WO2002055975A1 - Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer - Google Patents

Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer Download PDF

Info

Publication number
WO2002055975A1
WO2002055975A1 PCT/JP2000/009340 JP0009340W WO02055975A1 WO 2002055975 A1 WO2002055975 A1 WO 2002055975A1 JP 0009340 W JP0009340 W JP 0009340W WO 02055975 A1 WO02055975 A1 WO 02055975A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
cold junction
infrared thermometer
voltage value
input
Prior art date
Application number
PCT/JP2000/009340
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuhito Sakano
Original Assignee
Kazuhito Sakano
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kazuhito Sakano filed Critical Kazuhito Sakano
Priority to PCT/JP2000/009340 priority Critical patent/WO2002055975A1/en
Publication of WO2002055975A1 publication Critical patent/WO2002055975A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J5/00Radiation pyrometry, e.g. infrared or optical thermometry
    • G01J5/10Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors
    • G01J5/12Radiation pyrometry, e.g. infrared or optical thermometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
    • G01J5/14Electrical features thereof
    • G01J5/16Arrangements with respect to the cold junction; Compensating influence of ambient temperature or other variables

Definitions

  • Phase detector reference value setting method of phase detector, infrared thermometer and temperature measurement method of infrared thermometer
  • the present invention relates to a phase detector, a method of setting a reference value of a phase detector, an infrared thermometer, and a method of measuring a temperature of an infrared thermometer, and more specifically, a voltage obtained by converting a physical value.
  • the present invention relates to a phase detector that inputs a value and a method of setting a reference value in the phase detector.
  • the present invention also relates to an infrared thermometer to which such a phase detector is applied and a temperature measuring method using the infrared thermometer.
  • a measurement method using a voltage value output according to the magnitude of a target physical value that is, a target corresponding to a measured output voltage value using a correlation between the target physical value and an output voltage value
  • a physical value For example, there is a method of measuring the temperature of the measurement target by detecting infrared rays emitted from the measurement target by an infrared thermometer and measuring an output voltage value generated according to the intensity of the infrared rays. .
  • thermopile sensor In an infrared thermometer, a pyroelectric sensor or a thermopile sensor is generally used as a non-contact type temperature sensor for detecting infrared rays radiated from an object to be measured.
  • Pyroelectric sensor c pyroelectric sensor is a sensor for detecting the output 'change in the surface charge of the pyroelectric body according absorbed and Kino temperature change infrared energy emitted from the measurement target temperature of the pyroelectric In order to produce output only when changes occur, incident infrared rays are shoved and intermittently intercepted to obtain continuous output.
  • a thermopile sensor is a sensor in which thermocouples are deposited by integrated circuit technology, and a continuous output is output for the temperature difference between the hot junction and the cold junction by using a large number of thermocouples connected in series.
  • thermopile sensor As a basic usage of the thermopile sensor, the output is generated due to the temperature difference between the hot junction temperature of the thermopile based on the infrared output radiated from the measurement target and the cold junction maintained at a constant temperature.
  • a method of measuring the temperature of the measurement target by measuring the thermopile output voltage may be used. That is, assuming that the temperature of the hot junction is ⁇ and the temperature of the cold junction is T Q , the electromotive force V generated in the thermopile is given by Stefan-Volman's law.
  • V k (T 4 — T. 4 ) (k is a constant)... (1)
  • the temperature of the thermal junction that is, the relative temperature T of the measurement target can be known.
  • thermopile sensor there is a temperature measurement method for detecting the temperature coincidence point between the cold junction and the hot junction by forcibly controlling the temperature of the cold junction. It is clear from equation (1) that the temperature coincidence point between the cold junction and the hot junction is the point where the electromotive force generated in the thermopile becomes zero. Therefore, by monitoring the voltage output from the thermopile and detecting the temperature of the cold junction at a point where the value becomes zero, the temperature of the hot junction, that is, the temperature of the measurement target is measured. You can know. In such a method of performing temperature measurement by the so-called “zero method”, the ambient temperature has less influence on the cold junction temperature than when the temperature control of the cold junction is not performed as described above.
  • thermometer disclosed in US Pat. No. 4,900,162 will be described as an example of using a thermopile sensor for an active use.
  • FIG. 16 is a sectional view of a main part of a conventional infrared thermometer disclosed in US Pat. No. 4,900,162.
  • the infrared thermometer 44 for measuring the temperature of the measurement target 43 is constituted as follows. Take heat sink 18 first A window member 45 is provided on the sensor stem 37 so that the infrared rays emitted by the measurement target 43 can efficiently reach the upper surface of the attached thermopile 25.
  • the thermopile 25 is provided with electrical contacts 46a and 46b, which are connected to the controller 48 by conductors 47a and 47b, respectively.
  • the summer evening 52 is located in the vicinity of the summer 25.
  • the semiconductor 52 is connected to the temperature processor 49 by conductors 47c and 47d.
  • FIG. 17 is a block diagram showing the principle of temperature measurement using the infrared thermometer shown in FIG.
  • FIG. 18 is a diagram showing the behavior of each output at the time of measurement.
  • the temperature measurement method will be described with reference to FIGS. 17 and 18.
  • the controller 48 drives the heating device 50 to preheat the thermo-modal 25 to near the predicted temperature of the measurement target 43.
  • thermopile 25 senses the infrared radiation radiated from the measurement target 43, and the temperature of the hot junction rises to generate a temperature difference with the cold junction.
  • the electromotive force generated in the thermopile 25 is output to the controller 48 as an output voltage value (FIG. 18A).
  • the controller 48 drives the heating device 50 according to the output voltage value, and controls the cold junction temperature of the thermopile 25.
  • thermopile output voltage value shows a positive voltage value as shown in FIG.
  • the temperature of the cold junction approaches the temperature of the hot junction (Fig. 18B), and the thermopile output is accordingly adjusted.
  • the temperature of the voltage gradually decreases (first 8 Figure C) c and the cold junctions are consistent with the temperature of the warm junction, mono- thermopile output voltage values is zero (first 8 Figure D).
  • the cold junction temperature (FIG. 18E) read by the error 52 is the temperature of the measurement target 43.
  • thermopile sensor when used in an active-type usage method, the temperature of the cold junction is forcibly controlled, thereby suppressing the effect of fluctuations in the ambient environment temperature and making accurate measurements. .
  • thermopile sensor preheating the thermopile sensor and minimizing the temperature difference between the hot junction and the cold junction, the larger the temperature difference between the hot and cold junctions, It is possible to suppress a relative output error caused by a so-called “temperature coefficient of sensitivity” in which the correlation is not linear.
  • the controller 48 controls the cooling device 51 such as a Peltier element to cool the cold junction to match the temperature of the hot junction. By doing so, the temperature was measured.
  • thermopile sensor if temperature control involving cooling is performed in this manner, various problems occur with the temperature control.
  • thermopile sensor itself has a built-in Peltier element to perform cooling, heat is generated on the surface opposite to the cooling operation surface, equivalent to the cooling operation, and heat inside the thermopile sensor is generated. It is released outside the thermopile sensor through the sink.
  • the heat sink is thermally connected to the cold junction. Therefore, part of the heat energy is fed back to the cold junction after a heat transfer time based on the heat capacity of the heat sink itself, and the temperature of the cold junction rises. Therefore, the cooling control by the Peltier element must be performed again for such a feed pack effect at the temperature.
  • the “feedback delay time of the system” greatly affects the accuracy of the control target.
  • the “feedback delay time of the system” fluctuates due to the ambient temperature, and the temperature of the cold junction increases. It is extremely difficult to control the accuracy. Therefore, it is also difficult to accurately detect the zero point of the thermopile output voltage value.
  • thermopile sensor when heating or cooling is instantaneously changed for the thermopile sensor, The temperature balance in the thermopile sensor suddenly breaks down, and the thermal reaction (heat shock) phenomenon easily occurs.
  • thermal reaction heat shock
  • the system In order to prevent this thermal reaction phenomenon, when external heat energy is applied by heating or cooling, the system must be soft-started from the state of zero external heat energy load and the rate of change must be kept as constant as possible. is important.
  • the temperature control since the temperature control is performed while varying the amount of cooling energy, it is difficult to maintain the rate of change constant. Therefore, an uncontrollable state due to the thermal reaction phenomenon or fluctuations in the thermopile output voltage value are easily induced, and it is very difficult to perform accurate temperature measurement.
  • thermopile sensor when a Peltier element is mounted outside the thermopile sensor to cool the thermopile sensor, the cooling energy is transmitted to all the components that make up the thermopile sensor. growing. Therefore, electric power for supplying such cooling energy is required. Also, it is difficult to measure the temperature in a short time. Furthermore, it is difficult to accurately perform temperature control, as in the case of incorporating a Peltier element, because heat generated corresponding to a large amount of cooling energy is generated and the temperature of the apparatus itself is easily increased. As described above, in a thermopile sensor, it is not preferable to perform temperature control involving cooling.
  • the inventor of the present invention first sets a voltage threshold value on the negative region side of the thermopile output voltage value, and outputs the thermopile output when the cold junction of the thermopile is heated.
  • a method for detecting the temperature of the cold junction at the moment when the voltage value passes the voltage threshold has been filed in PCT / JP00 / 08993.
  • Such a voltage threshold is appropriately determined based on the predicted maximum temperature of the surrounding environment and the predicted minimum temperature of the measurement target. More specifically, it can be set by the reference voltage of the phase detector which receives the thermopile output voltage value.
  • the reference voltage of the phase detector which receives the thermopile output voltage value.
  • the reference voltage value of the phase detector it is not preferable to set the reference voltage value of the phase detector to a constant value because there is an output characteristic error between the individual thermopile sensors and an error associated with the aforementioned “temperature coefficient of sensitivity”. Rather, in order to eliminate these errors, it is preferable to appropriately change the reference voltage value of the phase detector for each device.
  • comparators that can control the reference voltage from outside.
  • a different voltage value data is written in advance for each address in the memory, the address is read out as appropriate, and the D / A is read out.
  • the analog signal is converted by a converter, and this is used as the reference voltage for the comparator.
  • the reference voltage value cannot be set outside the range of the voltage value data described in the memory.
  • the data stored in the memory is a digital data
  • the setting accuracy of the reference voltage value may not be sufficient. For example, as described above, when the reference voltage value is to be determined as appropriate for each device, the digital data closest to the optimum reference voltage value must be selected, and the data stored in the memory must be selected. If the number is not enough, the accuracy will be significantly reduced. Conversely, in order to improve the accuracy at the time of setting, the number of stored data must be as large as possible.
  • the technique described here determines which of the voltage values stored in the memory is closest to the optimal reference voltage value for each device. No guidance available.
  • the present invention solves the above-mentioned problems in the prior art, and in particular, enables high-accuracy temperature measurement even when the ambient environment temperature is higher than the temperature at the time of measurement. It is an object of the present invention to provide a simple infrared thermometer and a temperature measuring method using the same. In measurement devices typified by such infrared thermometers, that is, devices that convert physical values into voltage values and perform measurements, the reference voltage value corresponding to the reference value of the target physical value can be set arbitrarily and precisely. An object of the present invention is to provide a phase detector and a method of setting a reference voltage value in such a phase detector.
  • the phase detector according to the first claim of the present application which is provided to solve the above problem, is a phase detector that receives a voltage value obtained by converting a physical value as an input.
  • the phase detector according to the second claim of the present application is the phase detector according to the first claim of the present application, wherein the input detector includes a comparing unit, a plurality of resistors, and an input scanning unit.
  • the plurality of resistors are freely combined, and a plurality of voltage values are sequentially input and scanned to the comparing means by using a plurality of combined resistors having different resistance values obtained thereby.
  • the phase detector according to the third aspect of the present invention is the phase detector according to the first aspect of the present invention, wherein the phase detector includes a comparison unit, a plurality of resistors, an input scanning unit, and a storage unit.
  • the input scanning means freely combines the plurality of resistors, and sequentially scans the comparing means with multi-level voltage values using a plurality of combined resistors having different resistance values obtained by the combination.
  • the comparing means includes: a first input voltage value input corresponding to a reference value of the target physical value; 40
  • the storage device stores a resistance value designation address of the combinational resistor at the coincidence point. It is a vessel.
  • a phase detector according to a fourth aspect of the present invention is the phase detector according to the second or third aspect of the present invention, wherein the plurality of resistors form a resistor array. Is a phase detector.
  • a plurality of resistors more specifically, a resistor array composed of these resistors is used, and the multi-stage voltage values are sequentially input and scanned to the comparison means inside the phase detector.
  • a desired reference voltage value can be set. For example, assuming now a resistor array consisting of N resistors, a combination of these resistors will result in 2 N different combinations of resistors having different resistance values.
  • the voltage value obtained corresponding to the value to be set as the reference value is amplified, and this is input to the comparison means as the first input voltage value, and the second input voltage value As a result, 2 N kinds of voltage values obtained by the combination resistors are sequentially input.
  • the comparing means compares the first input voltage value with the second input voltage value and detects a coincidence point. Since the voltage value at the coincidence point is a voltage value corresponding to the target physical reference value, the desired reference voltage value can be obtained by storing the address number designating the combination resistance at this time in a storage means such as a memory. Can be set.
  • the control of the drive IC is driven by the information processing device.
  • a memory such as a RAM or an EPROM built in the information processing apparatus is used.
  • a memory such as RAM or EPROM may be built in the phase detector itself. This case is preferable in that the reference voltage value can be set by the phase detector alone.
  • the infrared thermometer controls the temperature of the cold junction region of the thermopile sensor and detects a phase inversion of the thermopile output voltage value at that time with respect to the reference voltage value. Infrared thermometer that measures the temperature of the target 340
  • thermometer according to claim 1, wherein the reference voltage value is preset in a negative voltage value region.
  • the cold junction region is forcibly and unilaterally heated by the heating element system, the temperature is changed gradually and at a constant gradient, and the reference voltage value is passed at the constant gradient. This eliminates the delay in the thermal response speed due to changes in the ambient temperature. In addition, there is an effect that no problem occurs regarding the “temperature coefficient of sensitivity”. In addition, the temperature of the cold junction region is controlled not to be fed-pack controlled so that the thermopile output voltage matches the reference voltage value, but to be forced to pass through at a constant gradient. As a result, the measurement time can be significantly reduced.
  • the ambient temperature is higher than the measurement target temperature, for example, when the eardrum temperature is 36 ° C in the temperature measurement using an ear thermometer, the Can be measured even when the temperature is 40 ° C.
  • some cooling means such as a Peltier element, as described above.
  • thermopile sensor when a Peltier element is incorporated as a cooling means inside the thermopile sensor, heat generated equivalent to the cooling energy is generated on the opposite side of the Peltier element cooling section. —It is necessary to radiate heat outside the mopile sensor.
  • the thermopile sensor since the thermopile sensor has a structure in which the heat sink is connected to the cold junction region as a thermal circuit, part of the heat generation action is transferred to the cold junction region after the heat transfer time based on the heat capacity of the heat sink. Temperature feed packed. Since the temperature of the cold junction region rises due to this temperature reducing action, it is necessary to further adjust the cooling energy by the Peltier element.
  • the so-called “closed-lipped feed pack” adjusts the cooling energy of the Peltier element while detecting the absolute value change of the thermopile output.
  • Control j is indispensable.
  • thermopile is a sensor that generates a relative output generated by a temperature difference balance based on a temperature difference between a cold junction and a hot junction as an electromotive force. According to When heating or cooling is applied to the thermopile output when the temperature difference is balanced and the temperature balance is intentionally broken, an external temperature change is performed to prevent heat reaction (heat shock). The energy must have a constant rate of change starting from zero. That is, in the above-mentioned “closed feed pack control”, it is necessary to control the cooling amount so as to have a constant rate of change.
  • the time delay of the feedback system is an important factor in determining the temperature setting accuracy.However, since the thermopile has a heat transfer delay based on the large heat capacity of the heat sink, it results in feedback. A large time delay occurs, and it is very difficult to control the cooling rate at a constant rate.
  • thermopile when a cooling device is installed outside the thermopile, it is necessary to apply a large amount of heat energy so that heat is transferred to all the components of the thermopile, and it is difficult to measure the temperature in a short time. .
  • a small device such as an ear thermometer, there is a problem that the energy cannot be covered only by the built-in battery.
  • thermopile temperature measuring element for example, a thermopile
  • a thermopile originally has a large response speed delay with respect to the thermopile output, and in such a chattering state, it is impossible to detect the zero point of the thermopile output. Impossible. Or, in this state, if you try to detect the zero point of the thermopile output, a large error will occur with respect to the actual measured target temperature due to the delay of the response speed in the summer.
  • the reference voltage threshold is set in the negative region, and the phase inversion of the thermopile output with respect to this reference voltage (voltage threshold) is detected. Then, the target temperature can be measured by controlling the heating of the cold junction area, and no cooling means is required.
  • Specific means for setting such a reference voltage value include, for example, claims 1 and 2 T JP00 / 09340
  • An infrared thermometer is the infrared thermometer according to the fifth aspect of the present invention, further comprising: comparing means, a plurality of resistors, input scanning means, and storage means,
  • the input scanning unit is configured to freely combine the plurality of resistors, and by using a plurality of combined resistors having different resistance values obtained thereby, sequentially input scans of multi-stage voltage values to the comparing unit,
  • the comparing means compares a first input voltage value input corresponding to a reference temperature value with a second input voltage value input by the input scanning means, and detects a coincidence point thereof.
  • the storage means determines the reference voltage value by storing a resistance designation address of a combinational resistor at a coincidence point detected by the comparison means. It is a line thermometer.
  • the infrared thermometer according to the seventh aspect of the present invention is the infrared thermometer according to the sixth aspect, further comprising a phase detector for detecting phase inversion of the thermopile output voltage value with respect to the reference voltage value. And an infrared thermometer, wherein the phase detector includes at least the comparing means, a plurality of resistors, and an input scanning means.
  • An infrared thermometer according to an eighth aspect of the present invention is the infrared thermometer according to the seventh aspect, wherein the phase detector has a built-in storage device. .
  • An infrared thermometer is the infrared thermometer according to any one of the sixth to eighth aspects, wherein the plurality of resistors form a resistor array. Is an infrared thermometer.
  • the maximum permissible ambient temperature for measurement is estimated to be 40 ° C, and the minimum temperature for the measurement (eardrum) at night is expected to be 35 ° C, and the difference (minus 5.0 deg)
  • the corresponding voltage value is set on the negative side of the thermopile output voltage value.
  • the temperature of the blackbody furnace is set to 5.0 deg lower than the ambient temperature.
  • the thermopile output voltage output to the black body furnace is amplified at a specified magnification and input to a comparison means inside the phase detector as a first input voltage value.
  • 2N multi-step voltage values obtained by a combination resistor obtained by combining these resistors are used as the second input voltage to the comparison means inside the phase detector. Input scanning is performed sequentially as a value.
  • the comparison means inside the phase detector detects this.
  • the reference voltage value is set by storing the resistance value designation address of the combined resistor at that time in a storage unit such as a memory installed outside the phase detector or built in the phase detector.
  • resistor array is composed of one of two resistors, to obtain a 2 1 2 That voltage value of 4 0 9 6 stages by combination resistance. Therefore, when this resistor array is used, the reference voltage value corresponding to the desired reference temperature value (minus 5.0 deg) can be obtained at a temperature accuracy of 5.0 Z 4096, that is, 0.0012 deg. Can be set.
  • the output characteristic error based on the individual characteristics of the thermopile, the error due to the "temperature coefficient of sensitivity" of the thermopile, and the infrared temperature including the amplifier The output characteristic errors caused by each of the other components that make up the meter are integrated and calibrated collectively. That is, in the reference voltage value set in this way, there is no “output error” or “temperature coefficient of sensitivity” as in the conventional zero point. Therefore, the cold junction area of the thermopile is controlled to be heated so that the thermopile output voltage passes the reference voltage value at a constant gradient, and the phase inversion of the thermopile output voltage value with respect to the reference voltage value at this time is performed. By detecting the temperature and detecting the temperature of the cold junction region in synchronization with the phase inversion, the temperature of the measurement target can be measured with high accuracy.
  • the infrared thermometer according to the tenth aspect of the present invention is the infrared thermometer according to the ninth aspect, wherein the heating element system for heating the cold junction region and the temperature of the cold junction region are measured. And a cold junction temperature measuring element system for performing An infrared thermometer characterized in that at least one of the sub-system and the cold junction temperature measuring element system is synchronized in thermo-modal output and thermal response speed.
  • the infrared thermometer according to claim 11 of the present application is the infrared thermometer according to claim 10 of the present application, wherein the heating element system, the cold junction temperature measuring element system, and the cold junction section.
  • the infrared thermometer is characterized in that the three elements of the region have a structure directly connected to each other.
  • thermopile sensor With such a configuration, by performing temperature matching among the three elements, it becomes possible to synchronize the thermal response speed of the cold junction temperature measuring element system as much as possible with the output of the thermopile sensor.
  • the temperature of the cold junction area and the cold junction temperature measuring element should be forcibly raised to a certain bias temperature in advance by the heating element system. desirable.
  • the resistance change of the cold junction temperature measuring element at the time of temperature measurement is only the temperature rise from the bias temperature to the reference temperature value. Therefore, its thermal response speed becomes extremely fast, and it can be synchronized as much as possible with the temperature rise of the cold junction.
  • the temperature of the cold junction area of the thermopile has already risen to the ambient temperature. There is no.
  • the infrared thermometer according to claim 12 of the present application is the infrared thermometer according to claim 11, wherein the cold junction region is unilaterally and forcibly heated by the heating element system.
  • a detector that detects whether the voltage value of the thermopile output at this time is inverted with respect to the reference voltage value, and a converter that converts the presence or absence of the phase inversion into a 2-bit digital signal.
  • the infrared thermometer detects the temperature of the cold junction temperature measuring element in synchronization with the digital signal.
  • the infrared thermometer according to claim 13 of the present application is the same as the infrared thermometer according to claim 12 of the present application.
  • the infrared thermometer according to claim 14 of the present application is the infrared thermometer according to claim 13 of the present application, wherein at least one of the heating element system and the cold junction temperature measuring element includes:
  • This infrared thermometer is characterized by a resistor with self-controlling positive temperature coefficient characteristics.
  • Resistors with a self-controlling positive temperature coefficient characteristic have the property that the electrical resistance of the heating element increases as the temperature of the heating element rises due to energization. It has the feature of being maintained at a constant temperature.
  • thermopile sensor Therefore, by using this, the temperature of the cold junction area of the thermopile sensor can be controlled safely and easily.
  • An infrared thermometer according to a fifteenth aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the present invention, wherein the heating element system generates heat and maintains a constant temperature.
  • An infrared thermometer comprising a variable temperature system that varies the temperature within a certain temperature range.
  • the cold junction region and the cold junction temperature measuring element can be heated in advance to a constant Piase temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement gate, its thermal response speed is extremely fast, and the cold junction area Can be synchronized as much as possible with respect to a temperature change.
  • the infrared thermometer according to the sixteenth aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the present invention, wherein the heating element system has two kinds of self-controls having different self-saturation stable temperatures.
  • This is an infrared thermometer characterized by arranging a resistor having a positive temperature coefficient characteristic.
  • a resistor including a self-control type positive temperature coefficient characteristic in which the self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C) In this way, the cold junction region and the cold junction temperature measuring element are preliminarily heated to a constant bias temperature (34 ° C), while the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C).
  • the temperature of the eardrum can be measured by variably heating the resistor including the controlled positive temperature coefficient characteristic within a certain temperature range (for example, 34 to 42 ° C).
  • the resistor including the self-controlling positive temperature coefficient characteristic whose self-saturation stable temperature is near the eardrum temperature is maintained at a constant self-saturation stable temperature (34 "C) regardless of the ambient temperature change. Since the sensor itself is maintained, the overheat accident of the thermopile sensor is prevented, and the resistor including the self-regulating positive temperature coefficient characteristic whose self-stable saturation temperature is higher than the eardrum temperature is variable-heated. Even if the temperature control of variable heating becomes impossible due to malfunction or failure, heating is not performed above the self-saturation stable temperature (50 ° C), thereby preventing an infrared thermometer from overheating.
  • An infrared thermometer is the infrared thermometer according to the fourteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between elements.
  • the infrared thermometer according to the eighteenth aspect of the present invention is the infrared thermometer according to the fourteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between elements.
  • An infrared thermometer having a structure in which two or more pairs of resistors each having a self-control type positive temperature coefficient characteristic of a different resistance are incorporated in the cold junction region.
  • the infrared thermometer according to the nineteenth aspect of the present invention is the infrared thermometer according to the fourteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between elements.
  • a plurality of pairs of two pairs of resistors each including a self-controlling positive temperature coefficient characteristic of a different resistance are combined into the cold junction region, and a plurality of pairs are incorporated into the cold junction region. Infrared thermometer.
  • the infrared thermometer according to the twenty-fifth aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and is electrically insulated between the elements.
  • System consisting of multiple resistors with self-controlling positive temperature coefficient characteristics of the same resistance 40
  • the infrared thermometer has a structure in which a plurality of systems are incorporated into the cold junction region.
  • the infrared thermometer according to the twenty-first aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between elements.
  • An infrared thermometer having a structure in which two or more pairs of two resistors each having a self-controlling positive temperature coefficient characteristic of a different resistance are incorporated in the cold junction region.
  • An infrared thermometer is the infrared thermometer according to the fifteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements.
  • a plurality of pairs of two resistors each including a self-controlling positive temperature coefficient characteristic of a different resistance, and a plurality of pairs combined with each other in the cold junction region. It is an infrared thermometer.
  • thermometer in the infrared thermometer according to the seventeenth to twenty-second claims of the present application, by arranging a plurality of resistors or a plurality of pairs including a self-control type positive temperature coefficient characteristic, the self-control type positive temperature coefficient characteristic can be obtained. Is heated for each system to enable fine temperature control.
  • the resistors including the self-controlling positive temperature coefficient characteristic of the heating system and the cold junction temperature measuring element system are all safe without being overheated above a certain temperature.
  • the infrared thermometer according to claim 23 of the present application is the infrared thermometer according to claim 13 of the present application, wherein the resistor including the self-controlling positive temperature coefficient characteristic is deposited on a substrate surface by vapor deposition. An infrared thermometer characterized by being composed.
  • thermopile sensor In the process of manufacturing an infrared thermometer, a thermopile sensor is generally formed on the surface of a silicon pellet, a silicon chip, or a silicon wafer by using a semiconductor lamination technique. Therefore, when forming a resistor having a self-controlling positive temperature coefficient characteristic, it is possible to increase the degree of integration by forming the resistor using a vapor deposition technique, which is one method of the semiconductor lamination technique. It becomes possible to produce it efficiently. Further, it is easy to structurally and thermally connect the resistor including the self-control type positive temperature coefficient characteristic to the cold junction region of the thermopile.
  • thermometer according to claim 24 of the present application is the same as the claim 13 of the present application.
  • the resistor having the self-controlling positive temperature coefficient characteristic is formed by baking a paste on the surface of the substrate.
  • the infrared thermometer of the present invention can be manufactured efficiently by baking a resist having a self-controlling positive temperature coefficient characteristic on the surface of a substrate such as a printed circuit board.
  • An infrared thermometer according to a twenty-fifth aspect of the present invention is the infrared thermometer according to the thirteenth aspect, wherein the resistor having the self-controlling positive temperature coefficient characteristic is provided on the surface of the substrate.
  • the infrared thermometer according to the present invention can be efficiently manufactured by printing the surface of a resistor having a self-controlling positive temperature coefficient characteristic on the surface of a substrate such as a printed circuit board.
  • the infrared thermometer according to claim 26 of the present application is the infrared thermometer according to claim 14 of the present application, wherein the heating element region in which the heating element system is arranged and the cold junction temperature measuring element system.
  • the arranged cold junction temperature measuring element region is located outside the cold junction region with the hot junction region as the center, on the substrate on which the cold junction region is arranged, and in a horizontal direction with each other.
  • the infrared thermometer according to claim 27 of the present application is the infrared thermometer according to claim 14 of the present application, wherein the heating element system is The arranged heat generating element region and the cold junction temperature measuring element region in which the temperature measuring element system is arranged are located outside the cold junction region around the hot junction region, and the cold junction region is arranged.
  • Te On the board and vertically aligned with each other Unishi be disposed Te is an infrared thermometer characterized or c.
  • the heating element region in which the heating element system is arranged and the cold junction temperature measuring element region in which the temperature measuring element system is arranged are located outside the cold junction region around the hot junction region, and the cold junction region.
  • the infrared thermometer is characterized in that the infrared thermometers are arranged outside the substrate on which the regions are arranged, such that the regions are arranged in a vertical direction.
  • the arrangement of the hot junction region and the cold junction region that has been applied to the thermopile sensor of the outside line thermometer can be applied to the infrared thermometer of the present invention.
  • the infrared thermometer according to claim 29 of the present application is the infrared thermometer according to any one of claims 26 to 28 of the present application, wherein the heating element system is provided with a heating element region and
  • the infrared thermometer is characterized in that the shape of the cold junction temperature measuring element region where the cold junction temperature measuring element system is arranged is a continuous square.
  • the infrared thermometer according to claim 30 of the present application is the infrared thermometer according to any one of claims 26 to 28 of the present application, wherein the heating element system is provided with a heating element region and
  • the infrared thermometer is characterized in that the shape of the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged is a discontinuous polygon separated by a certain angle.
  • the infrared thermometer according to claim 31 of the present application is the infrared thermometer according to any one of claims 26 to 28 of the present application, wherein the heating element system is provided with a heating element region and
  • the infrared thermometer is characterized in that the shape of the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged is a continuous circle.
  • the infrared thermometer according to claim 32 of the present application is the infrared thermometer according to any one of claims 26 to 28 of the present application, wherein the heating element system is provided with a heating element region and
  • the infrared thermometer is characterized in that the shape of the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged is a discontinuous circle separated by a certain angle.
  • an infrared thermometer according to a third aspect of the present invention is the infrared thermometer according to the thirteenth aspect of the present invention, wherein the cold junction region is incorporated in or on a silicon pellet or a silicon chip.
  • a resistor having a buried layer structure in a bracket or a silicon pellet or a silicon chip and having a self-controlling positive temperature coefficient characteristic is mixed with the cold junction region.
  • An infrared thermometer having a hybrid structure.
  • the infrared thermometer according to claim 34 of the present application is the infrared thermometer according to claim 13 of the present application, wherein the cold junction region is incorporated in or on the surface of the silicon pellet or silicon chip.
  • An infrared thermometer is the infrared thermometer according to the thirteenth aspect of the present invention, wherein the cold junction region has a thick film formed on the surface of the chip substrate made of an insulator. And a resistor having a self-controlling positive temperature coefficient characteristic and having a thick film hybrid structure hybridized with the cold junction region. Infrared thermometer.
  • the reference voltage setting method for a phase detector according to claim 36 of the present application is a method for setting a reference voltage value for a phase detector that receives a voltage value obtained by converting a physical value as an input. A plurality of resistors are freely combined, and a multi-step voltage value is sequentially input to a comparing means by using a plurality of combined resistors having different resistance values obtained thereby.
  • a reference voltage value setting method for a phase detector characterized in that a reference voltage value is determined by storing a resistance value designation address of the combination resistor in the storage means in the storage means.
  • the temperature measurement method using an infrared thermometer according to the present invention is characterized in that, in the temperature measurement method using an infrared thermometer according to the present invention, the input scanning means is controlled by an information processing device.
  • the input scanning means is controlled by an information processing device.
  • the first input voltage value and the second input voltage value are compared by the comparing means, and when the magnitude relation is reversed,
  • the storage in the information processing device can be performed.
  • the means is a temperature measurement method using an infrared thermometer, wherein the resistance value designation address at that time is stored.
  • the temperature measurement method using an infrared thermometer according to the present invention is characterized in that, in the temperature measurement method using an infrared thermometer according to the present invention, the input scanning unit is controlled by an information processing device. Inputting a second input voltage value to the comparing means, and comparing the first input voltage value and the second input voltage value by the comparing means, when these factors are reversed, By inputting the inversion information as an interrupt signal to a storage device incorporated in the phase detector itself, the storage means stores a resistance designation address at that time. Is a temperature measurement method.
  • a reference voltage value corresponding to a predetermined target physical reference value can be set with high accuracy.
  • the temperature measurement method using an infrared thermometer is a temperature measurement method using an infrared thermometer having a built-in thermopile sensor, wherein the reference voltage is set in advance in the negative region of the thermopile output voltage value. A value is set in advance, and the cold junction region of the thermopile sensor is unilaterally and forcibly heated to detect a phase inversion of the thermopile output voltage value with respect to the reference voltage value, thereby obtaining a measurement value.
  • This is a method for measuring temperature using an infrared thermometer, which measures the temperature of the object.
  • the temperature measurement method using the infrared thermometer according to the 40th aspect of the present invention is the temperature measurement method using the infrared thermometer according to the 39th aspect of the present invention, wherein the black has a predetermined temperature difference from the temperature of the thermopile sensor body.
  • the thermopile output voltage value output from the thermopile sensor is amplified at a specified magnification with respect to the core furnace, and the amplified voltage is input to the comparison means as a first input voltage value.
  • the multi-stage voltage value is sequentially input to the comparing means as a second input voltage value by using a plurality of combination resistors having different resistance values.
  • the comparing means compares the first input voltage value and the second input voltage value to detect a coincidence point, and detects the detected coincidence point.
  • a temperature measurement method using an infrared thermometer wherein the reference voltage value is determined by storing a resistance value designation address of the combination resistance in the storage means in the storage means.
  • the temperature measurement method using an infrared thermometer according to claim 41 of the present application is the temperature measurement method using an infrared thermometer according to claim 40 of the present application, wherein the input scanning means is controlled by an information processing device.
  • the input scanning means is controlled by an information processing device.
  • a temperature measuring method using an infrared thermometer wherein the inversion information is input to the information processing device as an interrupt signal, so that the storage means in the information processing device stores a resistance designation address at that time. It is.
  • a temperature measurement method using an infrared thermometer according to the present invention is a method for measuring temperature using an infrared thermometer according to the present invention, wherein the input scanning means is controlled by an information processing device.
  • the input scanning means is controlled by an information processing device.
  • the comparing means When a second input voltage value is input to the comparing means, and the first input voltage value and the second input voltage value are compared by the comparing means, and when the magnitude relation is reversed, By inputting the inversion information as an interrupt signal to a storage device incorporated in the phase detector itself, the storage means stores a resistance designation address at that time. This is a temperature measurement method.
