. However, the liquid resin is uniformly and rapidly distributed to the reinforcing fiber layer on each surface of the core material. As a result, the quality of the FRP composite structure can be improved, and the time required for manufacturing the FRP composite structure can be reduced. In addition, the work of providing slits and through holes in the core material is performed using a rotary saw or an electric drill. Since it can be performed relatively easily, there is no need to manufacture core materials, and there is no need to prepare separate members such as conventional release sheets for distributing the liquid resin, resulting in a reduction in manufacturing costs. Can be done.
また、 本発明に係る F R P複合構造体用芯材は、 上記スリ ッ トの幅が 略 0 . 5乃至 2 m m、 深さが幅の略 1乃至 4倍、 ピッチが略 1 0乃至 1 0 O m mのものである。 スリ ツ トのサイズ及びピッチが係る範囲であれ ば、 真空吸引時の液状樹脂の流通が円滑に行われるとともに、 F R P複 合構造体の製造後にスリ ッ ト內に残存する樹脂の量を適正な範囲に抑制 でき、 F R P複合構造体の重量も抑制できる。 また、 スリ ッ ト内に残存 した液状樹脂が硬化時に収縮することにより、 又は液状樹脂が芯材を侵 食することにより生ずる F R P複合構造体の表面の 凸模様 (プリント スルー) を目視で確認できない程度に抑制することもできる。  Further, in the core material for an FRP composite structure according to the present invention, the slit has a width of approximately 0.5 to 2 mm, a depth of approximately 1 to 4 times the width, and a pitch of approximately 10 to 10 O. mm. If the size and pitch of the slit are within the above ranges, the flow of the liquid resin at the time of vacuum suction is performed smoothly, and the amount of resin remaining in the slit after the production of the FRP composite structure is properly adjusted. Range, and the weight of the FRP composite structure can be reduced. In addition, it is not possible to visually confirm a convex pattern (print-through) on the surface of the FRP composite structure caused by the liquid resin remaining in the slit shrinking during curing or by the liquid resin eroding the core material. It can also be suppressed to a certain extent.
これに対して、 スリ ツ トのサイズが上記の下限値より小さい場合又は ピッチが上記の上限値より大きい場合は、 F R P複合構造体の製造時に 液状樹脂の流通速度が小さくなるため、 好ましくない。 一方、 スリ ッ ト のサイズが上記の上限値より大きい場合又はピッチが上記の下限値より 小さい場合は、 F R P複合構造体の製造後に上記スリ ッ ト内に残存する 樹脂の量が過大となり、 すなわち、 製造時の液状樹脂の使用量が過大と なるとともに、 F R P複合構造体の重量が大きくなって好ましくない。 また、 スリ ッ トのサイズが上記の上限値より大きい場合は、 F R P複合 構造体の表面に前記凹凸模様が生じて外観が悪くなることがあるので好 ましくない。 さらに、 F R P複合構造体の重量が増大する恐れもある。 また、 好ましくは、 上記スリ ッ トが略 V字形断面を有するものである c 幅及び深さが等しい場合は、 スリ ツ トを略矩形状断面とした場合に比べ て、 スリ ッ トの断面積が小さくなり、 F R P複合構造体の製造後に上記 スリ ッ ト内に残存する樹脂の量が少なくなる。 従って、 製造時の液状樹 脂の使用量を抑制してコス トを削減できるとともに、 F R P複合構造体 の重量を低減できる利点がある。 また、 液状樹脂の収縮により F R P複 合構造体の表面に生ずる前記凹凸模様を抑制するという利点もある。 また、 好ましくは、 上記貫通孔の直径が略 1乃至 4 m m、 ピッチが略 2 0乃至 2 0 0 m mである。 貫通孔の直径及びピッチが係る範囲であれ ば、 F R P複合構造体の製造時における貫通孔を通した液状樹脂の流通 が円滑に行われるとともに、 製造後に貫通孔内に残存する液状樹脂の量 が過大とならないように抑制でき、 従って、 F R P複合構造体の軽量化 を図ることができる利点がある。 On the other hand, when the size of the slit is smaller than the above lower limit or the pitch is larger than the above upper limit, the flow rate of the liquid resin during production of the FRP composite structure is undesirably reduced. On the other hand, when the size of the slit is larger than the above upper limit or the pitch is smaller than the above lower limit, the amount of resin remaining in the slit after the production of the FRP composite structure becomes excessive, that is, However, the amount of the liquid resin used in the production becomes excessive and the weight of the FRP composite structure increases, which is not preferable. On the other hand, if the size of the slit is larger than the above upper limit, the unevenness may be formed on the surface of the FRP composite structure to deteriorate the appearance, which is not preferable. In addition, the weight of the FRP composite structure may increase. Preferably, when the slit has a substantially V-shaped cross-section and the width c and the depth are equal, the cross-sectional area of the slit is larger than when the slit has a substantially rectangular cross-section. And the amount of resin remaining in the slit after the production of the FRP composite structure is reduced. Therefore, liquid trees at the time of production It has the advantage of reducing the cost by reducing the amount of fat used and reducing the weight of the FRP composite structure. Also, there is an advantage that the above-mentioned uneven pattern generated on the surface of the FRP composite structure due to contraction of the liquid resin is suppressed. Preferably, the diameter of the through hole is approximately 1 to 4 mm, and the pitch is approximately 20 to 200 mm. If the diameter and pitch of the through holes are within the above ranges, the flow of the liquid resin through the through holes during the production of the FRP composite structure is smoothly performed, and the amount of the liquid resin remaining in the through holes after the production is reduced. There is an advantage that the FRP composite structure can be reduced in weight so that it is not excessively large.
また、 好ましくは、 上記貫通孔の端部近傍の直径が拡張されたもので ある。 これにより、 F R P複合構造体の製造時における芯材の表面から 貫通孔への液状樹脂の流入が容易に行われ、 貫通孔を通した液状樹脂の 流通が一層円滑に行われる。  Preferably, the diameter of the through hole near the end is expanded. This facilitates the flow of the liquid resin from the surface of the core material into the through hole during the manufacture of the FRP composite structure, and further facilitates the flow of the liquid resin through the through hole.
また、 好ましくは、 上記貫通孔の端部が上記スリ ッ トと連通するもの である。 これにより、 F R P複合構造体の製造時に貫通孔からスリ ッ ト へ、 又はスリ ッ トから貫通孔へ液状樹脂が移動することができるので、 全体として補強繊維層の各部に対する液状樹脂の分配が一層円滑に行わ れるようになる。  Preferably, an end of the through-hole communicates with the slit. This allows the liquid resin to move from the through hole to the slit or from the slit to the through hole during the production of the FRP composite structure, so that the distribution of the liquid resin to each part of the reinforcing fiber layer as a whole is further improved. It will be done smoothly.
また、 好ましくは、 本発明に係る F R P複合構造体用芯材は、 表面の 少なく とも 2方向に沿って上記ス リ ッ トを有し、 互いに異なる方向のス リ ッ ト同士の交差部分に上記貫通孔の端部が連通するものである。 2方 向以上にスリ ッ トを設けることにより、 各方向への液状樹脂の分配が一 層容易かつ均一に行われるとともに、 スリ ツ ト同士の交差部分と貫通孔 とを連通させたことにより、 各方向のスリ ッ トと貫通孔間で液状樹脂が 移動できるようになり、 液状樹脂の分配が更に円滑に行われる。  Preferably, the core material for an FRP composite structure according to the present invention has the above-mentioned slits along at least two directions on the surface, and the above-mentioned slits are provided at the intersections of the slits in different directions from each other. The ends of the through holes communicate with each other. By providing slits in two or more directions, the distribution of the liquid resin in each direction is made easier and more uniform, and the intersection between the slits and the through-hole communicate with each other. The liquid resin can move between the slit and the through hole in each direction, and the liquid resin can be more smoothly distributed.
また、 好ましくは、 本発明に係る F R P複合構造体用芯材は、 硬質プ ラスチック発泡体又は木材からなるものであり、 該硬質プラスチック発 泡体は硬質塩化ビュル系発泡体であることが特に好ましい。 このような 比較的安価かつ軽量の芯材を用いることにより、 F R P複合構造体の製 造コス トの低減と軽量化を図ることができる。 また、 プラスチック材料 を用いる場合も、 硬質プラスチック発泡体を用いることにより、 F R P 複合構造体に十分な強度を付与することができる。 また、 硬質塩化ビニ ル系発泡体は、 F R P複合構造体の製造時に補強繊維層に含浸させる液 状樹脂 (ビニルエステル樹脂や不飽和ポリエステル樹脂等) に侵されに くいため、 F R P複合構造体の性能を向上させることができる。 Further, preferably, the core material for an FRP composite structure according to the present invention comprises a hard plastic. It is made of a plastic foam or wood, and it is particularly preferable that the hard plastic foam is a hard vinyl chloride foam. By using such a relatively inexpensive and lightweight core material, it is possible to reduce the manufacturing cost and weight of the FRP composite structure. Also, when a plastic material is used, sufficient strength can be imparted to the FRP composite structure by using a rigid plastic foam. In addition, rigid vinyl chloride-based foams are not easily attacked by liquid resin (vinyl ester resin, unsaturated polyester resin, etc.) impregnated in the reinforcing fiber layer during the production of the FRP composite structure. Performance can be improved.
—方、 本発明に係る F R P複合構造体の製造方法は、 上記 F R P複合 構造体用芯材の表面に沿って補強繊維層を配置するとともに、 これらの 補強繊維層及び F R P複合構造体用芯材を合成樹脂フィルムで被覆した 後、 合成樹脂フィルム内の空気を真空ポンプで吸引しながら F R P複合 構造体用芯材のスリ ッ ト及ぴ貫通孔を介して液状の樹脂を上記補強繊維 層の各部に分配することにより、 補強繊維層に液状樹脂を含浸させ、 そ の後、 上記液状樹脂を硬化させるものである。 芯材にスリ ッ ト及び貫通 孔を設けておく ことにより、 液状樹脂を繊維補強層の全域に迅速かつ均 一に分配できる等、 上述した種々の効果が生じる。  On the other hand, the method for producing an FRP composite structure according to the present invention comprises disposing a reinforcing fiber layer along the surface of the core material for an FRP composite structure, and further comprising disposing the reinforcing fiber layer and the core material for the FRP composite structure. After coating with a synthetic resin film, the air in the synthetic resin film is sucked by a vacuum pump, and the liquid resin is passed through the slits and through holes of the core material for the FRP composite structure to each part of the reinforcing fiber layer. In this way, the reinforcing fiber layer is impregnated with the liquid resin, and then the liquid resin is cured. By providing slits and through-holes in the core material, the above-described various effects are produced, such as that the liquid resin can be distributed quickly and uniformly over the entire area of the fiber reinforcing layer.
また、 上記合成樹脂フィルムがナイロンフィルムであることが好まし い。 比較的安価でかつ丈夫なナイロンフィルムを使用することにより、 F R P複合構造体の製造設備を安価に構成できるとともに、 真空吸引時 における合成樹脂フィルムの裂損等の問題も生じにく くなる。  Further, it is preferable that the synthetic resin film is a nylon film. By using a relatively inexpensive and durable nylon film, it is possible to inexpensively configure equipment for manufacturing the FRP composite structure, and it is unlikely to cause problems such as tearing of the synthetic resin film during vacuum suction.
また、 上記液状樹脂の供給管の端部を上記スリ ッ トの端部に接続し、 上記液状樹脂の供給をスリ ッ トの端部から行うことが好ましく、 上記液 状樹脂の供給を受けるスリ ッ トの少なく とも端部近傍の断面積を拡張す ることが特に好ましい。 この場合、 液状樹脂の一部は上記スリ ッ トを介 して当該ス リッ トが設けられた芯材表面を覆う繊維補強層の全域に略均 一に分配され、 当該繊維補強層の略全域に含浸さ る。 また、 液状樹脂 の他の一部は、 貫通孔を介して芯材の他の表面に送られ、 この他の表面 におけるス リッ トを介して他の表面を覆う繊維補強層の略全域に分配さ れ、 当該繊維補強層に含浸される。 このように、 上記ス リ ッ ト及び貫通 孔を有する芯材を用いることにより、 スリツトの端部に液状樹脂を供給 するのみで、 繊維補強層の略全域に液状樹脂を容易に分配できる。 さら に、 液状樹脂の供給を受けるスリッ トの少なく とも端部近傍の断面積を 拡張することにより、 スリ ツトより大きな断面積を有する供給管からス リットへの液状樹脂の流入が円滑に行われる利点がある。 また、 液状樹 脂の供給を受けるス リットの断面積を全長に渡って、 液状樹脂の供給を 受けないスリ ッ トより大きくすると、 上記液状樹脂の供給を受けるス リットから繊維補強層の各部への液状樹脂の分配が迅速に行われる利点 がある。 It is preferable that an end of the liquid resin supply pipe is connected to an end of the slit, and the supply of the liquid resin is performed from an end of the slit. It is particularly preferable to increase the cross-sectional area at least in the vicinity of the end portion. In this case, a part of the liquid resin passes through the slit. Then, the fiber is distributed substantially uniformly over the entire area of the fiber reinforced layer covering the surface of the core material provided with the slit, and is impregnated over substantially the entire area of the fiber reinforced layer. Another part of the liquid resin is sent to the other surface of the core material through the through-hole and distributed to almost the entire area of the fiber reinforced layer covering the other surface through slits on this other surface. Then, the fiber reinforcing layer is impregnated. As described above, by using the core having the slit and the through-hole, the liquid resin can be easily distributed to substantially the entire region of the fiber reinforcing layer only by supplying the liquid resin to the end of the slit. In addition, by expanding the cross-sectional area at least near the end of the slit that receives the supply of liquid resin, the liquid resin can smoothly flow into the slit from the supply pipe having a larger cross-sectional area than the slit. There are advantages. Also, if the cross-sectional area of the slit receiving the liquid resin is larger than the slit not receiving the liquid resin over the entire length, the slit receiving the liquid resin is supplied to each part of the fiber reinforcing layer. This has the advantage that the liquid resin is quickly distributed.