  • a temperature measurement method using an infrared thermometer according to claim 43 of the present application is the temperature measurement method using an infrared thermometer according to claim 42, wherein the thermopile sensor heats a cold junction region. Infrared, at least one of the heating element system and the cold junction temperature measuring element system for measuring the temperature of the cold junction area is synchronized in the thermopile output and the thermal response speed. This is a temperature measurement method using a thermometer.
  • the temperature measurement method using the infrared thermometer according to claim 44 of the present application 43 The temperature measurement method using an infrared thermometer according to claim 3, wherein the three elements of the heating element system, the cold junction temperature measuring element system, and the cold junction region are directly thermally connected to each other.
  • This is a temperature measuring method using an infrared thermometer. With this configuration, it is possible to synchronize the thermal response speed of the cold junction temperature measuring element system with the output of the thermopile sensor as much as possible.
  • a temperature measurement method using an infrared thermometer according to claim 45 of the present application is the temperature measurement method using an infrared thermometer according to claim 4 of the present application.
  • the phase detector detects whether or not the thermopile output voltage value when heated is inverted with respect to the reference voltage value, and converts the presence or absence of the phase inversion into a 2-bit digital signal by the converter.
  • This is a temperature measuring method using an infrared thermometer, which detects the temperature of the cold junction temperature measuring element in synchronization with the digital signal.
  • the temperature measurement method using an infrared thermometer according to claim 46 of the present application is the temperature measurement method using an infrared thermometer according to claim 45 of the present application, wherein the cold junction region has a self-controlling positive temperature coefficient characteristic.
  • This is a temperature measurement method using an infrared ray thermometer, which incorporates a resistor including:
  • the temperature measurement method using an infrared thermometer according to claim 47 of the present application is the temperature measurement method using an infrared thermometer according to claim 46 of the present application, wherein the heating element system and the cold junction temperature measuring element are connected to each other.
  • thermopile sensor With this configuration, it is possible to safely and easily control the temperature of the cold junction region of the thermopile sensor.
  • the temperature measurement method using an infrared thermometer according to claim 48 of the present application is the temperature measurement method using an infrared thermometer according to claim 47 of the present application, wherein the heating element system generates heat and maintains a constant temperature. Constant temperature system and constant temperature range The cold junction region is maintained at a constant temperature before the temperature measurement is started by the steady temperature system, and the cold junction region is maintained after the temperature measurement is started by the steady temperature system.
  • a temperature measurement method using an infrared thermometer wherein the temperature is unilaterally and forcibly changed.
  • the cold junction region and the cold junction temperature measuring element can be heated in advance to a constant Piase temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement target, the thermal response speed becomes extremely fast, and the cold junction area It can be synchronized as much as possible with temperature changes.
  • the temperature measurement method using an infrared thermometer according to claim 49 of the present application is the temperature measurement method using an infrared thermometer according to claim 48, wherein the heating element system has a different self-saturation stable temperature.
  • a resistor with two types of self-control type positive temperature coefficient characteristics is used. It is characterized in that the resistor is stabilized at a constant temperature of the saturation stable temperature, while the resistor including the self-control type positive temperature coefficient characteristic with the higher self-saturation stable temperature is changed to an arbitrary temperature below the self-saturation stable temperature. This is a temperature measurement method using an infrared thermometer.
  • the cold junction area and the cold junction temperature measuring element are set to a predetermined bias temperature in advance by a resistor including a self-control type positive temperature coefficient characteristic having a lower self-saturation stable temperature, thereby shortening the measurement time and reducing the heat.
  • the response speed can be easily synchronized.
  • the temperature measurement method using the infrared thermometer according to the fiftyth aspect of the present invention is the temperature measurement method using the infrared thermometer according to the fourth aspect of the present invention, wherein a plurality of identical resistance characteristics electrically insulated between elements are provided.
  • a plurality of systems consisting of resistors with self-controlling positive temperature coefficient characteristics are installed in such a way as to be thermally connected directly to the cold junction area, and different voltages are applied to these from outside the thermopile, and Different departures 40
  • the temperature measurement method using an infrared thermometer according to claim 51 of the present application is the temperature measurement method using an infrared thermometer according to claim 47 of the present application, wherein the self-control of different resistances electrically insulated between elements is performed. At least one pair consisting of two resistors with positive temperature coefficient characteristics is incorporated so as to be thermally connected directly to the cold junction area, and the same voltage is applied to these from outside the thermopile.
  • This is a temperature measurement method using an infrared thermometer, which is characterized by generating a different heat generation temperature in a cold junction region.
  • the temperature measurement method using an infrared thermometer according to claim 52 of the present application is the self-control of a different resistor electrically insulated between elements in the temperature measurement method using an infrared thermometer according to claim 47 of the present application.
  • a system composed of a plurality of pairs consisting of two resistors with positive temperature coefficient characteristics is incorporated into multiple systems so as to be thermally connected directly to the cold junction area, and the same voltage is applied to these from outside the thermopile.
  • This is a temperature measurement method using an infrared thermometer, which generates a different heat generation temperature for each system in the cold junction region.
  • the temperature measuring method using an infrared thermometer according to the fifty-third claim of the present application is the temperature measuring method using an infrared thermometer according to the fourth present invention, wherein a plurality of identical resistance characteristics electrically insulated between elements are provided.
  • a plurality of systems consisting of a resistor with a self-controlling positive temperature coefficient characteristic are installed in such a way as to be thermally connected directly to the cold junction area, and different voltages are applied to these from outside the thermopile, respectively.
  • This is a temperature measurement method using an infrared thermometer, which is characterized by generating a different heat generation temperature in a cold junction region.
  • the temperature measurement method using an infrared thermometer according to the fifty-fourth claim of the present application is the same as the temperature measurement method using an infrared thermometer according to the fourth invention, but also includes a method of measuring the resistance of a different resistor electrically insulated between elements.
  • a pair of two or more resistors including a control-type positive temperature coefficient characteristic is incorporated so as to be thermally connected directly to the cold junction region, and the same voltage is applied to these from outside the thermopile, This is a temperature measurement method using an infrared thermometer, which generates different heat generation temperatures in the cold junction region for each system.
  • thermometer using the infrared thermometer according to claim 55 of the present application 48
  • a system comprising a plurality of pairs of two resistors each including a self-controlling positive temperature coefficient characteristic of different resistances electrically insulated between elements is combined.
  • a plurality of systems so as to be thermally connected directly to the cold junction area, apply the same voltage to them from outside the thermopile, and generate different heat generation temperatures in the cold junction area for each system.
  • the self-control type positive temperature coefficient characteristic is obtained by arranging a plurality of resistors or a plurality of pairs including the self-control type positive temperature coefficient characteristic.
  • the resistors included are heated for each system, enabling fine temperature control.
  • FIG. 1 is a block diagram showing a configuration of a phase detector according to a first embodiment of the present invention.
  • FIG. 2 is a partially cutaway perspective view of an infrared thermometer according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of an infrared detector in the infrared thermometer according to the second embodiment of the present invention.
  • FIG. 4 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of the infrared thermometer according to the second embodiment of the present invention.
  • FIG. 5 is a top view of a thermopile portion of the thermopile sensor of the infrared thermometer according to the second embodiment of the present invention.
  • FIG. 6 is a top view of a main part of an internal structure in a thermopile sensor of the infrared thermometer according to the second embodiment of the present invention.
  • FIG. 7 is a graph showing resistance characteristics of a resistor including a self-control type positive temperature coefficient characteristic used in an infrared thermometer according to a second embodiment of the present invention.
  • FIG. 8 illustrates a temperature measurement method using an infrared thermometer according to the second embodiment of the present invention. It is a block diagram for clarification.
  • FIG. 9 is a flowchart of a temperature measuring method in the infrared thermometer according to the second embodiment of the present invention.
  • FIG. 10 is a time-temperature curve showing a temperature control method at a bias temperature in the infrared thermometer according to the second embodiment of the present invention.
  • FIG. 11 is a time-temperature curve showing a temperature control method in temperature measurement by the infrared thermometer according to the second embodiment of the present invention.
  • FIG. 12 is a time-temperature curve showing a temperature control method in temperature measurement by the infrared thermometer according to the second embodiment of the present invention.
  • FIG. 13 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of the infrared thermometer according to the third embodiment of the present invention.
  • FIG. 14 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of an infrared thermometer according to a fourth embodiment of the present invention.
  • FIG. 15 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of an infrared thermometer according to a fifth embodiment of the present invention.
  • FIG. 16 is a sectional view showing an example of the configuration of a conventional infrared thermometer.
  • FIG. 17 is a block diagram for explaining a temperature measuring method using a conventional infrared thermometer.
  • FIG. 18 is a graph showing the behavior of each output at the time of temperature measurement using a conventional infrared thermometer.
  • Heating element electrodes 4 Cold junction temperature measuring element electrodes
  • the phase detector 1 includes a comparison means 2, a resistor array 3 including a plurality of resistors 3a, 3b,... 3 ⁇ , and a drive IC 5a.
  • a voltage value corresponding to a predetermined value of the physical value to be measured is output.
  • the output voltage value A at this time is input to the comparison means 2.
  • the information processing device 4 drives the drive IC 5a to combine a plurality of resistors in the resistor array 3, and sequentially scans the multi-stage voltage value B to the comparing means 2 using the combined resistors.
  • the comparing means 2 compares the input voltage value A with the input voltage value B. Then, when these magnitude relationships are inverted, the inverted information is input to the information processing device 4 as an interrupt signal, so that the information processing device 4 reads the resistance value designation address at that time. That is, the information processing device 4 recognizes one of the 2 N different resistance values obtained by combining the N resistors existing in the resistance array 3 by the interrupt signal from the comparing means 2 and simultaneously incorporates the built-in resistance value.
  • the drive address of this combination resistor, ie, the output bit state of the information processing device 4 is stored in a memory such as an EEPROM or a RAM.
  • the resistance designation address stored in this manner is converted into a second input voltage for the comparing means 2, and this is used as a reference voltage for the comparing means 2.
  • the accuracy of the reference voltage value based on the resistance value designation address stored in this way is determined by the number N of resistors in the resistor array 3. That is, since there are 2 N combinations of resistances obtained by using N resistors, the voltage value input to the comparison means 2 is also 2 N , so that the number of resistors N is large. , The accuracy is improved.
  • the reference voltage value is stored by storing the drive address of the combined resistor drive IC 5a using the memory incorporated in the information processing device 4, that is, the output bit state of the information processing device 4.
  • a memory such as an EEPROM or a RAM is incorporated in the phase detector as a storage means for storing the drive address of the drive IC 5a of the combination resistance.
  • the memory only needs to store the output bit state of the phase detector, and the reference voltage value can be set by the phase detector alone.
  • phase detector is an ASIC or H In a 1C (hyperchip IC) one-chip IC, or in a device composed of various Ic and discrete parts on a circuit board, it is possible to set the reference voltage value for each one-chip IC or device.
  • the ear thermometer 7 includes a main body case 8, an infrared detection unit 9 and a temperature measurement circuit unit 10 housed in the main body case 8.
  • the infrared detecting section 9 has a waveguide 11 and a thermopile sensor 12, and the temperature measuring circuit section 10 has a print substrate 13, a switch 14, and a display device 15.
  • the printed circuit board 13 incorporates various elements such as a comparator for setting a reference temperature value.
  • the infrared detecting section 9 and the temperature measuring circuit section 10 are incorporated and fixed in a plate-shaped print board assembly 16 as shown in FIG.
  • the waveguide 11, the thermopile sensor 12, and the printed circuit board 13 are attached to the printed circuit board assembly 16.
  • the nozzle 17 at the tip of the main body case 8 is formed so as to become thinner toward the tip so as not to be inserted deeply into the ear canal.
  • the infrared detecting section 9 is disposed at the front end of the main body case 8 and detects infrared light incident through a hole provided at the front end of the nozzle 17.
  • the infrared detector 9 is installed in a thermopile sensor 12 for detecting infrared rays radiated from the eardrum and a nozzle 17 at the tip of the main body case 8, and is radiated from the eardrum.
  • a waveguide 11 for transmitting weak infrared rays efficiently.
  • thermopile sensor 12 Next, main parts of the internal structure of the thermopile sensor 12 are shown in FIG. 4 and FIG.
  • a heat sink 18 made of silicon and having a thickness of about several hundred microns with a hole 19 formed in the center is a hot junction support film having electric insulation on the upper and lower surfaces. 20 and an insulating thin film 38 are formed.
  • 20 is formed of silicon oxide or silicon nitride or the like, and its thickness 0 09340
  • thermopile 25 is formed by connecting thermocouples in series. Output terminals 26 are provided at both ends of the thermopile 25.
  • the thermal bonding part 24 has its upper surface covered with an infrared absorber 27.
  • the thermopile 25 may be formed in a shape as shown in FIG. 6, and the thermal junction 24 may not be covered with the infrared absorber.
  • the region where the cold junction 23 is formed is referred to as a cold junction region 28 and the region where the hot junction 24 is formed is referred to as a hot junction region.
  • a heating element 30 composed of a resistor having a self-control type positive temperature coefficient characteristic and a resistive antibody including a self-control type positive temperature coefficient characteristic are formed.
  • the cold junction temperature measuring element 31 is located outside the four sides of the cold junction area 28 when viewed from the center of the diaphragm 32, and the cold junction temperature measuring element 31 and the heating element 30 are arranged in this order. Have been.
  • the heating elements 30 and the cold junction temperature measuring elements 31 are electrically connected to each other, and electrodes 33 and 34 made of Au or the like are formed at both ends.
  • the region where the heating element 30 is formed is referred to as a heating element region.
  • the area where the cold junction temperature measuring element 31 is formed is referred to as a cold junction temperature measuring element area 36, and this name will be used as necessary hereinafter.
  • thermopile sensor 12 is fixed to the sensor stem 37 by die-bonding the thermopile sensor 12 to the sensor stem 37 as described above.
  • thermopile sensor 12 a thermal bonding support film 20 made of silicon oxide or silicon nitride and having a thickness of several microns is formed on both surfaces of a silicon pellet or silicon chip serving as a heat sink 18 or a silicon wafer by a CVD apparatus or the like.
  • dissimilar metals the first thermocouple material 21 and the second thermocouple material 22
  • thermopile 25 examples include polysilicon and aluminum, or bismuth and antimony.
  • a resistor including a self-controlling positive temperature coefficient characteristic of the heating element 30 and the cold junction temperature measuring element 31 is formed by vapor deposition. They can also be formed by paste baking. Alternatively, it may be formed by planar printing.
  • thermopile sensor 12 is completed.
  • a resistor with a self-control type positive temperature coefficient characteristic has a property that its electrical resistance increases as the temperature of the heating element rises due to energization. Body.
  • resistors with self-controlling positive temperature characteristics have the property that the electrical resistance increases rapidly at a certain temperature (self-saturation stable temperature).
  • self-saturation stable temperature Generally, when a current flows through a resistor, the resistor generates heat.
  • a resistor with a self-controlling positive temperature coefficient characteristic has an abrupt increase in electrical resistance at a self-saturation stable temperature, so that the flowing current is suppressed.
  • the resistor including the self-control type positive temperature coefficient characteristic is maintained at a constant self-saturation stable temperature. That is, the resistor including the self-control type positive temperature coefficient characteristic is a resistor that can control the heat generation temperature by itself.
  • the conductive resin is a conductive resin made of a resin, or a mixture of such a conductive resin and a semiconductor as appropriate.
  • the resistor having the self-controlling positive temperature coefficient characteristic of the heating element 30 generates heat by applying a predetermined constant voltage to the heating element 30 to control the heating of the cold junction region 28. Then, when the temperature reaches the self-saturation stable temperature, the temperature is naturally maintained at a constant temperature. Therefore, an overheating accident can be prevented by itself without providing a complicated safety device.
  • thermometer ear thermometer
  • the thermopile sensor 12 outputs a voltage that depends on the amount of infrared radiation radiated from the measurement target and the temperature of the cold junction region 28. That is, the thermopile sensor 12 outputs a voltage corresponding to the difference between the temperature of the measurement target (that is, the temperature of the hot junction region 29) and the ambient environment temperature (the temperature of the cold junction region 28).
  • the output voltage value is output as a positive voltage value when the temperature of the hot junction region 29 is higher than the temperature of the cold junction region 28, and the temperature of the hot junction region 29 is If the temperature is lower than, it is output as a negative voltage value.
  • thermopile output voltage value becomes negative
  • the temperature is controlled only by the heating control by the heating element 30.
  • a reference voltage value is provided in the negative region of the thermopile output. Then, phase inversion with respect to the reference voltage value when the cold junction region 28 is heated by the heating element 30 is detected, and the temperature is measured in synchronization with the phase inversion.
  • phase detector built into the printed circuit board 13 is used.
  • the basic configuration of this phase detector is almost the same as that shown in FIG. 1 in the first embodiment, but will be explained with reference to the block diagram shown in FIG. 8 for further understanding. I do.
  • thermopile output voltage value For an ear thermometer, the maximum permissible ambient temperature for measurement was estimated to be 40, and the minimum temperature for measurement (eardrum) at night was estimated to be 35 ° C, and the voltage value corresponding to the difference (minus 5.0 °) was calculated. Set to the negative side of the thermopile output voltage value.
  • thermopile sensor 12 for this black body furnace is taken out from the thermopile output terminal 40 and input to the phase detector 1.
  • an amplifier 39a, a comparing means 2, a drive IC 5a, and a resistor array 3 are incorporated.
  • Sa The mopile output voltage is first amplified by the amplifier 39a at a specified magnification, and then input to the comparing means 2 as a first input voltage value.
  • the information processing device 4 drives the drive IC 5a, combines the N resistors in the resistor array 3, and outputs the 2N multi-step voltage values obtained by these combined resistors to the comparing means 2.
  • input scanning is sequentially performed as a second input voltage value.
  • the comparing means 2 compares the first input voltage value and the second input voltage value, and when the magnitude relationship is inverted, the inverted information is input to the information processing device 4 as an interrupt signal. Then, the information processing device 4 reads the resistance value designation address at that time. That is, the information processing device 4 recognizes one resistance value from the 2 N different resistance values obtained by combining the N resistors present in the resistance array 3 by the interrupt signal from the comparing means 2 and simultaneously processes the information.
  • the drive IC drive 5 a address of the combination resistor, that is, the output bit state of the information processing device 4 is stored in a memory such as an EEPROM or a RAM built in the device 4.
  • memories such as EEPROM and RAM can be incorporated in the phase detector 1.
  • the reference voltage can be stored by the phase detector alone.
  • the resistance value designation address stored in this way is converted into a second input voltage for the comparing means 2, and this is used as a reference voltage for the comparing means 2.
  • the accuracy of the reference voltage value based on the resistance value designation address stored in this way is determined by the number N of resistors in the resistor array 3. That is, since there are 2 N combinations of resistances obtained using N resistors, there are also 2 N voltage values that are input-scanned to the comparison means 2. The accuracy increases as the size increases.
  • resistor array is composed of one of two resistors, to obtain a 2 1 2 That voltage value of 4 0 9 6 stages by combination resistance. Therefore, when this resistor array is used, the reference voltage corresponding to the desired reference temperature value (minus 5.0 deg) 'is obtained at a temperature accuracy of 5.0 / 4096, that is, 0.0012 deg. Value can be set.
  • the output voltage value between thermopile products is ⁇ 20 to 30% error. It is said to make a difference. If an error of ⁇ 30% is included, the temperature conversion value of the output voltage value of the thermopile is 3.5, which is minus 5.
  • O deg which is the difference of the black body furnace reference temperature with respect to the ambient temperature. It is set in the range of ⁇ 6.5 deg. Therefore, as described above, when a reference voltage scan of 406 steps is performed with respect to the swing width of 3.0 deg, the temperature accuracy becomes 3.0 / 4096, that is, 0.000773 deg. It is also possible to set even higher precision.
  • the amplifier 39a inside the phase detector 1 connected to the thermopile sensor 12 amplifies the minute voltage output from the thermopile sensor 12 at a specified magnification.
  • the comparing means 2 connected to the amplifier 39a determines whether or not the output voltage value of the thermopile sensor 12 amplified by the amplifier 39a is inverted with respect to a preset reference voltage value. Judge and send it to the information processing device 4 as a 2-bit digital signal of “Yes” or “No”.
  • the resistor including the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 31 is a temperature measuring element for measuring the temperature of the cold junction area 28, and the change of the self-resistance value is converted to a voltage value.
  • This voltage value is amplified by an amplifier 39 b connected to a resistor including a self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 31.
  • the information processing device 4 includes an A / D converter. The information processing device 4 synchronizes the output signal of the cold junction temperature measuring element 31 amplified by the amplifier 39 with the output signal of the phase inversion “yes” from the comparison means 2 inside the phase detector 1 in accordance with A. / D to convert. Thereafter, arithmetic processing is performed to obtain the temperature value of the measurement target, and this is displayed on the display device 15.
  • the procedure is roughly divided into a measurement preparation stage and a measurement stage.
  • the measurement preparation stage will be described.
  • the switch 14 When the switch 14 is turned on, the information processing device 4 operates (1), the output of the cold junction temperature measuring element 31 is input via the amplifier 39 b, and the A / B
  • the temperature value of the cold junction region 28 is obtained by converting the temperature by the D converter, and it is determined whether or not the temperature value is equal to or higher than a predetermined value (for example, a value near the eardrum temperature of 34 ° C). Yes (2).
  • the temperature value of the cold junction region 28 is equal to or higher than the predetermined value, it is determined whether or not the change in the temperature value (temperature change due to disturbance) is within an allowable range (3). If the rate of change is within a certain range, it is further determined whether or not such a temperature equilibrium state has continued for a specified time or more (whether a stable state with little disturbance for a certain time or more continues). Yes (4).
  • the drive IC 5 b is driven by the information processing device 4, and the cold junction region 28 and the cold junction temperature measurement are performed by the heating element 30.
  • the element region 36 is heated to a constant bias temperature (5).
  • This bias temperature is appropriately determined, for example, by setting it at 34 ° C. which is near the eardrum temperature.
  • the heating element 30 is subjected to feedback control as shown in FIG.
  • the feedback control which is generally performed to maintain a constant temperature, there are problems in that it takes a long time for the temperature to become constant and that the temperature is likely to change due to temperature disturbance. Become.
  • the temperature is forcibly fluctuated within the specified threshold value for the target constant temperature value for the purpose of applying the bias temperature and shortening the measurement time.
  • This is “pendulum temperature control” (see Fig. 10).
  • the temperatures of the cold junction region 28 and the cold junction temperature measuring element region 36 are within the specified threshold region around the set Piass temperature, the effect can be sufficiently obtained.
  • the time required to reach the Piass temperature can be shortened, and if there is a disturbance factor in the temperature, there is no particular problem as long as the influence is not so great as the dog.
  • the information processing device 4 determines whether the temperature of the cold junction region 28 is within the specified threshold region based on the output of the cold junction temperature measuring element 31 in this way, and determines the temperature of the “pendulum temperature control”. Determine whether the gradient is within the specified rate of change (ie, the temperature disturbance is within the permissible range) (3), and if both the temperature and the rate of change are It is determined whether the rate of change within the regulation has continued for the prescribed time or more (whether a stable state with little disturbance has continued for a certain time or more) (4).
  • the temperature change rate of the cold junction region 28 is within the specified range (the temperature fluctuation due to disturbance is below a certain level). If it is determined that the condition has continued for the specified time or longer, it is possible to immediately measure the temperature of the target for measurement. However, even if it is determined that the cold junction region 28 is stable at a constant ambient temperature or Piers temperature, it is possible that the cold junction region 28 is slightly affected by disturbance within a certain range. is there. As a result, it is inevitable that measurement errors due to such disturbances will occur, albeit minutely, in the temperature measurement value at the time of measurement. Therefore, it is desirable to perform correction by predicting to some extent fluctuations in measurement accuracy of measured values due to temperature disturbance. The procedure is described below.
  • the internal storage device of the information processing device 4 previously stores, as a change rate table, a change rate within a specified threshold value with respect to the ambient environmental temperature and the temperature when the “pendulum type temperature control” is performed. Then, the information processing device 4 reads the change rate table (6), compares it with the actually measured temperature change rate of the cold junction region 28, and finds a matching numerical value (7). The degree of influence due to disturbance is determined (8), and the degree of correction in the measured temperature value is determined (9), and displayed on the display device 15 (10). As a display method at this time, for example, it is conceivable to rank the degree of the correction in advance and display the rank. Also at this stage Since the preparation for the measurement is completed, it is desirable that the display device 15 shows the fact at the same time.
  • the process proceeds to the temperature measurement stage of the measurement target.
  • the thermometer In the ear thermometer 7, the thermometer is inserted into the ear canal (11) The temperature is measured by infrared rays radiated from the eardrum. At this time, it is important to insert the infrared ray radiated from the eardrum at an optimum angle so that the amount of incidence on the warm junction 24 becomes a certain amount or more. Therefore, when the measurer inserts the ear thermometer into the ear canal and adjusts its angle (12), it is desirable that the optimal angle be shown so that it is easy to understand. For example, search for the peak value of infrared radiation emitted from the eardrum, and emit a notification sound (buzzer, etc.) near the peak value [13]. At this stage, when the measurer presses the measurement start switch, for example, the measurement start switch (14), the temperature measurement is started.
  • the measurement start switch for example, the measurement start switch (14)
  • the output voltage of the cold junction temperature measuring element 31 amplified by the amplifier 39 b to the specified magnification is input to the information processing device 4. Then, the temperature is converted by the built-in A / D converter to obtain the temperature value of the cold junction region 28 again (15).
  • the drive IC 5 b is driven by the information processing device 4 to heat the heating element 30, thereby forcibly heating the cold junction area 28 and the cold junction temperature measuring element area 36 (16) .
  • heating is performed from a bias temperature (when the initial temperature value is equal to or lower than a predetermined value of 34 ° C) or an ambient environment temperature (when the initial temperature value is equal to or higher than a predetermined value of 34 ° C). Is started. As described above, when heating is started rapidly, the thermal equilibrium state of the thermopile collapses rapidly, and the “heat shock phenomenon” occurs, which becomes uncontrollable. Therefore, it is important to start heating gently (soft start) so as not to cause such a "heat shock phenomenon” at the start of heating.
  • Fig. 11 shows the behavior when the ambient temperature is lower than the measurement target temperature
  • Fig. 12 shows the behavior when the ambient temperature is higher than the measurement target temperature.
  • control is performed so that the output voltage of the thermopile decreases linearly with a constant gradient with respect to the heating time.
  • the thermopile output voltage is passed at a constant gradient with respect to the reference voltage value of the phase detector 1, and the phase inversion is forcibly generated for the aforementioned reference voltage value.
  • this phase inversion is phase detected It is detected by the comparison means 2 built in the device 1 and sent to the information processing device 4 as a 2-bit digital signal of phase inversion “present” and “absent”.
  • the information processing device 4 determines whether or not the phase inversion is “present” or “absent” based on the 2-bit digital signal (17). Send a signal to stop heating. At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the heating element 30.
  • a resistor having a self-controlling positive temperature coefficient characteristic is used as the heating element 30, and is maintained at a constant self-saturation stable temperature, and is not overheated. Therefore, for example, in an ear thermometer, using a resistor with a self-regulating positive temperature coefficient characteristic having a self-saturation stable temperature of 50 ° C prevents overheating accidents without using a special safety device. It is.
  • the output of the cold junction temperature measuring element 31 is input to the information processing device 4 via the amplifier 39 b in synchronization with the signal of “presence” of phase inversion, and the AZD conversion built in the information processing device 4 is performed.
  • the temperature conversion is performed by the exchanger.
  • a temperature value corresponding to a preset threshold reference value is subtracted from the A / D conversion temperature value with respect to the above-mentioned negative region of the thermopile output, and the measured temperature is calculated. Further, the temperature disturbance is corrected to obtain the temperature of the cold junction area 28 (18), and this temperature value is displayed on the display device 15
  • the temperature of the cold junction region 28 obtained in this manner is nothing less than the temperature of the hot junction region 29, that is, the temperature of the gate at the time of measurement.
  • highly accurate measurement with little error can be performed.
  • the measurement time can be greatly reduced. More importantly, even when the ambient temperature is higher than the measurement target temperature, the temperature of the cold junction area 28 is controlled only by heating, resulting in highly accurate temperature measurement. Can be performed.
  • the cold junction temperature measuring element area 36 and the heating element area 35 are arranged outside the cold junction area 28 when viewed from the center of the diaphragm 32 in this order. May be used as the heating element area 35 and the cold junction temperature measuring element area 36.In this case, when the Piase temperature is applied to the cold junction area 28, the constant temperature is reached in a shorter time. Becomes possible.
  • a fourth embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
  • FIG. 13 is a top view and a sectional view of a thermopile sensor section in the infrared thermometer according to the fourth embodiment of the present invention.
  • a heating element 30 composed of a resistor having a self-control type positive temperature coefficient characteristic and a cold junction composed of a resistor also having a self-control type positive temperature coefficient characteristic
  • the partial temperature measuring element 31 is stacked and arranged.
  • thermopile sensor 12 The manufacturing process of the thermopile sensor 12 will be described. First, a thermal bonding portion support film 20 made of silicon oxide or silicon nitride is formed to a thickness of several microns on both surfaces of a silicon pellet or a silicon chip to be a heat sink 18 or a silicon wafer by a CVD device or the like. Next, the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 31 is deposited on the thermal junction support film 20 on the upper surface side of the heat sink 18 by vapor deposition, paste baking, or sheet printing. Then, a thermal bonding support film 20 made of silicon oxide or silicon nitride is formed thereon to a thickness of several microns again by a CVD apparatus or the like. Then heat sink 1
  • thermopile having a cold junction 23 and a hot junction 24 by connecting in series the dissimilar metals (first thermocouple material 21 and second thermocouple material 22) on the surface of 8 Form 2 5.
  • a resistor having a self-controlling positive temperature coefficient characteristic of the heating element 30 is formed on the surface of the heat sink 18 by an evaporation method, a paste baking method, or a sheet printing method. Insulating thin film 3 on both sides of heat sink 18
  • thermopile 25 After depositing and covering 8, the area under the thermopile 25 is partially removed by jet etching. Thereafter, the oxide film is removed by wet etching with hydrofluoric acid or the like, whereby the thermopile sensor 12 is completed.
  • the cold junction area 28 and the cold junction temperature measuring element area 36 are arranged adjacent to each other, and the heating element area 35 and the cold junction temperature measuring element area 36 are arranged vertically. They are arranged to overlap.
  • thermopile sensor of the infrared thermometer of the present embodiment the heating element area 3
  • the cold junction temperature measuring element region 36 is forcibly made dependent on the temperature of the heating element 30.
  • the cold junction region 28 and the cold junction temperature measuring element region 36 are raised in advance to a certain bias temperature. Therefore, the resistance change of the cold junction temperature measuring element 31 is only the temperature rise of the hot junction area 29 due to the infrared energy from the measurement target, and the thermal response speed of the cold junction temperature measuring element 31 Becomes extremely fast, it becomes possible to synchronize with the output response speed of the thermopile sensor 12.
  • FIG. 14 shows a thermopile sensor according to the present embodiment.
  • the present embodiment is characterized in that the heating element 30 is further divided into a steady-temperature heating element 41 and a variable-temperature heating element 42.
  • the steady-state temperature heating element 41 plays a role of maintaining the cold junction region 28 at a constant bias temperature before starting temperature measurement.
  • the variable temperature system heating element 42 has a role of unilaterally and forcibly changing the temperature of the cold junction area 28 after the start of the temperature measurement. That is, heating to the pipe temperature in the measurement preparation stage and forcible heating of the cold junction region 28 in the measurement stage, which were performed by the single heating element 30 in the second embodiment, are normally performed.
  • the roles of the temperature system heating element 41 and the variable temperature system heating element 42 are shared. Each of these heating elements is composed of a resistor having a self-control type positive temperature coefficient characteristic, and is composed of a resistor having a self-controlling positive temperature coefficient characteristic.
  • a heater element 42 having a lower temperature than a resistive element having a self-controlling positive temperature coefficient characteristic is used.
  • a resistor having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is a bias temperature of 34 ° C is used as the steady-state temperature-generating heating element 41, and a temperature-controllable heating element is used.
  • a resistor including a self-controlling positive temperature coefficient characteristic whose self-saturation stable temperature is 50 ° C. is used as the element 42.
  • the steady-state temperature heating element 41 is heated to 34 ° C after being supplied with the specified voltage value in the measurement preparation stage, and then further heated. It is maintained at a constant temperature by itself. Furthermore, even when there is a disturbance factor in the temperature such as a sudden change in the ambient temperature, the temperature is adjusted and maintained at this temperature. Therefore, the feed pack control as performed in the second embodiment is not required, and the apparatus configuration can be simplified, the cost can be reduced, and the strength can be improved.
  • the variable heating system heating element 42 is maintained at the Pierce temperature of 34 ° C or the ambient temperature following the heating by the steady temperature system heating element 41 without applying voltage during the measurement preparation stage. You.
  • the information processing device 4 determines whether or not the phase inversion of the thermopile output voltage with respect to the reference voltage value is “present” or “absent” based on the 2-bit digital signal. Sends a signal to stop heating the system heating element 42. At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the variable system heating element 42. However, also at this time, the resistor including the self-control type positive temperature coefficient characteristic of the variable system heating element 42 is maintained at a constant temperature of 50 ° C., which is a self-saturation stable temperature, and does not rise any more. No overheating accidents can be prevented without using special safety devices.
  • the cold junction temperature measuring element area 36 and the heating element area 35 are arranged outside the cold junction area 28 as viewed from the center of the diaphragm 32, and the heating element area 3 is arranged in this order. 5.
  • the cold junction temperature measuring element area 36 may be used.In this case, when a bias temperature is applied to the cold junction area 28, it is possible to reach a constant temperature in a shorter time. Is the same as in the second embodiment.
  • FIG. 15 shows a thermopile sensor section of the infrared thermometer according to the present embodiment.
  • a cold junction temperature measuring element 31 As shown in FIG. 15, a cold junction temperature measuring element 31, a steady temperature system heating element 41, and a variable temperature system heating element 42 are stacked and arranged.
  • thermopile sensor 12 The manufacturing process of the thermopile sensor 12 will be described. First, a thermal bonding made of silicon oxide or silicon nitride is applied to both sides of a silicon pellet or silicon chip or silicon wafer to become a heat sink 18 by CVD equipment. 0 09340
  • the part support film 20 is formed to a thickness of several microns.
  • the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 31 is deposited on the thermal junction support film 20 on the upper surface side of the heat sink 18 by vapor deposition, paste baking, or sheet printing.
  • a thermal bonding support film 20 made of silicon oxide or silicon nitride is formed thereon to a thickness of several microns again by a CVD apparatus or the like.
  • thermocouple material 21 and second thermocouple material 22 are formed on the surface of the heat sink 18 and connected in series to form the cold junction 23 and the hot junction 24.
  • the formed thermopile 25 is formed.
  • a resistor having a self-controlling positive temperature coefficient characteristic of the variable temperature system heating element 42 is formed on the surface of the heat sink 18 by a vapor deposition method, a paste baking method, a sheet printing method, or the like.
  • a thermal bonding support film 20 made of silicon oxide or silicon nitride is formed to a thickness of several microns again by a CVD apparatus or the like.
  • a resistor including the self-control type positive temperature coefficient characteristic of the steady temperature system heating element 41 is formed by an evaporation method, a paste baking method, a sheet printing method, or the like.
  • the cold junction temperature measuring element 31, the steady temperature system heating element 41, and the variable temperature system heating element 42 are stacked and arranged, and an insulating temperature junction support is provided therebetween. With the film 20 interposed, they are electrically insulated from each other, and exhibit exactly the same operation as the third embodiment when measuring the temperature. Moreover, it has the feature that the device configuration is compact.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Radiation Pyrometers (AREA)

Abstract

A comparing means within a phase detector compares a first voltage value which is inputted according to a reference value of an objective physical value with a multi-level second voltage value which is successively inputted using a combination resistor. An inversion of magnitude relation between these values is detected, and the specified combination resistor resistance address at the detection is stored in a storage so as to set an arbitrary reference voltage value. Using such a phase detector, a predetermined voltage threshold value is set in a negative region of a thermopile output voltage value of an infrared thermometer. The temperature of a cold junction region of the thermopile is heated and controlled, and the temperature of the cold junction region is measured synchronously with a phase inversion of a thermopile output voltage value with respect to an electric voltage threshold value.

Description

明細書  Specification
相検出器及び相検出器の基準値設定方法及び赤外線温度計及び赤外線温度計の温 度測定方法 Phase detector, reference value setting method of phase detector, infrared thermometer and temperature measurement method of infrared thermometer
技術分野 本発明は相検出器、 相検出器の基準値設定方法、 赤外線温度計、 及び赤外線温 度計の温度測定方法に闋するものであり、 詳しくは物理値を変換して得られる電 圧値を入力とする相検出器と、 この相検出器における基準値の設定方法関するも のである。 また、 そのような相検出器を適用した赤外線温度計及び、 この赤外線 温度計を用いる温度測定方法に関するものである。 TECHNICAL FIELD The present invention relates to a phase detector, a method of setting a reference value of a phase detector, an infrared thermometer, and a method of measuring a temperature of an infrared thermometer, and more specifically, a voltage obtained by converting a physical value. The present invention relates to a phase detector that inputs a value and a method of setting a reference value in the phase detector. The present invention also relates to an infrared thermometer to which such a phase detector is applied and a temperature measuring method using the infrared thermometer.
背景技術 従来から、 対象物理値の大小に応じて出力される電圧値を利用した測定方法、 すなわち前記対象物理値と出力電圧値との相関を利用し、 測定された出力電圧値 に相当する対象物理値を得る方法がある。 例えば赤外線温度計により測定タ一ゲ ッ トが放射する赤外線を検出し、 その赤外線強度に応じて発生される出力電圧値 を測定することにより、 前記測定夕ーゲッ トの温度を測定する方法がある。 BACKGROUND ART Conventionally, a measurement method using a voltage value output according to the magnitude of a target physical value, that is, a target corresponding to a measured output voltage value using a correlation between the target physical value and an output voltage value There is a way to get a physical value. For example, there is a method of measuring the temperature of the measurement target by detecting infrared rays emitted from the measurement target by an infrared thermometer and measuring an output voltage value generated according to the intensity of the infrared rays. .
赤外線温度計においては、 一般に測定対象から放射される赤外線を検知するた めの非接触型温度センサとして、 焦電型センサ又はサ一モパイルセンサが使用さ れている。 焦電型センサは測定対象から放射される赤外線エネルギを吸収したと きの温度変化による焦電体の表面電荷の'変化を出力として検出するセンサである c 焦電型センサは焦電体の温度が変化したときのみに出力を出すため、 入射赤外線 をチヨッビングして断続的に遮断し連続的な出力を取り取り出している。 一方、 サーモパイルセンサは熱電対を集積回路技術によって堆積し、 直列接続された多 数の熱電対により、 温接合部と冷接合部との温度差に対する連続的な出力を取り 出すセンサである。 In an infrared thermometer, a pyroelectric sensor or a thermopile sensor is generally used as a non-contact type temperature sensor for detecting infrared rays radiated from an object to be measured. Pyroelectric sensor c pyroelectric sensor is a sensor for detecting the output 'change in the surface charge of the pyroelectric body according absorbed and Kino temperature change infrared energy emitted from the measurement target temperature of the pyroelectric In order to produce output only when changes occur, incident infrared rays are shoved and intermittently intercepted to obtain continuous output. on the other hand, A thermopile sensor is a sensor in which thermocouples are deposited by integrated circuit technology, and a continuous output is output for the temperature difference between the hot junction and the cold junction by using a large number of thermocouples connected in series.
サ一モパイルセンサの基本的使用方法として、 測定夕一ゲッ トから放射される 赤外線出力に基づくサーモパイルの温接合部温度と一定温度に維持された冷接合 部との温度差に起因して出力されるサ一モパイル出力電圧を測定すること-により、 前記測定夕一ゲッ トの温度を測定する方法が挙げられる。 すなわち温接合部の温 度を τ、 冷接合部の温度を T Q とすると、 サ一モパイルに生じる起電力 Vはステ ファン一ボルヅマンの法則により、 As a basic usage of the thermopile sensor, the output is generated due to the temperature difference between the hot junction temperature of the thermopile based on the infrared output radiated from the measurement target and the cold junction maintained at a constant temperature. A method of measuring the temperature of the measurement target by measuring the thermopile output voltage may be used. That is, assuming that the temperature of the hot junction is τ and the temperature of the cold junction is T Q , the electromotive force V generated in the thermopile is given by Stefan-Volman's law.
V = k ( T 4— T。4 ) ( kは定数) … ( 1 ) V = k (T 4 — T. 4 ) (k is a constant)… (1)
と表される。 この起電力 Vのデータに基づいて 4乗根演算を行うことにより、 温 接合部の温度、 すなわち測定ターゲッ トの相対温度 Tを知ることができる。 It is expressed as By performing a fourth-root operation based on the data of the electromotive force V, the temperature of the thermal junction, that is, the relative temperature T of the measurement target can be known.
一方、 サ一モパイルセンサの応用的使用方法として、 冷接合部の温度を強制的 に制御することにより、 冷接合部と温接合部との温度一致点を検出する温度測定 方法がある。 冷接合部と温接合部との温度一致点とはすなわち、 サ一モパイルに 生じる起電力がゼロとなる点であることは式 ( 1 ) により明らかである。従って、 サ一モパイルから出力される電圧をモニタリングし、 その値がゼロとなる点にお いて冷接合部の温度を検出することにより、 温接合部の温度すなわち測定タ一ゲ ヅ トの温度を知ることができる。 このようないわゆる 「零位法」 による温度測定 を行う使用方法は、 上述のように冷接合部の温度制御を行わない場合に較べて周 囲温度の冷接合部温度への影響が少なく、 一般に測定精度が高いとされている。 以下本明細書においては、 冷接合部の温度制御を行なわずに温度測定を行う場 合を 「パッシブ型使用方法」、 これに対していわゆる 「零位法」 による溘度測定を 行う場合を 「アクティブ型使用方法」 と称する。  On the other hand, as an applied use of the thermopile sensor, there is a temperature measurement method for detecting the temperature coincidence point between the cold junction and the hot junction by forcibly controlling the temperature of the cold junction. It is clear from equation (1) that the temperature coincidence point between the cold junction and the hot junction is the point where the electromotive force generated in the thermopile becomes zero. Therefore, by monitoring the voltage output from the thermopile and detecting the temperature of the cold junction at a point where the value becomes zero, the temperature of the hot junction, that is, the temperature of the measurement target is measured. You can know. In such a method of performing temperature measurement by the so-called “zero method”, the ambient temperature has less influence on the cold junction temperature than when the temperature control of the cold junction is not performed as described above. It is said that the measurement accuracy is high. Hereinafter, in this specification, the case where temperature measurement is performed without controlling the temperature of the cold junction is referred to as “passive type usage method”, while the case where the degree of coldness measurement is performed using the so-called “null method” is referred to as “ Active type usage method ".
次にサーモパイルセンサをァクティブ型使用方法に供する例として、 U S 4 9 0 0 1 6 2号公報に示される赤外線温度計を挙げて説明する。  Next, an infrared thermometer disclosed in US Pat. No. 4,900,162 will be described as an example of using a thermopile sensor for an active use.
第 1 6図は U S 4 9 0 0 1 6 2号公報に示された従来の赤外線温度計における 主要部断面図である。 第 1 6図を参照すると、 測定夕一ゲッ ト 4 3の温度測定を 行う赤外線温度計 4 4は以下のように構成される。 まずヒートシンク 1 8に取り 付けられたサ一モパイル 2 5上面に対して測定夕一ゲット 4 3が放射する赤外線 を効率的に到達させるために、 窓材 4 5がセンサステム 3 7に設けられている。 サ一モパイル 2 5には電気接点 4 6 a、 4 6 bが設けられ、 それぞれ導体 4 7 a、 4 7 bによりコントローラ 4 8と接続されている。 サ一ミス夕 5 2は、 サ一モパ ィル 2 5近接部に設置されている。 また、 サ一ミス夕 5 2は、 導体 4 7 c、 4 7 dにより温度プロセッサ 4 9に接続されている。 FIG. 16 is a sectional view of a main part of a conventional infrared thermometer disclosed in US Pat. No. 4,900,162. Referring to FIG. 16, the infrared thermometer 44 for measuring the temperature of the measurement target 43 is constituted as follows. Take heat sink 18 first A window member 45 is provided on the sensor stem 37 so that the infrared rays emitted by the measurement target 43 can efficiently reach the upper surface of the attached thermopile 25. The thermopile 25 is provided with electrical contacts 46a and 46b, which are connected to the controller 48 by conductors 47a and 47b, respectively. The summer evening 52 is located in the vicinity of the summer 25. The semiconductor 52 is connected to the temperature processor 49 by conductors 47c and 47d.
次に第 1 7図は、 第 1 6図に示される赤外線温度計を用いた温度測定原理を示 すブロック図である。 また第 1 8図は、 測定時における各出力の挙動を示す図で ある。 以下、 第 1 7図及び第 1 8図を参照して、 温度測定方法を説明する。  Next, FIG. 17 is a block diagram showing the principle of temperature measurement using the infrared thermometer shown in FIG. FIG. 18 is a diagram showing the behavior of each output at the time of measurement. Hereinafter, the temperature measurement method will be described with reference to FIGS. 17 and 18.
測定開始に先だって、 コントローラ 4 8が加熱装置 5 0を駆動して、 サ一モパ ィル 2 5を測定夕一ゲッ ト 4 3の予測温度近傍まで予熱する。  Prior to the start of the measurement, the controller 48 drives the heating device 50 to preheat the thermo-modal 25 to near the predicted temperature of the measurement target 43.
測定開始とともに、 サ一モパイル 2 5は測定夕一ゲッ ト 4 3から放射された赤 外線を感知し、 温接合部の温度が上昇して冷接合部との間に温度差を生じる。 こ のときサ一モパイル 2 5に生じる起電力が出力電圧値としてコントローラ 4 8に 出力される (第 1 8図 A )。コントロ一ラ 4 8はその出力電圧値に応じて加熱装置 5 0を駆動し、 サ一モパイル 2 5の冷接合部温度を制御する。  At the start of the measurement, the thermopile 25 senses the infrared radiation radiated from the measurement target 43, and the temperature of the hot junction rises to generate a temperature difference with the cold junction. At this time, the electromotive force generated in the thermopile 25 is output to the controller 48 as an output voltage value (FIG. 18A). The controller 48 drives the heating device 50 according to the output voltage value, and controls the cold junction temperature of the thermopile 25.
通常、 測定ターゲッ ト 4 3が放射する赤外線により、 温接合部は冷接合部より も高温となっている。 従ってサ一モパイル出力電圧値は、 第 1 8図に示されるよ うに正の電圧値を示す。 ここでコントローラ 4 8により加熱装置 5 0を制御して 冷接合部を加熱すると、 冷接合部の温度が温接合部の温度に近づいていき (第 1 8図 B )、それに従ってサ一モパイル出力電圧が徐々に減少していく(第 1 8図 C )c そして冷接合部の温度が温接合部の温度と一致したときに、 サ一モパイル出力電 圧値がゼロとなる (第 1 8図 D )。 このときサ一ミス夕 5 2により読み取られる冷 接合部温度 (第 1 8図 E ) が、 すなわち測定ターゲッ ト 4 3の温度である。 Usually, the hot junction is hotter than the cold junction due to the infrared radiation emitted by the measurement target 43. Therefore, the thermopile output voltage value shows a positive voltage value as shown in FIG. Here, when the heating device 50 is controlled by the controller 48 to heat the cold junction, the temperature of the cold junction approaches the temperature of the hot junction (Fig. 18B), and the thermopile output is accordingly adjusted. when the temperature of the voltage gradually decreases (first 8 Figure C) c and the cold junctions are consistent with the temperature of the warm junction, mono- thermopile output voltage values is zero (first 8 Figure D). At this time, the cold junction temperature (FIG. 18E) read by the error 52 is the temperature of the measurement target 43.
このようにしてサ一モパイルセンサをァクティブ型使用方法に供する場合、 冷 接合部の温度を強制的に制御する'ことにより周囲環境温度の変動による影響を抑 制し、 正確な測定を行うことができる。  In this way, when the thermopile sensor is used in an active-type usage method, the temperature of the cold junction is forcibly controlled, thereby suppressing the effect of fluctuations in the ambient environment temperature and making accurate measurements. .
また、 サ一モパイルセンサを予熱し、 温接合部と冷接合部との温度差を微小に しておくことにより、 温接合部と冷接合部との温度差が大きいほど出力一温度の 相関関係が直線的ではなくなるいわゆる 「感度の温度係数」 による相対出力誤差 を抑制することができる。 Also, by preheating the thermopile sensor and minimizing the temperature difference between the hot junction and the cold junction, the larger the temperature difference between the hot and cold junctions, It is possible to suppress a relative output error caused by a so-called “temperature coefficient of sensitivity” in which the correlation is not linear.
しかしながら、 上記技術においては以下のような問題点があった。、  However, the above technology has the following problems. ,
測定時において測定タ一ゲッ トの温度よりも周囲環境温度が高温側にある場合、 サ一モパイル 2 5の冷接合部が温接合部よりも高温となり、 その結果、 サーモパ ィル出力電圧値が負の値を示す。 このような場合、 上記 U S 4 9 0 0 1 6 2号公 報においては、コントローラ 4 8によりペルチェ素子等の冷却装置 5 1を制御し、 冷接合部を冷却して温接合部の温度に一致させることにより温度測定を行ってい た。  If the ambient temperature is higher than the temperature of the measurement target at the time of measurement, the cold junction of the thermopile 25 will be hotter than the hot junction, and as a result, the thermopile output voltage value will decrease. Indicates a negative value. In such a case, in the aforementioned US Pat. No. 4,900,162, the controller 48 controls the cooling device 51 such as a Peltier element to cool the cold junction to match the temperature of the hot junction. By doing so, the temperature was measured.
ところがサーモパイルセンサにおいて、 このように冷却を伴う温度制御を行う と、 それに伴って種々の問題が発生する。  However, in the thermopile sensor, if temperature control involving cooling is performed in this manner, various problems occur with the temperature control.
サ一モパイルセンサ自体にペルチヱ素子を内蔵させ、 これにより冷却を行おう とすると、 冷却作用面と反対側の面において、 その冷却作用と同等の発熱エネル ギ一が発生し、 サ一モパイルセンサ内部のヒ一トシンクを通じてサ一モパイルセ ンサ外部へと放出される。 しかしながら、 サ一モパイルセンサの構造上、 ヒート シンクは冷接合部と熱的に接続されている。 従って、 発熱エネルギーの一部は、 ヒートシンク自体が有する熱容量に基づいた熱伝達時間を経て冷接合部へと再び フィードバックされ、 冷接合部の温度が上昇することになる。 そこで、 このよう な温度のフィ―ドパック作用に対して、 ペルチェ素子による冷却制御を再度行わ なければならない。  If the thermopile sensor itself has a built-in Peltier element to perform cooling, heat is generated on the surface opposite to the cooling operation surface, equivalent to the cooling operation, and heat inside the thermopile sensor is generated. It is released outside the thermopile sensor through the sink. However, due to the structure of the thermopile sensor, the heat sink is thermally connected to the cold junction. Therefore, part of the heat energy is fed back to the cold junction after a heat transfer time based on the heat capacity of the heat sink itself, and the temperature of the cold junction rises. Therefore, the cooling control by the Peltier element must be performed again for such a feed pack effect at the temperature.
このとき、 フィードバックされる発熱エネルギー量及び熱伝達時間は、 周囲温 度により不規則に変化するため、 固定的な一定の関数として扱うことが困難であ る。 フィードバック制御においては一般的に、 「系統のフィードパック遅れ時間」 が制御対象の精度に大きく影響する。 しかるにここでは、 サ一モパイル出力電圧 値をリアルタイムに検出しながら冷却制御を行ったとしても、 「系統のフィ一ド バック遅れ時間」 が周囲温度により変動してしまい、 冷接合部の温度を高精度に 制御することはきわめて困難である。 従ってサ一モパイル出力電圧値のゼロ点を 正確に検出することも困難である。  At this time, the amount of heat generated and the heat transfer time fed back change irregularly depending on the ambient temperature, so it is difficult to treat it as a fixed constant function. In feedback control, generally, the “feedback delay time of the system” greatly affects the accuracy of the control target. However, even if cooling control is performed while detecting the thermopile output voltage value in real time, the “feedback delay time of the system” fluctuates due to the ambient temperature, and the temperature of the cold junction increases. It is extremely difficult to control the accuracy. Therefore, it is also difficult to accurately detect the zero point of the thermopile output voltage value.
また、サ一モパイルセンサに対して加熱または冷却を瞬間的に変化させた場合、 サ一モパイルセンサにおける温度バランスが急激に崩れて、 熱反動 (ヒ一トショ ック) 現象を発生しやすい。 この熱反動現象を防止するためには、 加熱又は冷却 による外的熱エネルギー負荷に際して、 外的熱エネルギー負荷ゼロの状態からソ フ トスタートさせるとともに、 その変化率を可能な限り一定に維持することが重 要である。 しかるに前述のフィードバック制御においては、 冷却エネルギー量を 変動させながら温度制御を行うため、その変化率を一定に維持することが難しい。 従って、 熱反動現象による制御不能状態、 あるいはサーモパイル出力電圧値の振 れ変動が誘発されやすく、 正確な温度測定を行うことが非常に困難である。 Also, when heating or cooling is instantaneously changed for the thermopile sensor, The temperature balance in the thermopile sensor suddenly breaks down, and the thermal reaction (heat shock) phenomenon easily occurs. In order to prevent this thermal reaction phenomenon, when external heat energy is applied by heating or cooling, the system must be soft-started from the state of zero external heat energy load and the rate of change must be kept as constant as possible. is important. However, in the above-described feedback control, since the temperature control is performed while varying the amount of cooling energy, it is difficult to maintain the rate of change constant. Therefore, an uncontrollable state due to the thermal reaction phenomenon or fluctuations in the thermopile output voltage value are easily induced, and it is very difficult to perform accurate temperature measurement.
一方サ一モパイルセンサの外部にペルチェ素子を取り付け、 これによりサ一モ パイルセンサを冷却する場合には、 サ一モパイルセンサを構成する部品すべてに 冷却エネルギーが伝達されるため、 必要とされる冷却エネルギーが大きくなる。 従って、 そのような冷却エネルギーを供給するための電力が必要となる。 また短 時間に温度測定を行うことが困難となる。 さらに、 多大な冷却エネルギーに相当 する発熱エネルギーが発生して装置自体の温度上昇を招き易いことから、 ペルチ ェ素子を内蔵させた場合と同様に、 温度制御を正確に行うことが困難である。 以上のように、 サ一モパイルセンサにおいては、 冷却を伴う温度制御を行うこ とは好ましいことではない。 そして加熱による温度制御の場合には、 供給する熱 エネルギーを一定の変化率とすることは容易であることから、 正確な温度測定を 行うためには可能な限り加熱による温度制御のみとすることが有利であることが 自明である。 すなわち、 測定ターゲッ トの温度よりも周囲環境温度が高温側にあ り、 サ一モパイル出力電圧値が負の値を示す場合においても、 上述のような冷却 制御を行わずに加熱制御のみで温度測定を行うことが望ましい。  On the other hand, when a Peltier element is mounted outside the thermopile sensor to cool the thermopile sensor, the cooling energy is transmitted to all the components that make up the thermopile sensor. growing. Therefore, electric power for supplying such cooling energy is required. Also, it is difficult to measure the temperature in a short time. Furthermore, it is difficult to accurately perform temperature control, as in the case of incorporating a Peltier element, because heat generated corresponding to a large amount of cooling energy is generated and the temperature of the apparatus itself is easily increased. As described above, in a thermopile sensor, it is not preferable to perform temperature control involving cooling. In the case of temperature control by heating, it is easy to keep the supplied thermal energy at a constant rate of change, so in order to perform accurate temperature measurement, only temperature control by heating should be used as much as possible. It is obvious that it is advantageous. That is, even when the ambient environment temperature is higher than the temperature of the measurement target and the thermopile output voltage value is a negative value, the temperature is controlled only by heating control without performing the cooling control described above. It is desirable to make measurements.
これを可能とする方法として、 本願発明者は先に、 サ一モパイル出力電圧値の 負領域側に電圧閾値を設け、 サ一モパイルの冷接合部を加熱したときのサ一モパ ィル出力電圧値が前記電圧閾値を通過する瞬間において、 冷接合部の温度を検出 する方法を P C T / J P 0 0 / 0 0 8 9 3において出願した。  As a method for making this possible, the inventor of the present invention first sets a voltage threshold value on the negative region side of the thermopile output voltage value, and outputs the thermopile output when the cold junction of the thermopile is heated. A method for detecting the temperature of the cold junction at the moment when the voltage value passes the voltage threshold has been filed in PCT / JP00 / 08993.
このような電圧閾値は、 周囲環境の予測される最高温度と、 測定ターゲッ トの 予測される最低温度とに基づいて適宜決定される。 より具体的には、 サーモパイ ル出力電圧値を入力とする相検出器の基準電圧により設定することができる。 例 えば、 赤外線温度計の一種である耳式体温計において人体鼓膜の温度測定を行う 場合、 周囲環境温度の最高温度値を' 4 0 °C、 測定ターゲッ ト (鼓膜) の最低温度 値を 3 5 °Cと想定し、 これらの温度差 5 °Cに相当するサ一モパイル出力電圧値を 基準電圧値 (電圧閾値) として設定する。 ただしこのとき、 サ一モパイルセンサ 個体間の出力特性誤差、 及び前述の 「感度の温度係数」 に伴う誤差等が存在する ことから、 相検出器の基準電圧値を一定値とすることは好ましくない。 むしろこ れらの誤差を一掃するためには、 相検出器の基準電圧値を装置個体ごとに適宜変 更することが好ましい。 Such a voltage threshold is appropriately determined based on the predicted maximum temperature of the surrounding environment and the predicted minimum temperature of the measurement target. More specifically, it can be set by the reference voltage of the phase detector which receives the thermopile output voltage value. An example For example, when measuring the temperature of the human eardrum using an ear thermometer, which is a type of infrared thermometer, the maximum ambient temperature is 40 ° C and the minimum temperature of the measurement target (tympanic) is 35 ° C. Assuming C, the thermopile output voltage value corresponding to these temperature differences of 5 ° C is set as the reference voltage value (voltage threshold). However, at this time, it is not preferable to set the reference voltage value of the phase detector to a constant value because there is an output characteristic error between the individual thermopile sensors and an error associated with the aforementioned “temperature coefficient of sensitivity”. Rather, in order to eliminate these errors, it is preferable to appropriately change the reference voltage value of the phase detector for each device.
従来、 基準電圧を外部か'ら制御することを可能としたコンパレ一夕は多数存在 する。 例えば特開平 5— 2 9 8 9 4号公報に記載のコンパレ一夕においては、 メ モリ内のァドレス毎に異なる電圧値デ一夕を予め書き込んでおき、 適宜ァドレス を読み出してこれを D /A (デジタル/アナログ) 変換器によりアナログ信号と し、 これをコンパレータの基準電圧値としている。  Conventionally, there are many comparators that can control the reference voltage from outside. For example, in the comparison described in Japanese Patent Application Laid-Open No. 5-298984, a different voltage value data is written in advance for each address in the memory, the address is read out as appropriate, and the D / A is read out. (Digital / analog) The analog signal is converted by a converter, and this is used as the reference voltage for the comparator.
しかしながら、 このような方法では、 メモリに記載した電圧値データの範囲外 において基準電圧値を設定することができない。 またメモリに格納されているデ 一夕がデジタルデ一夕であることに起因して、 基準電圧値の設定精度が十分でな い場合がある。 例えば上述のように、 装置個体毎に基準電圧値を適宜決定しょう とする場合、 最適な基準電圧値に対して最も近似するデジタルデータを選択せざ るをえず、 メモリに格納されているデータ数が十分でない場合には、 その精度が 著しく低下してしまう。 逆に設定時における精度を向上しょうとすると、 格納デ —夕を可能な限り多数としなければならない。  However, with such a method, the reference voltage value cannot be set outside the range of the voltage value data described in the memory. Also, because the data stored in the memory is a digital data, the setting accuracy of the reference voltage value may not be sufficient. For example, as described above, when the reference voltage value is to be determined as appropriate for each device, the digital data closest to the optimum reference voltage value must be selected, and the data stored in the memory must be selected. If the number is not enough, the accuracy will be significantly reduced. Conversely, in order to improve the accuracy at the time of setting, the number of stored data must be as large as possible.
さらに重要なことに、 ここに記載された技術においては、 メモリに格納された 電圧値デ一夕のうち、 装置個体毎に最適な基準電圧値に最も近似するデータがい ずれであるかを決定する指針が得られない。  More importantly, the technique described here determines which of the voltage values stored in the memory is closest to the optimal reference voltage value for each device. No guidance available.
例えば上記の例において、 装置個体毎に、 5 °Cの温度差に相当するサ一モパイ ル出力電圧値を決定することも、 またメモリに格納されたデジタルデ一夕のうち 最適なデ一夕を選択することも不可能である。  For example, in the above example, it is possible to determine a sample output voltage value corresponding to a temperature difference of 5 ° C for each device, or to determine an optimal data output value among digital data stored in a memory. It is also impossible to choose.
本発明は上記従来技術における問題点を解決し、 特に測定夕一ゲット温度より も周囲環境温度が高温である場合においても高精度の温度測定を行うことが可能 な赤外線温度計及びこれを用いた温度測定方法を提供することを目的とする。 ま た、 そのような赤外線温度計に代表される測定装置、 すなわち物理値を電圧値に 変換して測定を行う装置において、 対象物理値の基準値に対応する基準電圧値を 任意かつ精密に設定可能とする相検出器、 及びそのような相検出器における基準 電圧値の設定方法を提供することである。 The present invention solves the above-mentioned problems in the prior art, and in particular, enables high-accuracy temperature measurement even when the ambient environment temperature is higher than the temperature at the time of measurement. It is an object of the present invention to provide a simple infrared thermometer and a temperature measuring method using the same. In measurement devices typified by such infrared thermometers, that is, devices that convert physical values into voltage values and perform measurements, the reference voltage value corresponding to the reference value of the target physical value can be set arbitrarily and precisely. An object of the present invention is to provide a phase detector and a method of setting a reference voltage value in such a phase detector.
発明の開示 以上の課題を解決するために提供する本願第 1の請求項にかかる相検出器は、 物理値を変換して得られる電圧値を入力とする相検出器において、 対象物理値の 基準値に対応する基準電圧値を任意に設定可能であることを特徴とする相検出器 である。 DISCLOSURE OF THE INVENTION The phase detector according to the first claim of the present application, which is provided to solve the above problem, is a phase detector that receives a voltage value obtained by converting a physical value as an input. A phase detector characterized in that a reference voltage value corresponding to a value can be arbitrarily set.
また本願第 2の請求項にかかる相検出器は、 本願第 1の請求項にかかる相検出 器において、 比較手段と、 複数の抵抗器と、 入力スキャン手段とを内蔵し、 前記 入力スキャン手段は、 前記複数の抵抗器を自在に組み合わせ、 これにより得られ る異なる抵抗値を有する複数の組み合わせ抵抗を用いて、 前記比較手段に対して 多段階の電圧値を順次入力スキャンし、 前記比較手段は、 対象物理値の基準値に 対応して入力される第一の入力電圧値と、 前記入カスキヤン手段により入力され る第二の入力電圧値とを比較してそれらの一致点を検出し、 かつ装置外部に設置 された記憶手段において、 前記一致点における組み合わせ抵抗の抵抗値指定ァド レスを記憶することにより前記基準電圧値を決定することを特徴とする相検出器 である。 . ·  The phase detector according to the second claim of the present application is the phase detector according to the first claim of the present application, wherein the input detector includes a comparing unit, a plurality of resistors, and an input scanning unit. The plurality of resistors are freely combined, and a plurality of voltage values are sequentially input and scanned to the comparing means by using a plurality of combined resistors having different resistance values obtained thereby. Comparing a first input voltage value input corresponding to the reference value of the target physical value with a second input voltage value input by the input scanning means, and detecting a coincident point between them; and A phase detector, wherein the reference voltage value is determined by storing a resistance value designating address of a combinational resistor at the coincidence point in a storage unit provided outside the apparatus.·
また本願第 3の請求項にかかる相検出器は、 本願第 1の請求項にかかる相検出 器において、 比較手段と、 複数の抵抗器と、 入力スキャン手段と、 記憶手段とを 内蔵し、 前記入力スキャン手段は、 前記複数の抵抗器を自在に組み合わせ、 これ により得られる異なる抵抗値を有する複数の組み合わせ抵抗を用いて、 前記比較 手段に対して多段階の電圧値を順次入力スキャンし、 前記比較手段は、 対象物理 値の基準値に対応して入力される第一の入力電圧値と、 前記入力スキャン手段に 40 The phase detector according to the third aspect of the present invention is the phase detector according to the first aspect of the present invention, wherein the phase detector includes a comparison unit, a plurality of resistors, an input scanning unit, and a storage unit. The input scanning means freely combines the plurality of resistors, and sequentially scans the comparing means with multi-level voltage values using a plurality of combined resistors having different resistance values obtained by the combination. The comparing means includes: a first input voltage value input corresponding to a reference value of the target physical value; 40
より入力される第二の入力電圧値とを比較してそれらの一致点を検出し、 前記記 憶装置は、 前記一致点における組み合わせ抵抗の抵抗値指定ァドレスを記憶する ことを特徴とする相検出器である。 Comparing the second input voltage value inputted from the second input voltage value with the second input voltage value, and detecting a coincidence point between them, wherein the storage device stores a resistance value designation address of the combinational resistor at the coincidence point. It is a vessel.
また本願第 4の請求項にかかる相検出器は、 本願第 2又は第 3の請求項にかか る相検出器において、 前記複数の抵抗器が、 抵抗アレイを形成してなることを特 徴とする相検出器である。  A phase detector according to a fourth aspect of the present invention is the phase detector according to the second or third aspect of the present invention, wherein the plurality of resistors form a resistor array. Is a phase detector.
本願発明においては、 複数の抵抗器、 より具体的にはこれら抵抗器からなる抵 抗アレイを用い、 多段階の電圧値を相検出器内部の比較手段に対して順次入カス キャンすることにより、 所望の基準電圧値を設定することができる。 例えば今、 N個の抵抗からなる抵抗アレイを想定すると、 これら抵抗の組みあわせにより、 2 N通りの異なる抵抗値を有する組み合わせ抵抗が得られる。 測定対象物理値に おいて、 基準値として設定しょうとする値に対応して得られる電圧値を増幅し、 これを第一の入力電圧値として比較手段に入カスキヤンし、 第二の入力電圧値と して前記組み合わせ抵抗により得られる 2 N通りの電圧値を順次入力する。 比較 手段は、 第一の入力電圧値と第二の入力電圧値とを比較し、 その一致点を検出す る。 一致点における電圧値はすなわち対象物理基準値に対応する電圧値であるか ら、 このときの組み合わせ抵抗を指定するアドレス番号をメモリ等の記憶手段に 記憶しておくことによって所望の基準電圧値を設定することができる。 In the present invention, a plurality of resistors, more specifically, a resistor array composed of these resistors is used, and the multi-stage voltage values are sequentially input and scanned to the comparison means inside the phase detector. A desired reference voltage value can be set. For example, assuming now a resistor array consisting of N resistors, a combination of these resistors will result in 2 N different combinations of resistors having different resistance values. In the physical value to be measured, the voltage value obtained corresponding to the value to be set as the reference value is amplified, and this is input to the comparison means as the first input voltage value, and the second input voltage value As a result, 2 N kinds of voltage values obtained by the combination resistors are sequentially input. The comparing means compares the first input voltage value with the second input voltage value and detects a coincidence point. Since the voltage value at the coincidence point is a voltage value corresponding to the target physical reference value, the desired reference voltage value can be obtained by storing the address number designating the combination resistance at this time in a storage means such as a memory. Can be set.
抵抗アレイに含まれる抵抗の数 Nは、 多くなるほど基準電圧値の設定精度が高 くなる。 また、 これら抵抗の組み合わせ、 及びそれにより得られる多段階の電圧 値の入力スキャンは、 ドライブ I C等により自動的に行われることが望ましい。 この場合、 ドライブ I Cの制御は情報処理装置により駆動される。 また、 記憶手 段として、 前記情報処理装置に内蔵された R A M、 あるいは E E P R O M等のメ モリが用いられる。 あるいは、 相検出器自体に R AMや E E P R O M等のメモリ を内蔵ざせてもよい。 この場合、 相検出器単体で基準電圧値を設定することが可 能となる点において好ましい。  As the number N of resistors included in the resistor array increases, the setting accuracy of the reference voltage value increases. Further, it is desirable that the input scan of the combination of these resistors and the multi-step voltage value obtained by the combination be automatically performed by the drive IC or the like. In this case, the control of the drive IC is driven by the information processing device. Further, as the storage means, a memory such as a RAM or an EPROM built in the information processing apparatus is used. Alternatively, a memory such as RAM or EPROM may be built in the phase detector itself. This case is preferable in that the reference voltage value can be set by the phase detector alone.
また本願第 5の請求項にかかる赤外線温度計は、 サ一モパイルセンサの冷接合 部領域温度を制御して、 そのときのサ一モパイル出力電圧値の基準電圧値に対す る相反転を検出することにより、 測定夕一ゲッ トの温度測定を行う赤外線温度計 340 The infrared thermometer according to the fifth aspect of the present invention controls the temperature of the cold junction region of the thermopile sensor and detects a phase inversion of the thermopile output voltage value at that time with respect to the reference voltage value. Infrared thermometer that measures the temperature of the target 340
において、 前記基準電圧値が、 電圧値の負領域に予め設定されてなることを特徴 とする赤外線温度計である。 5. The infrared thermometer according to claim 1, wherein the reference voltage value is preset in a negative voltage value region.
かかる構成とし、 発熱素子系統によつ.て冷接合部領域を強制的かつ一方的に加 熱し、 その温度を緩やかにかつ一定勾配で変化させ、 前記基準電圧値をその一定 勾配で通過せしめることにより、 周囲環境温度の変化に対する熱応答速度の遅れ が解消される。 また 「感度の温度係数」 に関する問題が一切生じないという効果 がある。 また冷接合部領域の温度は、 サ一モパイル出力電圧を基準電圧値に一致 させるようにフィ一ドパック制御されるのではなく、 強制的に一定勾配で通過せ しめるように制御する。 これにより、 測定時間を大幅に短縮することができる。 さらに重要なことには、 測定夕一ゲッ ト温度よりも周囲環境温度が高温である 場合、 例えば耳式体温計を用いた温度測定において鼓膜温度が 3 6 °Cであるのに 対して周囲環境温度が 4 0 °Cであるような場合でも測定が可能となる。 測定夕一 ゲット温度よりも周囲環境温度が高温となっている場合、 冷接合部領域を何らか の冷却手段例えばペルチェ素子等により冷却すると、 種々の問題が生じることは 既に述べたとおりである。  With this configuration, the cold junction region is forcibly and unilaterally heated by the heating element system, the temperature is changed gradually and at a constant gradient, and the reference voltage value is passed at the constant gradient. This eliminates the delay in the thermal response speed due to changes in the ambient temperature. In addition, there is an effect that no problem occurs regarding the “temperature coefficient of sensitivity”. In addition, the temperature of the cold junction region is controlled not to be fed-pack controlled so that the thermopile output voltage matches the reference voltage value, but to be forced to pass through at a constant gradient. As a result, the measurement time can be significantly reduced. More importantly, if the ambient temperature is higher than the measurement target temperature, for example, when the eardrum temperature is 36 ° C in the temperature measurement using an ear thermometer, the Can be measured even when the temperature is 40 ° C. As described above, when the ambient temperature is higher than the measurement target temperature and the cold junction area is cooled by some cooling means, such as a Peltier element, as described above.