また、 上記補強繊維層と合成樹脂フィルム間に液状樹脂の供給管を補 強繊維層の幅方向に配置し、 この供給管の複数箇所から補強繊維層に液 状樹脂を供給することが好ましく、 特に好ましくは、 上記供給管は、 そ の長手方向に沿って液状樹脂の供給用の隙間を有するスパイラル管、 又 は、 その長手方向に液状樹脂を流出させるための孔が列設された有孔管 である。 これにより、 供給管の長手方向各部で略均一に液状樹脂を繊維 補強層に供給できる利点がある。  Further, it is preferable that a liquid resin supply pipe is arranged between the reinforcing fiber layer and the synthetic resin film in a width direction of the reinforcing fiber layer, and the liquid resin is supplied to the reinforcing fiber layer from a plurality of positions of the supply pipe. Particularly preferably, the supply pipe is a spiral pipe having a gap for supplying a liquid resin along its longitudinal direction, or a perforated pipe having holes for discharging the liquid resin in its longitudinal direction. It is a tube. Thus, there is an advantage that the liquid resin can be supplied to the fiber reinforcing layer substantially uniformly at each longitudinal portion of the supply pipe.
また、 上記液状樹脂が不飽和ポリエステル樹脂又はビュルエステル樹 脂であることが好ましく、 F R P複合構造体の表面性が重要視される用 途においては、 該不飽和ポリエステル樹脂又はビニルエステル樹脂に含 有されるスチレンモノマーの含有量が 2 0乃至 4 0重量。 /0であることが 特に好ましい。 比較的安価な不飽和ポリエステル樹脂を用いることによ り、 F R P複合構造体を安価に製造できるとともに、 係る不飽和ポリエ ステル樹脂を繊維補強層で補強することにより、 F R P複合構造体の強 度を十分高くすることができる。 また、 不飽和ポリエステル樹脂中のス チレンモノマーの含有量が、 例えば略 4 5 %程度であれば、 不飽和ポリ エステル樹脂の流動性が高く、 繊維補強層に迅速に分配することができ るが、 スチレンモノマーの含有量が高くなると芯材の侵食も大きくなる。 これに対し、 スチレンモノマーの含有量を好ましくは 2 0乃至 4 0重 量%、 さらに好ましくは 2 5乃至 3 5重量%とすることにより、 不飽和 ポリエステル又はビニルエステル樹脂による芯材の侵食を抑制して F R P複合構造体の表面性を向上させ、 かつ、 不飽和ポリエステル又はビニ ルエステル樹脂の分配を迅速に行うことができるという利点がある。 また、 上記合成樹脂フィルム内の空気の吸引を F R P複合構造体用芯 材の一端部近傍から行うとともに、 上記液状樹脂の供給を F R P複合構 造体用芯材の他端部近傍から一端部近傍へと順次行うことが好ましい。 このよ うに液状樹脂を芯材の他端部から順次供給することにより、 各時 点で液状樹脂が供給されている領域に吸引力を効果的に作用させ、 液状 樹脂を芯材の略全域における繊維補強層に略均一に分配することができ る。 これに対して、 芯材の全域に液状樹脂を同時に供給した場合、 上記 真空吸引を行う芯材の一端部近傍では、 液状樹脂を繊維補強層に均一に 分配できるが、 芯材の他端部近傍では、 その間の液状樹脂に妨げられて 真空吸引による吸引効果が十分に及ばないため、 液状樹脂を均一に分配 することが困難になる。 Further, it is preferable that the liquid resin is an unsaturated polyester resin or a bullet ester resin. In applications where the surface properties of the FRP composite structure are regarded as important, the liquid resin is contained in the unsaturated polyester resin or the vinyl ester resin. The styrene monomer content is 20 to 40% by weight. / 0 is particularly preferred. By using relatively inexpensive unsaturated polyester resin, In addition, the FRP composite structure can be manufactured at low cost, and the strength of the FRP composite structure can be sufficiently increased by reinforcing the unsaturated polyester resin with a fiber reinforcing layer. Further, when the content of the styrene monomer in the unsaturated polyester resin is, for example, about 45%, the fluidity of the unsaturated polyester resin is high, and the unsaturated polyester resin can be rapidly distributed to the fiber reinforcing layer. However, as the content of the styrene monomer increases, the erosion of the core material also increases. On the other hand, by controlling the content of the styrene monomer to preferably 20 to 40% by weight, more preferably 25 to 35% by weight, erosion of the core material by the unsaturated polyester or vinyl ester resin is suppressed. Therefore, there is an advantage that the surface property of the FRP composite structure can be improved, and the unsaturated polyester or vinyl ester resin can be distributed quickly. In addition, the air in the synthetic resin film is sucked from near one end of the core for the FRP composite structure, and the liquid resin is supplied from near the other end to near one end of the core for the FRP composite structure. It is preferable to perform the steps sequentially. By sequentially supplying the liquid resin from the other end of the core material in this manner, the suction force is effectively applied to the area where the liquid resin is supplied at each point in time, and the liquid resin is applied over substantially the entire area of the core material. Almost uniformly distributed to the fiber reinforcement layer. On the other hand, when the liquid resin is simultaneously supplied to the entire area of the core material, the liquid resin can be uniformly distributed to the fiber reinforcing layer in the vicinity of one end of the core material for performing the vacuum suction. In the vicinity, it is difficult to distribute the liquid resin uniformly because it is hindered by the liquid resin during that time and the suction effect by vacuum suction is not sufficient.
また、 上記合成樹脂フィルム内から吸引された空気を液状樹脂トラッ プに通過させ、 分離された液状樹脂を上記補強繊維層の各部に分配すベ き液状樹脂に還送することが好ましい。 これにより、 余剰に供給された 液状樹脂を再利用することができ、 F R P複合構造体を一層安価に製造 することが可能となる。 It is preferable that the air sucked from the inside of the synthetic resin film is passed through the liquid resin trap, and the separated liquid resin is returned to the liquid resin to be distributed to each part of the reinforcing fiber layer. As a result, surplus liquid resin can be reused, and FRP composite structures can be manufactured at lower cost. It is possible to do.
また、 上記合成樹脂フィルム内の空気を吸引しながら液状樹脂を上記 補強繊維層の各部に分配する際に、 補強繊維層と合成樹脂フィルムとの 間に生じた残存空気層を、 該合成樹脂フィルムに針状の吸引ノズルを穿 通して吸引除去し、 その後、 該吸引ノズルにより合成樹脂フィルムに形 成された穿通孔を封止することが好ましい。 残存空気層は補強繊維層へ の液状樹脂の含浸を妨げ、 F R P複合構造体に樹脂が存在しない欠陥箇 所を生じさせるが、 上記吸引ノズルにより残存空気層を吸引除去するこ とにより、 これを防止できるという利点がある。  Further, when the liquid resin is distributed to each part of the reinforcing fiber layer while sucking the air in the synthetic resin film, a residual air layer generated between the reinforcing fiber layer and the synthetic resin film is removed. It is preferable that a needle-shaped suction nozzle is penetrated to remove by suction, and thereafter, the perforation hole formed in the synthetic resin film is sealed by the suction nozzle. The residual air layer prevents impregnation of the reinforcing fiber layer with the liquid resin and causes defects in the FRP composite structure in which no resin is present. There is an advantage that it can be prevented.
また、 上記補強繊維層がガラス繊維層であることが好ましく、 該ガラ ス繊維層が、 一方向へ延びるガラス繊維のみからなる第 1のガラス繊維 層と、 上記一方向と略直交する他方向へ延びるガラス繊維のみからなる 第 2のガラス繊維層とを積層してなるものであること、 チョ ップドス ト ランドマッ トからなるものであること、 又は、 コンティニユアスス トラ ンドマッ トからなるものであることが特に好ましい。 比較的安価なガラ ス繊維層を用いることにより、 F R P複合構造体の製造コス トを低減さ せることができるとともに、 ガラス繊維層で樹脂を補強することにより、 F R P複合構造体の強度を十分高くできる利点がある。 また、 上記ガラ ス繊維層と して、 一方向へ延びるガラス繊維のみからなる第 1のガラス 繊維層と、 上記一方向と略直交する他方向へ延びるガラス繊維のみから なる第 2のガラス繊維層とを積層することにより、 液状樹脂をガラス繊 維層に含浸させる際に、 液状樹脂は第 1のガラス繊維層内では略上記一 方向のみへ流れ、 第 2のガラス繊維層内では略上記他方向のみへ流れる 結果、 液状樹脂がガラス繊維層の全域に迅速に行き渡るようになる。 一 方、 上記ガラス繊維層に、 チョ ップドス トランドマッ トを用いればガラ ス繊維層の厚み当たりの剛性が高くなり、 コンティ二ユアスス トランド マツトを用いれば、 ガラス繊維層内での液状樹脂の流通が一層迅速とな り、 液状樹脂の含浸時間が一層短縮されるという利点がある。 図面の簡単な説明 Further, it is preferable that the reinforcing fiber layer is a glass fiber layer, and the glass fiber layer is formed of a first glass fiber layer made of only glass fiber extending in one direction and a glass fiber layer extending in another direction substantially orthogonal to the one direction. It must be formed by laminating a second glass fiber layer consisting only of extended glass fiber, be composed of chopped strand mat, or be composed of continuous stainless steel mat Particularly preferred. By using a relatively inexpensive glass fiber layer, the manufacturing cost of the FRP composite structure can be reduced, and by reinforcing the resin with a glass fiber layer, the strength of the FRP composite structure can be sufficiently increased. There are advantages that can be done. Further, as the glass fiber layer, a first glass fiber layer made of only glass fiber extending in one direction, and a second glass fiber layer made of only glass fiber extending in another direction substantially orthogonal to the one direction When the glass fiber layer is impregnated with the liquid resin by laminating the liquid resin, the liquid resin flows in only one direction in the first glass fiber layer, and the other liquid flows in the second glass fiber layer. As a result, the liquid resin quickly spreads throughout the glass fiber layer. On the other hand, if a chopped strand mat is used for the above glass fiber layer, the rigidity per thickness of the glass fiber layer is increased, and continuous strand is used. The use of mat has the advantage that the flow of the liquid resin in the glass fiber layer becomes faster and the impregnation time of the liquid resin is further reduced. BRIEF DESCRIPTION OF THE FIGURES
第 1図は、 第 1実施形態に係る F R P複合構造体用芯材を示す平面図 である。  FIG. 1 is a plan view showing a core material for an FRP composite structure according to a first embodiment.
第 2図は、 上記芯材の一部を示す拡大斜視断面図である。  FIG. 2 is an enlarged perspective sectional view showing a part of the core material.
第 3図は、 第 2図の I I I- II I線に沿う拡大部分断面図である。  FIG. 3 is an enlarged partial cross-sectional view taken along the line III-III of FIG.
第 4図は、 スリツトの変形例を示す拡大部分断面図である。  FIG. 4 is an enlarged partial sectional view showing a modification of the slit.
第 5図は、 上記芯材を用いて F R P複合構造体を製造する製造設備を 示す平面図である。  FIG. 5 is a plan view showing a manufacturing facility for manufacturing an FRP composite structure using the above core material.
第 6図は、 第 5図の VI-VI線に沿う部分拡大断面図である。  FIG. 6 is a partially enlarged sectional view taken along the line VI-VI of FIG.
第 7図は、 液状樹脂を分配した状態を示す第 6図に対応する部分拡大 断面図である。  FIG. 7 is a partially enlarged sectional view corresponding to FIG. 6 and showing a state in which the liquid resin is distributed.
第 8図は、 上記実施の形態の製造設備の変形例を示す部分拡大断面図 である。  FIG. 8 is a partially enlarged sectional view showing a modification of the manufacturing equipment of the above embodiment.
第 9図は、 スリツトに沿って生じた凹みを示す拡大部分断面図である。 第 1 0図は、 液状樹脂を分離するフィルタの概略構造を示す断面図で める。  FIG. 9 is an enlarged partial cross-sectional view showing a dent formed along the slit. FIG. 10 is a sectional view showing a schematic structure of a filter for separating a liquid resin.
第 1 1図は、 上記フィルタを用いて分離した液状樹脂を供給装置へ還 送する回路を示す模式図である。  FIG. 11 is a schematic diagram showing a circuit for returning the liquid resin separated using the filter to a supply device.
第 1 2図は、 吸引ノズルの外観構成を示す概略斜視図である。  FIG. 12 is a schematic perspective view showing an external configuration of the suction nozzle.
第 1 3図は、 スリツト管の構成を示す部分斜視断面図である。  FIG. 13 is a partial perspective sectional view showing the configuration of the slit tube.
第 1 4図は、 有孔管の構成を示す部分斜視断面図である。  FIG. 14 is a partial perspective sectional view showing a configuration of a perforated pipe.
第 1 5図は、 実施例 2〜 5及び比較例 2〜 4における F R P複合構造 体の製造装置を示す模式図である。 発明を実施するための最良の形態 FIG. 15 is a schematic diagram showing an apparatus for manufacturing an FRP composite structure in Examples 2 to 5 and Comparative Examples 2 to 4. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 この発明の実施形態について説明する。  Hereinafter, embodiments of the present invention will be described.
〔第 1実施形態〕  (First Embodiment)
第 1図は F R P複合構造体用芯材 1 (以下、 単に芯材 1という) の平 面図、 第 2図はこの芯材 1の第 1図中左上のコーナ部付近を示す拡大部 分斜視断面図である。 芯材 1は全体として略直方体状に構成され、 この 芯材 1の一方の表面である上面には、 複数の縦方向のスリッ ト 2と複数 の横方向のスリ ット 3とが互いに交差するように形成されている。  FIG. 1 is a plan view of a core material 1 (hereinafter simply referred to as a core material 1) for an FRP composite structure, and FIG. 2 is an enlarged perspective view of the core material 1 showing the vicinity of an upper left corner in FIG. It is sectional drawing. The core material 1 is formed in a substantially rectangular parallelepiped shape as a whole, and a plurality of vertical slits 2 and a plurality of horizontal slits 3 intersect each other on an upper surface which is one surface of the core material 1. It is formed as follows.
芯材 1の他方の表面である下面には、 上面側のスリ ッ ト 2、 3に対応 する位置に複数の縦方向のスリット 2と複数の横方向のスリ ット 3とが 形成されている。 これらのスリ ッ ト 2、 3は、 芯材 1の成形後に、 例え ば、 不図示の回転鋸刃を用いて芯材 1の表面部分を所定の幅及び深さで 削り取ることにより設けられる。 更に、 上面側及び下面側における互い に対応するスリ ッ ト 2、 3の交差部分の内の一部の交差部分同士を連結 するように略円形断面の貫通孔 4が、 不図示の電動式ドリルで芯材 1に 穿孔すること等により形成されている。  A plurality of vertical slits 2 and a plurality of horizontal slits 3 are formed on the lower surface which is the other surface of the core material 1 at positions corresponding to the slits 2 and 3 on the upper surface side. . These slits 2 and 3 are provided, for example, by shaving the surface of the core 1 with a predetermined width and depth using a rotary saw blade (not shown) after the core 1 is formed. Further, a through hole 4 having a substantially circular cross section is connected to an electric drill (not shown) so as to connect some of the intersections of the slits 2 and 3 corresponding to each other on the upper surface and the lower surface. It is formed by piercing the core material 1 by using a hole.
上記スリット 2、 3は、 芯材 1の上面及び下面に沿って各々不図示の 繊維捕強層を配置し、 真空補助樹脂トランスファ一法により、 液状樹脂 を上面側及び下面側の繊維捕強層に含浸させる際に、 液状樹脂が芯材 1 の上面及び下面に沿って流れる流路を形成し、 貫通孔 4は、 液状樹脂が 芯材 1の上面側又は下面側のいずれか真空度の低い側から真空度の高い 側へ流れる流路を形成する。  The slits 2 and 3 are provided with a fiber-reinforcing layer (not shown) along the upper surface and the lower surface of the core material 1, respectively. When impregnating the core material 1, a flow path is formed in which the liquid resin flows along the upper surface and the lower surface of the core 1, and the through hole 4 allows the liquid resin to have a lower degree of vacuum on either the upper surface or the lower surface of the core 1. A flow path from the side to the side with the higher degree of vacuum is formed.