すなわち、 例えばサ一モパイルセンサ内部に冷却手段としてペルチェ素子を内 蔵させる場合、 該ペルチェ素子冷却部の反対側には冷却エネルギーと同等の発熱 エネルギが発生するため、 この熱をサーモパイル自体のヒートシンクを通じてサ —モパイルセンサ外部に放熱させる必要がある。 しかしながらサ一モパイルセン サは構造上、 ヒートシンクが冷接合部領域と熱回路として接続されているため、 前記発熱作用の一部がヒ一トシンクの熱容量に基づいた熱伝達時間後に、 冷接合 部領域へ温度フイードパックされる。 この温度還元作用によって冷接合部領域が 温度上昇されるため、 ここでさらにペルチェ素子による冷却エネルギーを調整す る必要が生じる。 しかも前記温度還元は周囲環境温度との関係に応じてその還元 量が変化するので、 サ一モパイル出力の絶対値変化を検出しながらペルチェ素子 冷却エネルギを調整する、 いわゆる 「クローズドル一プフィードパック制御 j が 不可欠となる。  That is, for example, when a Peltier element is incorporated as a cooling means inside the thermopile sensor, heat generated equivalent to the cooling energy is generated on the opposite side of the Peltier element cooling section. —It is necessary to radiate heat outside the mopile sensor. However, since the thermopile sensor has a structure in which the heat sink is connected to the cold junction region as a thermal circuit, part of the heat generation action is transferred to the cold junction region after the heat transfer time based on the heat capacity of the heat sink. Temperature feed packed. Since the temperature of the cold junction region rises due to this temperature reducing action, it is necessary to further adjust the cooling energy by the Peltier element. In addition, since the amount of the temperature reduction changes in accordance with the relationship with the ambient temperature, the so-called “closed-lipped feed pack” adjusts the cooling energy of the Peltier element while detecting the absolute value change of the thermopile output. Control j is indispensable.
サ一モパイルは、 冷接合部と温接合部との温度差に基づいた温度差バランスに よって発生する相対的出力を自ら起電力として発生するセンサである。 したがつ てこの温度差が均衡したときのサ一モパイル出力に対して加熱又は冷却を加え、 敢えて温度パランスを崩す場合には、 熱反動 (ヒートショック) を与えないよう にするため、 外的な温度変化エネルギを零から始まる一定変化率を有するものと する必要がある。 すなわち前述の 「クロースドフィードパック制御」 においても、 冷却量を一定の変化率となるように制御することが必要となる。 この場合、 フィ 一ドバック系統の時間遅れが温度設定精度を決定する重要な要因となるが、 サ一 モパイルはヒ一トシンクの大きな熱容量に基づく熱伝達遅れを有するので、 結果 的にフィ一ドバックに大きな時間遅れを生じ、 冷却量を一定変化率に制御するこ とは非常に困難なものとなってしまう。 A thermopile is a sensor that generates a relative output generated by a temperature difference balance based on a temperature difference between a cold junction and a hot junction as an electromotive force. According to When heating or cooling is applied to the thermopile output when the temperature difference is balanced and the temperature balance is intentionally broken, an external temperature change is performed to prevent heat reaction (heat shock). The energy must have a constant rate of change starting from zero. That is, in the above-mentioned “closed feed pack control”, it is necessary to control the cooling amount so as to have a constant rate of change. In this case, the time delay of the feedback system is an important factor in determining the temperature setting accuracy.However, since the thermopile has a heat transfer delay based on the large heat capacity of the heat sink, it results in feedback. A large time delay occurs, and it is very difficult to control the cooling rate at a constant rate.
またサ一モパイル外部に冷却装置を設置した場合、 サ一モパイルの構成部品す ぺてに熱伝達されるように、 大きな熱エネルギを付与する必要があり、 短時間で の温度測定が困難となる。 また例えば耳式体温計等小型の装置においては、 内蔵 電池だけでそのエネルギをまかなえないという問題をも有する。  In addition, when a cooling device is installed outside the thermopile, it is necessary to apply a large amount of heat energy so that heat is transferred to all the components of the thermopile, and it is difficult to measure the temperature in a short time. . In addition, in a small device such as an ear thermometer, there is a problem that the energy cannot be covered only by the built-in battery.
さらに、 冷却に相当する発熱が装置自体の温度上昇を招き、 冷却作用を妨げて しまうが、 このような作用は周囲環境温度により異なるため、 サーモパイルの冷 却作用に対する不規則外乱となる。 このような不規則外乱に対して、 冷却エネル ギの増減をリアルタイムでフィ一ドバック制御することは不可能であり、 結果と してサ一モパイル温度は冷却制御目標温度に対してオーバーシユートとアンダー シュートを繰り返すチヤタリング状態を呈する。サ一モパイル温度の測温素子(例 えばサーミス夕) は元来サーモパイル出力に対して大きな応答速度の遅れを有し ており、 このようなチヤタ リング状態においてはサーモパイル出力の零点を検出 することが不可能である。 あるいはこの状態において敢えてサ一モパイル出力の 零点を検出しょうとすると、 サ一ミス夕の応答速度の遅れにより、 実際の測定目 標温度に対して大きな誤差を生じる結果となる。  Furthermore, the heat generated by the cooling causes the temperature of the device itself to rise and hinders the cooling operation. However, since such an operation differs depending on the ambient temperature, it becomes an irregular disturbance to the cooling operation of the thermopile. In response to such irregular disturbances, it is impossible to perform feedback control of the increase or decrease of the cooling energy in real time, and as a result, the temperature of the thermopile becomes overshooting with respect to the target temperature of the cooling control. It exhibits a chattering state that repeatedly undershoots. A thermopile temperature measuring element (for example, a thermopile) originally has a large response speed delay with respect to the thermopile output, and in such a chattering state, it is impossible to detect the zero point of the thermopile output. Impossible. Or, in this state, if you try to detect the zero point of the thermopile output, a large error will occur with respect to the actual measured target temperature due to the delay of the response speed in the summer.
そこで、 予め最低測定ターゲッ ト温度と最高周囲環境温度とを考慮して、 基準 となる電圧閾値を負領域に設定し、 この基準電圧値 (電圧閾値) に対するサ一モ パイル出力の相反転を検出すれば、 冷接合部領域を加熱制御することにより測定 ターゲッ ト温度を測定することが可能となり、 冷却手段は一切不要となる。 この ような基準電圧値を設定するための具体的手段としては、 例えば請求項 1乃至 2 T JP00/09340 Therefore, considering the minimum measurement target temperature and the maximum ambient temperature in advance, the reference voltage threshold is set in the negative region, and the phase inversion of the thermopile output with respect to this reference voltage (voltage threshold) is detected. Then, the target temperature can be measured by controlling the heating of the cold junction area, and no cooling means is required. Specific means for setting such a reference voltage value include, for example, claims 1 and 2 T JP00 / 09340
に記載の相検出器を使用することが望ましい。 It is desirable to use the phase detector described in (1).
かかる構成とすることにより、 測定時間の短縮と測定精度の向上とを同時に実 現することが可能となる。 また、 周囲環境温度によらず容易かつ正確な測定を行 うことが可能となる。  With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy. In addition, easy and accurate measurements can be performed regardless of the ambient temperature.
また本願第 6の請求項にかかる赤外線温度計は、 本願第 5の請求項にかかる赤 外線温度計において、 比較手段と、 複数の抵抗器と、 入力スキャン手段と、 記憶 手段とを有し、前記入カスキヤン手段は、前記複数の抵抗器を自在に組み合わせ、 これにより得られる異なる抵抗値を有する複数の組み合わせ抵抗を用いて、 前記 比較手段に対して多段階の電圧値を順次入力スキャンし、 前記比較手段は、 基準 となる温度値に対応して入力される第一の入力電圧値と、 前記入カスキヤン手段 により入力される第二の入力電圧値とを比較して、 その一致点を検出し、 前記記 憶手段は、 前記比較手段により検出された一致点における組み合わせ抵抗の抵抗 値指定ァドレスを記憶することにより前記基準電圧値を決定することを特徴とす る赤外線温度計である。  An infrared thermometer according to a sixth aspect of the present invention is the infrared thermometer according to the fifth aspect of the present invention, further comprising: comparing means, a plurality of resistors, input scanning means, and storage means, The input scanning unit is configured to freely combine the plurality of resistors, and by using a plurality of combined resistors having different resistance values obtained thereby, sequentially input scans of multi-stage voltage values to the comparing unit, The comparing means compares a first input voltage value input corresponding to a reference temperature value with a second input voltage value input by the input scanning means, and detects a coincidence point thereof. The storage means determines the reference voltage value by storing a resistance designation address of a combinational resistor at a coincidence point detected by the comparison means. It is a line thermometer.
また本願第 7の請求項にかかる赤外線温度計は、 本願第 6の請求項にかかる赤 外線温度計において、 サーモパイル出力電圧値の基準電圧値に対する相反転を検 出するための相検出器を備え、 かつ前記相検出器が、 少なく とも前記比較手段と 複数の抵抗器と入カスキヤン手段とを内蔵してなることを特徴とする赤外線温度 計である。  The infrared thermometer according to the seventh aspect of the present invention is the infrared thermometer according to the sixth aspect, further comprising a phase detector for detecting phase inversion of the thermopile output voltage value with respect to the reference voltage value. And an infrared thermometer, wherein the phase detector includes at least the comparing means, a plurality of resistors, and an input scanning means.
また本願第 8の請求項にかかる赤外線温度計は、 本願第 7の請求項にかかる赤 外線温度計において、 前記相検出器が記憶装置を内蔵してなることを特徴とする 赤外線温度計である。  An infrared thermometer according to an eighth aspect of the present invention is the infrared thermometer according to the seventh aspect, wherein the phase detector has a built-in storage device. .
また本願第 9の請求項にかかる赤外線温度計は、 本願第 6乃至第 8のいずれか 一項の請求項にかかる赤外線温度計において、 前記複数の抵抗器が、 抵抗アレイ を形成してなることを特徴とする赤外線温度計である。  An infrared thermometer according to a ninth aspect of the present invention is the infrared thermometer according to any one of the sixth to eighth aspects, wherein the plurality of resistors form a resistor array. Is an infrared thermometer.
かかる構成とすることにより、所定温度に対応する基準電圧値を正確に設定し、 周囲温度によらず高精度の温度測定を行うことができる。  With this configuration, it is possible to accurately set the reference voltage value corresponding to the predetermined temperature, and perform highly accurate temperature measurement regardless of the ambient temperature.
例えば、 耳式体温計において、 測定許容最高周囲温度を 4 0 °C、 測定夕一ゲッ ト (鼓膜) 最低温度を 3 5 °Cと予測し、 これらの差 (マイナス 5 . 0 d e g ) に 対応する電圧値を、 サ一モパイル出力電圧値の負領域側に設定する。 For example, in an ear thermometer, the maximum permissible ambient temperature for measurement is estimated to be 40 ° C, and the minimum temperature for the measurement (eardrum) at night is expected to be 35 ° C, and the difference (minus 5.0 deg) The corresponding voltage value is set on the negative side of the thermopile output voltage value.
まず、 周囲環境温度に対して黒体炉を 5 . 0 d e g低い温度に設定する。 この 黒体炉に対して出力されるサ一モパイル出力電圧を規定倍率で増幅し、 相検出器 内部の比較手段に対して第一の入力電圧値として入力する。 次に N個の抵抗から なる抵抗アレイにおいて、 これらの抵抗を組みあわせて得られる組み合わせ抵抗 により得られる 2 N通りの多段階の電圧値を、 相検出器内部の比較手段に対する 第二の入力電圧値として順次入力スキャンする。 第二の入力電圧値と第一の入力 電圧値との大小関係が反転すると、 相検出器内部の比較手段はこれを検出する。 そのときの組み合わせ抵抗の抵抗値指定ァドレスが、 相検出器外部に設置された あるいは相検出器内蔵のメモリ等記憶手段において記憶されることにより、 前記 基準電圧値が設定される。 First, the temperature of the blackbody furnace is set to 5.0 deg lower than the ambient temperature. The thermopile output voltage output to the black body furnace is amplified at a specified magnification and input to a comparison means inside the phase detector as a first input voltage value. Next, in a resistor array composed of N resistors, 2N multi-step voltage values obtained by a combination resistor obtained by combining these resistors are used as the second input voltage to the comparison means inside the phase detector. Input scanning is performed sequentially as a value. When the magnitude relationship between the second input voltage value and the first input voltage value is reversed, the comparison means inside the phase detector detects this. The reference voltage value is set by storing the resistance value designation address of the combined resistor at that time in a storage unit such as a memory installed outside the phase detector or built in the phase detector.
例えば今、 抵抗アレイが 1 2個の抵抗により構成されるものとすれば、 組み合 わせ抵抗によって 2 1 2すなわち 4 0 9 6段階の電圧値を得る。従って、 この抵抗 アレイを用いると、 5 . 0 Z 4 0 9 6すなわち 0 . 0 0 1 2 d e gの温度精度に おいて、 所望する基準温度値 (マイナス 5 . 0 d e g ) に対応する基準電圧値を 設定することができる。 For example now it is assumed that resistor array is composed of one of two resistors, to obtain a 2 1 2 That voltage value of 4 0 9 6 stages by combination resistance. Therefore, when this resistor array is used, the reference voltage value corresponding to the desired reference temperature value (minus 5.0 deg) can be obtained at a temperature accuracy of 5.0 Z 4096, that is, 0.0012 deg. Can be set.
さて、 出荷段階において個々の製品に対してこのようにして基準電圧値を設定 すると、 サーモパイル個々の特性に基づく出力特性誤差、 サーモパイルの 「感度 の温度係数」 による誤差、 及び増幅器を含めて赤外線温度計を構成するその他の 部品個々に起因する出力特性誤差が総合されて一括校正される。 すなわち、 この ようにして設定された基準電圧値においては、 あたかも従来のゼロ点のごとく、 「出力誤差」 や 「感度の温度係数」 が存在しない。 従って、 サーモパイルの冷接 合部領域を加熱制御し、 サ一モパイル出力電圧が基準電圧値を一定勾配において 通過するようにして、 このときのサ一モパイル出力電圧値の基準電圧値に対する 相反転を検出し、 この相反転に同期して冷接合部領域の温度検出を行うことによ り、 測定夕ーゲッ トの温度測定を高精度に行うことができる。  Now, when the reference voltage value is set for each product in the shipping stage in this way, the output characteristic error based on the individual characteristics of the thermopile, the error due to the "temperature coefficient of sensitivity" of the thermopile, and the infrared temperature including the amplifier The output characteristic errors caused by each of the other components that make up the meter are integrated and calibrated collectively. That is, in the reference voltage value set in this way, there is no “output error” or “temperature coefficient of sensitivity” as in the conventional zero point. Therefore, the cold junction area of the thermopile is controlled to be heated so that the thermopile output voltage passes the reference voltage value at a constant gradient, and the phase inversion of the thermopile output voltage value with respect to the reference voltage value at this time is performed. By detecting the temperature and detecting the temperature of the cold junction region in synchronization with the phase inversion, the temperature of the measurement target can be measured with high accuracy.
また本願第 1 0の請求項にかかる赤外線温度計は、 本願第 9の請求項にかかる 赤外線温度計において、 冷接合部領域を加熱するための発熱素子系統と、 冷接合 部領域の温度を測定するための冷接合部測温素子系統とを有し、 かつ前記発熱素 子系統と、 前記冷接合部測温素子系統のうち少なく ともいずれか一方がサ一モパ ィル出力と熱応答速度において同期していることを特徴とする赤外線温度計であ る。 The infrared thermometer according to the tenth aspect of the present invention is the infrared thermometer according to the ninth aspect, wherein the heating element system for heating the cold junction region and the temperature of the cold junction region are measured. And a cold junction temperature measuring element system for performing An infrared thermometer characterized in that at least one of the sub-system and the cold junction temperature measuring element system is synchronized in thermo-modal output and thermal response speed.
また本願第 1 1の請求項にかかる赤外線温度計は、 本願第 1 0の請求項にかか る赤外線温度計において、 前記発熱素子系統、 前記冷接合部測温素子系統、 及び 前記冷接合部領域の三要素が、 お互いに熱直結した構造を有することを特徴とす る赤外線温度計である。  The infrared thermometer according to claim 11 of the present application is the infrared thermometer according to claim 10 of the present application, wherein the heating element system, the cold junction temperature measuring element system, and the cold junction section. The infrared thermometer is characterized in that the three elements of the region have a structure directly connected to each other.
かかる構成とし、 前記三要素間の温度整合を図ることによって、 冷接合部測温 素子系統の熱応答速度をサ一モパイルセンサの出力に対して可及的に同期させる ことが可能になる。  With such a configuration, by performing temperature matching among the three elements, it becomes possible to synchronize the thermal response speed of the cold junction temperature measuring element system as much as possible with the output of the thermopile sensor.
測定ターゲッ トの温度が周囲環境温度よりも高温である場合には、 さらに冷接 合部領域及び冷接合部測温素子を発熱素子系統によって強制的に一定のバイァス 温度まで予め引き上げておくことが望ましい。 このようにすることで、 温度測定 時における冷接合部測温素子の抵抗変化は、 バイアス温度から上記基準温度値ま での温度上昇分のみとなる。 従ってそのの熱応答速度はきわめて速くなり、 冷接 合部の温度上昇に対して可及的に同期させることができる。  If the temperature of the measurement target is higher than the ambient environment temperature, the temperature of the cold junction area and the cold junction temperature measuring element should be forcibly raised to a certain bias temperature in advance by the heating element system. desirable. By doing so, the resistance change of the cold junction temperature measuring element at the time of temperature measurement is only the temperature rise from the bias temperature to the reference temperature value. Therefore, its thermal response speed becomes extremely fast, and it can be synchronized as much as possible with the temperature rise of the cold junction.
なお周囲環境温度が測定夕一ゲッ トの温度よりも高温である場合においては、 サ一モパイル冷接合部領域の温度が予め周囲璟境温度まで上昇しているため、 特 にバイァス温度とする必要はない。  If the ambient temperature is higher than the temperature of the measurement target, the temperature of the cold junction area of the thermopile has already risen to the ambient temperature. There is no.
また本願第 1 2の請求項にかかる赤外線温度計は、 本願第 1 1の請求項にかか る赤外線温度計において、 前記発熱素子系統により冷接合部領域を一方的かつ強 制的に加熱したときのサ一モパイル出力の電圧値が、 前記基準電圧値に対して相 反転したか否かを検出する検出器と、 前記相反転の有無を 2ビッ トデジタル信号 に変換する変換器とを有し、 このデジタル信号に同期して冷接合部測温素子温度 を検出することを特徴とする赤外線温度計である。  The infrared thermometer according to claim 12 of the present application is the infrared thermometer according to claim 11, wherein the cold junction region is unilaterally and forcibly heated by the heating element system. A detector that detects whether the voltage value of the thermopile output at this time is inverted with respect to the reference voltage value, and a converter that converts the presence or absence of the phase inversion into a 2-bit digital signal. The infrared thermometer detects the temperature of the cold junction temperature measuring element in synchronization with the digital signal.
かかる構成とすることにより、 測定時間の短縮と測定精度の向上とを同時に実 現することが可能となる。 また、 周囲環境温度によらず容易かつ正確な測定を行 うことが可能となる。  With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy. In addition, easy and accurate measurements can be performed regardless of the ambient temperature.
また本願第 1 3の請求項にかかる赤外線温度計は、 本願第 1 2の請求項にかか る赤外線温度計において、 前記冷接合部領域に自己制御型正温度係数特性を含む 抵抗体を組み込んだ構造を有することを特徴とする赤外線温度計である。 The infrared thermometer according to claim 13 of the present application is the same as the infrared thermometer according to claim 12 of the present application. An infrared thermometer having a structure in which a resistor having a self-controlling positive temperature coefficient characteristic is incorporated in the cold junction region.
また本願第 1 4の請求項にかかる赤外線温度計は、 本願第 1 3の請求項にかか る赤外線温度計において、 前記発熱素子系統と冷接合部測温素子との少なくとも いずれか一方に、 自己制御型正温度係数特性を含む抵抗体を配してなることを特 徴とする赤外線温度計である。  The infrared thermometer according to claim 14 of the present application is the infrared thermometer according to claim 13 of the present application, wherein at least one of the heating element system and the cold junction temperature measuring element includes: This infrared thermometer is characterized by a resistor with self-controlling positive temperature coefficient characteristics.
自己制御型正温度係数特性を含む抵抗体は、 通電によつて発熱体の温度が上昇 するに伴い発熱体の電気抵抗が増大する性質を有しているため、 電流が抑制され て飽和自己安定温度の一定温度に維持される特徴を有する。  Resistors with a self-controlling positive temperature coefficient characteristic have the property that the electrical resistance of the heating element increases as the temperature of the heating element rises due to energization. It has the feature of being maintained at a constant temperature.
従って、 これを用いることにより、 安全かつ容易にサ一モパイルセンサの冷接 合部領域の温度を制御することができる。  Therefore, by using this, the temperature of the cold junction area of the thermopile sensor can be controlled safely and easily.
また本願第 1 5の請求項にかかる赤外線温度計は、 本願第 1 4の請求項にかか る赤外線温度計において、 前記発熱素子系統が、 発熱して一定温度に維持される 定常温度系統と、 一定の温度範囲において温度可変とする可変温度系統とからな ることを特徴とする赤外線温度計である。  An infrared thermometer according to a fifteenth aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the present invention, wherein the heating element system generates heat and maintains a constant temperature. An infrared thermometer comprising a variable temperature system that varies the temperature within a certain temperature range.
かかる構成とすることにより、 定常温度系統によって予め冷接合部領域及び冷 接合部測温素子を一定のパイァス温度に加熱し、 測定時間の短縮を図ることがで きる。 さらに、 冷接合部測温素子の抵抗変化は、 測定夕一ゲヅトからの赤外線ェ ネルギ一による温接合部領域の温度上昇分だけとなるのでその熱応答速度は極め て早くなり、冷接合部領域の温度変化に対して可及的に同期させることができる。 With such a configuration, the cold junction region and the cold junction temperature measuring element can be heated in advance to a constant Piase temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement gate, its thermal response speed is extremely fast, and the cold junction area Can be synchronized as much as possible with respect to a temperature change.
—方可変温度系統により冷接合部領域の温度を一方的かつ強制的に変化させる ことにより、 周囲環境温度によらず高精度な温度測定を短時間において行うこと ができる。 By unilaterally and forcibly changing the temperature of the cold junction area using a variable temperature system, highly accurate temperature measurement can be performed in a short time regardless of the ambient environment temperature.
また本願第 1 6の請求項にかかる赤外線温度計は、 本願第 1 5の請求項にかか る赤外線温度計において、 前記発熱素子系統として、 異なる自 3飽和安定温度を 有する 2種類の自己制御型正温度係数特性を含む抵抗体を配置してなることを特 徴とする赤外線温度計である。  The infrared thermometer according to the sixteenth aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the present invention, wherein the heating element system has two kinds of self-controls having different self-saturation stable temperatures. This is an infrared thermometer characterized by arranging a resistor having a positive temperature coefficient characteristic.
かかる構成とすることにより、 例えば耳式体温計において、 自己飽和安定温度 が鼓膜温度付近 (例えば 3 4 °C ) である自己制御型正温度係数特性を含む抵抗体 により冷接合部領域及び冷接合部測温素子を予め一定温度のバイアス温度 ( 3 4 °C ) に加熱し、 一方自己飽和安定温度が鼓膜温度よりも高温 (例えば 5 0 °C ) である自己制御型正温度係数特性を含む抵抗体を一定温度範囲内 (例えば 3 4〜 4 2 °C ) において可変加熱することにより鼓膜の温度を測定することが可能とな る。 この際に、 自己飽和安定温度が鼓膜温度付近である自 3制御型正温度係数特 性を含む抵抗体は、周囲の温度変化にかかわらず自己飽和安定温度の一定温度( 3 4 "C ) にみずから維持されるので、 サ一モパイルセンサの過熱事故が防がれる。 また、 自己安定飽和温度が鼓膜温度よりも高温である自己制御型正温度係数特性 を含む抵抗体は可変加熱されるが、 たとえ誤作動や故障により可変加熱の温度制 御が不可能になったとしても自己飽和安定温度 ( 5 0 °C ) 以上には加熱されない ため、 赤外線温度計の過熱事故が防止される。 With such a configuration, for example, in an ear thermometer, a resistor including a self-control type positive temperature coefficient characteristic in which the self-saturation stable temperature is around the eardrum temperature (for example, 34 ° C) In this way, the cold junction region and the cold junction temperature measuring element are preliminarily heated to a constant bias temperature (34 ° C), while the self-saturation stable temperature is higher than the eardrum temperature (for example, 50 ° C). The temperature of the eardrum can be measured by variably heating the resistor including the controlled positive temperature coefficient characteristic within a certain temperature range (for example, 34 to 42 ° C). At this time, the resistor including the self-controlling positive temperature coefficient characteristic whose self-saturation stable temperature is near the eardrum temperature is maintained at a constant self-saturation stable temperature (34 "C) regardless of the ambient temperature change. Since the sensor itself is maintained, the overheat accident of the thermopile sensor is prevented, and the resistor including the self-regulating positive temperature coefficient characteristic whose self-stable saturation temperature is higher than the eardrum temperature is variable-heated. Even if the temperature control of variable heating becomes impossible due to malfunction or failure, heating is not performed above the self-saturation stable temperature (50 ° C), thereby preventing an infrared thermometer from overheating.
また本願第 1 7の請求項にかかる赤外線温度計は、 本願第 1 4の請求項にかか る赤外線温度計において、 冷接合部領域と熱的に直結され、 かつ電気的に素子間 絶縁された複数の同一抵抗の自 3制御型正温度係数特性を含む抵抗体からなる系 統を、 前記冷接合部領域に対して複数系統組込んだ構造を有することを特徴とす る赤外線温度計である。  An infrared thermometer according to a seventeenth aspect of the present invention is the infrared thermometer according to the fourteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between elements. An infrared thermometer having a structure in which a plurality of resistors each including a self-controlling positive temperature coefficient characteristic having the same resistance and having a plurality of resistors are incorporated in the cold junction region. is there.
また本願第 1 8の請求項にかかる赤外線温度計は、 本願第 1 4の請求項にかか る赤外線温度計において、 冷接合部領域と熱的に直結され、 かつ電気的に素子間 絶縁された異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個からなる対 を、 前記冷接合部領域に対して一対以上組込んだ構造を有することを特徴とする 赤外線温度計である。  The infrared thermometer according to the eighteenth aspect of the present invention is the infrared thermometer according to the fourteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between elements. An infrared thermometer having a structure in which two or more pairs of resistors each having a self-control type positive temperature coefficient characteristic of a different resistance are incorporated in the cold junction region.
また本願第 1 9の請求項にかかる赤外線温度計は、 本願第 1 4の請求項にかか る赤外線温度計において、 冷接合部領域と熱的に直結され、 かつ電気的に素子間 絶縁された異なる抵抗の自 3制御型正温度係数特性を含む抵抗体 2個からなる対 を複数対組み合わせてなる系統を、 前記冷接合部領域に対して複数系統組込んだ 構造を有することを特徴とする赤外線温度計である。  The infrared thermometer according to the nineteenth aspect of the present invention is the infrared thermometer according to the fourteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between elements. In addition, a plurality of pairs of two pairs of resistors each including a self-controlling positive temperature coefficient characteristic of a different resistance are combined into the cold junction region, and a plurality of pairs are incorporated into the cold junction region. Infrared thermometer.
また本願第 2 0の請求項にかかる赤外線温度計は、 本願第 1 5の請求項にかか る赤外線温度計において、 冷接合部領域と熱的に直結され、 かつ電気的に素子間 絶縁された複数の同一抵抗の自己制御型正温度係数特性を含む抵抗体からなる系 40 The infrared thermometer according to the twenty-fifth aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and is electrically insulated between the elements. System consisting of multiple resistors with self-controlling positive temperature coefficient characteristics of the same resistance 40
統を、 前記冷接合部領域に対して複数系統組込んだ構造を有することを特徴とす る赤外線温度計である。 The infrared thermometer has a structure in which a plurality of systems are incorporated into the cold junction region.
また本願第 2 1の請求項にかかる赤外線温度計は、 本願第 1 5の請求項にかか る赤外線温度計において、 冷接合部領域と熱的に直結され、 かつ電気的に素子間 絶縁された異なる抵抗の自 3制御型正温度係数特性を含む抵抗体 2個からなる対 を、 前記冷接合部領域に対して一対以上組込んだ構造を有することを特徴とする 赤外線温度計である。  The infrared thermometer according to the twenty-first aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between elements. An infrared thermometer having a structure in which two or more pairs of two resistors each having a self-controlling positive temperature coefficient characteristic of a different resistance are incorporated in the cold junction region.
また本願第 2 2の請求項にかかる赤外線温度計は、 本願第 1 5の請求項にかか る赤外線温度計において、 冷接合部領域と熱的に直結され、 かつ電気的に素子間 絶縁された異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個からなる対 を複数対組み合わせてなる系統を、 前記冷接合部領域に対して複数系統組込んだ 構造を有することを特徴とする赤外線温度計である。  An infrared thermometer according to a twenty-second aspect of the present invention is the infrared thermometer according to the fifteenth aspect of the present invention, wherein the infrared thermometer is thermally directly connected to the cold junction region and electrically insulated between the elements. A plurality of pairs of two resistors each including a self-controlling positive temperature coefficient characteristic of a different resistance, and a plurality of pairs combined with each other in the cold junction region. It is an infrared thermometer.
上記本願第 1 7乃至第 2 2の請求項にかかる赤外線温度計において、 自 3制御 型正温度係数特性を含む抵抗体を複数系統あるいは複数対配することにより、 自 己制御型正温度係数特性を含む抵抗体をその系統ごとに加熱し、 きめ細かい温度 制御を可能とする。  In the infrared thermometer according to the seventeenth to twenty-second claims of the present application, by arranging a plurality of resistors or a plurality of pairs including a self-control type positive temperature coefficient characteristic, the self-control type positive temperature coefficient characteristic can be obtained. Is heated for each system to enable fine temperature control.
また上記発熱系統および冷接合部測温素子系統の自己制御型正温度係数特性を 含む抵抗体はいずれも、 一定温度以上に過熱されることがなく、 安全である。 また本願第 2 3の請求項にかかる赤外線温度計は、 本願第 1 3の請求項にかか る赤外線温度計において、 前記自己制御型正温度係数特性を含む抵抗体が、 基板 表面に蒸着により組成されてなることを特徴とする赤外線温度計である。  Also, the resistors including the self-controlling positive temperature coefficient characteristic of the heating system and the cold junction temperature measuring element system are all safe without being overheated above a certain temperature. Further, the infrared thermometer according to claim 23 of the present application is the infrared thermometer according to claim 13 of the present application, wherein the resistor including the self-controlling positive temperature coefficient characteristic is deposited on a substrate surface by vapor deposition. An infrared thermometer characterized by being composed.
赤外線温度計の製造過程において、 サ一モパイルセンサ部はシリコンペレツ ト あるいはシリコンチップあるいはシリコンウェハの表面上に、 半導体積層技術を 用いて形成されることが一般的である。 従って、 自己制御型正温度係数特性を含 む抵抗体を形成する際にもこのような半導体積層技術の一手法である蒸着技術を 用いて形成することにより、 その集積度を上げ、 しかもこれを効率的に作製する ことが可能となる。 また、 自己制御型正温度係数特性を含む抵抗体とサーモパイ ルの冷接合部領域とを構造的に熱直結させることが容易である。  In the process of manufacturing an infrared thermometer, a thermopile sensor is generally formed on the surface of a silicon pellet, a silicon chip, or a silicon wafer by using a semiconductor lamination technique. Therefore, when forming a resistor having a self-controlling positive temperature coefficient characteristic, it is possible to increase the degree of integration by forming the resistor using a vapor deposition technique, which is one method of the semiconductor lamination technique. It becomes possible to produce it efficiently. Further, it is easy to structurally and thermally connect the resistor including the self-control type positive temperature coefficient characteristic to the cold junction region of the thermopile.
また本願第 2 4の請求項にかかる赤外線温度計は、 本願第 1 3の請求項にかか 340 The infrared thermometer according to claim 24 of the present application is the same as the claim 13 of the present application. 340
る赤外線温度計において、 前記自 3制御型正温度係数特性を含む抵抗体が、 基板 表面にペースト焼き付けにより形成されてなることを特徴とする赤外線温度計で ある。 In the infrared thermometer, the resistor having the self-controlling positive temperature coefficient characteristic is formed by baking a paste on the surface of the substrate.
上記のようにプリント基板等の基板表面に自己制御型正温度係数特性を含む抵 抗体をペースト焼き付けすることにより、 本願発明の赤外線温度計を効率よく作 製することができる。  As described above, the infrared thermometer of the present invention can be manufactured efficiently by baking a resist having a self-controlling positive temperature coefficient characteristic on the surface of a substrate such as a printed circuit board.
また本願第 2 5の請求項にかかる赤外線温度計は、 本願第 1 3の請求項にかか る赤外線温度計において、 前記自 3制御型正温度係数特性を含む抵抗体が、 基板 表面に面状印刷されてなることを特徴とする赤外線温度計である。  An infrared thermometer according to a twenty-fifth aspect of the present invention is the infrared thermometer according to the thirteenth aspect, wherein the resistor having the self-controlling positive temperature coefficient characteristic is provided on the surface of the substrate. An infrared thermometer characterized by being printed in a shape.
上記のようにプリント基板等の基板表面に自己制御型正温度係数特性を含む抵 抗体を面状印刷することにより、 本願発明の赤外線温度計を効率よく作製するこ とができる。  As described above, the infrared thermometer according to the present invention can be efficiently manufactured by printing the surface of a resistor having a self-controlling positive temperature coefficient characteristic on the surface of a substrate such as a printed circuit board.
また本願第 2 6の請求項にかかる赤外線温度計は、 本願第 1 4の請求項にかか る赤外線温度計において、 前記発熱素子系統を配置した発熱素子領域と冷接合部 測温素子系統を配置した冷接合部測温素子領域とが、 温接合部領域を中心として 冷接合部領域の外側に、 かつ冷接合部領域が配置された基板上に、 かつお互いが 水平方向に並ぶようにして配置されてなることを特徴とする赤外線温度計である また本願第 2 7の請求項にかかる赤外線温度計は、 本願第 1 4の請求項にかか る赤外線温度計において、 前記発熱素子系統を配置した発熱素子領域と冷接合部 測温素子系統を配置した冷接合部測温素子領域とが、 温接合部領域を中心として 冷接合部領域の外側に、 かつ冷接合部領域が配置された基板上に、 かつお互いが 垂直方向に並ぶようにして配置されてなることを特徴とする赤外線温度計である c . また本願第 2 8の請求項にかかる赤外線温度計は、 本願第 1 4の請求項にかか る赤外線温度計において、 前記発熱素子系統を配置した発熱素子領域と冷接合部 測温素子系統を配置した冷接合部測温素子領域とが、 温接合部領域を中心として 冷接合部領域の外側に、 かつ冷接合部領域が配置された基板の外部に、 かつお互 いが垂直方向に並ぶようにして配置されてなることを特徴とする赤外線温度計で ある。 The infrared thermometer according to claim 26 of the present application is the infrared thermometer according to claim 14 of the present application, wherein the heating element region in which the heating element system is arranged and the cold junction temperature measuring element system. The arranged cold junction temperature measuring element region is located outside the cold junction region with the hot junction region as the center, on the substrate on which the cold junction region is arranged, and in a horizontal direction with each other. The infrared thermometer according to claim 27 of the present application is the infrared thermometer according to claim 14 of the present application, wherein the heating element system is The arranged heat generating element region and the cold junction temperature measuring element region in which the temperature measuring element system is arranged are located outside the cold junction region around the hot junction region, and the cold junction region is arranged. On the board and vertically aligned with each other Unishi be disposed Te is an infrared thermometer characterized or c. The infrared thermometer according to claim of the present application the second 8, the infrared thermometer that written in the claims of the present application first 4, The heating element region in which the heating element system is arranged and the cold junction temperature measuring element region in which the temperature measuring element system is arranged are located outside the cold junction region around the hot junction region, and the cold junction region. The infrared thermometer is characterized in that the infrared thermometers are arranged outside the substrate on which the regions are arranged, such that the regions are arranged in a vertical direction.
上記本願第 2 6乃至第 2 8の請求項にかかる構成とすることにより、 従来の赤 JP00/09340 By adopting the configuration according to claims 26 to 28 of the present application, the conventional red JP00 / 09340
外線温度計のサーモパイルセンサにおいて適用されてきた温接合部領域と冷接合 部領域との配置を本願発明の赤外線温度計においても適用することが可能となる。 また本願第 2 9の請求項にかかる赤外線温度計は、 本願第 2 6乃至第 2 8いず れか一項の請求項にかかる赤外線温度計において、 前記発熱素子系統を配置した 発熱素子領域と冷接合部測温素子系統を配置した冷接合部測温素子領域との形状 が、 連続する角形であることを特徴とする赤外線温度計である。 The arrangement of the hot junction region and the cold junction region that has been applied to the thermopile sensor of the outside line thermometer can be applied to the infrared thermometer of the present invention. The infrared thermometer according to claim 29 of the present application is the infrared thermometer according to any one of claims 26 to 28 of the present application, wherein the heating element system is provided with a heating element region and The infrared thermometer is characterized in that the shape of the cold junction temperature measuring element region where the cold junction temperature measuring element system is arranged is a continuous square.
また本願第 3 0の請求項にかかる赤外線温度計は、 本願第 2 6乃至第 2 8いず れか一項の請求項にかかる赤外線温度計において、 前記発熱素子系統を配置した 発熱素子領域と冷接合部測温素子系統を配置した冷接合部測温素子領域との形状 が、 一定角度で区切られた不連続の多角形であることを特徴とする赤外線温度計 である。  The infrared thermometer according to claim 30 of the present application is the infrared thermometer according to any one of claims 26 to 28 of the present application, wherein the heating element system is provided with a heating element region and The infrared thermometer is characterized in that the shape of the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged is a discontinuous polygon separated by a certain angle.
また本願第 3 1の請求項にかかる赤外線温度計は、 本願第 2 6乃至第 2 8いず れか一項の請求項にかかる赤外線温度計において、 前記発熱素子系統を配置した 発熱素子領域と冷接合部測温素子系統を配置した冷接合部測温素子領域との形状 が、 連続する円であることを特徴とする赤外線温度計である。  The infrared thermometer according to claim 31 of the present application is the infrared thermometer according to any one of claims 26 to 28 of the present application, wherein the heating element system is provided with a heating element region and The infrared thermometer is characterized in that the shape of the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged is a continuous circle.
また本願第 3 2の請求項にかかる赤外線温度計は、 本願第 2 6乃至第 2 8いず れか一項の請求項にかかる赤外線温度計において、 前記発熱素子系統を配置した 発熱素子領域と冷接合部測温素子系統を配置した冷接合部測温素子領域との形状 が、 一定角度で区切られた不連続の円であることを特徴とする赤外線温度計であ る。  The infrared thermometer according to claim 32 of the present application is the infrared thermometer according to any one of claims 26 to 28 of the present application, wherein the heating element system is provided with a heating element region and The infrared thermometer is characterized in that the shape of the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged is a discontinuous circle separated by a certain angle.
上記本願第 2 9乃至第 3 2の請求項にかかる構成とすることにより、 従来の赤 外線温度計のサ一モパイルセンサにおいて適用されてきた温接合部領域と冷接合 部領域との配置を本願発明の赤外線温度計においても適用することが可能となる。 また本願第 3 3の請求項にかかる赤外線温度計は、 本願第 1 3の請求項にかか る赤外線温度計において、 冷接合部領域がシリコンペレヅ ト又はシリコンチップ の内部又は表面に組込まれた構造を有するサ一モパイルセンサを組込んでなり、 かっこのシリコンペレヅ ト又はシリコンチップに埋込み層 (buried layer) 構造 であり、 かつ自己制御型正温度係数特性を含む抵抗体が前記冷接合部領域との混 成 (hybrid) 構造を有することを特徴とする赤外線温度計である。 また本願第 3 4の請求項にかかる赤外線温度計は、 本願第 1 3の請求項にかか る赤外線温度計において、 冷接合部領域がシリコンペレツ ト又はシリコンチヅプ の内部又は表面に組込まれた構造を有するサ一モパイルセンサを組込んでなり、 かっこのシリコンペレッ ト又はシリコンチップの表面に形成された薄膜に自己制 御型正温度係数特性を含む抵抗体が組成された構造を有することを特徴とする赤 外線温度計である。 By adopting the constitution according to claims 29 to 32 of the present application, the arrangement of the hot junction region and the cold junction region which have been applied in the conventional thermopile sensor of the infrared thermometer can be changed according to the present invention. Can also be applied to the infrared thermometer. An infrared thermometer according to a third aspect of the present invention is the infrared thermometer according to the thirteenth aspect of the present invention, wherein the cold junction region is incorporated in or on a silicon pellet or a silicon chip. A resistor having a buried layer structure in a bracket or a silicon pellet or a silicon chip and having a self-controlling positive temperature coefficient characteristic is mixed with the cold junction region. An infrared thermometer having a hybrid structure. The infrared thermometer according to claim 34 of the present application is the infrared thermometer according to claim 13 of the present application, wherein the cold junction region is incorporated in or on the surface of the silicon pellet or silicon chip. A thermopile sensor having a self-controlling positive temperature coefficient characteristic formed on a thin film formed on the surface of the silicon pellet or silicon chip of the bracket. This is an infrared thermometer.
また本願第 3 5の請求項にかかる赤外線温度計は、 本願第 1 3の請求項にかか る赤外線温度計において、 冷接合部領域が、 絶縁物からなるチップ基板の表面に 厚膜形成された構造を有するサ一モパイルセンサを組込んでなり、 かつ自己制御 型正温度係数特性を含む抵抗体が前記冷接合部領域と混成 (hybrid) した厚膜ハ イブリ ッド構造を有することを特徴とする赤外線温度計である。  An infrared thermometer according to a thirty-fifth aspect of the present invention is the infrared thermometer according to the thirteenth aspect of the present invention, wherein the cold junction region has a thick film formed on the surface of the chip substrate made of an insulator. And a resistor having a self-controlling positive temperature coefficient characteristic and having a thick film hybrid structure hybridized with the cold junction region. Infrared thermometer.
上記本願第 3 3乃至第 3 5の請求項にかかる構成とすることにより、 従来の赤 外線温度計のサ一モパイルセンサにおいて適用されてきた温接合部領域と冷接合 部領域との配置を本願発明の赤外線温度計においても適用することが可能となる。 また本願第 3 6の請求項にかかる相検出器の基準電圧設定方法は、 物理値を変 換して得られる電圧値を入力とする相検出器の基準電圧値設定方法において、 入 カスキヤン手段により、 複数の抵抗器を自在に組み合わせ、 これにより得られる 異なる抵抗値を有する複数の組み合わせ抵抗を用いて、 多段階の電圧値を比較手 段へと順次入力し、 前記比較手段において、 対象物理値の基準値に対応して入力 される第一の入力電圧値と、 前記入力スキャン手段により入力される第二の入力 電圧値とを比較して、 その一致点を検出し、 検出された一致点における組み合わ せ抵抗の抵抗値指定ァドレスを、 記憶手段において記憶することにより基準電圧 値を決定することを特徴とする相検出器の基準電圧値設定方法である。  By adopting the configuration according to claims 33 to 35 of the present application, the arrangement of the hot junction region and the cold junction region which have been applied in the conventional thermopile sensor of the infrared thermometer can be changed. Can also be applied to the infrared thermometer. The reference voltage setting method for a phase detector according to claim 36 of the present application is a method for setting a reference voltage value for a phase detector that receives a voltage value obtained by converting a physical value as an input. A plurality of resistors are freely combined, and a multi-step voltage value is sequentially input to a comparing means by using a plurality of combined resistors having different resistance values obtained thereby. Comparing the first input voltage value input corresponding to the reference value of the above with the second input voltage value input by the input scanning means, and detecting the coincidence point; A reference voltage value setting method for a phase detector, characterized in that a reference voltage value is determined by storing a resistance value designation address of the combination resistor in the storage means in the storage means.
また本願第 3 7の請求項にかかる赤外線温度計による温度測定方法は、 本願第 3 6の請求項にかかる赤外線温度計による温度測定方法において、 情報処理装置 により前記入カスキヤン手段を制御することにより、 前記比較手段に対して第二 の入力電圧値を入力し、 前記比較手段により第一の入力電圧値と第二の入力電圧 値とを比較してこれらの大小関係が反転したときに、 その反転情報を前記情報処 理装置に対して割り込み信号として入力することにより、 情報処理装置内の記憶 340 Further, the temperature measurement method using an infrared thermometer according to the present invention is characterized in that, in the temperature measurement method using an infrared thermometer according to the present invention, the input scanning means is controlled by an information processing device. When a second input voltage value is input to the comparing means, and the first input voltage value and the second input voltage value are compared by the comparing means, and when the magnitude relation is reversed, By inputting the inversion information to the information processing device as an interrupt signal, the storage in the information processing device can be performed. 340
手段が、 そのときの抵抗値指定ァドレスを記憶することを特徴とする赤外線温度 計による温度測定方法である。 The means is a temperature measurement method using an infrared thermometer, wherein the resistance value designation address at that time is stored.
また本願第 3 8の請求項にかかる赤外線温度計による温度測定方法は、 本願第 3 6の請求項にかかる赤外線温度計による温度測定方法において、 情報処理装置 により前記入カスキヤン手段を制御することにより、 前記比較手段に対して第二 の入力電圧値を入力し、 前記比較手段により第一の入力電圧値と第二の入力電圧 値とを比較してこれらの大小閧係が反転したときに、 その反転情報を相検出器自 らが内蔵する記憶装置に対して割り込み信号として入力することにより、 前記記 憶手段が、 そのときの抵抗値指定ァドレスを記憶することを特徴とする赤外線温 度計による温度測定方法である。  Further, the temperature measurement method using an infrared thermometer according to the present invention is characterized in that, in the temperature measurement method using an infrared thermometer according to the present invention, the input scanning unit is controlled by an information processing device. Inputting a second input voltage value to the comparing means, and comparing the first input voltage value and the second input voltage value by the comparing means, when these factors are reversed, By inputting the inversion information as an interrupt signal to a storage device incorporated in the phase detector itself, the storage means stores a resistance designation address at that time. Is a temperature measurement method.
上記本願第 3 6乃至第 3 8の請求項にかかる構成とすることにより、 所定の対 象物理基準値に対応する基準電圧値を高精度に設定することができる。  With the configuration according to claims 36 to 38 of the present application, a reference voltage value corresponding to a predetermined target physical reference value can be set with high accuracy.
また本願第 3 9の請求項にかかる赤外線温度計による温度測定方法は、 サ一モ パイルセンサを内蔵する赤外線温度計による温度測定方法において、 サ一モパイ ル出力電圧値の負領域に予め基準電圧値を設定しておき、 前記サ一モパイルセン サの冷接合部領域を一方的かつ強制的に加熱し、 前記基準電圧値に対するサーモ パイル出力電圧値の相反転を検出することにより、 測定夕一ゲッ トの温度を測定 することを特徴とする赤外線温度計による温度測定方法である。  The temperature measurement method using an infrared thermometer according to the claim 39 of the present application is a temperature measurement method using an infrared thermometer having a built-in thermopile sensor, wherein the reference voltage is set in advance in the negative region of the thermopile output voltage value. A value is set in advance, and the cold junction region of the thermopile sensor is unilaterally and forcibly heated to detect a phase inversion of the thermopile output voltage value with respect to the reference voltage value, thereby obtaining a measurement value. This is a method for measuring temperature using an infrared thermometer, which measures the temperature of the object.
かかる構成とすることにより、所定温度に対応する基準電圧値を正確に設定し、 周囲温度によらず高精度の温度測定を行うことができる。  With this configuration, it is possible to accurately set the reference voltage value corresponding to the predetermined temperature, and perform highly accurate temperature measurement regardless of the ambient temperature.
また本願第 4 0の請求項にかかる赤外線温度計による温度測定方法は、 本願第 3 9の請求項にかかる赤外線温度計による温度測定方法において、 サ一モパイル センサ本体温度と所定温度差を有する黒体炉に対して、 前記サーモパイルセンサ が出力するサ一モパイル出力電圧値を規定倍率において増幅し、 これを第一の入 力電圧値として比較手段に対して入力するとともに、 入力スキャン手段により、 複数の抵抗器を自在に組み合わせ、 これにより得られる異なる抵抗値を有する複 数の組み合わせ抵抗を用いて、 多段階の電圧値を第二の入力電圧値として前記比 較手段に対して順次入力スキャンし、 前記比較手段において、 前記第一の入力電 圧値と第二の入力電圧値とを比較して、 その一致点を検出し、 検出された一致点 P T/JP00/09340 The temperature measurement method using the infrared thermometer according to the 40th aspect of the present invention is the temperature measurement method using the infrared thermometer according to the 39th aspect of the present invention, wherein the black has a predetermined temperature difference from the temperature of the thermopile sensor body. The thermopile output voltage value output from the thermopile sensor is amplified at a specified magnification with respect to the core furnace, and the amplified voltage is input to the comparison means as a first input voltage value. By using a plurality of combined resistors having different resistance values, the multi-stage voltage value is sequentially input to the comparing means as a second input voltage value by using a plurality of combination resistors having different resistance values. The comparing means compares the first input voltage value and the second input voltage value to detect a coincidence point, and detects the detected coincidence point. PT / JP00 / 09340
における組み合わせ抵抗の抵抗値指定ァドレスを、 記憶手段において記憶するこ とにより前記基準電圧値を決定することを特徴とする赤外線温度計による温度測 定方法である。 A temperature measurement method using an infrared thermometer, wherein the reference voltage value is determined by storing a resistance value designation address of the combination resistance in the storage means in the storage means.
また本願第 4 1の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 0の請求項にかかる赤外線温度計による温度測定方法において、 情報処理装置 により前記入力スキャン手段を制御することにより、 前記比較手段に対して第二 の入力電圧値を入力し、 前記比較手段により第一の入力電圧値と第二の入力電圧 値とを比較してこれらの大小関係が反転したときに、 その反転情報を前記情報処 理装置に対して割り込み信号として入力することにより、 情報処理装置内の記憶 手段が、 そのときの抵抗値指定ァドレスを記憶することを特徴とする赤外線温度 計による温度測定方法である。  The temperature measurement method using an infrared thermometer according to claim 41 of the present application is the temperature measurement method using an infrared thermometer according to claim 40 of the present application, wherein the input scanning means is controlled by an information processing device. When a second input voltage value is input to the comparing means, and the first input voltage value and the second input voltage value are compared by the comparing means, and when the magnitude relation is reversed, A temperature measuring method using an infrared thermometer, wherein the inversion information is input to the information processing device as an interrupt signal, so that the storage means in the information processing device stores a resistance designation address at that time. It is.
また本願第 4 2の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 0の請求項にかかる赤外線温度計による温度測定方法において、 情報処理装置 により前記入力スキャン手段を制御することにより、 前記比較手段に対して第二 の入力電圧値を入力し、 前記比較手段により第一の入力電圧値と第二の入力電圧 値とを比較してこれらの大小関係が反転したときに、 その反転情報を相検出器自 らが内蔵する記憶装置に対して割り込み信号として入力することにより、 前記記 億手段が、 そのときの抵抗値指定ァドレスを記憶することを特徴とする赤外線温 度計による温度測定方法である。  A temperature measurement method using an infrared thermometer according to the present invention is a method for measuring temperature using an infrared thermometer according to the present invention, wherein the input scanning means is controlled by an information processing device. When a second input voltage value is input to the comparing means, and the first input voltage value and the second input voltage value are compared by the comparing means, and when the magnitude relation is reversed, By inputting the inversion information as an interrupt signal to a storage device incorporated in the phase detector itself, the storage means stores a resistance designation address at that time. This is a temperature measurement method.
上記本願第 4 0乃至第 4 2の請求項にかかる構成とすることにより、 所定温度 に対応する基準電圧値を正確に設定し、 周囲温度によらず高精度の温度測定を行 うことができる。  With the configuration according to the 40th to 42nd claims of the present application, it is possible to accurately set a reference voltage value corresponding to a predetermined temperature and to perform high-accuracy temperature measurement regardless of an ambient temperature. .
また本願第 4 3の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 2の請求項にかかる赤外線温度計による温度測定方法において、 前記サーモパ ィルセンサにおいて、 冷接合部領域を加熱するための発熱素子系統と、 冷接合部 領域の温度を測定するための冷接合部測温素子系統のうち少なく ともいずれか一 方をサ一モパイル出力と熱応答速度において同期させることを特徴とする赤外線 温度計による温度測定方法である。  A temperature measurement method using an infrared thermometer according to claim 43 of the present application is the temperature measurement method using an infrared thermometer according to claim 42, wherein the thermopile sensor heats a cold junction region. Infrared, at least one of the heating element system and the cold junction temperature measuring element system for measuring the temperature of the cold junction area is synchronized in the thermopile output and the thermal response speed. This is a temperature measurement method using a thermometer.
また本願第 4 4の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 3の請求項にかかる赤外線温度計による温度測定方法において、 前記発熱素子 系統、 前記冷接合部測温素子系統、 及び前記冷接合部領域の三要素を、 お互いに 熱直結した構造とすることを特徴とする赤外線温度計による温度測定方法である。 かかる構成とすることによって、 冷接合部測温素子系統の熱応答速度をサ一モ パイルセンサの出力に対して可及的に同期させることが可能になる。 The temperature measurement method using the infrared thermometer according to claim 44 of the present application 43.The temperature measurement method using an infrared thermometer according to claim 3, wherein the three elements of the heating element system, the cold junction temperature measuring element system, and the cold junction region are directly thermally connected to each other. This is a temperature measuring method using an infrared thermometer. With this configuration, it is possible to synchronize the thermal response speed of the cold junction temperature measuring element system with the output of the thermopile sensor as much as possible.
また本願第 4 5の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4の請求項にかかる赤外線温度計による温度測定方法において、 前記発熱素子 系統により冷接合部を一方的かつ強制的に加熱したときのサ一モパイル出力電圧 値が、 前記基準電圧値に対して相反転したか否かを相検出器により検出し、 相反 転の有無を変換器により 2ビッ トデジタル信号に変換し、 このデジタル信号に同 期して冷接合部測温素子温度を検出することを特徴とする赤外線温度計による温 度測定方法である。  A temperature measurement method using an infrared thermometer according to claim 45 of the present application is the temperature measurement method using an infrared thermometer according to claim 4 of the present application. The phase detector detects whether or not the thermopile output voltage value when heated is inverted with respect to the reference voltage value, and converts the presence or absence of the phase inversion into a 2-bit digital signal by the converter. This is a temperature measuring method using an infrared thermometer, which detects the temperature of the cold junction temperature measuring element in synchronization with the digital signal.
かかる構成とすることにより、 測定時間の短縮と測定精度の向上とを同時に実 現することが可能となる。 また、 周囲環境温度によらず容易かつ正確な測定を行 うことが可能となる。  With this configuration, it is possible to simultaneously reduce the measurement time and improve the measurement accuracy. In addition, easy and accurate measurements can be performed regardless of the ambient temperature.
また本願第 4 6の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 5の請求項にかかる赤外線温度計による温度測定方法において、 前記冷接合部 領域に自己制御型正温度係数特性を含む抵抗体を組み込むことを特徴とする赤外 線温度計による温度測定方法である。  The temperature measurement method using an infrared thermometer according to claim 46 of the present application is the temperature measurement method using an infrared thermometer according to claim 45 of the present application, wherein the cold junction region has a self-controlling positive temperature coefficient characteristic. This is a temperature measurement method using an infrared ray thermometer, which incorporates a resistor including:
また本願第 4 7の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 6の請求項にかかる赤外線温度計による温度測定方法において、 前記発熱素子 系統と冷接合部測温素子との少なく ともいずれか一方に、 自己制御型正温度係数 特性を含む抵抗体を配することを特徴とする赤外線温度計による温度測定方法で ある。  The temperature measurement method using an infrared thermometer according to claim 47 of the present application is the temperature measurement method using an infrared thermometer according to claim 46 of the present application, wherein the heating element system and the cold junction temperature measuring element are connected to each other. A temperature measurement method using an infrared thermometer, characterized in that at least one of the resistors includes a resistor having a self-controlling positive temperature coefficient characteristic.
かかる構成とすることにより、 安全かつ容易にサーモパイルセンサの冷接合部 領域の温度を制御することができる。  With this configuration, it is possible to safely and easily control the temperature of the cold junction region of the thermopile sensor.
また本願第 4 8の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 7の請求項にかかる赤外線温度計による温度測定方法において、 前記発熱素子 系統を、 発熱して一定温度に維持される定常温度系統と、 一定の温度範囲におい て温度可変とする可変温度系統とに系統分離し、 前記定常温度系統により温度測 定開始前に予め冷接合部領域を一定温度に維持し、 前記可変温度系統は温度測定 開始後に冷接合部領域の温度を一方的かつ強制的に変化させることを特徴とする 赤外線温度計による温度測定方法である。 The temperature measurement method using an infrared thermometer according to claim 48 of the present application is the temperature measurement method using an infrared thermometer according to claim 47 of the present application, wherein the heating element system generates heat and maintains a constant temperature. Constant temperature system and constant temperature range The cold junction region is maintained at a constant temperature before the temperature measurement is started by the steady temperature system, and the cold junction region is maintained after the temperature measurement is started by the steady temperature system. A temperature measurement method using an infrared thermometer, wherein the temperature is unilaterally and forcibly changed.
かかる構成とすることにより、 定常温度系統によって予め冷接合部領域及び冷 接合部測温素子を一定のパイァス温度に加熱し、 測定時間の短縮を図ることがで きる。 さらに、 冷接合部測温素子の抵抗変化は、 測定ターゲッ トからの赤外線ェ ネルギ一による温接合部領域の温度上昇分だけとなるのでその熱応答速度は極め て速くなり、冷接合部領域の温度変化に対して可及的に同期させることができる。 With such a configuration, the cold junction region and the cold junction temperature measuring element can be heated in advance to a constant Piase temperature by the steady temperature system, and the measurement time can be reduced. Furthermore, since the resistance change of the cold junction temperature measuring element is only the temperature rise in the hot junction area due to infrared energy from the measurement target, the thermal response speed becomes extremely fast, and the cold junction area It can be synchronized as much as possible with temperature changes.
—方可変温度系統により冷接合部領域の温度を一方的かつ強制的に変化させる ことにより、 周囲環境温度によらず高精度な温度測定を短時間において行うこと ができる。 By unilaterally and forcibly changing the temperature of the cold junction area using a variable temperature system, highly accurate temperature measurement can be performed in a short time regardless of the ambient environment temperature.
また本願第 4 9の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 8の請求項にかかる赤外線温度計による温度測定方法において、 前記発熱素子 系統において、 異なる自己飽和安定温度を有する 2種類の自己制御型正温度係数 特性を含む抵抗体を用い、 自己飽和安定温度が低温であるほうの自己制御型正温 度係数特性を含む抵抗体に対しては所定電圧を印加して自己飽和安定温度の一定 温度で安定させ、 一方、 自己飽和安定温度が高温であるほうの自己制御型正温度 係数特性を含む抵抗体は自己飽和安定温度以下において任意温度に変化させるこ とを特徴とする赤外線温度計による温度測定方法である。  The temperature measurement method using an infrared thermometer according to claim 49 of the present application is the temperature measurement method using an infrared thermometer according to claim 48, wherein the heating element system has a different self-saturation stable temperature. A resistor with two types of self-control type positive temperature coefficient characteristics is used. It is characterized in that the resistor is stabilized at a constant temperature of the saturation stable temperature, while the resistor including the self-control type positive temperature coefficient characteristic with the higher self-saturation stable temperature is changed to an arbitrary temperature below the self-saturation stable temperature. This is a temperature measurement method using an infrared thermometer.
かかる構成とすることにより、 特に制御装置を設けることなく過熱事故が防止 される。 また、 自己飽和安定温度が低温であるほうの自己制御型正温度係数特性 を含む抵抗体により冷接合部領域及び冷接合部測温素子を予め所定のパイァス温 度とし、 測定時間の短縮及び熱応答速度の同期を容易に図ることができる。 また本願第 5 0の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 7の請求項にかかる赤外線温度計による温度測定方法において、 電気的に素子 間絶縁された複数の同一抵抗特性の自己制御型正温度係数特性を含む抵抗体から なる系統を、 冷接合部領域と熱的に直結するようにして複数系統組込み、 これら に対してサーモパイル外部からそれぞれ異なる電圧を印加し、 系統別に異なる発 40 With this configuration, an overheating accident can be prevented without providing a control device. In addition, the cold junction area and the cold junction temperature measuring element are set to a predetermined bias temperature in advance by a resistor including a self-control type positive temperature coefficient characteristic having a lower self-saturation stable temperature, thereby shortening the measurement time and reducing the heat. The response speed can be easily synchronized. The temperature measurement method using the infrared thermometer according to the fiftyth aspect of the present invention is the temperature measurement method using the infrared thermometer according to the fourth aspect of the present invention, wherein a plurality of identical resistance characteristics electrically insulated between elements are provided. A plurality of systems consisting of resistors with self-controlling positive temperature coefficient characteristics are installed in such a way as to be thermally connected directly to the cold junction area, and different voltages are applied to these from outside the thermopile, and Different departures 40
熱温度を冷接合部領域に発生させることを特徴とする赤外線温度計による温度測 定方法である。 This is a temperature measurement method using an infrared thermometer, wherein a heat temperature is generated in a cold junction region.
また本願第 5 1の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 7の請求項にかかる赤外線温度計による温度測定方法において、 電気的に素子 間絶縁された異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個からなる 対を、 冷接合部領域と熱的に直結するようにして一対以上組込み、 これらに対し てサ一モパイル外部から同一の電圧を印加し、 系統別に異なる発熱温度を冷接合 部領域に発生させることを特徴とする赤外線温度計による温度測定方法である。 また本願第 5 2の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 7の請求項にかかる赤外線温度計による温度測定方法において、 電気的に素子 間絶縁された異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個からなる 対を複数対組み合わせてなる系統を、 冷接合部領域と熱的に直結するようにして 複数系統組込み、 これらに対してサーモパイル外部から同一の電圧を印加し、 系 統別に異なる発熱温度を冷接合部領域に発生させることを特徴とする赤外線温度 計による温度測定方法である。  The temperature measurement method using an infrared thermometer according to claim 51 of the present application is the temperature measurement method using an infrared thermometer according to claim 47 of the present application, wherein the self-control of different resistances electrically insulated between elements is performed. At least one pair consisting of two resistors with positive temperature coefficient characteristics is incorporated so as to be thermally connected directly to the cold junction area, and the same voltage is applied to these from outside the thermopile. This is a temperature measurement method using an infrared thermometer, which is characterized by generating a different heat generation temperature in a cold junction region. The temperature measurement method using an infrared thermometer according to claim 52 of the present application is the self-control of a different resistor electrically insulated between elements in the temperature measurement method using an infrared thermometer according to claim 47 of the present application. A system composed of a plurality of pairs consisting of two resistors with positive temperature coefficient characteristics is incorporated into multiple systems so as to be thermally connected directly to the cold junction area, and the same voltage is applied to these from outside the thermopile. This is a temperature measurement method using an infrared thermometer, which generates a different heat generation temperature for each system in the cold junction region.
また本願第 5 3の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 8の請求項にかかる赤外線温度計による温度測定方法において、 電気的に素子 間絶縁された複数の同一抵抗特性の自 3制御型正温度係数特性を含む抵抗体から なる系統を、 冷接合部領域と熱的に直結するようにして複数系統組込み、 これら に対してサーモパイル外部からそれぞれ異なる電圧を印加し、 系統別に異なる発 熱温度を冷接合部領域に発生させることを特徴とする赤外線温度計による温度測 定方法である。  The temperature measuring method using an infrared thermometer according to the fifty-third claim of the present application is the temperature measuring method using an infrared thermometer according to the fourth present invention, wherein a plurality of identical resistance characteristics electrically insulated between elements are provided. A plurality of systems consisting of a resistor with a self-controlling positive temperature coefficient characteristic are installed in such a way as to be thermally connected directly to the cold junction area, and different voltages are applied to these from outside the thermopile, respectively. This is a temperature measurement method using an infrared thermometer, which is characterized by generating a different heat generation temperature in a cold junction region.
また本願第 5 4の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 8の請求項にかかる赤外線温度計による温度測定方法において、 電気的に素子 間絶縁された異なる抵抗の自 3制御型正温度係数特性を含む抵抗体 2個からなる 対を、 冷接合部領域と熱的に直結するようにして一対以上組込み、 これらに対し てサ一モパイル外部から同一の電圧を印加し、 系統別に異なる発熱温度を冷接合 部領域に発生させることを特徴とする赤外線温度計による温度測定方法である。 また本願第 5 5の請求項にかかる赤外線温度計による温度測定方法は、 本願第 4 8の請求項にかかる赤外線温度計による温度測定方法において、 電気的に素子 間絶縁された異なる抵抗の自己制御型正温度係数特性を含む抵抗体 2個からなる 対を複数対組み合わせてなる系統を、 冷接合部領域と熱的に直結するようにして 複数系統組込み、 これらに対してサ一モパイル外部から同一の電圧を印加し、 系 統別に異なる発熱温度を冷接合部領域に発生させることを特徴とする赤外線温度 計による温度測定方法である。 The temperature measurement method using an infrared thermometer according to the fifty-fourth claim of the present application is the same as the temperature measurement method using an infrared thermometer according to the fourth invention, but also includes a method of measuring the resistance of a different resistor electrically insulated between elements. A pair of two or more resistors including a control-type positive temperature coefficient characteristic is incorporated so as to be thermally connected directly to the cold junction region, and the same voltage is applied to these from outside the thermopile, This is a temperature measurement method using an infrared thermometer, which generates different heat generation temperatures in the cold junction region for each system. In addition, the temperature measuring method using the infrared thermometer according to claim 55 of the present application 48 In the temperature measurement method using an infrared thermometer according to claim 8, a system comprising a plurality of pairs of two resistors each including a self-controlling positive temperature coefficient characteristic of different resistances electrically insulated between elements is combined. A plurality of systems so as to be thermally connected directly to the cold junction area, apply the same voltage to them from outside the thermopile, and generate different heat generation temperatures in the cold junction area for each system. This is a temperature measurement method using an infrared thermometer characterized by the following.
上記本願第 5 0乃至第 5 5の請求項にかかる赤外線温度計において、 自己制御 型正温度係数特性を含む抵抗体を複数系統あるいは複数対配することにより、 自 己制御型正温度係数特性を含む抵抗体をその系統ごとに加熱し、 きめ細かい温度 制御を可能とする。  In the infrared thermometer according to the fifty-fifth to fifty-fifth claims, the self-control type positive temperature coefficient characteristic is obtained by arranging a plurality of resistors or a plurality of pairs including the self-control type positive temperature coefficient characteristic. The resistors included are heated for each system, enabling fine temperature control.
図面の簡単な説明 第 1図は本願発明第一の実施形態にかかる相検出器の構成を示すプロック図で ある。 BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a block diagram showing a configuration of a phase detector according to a first embodiment of the present invention.
第 2図は本願発明第二の実施の形態にかかる赤外線温度計の部分切欠斜視図で ある。  FIG. 2 is a partially cutaway perspective view of an infrared thermometer according to a second embodiment of the present invention.
第 3図は本願発明第二の実施の形態にかかる赤外線温度計における赤外線検出 部の断面図である。  FIG. 3 is a cross-sectional view of an infrared detector in the infrared thermometer according to the second embodiment of the present invention.
第 4図は本願発明第二の実施の形態にかかる赤外線温度計のサ一モパイルセン サにおける内部構造主要部の上面図及び断面図である。  FIG. 4 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of the infrared thermometer according to the second embodiment of the present invention.
第 5図は本願発明第二の実施の形態にかかる赤外線温度計のサ一モパイルセン サにおけるサ一モパイル部の上面図である。  FIG. 5 is a top view of a thermopile portion of the thermopile sensor of the infrared thermometer according to the second embodiment of the present invention.
第 6図は本願発明第二の実施の形態にかかる赤外線温度計のサ一モパイルセン ザにおける内部構造主要部の上面図である。  FIG. 6 is a top view of a main part of an internal structure in a thermopile sensor of the infrared thermometer according to the second embodiment of the present invention.
第 7図は本願発明第二の実施の形態にかかる赤外線温度計に用いられる自己制 御型正温度係数特性を含む抵抗体の抵抗特性を示すグラフである。  FIG. 7 is a graph showing resistance characteristics of a resistor including a self-control type positive temperature coefficient characteristic used in an infrared thermometer according to a second embodiment of the present invention.