第 3図に第 2図の I II-III線に沿うスリ ッ ト 3を含む拡大断面部分図 を示す。 ここでは、 スリ ッ ト 2、 3は矩形状断面を有している。 スリ ツ ト 2、 3の幅 Wもしくは深さ Dが小さ過ぎる場合、 又はピッチ P 1、 P 2が大き過ぎる場合は、 真空補助樹脂トランスファ一法による FR P複 合構造体の製造時に液状樹脂がスリ ッ ト 2、 3内を円滑に流れることが できず、 好ましくない。 FIG. 3 is an enlarged sectional partial view including the slit 3 along the line III-III in FIG. Here, the slits 2 and 3 have a rectangular cross section. If the width W or depth D of the slits 2 and 3 is too small, or the pitch P1, P If 2 is too large, the liquid resin cannot smoothly flow through the slits 2 and 3 during production of the FRP composite structure by the vacuum assisted resin transfer method, which is not preferable.
—方、 スリ ッ ト 2、 3の幅もしくは深さが大きい程、 又はピッチ P l、 P 2が小さい程、 上記製造時の液状樹脂の流れは円滑になるが、 液状樹 脂の使用量、 つまり、 製造後にスリ ッ ト 2、 3内に残存する樹脂の量が 増加し、 製造コス トが増大するとともに、 FR P複合構造体の重量が増 加する問題がある。 また、 ス リ ッ ト 2、 3の深さが大きくなれば、 ス リ ッ ト 2、 3内の液状樹脂が硬化して収縮することにより、 例えば第 9 図に示すように、 F R P複合構造体の表面にスリ ッ ト 3に沿った凹み S が生じ、 F R P複合構造体の外観が損なわれる。 また、 FR P複合構造 体が負荷を受けた場合に該囬み Sに応力集中が生じる恐れがあり、 E R P複合構造体の剛性の低下も懸念される。  -The larger the width or depth of the slits 2 and 3 or the smaller the pitches Pl and P2, the smoother the flow of the liquid resin during the above manufacturing. That is, there is a problem that the amount of resin remaining in the slits 2 and 3 after the production increases, the production cost increases, and the weight of the FRP composite structure increases. When the depth of the slits 2 and 3 increases, the liquid resin in the slits 2 and 3 hardens and shrinks. For example, as shown in FIG. 9, the FRP composite structure A dent S along the slit 3 occurs on the surface of the FRP composite, and the appearance of the FRP composite structure is impaired. Further, when a load is applied to the FRP composite structure, stress may be concentrated on the wire S, and there is a concern that the rigidity of the ERP composite structure may be reduced.
さらに、 例えば、 芯材 1に硬質プラスチック発泡体を、 液状樹脂に不 飽和ポリエステル樹脂を用いた場合には、 該液状樹脂中のスチレンモノ マーにより芯材 1が侵食されることがあるが、 芯材 1が侵食されること により、 芯材 1が軟化し或いはスリ ッ ト 2、 3の幅及び深さが大きくな り、 上記問題が顕著に表れる。  Further, for example, when a hard plastic foam is used for the core material 1 and an unsaturated polyester resin is used for the liquid resin, the core material 1 may be eroded by the styrene monomer in the liquid resin. When the material 1 is eroded, the core material 1 is softened or the widths and depths of the slits 2 and 3 are increased, so that the above-mentioned problem is remarkably exhibited.
そのような兼ね合いから、 各スリ ッ ト 2、 3の幅は、 略 0. 5乃至 2 mm, 深さは幅の略 1乃至 4倍、 ピッチ P 1、 P 2は 1 0乃至 1 O Om mとするのが望ましく、 より望ましくは幅を略 0. 7乃至 1. 5mm、 深さが幅の略 1. 3乃至 3倍、 ピッチ P l、 P 2が略 2 0乃至 70 mm とし、 最も望ましくは幅を略 0. 8乃至 1. 2mm、 深さが幅の略 1. 5乃至 2倍、 ピッチ P l、 P 2が略 3 0乃至 5 O mmとする。  Due to such a balance, the width of each slit 2 and 3 is approximately 0.5 to 2 mm, the depth is approximately 1 to 4 times the width, and the pitches P 1 and P 2 are 10 to 1 O Om m More preferably, the width is approximately 0.7 to 1.5 mm, the depth is approximately 1.3 to 3 times the width, and the pitches Pl and P2 are approximately 20 to 70 mm. Has a width of about 0.8 to 1.2 mm, a depth of about 1.5 to 2 times the width, and a pitch Pl, P2 of about 30 to 5 O mm.
上記貫通孔 4は、 直径が大きい程、 また、 縦及び横方向のピッチ P 3、 P 4が小さい程、 液状樹脂が貫通孔 4を介して流れる速度が増し、 液状 樹脂を上記繊維補強層の各部に迅速に分配する上で好適であるが、 反面、 樹脂使用量が増加し、 F R P複合構造体の重量が増すという問題等があ る。 一方、 貫通孔 4の直径が小さくなり過ぎたり、 ピッチ P 3、 4カ 大きくなり過ぎれば、 貫通孔 4を通した液状樹脂の流通が円滑に行われ なくなる。 The larger the diameter of the through hole 4 and the smaller the vertical and horizontal pitches P 3 and P 4, the higher the speed at which the liquid resin flows through the through hole 4. It is suitable for quickly distributing the resin to each part of the fiber reinforcing layer, but on the other hand, there is a problem that the amount of resin used increases and the weight of the FRP composite structure increases. On the other hand, if the diameter of the through hole 4 is too small or the pitch P3, 4 is too large, the flow of the liquid resin through the through hole 4 will not be performed smoothly.
そのような兼ね合いから、 貫通孔 4は、 直径を略 1乃至 4mm、 縦及 び横方向のピッチ P 3、 P 4を略 2 0乃至 2 0 Ommとするのが望まし く、 更に望ましくは、 直径を略 1. 5乃至 3mm、 ピッチ P 3、 P 4を 略 40乃至 1 4 0 mmとし、 最も望ましくは、 直径を略 2乃至 2. 5 m m、 ピッチ P 3、 P 4を略 6 0乃至 1 0 0 mmとする。  From such a balance, it is desirable that the through hole 4 has a diameter of about 1 to 4 mm, and the vertical and horizontal pitches P 3 and P 4 of about 20 to 20 Omm, and more preferably, The diameter is approximately 1.5 to 3 mm, the pitches P3 and P4 are approximately 40 to 140 mm, and most preferably, the diameter is approximately 2 to 2.5 mm and the pitches P3 and P4 are approximately 60 to 140 mm. It shall be 100 mm.
第 1図及び第 2図に示した貫通孔 4の端部は 2方向のスリット 2、 3 の交差部分に接続され、 これにより、 貫通孔 4と 2方向のスリ ッ ト 2、 3間で液状樹脂の移動が可能になる利点があるが、 貫通孔 4の端部はい ずれか 1方向のスリ ッ ト 2又は 3のみに接続されていてもよい。  The end of the through-hole 4 shown in FIGS. 1 and 2 is connected to the intersection of the two-way slits 2 and 3 so that the liquid between the through-hole 4 and the two-way slits 2 and 3 is formed. There is an advantage that the resin can be moved, but the end of the through hole 4 may be connected to only one of the slits 2 or 3 in one direction.
また、 第 2図では、 貫通孔 4の直径を一定としているが、 スリ ッ ト 2、 3と連通する貫通孔 4の端部近傍の直径を、 例えば、 上記端部近傍が テーパ状断面をなすように連続的に拡張すれば、 貫通孔 4とスリ ッ ト 2、 3間での液状樹脂の移動がー層円滑に行われる。  Further, in FIG. 2, the diameter of the through hole 4 is constant, but the diameter near the end of the through hole 4 communicating with the slits 2 and 3 is, for example, a tapered cross section near the end. The continuous expansion as described above allows the liquid resin to move smoothly between the through hole 4 and the slits 2 and 3.
スリット 3部分の拡大断面を第 4図に例示するように、 スリット 2、 3は、 矩形状断面とする代わりに、 略 V字形断面としてもよい。 この場 合、 スリ ッ ト 2、 3の幅 W及び深さ Dが上記と同程度であれば、 スリ ツ ト 2、 3の断面積は矩形状断面の場合の約 1/2となるため、 FR P複 合構造体の製造時におけるスリット 2、 3内での流通速度は若干遅くな るものの、 製造後にスリ ッ ト 2、 3内に残存する液状樹脂の量が約 1 / 2となり、 液状樹脂の使用量を抑制でき、 かつ F R P複合構造体の重量 も軽減できる。 また、 F R P複合構造体の表面のスリ ッ ト 2、 3に対応 する部分に生ずる凹みを小さくすることもできる。 As shown in FIG. 4 in which an enlarged cross section of the slit 3 is illustrated, the slits 2 and 3 may have a substantially V-shaped cross section instead of a rectangular cross section. In this case, if the width W and the depth D of the slits 2 and 3 are almost the same as above, the cross-sectional area of the slits 2 and 3 is about 1/2 of that of the rectangular cross section. Although the flow speed in the slits 2 and 3 during production of the FRP composite structure is slightly reduced, the amount of liquid resin remaining in the slits 2 and 3 after production is reduced to about 1/2, The amount of resin used can be reduced, and the weight of the FRP composite structure can be reduced. Also supports slits 2 and 3 on the surface of the FRP composite structure It is also possible to reduce the dent that occurs in the portion where it is formed.
上記芯材 1の厚み Tは、 製造しょうとする F R P複合構造体の厚み寸 法に応じて定めればよく、 芯材 1の縦及び横方向寸法 L 1及び L 2も F R P複合構造体の縦及び横方向に応じて決定できる。 伹し、 F R P複合 構造体が、 例えば、 縦又は横方向寸法 L 1、 L 2の少なくとも一方が略 2 0 0 0 m m以上程度の大型のものである場合、 後述するように、 複数 の芯材 1を縦又は横方向に配列して 1つの F R P複合構造体を構成する こともできる。 その場合の構成単位となる芯材 1の縦及び横方向寸法 L 1、 L 2は、 例えば、 各々略 5 0 0乃至 2 0 0 0 m m程度とすること力 できる。  The thickness T of the core material 1 may be determined according to the thickness dimension of the FRP composite structure to be manufactured, and the longitudinal and lateral dimensions L 1 and L 2 of the core material 1 are also the same as those of the FRP composite structure. And the lateral direction. However, when the FRP composite structure is large, for example, in which at least one of the vertical or horizontal dimensions L1 and L2 is about 200 mm or more, as described later, a plurality of core materials are used. One may be arranged vertically or horizontally to form one FRP composite structure. In this case, the longitudinal and lateral dimensions L 1 and L 2 of the core material 1, which is a constituent unit, can be set to, for example, about 500 to 200 mm.
次に、 上記芯材 1を用いて F R P複合構造体を製造する製造設備の一 例を説明する。 第 5図に示すように、 この製造設備 5は、 繊維強化樹脂 ( F R P ) 等からなる成形型 6を備えている。 成形型 6の形状は、 製品 形状に応じて決定されるが、 ここでは、 例えば、 略直方体状の F R P複 合構造体の製造に用いるため、 成形型 6の平面形状が略矩形状とされて いる。  Next, an example of a manufacturing facility for manufacturing an FRP composite structure using the core material 1 will be described. As shown in FIG. 5, the manufacturing equipment 5 includes a molding die 6 made of fiber reinforced resin (FRP) or the like. The shape of the molding die 6 is determined according to the product shape.Here, for example, in order to use the FRP composite structure in a substantially rectangular parallelepiped shape, the planar shape of the molding die 6 is set to be substantially rectangular. I have.
第 5図の VI— VI 線に沿う拡大断面図である第 6図にも示すように、 成形型 6の周縁部には上方へ***する***部 7が設けられ、 ***部 7の 上面には溝 7 aが形成されている。 この溝 7 a内にはポリエステル等か らなるパテ 8 (接着剤) が充填されている。 パテ 8は、 真空吸引時に用 いる合成樹脂フィルム 1 0の周縁部を剥離可能なように吸着するように なっている。  As shown in FIG. 6, which is an enlarged cross-sectional view taken along the line VI—VI in FIG. 5, a rising portion 7 is provided on the periphery of the molding die 6, and the upper surface of the rising portion 7 is provided on the upper surface. A groove 7a is formed. The groove 7a is filled with a putty 8 (adhesive) made of polyester or the like. The putty 8 is adapted to adsorb so that the peripheral portion of the synthetic resin film 10 used at the time of vacuum suction can be peeled off.
なお、 合成樹脂フィルム 1 0の周縁部の封止は、 上記パテ 8に代えて、 両面粘着テープを用いて行うことも可能である。  The peripheral portion of the synthetic resin film 10 can be sealed using a double-sided adhesive tape instead of the putty 8.
成形型 6の側方には、 各々液状樹脂を蓄えた桶等からなる複数の液状 樹脂の供給装置 1 1が配置されている。 各供給装置 1 1には、 複数の送 給管 1 2の一端部が接続され、 各送給管 1 2には、 開閉弁 1 3が取り付 けられている。 各送給管 1 2は成形型 6内の幅方向一端部 (第 5図の上 端部) まで延びており、 各送給管 1 2の他端部には、 スパイラル管 1 4 (供給管) の一端部が接続されている。 A plurality of liquid resin supply devices 11 each composed of a tub or the like in which the liquid resin is stored are arranged on the side of the molding die 6. Each feeder 11 has multiple feeders. One end of the supply pipe 12 is connected, and an on-off valve 13 is attached to each supply pipe 12. Each feed pipe 12 extends to one end in the width direction (upper end in FIG. 5) in the molding die 6, and the other end of each feed pipe 12 has a spiral pipe 14 (supply pipe). ) Is connected at one end.
各スパイラル管 1 4は成形型 6の幅方向に沿って延ぴており、 他端部 が成形型 6内の幅方向他端部に位置している。 第 5図中の拡大部に示す ように、 スパイラル管 1 4は、 例えば、 金属線材 1 4 aを螺旋状に卷回 したものであり、 液状樹脂を外部へ漏出させるための微小な隙間 1 4 b を金属線材 1 4 aの周囲に有している。 すなわち、 スパイラル管 1 4は コイルばねのような大きな弾性は有していないが、 コイルばねにおける 螺旋状の線材の隙間を極めて小さく形成したような形状を有している。 隙間 1 4 bの大きさは、 スパイラル管 1 4内で液状樹脂を一端部側か ら他端部側へ送る際に、 スパイラル管 1 4の単位長さ当たりの液状樹脂 の漏出量がスパイラル管 1 4の長手方向全域で略均一になる程度に設定 される。 一方、 隣接するスパイラル管 1 4のピッチ P 5は、 例えば、 略 3 0 0乃至 1 0 0 0 m m程度、 より望ましくは略 4 0 0乃至 6 0 0 m m 程度とする。  Each spiral tube 14 extends along the width direction of the mold 6, and the other end is located at the other end in the width direction within the mold 6. As shown in the enlarged portion in FIG. 5, the spiral tube 14 is, for example, a spirally wound metal wire rod 14a, and has a small gap 14 for allowing the liquid resin to leak out. b around the metal wire rod 14a. That is, the spiral tube 14 does not have such a large elasticity as a coil spring, but has a shape in which the gap between the spiral wires in the coil spring is formed extremely small. The size of the gap 14b is such that when the liquid resin is sent from one end to the other end in the spiral tube 14, the amount of liquid resin leakage per unit length of the spiral tube 14 is It is set so that it is almost uniform over the entire area in the longitudinal direction of 14. On the other hand, the pitch P5 of the adjacent spiral tubes 14 is, for example, about 300 to 100 mm, and more preferably about 400 to 600 mm.
これは、 隣接するスパイラル管 1 4間のピッチ P 5が大き過ぎると、 繊維補強層の各部に液状樹脂を迅速に分配することができず、 一方、 ピッチ P 5が小さ過ぎると、 液状樹脂の供給量が過剰となって、 F R P 複合構造体の重量が増したり、 吸引管 1 5で吸引される液状樹脂の量が 増す等の不具合が生じることを考慮し、 上記の範囲としたものである。  This is because if the pitch P5 between the adjacent spiral tubes 14 is too large, the liquid resin cannot be quickly distributed to each part of the fiber reinforcement layer, while if the pitch P5 is too small, the liquid resin Considering that the supply amount becomes excessive and the weight of the FRP composite structure increases, and the amount of liquid resin sucked by the suction pipe 15 increases, the above-mentioned range is taken into consideration. .