第 8図は本願第二の実施の形態にかかる赤外線温度計による温度測定方法を説 明するためのブロック図である。 FIG. 8 illustrates a temperature measurement method using an infrared thermometer according to the second embodiment of the present invention. It is a block diagram for clarification.
第 9図は本願第二の実施の形態にかかる赤外線温度計における温度測定方法の フロ一チヤ一トである。  FIG. 9 is a flowchart of a temperature measuring method in the infrared thermometer according to the second embodiment of the present invention.
第 1 0図は本願第二の実施の形態にかかる赤外線温度計におけるバイァス温度 での温度制御方法を示す時間—温度曲線である。  FIG. 10 is a time-temperature curve showing a temperature control method at a bias temperature in the infrared thermometer according to the second embodiment of the present invention.
第 1 1図は本願第二の実施の形態にかかる赤外線温度計による温度測定におけ る温度制御方法を示す時間—温度曲線である。  FIG. 11 is a time-temperature curve showing a temperature control method in temperature measurement by the infrared thermometer according to the second embodiment of the present invention.
第 1 2図は本願第二の実施の形態にかかる赤外線温度計による温度測定におけ る温度制御方法を示す時間一温度曲線である。 第 1 3図は本願発明第三の実施の形態にかかる赤外線温度計のサ一モパイルセ ンサにおける内部構造主要部の上面図及び断面図である。  FIG. 12 is a time-temperature curve showing a temperature control method in temperature measurement by the infrared thermometer according to the second embodiment of the present invention. FIG. 13 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of the infrared thermometer according to the third embodiment of the present invention.
第 1 4図は本願発明第四の実施の形態にかかる赤外線温度計のサ一モパイルセ ンサにおける内部構造主要部の上面図及び断面図である。  FIG. 14 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of an infrared thermometer according to a fourth embodiment of the present invention.
第 1 5図は本願発明第五の実施の形態にかかる赤外線温度計のサーモパイルセ ンサにおける内部構造主要部の上面図及び断面図である。  FIG. 15 is a top view and a sectional view of a main part of an internal structure of a thermopile sensor of an infrared thermometer according to a fifth embodiment of the present invention.
第 1 6図は従来の赤外線温度.計の構成一例を示す断面図である。  FIG. 16 is a sectional view showing an example of the configuration of a conventional infrared thermometer.
第 1 7図は従来の赤外線温度計による温度測定方法を説明するためのプロック 図である。  FIG. 17 is a block diagram for explaining a temperature measuring method using a conventional infrared thermometer.
第 1 8図は従来の赤外線温度計による温度測定時における各出力の挙動を示す グラフである。  FIG. 18 is a graph showing the behavior of each output at the time of temperature measurement using a conventional infrared thermometer.
符号の説明 Explanation of reference numerals
1 相検出器 One-phase detector
2 比較手段  2 Means of comparison
3 抵抗アレイ  3 Resistor array
4 情報処理装置 a_、 5 b ドライブ I C 計測装置 4 Information processing equipment a_, 5 b Drive IC measuring device
耳式体温計  Ear thermometer
本体ケース  Body case
赤外線検出部  Infrared detector
0 温度測定回路部 0 Temperature measurement circuit
導波管  Waveguide
2 サ一モパイルセンサ 3 プリント基板 2 Thermopile sensor 3 Printed circuit board
4 スィッチ 4 Switch
5  Five
6 プリント基板アセンブリ 7 ノズル  6 Printed circuit board assembly 7 Nozzle
8 ヒートシンク  8 Heat sink
9 ピッ ト部  9 pits
0 温接合部支持膜  0 Thermal bonding support membrane
1 第一熱電対材料  1 First thermocouple material
2 第二熱電対材料  2 Second thermocouple material
3 冷接合部  3 Cold joint
4 温接合部  4 Thermal joint
5 サ一モパイル  5 Thermopiles
6 出力端子  6 Output terminal
7 赤外線吸収体  7 Infrared absorber
8 冷接合部領域  8 Cold joint area
9 温接合部領域  9 Thermal joint area
0 発熱素子  0 Heating element
1 冷接合部測温素子 2 ダイアフラム  1 Cold junction temperature measuring element 2 Diaphragm
3 発熱素子の電極 4 冷接合部測温素子の電極 3 Heating element electrodes 4 Cold junction temperature measuring element electrodes
5 発熱素子領域  5 Heating element area
6 冷接合部測温素子領域  6 Cold junction temperature measuring element area
7 センサステム  7 Sensor stem
8 絶縁薄膜  8 Insulating thin film
9 a、 39 b 増幅器  9a, 39b amplifier
0 サ一モパイル出力端子  0 Thermopile output terminal
1 定常温度系統発熱素子  1 Steady temperature system heating element
42 可変温度系統発熱素子 42 Variable temperature system heating element
43 測定夕一ゲット 43 Get one evening measurement
4 赤外線温度計  4 Infrared thermometer
45 窓材 45 Window materials
46 a、 46 b 電気接点  46a, 46b electrical contacts
47 a, 47 b、 47 c, 47 d 導体 47a, 47b, 47c, 47d conductor
48 コントローラ 48 Controller
49 温度プロセヅサ  49 Temperature processor
50 加熱装置 50 heating device
5 1 冷却装置  5 1 Cooling system
52 サーミス夕  52 Therm Evening
発明を実施するための最良の形態 以下、 本発明の実施の形態について図面を参照して説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described with reference to the drawings.
本願第一の実施の形態にかかる相検出器の構成一例をプロック図として第 1図 に示す。 相検出器 1は、 比較手段 2と、 複数の抵抗 3 a, 3 b, … 3 ηにより構 成される抵抗アレイ 3と、 ドライブ I C 5 aとにより構成される。  An example of the configuration of the phase detector according to the first embodiment of the present invention is shown in FIG. 1 as a block diagram. The phase detector 1 includes a comparison means 2, a resistor array 3 including a plurality of resistors 3a, 3b,... 3η, and a drive IC 5a.
この相検出器 1において、 計測装置 6の測定対象物理値の所定値に対応する電 圧値を基準電圧値として設定する方法について以下に説明する。 計測装置 6は、 PC蘭瞧 40 A method of setting a voltage value corresponding to a predetermined value of the physical value to be measured by the measuring device 6 in the phase detector 1 as a reference voltage value will be described below. The measuring device 6 PC orchid 40
測定対象物理値の所定値に対応した電圧値を出力する。 このときの出力電圧値 A は、 比較手段 2に入力される。 A voltage value corresponding to a predetermined value of the physical value to be measured is output. The output voltage value A at this time is input to the comparison means 2.
一方、 情報処理装置 4はドライブ I C 5 aを駆動して抵抗アレイ 3の複数の抵 抗を組み合わせ、 それらの組み合わせ抵抗を用いて多段階の電圧値 Bを順次比較 手段 2に入力スキャンする。  On the other hand, the information processing device 4 drives the drive IC 5a to combine a plurality of resistors in the resistor array 3, and sequentially scans the multi-stage voltage value B to the comparing means 2 using the combined resistors.
比較手段 2においては、 入力された電圧値 Aと電圧値 Bとの比較を行う。 そし てこれらの大小関係が反転したときに、 その反転情報を情報処理装置 4に対して 割り込み信号として入力することにより、 情報処理装置 4はそのときの抵抗値指 定アドレスを読込む。 すなわち情報処理装置 4は、 抵抗アレイ 3に存在する N個 の抵抗を組み合わせて得られる 2 Nとおりの異なる抵抗値の中から一抵抗値を比 較手段 2からの割り込み信号により認識し、 同時に内蔵する E E P R O Mや R A M等のメモリ内にこの組み合わせ抵抗のドライブ I C 5 a駆動ァドレス、 すなわ ち情報処理装置 4の出力ビット状態を記憶する。 このようにして記憶された抵抗 値指定アドレスは、 比較手段 2に対して第二の入力電圧に変換され、 これが比較 手段 2の基準電圧となる。 このようにして記憶された抵抗値指定ァドレスに基づ く基準電圧値の精度は、 抵抗アレイ 3における抵抗の数 Nにより決定される。 す なわち、 N個の抵抗を用いて得られる組み合わせ抵抗は 2 Nとおり存在するので、 比較手段 2に対して入力スキャンされる電圧値も 2 Nとおり となることから、 抵 抗数 Nを大とするほどその精度が向上するものである。 The comparing means 2 compares the input voltage value A with the input voltage value B. Then, when these magnitude relationships are inverted, the inverted information is input to the information processing device 4 as an interrupt signal, so that the information processing device 4 reads the resistance value designation address at that time. That is, the information processing device 4 recognizes one of the 2 N different resistance values obtained by combining the N resistors existing in the resistance array 3 by the interrupt signal from the comparing means 2 and simultaneously incorporates the built-in resistance value. The drive address of this combination resistor, ie, the output bit state of the information processing device 4, is stored in a memory such as an EEPROM or a RAM. The resistance designation address stored in this manner is converted into a second input voltage for the comparing means 2, and this is used as a reference voltage for the comparing means 2. The accuracy of the reference voltage value based on the resistance value designation address stored in this way is determined by the number N of resistors in the resistor array 3. That is, since there are 2 N combinations of resistances obtained by using N resistors, the voltage value input to the comparison means 2 is also 2 N , so that the number of resistors N is large. , The accuracy is improved.
次に本願発明第二の実施の形態にかかる相検出器について説明する。 なお第一 の実施の形態と重複する部分については説明を省略し、 異なる部分についてのみ 説明を行なう。 第一の実施の形態においては、 情報処理装置 4に内蔵されたメモ リにより組み合わせ抵抗のドライブ I C 5 a駆動ァドレス、 すなわち情報処理装 置 4の出力ビッ ト状態を記憶することにより、基準電圧値の設定を行なっていた。 しかるに本実施形態においては、 組み合わせ抵抗のドライブ I C 5 a駆動ァドレ スを記憶するための記憶手段として、 相検出器内に E E P R O Mや R A M等のメ モリを内蔵させる。 このような構成とした場合には、 該メモリにおいて相検出器 の出力ビッ ト状態を記憶すればよいことになり、 相検出器単体での基準電圧値設 定が可能となる。 言いかえれば、 このような構成の相検出器は A S I C、 又は H 1 C (ハイプリヅ ト I C ) 化されたワンチヅプ I c、 又は基板上に各種 I cとデ イスクリート部品で回路構成された装置において、 そのワンチヅプ I C又は装置 毎に自ら基準電圧値を設定可能とするプログラマブル相検出器としての機能を有 する。 従って、 例えば情報処理装置 4を使用しない機器に対して適用することが できる。 すなわち相検出器に外部から ON信号を入力するだけで予め記憶された 抵抗組み合わせに基づく基準電圧を設定することが可能となる。 Next, a phase detector according to a second embodiment of the present invention will be described. The description of the same parts as those in the first embodiment will be omitted, and only different parts will be described. In the first embodiment, the reference voltage value is stored by storing the drive address of the combined resistor drive IC 5a using the memory incorporated in the information processing device 4, that is, the output bit state of the information processing device 4. Had been set. However, in the present embodiment, a memory such as an EEPROM or a RAM is incorporated in the phase detector as a storage means for storing the drive address of the drive IC 5a of the combination resistance. In such a configuration, the memory only needs to store the output bit state of the phase detector, and the reference voltage value can be set by the phase detector alone. In other words, such a phase detector is an ASIC or H In a 1C (hyperchip IC) one-chip IC, or in a device composed of various Ic and discrete parts on a circuit board, it is possible to set the reference voltage value for each one-chip IC or device. Has a function as a programmable phase detector. Therefore, for example, the present invention can be applied to a device that does not use the information processing device 4. That is, it is possible to set a reference voltage based on a previously stored combination of resistances simply by inputting an ON signal from the outside to the phase detector.
次に本願発明第三の実施の形態にかかる赤外線温度計の一例として耳式体温計 を第 2図に示す。 耳式体温計 7は、 本体ケース 8と、 本体ケース 8に収納された 赤外線検出部 9及び温度測定回路部 1 0とから構成されている。 赤外線検出部 9 は導波管 1 1 とサ一モパイルセンサ 1 2とを有し、 温度測定回路部 1 0はプリン ト基板 1 3、 スイッチ 1 4、 及び表示装置 1 5を有している。 プリント基板 1 3 には、 基準温度値を設定するためのコンパレ一タ等各素子が組み込まれている。 これら赤外線検出部 9 と温度測定回路部 1 0は図 2に示すように板状のプリ ン ト基板アセンブリ 1 6に組み込まれて固定されている。 かかるプリント基板ァセ ンブリ 1 6には導波管 1 1、 サ一モパイルセンサ 1 2、 プリント基板 1 3が取付 けられている。  Next, an ear thermometer is shown in FIG. 2 as an example of an infrared thermometer according to the third embodiment of the present invention. The ear thermometer 7 includes a main body case 8, an infrared detection unit 9 and a temperature measurement circuit unit 10 housed in the main body case 8. The infrared detecting section 9 has a waveguide 11 and a thermopile sensor 12, and the temperature measuring circuit section 10 has a print substrate 13, a switch 14, and a display device 15. The printed circuit board 13 incorporates various elements such as a comparator for setting a reference temperature value. The infrared detecting section 9 and the temperature measuring circuit section 10 are incorporated and fixed in a plate-shaped print board assembly 16 as shown in FIG. The waveguide 11, the thermopile sensor 12, and the printed circuit board 13 are attached to the printed circuit board assembly 16.
本体ケース 8先端のノズル 1 7は、 耳孔に深く挿入されないように先端に行く ほど細くなるように形成されている。 また、 赤外線検出部 9は本体ケース 8の先 端に配置され、ノズル 1 7の先端に設けられた孔より入射する赤外線を検出する。 赤外線検出部 9は第 2図及び第 3図に示すように、 鼓膜から放射される赤外線 を検出するサ一モパイルセンサ 1 2 と、 本体ケース 8先端のノズル 1 7内に設置 され、 鼓膜から放射される微弱な赤外線を効率よく伝搬させるための導波管 1 1 とを有している。  The nozzle 17 at the tip of the main body case 8 is formed so as to become thinner toward the tip so as not to be inserted deeply into the ear canal. Further, the infrared detecting section 9 is disposed at the front end of the main body case 8 and detects infrared light incident through a hole provided at the front end of the nozzle 17. As shown in FIGS. 2 and 3, the infrared detector 9 is installed in a thermopile sensor 12 for detecting infrared rays radiated from the eardrum and a nozzle 17 at the tip of the main body case 8, and is radiated from the eardrum. And a waveguide 11 for transmitting weak infrared rays efficiently.
次にサーモパイルセンサ 1 2の内部構造についてその主要部を第 4図及び第 5 図に示す。  Next, main parts of the internal structure of the thermopile sensor 12 are shown in FIG. 4 and FIG.
第 4図に示すように、 シリコンからなり中央にピヅト部 1 9が開口された数百 ミクロン程度の厚さを持つヒートシンク 1 8は上面及び下面に電気的な絶縁性を 有する温接合部支持膜 2 0及び絶縁薄膜 3 8が形成されている。 温接合部支持膜 As shown in FIG. 4, a heat sink 18 made of silicon and having a thickness of about several hundred microns with a hole 19 formed in the center is a hot junction support film having electric insulation on the upper and lower surfaces. 20 and an insulating thin film 38 are formed. Warm joint support membrane
2 0は、 酸化シリコンあるいは窒化シリコン等によって形成され、 またその厚さ 0 09340 20 is formed of silicon oxide or silicon nitride or the like, and its thickness 0 09340
は熱容量を小さ くする目的から数ミクロン程度となっている。 Is several microns for the purpose of reducing heat capacity.
第 5図に示すように、 ヒートシンク 1 8上面から温接合部支持膜 2 0上面にか けて第一熱電対材料 2 1及び第二熱電対材料 2 2が交互に多数配線されている。 これら両金属をヒートシンク 1 8上面で接合することにより冷接合部 2 3、 温接 合部支持膜 2 0上面で接合することにより温接合部 2 4がそれぞれ形成されてお り、 このようにして熱電対を直列に接続することによりサ一モパイル 2 5が形成 されている。 サ一モパイル 2 5の両端には出力端子 2 6が設けられている。 温接 合部 2 4は、 上面を赤外線吸収体 2 7によって覆われている。 あるいはサ一モパ ィル 2 5を第 6図に示すような形状で構成し、 温接合部 2 4を赤外線吸収体で覆 わない構造としてもよい。 なおここで、 本明細書において、 冷接合部 2 3が形成 された領域を冷接合部領域 2 8、 温接合部 2 4が形成された領域を温接合部領域 As shown in FIG. 5, a large number of first thermocouple materials 21 and second thermocouple materials 22 are alternately wired from the upper surface of the heat sink 18 to the upper surface of the hot junction supporting film 20. By joining these two metals on the upper surface of the heat sink 18, the cold junction 23 and the hot junction support film 20 are joined by the upper surface to form the hot junction 24, respectively. A thermopile 25 is formed by connecting thermocouples in series. Output terminals 26 are provided at both ends of the thermopile 25. The thermal bonding part 24 has its upper surface covered with an infrared absorber 27. Alternatively, the thermopile 25 may be formed in a shape as shown in FIG. 6, and the thermal junction 24 may not be covered with the infrared absorber. In this specification, the region where the cold junction 23 is formed is referred to as a cold junction region 28 and the region where the hot junction 24 is formed is referred to as a hot junction region.
2 9と称し、 以下必要に応じてこの名称を用いる。 This name will be used as needed.
第 4図に示すようにヒ一トシンク 1 8上面には、 自己制御型正温度係数特性を 含む抵抗体からなる発熱素子 3 0 と、 周じく自己制御型正温度係数特性を含む抵 抗体からなる冷接合部測温素子 3 1 とが、 ダイアフラム 3 2の中心部から見て冷 接合部領域 2 8の四辺の外側に、 冷接合部測温素子 3 1、 発熱素子 3 0の順に配 置されている。 また発熱素子 3 0相互間、 及び冷接合部測温素子 3 1相互間は電 気的に接続されており、 両端には A u等からなる電極 3 3及び 3 4が形成されて いる。  As shown in FIG. 4, on the upper surface of the heat sink 18, a heating element 30 composed of a resistor having a self-control type positive temperature coefficient characteristic and a resistive antibody including a self-control type positive temperature coefficient characteristic are formed. The cold junction temperature measuring element 31 is located outside the four sides of the cold junction area 28 when viewed from the center of the diaphragm 32, and the cold junction temperature measuring element 31 and the heating element 30 are arranged in this order. Have been. The heating elements 30 and the cold junction temperature measuring elements 31 are electrically connected to each other, and electrodes 33 and 34 made of Au or the like are formed at both ends.
なおここで本明細書において、 発熱素子 3 0が形成された領域を発熱素子領域 In this specification, the region where the heating element 30 is formed is referred to as a heating element region.
3 5、 冷接合部測温素子 3 1が形成された領域を冷接合部測温素子領域 3 6 と称 し、 以下必要に応じてこの名称を用いる。 35, The area where the cold junction temperature measuring element 31 is formed is referred to as a cold junction temperature measuring element area 36, and this name will be used as necessary hereinafter.
以上のようなサ一モパイルセンサ 1 2をセンサステム ·3 7にダイボンドするこ とにより、 サーモパイルセンサ 1 2がセンサステム 3 7に固定される。  The thermopile sensor 12 is fixed to the sensor stem 37 by die-bonding the thermopile sensor 12 to the sensor stem 37 as described above.
次に上記サ一モパイルセンサ 1 2の製造プロセスについて説明する。 まず C V D装置等により、 ヒートシンク 1 8となるシリコンペレヅ ト、 又はシリコンチッ プ、 又はシリコンウェハの両面に酸化シリコンあるいは窒化シリコンからなる温 接合部支持膜 2 0を数ミクロンの厚さに形成する。 次にヒートシンク 1 8の表面 に異種金属 (第一熱電対材料 2 1及び第二熱電対材料 2 2 ) を配置してこれらを 直列に接続し、冷接合部 2 3及び温接合部 2 4を有するサ一モパイルを形成する。 サ一モパイル 2 5を形成する第一熱電対材料 2 1及び第二熱電対材料 2 2の組み 合わせとしては、 例えばポリシリコンとアルミニウム、 あるいはビスマスとアン チモン等が挙げられる。 Next, a manufacturing process of the thermopile sensor 12 will be described. First, a thermal bonding support film 20 made of silicon oxide or silicon nitride and having a thickness of several microns is formed on both surfaces of a silicon pellet or silicon chip serving as a heat sink 18 or a silicon wafer by a CVD apparatus or the like. Next, dissimilar metals (the first thermocouple material 21 and the second thermocouple material 22) are arranged on the surface of the heat sink 18 and these are disposed. They are connected in series to form a thermopile having a cold junction 23 and a hot junction 24. Examples of the combination of the first thermocouple material 21 and the second thermocouple material 22 forming the thermopile 25 include polysilicon and aluminum, or bismuth and antimony.
次にヒートシンク 1 8の表面に発熱素子 3 0及び冷接合部測温素子 3 1の自己制 御型正温度係数特性を含む抵抗体を蒸着法により形成する。 またこれらは、 ぺー スト焼き付けにより形成することもできる。 あるいは、 面状印刷により形成して もよい。 Next, on the surface of the heat sink 18, a resistor including a self-controlling positive temperature coefficient characteristic of the heating element 30 and the cold junction temperature measuring element 31 is formed by vapor deposition. They can also be formed by paste baking. Alternatively, it may be formed by planar printing.
さらにヒートシンク 1 8の両面に C V D装置等により温接合部支持膜 2 0 と同 一材料からなる絶縁薄膜 3 8を堆積させて覆った後、 サーモパイル 2 5の下の領 域をウエッ トエッチングにより一部除去する。 その後、 酸化膜をフッ酸等により ゥエツ トエッチングして除去すると、 サ一モパイルセンサ 1 2が完成する。  Further, an insulating thin film 38 made of the same material as the thermal bonding support film 20 is deposited and covered on both surfaces of the heat sink 18 by a CVD device or the like, and the area under the thermopile 25 is wet-etched. Remove part. Thereafter, the oxide film is removed by wet etching using hydrofluoric acid or the like, whereby the thermopile sensor 12 is completed.
次に上記本願発明第一の実施の形態にかかる赤外線温度計 (耳式体温計) にお ける自己制御型正温度係数係数特性を含む抵抗体についての詳細について説明す る。  Next, the details of the resistor including the self-control positive temperature coefficient coefficient characteristic in the infrared thermometer (ear thermometer) according to the first embodiment of the present invention will be described.
自己制御型正温度係数特性を含む抵抗体は第 7図の抵抗—温度特性グラフに示 すように、 通電によって発熱体の温度が上昇するに伴い、 その電気抵抗が増大す る性質を有する発熱体である。 特に自己制御型正温度特性を含む抵抗体はある温 度 (自己飽和安定温度) で急激に電気抵抗が増加する性質を有している。 一般に 抵抗体に電流を流すと発熱するが、 自己制御型正温度係数特性を含む抵抗体は前 記のように自己飽和安定温度で急激に電気抵抗が増加するため、 流れる電流が抑 制され、 その結果自己制御型正温度係数特性を含む抵抗体は自己飽和安定温度の 一定温度に維持される。 すなわち、 自己制御型正温度係数特性を含む抵抗体は自 分自身で発熱温度を制御することができる抵抗体である。 具体的には、 導電性力 —ポンからなる導電性樹脂、 あるいはこのような導電性樹脂に対して適宜半導体 を混合させたもの等である。  As shown in the resistance-temperature characteristic graph of Fig. 7, a resistor with a self-control type positive temperature coefficient characteristic has a property that its electrical resistance increases as the temperature of the heating element rises due to energization. Body. In particular, resistors with self-controlling positive temperature characteristics have the property that the electrical resistance increases rapidly at a certain temperature (self-saturation stable temperature). Generally, when a current flows through a resistor, the resistor generates heat.However, as described above, a resistor with a self-controlling positive temperature coefficient characteristic has an abrupt increase in electrical resistance at a self-saturation stable temperature, so that the flowing current is suppressed. As a result, the resistor including the self-control type positive temperature coefficient characteristic is maintained at a constant self-saturation stable temperature. That is, the resistor including the self-control type positive temperature coefficient characteristic is a resistor that can control the heat generation temperature by itself. Specifically, the conductive resin is a conductive resin made of a resin, or a mixture of such a conductive resin and a semiconductor as appropriate.
発熱素子 3 0の自 3制御型正温度係数特性を含む抵抗体は、 これに所定の定電 圧を印加することにより発熱して冷接合部領域 2 8を加熱制御する。 そしてその 温度が自己飽和安定温度に達すると、みずからその温度が一定温度に維持される。 従って、 複雑な安全装置を設けなくても過熱事故を自ら防ぐことができる。 The resistor having the self-controlling positive temperature coefficient characteristic of the heating element 30 generates heat by applying a predetermined constant voltage to the heating element 30 to control the heating of the cold junction region 28. Then, when the temperature reaches the self-saturation stable temperature, the temperature is naturally maintained at a constant temperature. Therefore, an overheating accident can be prevented by itself without providing a complicated safety device.
次に、 上記本願発明第三の実施の形態にかかる赤外線温度計 (耳式体温計) を 用いた温度測定方法について説明する。  Next, a temperature measurement method using the infrared thermometer (ear thermometer) according to the third embodiment of the present invention will be described.
サ一モパイルセンサ 1 2は測定夕一ゲッ トから放射される赤外線量及び冷接合 部領域 2 8の温度に依存する電圧を出力する。 すなわち、 サ一モパイルセンサ 1 2は測定ターゲッ トの温度 (すなわち温接合部領域 2 9の温度) と周囲環境温度 (冷接合部領域 2 8の温度) との差に応じた電圧を出力し、 かかる出力電圧値は 温接合部領域 2 9の温度が冷接合部領域 2 8の温度よりも高い場合には正の電圧 値として出力され、 温接合部領域 2 9の温度が冷接合部領域 2 8の温度よりも低 い場合には負の電圧値として出力される。  The thermopile sensor 12 outputs a voltage that depends on the amount of infrared radiation radiated from the measurement target and the temperature of the cold junction region 28. That is, the thermopile sensor 12 outputs a voltage corresponding to the difference between the temperature of the measurement target (that is, the temperature of the hot junction region 29) and the ambient environment temperature (the temperature of the cold junction region 28). The output voltage value is output as a positive voltage value when the temperature of the hot junction region 29 is higher than the temperature of the cold junction region 28, and the temperature of the hot junction region 29 is If the temperature is lower than, it is output as a negative voltage value.
本願発明においては、 温接合部領域 2 9の温度が冷接合部領域 2 8の温度より も低く、 サーモパイル出力電圧値が負となる場合においても、 発熱素子 3 0によ る加熱制御のみで温度測定を可能とするために、 サ一モパイル出力の負領域にお いて、 基準電圧値を設ける。 そして発熱素子 3 0により冷接合部領域 2 8を加熱 したときの基準電圧値に対する相反転を検出し、 その相反転に同期して温度測定 を行う。  In the present invention, even when the temperature of the hot junction region 29 is lower than the temperature of the cold junction region 28 and the thermopile output voltage value becomes negative, the temperature is controlled only by the heating control by the heating element 30. To enable measurement, a reference voltage value is provided in the negative region of the thermopile output. Then, phase inversion with respect to the reference voltage value when the cold junction region 28 is heated by the heating element 30 is detected, and the temperature is measured in synchronization with the phase inversion.
まず基準電圧値を設定する方法について、 第 2図に示した耳式体温計の場合を 例として説明する。  First, a method of setting the reference voltage value will be described by taking the case of an ear thermometer shown in FIG. 2 as an example.
基準電圧値を設定するに際しては、 プリント基板 1 3に組込まれた相検出器を 用いる。 この相検出器の基本構成は、 第一の実施形態において第 1図に示したも のとほぼ同じであるが、 さらに理解を助けるために第 8図に示したプロック図を も参照して説明する。  When setting the reference voltage value, a phase detector built into the printed circuit board 13 is used. The basic configuration of this phase detector is almost the same as that shown in FIG. 1 in the first embodiment, but will be explained with reference to the block diagram shown in FIG. 8 for further understanding. I do.
耳式体温計において、 測定許容最高周囲温度を 4 0 、 測定夕一ゲッ ト (鼓膜) 最低温度を 3 5 °Cと予測し、 これらの差 (マイナス 5 . O d e g ) に対応する電 圧値を、 サーモパイル出力電圧値の負領域側に設定する。  For an ear thermometer, the maximum permissible ambient temperature for measurement was estimated to be 40, and the minimum temperature for measurement (eardrum) at night was estimated to be 35 ° C, and the voltage value corresponding to the difference (minus 5.0 °) was calculated. Set to the negative side of the thermopile output voltage value.
第一に周囲環境温度に対して黒体炉を 5 . 0 d e g低い温度に設定する。 この 黒体炉に対してサ一モパイルセンサ 1 2が出力する電圧をサーモパイル出力端子 4 0より取り出し、 相検出器 1へと入力する。 相検出器 1の内部には、 増幅器 3 9 a、 比較手段 2、 ドライブ I C 5 a、 及び抵抗アレイ 3が内蔵されている。 サ —モパイル出力電圧はまず増幅器 3 9 aにおいて規定倍率で増幅され、 その後、 比較手段 2に対して第一の入力電圧値として入力される。 次に情報処理装置 4が ドライブ I C 5 aを駆動し、 抵抗アレイ 3における N個の抵抗を組みあわせ、 こ れら組み合わせ抵抗により得られる 2 N通りの多段階の電圧値を、 比較手段 2に 対して第二の入力電圧値として順次入力スキャンする。 比較手段 2は、 第一の入 力電圧値と第二の入力電圧値とを比較し、 これらの大小関係が反転すると、 その 反転情報を情報処理装置 4に対して割り込み信号として入力することにより、 情 報処理装置 4はそのときの抵抗値指定ァドレスを読込む。 すなわち情報処理装置 4は、 抵抗アレイ 3に存在する N個の抵抗を組み合わせて得られる 2 Nとおりの 異なる抵抗値の中から一抵抗値を比較手段 2からの割り込み信号により認識し、 同時に情報処理装置 4に内蔵された E E P R O Mや R A M等のメモリ内にこの組 み合わせ抵抗の ドライブ I C駆動 5 aアドレス、 すなわち情報処理装置 4の出力 ビッ ト状態を記憶する。 First, set the temperature of the blackbody furnace 5.0 deg lower than the ambient temperature. The voltage output from the thermopile sensor 12 for this black body furnace is taken out from the thermopile output terminal 40 and input to the phase detector 1. Inside the phase detector 1, an amplifier 39a, a comparing means 2, a drive IC 5a, and a resistor array 3 are incorporated. Sa —The mopile output voltage is first amplified by the amplifier 39a at a specified magnification, and then input to the comparing means 2 as a first input voltage value. Next, the information processing device 4 drives the drive IC 5a, combines the N resistors in the resistor array 3, and outputs the 2N multi-step voltage values obtained by these combined resistors to the comparing means 2. On the other hand, input scanning is sequentially performed as a second input voltage value. The comparing means 2 compares the first input voltage value and the second input voltage value, and when the magnitude relationship is inverted, the inverted information is input to the information processing device 4 as an interrupt signal. Then, the information processing device 4 reads the resistance value designation address at that time. That is, the information processing device 4 recognizes one resistance value from the 2 N different resistance values obtained by combining the N resistors present in the resistance array 3 by the interrupt signal from the comparing means 2 and simultaneously processes the information. The drive IC drive 5 a address of the combination resistor, that is, the output bit state of the information processing device 4 is stored in a memory such as an EEPROM or a RAM built in the device 4.
また既に第二の実施の形態において説明したように、 E E P R O Mや R A M等 のメモリは相検出器 1に内蔵させることも可能である。 このような構成とした場 合には従って相検出器単体で基準電圧を記憶することが可能となる。  Further, as already described in the second embodiment, memories such as EEPROM and RAM can be incorporated in the phase detector 1. With such a configuration, the reference voltage can be stored by the phase detector alone.
このようにして記憶された抵抗値指定ァドレスは、 比較手段 2に対して第二の 入力電圧に変換され、 これが比較手段 2の基準電圧となる。 このようにして記憶 された抵抗値指定ァドレスに基づく基準電圧値の精度は、 抵抗アレイ 3における 抵抗の数 Nにより決定される。 すなわち N個の抵抗を用いて得られる組み合わせ 抵抗の数は 2 Nとおり存在するので、 比較手段 2に対して入力スキャンされる電 圧値も 2 Nとおり存在することになり、 抵抗の数 Nを大きくするほどその精度が 向上するものである。 The resistance value designation address stored in this way is converted into a second input voltage for the comparing means 2, and this is used as a reference voltage for the comparing means 2. The accuracy of the reference voltage value based on the resistance value designation address stored in this way is determined by the number N of resistors in the resistor array 3. That is, since there are 2 N combinations of resistances obtained using N resistors, there are also 2 N voltage values that are input-scanned to the comparison means 2. The accuracy increases as the size increases.
例えば今、 抵抗アレイが 1 2個の抵抗により構成されるものとすれば、 組み合 わせ抵抗によって 2 1 2すなわち 4 0 9 6段階の電圧値を得る。従って、 この抵抗 アレイを用いると、 5 . 0 / 4 0 9 6すなわち 0 . 0 0 1 2 d e gの温度精度に おいて、 所望する基準温度値 (マイナス 5 . 0 d e g ) 'に対応する基準電圧値を 設定することができる。 For example now it is assumed that resistor array is composed of one of two resistors, to obtain a 2 1 2 That voltage value of 4 0 9 6 stages by combination resistance. Therefore, when this resistor array is used, the reference voltage corresponding to the desired reference temperature value (minus 5.0 deg) 'is obtained at a temperature accuracy of 5.0 / 4096, that is, 0.0012 deg. Value can be set.
一般的に、 サーモパイル製品間においてその出力電圧値は ± 2 0〜3 0 %の誤 差を発生するといわれる。 仮に ± 3 0 %の誤差を含むとすれば、 周囲温度に対す る黒体炉基準温度の差であるマイナス 5 . O d e gに対して、 サ一モパイル出力 電圧値の温度換算値は 3 . 5〜6 . 5 d e gの範囲において設定される。従って、 上述のように振れ幅 3 . 0 d e gに対して 4 0 9 6段階の基準電圧スキヤンを行 つた場合、 温度精度は 3 . 0 / 4 0 9 6すなわち 0 . 0 0 0 7 3 d e gとなり、 更に高精度に設定することも可能となる。 Generally, the output voltage value between thermopile products is ± 20 to 30% error. It is said to make a difference. If an error of ± 30% is included, the temperature conversion value of the output voltage value of the thermopile is 3.5, which is minus 5. O deg, which is the difference of the black body furnace reference temperature with respect to the ambient temperature. It is set in the range of ~ 6.5 deg. Therefore, as described above, when a reference voltage scan of 406 steps is performed with respect to the swing width of 3.0 deg, the temperature accuracy becomes 3.0 / 4096, that is, 0.000773 deg. It is also possible to set even higher precision.
出荷段階において個々の製品に対してこのようにして基準電圧値を設定すると、 サ一モパイル個々の特性に基づく出力特性誤差、 サーモパイルの 「感度の温度係 数」 による誤差、 及び増幅器を含めて赤外線温度計を構成するその他の部品個々 に起因する出力特性誤差が総合されて一括校正される。 すなわち、 このようにし て設定された基準電圧値においては、 従来の 「零位法」 を用いなく ともあたかも このときののゼロ点のごとく、 「出力誤差」や「感度の温度係数」が存在しない。 従って、 後述のようにサ一モパイルの冷接合部領域を加熱制御し、 サ一モパイル 出力電圧が基準電圧値を一定勾配において通過するようにして、 このときのサー モパイル出力電圧値の基準電圧値に対する相反転を検出し、 この相反転に同期し て冷接合部領域の温度検出を行うことにより、 測定ターゲッ トの温度測定を高精 度に行うことができる。  When the reference voltage value is set for each product in the shipping stage in this way, errors in the output characteristics based on the individual characteristics of the thermopile, errors due to the temperature coefficient of the thermopile, and infrared radiation including the amplifier Output characteristic errors caused by each of the other components that compose the thermometer are integrated and calibrated collectively. In other words, in the reference voltage value set in this way, there is no "output error" or "temperature coefficient of sensitivity" as if it were the zero point without using the conventional "zero method". . Therefore, as described later, the cold junction region of the thermopile is controlled to be heated so that the output voltage of the thermopile passes through the reference voltage value at a constant gradient, and the reference voltage value of the thermopile output voltage value at this time is controlled. By detecting the phase inversion with respect to the temperature and detecting the temperature of the cold junction region in synchronization with the phase inversion, the temperature of the measurement target can be measured with high accuracy.
次に、 以上のように基準電圧値が設定された耳式体温計 7を用いて温度測定を 行う際の手順を説明する。  Next, a procedure for performing temperature measurement using the ear thermometer 7 in which the reference voltage value is set as described above will be described.
サ一モパイルセンサ 1 2に接続された相検出器 1内部の増幅器 3 9 aは、 サ一 モパイルセンサ 1 2から出力される微小電圧を規定倍率において増幅する。 増幅 器 3 9 aに接続された比較手段 2は、 増幅器 3 9 aにより増幅されたサ一モパイ ルセンサ 1 2の出力電圧値が予め設定された基準電圧値に対して相反転したか否 かを判定して相反転 「有」 か 「無」 かの 2ビッ トデジタル信号として情報処理装 置 4に送る。  The amplifier 39a inside the phase detector 1 connected to the thermopile sensor 12 amplifies the minute voltage output from the thermopile sensor 12 at a specified magnification. The comparing means 2 connected to the amplifier 39a determines whether or not the output voltage value of the thermopile sensor 12 amplified by the amplifier 39a is inverted with respect to a preset reference voltage value. Judge and send it to the information processing device 4 as a 2-bit digital signal of “Yes” or “No”.
冷接合部測温素子 3 1の自己制御型正温度係数特性を含む抵抗体は、 冷接合部 領域 2 8の温度を測定するための測温素子であり、 自己抵抗値の変化を電圧値に 変換し、 この電圧値は冷接合部測温素子 3 1の自己制御型正温度係数特性を含む 抵抗体に接続された増幅器 3 9 bにより増幅される。 情報処理装置 4には A/ D変換器が内蔵されている。 かかる情報処理装置 4は 増幅器 3 9 により増幅された冷接合部測温素子 3 1の出力信号を、 相検出器 1 内部の比較手段 2からの相反転 「有」 の出力信号に同期して A/ D変換する。 し かる後、 演算処理を行って測定ターゲットの温度値を得て、 これを表示装置 1 5 に表示する。 The resistor including the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 31 is a temperature measuring element for measuring the temperature of the cold junction area 28, and the change of the self-resistance value is converted to a voltage value. This voltage value is amplified by an amplifier 39 b connected to a resistor including a self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 31. The information processing device 4 includes an A / D converter. The information processing device 4 synchronizes the output signal of the cold junction temperature measuring element 31 amplified by the amplifier 39 with the output signal of the phase inversion “yes” from the comparison means 2 inside the phase detector 1 in accordance with A. / D to convert. Thereafter, arithmetic processing is performed to obtain the temperature value of the measurement target, and this is displayed on the display device 15.