なお、 図示しないが、 必要により、 スパイラル管 1 4の周囲にネッ ト 等の多孔性部材を卷き付けることによって、 スパイラル管 1 4の単位長 さ当たりの液状樹脂の漏出量を微調整し、 かつ漏出量の一層の均一化を 図ることができる。 成形型 6内の長手方向一端部 (第 5図の右端部) から複数の吸引管 1 5が成形型 6外へ引き出されている。 各吸引管 1 5には、 空気に混入し て吸引される液状樹脂を分離するためのフィルタ (液状樹脂トラップ) 1 6及ぴ空気圧を測定するための圧力計 1 7が取り付けられ、 各吸引管 1 5の他端部は集合管 1 8を介して真空ポンプ 2 0に接続されている。 第 1 0図は、 フィルタ 1 6の概略構成を示す断面図であり、 図に示す ように、 フィルタ 1 6は所謂トラップ状の構成となっている。 即ち、 真 空チャンバ 1 6 0に、 吸引管 1 5が、 その先端を下方に向けて揷入され るとともに、 真空ポンプ 2 0と連通するバキューム管 1 6 1が、 その先 端が上方付近となるように揷入されている。 吸引管 1 5及びバキューム 管 1 6 1の先端の位置や方向は上記に限られるものではないが、 吸引管 1 5から真空チャンバ 1 6 0内に吸引された液状樹脂が飛散等してバ キューム管 1 6 1に吸い込まれないような位置関係とすることが好まし い。 さらに、 真空チャンバ 1 6 0内に貯留した液状樹脂を流出するため のドレイン管 1 6 2が、 その先端が真空チャンバ 1 6 0の底部近傍とな るように挿入されている。 該ドレイン管 1 6 2にはバルブ Aが設けられ ており、 吸引管 1 5から空気とともに吸引された液状樹脂は、 真空チヤ ンバ 1 6 0内に貯留された後、 該バルブ Aを開放することにより、 適宜 ドレイン管 1 6 2から流出できるようになつている。 また、 真空チャン バ 1 6 0の上側に、 真空チャンバ 1 6 0内の圧力を大気圧に戻すための バルブ Bが設けられている。 吸引時には該バルブ Bを閉じておき、 真空 吸引後に開放することにより、 真空チャンバ 1 6 0内の減圧状態を迅速 に大気圧に戻すことができる。 なお、 図には示していないが、 真空チヤ ンバ 1 6 0内に貯留された液状樹脂をドレイン管 1 6 2から流出するた めに必要であればポンプ等を設ける。 Although not shown, if necessary, a porous member such as a net may be wound around the spiral tube 14 to finely adjust the leakage amount of the liquid resin per unit length of the spiral tube 14. In addition, the amount of leakage can be further uniformized. A plurality of suction pipes 15 are drawn out of the mold 6 from one longitudinal end (the right end in FIG. 5) inside the mold 6. Each suction pipe 15 is provided with a filter (liquid resin trap) 16 for separating liquid resin sucked by being mixed with air and a pressure gauge 17 for measuring air pressure. The other end of 15 is connected to a vacuum pump 20 via a collecting pipe 18. FIG. 10 is a cross-sectional view showing a schematic configuration of the filter 16. As shown in the figure, the filter 16 has a so-called trap-like configuration. That is, a suction pipe 15 is inserted into the vacuum chamber 16 with its tip directed downward, and a vacuum pipe 161, which communicates with the vacuum pump 20, has a tip near the upper end. It is introduced to become. The positions and directions of the tips of the suction pipe 15 and the vacuum pipe 16 are not limited to the above, but the liquid resin sucked from the suction pipe 15 into the vacuum chamber 160 is scattered or the like, and the vacuum is generated. It is preferable that the positional relationship is set so that it is not sucked into the pipe 16 1. Further, a drain tube 162 for flowing out the liquid resin stored in the vacuum chamber 160 is inserted so that its tip is near the bottom of the vacuum chamber 160. The drain tube 162 is provided with a valve A, and the liquid resin sucked together with air from the suction tube 15 is stored in a vacuum chamber 160, and then the valve A is opened. Thereby, it is possible to flow out from the drain tube 16 2 as appropriate. A valve B for returning the pressure in the vacuum chamber 160 to the atmospheric pressure is provided above the vacuum chamber 160. By closing the valve B during suction and opening it after vacuum suction, the reduced pressure in the vacuum chamber 160 can be quickly returned to the atmospheric pressure. Although not shown in the figure, a pump or the like is provided if necessary to allow the liquid resin stored in the vacuum chamber 160 to flow out of the drain tube 162.
第 5図には示していないが、 フィルタ 1 6のドレイン管 1 6 2と供給 - 1を連通して、 フィルタ 1 6により分離された液状樹脂を供給装 置 1 1へ環送可能な構成とすることにより、 余剰に供給された液状樹脂 を再利用することができ、 F R P複合構造体の製造コス トを低減するこ とが可能となる。 例えば、 第 1 1図に示すように、 吸引管 1 5を分岐し て一対のフィルタ 1 6 A、 1 6 Bに夫々挿入し、 また、 各フィルタ 1 6 A、 1 6 Bに挿入されたバキューム管 1 6 1は、 適宜合流させて真空ポ ンプ 2 0と連通させる。 さらに、 各吸引管 1 5、 バキューム管 1 6 1、 ドレイン管 1 6 2に開閉弁 1 6 3を設ける。 各開閉弁 1 6 3を適宜操作 して、 フィルタ 1 6 A又はフィルタ 1 6 Bの一方を使用して、 空気に混 入して吸引される液状樹脂を分離し、 真空チャンバ 1 6 0内に液状樹脂 が所定量以上貯留されたなら、 フィルタ 1 6 A又はフィルタ 1 6 Bの他 方を使用するように各開閉弁 1 6 3を操作して切り替えるとともに、 真 空.チャンバ 1 6 0に貯留された液状樹脂を供給装置 1 1へ流出させる。 これを繰り返すことにより、 F R P複合構造体の製造を中断することな く、 フィルタ 1 6 A、 1 6 Bに液状樹脂をトラップさせ、 該液状樹脂を 再利用することができる。 Although not shown in Fig. 5, supply with drain tube 16 2 of filter 16 -1 and the liquid resin separated by the filter 16 can be recirculated to the supply device 11 so that the surplus supplied liquid resin can be reused. The manufacturing cost of the structure can be reduced. For example, as shown in FIG. 11, the suction pipe 15 is branched and inserted into a pair of filters 16A and 16B, respectively, and the vacuum inserted into each filter 16A and 16B. The pipes 161 are appropriately joined to communicate with the vacuum pump 20. In addition, an on-off valve 163 will be provided for each suction pipe 15, vacuum pipe 161, and drain pipe 162. By operating each on-off valve 16 3 as appropriate, one of the filters 16 A and 16 B is used to separate the liquid resin that is sucked in by being mixed with air, and is placed in the vacuum chamber 160. When the liquid resin is stored in a predetermined amount or more, operate each on-off valve 16 3 to switch to use the other of the filter 16 A or the filter 16 B, and switch to vacuum. The discharged liquid resin is discharged into the supply device 11. By repeating this, the liquid resin can be trapped in the filters 16A and 16B without interrupting the production of the FRP composite structure, and the liquid resin can be reused.
上記液状樹脂としては、 ビニルエステル樹脂や不飽和ポリエステル樹 脂を使用できる。 特に、 不飽和ポリエステル樹脂は、 比較的安価で、 か つ、 製造後の F R P複合構造体の強度を確保できるので、 好適である。 なお、 ビエルエステル樹脂は、 不飽和ポリエステル樹脂と比較すれば高 価ではあるが、 F R P複合構造体の表面に生ずる凹凸模様を抑制するこ とが比較的容易であるという利点があり、 F R P複合構造体の表面性を 向上できる点で好ましい樹脂である。 また、 ビニルエステル樹脂ゃ不飽 和ポリエステル樹脂を用いる場合には、 スチレンモノマーの含有量が多 いほど芯材 1が侵食され易い一方、 少なければ液状樹脂の粘度が高く なって流動性が悪くなることから、 F R P複合構造体の表面性が重要視 される用途では、 スチレンモノマーの含有量は略 2 0〜4 0重量%であ ることが好ましく、 特に好ましくは 2 5〜 3 5重量%である。 As the liquid resin, a vinyl ester resin or an unsaturated polyester resin can be used. In particular, unsaturated polyester resins are preferable because they are relatively inexpensive and can secure the strength of the FRP composite structure after production. Although the Bier ester resin is more expensive than the unsaturated polyester resin, it has an advantage that it is relatively easy to suppress the uneven pattern generated on the surface of the FRP composite structure. It is a preferred resin in that the surface properties of the body can be improved. In addition, when using a vinyl ester resin or an unsaturated polyester resin, the core material 1 is more likely to be eroded as the styrene monomer content increases, whereas if the content is low, the viscosity of the liquid resin increases and the fluidity deteriorates. Therefore, emphasis is placed on the surface properties of the FRP composite structure. For such applications, the content of the styrene monomer is preferably about 20 to 40% by weight, particularly preferably 25 to 35% by weight.
上記芯材 1としては、 硬質プラスチック発泡体又はパルサ等の木材を 使用することができる。 硬質プラスチック発泡体を用いれば、 軟質のプ ラスチック発泡体に比べて、 製造後の F R P複合構造体の強度を確保し やすくなるとともに、 製造すべき F R P複合構造体の形状に対応した形 状の芯材 1を容易に成形できる利点がある。  Wood such as hard plastic foam or pulsar can be used as the core material 1. The use of a rigid plastic foam makes it easier to secure the strength of the FRP composite structure after production than a soft plastic foam, and the core has a shape corresponding to the shape of the FRP composite structure to be produced. There is an advantage that the material 1 can be easily formed.
硬質プラスチック発泡体としては、 硬質塩化ビュル系発泡体、 硬質ゥ レタン系発泡体、 硬質アク リル系発泡体等を使用できるが、 特に、 上記 液状樹脂としてのビュルエステル樹脂や不飽和ポリエステル樹脂に侵さ れにくい架橋タイプの硬質塩化ビニル系発泡体が好適である。  As the rigid plastic foam, a rigid chloride foam, a rigid urethane foam, a rigid acrylic foam, etc. can be used. Crosslinked hard vinyl chloride foams, which are difficult to form, are preferred.
上記合成樹脂フィルム 1 0としては、 ナイロンフィルム、 ポリビュル ァノレコーノレフイノレム、 テフロンフイノレム (テフ口ンは商品名 : 4フッ化 エチレン樹脂) 、 プチルゴムフィルム等を用いることができるが、 比較 的安価で、 裂損等の生じにくいナイロンフィルムが特に好適である。 次に、 F R P複合構造体の製造手順の一例を説明する。 上記各送給管 1 2は可撓性を有しており、 図示しないが、 各送給管 1 2を折り曲げて スパイラル管 1 4を成形型 6外へ取り出すことができるようになってい る。 F R P複合構造体の製造時には、 合成樹脂フィルム 1 0の周縁部を パテ 8から分離して合成樹脂フィルム 1 0を成形型 6から取り外し、 か つ、 必要により、 各スパイラル管 1 4を成形型 6外へ取り出した状態で、 まず、 成形型 6上に下面側のガラス繊維等からなる繊維補強層 2 1を敷 設する。  Examples of the synthetic resin film 10 include a nylon film, a polyvinyl alcohol resin, a Teflon film (trade name: tetrafluoroethylene resin), a butyl rubber film, and the like. Nylon films, which are relatively inexpensive and hardly cause tearing, are particularly suitable. Next, an example of a manufacturing procedure of the FRP composite structure will be described. Each of the feed pipes 12 has flexibility, and although not shown, each feed pipe 12 is bent so that the spiral pipe 14 can be taken out of the molding die 6. At the time of manufacturing the FRP composite structure, the periphery of the synthetic resin film 10 is separated from the putty 8 and the synthetic resin film 10 is removed from the mold 6 and, if necessary, each spiral tube 14 is formed into a mold 6. In the state of being taken out, first, a fiber reinforcing layer 21 made of glass fiber or the like on the lower surface side is laid on the mold 6.
続いて、 繊維補強層 2 1上に、 上記したスリ ッ ト 2、 3及ぴ貫通孔 4 を有する芯材 1を配置する。 この場合、 製造すべき F R P複合構造体が 大型のものであれば、 複数の芯材 1を縦又は横方向へ配列する。 更に、 芯材 1上に上面側の繊維補強層 2 2を敷設する。 Subsequently, the core material 1 having the slits 2 and 3 and the through hole 4 is disposed on the fiber reinforcing layer 21. In this case, if the FRP composite structure to be manufactured is large, a plurality of cores 1 are arranged in the vertical or horizontal direction. Furthermore, The fiber reinforcing layer 22 on the upper surface side is laid on the core material 1.
その後、 各スパイラル管 1 4を第 5図に示した位置にセットし、 各ス パイラル管 1 4が繊維補強層 2 2上で成形型 6の幅方向略全域に延びる ように配置する。 続いて、 成形型 6の上方を合成樹脂フィルム 1 0で被 覆して合成樹脂フィルム 1 0の周縁部をパテ 8に接着し、 繊維補強層 2 1、 2 2、 その間の芯材 1及び各スパイラル管 1 4を成形型 6と合成樹 脂フィルム 1 0間に封入する。 第 6図にこの状態を示している。 なお、 第 6図では、 便宜上、 1つの芯材 1当たりの貫通孔 4の個数を、 第 1図 のものより少な目に表示している。  Thereafter, each spiral tube 14 is set at the position shown in FIG. 5, and the spiral tubes 14 are arranged on the fiber reinforcing layer 22 so as to extend over substantially the entire region in the width direction of the mold 6. Subsequently, the upper part of the molding die 6 is covered with a synthetic resin film 10 and the peripheral portion of the synthetic resin film 10 is adhered to the putty 8, and the fiber reinforcing layers 21, 22, the core material 1 therebetween, and each spiral The tube 14 is sealed between the mold 6 and the synthetic resin film 10. FIG. 6 shows this state. In FIG. 6, for convenience, the number of the through holes 4 per one core material 1 is shown smaller than that in FIG.
上記の封入状態で、 各送給管 1 2と各吸引管 1 5とは、 成形型 6と合 成樹脂フィルム 1 0間の隙間から外部へ引き出されることになるが、 以 下の真空吸引過程で、 合成樹脂フィルム 1 0が成形型 6の周縁部及び送 給管 1 2、 吸引管 1 5の表面に密着するので、 送給管 1 2及び吸引管 1 5の周囲から外部へ空気が漏れることはない。  In the above-mentioned sealed state, each feed pipe 12 and each suction pipe 15 are drawn out from the gap between the molding die 6 and the synthetic resin film 10 to the outside. As the synthetic resin film 10 adheres tightly to the periphery of the mold 6 and the surfaces of the feed pipe 12 and the suction pipe 15, air leaks from the periphery of the feed pipe 12 and the suction pipe 15 to the outside. Never.
合成樹脂フィルム 1 0で成形型 6を覆った後、 まず、 第 5図における 成形型 6の長手方向他端部、 つまり、 各吸引管 1 5から最も離れた位置 After covering the mold 6 with the synthetic resin film 10, first, the other end in the longitudinal direction of the mold 6 in FIG. 5, that is, the position farthest from each suction pipe 15
( 1 ) のスパイラル管 1 4に送給管 1 2を介して液状樹脂を供給する。 そのためには、 最も長手方向他端部寄りの供給装置 1 1を駆動し、 かつ 位置 ( 1 ) のスパイラル管 1 4に接続された送給管 1 2の開閉弁 1 3を 開けばよい。 The liquid resin is supplied to the spiral pipe 14 of (1) via the feed pipe 12. For this purpose, the supply device 11 closest to the other end in the longitudinal direction is driven, and the on-off valve 13 of the supply pipe 12 connected to the spiral pipe 14 at the position (1) may be opened.