以上に示した温度測定回路により、 どのように測定夕一ゲヅ トの温度が測定さ れるかを、 第 9図のフローチャートを参照してより詳細に説明する。  How the temperature of the measurement gate is measured by the temperature measurement circuit described above will be described in more detail with reference to the flowchart of FIG.
本実施の形態にかかる赤外線温度計 (耳式体温計 7 ) を用いて温度測定を行う 場合、 その手順は測定準備段階と測定段階とに大きく分けられるが、 まず測定準 備段階について説明する。 スィッチ 1 4を O Nとすることにより情報処理装置 4 が作動し (1)、 増幅器 3 9 bを介して冷接合部測温素子 3 1の出力が入力され、 情報処理装置 4に内蔵の A /D変換器により温度換算されて冷接合部領域 2 8の 温度値を得て、 その温度値が所定の値 (例えば鼓膜温度付近の値である 3 4 °C ) 以上であるか否かを判断する(2)。  When the temperature is measured using the infrared thermometer (ear thermometer 7) according to the present embodiment, the procedure is roughly divided into a measurement preparation stage and a measurement stage. First, the measurement preparation stage will be described. When the switch 14 is turned on, the information processing device 4 operates (1), the output of the cold junction temperature measuring element 31 is input via the amplifier 39 b, and the A / B The temperature value of the cold junction region 28 is obtained by converting the temperature by the D converter, and it is determined whether or not the temperature value is equal to or higher than a predetermined value (for example, a value near the eardrum temperature of 34 ° C). Yes (2).
そして冷接合部領域 2 8の温度値が前記所定値以上であれば、 その温度値の変 化 (外乱による温度の変動) が許容範囲内にあるか否かをを判断し (3)、 温度変 化率が一定領域内の値であれば、 さらにそのような温度の平衡状態が規定時間以 上継続した (一定時間以上外乱の少ない安定状態が紲続しているか) か否かを判 断する (4)。  If the temperature value of the cold junction region 28 is equal to or higher than the predetermined value, it is determined whether or not the change in the temperature value (temperature change due to disturbance) is within an allowable range (3). If the rate of change is within a certain range, it is further determined whether or not such a temperature equilibrium state has continued for a specified time or more (whether a stable state with little disturbance for a certain time or more continues). Yes (4).
冷接合部領域 2 8の温度値が前記所定値以下である場合には、 情報処理装置 4 により ドライブ I C 5 bが駆動されて発熱素子 3 0により冷接合部領域 2 8及び 冷接合部測温素領域 3 6が一定温度のバイアス温度まで加熱される (5)。 このバ ィァス温度は、例えば鼓膜温度近傍である 3 4 °Cに設定する等、適宜決定される。 またこのとき、 発熱素子 3 0は第 1 0図において示されるようにフィードバヅク 制御される。 温度を一定に維持するために一般的に行われているフィ一ドパヅク 制御においては、 温度が一定となるまでに長時間を要する点、 及び温度の外乱に より温度変化が起こりやすい点が問題となる。 しかしここで行うフィ一ドパック 制御はあくまでバイアス温度を印加して測定時間短縮を図ることを目的として、 目標とする一定温度値に対する規定閾値内において強制的に温度を変動させる 「振り子式温度制御」である (第 1 0図参照のこと)。 このように冷接合部領域 2 8及び冷接合部測温素子領域 3 6の温度が、 設定されたパイァス温度を中心とし て規定閾値領域内にあればその効果は十分に得られる。 すなわちパイァス温度に 達するまでの時間を短時間とすることが可能であり、 また温度の外乱要因があつ た場合にもその影響がよほど犬でない限りは特に問題とはならない。 When the temperature value of the cold junction region 28 is equal to or lower than the predetermined value, the drive IC 5 b is driven by the information processing device 4, and the cold junction region 28 and the cold junction temperature measurement are performed by the heating element 30. The element region 36 is heated to a constant bias temperature (5). This bias temperature is appropriately determined, for example, by setting it at 34 ° C. which is near the eardrum temperature. At this time, the heating element 30 is subjected to feedback control as shown in FIG. In the feedback control, which is generally performed to maintain a constant temperature, there are problems in that it takes a long time for the temperature to become constant and that the temperature is likely to change due to temperature disturbance. Become. However, in the feed pack control performed here, the temperature is forcibly fluctuated within the specified threshold value for the target constant temperature value for the purpose of applying the bias temperature and shortening the measurement time. This is “pendulum temperature control” (see Fig. 10). As described above, if the temperatures of the cold junction region 28 and the cold junction temperature measuring element region 36 are within the specified threshold region around the set Piass temperature, the effect can be sufficiently obtained. In other words, the time required to reach the Piass temperature can be shortened, and if there is a disturbance factor in the temperature, there is no particular problem as long as the influence is not so great as the dog.
情報処理装置 4は、 このようにして冷接合部測温素子 3 1の出力により冷接合 部領域 2 8の温度が規定閾値領域内にあるか否か、 またその「振り子式温度制御」 の温度勾配が規定内の変化率である (すなわち温度の外乱が許容範囲内である) か否かを判断し (3)、 温度及びその変化率がともに領域内の値であれば、 さらに そのような規定内の変化率が規定時間以上継続した (一定時間以上外乱の少ない 安定状態が継続しているか) か否かを判断する (4)。  The information processing device 4 determines whether the temperature of the cold junction region 28 is within the specified threshold region based on the output of the cold junction temperature measuring element 31 in this way, and determines the temperature of the “pendulum temperature control”. Determine whether the gradient is within the specified rate of change (ie, the temperature disturbance is within the permissible range) (3), and if both the temperature and the rate of change are It is determined whether the rate of change within the regulation has continued for the prescribed time or more (whether a stable state with little disturbance has continued for a certain time or more) (4).
さて、 冷接合部領域 2 8の初期温度値が所定値以上及び以下双方の場合におい て、 冷接合部領域 2 8の温度変化率が規定内である (外乱による温度変動が一定 以下である) 状態が規定時間以上継続したと判断された場合、 直ちに測定夕一ゲ ッ トの温度測定を行うことが可能である。 しかし、 このように冷接合部領域 2 8 が周囲環境温度あるいはパイァス温度の一定温度で安定していると判断されたと しても、 一定範囲内において外乱による若干の影響を受けている可能性がある。 その結果として、 測定夕一ゲッ トの温度測定値において微小ながらそのような外 乱による測定誤差を生じることが避けられない。 そこで、 温度の外乱による測定 値の測定精度の変動をある程度予測して補正を行うことが望ましい。 以下にその 手順を説明する。  By the way, when the initial temperature value of the cold junction region 28 is both above and below the predetermined value, the temperature change rate of the cold junction region 28 is within the specified range (the temperature fluctuation due to disturbance is below a certain level). If it is determined that the condition has continued for the specified time or longer, it is possible to immediately measure the temperature of the target for measurement. However, even if it is determined that the cold junction region 28 is stable at a constant ambient temperature or Piers temperature, it is possible that the cold junction region 28 is slightly affected by disturbance within a certain range. is there. As a result, it is inevitable that measurement errors due to such disturbances will occur, albeit minutely, in the temperature measurement value at the time of measurement. Therefore, it is desirable to perform correction by predicting to some extent fluctuations in measurement accuracy of measured values due to temperature disturbance. The procedure is described below.
情報処理装置 4の内部記憶装置には予め、 周囲璟境温度及び 「振り子式温度制 御」 を行った場合の温度に関して、 規定閾値内における変化率が変化率表として それぞれ格納されている。そこで、情報処理装置 4はこの変化率表を読み込み(6)、 実測された冷接合部領域 2 8の温度変化率と比較を行い、 一致する数値があれば ( 7)、 その数値により温度の外乱による影響度合いを判断し (8)、 その後測定さ れる温度値における補正の度合を判断し (9)、 表示装置 1 5に表示する (10)。 このときの表示方法としては、 例えば前記補正の多寡に関してその度合を予めラ ンク設定しておき、 そのランクを表示すること等が考えられる。 またこの段階で 測定準備が完了するので、 表示装置 1 5において同時にその旨を示すことが望ま しい。 The internal storage device of the information processing device 4 previously stores, as a change rate table, a change rate within a specified threshold value with respect to the ambient environmental temperature and the temperature when the “pendulum type temperature control” is performed. Then, the information processing device 4 reads the change rate table (6), compares it with the actually measured temperature change rate of the cold junction region 28, and finds a matching numerical value (7). The degree of influence due to disturbance is determined (8), and the degree of correction in the measured temperature value is determined (9), and displayed on the display device 15 (10). As a display method at this time, for example, it is conceivable to rank the degree of the correction in advance and display the rank. Also at this stage Since the preparation for the measurement is completed, it is desirable that the display device 15 shows the fact at the same time.
次に測定タ一ゲッ トの温度測定段階に進む。 耳式体温計 7においては体温計を 外耳道に揷入して (11) 鼓膜から放射される赤外線により温度測定を行う。 この とき、 鼓膜から放射される赤外線の温接合部 2 4への入射量が一定量以上となる ように最適な角度で挿入することが重要である。 そこで、 測定者が耳式体温計を 外耳道に揷入してその角度を調整する際 (12) に、 最適な角度がわかりやすいよ うに示されることが望ましい。 例えば鼓膜から放射される赤外線のピーク値を探 索し、 ピーク値近傍において告知音 (ブザー等) を発するようにする (13)。 この段階で測定者が測定開始操作として、 例えば測定開始スィ ツチを押すと ( 14) 温度測定が開始される。  Next, the process proceeds to the temperature measurement stage of the measurement target. In the ear thermometer 7, the thermometer is inserted into the ear canal (11) The temperature is measured by infrared rays radiated from the eardrum. At this time, it is important to insert the infrared ray radiated from the eardrum at an optimum angle so that the amount of incidence on the warm junction 24 becomes a certain amount or more. Therefore, when the measurer inserts the ear thermometer into the ear canal and adjusts its angle (12), it is desirable that the optimal angle be shown so that it is easy to understand. For example, search for the peak value of infrared radiation emitted from the eardrum, and emit a notification sound (buzzer, etc.) near the peak value [13]. At this stage, when the measurer presses the measurement start switch, for example, the measurement start switch (14), the temperature measurement is started.
情報処理装置 4には増幅器 3 9 bにより規定倍率に増幅された冷接合部測温素 子 3 1の出力電圧が入力される。 そして内蔵の A/D変換器により温度換算され て改めて冷接合部領域 2 8の温度値を得る (15)。  The output voltage of the cold junction temperature measuring element 31 amplified by the amplifier 39 b to the specified magnification is input to the information processing device 4. Then, the temperature is converted by the built-in A / D converter to obtain the temperature value of the cold junction region 28 again (15).
次いで情報処理装置 4により ドライブ I C 5 bが駆動されて発熱素子 3 0が加 熱され、 これにより冷接合部領域 2 8及び冷接合部測温素子領域 3 6を強制的に 加熱する (16)。 例えば上記の耳式温度計 7においては、 バイアス温度 (初期温 度値が所定値 3 4 °C以下の場合) もしくは周囲環境温度 (初期温度値が所定値 3 4 °C以上の場合) から加熱が開始される。 なお、 急速に加熱を開始すると、 サ一 モパイルの熱平衡状態が急激に崩壊し、 制御不能となる 「ヒートショック現象」 が起こることは前述のとおりである。従って、加熱開始時においてこのような「ヒ —トショ ヅク現象」 を引き起こすことのないように、 緩やかな加熱開始 (ソフ ト スタート) を行うことが重要である。  Next, the drive IC 5 b is driven by the information processing device 4 to heat the heating element 30, thereby forcibly heating the cold junction area 28 and the cold junction temperature measuring element area 36 (16) . For example, in the ear thermometer 7 described above, heating is performed from a bias temperature (when the initial temperature value is equal to or lower than a predetermined value of 34 ° C) or an ambient environment temperature (when the initial temperature value is equal to or higher than a predetermined value of 34 ° C). Is started. As described above, when heating is started rapidly, the thermal equilibrium state of the thermopile collapses rapidly, and the “heat shock phenomenon” occurs, which becomes uncontrollable. Therefore, it is important to start heating gently (soft start) so as not to cause such a "heat shock phenomenon" at the start of heating.
第 1 1図は、 周囲環境温度が測定ターゲッ ト温度よりも低温である場合、 第 1 2図は周囲環境温度が測定夕一ゲッ ト温度よりも高温である場合の挙動を示すグ ラフである。 いずれの場合においても加熱開始後は加熱時間に対してサ一モパイ ル出力電圧値が一定勾配で一次間数的に減少するように制御を行う。 そしてサー モパイル出力電圧を相検出器 1の基準電圧値に対して一定勾配で通過させ、 前述 の基準電圧値について相反転を強制的に発生させる。 そしてこの相反転を相検出 器 1内蔵の比較手段 2により検出し、 相反転 「有」 と 「無」 との 2ビッ トデジ夕 ル信号として情報処理装置 4に送る。 Fig. 11 shows the behavior when the ambient temperature is lower than the measurement target temperature, and Fig. 12 shows the behavior when the ambient temperature is higher than the measurement target temperature. . In any case, after the start of heating, control is performed so that the output voltage of the thermopile decreases linearly with a constant gradient with respect to the heating time. Then, the thermopile output voltage is passed at a constant gradient with respect to the reference voltage value of the phase detector 1, and the phase inversion is forcibly generated for the aforementioned reference voltage value. And this phase inversion is phase detected It is detected by the comparison means 2 built in the device 1 and sent to the information processing device 4 as a 2-bit digital signal of phase inversion “present” and “absent”.
情報処理装置 4は前記 2ビットデジタル信号により、 相反転が 「有」 か 「無」 かを判断し (17)、 「有」 と判断された場合にはドライブ I C 5 bによる発熱素子 3 0の加熱を停止する信号を送る。 このとき装置の動作不良等何らかの理由によ り、 加熱停止信号が送られなかった場合には、 発熱素子 3 0に対して電圧が印加 され続ける。 しかし本実施形態においては発熱素子 3 0 として自己制御型正温度 係数特性を含む抵抗体を用いており、 自己飽和安定温度の一定温度に維持され、 それ以上に過熱されることはない。 そこで例えば耳式体温計において、 5 0 °Cの 自己飽和安定温度を有する自己制御型正温度係数特性を含む抵抗体をもちいるこ とにより、 特別な安全装置を用いなくても過熱事故が防がれる。  The information processing device 4 determines whether or not the phase inversion is “present” or “absent” based on the 2-bit digital signal (17). Send a signal to stop heating. At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the heating element 30. However, in the present embodiment, a resistor having a self-controlling positive temperature coefficient characteristic is used as the heating element 30, and is maintained at a constant self-saturation stable temperature, and is not overheated. Therefore, for example, in an ear thermometer, using a resistor with a self-regulating positive temperature coefficient characteristic having a self-saturation stable temperature of 50 ° C prevents overheating accidents without using a special safety device. It is.
また、 情報処理装置 4には、 相反転 「有」 の信号に同期して冷接合部測温素子 3 1の出力が増幅器 3 9 bを介して入力され、 情報処理装置 4に内蔵の AZD変 換器により温度換算が行われる。 この A/D変換温度値に前述したサーモパイル 出力の負領域に対して、 予め設定した閾値基準値に相当する温度値が減算されて 測定夕一ゲッ ト温度が計算される。 さらに前記の温度外乱に対する補正が行われ て冷接合部領域 2 8の温度を得 (18)、 この温度値が表示装置 1 5に表示されて In addition, the output of the cold junction temperature measuring element 31 is input to the information processing device 4 via the amplifier 39 b in synchronization with the signal of “presence” of phase inversion, and the AZD conversion built in the information processing device 4 is performed. The temperature conversion is performed by the exchanger. A temperature value corresponding to a preset threshold reference value is subtracted from the A / D conversion temperature value with respect to the above-mentioned negative region of the thermopile output, and the measured temperature is calculated. Further, the temperature disturbance is corrected to obtain the temperature of the cold junction area 28 (18), and this temperature value is displayed on the display device 15
( 19) 温度測定が終了する。 このようにして得られる冷接合部領域 2 8の温度と は温接合部領域 2 9の温度、 すなわち測定夕一ゲヅ トの温度にほかならない。 こ のようにして測定することにより、 誤差が少なく精度の高い測定を行うことがで きる。 また測定時間を大幅に短縮することができる。 さらに重要なことには、 測 定タ一ゲッ ト温度よりも周囲環境温度が高温であるような場合でも、 冷接合部領 域 2 8を加熱のみで温度制御し、 その結果高精度な温度測定を行うことが可能と なる。 (19) The temperature measurement ends. The temperature of the cold junction region 28 obtained in this manner is nothing less than the temperature of the hot junction region 29, that is, the temperature of the gate at the time of measurement. By performing measurement in this manner, highly accurate measurement with little error can be performed. Also, the measurement time can be greatly reduced. More importantly, even when the ambient temperature is higher than the measurement target temperature, the temperature of the cold junction area 28 is controlled only by heating, resulting in highly accurate temperature measurement. Can be performed.
なお本実施形態においては、 ダイアフラム 3 2の中心部から見て冷接合部領域 2 8の外側に、 冷接合部測温素子領域 3 6、発熱素子領域 3 5の順に配置したが、 これらの順序を発熱素子領域 3 5、 冷接合部測温素子領域 3 6としてもよく、 こ の場合には冷接合部領域 2 8に対してパイァス温度を与える場合においてより短 時間に一定温度に到達せしめることが可能となる。 次に本願発明第四の実施の形態を図で参照して説明する。 但し、 上述した実施 の形態と重複する部分については説明を省略し、 相違する部分についてのみ説明 する。 In the present embodiment, the cold junction temperature measuring element area 36 and the heating element area 35 are arranged outside the cold junction area 28 when viewed from the center of the diaphragm 32 in this order. May be used as the heating element area 35 and the cold junction temperature measuring element area 36.In this case, when the Piase temperature is applied to the cold junction area 28, the constant temperature is reached in a shorter time. Becomes possible. Next, a fourth embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
第 1 3図は本願発明第四の実施の形態にかかる赤外線温度計におけるサ一モパ ィルセンサ部の上面図及び断面図である。 本実施形態においては第 1 3図に示す ように、 自己制御型正温度係数特性を含む抵抗体からなる発熱素子 3 0 と、 同じ く自己制御型正温度係数特性を含む抵抗体からなる冷接合部測温素子 3 1 とが積 層して配置される。  FIG. 13 is a top view and a sectional view of a thermopile sensor section in the infrared thermometer according to the fourth embodiment of the present invention. In this embodiment, as shown in FIG. 13, as shown in FIG. 13, a heating element 30 composed of a resistor having a self-control type positive temperature coefficient characteristic and a cold junction composed of a resistor also having a self-control type positive temperature coefficient characteristic The partial temperature measuring element 31 is stacked and arranged.
上記サ一モパイルセンサ 1 2の製造プロセスについて説明する。 まず C V D装 置等により、 ヒートシンク 1 8となるシリコンペレヅ ト、 又はシリコンチヅプ、 又はシリコンウェハの両面に酸化シリコンあるいは窒化シリコンからなる温接合 部支持膜 2 0を数ミクロンの厚さに形成する。 次にヒートシンク 1 8上面側の温 接合部支持膜 2 0上に、 蒸着法、 あるいはペースト焼付け法、 あるいは面状印刷 法等により冷接合部測温素子 3 1の自己制御型正温度係数特性を含む抵抗体を形 成し、 その上に再び C V D装置等により、 酸化シリコンあるいは窒化シリコンか らなる温接合部支持膜 2 0を数ミクロンの厚さに形成する。 次にヒートシンク 1 The manufacturing process of the thermopile sensor 12 will be described. First, a thermal bonding portion support film 20 made of silicon oxide or silicon nitride is formed to a thickness of several microns on both surfaces of a silicon pellet or a silicon chip to be a heat sink 18 or a silicon wafer by a CVD device or the like. Next, the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 31 is deposited on the thermal junction support film 20 on the upper surface side of the heat sink 18 by vapor deposition, paste baking, or sheet printing. Then, a thermal bonding support film 20 made of silicon oxide or silicon nitride is formed thereon to a thickness of several microns again by a CVD apparatus or the like. Then heat sink 1
8の表面に異種金属 (第一熱電対材料 2 1及び第二熱電対材料 2 2 ) からなるこ れらを直列に接続して冷接合部 2 3及び温接合部 2 4を有するサ一モパイル 2 5 を形成する。 次にヒ一トシンク 1 8表面に発熱素子 3 0の自己制御型正温度係数 特性を含む抵抗体を蒸着法、 あるいはペースト焼付け法、 あるいは面状印刷法に より形成する。 さらにヒートシンク 1 8の両面に C V D装置等により絶縁薄膜 3A thermopile having a cold junction 23 and a hot junction 24 by connecting in series the dissimilar metals (first thermocouple material 21 and second thermocouple material 22) on the surface of 8 Form 2 5. Next, a resistor having a self-controlling positive temperature coefficient characteristic of the heating element 30 is formed on the surface of the heat sink 18 by an evaporation method, a paste baking method, or a sheet printing method. Insulating thin film 3 on both sides of heat sink 18
8を堆積させて覆った後、 サ一モパイル 2 5の下の領域をゥエツ トエッチングに より一部除去する。 その後、 酸化膜をフッ酸等によりウエッ トエッチングして除 去すると、 サ一モパイルセンサ 1 2が完成する。 After depositing and covering 8, the area under the thermopile 25 is partially removed by jet etching. Thereafter, the oxide film is removed by wet etching with hydrofluoric acid or the like, whereby the thermopile sensor 12 is completed.
なお、 冷接合部領域 2 8と冷接合部測温素子領域 3 6とは隣接し合うように配 置され、 また発熱素子領域 3 5 と冷接合部測温素子領域 3 6とは垂直方向に重な り合うように配置される。  The cold junction area 28 and the cold junction temperature measuring element area 36 are arranged adjacent to each other, and the heating element area 35 and the cold junction temperature measuring element area 36 are arranged vertically. They are arranged to overlap.
本実施形態の赤外線温度計のサ一モパイルセンサにおいては、 発熱素子領域 3 In the thermopile sensor of the infrared thermometer of the present embodiment, the heating element area 3
5と冷接合部測温素子領域 3 6 とが垂直方向に重なり合う配置であるが、 その間 に絶縁性の温接合部支持膜 2 0を介在させることにより、 電気的に絶縁されかつ 冷接合部測温素子領域 3 6の温度は発熱素子 3 0の温度に強制的に従属させられ るため冷接合部領域 2 8及び冷接合部測温素子領域 3 6は一定のバイアス温度ま で予め引き上げられる。 従って、 冷接合部測温素子 3 1の抵抗変化は測定タ一ゲ ッ トからの赤外線エネルギーによる温接合部領域 2 9の温度上昇分だけとなり、 冷接合部測温素子 3 1の熱応答速度が極めて早くなつてサ一モパイルセンサ 1 2 の出力応答速度と同期させることが可能になる。 5 and the cold junction temperature measuring element area 3 6 are arranged to overlap in the vertical direction. Since the insulating hot-junction support film 20 is interposed between the heat-insulating element and the cold-junction temperature measuring element region 36, the temperature of the cold-junction temperature measuring element region 36 is forcibly made dependent on the temperature of the heating element 30. The cold junction region 28 and the cold junction temperature measuring element region 36 are raised in advance to a certain bias temperature. Therefore, the resistance change of the cold junction temperature measuring element 31 is only the temperature rise of the hot junction area 29 due to the infrared energy from the measurement target, and the thermal response speed of the cold junction temperature measuring element 31 Becomes extremely fast, it becomes possible to synchronize with the output response speed of the thermopile sensor 12.
次に本願発明にかかる第五の実施の形態を図を参照して説明する。 但し、 上述 した実施の形態と重複する部分については説明を省略し、 相違する部分について のみ説明する。  Next, a fifth embodiment according to the present invention will be described with reference to the drawings. However, description of the same parts as those in the above-described embodiment will be omitted, and only different parts will be described.
本実施形態にかかるサーモパイルセンサを第 1 4図に示す。 本実施形態は第 1 4図に示すように、 発熱素子 3 0をさらに定常温度系統発熱素子 4 1 と可変温度 系統発熱素子 4 2 とに系統分離する点に特徴を有する。 定常温度系統発熱素子 4 1は温度測定開始前に予め冷接合部領域 2 8を一定温度のバイァス温度に維持す る役割を担う。 一方、 可変温度系統発熱素子 4 2は温度測定開始後に冷接合部領 域 2 8の温度を一方的かつ強制的に変化させる役割を担う。 すなわち第二の実施 形態において単一の発熱素子 3 0により行っていた、 測定準備段階におけるパイ ァス温度への加熱と、 測定段階における冷接合部領域 2 8の強制的な加熱とを定 常温度系統発熱素子 4 1 と可変温度系統発熱素子 4 2とに役割分担させている。 これら発熱素子はともに自 3制御型正温度係数特性を含む抵抗体からなり、 定 常温度系統発熱素子 4 1の自己制御型正温度係数特性を含む抵抗体として、 自己 飽和安定温度が可変温度系統発熱素子 4 2の自己制御型正温度係数特性を含む抵 抗体よりも低温であるものを用いる。 例えば耳式体温計においては、 定常温度系 統発熱素子 4 1 として自己飽和安定温度がバイアス温度の 3 4 °Cである自己制御 型正温度係数特性を含む抵抗体を用い、 可 ¾温度系統発熱体素子 4 2 として自 3 飽和安定温度が 5 0 °Cである自 3制御型正温度係数特性を含む抵抗体を用いる等 である。  FIG. 14 shows a thermopile sensor according to the present embodiment. As shown in FIG. 14, the present embodiment is characterized in that the heating element 30 is further divided into a steady-temperature heating element 41 and a variable-temperature heating element 42. The steady-state temperature heating element 41 plays a role of maintaining the cold junction region 28 at a constant bias temperature before starting temperature measurement. On the other hand, the variable temperature system heating element 42 has a role of unilaterally and forcibly changing the temperature of the cold junction area 28 after the start of the temperature measurement. That is, heating to the pipe temperature in the measurement preparation stage and forcible heating of the cold junction region 28 in the measurement stage, which were performed by the single heating element 30 in the second embodiment, are normally performed. The roles of the temperature system heating element 41 and the variable temperature system heating element 42 are shared. Each of these heating elements is composed of a resistor having a self-control type positive temperature coefficient characteristic, and is composed of a resistor having a self-controlling positive temperature coefficient characteristic. A heater element 42 having a lower temperature than a resistive element having a self-controlling positive temperature coefficient characteristic is used. For example, in an ear-type thermometer, a resistor having a self-regulating positive temperature coefficient characteristic whose self-saturation stable temperature is a bias temperature of 34 ° C is used as the steady-state temperature-generating heating element 41, and a temperature-controllable heating element is used. For example, a resistor including a self-controlling positive temperature coefficient characteristic whose self-saturation stable temperature is 50 ° C. is used as the element 42.
このような構成とすることにより、 定常温度系統発熱素子 4 1は測定準備段階 において規定電圧値を印加されて 3 4 °Cまで加熱された後、 それ以上に過熱され ることなく自ら一定温度に維持される。 さらに周囲温度の急激な変化等温度の外 乱要因があった場合においても、 自ら温度調整されてこの温度に維持される。 従 つて第二の実施形態において行っていたようなフィ一ドパック制御が不要であり、 装置構成を簡略化してコストを削減するとともに強度を向上することができる。 一方、 可変加熱系統発熱素子 4 2は測定準備段階においては電圧を印加される ことなく、 定常温度系統発熱素子 4 1による加熱に追随してパイァス温度の 3 4 °Cあるいは周囲環境温度に維持される。 そして測定段階において初めて電圧印 加がなされて強制加熱される。 情報処理装置 4は前記 2ビッ トデジタル信号によ り、 サーモパイル出力電圧の基準電圧値に対する相反転が 「有」 か 「無」 かを判 断し、 「有」と判断された場合には可変系統発熱素子 4 2の加熱を停止する信号を 送る。 このとき装置の動作不良等何.らかの理由により、 加熱停止信号が送られな かった場合には、 可変系統発熱素子 4 2に対して電圧が印加され続ける。 しかし このときも、可変系統発熱素子 4 2の自己制御型正温度係数特性を含む抵抗体は、 自己飽和安定温度である 5 0 °Cの一定温度に維持されてそれ以上に温度上昇する ことはなく、 特別な安全装置を用いなくても過熱事故が防がれる。 With such a configuration, the steady-state temperature heating element 41 is heated to 34 ° C after being supplied with the specified voltage value in the measurement preparation stage, and then further heated. It is maintained at a constant temperature by itself. Furthermore, even when there is a disturbance factor in the temperature such as a sudden change in the ambient temperature, the temperature is adjusted and maintained at this temperature. Therefore, the feed pack control as performed in the second embodiment is not required, and the apparatus configuration can be simplified, the cost can be reduced, and the strength can be improved. On the other hand, the variable heating system heating element 42 is maintained at the Pierce temperature of 34 ° C or the ambient temperature following the heating by the steady temperature system heating element 41 without applying voltage during the measurement preparation stage. You. Then, for the first time during the measurement stage, a voltage is applied and forced heating is performed. The information processing device 4 determines whether or not the phase inversion of the thermopile output voltage with respect to the reference voltage value is “present” or “absent” based on the 2-bit digital signal. Sends a signal to stop heating the system heating element 42. At this time, if the heating stop signal is not sent for some reason such as a malfunction of the device, the voltage is continuously applied to the variable system heating element 42. However, also at this time, the resistor including the self-control type positive temperature coefficient characteristic of the variable system heating element 42 is maintained at a constant temperature of 50 ° C., which is a self-saturation stable temperature, and does not rise any more. No overheating accidents can be prevented without using special safety devices.
なお、 ダイアフラム 3 2の中心部から見て冷接合部領域 2 8の外側に、 冷接合 部測温素子領域 3 6、 発熱素子領域 3 5の順に配置したが、 これらの順序を発熱 素子領域 3 5、 冷接合部測温素子領域 3 6 としてもよく、 この場合には冷接合部 領域 2 8に対してバイアス温度を与える場合においてより短時間に一定温度に到 達せしめることが可能となる点は第二の実施形態と同様である。  The cold junction temperature measuring element area 36 and the heating element area 35 are arranged outside the cold junction area 28 as viewed from the center of the diaphragm 32, and the heating element area 3 is arranged in this order. 5.The cold junction temperature measuring element area 36 may be used.In this case, when a bias temperature is applied to the cold junction area 28, it is possible to reach a constant temperature in a shorter time. Is the same as in the second embodiment.
次に本願発明第六の実施の形態を図を参照して説明する。 但し、 上述した実施 の形態と重複する部分については説明を省略し、 相違する部分についてのみ説明 する。  Next, a sixth embodiment of the present invention will be described with reference to the drawings. However, description of the same parts as those of the above-described embodiment will be omitted, and only different parts will be described.
本実施形態にかかる赤外線温度計のサ一モパイルセンサ部を第 1 5図に示す。 本実施形態においては第 1 5図に示すように、 冷接合部測温素子 3 1、 定常温度 系統発熱素子 4 1、 及び可変温度系統発熱素子 4 2が積層して配置される。  FIG. 15 shows a thermopile sensor section of the infrared thermometer according to the present embodiment. In the present embodiment, as shown in FIG. 15, a cold junction temperature measuring element 31, a steady temperature system heating element 41, and a variable temperature system heating element 42 are stacked and arranged.
上記サ一モパイルセンサ 1 2の製造プロセスについて説明する。 まず C V D装 置等により、 ヒートシンク 1 8となるシリコンペレッ ト、 又はシリコンチップ、 又はシリコンウェハの両面に酸化シリコンあるいは窒化シリコンからなる温接合 0 09340 The manufacturing process of the thermopile sensor 12 will be described. First, a thermal bonding made of silicon oxide or silicon nitride is applied to both sides of a silicon pellet or silicon chip or silicon wafer to become a heat sink 18 by CVD equipment. 0 09340
部支持膜 2 0を数ミクロンの厚さに形成する。 次にヒートシンク 1 8上面側の温 接合部支持膜 2 0上に、 蒸着法、 あるいはペースト焼付け法、 あるいは面状印刷 法等により冷接合部測温素子 3 1の自己制御型正温度係数特性を含む抵抗体を形 成し、 その上に再び C V D装置等により、 酸化シリコンあるいは窒化シリコンか らなる温接合部支持膜 2 0を数ミクロンの厚さに形成する。 The part support film 20 is formed to a thickness of several microns. Next, the self-controlling positive temperature coefficient characteristic of the cold junction temperature measuring element 31 is deposited on the thermal junction support film 20 on the upper surface side of the heat sink 18 by vapor deposition, paste baking, or sheet printing. Then, a thermal bonding support film 20 made of silicon oxide or silicon nitride is formed thereon to a thickness of several microns again by a CVD apparatus or the like.
次にヒートシンク 1 8の表面に異種金属 (第一熱電対材料 2 1及び第二熱電対 材料 2 2 ) からなりこれらを直列に接続することによって冷接合部 2 3及び温接 合部 2 4が形成されたサ一モパイル 2 5を形成する。 次にヒートシンク 1 8の表 面に可変温度系統発熱素子 4 2の自己制御型正温度係数特性を含む抵抗体を蒸着 法、 あるいはペース ト焼付け法、 あるいは面状印刷法等により形成する。  Next, the dissimilar metals (first thermocouple material 21 and second thermocouple material 22) are formed on the surface of the heat sink 18 and connected in series to form the cold junction 23 and the hot junction 24. The formed thermopile 25 is formed. Next, a resistor having a self-controlling positive temperature coefficient characteristic of the variable temperature system heating element 42 is formed on the surface of the heat sink 18 by a vapor deposition method, a paste baking method, a sheet printing method, or the like.
次に再び C V D装置等により、 酸化シリコンあるいは窒化シリコンからなる温 接合部支持膜 2 0を数ミクロンの厚さに形成する。 そしてヒートシンク 1 8の表 面に定常温度系統発熱素子 4 1の自己制御型正温度係数特性を含む抵抗体を蒸着 法、 あるいはペース ト焼付け法、 あるいは面状印刷法等により形成する。 さらに ヒートシンク 1 8の上面に C V D装置等により温接合部支持膜 2 0を、 下面に絶 縁薄膜 3 8を堆積させて覆った後、 サ一モパイル 2 5の下の領域をゥエツ トェヅ チングにより除去する。 その後、 酸化膜をウエッ トエッチングにより除去すると サーモパイルセンサ 1 2が形成される。  Next, a thermal bonding support film 20 made of silicon oxide or silicon nitride is formed to a thickness of several microns again by a CVD apparatus or the like. Then, on the surface of the heat sink 18, a resistor including the self-control type positive temperature coefficient characteristic of the steady temperature system heating element 41 is formed by an evaporation method, a paste baking method, a sheet printing method, or the like. After covering the upper surface of the heat sink 18 with the thermal bonding support film 20 and the insulating thin film 38 on the lower surface by depositing a thermal bonding portion support film 20 and removing the area under the thermopile 25 by etching. I do. Thereafter, when the oxide film is removed by wet etching, a thermopile sensor 12 is formed.
以上のようにして冷接合部測温素子 3 1、 定常温度系統発熱素子 4 1、 及び可 変温度系統発熱素子 4 2は積層配置されるが、 これらの間にそれぞれ絶縁性の温 接合部支持膜 2 0を介在させることにより、 お互いに電気的に絶縁され、 温度測 定に際しては第三の実施形態と全く同様の動作を示す。 しかも装置構成がコンパ ク トになるという特長を有する。  As described above, the cold junction temperature measuring element 31, the steady temperature system heating element 41, and the variable temperature system heating element 42 are stacked and arranged, and an insulating temperature junction support is provided therebetween. With the film 20 interposed, they are electrically insulated from each other, and exhibit exactly the same operation as the third embodiment when measuring the temperature. Moreover, it has the feature that the device configuration is compact.
なお本実施形態においては、 冷接合部測温素子 3 1の上部に定常温度系統発熱 素子 4 1、 可変温度系統発熱素子 4 2の順に積層配置した構成について説明した が、 冷接合部測温素子 3 1の上部に対して可変温度系統発熱素子 4 2、 定常温度 系統発熱素子 4 1の順に積層した構造としてもよい。  Note that, in the present embodiment, a configuration in which the steady-state temperature system heating element 41 and the variable temperature system heating element 42 are stacked and arranged in the upper part of the cold junction temperature measuring element 31 has been described. A variable temperature system heating element 42 and a steady temperature system heating element 41 may be stacked in this order on the upper part of 31.