それと同時に、 真空ポンプ 2 0を駆動し、 吸引管 1 5を介して合成榭 脂フィルム 1 0と成形型 6間の空気を吸引すると、 上記吸引力に応じて、 位置 ( 1 ) のスパイラル管 1 4の隙間 1 4 bから漏出した液状樹脂 2 3 が当該スパイラル管 1 4周辺の繊維捕強層 2 2に含浸され、 かつ、 繊維 捕強層 2 2を厚み方向へ通過した液状樹脂 2 3が芯材 1の上面側のス リ ット 2、 3内に流入する。 スリ ッ ト 2、 3内に流入した液状樹脂 2 3は、 上記吸引力により、 ス リ ット 2、 3内を流れ、 更に、 スリ ッ ト 2、 3から繊維補強層 2 2内へ も溢れ出て、 未だ液状樹脂 2 3が含浸していない領域の繊維補強層 2 2 に含浸される。 At the same time, when the vacuum pump 20 is driven to suck air between the synthetic resin film 10 and the molding die 6 through the suction tube 15, the spiral tube 1 at the position (1) is drawn according to the suction force. The liquid resin 23 leaked from the gap 14 of 4 is impregnated in the fiber reinforcing layer 22 around the spiral tube 14 and the liquid resin 23 that has passed through the fiber collecting layer 22 in the thickness direction is formed. It flows into the slits 2 and 3 on the upper surface side of the core material 1. The liquid resin 23 flowing into the slits 2 and 3 flows through the slits 2 and 3 due to the suction force described above, and further overflows from the slits 2 and 3 into the fiber reinforcing layer 22. Then, the fiber reinforcing layer 22 in the region not yet impregnated with the liquid resin 23 is impregnated.
一方、 スリ ッ ト 2、 3内の液状樹脂 2 3の一部は、 貫通孔 4に流れ込 み、 貫通孔 4内を下方へ流れて、 芯材 1の下面側におけるスリ ッ ト 2、 3内に流入する。 上記液状樹脂 2 3は下面側のス リ ッ ト 2、 3内を流れ、 更に、 スリ ッ ト 2、 3から繊維補強層 2 1内へ溢れ出て繊維補強層 2 1 に含浸される。  On the other hand, a part of the liquid resin 23 in the slits 2 and 3 flows into the through-hole 4, flows downward in the through-hole 4, and the slits 2 and 3 on the lower surface side of the core material 1. Flows into. The liquid resin 23 flows through the slits 2 and 3 on the lower surface side, and overflows from the slits 2 and 3 into the fiber reinforcing layer 21 to be impregnated in the fiber reinforcing layer 21.
上記位置 (1 ) 周辺の繊維補強層 2 2、 2 1への液状樹脂 2 3の含浸 が完了した時点で、 位置 (1 ) のスパイラル管 1 4への液状樹脂 2 3の 供給を停止し、 続いて、 位置 (1 ) に隣接する位置 (2 ) におけるスパ ィラル管 1 4への液状樹脂 2 3の供給を開始する。  When the impregnation of the liquid fiber 23 into the fiber reinforcement layers 22 and 21 around the position (1) above is completed, the supply of the liquid resin 23 to the spiral pipe 14 at the position (1) is stopped. Subsequently, supply of the liquid resin 23 to the spiral tube 14 at the position (2) adjacent to the position (1) is started.
なお、 合成樹脂フィルム 1 0として透光性を有するもの、 例えば、 ナ イロンフィルム等を使用すれば、 繊維補強層 2 2、 2 1への液状樹脂 2 3の含浸度合いは、 表面側の繊維補強層 2 2に液状樹脂 2 3が含浸する 様子を合成樹脂フィルム 1 0を通して目視することにより把握できる。 上記のようにして、 成形型 6の長手方向他端部 (第 5図の左端部) 側 のスパイラル管 1 4から順次液状樹脂 2 3を供給して、 液状樹脂 2 3を 成形型 6の他端部側から一端部側へ順次含浸させることにより、 その時 点で液状樹脂の供給が行われている部分周辺に効率的に真空ポンプ 2 0 の吸引力を作用させることができ、 結果的に空気層を残存させることな く、 液状樹脂 2 3を繊維補強層 2 2、 2 1の略全域に均一に含浸させる ことができる。  If a synthetic resin film 10 having a light-transmitting property, for example, a nylon film, is used, the degree of impregnation of the liquid resin 23 into the fiber reinforcing layers 22 and 21 depends on the fiber reinforcement on the surface side. The state in which the layer 22 is impregnated with the liquid resin 23 can be grasped by visual observation through the synthetic resin film 10. As described above, the liquid resin 23 is sequentially supplied from the spiral tube 14 on the other end (the left end in FIG. 5) in the longitudinal direction of the molding die 6, and the liquid resin 23 is separated from the other of the molding die 6 By sequentially impregnating from the end to the one end, the suction force of the vacuum pump 20 can be effectively applied to the periphery of the portion where the liquid resin is being supplied at that time, and as a result, air The liquid resin 23 can be uniformly impregnated into substantially the entire area of the fiber reinforcing layers 22 and 21 without leaving any layers.
これに対し、 例えば、 全てのスパイラル管 1 4から繊維補強層 2 2に 同時に液状樹脂を供給した場合は、 吸引管 1 5に近い位置 (N ) 、 ( N 一 1 ) 等におけるスパイラル管 1 4の周辺では、'真空ポンプ 2 0による 吸引力が比較的良好に作用する反面、 吸引管 1 5から離れた位置 ( 1 ) 、 ( 2 ) 等におけるスパイラル管 1 4の周辺では、 これらのスパイラル管 1 4と吸引管 1 5との間の領域に供給されている液状樹脂に妨げられて、 吸引力が十分に作用しないため、 位置 (1 ) 、 ( 2 ) 等におけるスパイ ラル管 1 4の周辺では、 液状樹脂を繊維補強層 2 2、 2 1に均一に含浸 させることが困難となり、 空気層が残存しがちとなる。 On the other hand, for example, when liquid resin is simultaneously supplied from all the spiral tubes 14 to the fiber reinforcement layer 22, the positions (N) and (N) near the suction tube 15 In the vicinity of the spiral tube 14 in (1), etc., while the suction force by the vacuum pump 20 acts relatively well, the spiral tube 1 in the position (1), (2), etc. away from the suction tube 15 In the vicinity of 4, since the liquid resin supplied to the area between the spiral pipe 14 and the suction pipe 15 prevents the liquid resin from being supplied, the suction force is not sufficiently exerted, so that the positions (1) and (2) In the vicinity of the spiral tube 14 in such a case, it becomes difficult to uniformly impregnate the fiber reinforcement layers 22 and 21 with the liquid resin, and the air layer tends to remain.
液状樹脂の供給時に、 繊維補強層 2 2と合成樹脂フイルム 1 0との間 等に空気層が残存した場合には、 例えば、 第 1 2図に示すような吸引ノ ズル 2 4を用いて空気層を除去することが可能である。 該吸引ノズル 2 4は先端が鋭角に切断された針状の管体であり、 例えば吸引ポンプ等と 連通するシリンジ 2 5の先端に設けられて、 吸引ノズル 2 4先端から空 気を吸引可能なものとなっている。 図には示していないが、 上記吸引ポ ンプ等とシリンジ 2 5とは、 所要長さの可撓性チューブ等により連通し て、 上記吸引ノズル 2 4及びシリ ンジ 2 5を成形型 6上の所望の位置に 容易に移動できるようにすることが好ましい。 また、 吸引ポンプ等に液 状樹脂が流入することを防止するために、 上記シリンジ 2 5内にフィル タ等を設けることが好ましい。  If an air layer remains between the fiber reinforced layer 22 and the synthetic resin film 10 at the time of supplying the liquid resin, for example, air is sucked using a suction nozzle 24 as shown in FIG. 12. It is possible to remove the layer. The suction nozzle 24 is a needle-shaped tube having a tip cut at an acute angle. The suction nozzle 24 is provided, for example, at a tip of a syringe 25 communicating with a suction pump or the like, and can suck air from the tip of the suction nozzle 24. It has become something. Although not shown in the figure, the suction pump and the like and the syringe 25 are connected to each other by a flexible tube or the like having a required length, and the suction nozzle 24 and the syringe 25 are placed on the mold 6. Preferably, it can be easily moved to a desired position. Further, it is preferable to provide a filter or the like in the syringe 25 in order to prevent the liquid resin from flowing into the suction pump or the like.
液状樹脂の供給時に空気層が残存した場合には、 まず、 該空気層のあ る位置を合成樹脂フィルム 1 0上から確認する。 合成樹脂フィルム 1 0 は透明であるので、 空気層は目視により容易に確認することができる。 該空気層に対し、 吸引ノズル 2 4を合成樹脂フィルム 1 0に穿通し、 吸 引ノズル 2 4の先端を空気層に位置せしめた後、 吸引ポンプ等を作動さ せて吸引ノズル 2 4の先端から残存空気を吸引する。 残存空気をすベて 吸引した後、 吸引ノズル 2 4を引き抜き、 粘着テープ等を用いて穿通に より生じた孔を封止する。 このようにして、 液状樹脂の供給時に生じた 空気層を除去することができる。 If the air layer remains when the liquid resin is supplied, first, the position of the air layer is checked from above the synthetic resin film 10. Since the synthetic resin film 10 is transparent, the air layer can be easily visually confirmed. The suction nozzle 24 is pierced through the synthetic resin film 10 with respect to the air layer, and the tip of the suction nozzle 24 is positioned in the air layer. Then, a suction pump or the like is operated to operate the tip of the suction nozzle 24. Suction residual air. After all the remaining air is sucked, the suction nozzle 24 is pulled out, and the hole created by the penetration is sealed with an adhesive tape or the like. Thus, when the liquid resin was supplied The air layer can be removed.
繊維補強層 2 2、 2 1の全域に液状樹脂を含浸させた後、 この液状樹 月旨を硬化させることにより、 繊維補強層 2 2、 2 1と硬化した樹脂とが 一体になり、 かつ、 繊維補強層 2 2、 2 1を含む樹脂が芯材 1と接合さ れて、 F R P複合構造体が完成する。 芯材 1を複数個用いた場合、 隣接 する芯材 1同士も上記樹脂により一体化される。 この状態を第 7図に示 す。  After impregnating the entire area of the fiber reinforced layers 22 and 21 with the liquid resin, the liquid resin is cured so that the fiber reinforced layers 22 and 21 and the cured resin are integrated, and The resin containing the fiber reinforcing layers 22 and 21 is joined to the core 1 to complete the FRP composite structure. When a plurality of core materials 1 are used, adjacent core materials 1 are also integrated with the above resin. This state is shown in FIG.
なお、 上記では、 個々の送給管 1 2毎に開閉弁 1 3を設け、 個々のス パイラル管 1 4毎に液状樹脂の供給のオン、 オフを制御できるようにし て、 吸引効果が個々のスパイラル管 1 4に対応した領域毎に及ぶように したが、 これに代えて、 個々の供給装置 1 1単位で液状樹脂の供給のォ ン、 オフを制御するようにしてもよい。 その場合、 送給管 1 2毎の開閉 弁 1 3は不要となるので、 部品点数を削減できるとともに、 液状樹脂の 含浸に必要な時間を短縮でき、 かつ、 液状樹脂を均一に含浸させる効果 もさほど低下しない。  In the above, an on-off valve 13 is provided for each feed pipe 12 so that the on / off of the liquid resin supply can be controlled for each spiral pipe 14 so that the suction effect is individual. Although the present invention is applied to each area corresponding to the spiral tube 14, the supply and the supply of the liquid resin may be controlled by each individual supply device 11. In this case, the on-off valve 13 for each feed pipe 12 is not required, so the number of parts can be reduced, the time required for impregnation of the liquid resin can be shortened, and the effect of uniformly impregnating the liquid resin can be obtained. Does not drop much.
上記実施の形態では、 液状樹脂の供給にスパイラル管 1 4を用いるこ とにより、 スパイラル管 1 4の長手方向の全域で液状樹脂を略均一に供 給できるようにしたが、 これに代えて、 スリ ッ ト管 2 6や有孔管 2 7を 用いることもできる。 スリ ッ ト管 2 6は、 第 1 3図に示すように、 管体 2 6 0の側周面に周方向のスリ ット孔 2 6 1が列設されたものである。 一方、 有孔管 2 7は、 第 1 4図に示すように、 管体 2 7 0の側周面に複 数の貫通孔 2 7 1が形成されたものである。 上記スリ ッ ト孔 2 6 1の幅 や貫通孔 2 7 1の径、 及びその間隔は、 例えば芯材 1のスリ ッ ト 2、 3 のピッチ P l、 P 2と同程度として、 液状樹脂の漏出量が長手方向全域 で略均一となるように設定することが好ましい。 また、 上記送給管 1 2 を成形型 6の幅方向全域に延びるように延長して送給管 1 2に上記管体 2 6 0 、 2 7 0の役割を兼ねさせるようにしてもよい。 このようにして、 上記スリッ ト孔 2 6 1又は貫通孔 2 7 1から繊維補強層 2 2上に液状樹 脂を供給することもできる。 In the above embodiment, the spiral resin 14 is used to supply the liquid resin, so that the liquid resin can be supplied substantially uniformly over the entire area of the spiral tube 14 in the longitudinal direction. A slit pipe 26 or a perforated pipe 27 can also be used. As shown in FIG. 13, the slit pipe 26 is formed by arranging circumferential slit holes 261 on a side peripheral surface of a pipe body 260. On the other hand, as shown in FIG. 14, the perforated pipe 27 has a plurality of through-holes 271, which are formed on the side peripheral surface of the pipe 27. The width of the slit hole 261, the diameter of the through hole 271, and the distance between the slit holes 261, for example, are the same as the pitches P1 and P2 of the slits 2 and 3 of the core material 1, and the liquid resin It is preferable to set the amount of leakage so as to be substantially uniform over the entire area in the longitudinal direction. Further, the feed pipe 12 is extended so as to extend over the entire area in the width direction of the molding die 6, and the feed pipe 12 is connected to the pipe body. The functions of 260 and 270 may be combined. In this manner, the liquid resin can be supplied onto the fiber reinforcing layer 22 from the slit hole 261 or the through hole 271.
また、 スパイラル管 1 4又は送給管 1 2を繊維補強層 2 2上で成形型 6の幅方向略全域に行き渡るように配置する代わりに、 第 8図に示すよ うに、 送給管 1 2の 2股状端部 1 2 aを芯材 1の上面及び下面における 1方向のスリッ ト 2の端部に接続し、 スリッ ト 2の端部から液状樹脂を 供給するようにしてもよい。  Instead of arranging the spiral pipe 14 or the feed pipe 12 on the fiber reinforcing layer 22 so as to extend over substantially the entire area in the width direction of the forming die 6, as shown in FIG. The bifurcated end 12a may be connected to the end of the slit 2 in one direction on the upper surface and the lower surface of the core material 1, and the liquid resin may be supplied from the end of the slit 2.
その場合、 液状樹脂は、 スリ ッ ト 2を介して繊維補強層 2 2等に拡散 してゆくことになるが、 スリット 2の断面積は、 通常、 送給管 1 2の断 面積より小さいので、 送給管 1 2に接続されるスリット 2の端部 2 a近 傍の幅及び深さを次第に拡張することにより、 スリット 2の端部近傍の 断面積を送給管 1 2と同程度まで拡張することが好ましい。  In that case, the liquid resin will diffuse into the fiber reinforcing layer 22 and the like via the slit 2, but since the cross-sectional area of the slit 2 is usually smaller than the cross-sectional area of the feed pipe 12 By gradually increasing the width and depth near the end 2 a of the slit 2 connected to the feed pipe 12, the cross-sectional area near the end of the slit 2 is almost the same as that of the feed pipe 12. Extension is preferred.
また、 送給管 1 2に接続される位置のスリット 2をその全長に渡って 送給管 1 2と同程度の断面積となるように、 幅及び深さを拡大すれば、 上記したスパイラル管 1 4等を用いて繊維補強層 2 2の上方から液状樹 脂を供給する場合と略同程度の液状樹脂の供給効率を確保できる。  Further, if the width and depth of the slit 2 at the position connected to the feed pipe 12 are increased so as to have the same cross-sectional area as that of the feed pipe 12 over the entire length, the spiral pipe described above can be obtained. The supply efficiency of the liquid resin is substantially the same as that in the case where the liquid resin is supplied from above the fiber reinforcing layer 22 by using 14 or the like.
上記繊維補強層 2 2 、 2 1をガラス繊維層とする場合、 このガラス繊 維層を一方向 (例えば、 成形型 6の長手方向) へ延びるガラス繊維のみ からなる第 1のガラス繊維層と、 上記一方向と略直交する他方向 (例え ば、 成形型 6の幅方向) へ延びるガラス繊維のみからなる第 2のガラス 繊維層とを積層したものとすれば、 繊維補強層 2 2 、 2 1 へ液状樹脂を 含浸させる際に、 液状樹脂は上記第 1のガラス繊維層内ではガラス繊維 の方向に沿って成形型 6の長手方向へ円滑に流通し、 第 2のガラス繊維 層内ではガラス繊維の方向に沿って成形型 6の幅方向へ円滑に流通する ため、 全体として繊維補強層 2 2 、 2 1内での液状樹脂の流通が一層迅 速に行われるようになり、 液状樹脂の含浸に必要な時間を一層短縮でき る。 When the fiber reinforcing layers 22 and 21 are glass fiber layers, a first glass fiber layer composed of only glass fibers extending in one direction (for example, in the longitudinal direction of the mold 6), If a second glass fiber layer made of only glass fibers extending in the other direction substantially perpendicular to the one direction (for example, the width direction of the molding die 6) is laminated, the fiber reinforcing layers 22 and 21 are formed. When the liquid resin is impregnated into the first glass fiber layer, the liquid resin flows smoothly in the longitudinal direction of the molding die 6 along the direction of the glass fiber in the first glass fiber layer, and the glass resin flows in the second glass fiber layer. Flow in the width direction of the molding die 6 along the direction of the mold, so that the flow of the liquid resin in the fiber reinforcing layers 22 and 21 as a whole is further accelerated. The time required for impregnation of the liquid resin can be further shortened.
また、 上記繊維補強層 2 2、 2 1に、 ガラス繊維を所定の長さに切断 したものをシート状に加工してなるチヨップドストランドマットゃ、 ガ ラス繊維の方向性を持たないコンティニユアスス トランドマッ ト、 さら にこれらを組み合わせたものを用いることもできる。 チョップドストラ ンドマツトを用いれば厚み当たりの剛性が高くなり、 コンティニユアス ス トランドマッ トを用いれば、 繊維補強層 2 2、 2 1内の液状樹脂の流 通が一層迅速となり、 前述と同様に、 液状樹脂の含浸時間が一層短縮さ れる。  Further, the above-mentioned fiber reinforcing layers 22 and 21 are formed into a sheet by processing glass fiber cut to a predetermined length into a sheet-like strand mat, and a continuous fiber having no glass fiber directionality. A strand mat or a combination thereof can also be used. If chopped strand mat is used, the rigidity per thickness increases, and if continuous strand mat is used, the flow of the liquid resin in the fiber reinforcement layers 22 and 21 becomes even faster, and the liquid The resin impregnation time is further reduced.
上記の実施の形態では、 芯材 1の上面及び下面の 2方向にスリ ット 2、 3を設けるようにしたが、 ス リ ッ ト 2、 3は 3方向以上に設けてもよい。 例えば、 第 1図及び第 2図の縦及び横方向のス リ ッ トに加えて、 斜め方 向のス リ ッ トを形成することができる。 その場合、 ス リ ッ トを通した液 状樹脂の流通が一層円滑に行われる。 また、 上記実施の形態では、 製造 すべき F R P複合構造体の主たる表面 (表面積の大きい表面) となる芯 材 1の上面及び下面のみにスリ ッ ト 2、 3を設け、 F R P複合構造体の 製造時に芯材 1の上面及び下面のみに繊維補強層を配置したが、 これに 代えて、 芯材 1の側面にもスリ ッ ト 2、 3を設け、 F R P複合構造体の 周縁部に位置する芯材 1の側面にも繊維補強層を配置するようにしても よい。 その場合、 F R P複合構造体の周縁部以外の部分に位置する芯材 1における側面のス リ ッ ト 2、 3は、 貫通孔 4と同一の機能を有するこ とになる。  In the above-described embodiment, the slits 2 and 3 are provided in the two directions of the upper surface and the lower surface of the core material 1. However, the slits 2 and 3 may be provided in three or more directions. For example, a diagonal slit can be formed in addition to the vertical and horizontal slits shown in FIGS. 1 and 2. In this case, the flow of the liquid resin through the slit is performed more smoothly. In the above-described embodiment, the slits 2 and 3 are provided only on the upper surface and the lower surface of the core material 1 which is the main surface (the surface having a large surface area) of the FRP composite structure to be manufactured. At times, the fiber reinforced layer was placed only on the upper and lower surfaces of the core material 1, but instead of this, slits 2 and 3 were also provided on the side surface of the core material 1, and the core located at the peripheral edge of the FRP composite structure A fiber reinforcing layer may be provided on the side surface of the material 1. In this case, the side slits 2 and 3 of the core 1 located at a portion other than the periphery of the FRP composite structure have the same function as the through-hole 4.
上記実施の形態では、 芯材 1は、 略直方体状としたが、 芯材 1の形状 は、 製造する F R P複合構造体の形状に応じて任意に変更できる。 繊維 補強層 2 2、 2 1は厚みが略一定であるので、 通常、 芯材 1は完成後の FR P複合構造体を一回り小さく した相似形状とすればよい。 なお、 複 数の芯材 1を縦横に配列して F R P複合構造体を製造する場合、 F R P 複合構造体の形状に応じて、 各部に配置する芯材 1を互いに異なる形状 とすることもできる。 In the above-described embodiment, the core material 1 has a substantially rectangular parallelepiped shape, but the shape of the core material 1 can be arbitrarily changed according to the shape of the FRP composite structure to be manufactured. Since the thickness of the fiber reinforcing layers 22 and 21 is substantially constant, the core 1 is usually What is necessary is just to make the FRP composite structure one size smaller and have a similar shape. When a plurality of cores 1 are arranged vertically and horizontally to manufacture an FRP composite structure, the cores 1 arranged in each part may have different shapes according to the shape of the FRP composite structure.
〔実施例 1〕 (Example 1)
以下、 本発明に係る FR P複合構造体用芯材を用いた FR P複合構造 体の実施例について説明する。  Hereinafter, examples of the FRP composite structure using the core material for the FRP composite structure according to the present invention will be described.
縦及び横方向寸法 L 1、 L 2が共に 1 0 0 0 mm、 厚み Tが 3 5 mm の架橋タイプの硬質塩化ビニル発泡体からなる直方体状の芯材 1 (第 1 図、 第 2図参照) の上面及び下面に、 幅 l ram、 深さ 2 mmのスリ ッ ト 2、 3を縦横 2方向に、 回転鋸刃を用いて各々ピッチ P 1、 P 2 = 3 5 mmで形成した。  A rectangular parallelepiped core material 1 made of a cross-linked rigid vinyl chloride foam with a longitudinal dimension L 1 and L 2 of 100 mm and a thickness T of 35 mm (see Figs. 1 and 2) On the upper and lower surfaces of), slits 2 and 3 having a width of l ram and a depth of 2 mm were formed in two vertical and horizontal directions at a pitch of P1, P2 = 35 mm using a rotary saw blade.
' 次に、 上面及び下面におけるスリ ッ ト 2、 3の各交差部分の内、 一つ 置きの交差部分同士を連通するように、 電動式のドリルによって直径 2 · '' Next, of the intersections of slits 2 and 3 on the upper and lower surfaces, a motorized drill was used to connect every other intersection to a diameter of 2
5 mmの貫通孔 4を形成した。 この場合の貫通孔 4の縦及び横方向の ピッチ P 3、 P 4は、 各々 70 mmである。 A through-hole 4 of 5 mm was formed. In this case, the vertical and horizontal pitches P 3 and P 4 of the through holes 4 are each 70 mm.
成形型 6は、 第 5図のように、 上方から見て矩形状を有し、 かつ、 隆 起部 7より内側の繊維補強層 2 1、 2 2を敷設する部分の広さが 2 0 0 0 0 mm X 2 5 0 0 mmのサイズのものを用いた。 上記成形型 6内に繊 維補強層 2 1を敷き詰め、 この繊維補強層 2 1上に上記したサイズの芯 材 1を縦横に複数敷き並べ、 これらの芯材 1上に繊維補強層 2 2を敷設 した。 ' 成形型 6の幅方向一端部には、 上記芯材 1を幅寸法が略 1 Z 2となる ように切断した芯材 1を配置した。 また、 各繊維補強層 2 1、 2 2とし ては、 目付け 4 5 0 g /m 2 のガラスマッ トを 5層ずつ積層して用い た。 As shown in FIG. 5, the molding die 6 has a rectangular shape when viewed from above, and the area of the portion where the fiber reinforcement layers 21 and 22 are laid on the inner side of the raised portion 7 is 200 One having a size of 0 mm × 250 mm was used. The fiber reinforcing layer 21 is laid in the above-mentioned mold 6, a plurality of cores 1 of the above-mentioned size are laid out on the fiber reinforcing layer 21 in rows and columns, and the fiber reinforcing layer 22 is placed on these cores 1. Laid. At the one end in the width direction of the molding die 6, the core material 1 obtained by cutting the core material 1 so as to have a width of approximately 1 Z2 was arranged. As the fiber reinforcing layers 21 and 22, five glass mats each having a basis weight of 450 g / m 2 were laminated and used. Was.
上記成形型 6の上部を厚さが約 5 0 μ πιのナイ口ンフィルム 1 0で覆 レ、、 以下、 上述した手順で真空ポンプ 2 0による吸引を行いながら第 5 図の左端部側からスパイラル管 1 4を用いて順次、 スチレンモノマーの 含有量が 4 5重量%の不飽和ポリエステル樹脂 (液状樹脂) を供給した。 不飽和ポリエステル樹脂が成形型 6の全面に行き渡るのに要した時間は 略 3時間であった。 不飽和ポリエステル樹脂の含浸終了後、 硬化反応が 完了するのを待ち、 ナイロンフィルム 1 0を離脱させたところ、 不飽和 ポリエステル樹脂が均一に分散され、 空気層の見あたらない外観良好な F R P複合構造体を得た。  The upper part of the mold 6 was covered with a nip film 10 having a thickness of about 50 μππ, and then, from the left end side in FIG. An unsaturated polyester resin (liquid resin) having a styrene monomer content of 45% by weight was sequentially supplied using a spiral tube 14. The time required for the unsaturated polyester resin to reach the entire surface of the mold 6 was approximately 3 hours. After the impregnation of the unsaturated polyester resin was completed, the curing reaction was completed and the nylon film 10 was released.The unsaturated polyester resin was uniformly dispersed, and the FRP composite structure had a good appearance without air layers. I got
〔比較例 1〕 ' 上記実施例 1 と同一材料及び同一サイズの芯材 1の上面及び下面に、 実施例 1と同一寸法及び同一ピッチのスリッ ト 2、 3を 2方向に設け、 貫通孔 4を有しない芯材 1を用い、 スパイラル管 1 4を用いて不飽和ポ リエステル樹脂を供給することにより、 実施例 1 と同一条件、 同一手順 で F R P複合構造体を製造した。 この場合、 芯材 1は貫通孔 4を有しな いので、 不飽和ポリエステル樹脂は隣接する芯材 1の突き合わせ部分の 僅かな隙間を通して上面側から下面側へ流れるのみであるため、 不飽和 ポリエステル樹脂が成形型 6の略全面に行き渡るのに要した時間は略 5 時間であり、 実施例 1より大幅に長い時間が必要であった。 また、 不飽 和ポリエステル樹脂の硬化後に F R Ρ複合構造体を観察したところ、 不 飽和ポリエステル樹脂が所々で途切れ、 空気層が観察された。 〔実施例 2、 3〕 [Comparative Example 1] 'Slits 2 and 3 with the same dimensions and the same pitch as in Example 1 were provided in two directions on the upper and lower surfaces of a core material 1 of the same material and the same size as in Example 1 above, The FRP composite structure was manufactured under the same conditions and in the same procedure as in Example 1 by using the core material 1 having no polystyrene and supplying the unsaturated polyester resin using the spiral tube 14. In this case, since the core material 1 does not have the through-hole 4, the unsaturated polyester resin flows only from the upper surface side to the lower surface side through a small gap at the abutting portion of the adjacent core material 1, so that the unsaturated polyester resin The time required for the resin to spread over substantially the entire surface of the molding die 6 was approximately 5 hours, which was much longer than in Example 1. In addition, when the F R 後 に composite structure was observed after curing of the unsaturated polyester resin, the unsaturated polyester resin was interrupted in some places, and an air layer was observed. (Examples 2 and 3)
上記実施例 1 と同じ芯材 1、 即ち芯材 1の上面及び下面にスリット 2 . 3が形成され、 スリット 2、 3の交差部分同士を連通するように貫通孔 4が形成された芯材 1を 1枚用いて、 第 1 5図に示すように、 上流側及 び下流側の芯材 1の各端部に接するようにして、 塩化ビュル製スリッ ト 管 2 6を設置した。 スリ ッ ト管 2 6は、 円管状の塩化ビエルパイプ側周 面に、 幅 1 mmの周方向のスリット孔 2 6 1を 3 5 mm間隔で、 電動帯 ノコを用いて形成したものである。 The same core material 1 as in Example 1 above, that is, slits 2. As shown in Fig. 15, using one core material 1 in which a through hole 4 is formed so that the intersections of the slits 2 and 3 are communicated with each other, as shown in FIG. A slit pipe 26 made of butyl chloride was placed in contact with each end of the core material 1. The slit pipe 26 is formed by using a motorized band saw on the circumferential surface of the tubular chloride biel pipe at circumferential intervals of 1 mm in width at intervals of 35 mm.
成形型 6には、 上記芯材 1を 1枚敷くに充分な大きさの矩形のガラス マッ トを用い、 該成形型 6に繊維補強層 2 1を敷き詰め、 この繊維捕強 層 2 1上に上記芯材 1.を敷き、 該芯材 1上に繊維補強層 2 2を敷設した。 各繊維補強層 2 1、 2 2と して、 目付け 4 5 0 g/m2 のチョ ップド ストランドマツトを 2層ずつ積層して用いた。 For the mold 6, a rectangular glass mat large enough to lay one core material 1 is used, and the fiber reinforcing layer 21 is spread over the mold 6, and the fiber reinforcing layer 21 is placed on the fiber reinforcing layer 21. The above core material 1 was laid, and a fiber reinforcing layer 22 was laid on the core material 1. As each of the fiber reinforcing layers 21 and 22, two chopped strand mats having a basis weight of 450 g / m 2 were laminated and used.
上記成形型 6の上部を厚さが約 5 0 のナイロンフィルム 1 0で覆 レ、、 その周縁部を、 第 1 5図に示すように、 両面粘着テープ 2 8を用い て封止した。  The upper portion of the mold 6 was covered with a nylon film 10 having a thickness of about 50, and the peripheral portion was sealed with a double-sided adhesive tape 28 as shown in FIG.
上述した手順と同様に、 真空ポンプ 2 0による吸引を行いながら第 1 5図の左端部側からスリ ッ ト管 26を用いて順次、 スチレンモノマーの 含有量が 4 5重量%の不飽和ポリエステル樹脂 (実施例 2) 1 0 0重量 部、 又はスチレンモノマーの含有量が 3 0重量%の不飽和ポリエステル 樹脂 (実施例 3) 1 00重量部に、 硬化剤 MEKパーオキサイ ドを 1重 量部添加したものを供給した。  Similarly to the procedure described above, the unsaturated polyester resin having a styrene monomer content of 45% by weight was sequentially drawn from the left end side in FIG. 15 using the slit tube 26 while performing suction by the vacuum pump 20. (Example 2) 100 parts by weight of an unsaturated polyester resin having a styrene monomer content of 30% by weight (Example 3) 1 part by weight of a curing agent MEK peroxide was added to 100 parts by weight. Supplied things.
スチレンモノマーの含有量が 4 5重量%の不飽和ポリエステル樹脂 (実施例 2 ) が成形型 6の全面に行き渡るのに要した時間は 2分間で あった。 一方、 スチレンモノマーの含有量が 3 0重量%の不飽和ポリエ ステル樹脂 (実施例 3) が成形型 6の全面に行き渡るのに要した時間は 1 3分間であった。 各不飽和ポリエステル樹脂の含浸終了後、 硬化反応 が完了するのを待ち、 ナイロンフィルム 1 0を離脱して F R P複合構造 体を夫々得た。 各 F R P複合構造体のスリ ッ ト 2、 3に対応する表面に 現れた凹凸模様、 所謂プリ ントスルーの程度を目視観察した。 それらの 結果を表 1に示した。 〔比較例 2、 3〕 The time required for the unsaturated polyester resin having a styrene monomer content of 45% by weight (Example 2) to spread over the entire surface of the mold 6 was 2 minutes. On the other hand, the time required for the unsaturated polyester resin having a styrene monomer content of 30% by weight (Example 3) to reach the entire surface of the mold 6 was 13 minutes. After the completion of the impregnation of each unsaturated polyester resin, wait for the curing reaction to be completed, then release the nylon film 10 to remove the FRP composite structure. I got each body. The degree of the so-called print-through, a concavo-convex pattern that appeared on the surface corresponding to slits 2 and 3 of each FRP composite structure, was visually observed. Table 1 shows the results. (Comparative Examples 2, 3)
上記実施例 2、 3と同一材料及び同一サイズの芯材 1の上面及び下面 に、 実施例と同一寸法及び同一ピッチのスリ ッ ト 2、 3を 2方向に設け、 貫通孔 4を有しない芯材 1を用い、 ス リ ッ ト管 2 6を用いて、 スチレン モノマーの含有量が 4 5重量。/。の不飽和ポリエステル樹脂 (比較例 2) 1 00重量部、 又はスチレンモノマーの含有量が 3 0重量。/。の不飽和ポ リエステル樹脂 (比較例 3) 1 0 0重量部に、 硬化剤 MEKパーォキサ イ ドを 1重量部添加したものを供給することにより、 実施例 2、 3と同 一条件、 同一手順で FR P複合構造体を夫々製造した。  In the upper and lower surfaces of the core material 1 of the same material and the same size as those of the above Examples 2 and 3, slits 2 and 3 having the same dimensions and the same pitch as those of the Example are provided in two directions, and a core having no through hole 4 Using material 1 and using a slit tube 26, the styrene monomer content was 45 wt. /. 100 parts by weight of the unsaturated polyester resin of Comparative Example 2, or 30 parts by weight of the styrene monomer. /. By adding 1 part by weight of the curing agent MEK peroxide to 100 parts by weight of the unsaturated polyester resin (Comparative Example 3), the same conditions and procedures as in Examples 2 and 3 were applied. Each of the FRP composite structures was manufactured.
スチレンモノマーの含有量が 4 5重量%の不飽和ポリエステル樹脂 (比較例 2 ) が成形型 6の全面に行き渡るのに要した時間は 4分間で あった。 一方、 スチレンモノマーの含有量が 3 0重量%の不飽和ポリエ ステル樹脂 (比較例 3) が成形型 6の全面に行き渡るのに要した時間は 2 5分間であった。 各 F R P複合構造体のスリッ ト 2、 3に対応する表 面に現れた凹凸模様、 所謂プリントスルーの程度を目視観察した。 それ らの結果を表 1に示した。  The time required for the unsaturated polyester resin having a styrene monomer content of 45% by weight (Comparative Example 2) to reach the entire surface of the mold 6 was 4 minutes. On the other hand, the time required for the unsaturated polyester resin containing 30% by weight of the styrene monomer (Comparative Example 3) to reach the entire surface of the mold 6 was 25 minutes. Visual observation was made of the uneven pattern that appeared on the surface corresponding to slits 2 and 3 of each FRP composite structure, that is, the degree of so-called print-through. Table 1 shows the results.
〔実施例 4〕 (Example 4)
各繊維捕強層 2 1、 2 2 と して、 目付け A S O gZm2 のコンティ 二ユアスス トランドマツトを 2層ずつ積層して用いた以外は、 上記実施 例 3と同様にして FR P複合構造体を得た。 The FRP composite structure was formed in the same manner as in Example 3 except that two layers of continuous strand mat of ASO gZm 2 were used as the fiber reinforcing layers 21 and 22. Obtained.
スチレンモノマーの含有量が 3 0重量0 /0の不飽和ポリエステル樹脂が 成形型 6の全面に行き渡るのに要した時間は 7分間であった。 また、 F R P複合構造体のス リ ッ ト 2 、 3に対応する表面に現れた凹凸模様、 所 謂プリン トスルーの程度を目視観察し、 その結果を表 1に示した。 表 The content of the styrene monomer is 3 0 wt 0/0 of unsaturated polyester resin The time required to reach the entire surface of the mold 6 was 7 minutes. In addition, the unevenness pattern that appeared on the surface corresponding to the slits 2 and 3 of the FRP composite structure and the so-called print-through degree were visually observed. The results are shown in Table 1. table
Figure imgf000031_0001
Figure imgf000031_0001
マー量:液状樹脂として使用した不飽和ポリエステル樹脂 中のスチレンモノマーの含有量を重量0 /0で示した c 供給時間 :液状樹脂として使用した不飽和ポリエステル樹脂が成形型の 全面に行き渡る時間を分単位で示した。 Mer content: the content of the styrene monomer in the unsaturated polyester resin used as the liquid resin weight 0/0 c supply time showed: minutes an unsaturated polyester resin used as the liquid resin is spread over the entire surface of the mold Shown in units.
プリ ントスルー :得られた F R P複合構造体の表面を以下の基準で目視 観察した結果を示した。  Print-through: The result of visual observation of the surface of the obtained FRP composite structure according to the following criteria was shown.
〇:表面に凹凸模様が認められない  〇: No uneven pattern is observed on the surface
X :表面に凹凸模様が認められる 表 1に示すように、 スチレンモノマーの含有量が同等の不飽和ポリエ ステル樹脂を用いて同様の条件で F R P複合構造体を製造した場合には、 貫通孔を有する芯材 1を使用した実施例 2 、 3は、 貫通孔を有しない芯 材 1を使用した比較例 2 、 3に比べて、 不飽和ポリエステル樹脂を成形 型の前面に行き渡らせる時間 (供給時間) が夫々半分程度となり、 不飽 和ポリエステル樹脂の分配が各段に速くなつた。 一方、 スチレンモノ マーの含有量が低い実施例 3では、 不飽和ポリエステル樹脂の粘度が高 くなり流動性が悪くなって供給時間が長くなるが、 芯材 1の侵食が抑制 されることにより、 プリントスルーの程度が、 表面に囬凸模様が認めら れない程度にまで改善された。 また、 実施例 4では、 繊維捕強層 2 2、 2 1にコンティニユアスストランドマツトを用いることにより、 不飽和 ポリエステル樹脂の供給時間が短縮された。 X: An uneven pattern is observed on the surface. As shown in Table 1, when the FRP composite structure is manufactured under the same conditions using unsaturated polyester resin with the same styrene monomer content, In Examples 2 and 3 using the core material 1 having the core 1, the time required for the unsaturated polyester resin to reach the front of the mold (compared with the time required for the supply) ) Decreased to about half each, and the distribution of unsaturated polyester resin became faster in each step. On the other hand, in Example 3 in which the content of the styrene monomer was low, the viscosity of the unsaturated polyester resin was increased, the flowability was deteriorated, and the supply time was prolonged, but the erosion of the core material 1 was suppressed. As a result, the degree of print-through was improved to such a degree that no convex pattern was observed on the surface. In Example 4, the supply time of the unsaturated polyester resin was shortened by using continuous strand mat for the fiber reinforcing layers 22 and 21.
〔実施例 5〕 (Example 5)
液状樹脂として、 スチレンモノマーの含有量が 4 0重量%のビニルェ ステル樹脂を用いた以外は、 上記実施例 2と同様にして F R P複合構造 体を得た。  An FRP composite structure was obtained in the same manner as in Example 2 except that a vinyl ester resin having a styrene monomer content of 40% by weight was used as the liquid resin.
スチレンモノマーの含有量が 4 0重量0/。のビュルエステル樹脂が成形 型 6の全面に行き渡るのに要した時間は 2分間であった。 また、 F R P 複合構造体のス リ ッ ト 2、 3に対応する表面に現れた凹凸模様、 所謂プ リントスルーの程度は、 表面に凹凸模様が認められないものであった。 〔比較例 4〕 The content of styrene monomer is 40% by weight 0 /. The time required for the butyl ester resin to spread over the entire surface of the mold 6 was 2 minutes. In addition, the unevenness pattern, which appeared on the surface corresponding to the slits 2 and 3 of the FRP composite structure, the so-called print-through degree, was such that no unevenness pattern was recognized on the surface. (Comparative Example 4)
上記成形型 6 の上部を厚さが約 5 O ^ mのポリエチレンフィルムで 覆った以外は、 上記実施例 2と同様にして F R P複合構造体を製造した。 しかし、 真空吸引開始約 1分後にポリエチレンフィルムが破れ、 その後 の工程を続行できなかった。  An FRP composite structure was manufactured in the same manner as in Example 2 except that the upper part of the mold 6 was covered with a polyethylene film having a thickness of about 5 O ^ m. However, about one minute after the start of vacuum suction, the polyethylene film broke, and the subsequent steps could not be continued.
〔実施例 6〕 (Example 6)
上記実施例 3と同様に、 第 1 5図に示す装置を用い、 さらに圧力計 1 7の上流に第 1 0図に示した構成の 2つのフィルタ 1 6 A、 1 6 Bを第 1 1図に示すように吸引管を分岐して開閉弁 1 6 3とともに夫々設置し、 各フィルタ 1 6 A、 1 6 Bのドレイン管 1 6 2を、 第 1 5図に示すバル プ 1 3の直下流に連通させた。 その他の成形型 6、 ナイロンフィルム 1 0等は上記実施例 3と同様である。 In the same manner as in Example 3 described above, the apparatus shown in FIG. 15 was used, and two filters 16 A and 16 B having the configuration shown in FIG. 10 were further provided upstream of the pressure gauge 17 in FIG. The suction pipes are branched and installed together with the on-off valves 16 3 as shown in Fig. 15, and the drain pipes 16 2 of each filter 16 A and 16 B are placed immediately downstream of the valve 13 shown in Fig. 15. Was communicated to. Other molds 6, Nylon film 1 0 and the like are the same as in the third embodiment.
上述した手順と同様に、 まず、 フィルタ 1 6 A側の開閉弁 1 6 3を開 放して、 真空ポンプ 2 0による吸引を行いながら、 スチレンモノマーの 含有量が 3 0重量%の不飽和ポリエステル樹脂 1 0 0重量部に、 硬化剤 M E Kパーオキサイ ドを 1重量部添加したものを供給した。 5分経過後、 フィルタ 1 6 A側の開閉弁 1 6 3を閉じるとともに、 フィルタ 1 6 B側 の開閉弁 1 6 3を開放して、 フィルタ 1 6 B側から吸引を行うように切 り替えた。 フィルタ 1 6 Aのバルブ Bを開放して真空チャンバ 1 6 0内 の圧力を大気圧に戻した後、 バルブ Aを開放してドレイン管 1 6 2から フィルタ 1 6 Aに捕捉された上記不飽和ポリエステル樹脂を環送し、 未 供給の不飽和ポリエステル樹脂と混合させて、 再びスリ ット管 2 6より 供給した。  In the same manner as described above, first, the on-off valve 16 3 on the filter 16 A side is opened and the unsaturated polyester resin having a styrene monomer content of 30% by weight is sucked by the vacuum pump 20. A solution obtained by adding 1 part by weight of a curing agent MEK peroxide to 100 parts by weight was supplied. After a lapse of 5 minutes, close the on-off valve 16 3 on the filter 16 A side, open the on-off valve 16 3 on the filter 16 B side, and switch to suction from the filter 16 B side. Was. After opening the valve B of the filter 16 A to return the pressure in the vacuum chamber 160 to atmospheric pressure, the valve A is opened and the above unsaturated gas trapped in the filter 16 A from the drain tube 16 2 The polyester resin was fed back, mixed with the unsupplied unsaturated polyester resin, and supplied again from the slit tube 26.
環送された不飽和ポリエステル樹脂は未供給の不飽和ポリエステル樹 脂と同様に F R P複合構造体の製造に使用することができ、 上記実施例 3と同等の F R P複合構造体が得られた。  The recycled unsaturated polyester resin can be used for the production of an FRP composite structure in the same manner as the unsupplied unsaturated polyester resin, and an FRP composite structure equivalent to that of Example 3 above was obtained.
〔実施例 7〕 (Example 7)
上記実施例 1 と同様の方法で、 成形型 6内に繊維補強層 2 1、 複数の 芯材 1、 繊維補強層 2 2を順次敷設して、 成形型 6の上部を厚さが約 5 0 /_i mのナイロンフイノレム 1 0で覆い、 スチレンモノマーの含有量が 4 5重量%の不飽和ポリエステル樹脂を供給した。 この際、 繊維補強層 2 2とナイロンフィルム 1 0との間に生じた残存空気層を、 第 1 2図で示 した吸引ノズル 2 4を用いて吸引除去した。 通常、 繊維補強層 2 1に上 記不飽和ポリエステル樹脂が含浸すれば、 その外観は透明度の高い微黄 色 (不飽和ポリエステル樹脂の色) となるが、 残存空気層の部分は不飽 和ポリエステル樹脂を含浸させる前の繊維補強層 2 1の外観と同様に白 色である。 また、 本実施例で発見された残存空気層の径は略 1 0〜 3 0 醒 程度であった。 目視で確認した残存空気層に、 吸引ノズル 2 4を当 該箇所のナイロンフィルム 1 0を貫通させて差し込み、 吸引除去した。 残存空気層を除去するために必要な吸引時間は略 1分間以内であった。 その後、 吸引ノズル 2 4を引き抜いて、 吸引ノズル 2 4の穿通によりナ ィロンフィルム 1 0に穿たれた孔を粘着テープでシールして、 不飽和ポ リエステル樹脂の供給を継続した。 不飽和ポリエステル樹脂の含浸終了 後、 硬化反応が完了するのを待ち、 ナイロンフィルム 1 0を離脱させた ところ、 不飽和ポリエステル樹脂が均一に分散され、 空気層跡の見あた らない外観良好な F R P複合構造体を得た。 産業上の利用可能性 In the same manner as in Example 1 described above, the fiber reinforcing layer 21, the plurality of core materials 1, and the fiber reinforcing layer 22 are sequentially laid in the mold 6, and the upper portion of the mold 6 has a thickness of about 50. / _im of nylon finolem 10 and supplied an unsaturated polyester resin having a styrene monomer content of 45% by weight. At this time, the remaining air layer generated between the fiber reinforcing layer 22 and the nylon film 10 was suctioned and removed using the suction nozzle 24 shown in FIG. Normally, when the above-mentioned unsaturated polyester resin is impregnated into the fiber reinforcing layer 21, its appearance becomes a slightly yellowish color (color of the unsaturated polyester resin) having high transparency, but the remaining air layer portion is made of the unsaturated polyester resin. Fiber reinforcement layer 21 before resin impregnation Color. Further, the diameter of the residual air layer discovered in this example was approximately 10 to 30 awake. The suction nozzle 24 was inserted into the remaining air layer visually confirmed by penetrating the nylon film 10 at the corresponding location, and suction was removed. The suction time required to remove the residual air layer was within about 1 minute. Thereafter, the suction nozzle 24 was pulled out, the hole formed in the nylon film 10 by the penetration of the suction nozzle 24 was sealed with an adhesive tape, and the supply of the unsaturated polyester resin was continued. After the completion of the impregnation of the unsaturated polyester resin, wait for the curing reaction to be completed, and then remove the nylon film 10 to disperse the unsaturated polyester resin evenly and give a good appearance without air layer marks. An FRP composite structure was obtained. Industrial applicability
この発明は、 液状樹脂の流通が円滑に行われ、 液状樹脂が芯材の表面 に積層された補強繊維層に均一かつ迅速に分配される F R P複合構造体 用芯材として、 また、 F R P複合構造体の品質向上を実現でき、 かつ F R P複合構造体の製造に要する時間を短縮できる F R P複合構造体用芯 材の製造方法として有用である。  The present invention provides a core material for an FRP composite structure in which the flow of the liquid resin is smoothly performed, and the liquid resin is uniformly and rapidly distributed to the reinforcing fiber layer laminated on the surface of the core material. This is useful as a method for manufacturing a core material for an FRP composite structure, which can improve the quality of the body and reduce the time required for manufacturing the FRP composite structure.

Claims

請 求 の 範 囲 The scope of the claims
1 . 表面にスリ ッ トを有するとともに、 厚み方向に貫通する貫通孔を 有することを特徴とする繊維強化樹脂複合構造体用芯材。 1. A core material for a fiber-reinforced resin composite structure, which has a slit on the surface and a through hole penetrating in a thickness direction.
2 . 上記スリ ッ トの幅が略 0 . 5乃至 2 m m、 深さが幅の略 1乃至 4 倍、 ピッチが略 1 0乃至 1 0 O m mであることを特徴とする請求項 1に 記載の繊維強化樹脂複合構造体用芯材。 2. The slit according to claim 1, wherein the slit has a width of about 0.5 to 2 mm, a depth of about 1 to 4 times the width, and a pitch of about 10 to 10 Omm. Core material for fiber reinforced resin composite structures.
3 . 上記スリ ッ トが略 V字形断面を有することを特徴とする請求項 1 又は 2に記載の繊維強化樹脂複合構造体用芯材。  3. The core material for a fiber-reinforced resin composite structure according to claim 1, wherein the slit has a substantially V-shaped cross section.
4 . 上記貫通孔の直径が略 1乃至 4 nim、 ピッチが略 2 0乃至 2 0 0 m mであることを特徴とする請求項 1又は 2に記載の繊維強化樹脂複合 構造体用芯材。 3. The core material for a fiber-reinforced resin composite structure according to claim 1, wherein the diameter of the through hole is approximately 1 to 4 nim, and the pitch is approximately 20 to 200 mm.
5 . 上記貫通孔の端部近傍の直径を拡張したことを特徴とする請求項 1又は 2に記載の繊維強化樹脂複合構造体用芯材。  5. The core material for a fiber-reinforced resin composite structure according to claim 1, wherein a diameter near an end of the through hole is expanded.
6 . 上記貫通孔の端部が上記スリ ッ トと連通することを特徴とする請 求項 1又は 2に記載の繊維強化樹脂複合構造体用芯材。  6. The core material for a fiber-reinforced resin composite structure according to claim 1, wherein an end of the through hole communicates with the slit.
7 . 表面の少なく とも 2方向に沿って上記スリ ッ トを有し、 互いに異 なる方向のスリ ツ ト同士の交差部分に上記貫通孔の端部が連通すること を特徴とする請求項 1又は 2に記載の繊維強化樹脂複合構造体用芯材。  7. The slit according to claim 1 or 2, wherein the slits are formed along at least two directions on the surface, and an end of the through-hole communicates with an intersection of the slits in directions different from each other. 3. The core material for a fiber-reinforced resin composite structure according to 2.
8 . 硬質プラスチック発泡体又は木材からなることを特徴とする請求 項 1又は 2に記載の繊維強化樹脂複合構造体用芯材。 8. The core material for a fiber-reinforced resin composite structure according to claim 1, wherein the core material is made of a hard plastic foam or wood.
9 . 上記硬質プラスチック発泡体は硬質塩化ビニル系発泡体であるこ とを特徴とする請求項 8に記載の繊維強化樹脂複合構造体用芯材。 9. The core material for a fiber-reinforced resin composite structure according to claim 8, wherein the rigid plastic foam is a rigid vinyl chloride foam.
1 0 . 請求項 1又は 2に記載の繊維強化樹脂複合構造体用芯材の表面 に沿って捕強繊維層を配置するとともに、 これらの補強繊維層及び繊維 強化樹脂複合構造体用芯材を合成樹脂フィルムで被覆した後、 合成樹脂 フィルム内の空気を真空ポンプで吸引しながら繊維強化樹脂複合構造体 用芯材のスリ ット及び貫通孔を介して液状の樹脂を上記補強繊維層の各 部に分配することにより、 補強繊維層に液状樹脂を含浸させ、 その後、 上記液状樹脂を硬化させることを特徴とする繊維強化樹脂複合構造体の 製造方法。 10. A reinforcing fiber layer is arranged along the surface of the core material for a fiber-reinforced resin composite structure according to claim 1 or 2, and the reinforcing fiber layer and the core material for a fiber-reinforced resin composite structure are provided. After covering with synthetic resin film, Distributing the liquid resin to each part of the reinforcing fiber layer through the slits and through holes of the core material for the fiber-reinforced resin composite structure while suctioning the air in the film with a vacuum pump, the reinforcing fiber layer A method for producing a fiber-reinforced resin composite structure, comprising: impregnating a liquid resin with a liquid resin, and thereafter curing the liquid resin.
1 1 . 上記合成樹脂フィルムがナイロンフィルムであることを特徴と する請求項 1 0に記載の繊維強化樹脂複合構造体の製造方法。  11. The method for producing a fiber-reinforced resin composite structure according to claim 10, wherein the synthetic resin film is a nylon film.
1 2 . 上記液状樹脂の供給管の端部を上記スリ ットの端部に接続し、 上記液状樹脂の供給をスリ ットの端部から行うことを特徴とする請求項 1 0に記載の繊維強化樹脂複合構造体の製造方法。  12. The liquid resin supply pipe according to claim 10, wherein an end of the liquid resin supply pipe is connected to an end of the slit, and the liquid resin is supplied from an end of the slit. A method for producing a fiber-reinforced resin composite structure.
1 3 . 上記液状樹脂の供給を受けるスリッ トの少なく とも端部近傍の 断面積を拡張したことを特徴とする請求項 1 2に記載の繊維強化樹脂複 合構造体の製造方法。  13. The method for producing a fiber-reinforced resin composite structure according to claim 12, wherein a cross-sectional area at least near an end of the slit receiving the supply of the liquid resin is expanded.
1 4 . 上記補強繊維層と合成樹脂フィルム間に液状樹脂の供給管を補 強繊維層の幅方向に配置し、 この供給管の複数箇所から補強繊維層に液 状樹脂を供給することを特徴とする請求項 1 0に記載の繊維強化樹脂複 合構造体の製造方法。  14. A liquid resin supply pipe is arranged between the reinforcing fiber layer and the synthetic resin film in the width direction of the reinforcing fiber layer, and the liquid resin is supplied to the reinforcing fiber layer from a plurality of locations of the supply pipe. The method for producing a fiber-reinforced resin composite structure according to claim 10, wherein
1 5 . 上記供給管はその長手方向に沿って液状樹脂の供給用の隙間を 有するスパイラル管であることを特徴とする請求項 1 4に記載の繊維強 化樹脂複合体の製造方法。  15. The method for producing a fiber-reinforced resin composite according to claim 14, wherein the supply pipe is a spiral pipe having a gap for supplying a liquid resin along a longitudinal direction thereof.
1 6 . 上記供給管はその長手方向に液状樹脂を流出させるための孔が 列設された有孔管であることを特徴とする請求項 1 4記載の繊維強化樹 脂複合構造体の製造方法。  16. The method for producing a fiber-reinforced resin composite structure according to claim 14, wherein the supply pipe is a perforated pipe in which holes for discharging a liquid resin are arranged in a longitudinal direction thereof. .
1 7 . 上記液状樹脂が不飽和ポリエステル樹脂であることを特徴とす る請求項 1 0に記載の繊維強化樹脂複合構造体の製造方法。  17. The method for producing a fiber-reinforced resin composite structure according to claim 10, wherein the liquid resin is an unsaturated polyester resin.
1 8 . 上記液状樹脂がビュルエステル樹脂であることを特徴とする請 求項 1 0に記載の繊維強化樹脂複合体の製造方法。 18. The contractor characterized in that the liquid resin is a bullet ester resin. The method for producing a fiber-reinforced resin composite according to claim 10.
1 9 . 上記不飽和ポリエステル樹脂又はビュルエステル樹脂に含有さ れるスチレンモノマーの含有量が 2 0乃至 4 0重量。 /0であることを特徴 とする請求項 1 7又は 1 8に記載の繊維強化樹脂複合体の製造方法。 19. The content of the styrene monomer contained in the unsaturated polyester resin or the bullet ester resin is 20 to 40% by weight. 19. The method for producing a fiber-reinforced resin composite according to claim 17, wherein the ratio is / 0 .
2 0 . 上記合成樹脂フィルム内の空気の吸引を繊維強化樹脂複合構造 体用芯材の一端部近傍から行う とともに、 上記液状樹脂の供給を繊維強 化樹脂複合構造体用芯材の他端部近傍から一端部近傍へと順次行うこと を特徴とする請求項 1 0に記載の繊維強化樹脂複合構造体の製造方法。 20. The air in the synthetic resin film is sucked from near one end of the core material for the fiber-reinforced resin composite structure, and the liquid resin is supplied from the other end of the core material for the fiber-reinforced resin composite structure. 10. The method for producing a fiber-reinforced resin composite structure according to claim 10, wherein the steps are sequentially performed from the vicinity to the vicinity of one end.
2 1 . 上記合成樹脂フィルム内から吸引された空気を液状樹脂トラッ プに通過させ、 該空気から分離された液状樹脂を上記補強繊維層の各部 に分配すべき液状樹脂に還送することを特徴とする請求項 1 0に記載の 繊維強化樹脂複合体の製造方法。 21. The air sucked from the inside of the synthetic resin film is passed through the liquid resin trap, and the liquid resin separated from the air is returned to the liquid resin to be distributed to each part of the reinforcing fiber layer. The method for producing a fiber-reinforced resin composite according to claim 10, wherein
2 2 . 上記合成樹脂フィルム内の空気を吸引しながら液状樹脂を上記 補強繊維層の各部に分配する際に、 補強繊維層と合成樹脂フィルムとの 間に生じた残存空気層を、 該合成樹脂フィルムに針状の吸引ノズルを穿 通して吸引除去し、 その後、 該吸引ノズルにより合成樹脂フィルムに形 成された穿通孔を封止することを特徴とする請求項 1 0に記載の繊維強 化樹脂複合体の製造方法。  22. When distributing the liquid resin to each part of the reinforcing fiber layer while sucking the air in the synthetic resin film, the residual air layer generated between the reinforcing fiber layer and the synthetic resin film is removed from the synthetic resin film. 10. The fiber reinforcement according to claim 10, wherein the film is penetrated by a needle-shaped suction nozzle to remove by suction, and thereafter, the perforation hole formed in the synthetic resin film is sealed by the suction nozzle. A method for producing a resin composite.
2 3 . 上記補強繊維層がガラス繊維層であることを特徴とする請求項 1 0に記載の繊維強化樹脂複合構造体の製造方法。  23. The method for producing a fiber-reinforced resin composite structure according to claim 10, wherein the reinforcing fiber layer is a glass fiber layer.
2 4 . 上記ガラス繊維層が、 一方向へ延びるガラス繊維のみからなる 第 1のガラス繊維層と、 上記一方向と略直交する他方向へ延びるガラス 繊維のみからなる第 2のガラス繊維層とを積層してなることを特徴とす る請求項 2 3に記載の繊維強化樹脂複合構造体の製造方法。  24. The first glass fiber layer, in which the glass fiber layer is made only of glass fiber extending in one direction, and the second glass fiber layer, made of only glass fiber extending in another direction substantially orthogonal to the one direction, 24. The method for producing a fiber-reinforced resin composite structure according to claim 23, wherein the fiber-reinforced resin composite structure is laminated.
2 5 . 上記ガラス繊維層がチョ ップドス トランドマツ トからなるもの であることを特徴とする請求項 2 3に記載の繊維強化樹脂複合体の製造 方法。 25. The fiber reinforced resin composite according to claim 23, wherein the glass fiber layer is made of chopped strand mat. Method.
2 6 . 上記ガラス繊維層がコンティニユアスス トランドマツ トからな るものであることを特徴とする請求項 2 3に記載の繊維強化樹脂複合体 の製造方法。  26. The method for producing a fiber-reinforced resin composite according to claim 23, wherein the glass fiber layer is made of continuous strand mat.
PCT/JP2002/000539 2001-01-26 2002-01-24 Core material for fiber-reinforced resin composite structure and method for producing fiber-reinforced resin composite structure using the same WO2002058915A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020027009337A KR20020086473A (en) 2001-01-26 2002-01-24 Fiber reinforced plastic composite structure core material and fiber reinforced plastic composite structure manufacturing method using said core material
JP2002559232A JPWO2002058915A1 (en) 2001-01-26 2002-01-24 Core material for fiber-reinforced resin composite structure and method for producing fiber-reinforced resin composite structure using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2001-018648 2001-01-26
JP2001018648 2001-01-26

Publications (1)

Publication Number Publication Date
WO2002058915A1 true WO2002058915A1 (en) 2002-08-01

Family

ID=18884639

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2002/000539 WO2002058915A1 (en) 2001-01-26 2002-01-24 Core material for fiber-reinforced resin composite structure and method for producing fiber-reinforced resin composite structure using the same

Country Status (3)

Country Link
JP (1) JPWO2002058915A1 (en)
KR (1) KR20020086473A (en)
WO (1) WO2002058915A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335242A (en) * 2004-05-27 2005-12-08 Toho Tenax Co Ltd Method for producing sandwich laminate
JP2006130733A (en) * 2004-11-04 2006-05-25 Yokohama Rubber Co Ltd:The Manufacturing method of fiber reinforced resin molded product
CN100395096C (en) * 2004-07-28 2008-06-18 上特技材有限公司 Method for fabricating composite structure of plastic strengthened by fiberglass
JP2008265108A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Fiber-reinforced plastic
EP1990178A1 (en) 2007-05-07 2008-11-12 Siemens Aktiengesellschaft Method for producing fibre reinforced laminated structures
NL1036212C2 (en) * 2008-11-19 2010-05-21 Fibercore Europ B V METHOD FOR MANUFACTURING A PANEL AND THEIR CORE FOR THAT.
CN102745247A (en) * 2012-07-18 2012-10-24 奇瑞汽车股份有限公司 Vehicle roof
JP2012236304A (en) * 2011-05-11 2012-12-06 Universal Shipbuilding Corp Method and apparatus for manufacturing frp structure
WO2012163690A1 (en) * 2011-05-27 2012-12-06 Gurit (Uk) Ltd Foam core for a composite laminated article, and manufacture thereof
CN103587130A (en) * 2013-10-15 2014-02-19 南京航空航天大学 Method and device for curing fiber-reinforced resin-based composite material component by utilizing microwaves
ITTV20130043A1 (en) * 2013-04-03 2014-10-04 Enrico Pillon METHOD OF PRODUCTION OF A BUFFER PANEL FOR SIMILAR DOORS AND WINDOWS
CN106079485A (en) * 2016-07-27 2016-11-09 江苏恒神股份有限公司 Novel carbon fiber fabric shaping equipment and technique
GB2550357A (en) * 2016-05-16 2017-11-22 Hexcel Reinforcements Uk Ltd Moulding materials
US9957949B2 (en) * 2013-05-02 2018-05-01 Siemens Aktiengesellschaft Perforated vacuum membrane for fibre reinforced laminates
EP3812140A1 (en) * 2019-10-24 2021-04-28 Diab International AB Composite sandwich components

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000495A1 (en) * 1987-07-10 1989-01-26 3-D Composites Limited Moulding method
WO1995032849A1 (en) * 1994-05-27 1995-12-07 Scrimp Systems, L.L.C. Unitary vacuum bag and process of making
WO1996040488A1 (en) * 1995-06-07 1996-12-19 Scrimp Systems, L.L.C. Production of large composite structures
WO2000018566A1 (en) * 1998-09-30 2000-04-06 Toray Industries, Inc. Hollow structure of fiber-reinforced resin and method of manufacturing the same
JP2000102982A (en) * 1998-09-30 2000-04-11 Toray Ind Inc Frp structure and its production
WO2000048823A1 (en) * 1999-02-17 2000-08-24 Toray Industries, Inc. Frp cylindrical body and production method thereof
JP2000233464A (en) * 1999-02-16 2000-08-29 Toray Ind Inc Frp structure and manufacture thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989000495A1 (en) * 1987-07-10 1989-01-26 3-D Composites Limited Moulding method
WO1995032849A1 (en) * 1994-05-27 1995-12-07 Scrimp Systems, L.L.C. Unitary vacuum bag and process of making
WO1996040488A1 (en) * 1995-06-07 1996-12-19 Scrimp Systems, L.L.C. Production of large composite structures
WO2000018566A1 (en) * 1998-09-30 2000-04-06 Toray Industries, Inc. Hollow structure of fiber-reinforced resin and method of manufacturing the same
JP2000102982A (en) * 1998-09-30 2000-04-11 Toray Ind Inc Frp structure and its production
JP2000233464A (en) * 1999-02-16 2000-08-29 Toray Ind Inc Frp structure and manufacture thereof
WO2000048823A1 (en) * 1999-02-17 2000-08-24 Toray Industries, Inc. Frp cylindrical body and production method thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005335242A (en) * 2004-05-27 2005-12-08 Toho Tenax Co Ltd Method for producing sandwich laminate
CN100395096C (en) * 2004-07-28 2008-06-18 上特技材有限公司 Method for fabricating composite structure of plastic strengthened by fiberglass
JP2006130733A (en) * 2004-11-04 2006-05-25 Yokohama Rubber Co Ltd:The Manufacturing method of fiber reinforced resin molded product
JP2008265108A (en) * 2007-04-18 2008-11-06 Toyota Motor Corp Fiber-reinforced plastic
EP1990178A1 (en) 2007-05-07 2008-11-12 Siemens Aktiengesellschaft Method for producing fibre reinforced laminated structures
NL1036212C2 (en) * 2008-11-19 2010-05-21 Fibercore Europ B V METHOD FOR MANUFACTURING A PANEL AND THEIR CORE FOR THAT.
WO2010059048A3 (en) * 2008-11-19 2010-09-16 Fibercore Europe B.V. Method of producing a panel and a core therefor
CN102256772A (en) * 2008-11-19 2011-11-23 纤维核心Ip公司 Method of producing a panel and a core therefor
EA033650B1 (en) * 2008-11-19 2019-11-13 Fibercore Ip Bv Method of producing a panel and panel produced by this method
US10245765B2 (en) 2008-11-19 2019-04-02 Fibercore Ip B.V. Method of producing a panel and a core therefor
CN102256772B (en) * 2008-11-19 2014-10-22 纤维核心Ip公司 Method of producing a panel and a core therefor
AU2009318212B2 (en) * 2008-11-19 2015-03-12 Fibercore Ip B.V. Method of producing a panel and a core therefor
US9314977B2 (en) 2008-11-19 2016-04-19 Fibercore Ip B.V. Method of producing a panel and a core therefor
US20160200019A1 (en) * 2008-11-19 2016-07-14 Fibercore Ip B.V. Method of producing a panel and a core therefor
JP2012236304A (en) * 2011-05-11 2012-12-06 Universal Shipbuilding Corp Method and apparatus for manufacturing frp structure
WO2012163690A1 (en) * 2011-05-27 2012-12-06 Gurit (Uk) Ltd Foam core for a composite laminated article, and manufacture thereof
CN102745247A (en) * 2012-07-18 2012-10-24 奇瑞汽车股份有限公司 Vehicle roof
ITTV20130043A1 (en) * 2013-04-03 2014-10-04 Enrico Pillon METHOD OF PRODUCTION OF A BUFFER PANEL FOR SIMILAR DOORS AND WINDOWS
US9957949B2 (en) * 2013-05-02 2018-05-01 Siemens Aktiengesellschaft Perforated vacuum membrane for fibre reinforced laminates
CN103587130A (en) * 2013-10-15 2014-02-19 南京航空航天大学 Method and device for curing fiber-reinforced resin-based composite material component by utilizing microwaves
GB2550357A (en) * 2016-05-16 2017-11-22 Hexcel Reinforcements Uk Ltd Moulding materials
WO2017198571A1 (en) * 2016-05-16 2017-11-23 Hexcel Reinforcements Uk Limited Moulding materials
CN106079485A (en) * 2016-07-27 2016-11-09 江苏恒神股份有限公司 Novel carbon fiber fabric shaping equipment and technique
EP3812140A1 (en) * 2019-10-24 2021-04-28 Diab International AB Composite sandwich components
WO2021078877A1 (en) * 2019-10-24 2021-04-29 Diab International Ab Composite sandwich components
US11884046B2 (en) 2019-10-24 2024-01-30 Diab International Ab Composite sandwich components

Also Published As

Publication number Publication date
JPWO2002058915A1 (en) 2004-05-27
KR20020086473A (en) 2002-11-18

Similar Documents

Publication Publication Date Title
WO2002058915A1 (en) Core material for fiber-reinforced resin composite structure and method for producing fiber-reinforced resin composite structure using the same
JP4179628B2 (en) Vacuum bag, method for manufacturing the same, and method for using the same
US9046079B2 (en) Method of using a formable core block for a resin impregnation process
US6555045B2 (en) Grooved mold apparatus and process for forming fiber reinforced composite structures
EP0998385B1 (en) Large composite core structures formed by vacuum assisted resin transfer molding and method of fabrication
CN1067009C (en) Production of large composite structures
US5304339A (en) Method for manufacturing a large-sized object of fiber reinforced synthetic resin
WO2006062038A1 (en) Molding precursor, process for producing molded fiber-reinforced resin, and molded fiber-reinforced resin
WO2000041867A1 (en) Grooved core pattern for optimum resin distribution
JP2001062932A (en) Fiber-reinforced resin structural body and manufacture of the same
EP3415297B1 (en) Method for manufacturing composite material
DE19813104A1 (en) Molding composite components from fibrous preform and matrix material
AU2004260723A1 (en) Device, especially sports device for surfing or similar and method for the production of fiber composite materials
EP3418040A1 (en) Pultruded profile with peel-ply
JP4734967B2 (en) Method for manufacturing honeycomb sandwich panel with frequency selective plates laminated
JPH05200884A (en) Fiber reinforced synthetic resin body and its manufacture
JP2006198790A (en) Manufacturing method of frequency selecting plate-laminated fiber-reinforced plastic panel
JP4923546B2 (en) Method for producing fiber-reinforced resin molded body
JP2003311766A (en) Method for continuously forming frp plate and frp protective cover
JP2006167933A (en) Method and apparatus for manufacturing fiber-reinforced resin molded product by vartm manufacturing method
JPH04122627A (en) Manufacture of sheet for fiber reinforced resin molding
JP4229216B2 (en) Integrated composite structure
JPH0825491A (en) Molding of fiber reinforced plastic
GB2166688A (en) Resin-bonded laminates
JPH05239822A (en) Ground reinforcing network

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 559232

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1020027009337

Country of ref document: KR

AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP KR

WWP Wipo information: published in national office

Ref document number: 1020027009337

Country of ref document: KR