Claims

請求の範囲 物理値を変換して得られる電圧値を入力とする相検出器において、 対 象物理値の基準値に対応する基準電圧値を任意に設定可能であることを特徴 とする相検出器。  Claims In a phase detector that receives a voltage value obtained by converting a physical value as an input, a reference voltage value corresponding to a reference value of the target physical value can be arbitrarily set. .
比較手段と、 複数の抵抗器と、 入力スキャン手段とを内蔵し、 前記入力スキャン手段は、前記複数の抵抗器を自在に組み合わせ、これにより 得られる異なる抵抗値を有する複数の組み合わせ抵抗を用いて、前記比較手段 に対して多段階の電圧値を順次入力スキャンし、  A comparison unit, a plurality of resistors, and an input scanning unit, wherein the input scanning unit freely combines the plurality of resistors and uses a plurality of combined resistors having different resistance values obtained by the combination. , Sequentially inputting and scanning multi-stage voltage values to the comparing means,
前記比較手段は、対象物理値の基準値に対応して入力される第一の入力電圧値 と、前記入力スキャン手段により入力される第二の入力電圧値とを比較してそ れらの一致点を検出し、 The comparing means compares a first input voltage value input corresponding to the reference value of the target physical value with a second input voltage value input by the input scanning means, and matches the two input voltage values. Detect a point,
かつ装置外部に設置された記憶手段において、前記一致点における組み合わせ 抵抗の抵抗値指定ァドレスを記憶することにより前記基準電圧値を決定する ことを特徴とする請求項 1に記載の相検出器。 2. The phase detector according to claim 1, wherein the reference voltage value is determined by storing a resistance value designation address of the combinational resistor at the coincidence point in a storage unit provided outside the apparatus.
比較手段と、 複数の抵抗器と、 入力スキャン手段と、 記憶手段とを内 蔵し、  A comparison means, a plurality of resistors, an input scanning means, and a storage means;
前記入力スキャン手段は、前記複数の抵抗器を自在に組み合わせ、 これにより 得られる異なる抵抗値を有する複数の組み合わせ抵抗を用いて、前記比較手段 に対して多段階の電圧値を順次入力スキャンし、 The input scan means freely combines the plurality of resistors, and sequentially scans the comparing means by using a plurality of combined resistors having different resistance values obtained by the input, with a multi-step voltage value being input to the comparison means.
前記比較手段は、対象物理値の基準値に対応して入力される第一の入力電圧値 と、前記入カスキヤン手段により入力される第二の入力電圧値とを比較してそ れらの一致点を検出し、 The comparing means compares the first input voltage value input corresponding to the reference value of the target physical value with the second input voltage value input by the input scanning means, and matches the two input voltage values. Detect a point,
前記記憶装置は、前記一致点における組み合わせ抵抗の抵抗値指定ァドレスを 記憶することを特徴とする請求項 1に記載の相検出器。 前記複数の抵抗器が、 抵抗アレイを形成してなることを特徴とする請 求項 2又は請求項 3に記載の相検出器。 2. The phase detector according to claim 1, wherein the storage device stores a resistance value designation address of a combination resistance at the coincidence point. 4. The phase detector according to claim 2, wherein the plurality of resistors form a resistor array.
サ一モパイルセンサの冷接合部領域温度を制御して、 そのときのサー モパイル出力電圧値の基準電圧値に対する相反転を検出することにより、 測 定夕一ゲッ トの温度測定を行う赤外線温度計において、 前記基準電圧値が、 電圧値の負領域に予め設定されてなることを特徴とする赤外線温度計。  By controlling the temperature of the cold junction area of the thermopile sensor and detecting the phase inversion of the thermopile output voltage value at that time with respect to the reference voltage value, an infrared thermometer that measures the temperature of each measurement target The infrared thermometer, wherein the reference voltage value is preset in a negative voltage value region.
比較手段と、 複数の抵抗器と、 入力スキャン手段と、 記憶手段とを有 し、  A comparing means, a plurality of resistors, an input scanning means, and a storing means,
前記入力スキャン手段は、 前記複数の抵抗器を自在に組み合わせ、 これによ り得られる異なる抵抗値を有する複数の組み合わせ抵抗を用いて、 前記比較 手段に対して多段階の電圧値を順次入カスキヤンし、 The input scanning means freely combines the plurality of resistors, and uses a plurality of combined resistors having different resistance values obtained thereby to sequentially input multi-stage voltage values to the comparing means. And
前記比較手段は、 基準となる温度値に対応して入力される第一の入力電圧値 と、前記入力スキャン手段により入力される第二の入力電圧値とを比較して、 その一致点を検出し、 The comparing means compares a first input voltage value input corresponding to a reference temperature value with a second input voltage value input by the input scanning means, and detects a coincidence point. And
前記記憶手段は、 前記比較手段により検出された一致点における組み合わせ 抵抗の抵抗値指定ァドレスを記憶することにより前記基準電圧値を決定する ことを特徴とする請求項 5に記載の赤外線温度計。 6. The infrared thermometer according to claim 5, wherein the storage means determines the reference voltage value by storing a resistance designation address of the combinational resistor at the coincidence point detected by the comparison means.
サ一モパイル出力電圧値の基準電圧値に対する相反転を検出するため の相検出器を備え、 かつ前記相検出器が、 少なく とも前記比較手段と複数の 抵抗器と入力スキャン手段とを内蔵してなることを特徴とする請求項 6に記 載の赤外線温度計。  A phase detector for detecting phase inversion of the thermopile output voltage value with respect to the reference voltage value, and the phase detector includes at least the comparing means, a plurality of resistors, and input scanning means; 7. The infrared thermometer according to claim 6, wherein:
前記相検出器が記憶装置を内蔵してなることを特徴とする請求項 7に 記載の赤外線温度計。  The infrared thermometer according to claim 7, wherein the phase detector has a built-in storage device.
前記複数の抵抗器が、 抵抗アレイを形成してなることを特徴とする請 求項 6乃至請求項 8のいずれか一項に記載の赤外線温度計。 9. The infrared thermometer according to claim 6, wherein the plurality of resistors form a resistor array.
. 冷接合部領域を加熱するための発熱素子系統と、 冷接合部領域の温度 を測定するための冷接合部測温素子系統とを有し、かつ前記発熱素子系統と、 前記冷接合部測温素子系統のうち少なく ともいずれか一方がサ一モパイル出 力と熱応答速度において同期していることを特徴とする請求項 6に記載の赤 外線温度計。 . A heating element system for heating the cold junction area; and a cold junction temperature measuring element system for measuring the temperature of the cold junction area; and the heating element system and the cold junction measurement. 7. The infrared thermometer according to claim 6, wherein at least one of the temperature element systems is synchronized with the thermopile output in thermal response speed.
. 前記発熱素子系統、 前記冷接合部測温素子系統、 及び前記冷接合部領 域の三要素が、 お互いに熱直結した構造を有することを特徴とする請求項 1 0に記載の赤外線温度計。  10. The infrared thermometer according to claim 10, wherein the three elements of the heating element system, the cold junction temperature measuring element system, and the cold junction area have a structure directly connected to each other. .
. 前記発熱素子系統により冷接合部領域を一方的かつ強制的に加熱した ときのサーモパイル出力の電圧値が、 前記基準電圧値に対して相反転したか 否かを検出する検出器と、 前記相反転の有無を 2ビッ トデジタル信号に変換 する変換器とを有し、 このデジタル信号に同期して冷接合部測温素子温度を 検出することを特徴とする請求項 1 1に記載の赤外線温度計。 A detector for detecting whether or not the voltage value of the thermopile output when the cold junction region is unilaterally and forcibly heated by the heating element system is inverted with respect to the reference voltage value; 12. The infrared temperature according to claim 11, further comprising: a converter for converting the presence or absence of inversion into a 2-bit digital signal, and detecting the temperature of the cold junction temperature measuring element in synchronization with the digital signal. Total.
. 前記冷接合部領域に自己制御型正温度係数特性を含む抵抗体を組み込 んだ構造を有することを特徴とする請求項 1 2に記載の赤外線温度計。  13. The infrared thermometer according to claim 12, wherein the cold junction region has a structure in which a resistor having a self-controlling positive temperature coefficient characteristic is incorporated.
. 前記発熱素子系統と冷接合部測温素子との少なく ともいずれか一方に、 自己制御型正温度係数特性を含む抵抗体を配してなることを特徴とする請求 項 1 3に記載の赤外線温度計。 The infrared ray according to claim 13, wherein at least one of the heating element system and the cold junction temperature measuring element is provided with a resistor having a self-controlling positive temperature coefficient characteristic. thermometer.
. 前記発熱素子系統が、 発熱して一定温度に維持される定常温度系統と、 一定の温度範囲において温度可変とする可変温度系統とからなることを特徴 とする請求項 1 4に記載の赤外線温度計。 15. The infrared temperature according to claim 14, wherein the heating element system is composed of a steady temperature system that generates heat and is maintained at a constant temperature, and a variable temperature system that varies the temperature within a certain temperature range. Total.
. 前記発熱素子系統として、 異なる自己飽和安定温度を有する 2種類の 自己制御型正温度係数特性を含む抵抗体を配置してなることを特徴とする請 求項 1 5に記載の赤外線温度計。 The infrared thermometer according to claim 15, wherein two or more resistors having different self-saturation stable temperatures and including self-regulating positive temperature coefficient characteristics are arranged as the heating element system.
. 冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁された複数 の同一抵抗の自己制御型正温度係数特性を含む抵抗体からなる系統を、 前記 冷接合部領域に対して複数系統組込んだ構造を有することを特徴とする請求 項 1 4に記載の赤外線温度計。 A system including a plurality of resistors including a self-controlling positive temperature coefficient characteristic of the same resistance, which is thermally directly connected to the cold junction region and electrically insulated between the elements, is provided with respect to the cold junction region. 15. The infrared thermometer according to claim 14, wherein the infrared thermometer has a structure incorporating a plurality of systems.
. 冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁された異な る抵抗の自己制御型正温度係数特性を含む抵抗体 2個からなる対を、 前記冷 接合部領域に対して一対以上組込んだ構造を有することを特徴とする請求項 1 4に記載の赤外線温度計。A pair of two resistors that are thermally connected directly to the cold junction region and that are electrically insulated between the elements and that include a self-regulating positive temperature coefficient characteristic of different resistances is connected to the cold junction region. 15. The infrared thermometer according to claim 14, wherein the infrared thermometer has a structure in which at least one pair is incorporated.
. 冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁された異な る抵抗の自己制御型正温度係数特性を含む抵抗体 2個からなる対を複数対組 み合わせてなる系統を、 前記冷接合部領域に対して複数系統組込んだ構造を 有することを特徴とする請求項 1 4に記載の赤外線温度計。 A system composed of a combination of two or more pairs of two resistors that are thermally connected directly to the cold junction region and that are electrically insulated between elements and that include self-controlling positive temperature coefficient characteristics of different resistances 15. The infrared thermometer according to claim 14, wherein the infrared thermometer has a structure in which a plurality of systems are incorporated in the cold junction region.
. 冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁された複数 の同一抵抗の自己制御型正温度係数特性を含む抵抗体からなる系統を、 前記 冷接合部領域に対して複数系統組込んだ構造を有することを特徴とする請求 項 1 5に記載の赤外線温度計。 A system including a plurality of resistors including a self-controlling positive temperature coefficient characteristic of the same resistance, which is thermally directly connected to the cold junction region and electrically insulated between the elements, is provided with respect to the cold junction region. 16. The infrared thermometer according to claim 15, wherein the infrared thermometer has a structure incorporating a plurality of systems.
. 冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁された異な る抵抗の自己制御型正温度係数特性を含む抵抗体 2個からなる対を、 前記冷 接合部領域に対して一対以上組込んだ構造を有することを特徴とする請求項 1 5に記載の赤外線温度計。 A pair of two resistors that are thermally connected directly to the cold junction region and that are electrically insulated between the elements and that include a self-regulating positive temperature coefficient characteristic of different resistances is connected to the cold junction region. 16. The infrared thermometer according to claim 15, wherein the infrared thermometer has a structure in which at least one pair is incorporated.
. 冷接合部領域と熱的に直結され、 かつ電気的に素子間絶縁された異な る抵抗の自 3制御型正温度係数特性を含む抵抗体 2個からなる対を複数対組 み合わせてなる系統を、 前記冷接合部領域に対して複数系統組込んだ構造を 有することを特徴とする請求項 1 5に記載の赤外線温度計。 . Combination of multiple pairs of two resistors that are thermally connected directly to the cold junction region and are electrically insulated between the elements and that have self-controlling positive temperature coefficient characteristics of different resistances 16. The infrared thermometer according to claim 15, wherein the infrared thermometer has a structure in which a plurality of systems are incorporated in the cold junction region.
. 前記自己制御型正温度係数特性を含む抵抗体が、 基板表面に蒸着によ り組成されてなることを特徴とする請求項 1 3に記載の赤外線温度計。 14. The infrared thermometer according to claim 13, wherein the resistor having the self-controlling positive temperature coefficient characteristic is formed on a substrate surface by vapor deposition.
. 前記自己制御型正温度係数特性を含む抵抗体が、 基板表面にペース ト 焼き付けにより形成されてなることを特徴とする請求項 1 3に記載の赤外線 14. The infrared ray according to claim 13, wherein the resistor having the self-controlling positive temperature coefficient characteristic is formed by baking on a surface of a substrate.
¾m&.口十。¾m &.
. 前記自己制御型正温度係数特性を含む抵抗体が、 基板表面に面状印刷 されてなることを特徴とする請求項 1 3に記載の赤外線温度計。 14. The infrared thermometer according to claim 13, wherein the resistor including the self-control type positive temperature coefficient characteristic is printed on a surface of a substrate in a planar manner.
. 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域とが、 温接合部領域を中心として冷接合部領 域の外側に、 かつ冷接合部領域が配置された基板上に、 かつお互いが水平方 向に並ぶようにして配置されてなることを特徴とする請求項 1 4に記載の赤 外線温度計。 The heating element area in which the heating element system is arranged and the cold junction temperature measuring element area in which the cold junction temperature measuring element system is arranged are located outside the cold junction area with the hot junction area as the center and the cold junction area. 15. The infrared thermometer according to claim 14, wherein the thermometers are arranged on the substrate on which the joint region is arranged, and arranged so as to be arranged in a horizontal direction.
. 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域とが、 温接合部領域を中心として冷接合部領 域の外側に、 かつ冷接合部領域が配置された基板上に、 かつお互いが垂直方 向に並ぶようにして配置されてなることを特徴とする請求項 1 4に記載の赤 外線温度計。  The heating element area in which the heating element system is arranged and the cold junction temperature measuring element area in which the cold junction temperature measuring element system is arranged are located outside the cold junction area with the hot junction area as the center and the cold junction area. 15. The infrared thermometer according to claim 14, wherein the thermometers are arranged on a substrate on which the joint region is arranged, and arranged so as to be vertically aligned with each other.
. 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域とが、 温接合部領域を中心として冷接合部領 域の外側に、 かつ冷接合部領域が配置された基板の外部に、 かつお互いが垂 直方向に並ぶようにして配置されてなることを特徴とする請求項 1 4に記載 の赤外線温度計。  The heating element area in which the heating element system is arranged and the cold junction temperature measuring element area in which the cold junction temperature measuring element system is arranged are located outside the cold junction area with the hot junction area as the center and the cold junction area. 15. The infrared thermometer according to claim 14, wherein the infrared thermometer is arranged outside the substrate on which the joint region is arranged, and is arranged so as to be vertically aligned with each other.
. 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域との形状が、 連続する角形であることを特徴 とする請求項 2 6乃至請求項 2 8のいずれか一項に記載の赤外線温度計。 . 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域との形状が、 一定角度で区切られた不連続の 多角形であることを特徴とする請求項 2 6乃至請求項 2 8のいずれか一項に 記載の赤外線温度計。 26. The heating element region in which the heating element system is arranged and the cold junction temperature measuring element region in which the cold junction temperature measuring element system is arranged are continuous squares. Item 29. The infrared thermometer according to any one of items 28. The shape of the heating element area in which the heating element system is arranged and the temperature of the cold junction temperature measuring element area in which the cold junction temperature measuring element system is arranged are discontinuous polygons separated by a certain angle. The infrared thermometer according to any one of claims 26 to 28, wherein
. 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域との形状が、 連続する円であることを特徴と する請求項 2 6乃至請求項 2 8のいずれか一項に記載の赤外線温度計。 . 前記発熱素子系統を配置した発熱素子領域と冷接合部測温素子系統を 配置した冷接合部測温素子領域との形状が、 一定角度で区切られた不連続の 円であることを特徴とする請求項 2 6乃至請求項 2 8のいずれか一項に記載 の赤外線温度計。 26. The shape of the heating element area where the heating element system is arranged and the shape of the cold junction temperature measuring element area where the cold junction temperature measuring element system is arranged are continuous circles. Item 29. The infrared thermometer according to any one of items 28. The shape of the heating element area where the heating element system is arranged and the cold junction temperature measuring element area where the cold junction temperature measuring element system is arranged are discontinuous circles separated by a certain angle. The infrared thermometer according to any one of claims 26 to 28, wherein
. 冷接合部領域がシリコンペレッ ト又はシリコンチップの内部又は表面 に組込まれた構造を有するサーモパイルセンサを組込んでなり、 かっこのシ リコンペレッ ト又はシリコンチヅプに埋込み層 (buried layer)構造であり、 かつ自己制御型正温度係数特性を含む抵抗体が前記冷接合部領域との混成 (hybrid)構造を有することを特徴とする請求項 1 3に記載の赤外線温度計。 . 冷接合部領域がシリコンペレヅト又はシリコンチップの内部又は表面 に組込まれた構造を有するサ一モパイルセンサを組込んでなり、 かっこのシ リコンペレツ ト又はシリコンチヅプの表面に形成された薄膜に自己制御型正 温度係数特性を含む抵抗体が組成された構造を有することを特徴とする請求 項 1 3に記載の赤外線温度計。A thermopile sensor having a structure in which the cold junction region is embedded in or on the surface of the silicon pellet or silicon chip, and a buried layer structure in the parenthesis silicon pellet or silicon chip; and 14. The infrared thermometer according to claim 13, wherein the resistor having a self-controlling positive temperature coefficient characteristic has a hybrid structure with the cold junction region. A thermopile sensor having a structure in which the cold junction region is embedded in or on the surface of the silicon pellet or silicon chip is incorporated. 14. The infrared thermometer according to claim 13, wherein the infrared thermometer has a structure in which a resistor having a coefficient characteristic is formed.
. 冷接合部領域が、 絶縁物からなるチップ基板の表面に厚膜形成された 構造を有するサ一モパイルセンサを組込んでなり、 かつ自己制御型正温度係 数特性を含む抵抗体が前記冷接合部領域と混成 (hybrid) した厚膜ハイプリ ヅ ド構造を有することを特徴とする請求項 1 3に記載の赤外線温度計。  The cold junction region incorporates a thermopile sensor having a structure in which a thick film is formed on the surface of a chip substrate made of an insulator, and a resistor having a self-controlling positive temperature coefficient characteristic is formed by the cold junction. 14. The infrared thermometer according to claim 13, wherein the infrared thermometer has a thick-film hybrid structure hybridized with the region.
. 物理値を変換して得られる電圧値を入力とする相検出器の基準電圧値 設定方法において、  In the method of setting the reference voltage value of the phase detector which receives the voltage value obtained by converting the physical value as an input,
入力スキャン手段により、複数の抵抗器を自在に組み合わせ、 これにより得ら れる異なる抵抗値を有する複数の組み合わせ抵抗を用いて、多段階の電圧値を 比較手段へと順次入力し、 A plurality of resistors are freely combined by the input scanning means, and a multi-stage voltage value is sequentially input to the comparing means by using a plurality of combined resistors having different resistance values obtained thereby,
前記比較手段において、対象物理値の基準値に対応して入力される第一の入力 電圧値と、前記入力スキャン手段により入力される第二の入力電圧値とを比較 して、 その一致点を検出し、 In the comparing means, a first input voltage value input corresponding to the reference value of the target physical value is compared with a second input voltage value input by the input scanning means, and the coincidence point is determined. Detect
検出された一致点における組み合わせ抵抗の抵抗値指定ァドレスを、記憶手段 において記憶することにより基準電圧値を決定することを特徴とする相検出 器の基準電圧値設定方法。 A reference voltage value setting method for a phase detector, wherein a reference voltage value is determined by storing a resistance value designation address of a combinational resistor at a detected coincidence point in a storage means.
. 情報処理装置により前記入力スキャン手段を制御することにより、 前 記比較手段に対して第二の入力電圧値を入力し、 By controlling the input scanning means by the information processing device, a second input voltage value is input to the comparing means,
前記比較手段により第一の入力電圧値と第二の入力電圧値とを比較してこれ らの大小関係が反転したときに、その反転情報を前記情報処理装置に して割 り込み信号として入力することにより、 When the magnitude relationship is inverted by comparing the first input voltage value and the second input voltage value by the comparing means, the inverted information is input to the information processing device as an interrupt signal. By doing
情報処理装置内の記憶手段が、そのときの抵抗値指定ァドレスを記憶すること を特徴とする請求項 3 6に記載の相検出器の基準電圧値設定方法。37. The method for setting a reference voltage value of a phase detector according to claim 36, wherein the storage means in the information processing device stores the resistance value designation address at that time.
. 情報処理装置により前記入力スキャン手段を制御することにより、 前 記比較手段に対して第二の入力電圧値を入力し、  By controlling the input scanning means by the information processing device, a second input voltage value is input to the comparing means,
前記比較手段により第一の入力電圧値と第二の入力電圧値とを比較してこれ らの大小関係が反転したときに、その反転情報を相検出器自らが内蔵する記憶 装置に対して割り込み信号として入力することにより、 When the magnitude relation is inverted by comparing the first input voltage value and the second input voltage value by the comparing means, the inverted information is interrupted to a storage device incorporated in the phase detector itself. By inputting as a signal,
前記記憶手段が、そのときの抵抗値指定ァドレスを記憶することを特徴とする 請求項 3 6に記載の相検出器の基準電圧値設定方法。 37. The reference voltage setting method for a phase detector according to claim 36, wherein said storage means stores a resistance value designation address at that time.
. サ一モパイルセンサを内蔵する赤外線温度計による温度測定方法にお いて、 サ一モパイル出力電圧値の負領域に予め基準電圧値を設定しておき、 前記サ一モパイルセンサの冷接合部領域を一方的かつ強制的に加熱し、 前記 基準電圧値に対するサ一モパイル出力電圧値の相反転を検出することにより、 測定夕一ゲッ トの温度を測定することを特徴とする赤外線温度計による温度 測定方法。 In the temperature measurement method using an infrared thermometer having a built-in thermopile sensor, a reference voltage value is set in advance in a negative region of the thermopile output voltage value, and the cold junction region of the thermopile sensor is unilaterally set. And a method of forcibly heating and detecting a phase inversion of a thermopile output voltage value with respect to the reference voltage value to measure a temperature of a measurement target, thereby measuring a temperature with an infrared thermometer.
. サ一モパイルセンサ本体温度と所定温度差を有する黒体炉に対して、 前記サ一モパイルセンサが出力するサーモパイル出力電圧値を規定倍率にお いて増幅し、 これを第一の入力電圧値として比較手段に対して入力するとと もに、 For a black body furnace having a predetermined temperature difference from the thermopile sensor main body temperature, a thermopile output voltage value output by the thermopile sensor is amplified at a specified magnification, and this is used as a first input voltage value as comparison means. As well as
入力スキャン手段により、 複数の抵抗器を自在に組み合わせ、 これにより得 られる異なる抵抗値を有する複数の組み合わせ抵抗を用いて、 多段階の電圧 値を第二の入力電圧値として前記比較手段に対して順次入力スキャンし、 前記比較手段において、 前記第一の入力電圧値と第二の入力電圧値とを比較 して、 その一致点を検出し、 A plurality of resistors are freely combined by the input scanning means, and a multi-step voltage value is used as a second input voltage value with respect to the comparison means by using a plurality of combined resistors having different resistance values obtained thereby. Input scanning sequentially, the comparing means compares the first input voltage value with the second input voltage value, and detects a coincidence point thereof,
検出された一致点における組み合わせ抵抗の抵抗値指定ァドレスを、 記憶手 段において記憶することにより前記基準電圧値を決定することを特徴とする 請求項 3 9に記載の赤外線温度計による温度測定方法。The temperature measurement method using an infrared thermometer according to claim 39, wherein the reference voltage value is determined by storing a resistance value designation address of the combinational resistor at the detected coincidence point in a storage means.
. 情報処理装置により前記入力スキャン手段を制御することにより、 前 記比較手段に対して第二の入力電圧値を入力し、 前記比較手段により第一の 入力電圧値と第二の入力電圧値とを比較してこれらの大小関係が反転したと きに、 その反転情報を前記情報処理装置に対して割り込み信号として入力す ることにより、 情報処理装置内の記憶手段が、 そのときの抵抗値指定アドレ スを記憶することを特徴とする請求項 4 0に記載の赤外線温度計による温度 測定方法。 By controlling the input scanning means by the information processing device, a second input voltage value is input to the comparison means, and the first input voltage value and the second input voltage value are input by the comparison means. When these magnitude relations are inverted by comparison, the inverted information is input to the information processing apparatus as an interrupt signal, so that the storage means in the information processing apparatus can specify the resistance value at that time. The temperature measuring method using an infrared thermometer according to claim 40, wherein the address is stored.
. 情報処理装置により前記入力スキャン手段を制御することにより、 前 記比較手段に対して第二の入力電圧値を入力し、 '  By controlling the input scanning means by the information processing device, the second input voltage value is input to the comparing means,
前記比較手段により第一の入力電圧値と第二の入力電圧値とを比較してこれ らの大小闋係が反転したときに、その反転情報を相検出器自らが内蔵する記憶 装置に対して割り込み信号として入力することにより、 When the magnitudes are inverted by comparing the first input voltage value and the second input voltage value by the comparing means, the inverted information is stored in a storage device incorporated in the phase detector itself. By inputting as an interrupt signal,
前記記憶手段が、そのときの抵抗値指定ァドレスを記憶することを特徴とする 請求項 4 0に記載の赤外線温度計による温度測定方法。 41. The temperature measurement method using an infrared thermometer according to claim 40, wherein said storage means stores a resistance value designation address at that time.
. 前記サ一モパイルセンサにおいて、 冷接合部領域を加熱するための発 熱素子系統と、 冷接合部領域の温度を測定するための冷接合部測温素子系統 のうち少なく ともいずれか一方をサ一モパイル出力と熱応答速度において同 期させることを特徴とする請求項 4 0に記載の赤外線温度計による温度測定 方法。In the thermopile sensor, at least one of a heating element system for heating the cold junction region and a cold junction temperature measuring element system for measuring the temperature of the cold junction region is provided. 41. The method for measuring temperature using an infrared thermometer according to claim 40, wherein the temperature is synchronized with the mopile output and the thermal response speed.
. 前記発熱素子系統、 前記冷接合部測温素子系統、 及び前記冷接合部領 域の三要素を、 お互いに熱直結した構造とすることを特徴とする請求項 4 3 に記載の赤外線温度計による温度測定方法。  The infrared thermometer according to claim 43, wherein the three elements of the heating element system, the cold junction temperature measuring element system, and the cold junction area are directly thermally connected to each other. Temperature measurement method.
. 前記発熱素子系統により冷接合部を一方的かつ強制的に加熱したとき のサ一モパイル出力電圧値が、 前記基準電圧値に対して相反転したか否かを 相検出器により検出し、 相反転の有無を変換器により 2ビッ トデジタル信号 に変換し、 このデジタル信号に同期して冷接合部測温素子温度を検出するこ とを特徴とする請求項 4 4に記載の赤外線温度計による温度測定方法。  A phase detector detects whether or not the thermopile output voltage value when the cold junction is unilaterally and forcibly heated by the heating element system is inverted with respect to the reference voltage value. The infrared thermometer according to claim 44, wherein the presence or absence of inversion is converted into a 2-bit digital signal by a converter, and the temperature of the cold junction temperature measuring element is detected in synchronization with the digital signal. Temperature measurement method.
. 前記冷接合部領域に自己制御型正温度係数特性を含む抵抗体を組み込 むことを特徴とする請求項 4 5に記載の赤外線温度計による温度測定方法。 . 前記発熱素子系統と冷接合部測温素子との少なく ともいずれか一方に、 自己制御型正温度係数特性を含む抵抗体を配することを特徴とする請求項 4 6に記載の赤外線温度計による温度測定方法。 The temperature measurement method using an infrared thermometer according to claim 45, wherein a resistor including a self-controlling positive temperature coefficient characteristic is incorporated in the cold junction region. The infrared thermometer according to claim 46, wherein a resistor including a self-controlling positive temperature coefficient characteristic is disposed in at least one of the heating element system and the cold junction temperature measuring element. Temperature measurement method.
. 前記発熱素子系統を、 発熱して一定温度に維持される定常温度系統と、 一定の温度範囲において温度可変とする可変温度系統とに系統分離し、 前記 定常温度系統により温度測定開始前に予め冷接合部領域を一定温度に維持し、 前記可変温度系統は温度測定開始後に冷接合部領域の温度を一方的かつ強制 的に変化させることを特徴とする請求項 4 7に記載の赤外線温度計による温 度測定方法。 The heating element system is divided into a steady temperature system that generates heat and is maintained at a constant temperature, and a variable temperature system that varies the temperature within a certain temperature range, and the temperature is previously determined by the steady temperature system before starting temperature measurement. 48. The infrared thermometer according to claim 47, wherein the cold junction area is maintained at a constant temperature, and the variable temperature system unilaterally and forcibly changes the temperature of the cold junction area after the start of temperature measurement. Method for measuring temperature.
. 前記発熱素子系統において、 異なる自己飽和安定温度を有する 2種類 の自己制御型正温度係数特性を含む抵抗体を用い、 自己飽和安定温度が低温 であるほうの自己制御型正温度係数特性を含む抵抗体に対しては所定電圧を 印加して自己飽和安定温度の一定温度で安定させ、 一方、 自己飽和安定温度 が高温であるほうの自 3制御型正温度係数特性を含む抵抗体は自己飽和安定 温度以下において任意温度に変化させることを特徴とする請求項 4 8に記載 の赤外線温度計による温度測定方法。 In the heating element system, a resistor having two types of self-control type positive temperature coefficient characteristics having different self-saturation stable temperatures is used. A predetermined voltage is applied to the resistor to stabilize it at a constant self-saturation stable temperature. The temperature measurement method using an infrared thermometer according to claim 48, wherein the temperature is changed to an arbitrary temperature below a stable temperature.
. 電気的に素子間絶縁された複数の同一抵抗特性の自己制御型正温度係 数特性を含む抵抗体からなる系統を、 冷接合部領域と熱的に直結するように して複数系統組込み、 これらに対してサーモパイル外部からそれぞれ異なる 電圧を印加し、 系統別に異なる発熱温度を冷接合部領域に発生させることを 特徴とする請求項 4 7に記載の赤外線温度計による温度測定方法。 A system composed of a plurality of resistors including a self-controlling positive temperature coefficient characteristic having the same resistance characteristic and electrically insulated between elements is incorporated in a plurality of systems so as to be thermally directly connected to the cold junction region, 48. The temperature measurement method using an infrared thermometer according to claim 47, wherein different voltages are respectively applied to these from outside the thermopile, and different heat generation temperatures are generated in the cold junction region for each system.
. 電気的に素子間絶縁された異なる抵抗の自己制御型正温度係数特性を 含む抵抗体 2個からなる対を、 冷接合部領域と熱的に直結するようにして一 対以上組込み、 これらに対してサ一モパイル外部から同一の電圧を印加し、 系統別に異なる発熱温度を冷接合部領域に発生させることを特徴とする請求 項 4 7に記載の赤外線温度計による温度測定方法。  Two or more pairs of resistors including self-controlling positive temperature coefficient characteristics of different resistances electrically insulated between the elements are assembled in such a way that they are directly connected to the cold junction region and are thermally connected. 48. The temperature measurement method using an infrared thermometer according to claim 47, wherein the same voltage is applied from outside the thermopile to generate a different heat generation temperature for each system in the cold junction region.
. 電気的に素子間絶縁された異なる抵抗の自己制御型正温度係数特性を 含む抵抗体 2個からなる対を複数対組み合わせてなる系統を、 冷接合部領域 と熱的に直結するようにして複数系統組込み、 これらに対してサ一モパイル 外部から同一の電圧を印加し、 系統別に異なる発熱温度を冷接合部領.域に発 生させることを特徴とする請求項 4 7に記載の赤外線温度計による温度測定 方法。  A system consisting of a combination of two pairs of two resistors with self-controlling positive temperature coefficient characteristics of different resistances electrically insulated from each other is thermally connected directly to the cold junction region. 48. The infrared temperature according to claim 47, wherein a plurality of systems are incorporated, and the same voltage is applied to these from outside the thermopile, and different heat generation temperatures are generated for each system in a cold junction area. Temperature measurement method using a meter.
. 電気的に素子間絶縁された複数の同一抵抗特性の自己制御型正温度係 数特性を含む抵抗体からなる系統を、 冷接合部領域と熱的に直結するように して複数系統組込み、 これらに対してサ一モパイル外部からそれぞれ異なる 電圧を印加し、 系統別に異なる発熱温度を冷接合部領域に発生させることを 特徴とする請求項 4 8に記載の赤外線温度計による温度測定方法。 A system composed of a plurality of resistors including a self-controlling positive temperature coefficient characteristic having the same resistance characteristic and electrically insulated between elements is incorporated in a plurality of systems so as to be thermally directly connected to the cold junction region, 49. The temperature measurement method using an infrared thermometer according to claim 48, wherein different voltages are respectively applied to these from outside the thermopile, and different heat generation temperatures are generated in the cold junction region for each system.
. 電気的に素子間絶縁された異なる抵抗の自 3制御型正温度係数特性を 含む抵抗体 2個からなる対を、 冷接合部領域と熱的に直結するようにして一 対以上組込み、 これらに対してサ一モパイル外部から同一の電圧を印加し、 系統別に異なる発熱温度を冷接合部領域に発生させることを特徴とする請求 項 4 8に記載の赤外線温度計による温度測定方法。 One or more pairs of two resistors, each of which has a self-controlling positive temperature coefficient characteristic of a different resistance electrically insulated between the elements, are directly connected to the cold junction region, and these are assembled. 49. The temperature measuring method using an infrared thermometer according to claim 48, wherein the same voltage is applied from outside of the thermopile to generate a different heat generation temperature for each system in the cold junction region.
. 電気的に素子間絶縁された異なる抵抗の自己制御型正温度係数特性を 含む抵抗体 2個からなる対を複数対組み合わせてなる系統を、 冷接合部領域 と熱的に直結するようにして複数系統組込み、 これらに対してサ一モパイル 外部から同一の電圧を印加し、 系統別に異なる発熱温度を冷接合部領域に発 生させることを特徴とする請求項 4 8に記載の赤外線温度計による温度測定 方法。  A system consisting of a combination of two pairs of two resistors with self-controlling positive temperature coefficient characteristics of different resistances electrically insulated from each other is thermally connected directly to the cold junction region. 49.The infrared thermometer according to claim 48, wherein a plurality of systems are incorporated, and the same voltage is applied to these from outside the thermopile to generate different heating temperatures in the cold junction region for each system. Temperature measurement method.
PCT/JP2000/009340 2000-12-27 2000-12-27 Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer WO2002055975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/009340 WO2002055975A1 (en) 2000-12-27 2000-12-27 Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2000/009340 WO2002055975A1 (en) 2000-12-27 2000-12-27 Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer

Publications (1)

Publication Number Publication Date
WO2002055975A1 true WO2002055975A1 (en) 2002-07-18

Family

ID=11736852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009340 WO2002055975A1 (en) 2000-12-27 2000-12-27 Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer

Country Status (1)

Country Link
WO (1) WO2002055975A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900162A (en) * 1989-03-20 1990-02-13 Ivac Corporation Infrared thermometry system and method
JPH0417301A (en) * 1990-05-10 1992-01-22 Mitsui Toatsu Chem Inc Positive temperature coefficient thin-film thermistor
US5218362A (en) * 1992-07-02 1993-06-08 National Semiconductor Corporation Multistep analog-to-digital converter with embedded correction data memory for trimming resistor ladders
JPH0815041A (en) * 1994-06-30 1996-01-19 Toshiba Corp Hot lump detector
WO1999058490A2 (en) * 1998-05-08 1999-11-18 Akzo Nobel N.V. Novel aryl-hydro naphthalenal kanamines
WO2000004353A1 (en) * 1998-07-14 2000-01-27 Kazuhito Sakano Radiation thermometer
WO2000066988A1 (en) * 1999-04-28 2000-11-09 Kazuhito Sakano Radiation thermometer and temperature measuring method with this thermometer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4900162A (en) * 1989-03-20 1990-02-13 Ivac Corporation Infrared thermometry system and method
JPH0417301A (en) * 1990-05-10 1992-01-22 Mitsui Toatsu Chem Inc Positive temperature coefficient thin-film thermistor
US5218362A (en) * 1992-07-02 1993-06-08 National Semiconductor Corporation Multistep analog-to-digital converter with embedded correction data memory for trimming resistor ladders
JPH0815041A (en) * 1994-06-30 1996-01-19 Toshiba Corp Hot lump detector
WO1999058490A2 (en) * 1998-05-08 1999-11-18 Akzo Nobel N.V. Novel aryl-hydro naphthalenal kanamines
WO2000004353A1 (en) * 1998-07-14 2000-01-27 Kazuhito Sakano Radiation thermometer
WO2000066988A1 (en) * 1999-04-28 2000-11-09 Kazuhito Sakano Radiation thermometer and temperature measuring method with this thermometer

Similar Documents

Publication Publication Date Title
US5178464A (en) Balance infrared thermometer and method for measuring temperature
US5054936A (en) Sensor for active thermal detection
US4904090A (en) Temperature sensing arrangement
US3321974A (en) Surface temperature measuring device
US7107835B2 (en) Thermal mass flow sensor
EP1333504A3 (en) Monolithically-integrated infrared sensor
US20070034799A1 (en) Infrared sensor having thermo couple
EP0962763A1 (en) Differential scanning calorimeter
JP2012504750A (en) System and method for a temperature sensor using temperature balance
JPH0666639A (en) Infrared thermometer
WO2002055975A1 (en) Phase detector, method for setting reference value of phase detector, infrared thermometer and method for measuring temperature of infrared thermometer
JPS60133329A (en) Non-contact temperature detection control apparatus
US6437331B1 (en) Bolometer type infrared sensor with material having hysterisis
WO2001088495A1 (en) Infrared thermometer and method of measuring temperature with infrared thermometer
JP3874077B2 (en) Bolometer type infrared detector having hysteresis and driving method thereof
WO2001061295A1 (en) Thermopile sensor, and method of measuring temperature with infrared radiation
JP4490580B2 (en) Infrared sensor
JP3338456B2 (en) Radiation thermometer and method of measuring temperature of radiation thermometer
WO2001050102A1 (en) Thermopile sensor and temperature measuring method by infrared rays
RU2254559C1 (en) Arrangement for measuring temperature difference
JP2003156395A (en) Infrared temperature sensor
US20230375418A1 (en) Thermopile laser sensor with response time acceleration and methods of use and manufacture
JP3176798B2 (en) Radiant heat sensor
JPS5923369B2 (en) Zero-level heat flow meter
JP2008026179A (en) Radiant heat sensor and method of measuring radiant heat

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP