JPS5923369B2 - Zero-level heat flow meter - Google Patents

Zero-level heat flow meter

Info

Publication number
JPS5923369B2
JPS5923369B2 JP704679A JP704679A JPS5923369B2 JP S5923369 B2 JPS5923369 B2 JP S5923369B2 JP 704679 A JP704679 A JP 704679A JP 704679 A JP704679 A JP 704679A JP S5923369 B2 JPS5923369 B2 JP S5923369B2
Authority
JP
Japan
Prior art keywords
heat flow
temperature
heat
zero
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP704679A
Other languages
Japanese (ja)
Other versions
JPS55101026A (en
Inventor
美明 荒川
哲 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP704679A priority Critical patent/JPS5923369B2/en
Publication of JPS55101026A publication Critical patent/JPS55101026A/en
Publication of JPS5923369B2 publication Critical patent/JPS5923369B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は物体中を移動する又は物体表面から放散する
熱流密度を測定する熱流計に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat flow meter that measures the density of heat flow moving through an object or dissipating from the surface of an object.

ここに、この熱流計で得られる物理量の単位はSL単位
でW/7?Z”、慣用単位でkcal/(77Z2−h
)のものをいう。
Here, the unit of physical quantity obtained with this heat flow meter is W/7 in SL unit? Z”, in the customary unit kcal/(77Z2-h
).

現在市販されている熱流計の大半はその測定原理におい
て〃薄い熱抵抗体の表、裏面間の温度差を測定すること
によって熱流密度を知る方式〃のもので、この構造のも
のを直接被測定物中に挿入あるいは表面に貼着して実測
する。
The measurement principle of most of the heat flow meters currently on the market is to determine the heat flow density by measuring the temperature difference between the front and back surfaces of a thin thermal resistor. Measure by inserting it into an object or attaching it to a surface.

この種の測定法は計測法の分類からは〃変位法〃に属す
るものと考えられ、構造が比較的簡単であって、安価に
製作でき、取扱いが容易であるなどの利点を有する反面
精度の点で劣るという弱点を有していた。
This type of measurement method is considered to belong to the ``displacement method'' from the classification of measurement methods, and has the advantages of being relatively simple in structure, inexpensive to manufacture, and easy to handle. It had the weakness of being inferior in points.

すなわち、被測定物の表面に貼着して測定する従来の熱
流センサー(変位法熱流センサー)において精度を悪化
させる要因として以下の事項を指摘することができる。
That is, the following points can be pointed out as factors that deteriorate the accuracy of conventional heat flow sensors (displacement method heat flow sensors) that are attached to the surface of the object to be measured.

a)被測定面との接触状況の差異による誤差b)気体あ
るいは液体の対流熱伝達率が熱流センサーを検定した時
の条件と異なった場合の誤差。
a) Error due to differences in contact conditions with the surface to be measured b) Error when the convective heat transfer coefficient of gas or liquid differs from the conditions under which the heat flow sensor was verified.

たとえば風速、流量、流れの向き、放熱体の方向(上向
、下向など)など。
For example, wind speed, flow rate, direction of flow, direction of heat sink (upward, downward, etc.).

C)被測定面の材料の熱伝導性の差異による誤差。C) Error due to differences in thermal conductivity of materials on the surface to be measured.

たとえば鉄板表面及び鉄板の厚さの差、レンガ表面、木
材表面などの材質の差異。
For example, differences in the surface and thickness of iron plates, differences in materials such as brick surfaces, wood surfaces, etc.

d)被測定面と熱流センサーの気体側表面の放射率の差
による誤差。
d) Error due to the difference in emissivity between the surface to be measured and the gas side surface of the heat flow sensor.

等である。etc.

現在の熱流センサーにおいては上述の要因による誤差を
極力小とするための創意、設計はなされているものの宿
命的につきまとう問題となっている。
Although current heat flow sensors are designed and designed to minimize the errors caused by the above-mentioned factors, this problem is inevitable.

この発明は以上の実情に鑑みてなされたもので計測法上
更に精度の高い測定法を検討した計器、実用的な零位位
法熱流計の完成をみたものである。
This invention was made in view of the above-mentioned circumstances, and is the result of the completion of a practical zero-position method heat flow meter, which is an instrument in which a more accurate measurement method was investigated.

本発明に係る熱流計については現変位法センサーに、必
要とされる機能、素子を追加して零位法センサーと為し
、前述誤差要因を排して精度の高い熱流密度測定の可能
な計器が提案される。
The heat flow meter according to the present invention is a zero-position method sensor by adding necessary functions and elements to the current displacement method sensor, and is a meter capable of highly accurate heat flow density measurement by eliminating the above-mentioned error factors. is proposed.

以下、図面を参照して本発明に係る実施例を説明する。Embodiments of the present invention will be described below with reference to the drawings.

実施例を証明する前にまず本発明の測定原理を第1図、
第2図により説明する。
Before proving the examples, first the measurement principle of the present invention is shown in Fig. 1.
This will be explained with reference to FIG.

第1図は放熱壁面内部の温度、熱流密度の状況を示す説
明図であり、第2図は保温板貼着時の放熱壁面内部の状
況説明図である。
FIG. 1 is an explanatory diagram showing the temperature and heat flow density inside the heat dissipation wall, and FIG. 2 is an explanatory diagram showing the situation inside the heat dissipation wall when a heat insulating plate is attached.

第1図の如く、熱流密度ψが一様で表面温度TW(IO
の放熱壁面11を考える。
As shown in Figure 1, the heat flow density ψ is uniform and the surface temperature TW (IO
Consider the heat dissipation wall surface 11 of .

外気温をTA(6)とすればTW>TAと考えて以下に
説明する。
If the outside temperature is TA(6), the explanation will be given below assuming that TW>TA.

この時壁内部11aの温度分布に着眼すると、それは熱
流密度線(実線)に直交する線図として与えられるから
、第1図破線が温度分布となる。
At this time, focusing on the temperature distribution inside the wall 11a, it is given as a line diagram perpendicular to the heat flow density line (solid line), so the broken line in FIG. 1 is the temperature distribution.

次に、この一様に放熱している表面11の一部に〃保温
の役目をする板〃(以下保温板12という)を貼着した
場合の放熱壁面内部11aの熱流及び温度の分布を考え
る。
Next, let us consider the heat flow and temperature distribution inside the heat dissipating wall surface 11a when a "plate that serves as a heat retainer" (hereinafter referred to as the heat retaining plate 12) is attached to a part of the surface 11 that uniformly radiates heat. .

保温板12によって保温されるため該板を通過する熱流
密度ψ・はψより小となり、結果的に壁内の温度分布は
第2図に示す如くとなる。
Since the heat is insulated by the heat insulating plate 12, the heat flow density ψ· passing through the plate becomes smaller than ψ, and as a result, the temperature distribution within the wall becomes as shown in FIG.

すなわち保温板12の中央部に接する壁面11bの温度
はTwからTw十△Twと上昇する。
That is, the temperature of the wall surface 11b in contact with the central portion of the heat insulating plate 12 increases from Tw to Tw+ΔTw.

次に、第3図は本発明における保温板の内容を示す説明
図で、その保温板の内容は通常の熱流センサー13、す
なわち熱抵抗体13aの表裏の温度差を検出して熱流密
度を測定する方式のセンサーと該センサーの表面温度1
1bとしてセンサー中央部位の被測定壁面の温度と充分
離れた被測定面の表面温度11cとの差を検出する測温
素子14と、他方の面に該センサー表面を冷却すること
のできる冷却素子15とから構成される。
Next, FIG. 3 is an explanatory diagram showing the contents of the heat insulating plate according to the present invention. Sensor of the method and surface temperature of the sensor 1
As 1b, there is a temperature measuring element 14 that detects the difference between the temperature of the wall surface to be measured at the center of the sensor and the surface temperature 11c of the surface to be measured that is sufficiently distant from the sensor, and a cooling element 15 that can cool the sensor surface on the other surface. It consists of

すなわち、本構成が零位法センサーを示す。In other words, this configuration represents a zero-position sensor.

第3図において熱抵抗体の温度差測定素子(第3図では
差動熱電対群16)及び被測定面と通常の熱流センサー
表面との温度差測定素子(第3図では差動熱電対14)
は熱電対を差動結線した差動熱電対と差動熱電対群(熱
電性、サーモパイル)で示したが、差動熱電対としたと
ころに差動熱電対群を、あるいはその逆に差動熱電対群
としたところに差動熱電対を用いても良い。
In FIG. 3, a temperature difference measuring element of a thermal resistor (differential thermocouple group 16 in FIG. 3) and a temperature difference measuring element (differential thermocouple group 14 in FIG. 3) between the surface to be measured and the surface of a normal heat flow sensor are shown. )
shows a differential thermocouple and a differential thermocouple group (thermoelectricity, thermopile) in which thermocouples are differentially connected. A differential thermocouple may be used in place of the thermocouple group.

更には測温抵抗体、サーミスターの如(温度に対して電
気抵抗の変化する方式の素子な差動結線して用いても良
い。
Furthermore, differential wiring such as a resistance temperature detector or a thermistor (elements whose electrical resistance changes with temperature) may be used.

第4図は測温抵抗素子の差動結線図であり、測温抵抗素
子20a、20b、固定抵抗21a。
FIG. 4 is a differential connection diagram of resistance temperature measuring elements, including resistance temperature measuring elements 20a, 20b, and a fixed resistor 21a.

21b等のブリッジ回路からなる。It consists of a bridge circuit such as 21b.

ここで、測温抵抗素子20a 、20bは熱抵抗体13
aの表裏面に各々配設されるものである。
Here, the temperature measuring resistance elements 20a and 20b are the thermal resistance elements 13
These are disposed on the front and back surfaces of a.

冷却素子15としては熱電冷却すなわちペルチェ−効果
を利用した素子が市販されており、それを使用すること
ができる。
As the cooling element 15, a commercially available element that utilizes thermoelectric cooling, that is, the Peltier effect, can be used.

又、熱抵抗体13aの熱伝導率は通常温度依存性を有す
るので熱抵抗体13aの中に測温素子11を設け、この
素子の出力に応じて感度(又は感度の逆数)を補正する
ことが実際には行なわれる。
Furthermore, since the thermal conductivity of the thermal resistor 13a usually has temperature dependence, a temperature measuring element 11 is provided inside the thermal resistor 13a, and the sensitivity (or the reciprocal of the sensitivity) is corrected according to the output of this element. is actually carried out.

なお、被測定面の測温点は零位法センサーから充分離れ
ていて、温度分布に乱れを生じない位置を選ぶ必要があ
る。
Note that it is necessary to select a temperature measurement point on the surface to be measured that is sufficiently far from the zero-position sensor and does not cause any disturbance in the temperature distribution.

第3図の本発明に係る零位法熱流センサーを使用する場
合の電気系統図をブロックダイヤグラムとして第5図に
示す。
FIG. 5 shows an electrical system diagram as a block diagram when the zero-level heat flow sensor according to the present invention shown in FIG. 3 is used.

通常の熱流センサーの出力VF、VTは熱流演算計器3
4(例えば昭和電工■HFM−MU市販品)に入力され
、熱流密度と温度を直示する。
The output VF and VT of the normal heat flow sensor are the heat flow calculation instrument 3
4 (for example, Showa Denko's HFM-MU commercial product) and directly indicates the heat flow density and temperature.

被測定面11cと熱流センサー表面11bとの温度差測
定素子の出力はその出力差を0とするように自動的に温
度制御する等温制御器30への信号として入力し、その
出力としてまずAC電圧を変圧器31により降圧し、整
流器32の点弧角制御をしながら電流量をチョークトラ
ンス33により平滑調整し、直流電流を冷却素子15に
与える回路例を示している。
The output of the temperature difference measuring element between the surface to be measured 11c and the heat flow sensor surface 11b is input as a signal to an isothermal controller 30 that automatically controls the temperature so that the output difference is 0, and as the output, an AC voltage is first input. An example of a circuit is shown in which the voltage is stepped down by a transformer 31, the amount of current is smoothed by a choke transformer 33 while controlling the firing angle of a rectifier 32, and DC current is supplied to the cooling element 15.

実際に冷却素子15を使用する場合は通常放熱側にフィ
ンを付して用いられるが第5図には省略しである。
When the cooling element 15 is actually used, it is usually used with fins attached to the heat radiation side, but these are omitted in FIG.

第5図の回路によって、各表面間の温度差測定素子14
の出力が0となった時、放熱壁面内の温度分布は第2図
の状態から第1図の状態が再現されることになる。
By the circuit of FIG. 5, the temperature difference measuring element 14 between each surface is
When the output becomes 0, the temperature distribution within the heat radiation wall surface changes from the state shown in FIG. 2 to the state shown in FIG. 1.

換言すれば、通常の熱流センサーを通過する熱流密度ψ
νは測定したい熱流密度ψに等しい。
In other words, the heat flow density ψ passing through a normal heat flow sensor
ν is equal to the heat flow density ψ that we want to measure.

従って、通常の熱流センサー13を通過する熱流密度ψ
に対して熱抵抗体13aの表裏の温度差△tを検出すれ
ば ψ=に△t(1) で与えられ、(1)弐には熱抵抗体の熱伝導率と厚さに
よって定まる熱コンダクタンスであるから、定数として
定まり、先述した誤差要因のa=dの影響は全く受けず
に正しい熱流密度ψの測定ができることになる。
Therefore, the heat flow density ψ passing through the normal heat flow sensor 13
If the temperature difference △t between the front and back sides of the thermal resistor 13a is detected, ψ= is given by △t(1), and (1) 2 is the thermal conductance determined by the thermal conductivity and thickness of the thermal resistor. Therefore, it is determined as a constant, and the heat flow density ψ can be accurately measured without being affected by the error factor a=d mentioned above.

なお、この熱コンダクタンスには先述した様に温度の依
存性を示し、熱抵抗体に設けた測温素子17での温度T
を用いるとTの一次式で良(近似される。
As mentioned earlier, this thermal conductance shows temperature dependence, and the temperature T at the temperature measuring element 17 provided on the thermal resistor
When using , it is well approximated by the linear expression of T.

従って、実測式4瓢1)式を展開した(2)式で与えら
れる。
Therefore, it is given by Equation (2), which is an expansion of Equation 4 (1) from actual measurement.

ψ=(ko+βT)△t(2) kO、βは熱抵抗体の材料によって定まる定数第5図の
熱流直示計器34は(2)式を演算し、表示するメータ
ーであって、実処理としては温度Tの入力信号を測温素
子の実出力vTで、又△tは熱抵抗体の表裏の温度差を
検出する測温素子の出力vFに置きかえて(2)式を演
算している。
ψ=(ko+βT)△t(2) kO, β are constants determined by the material of the thermal resistor The direct heat flow meter 34 in FIG. Equation (2) is calculated by replacing the input signal of temperature T with the actual output vT of the temperature measuring element, and replacing Δt with the output vF of the temperature measuring element that detects the temperature difference between the front and back sides of the thermal resistor.

本発明になる零位法熱流センサーの感度の逆数(kに相
当する値)の決定は熱抵抗体の熱伝導率と厚さから計算
することも可能であるが、各種測温素子が配設されてい
るために夫々の素子の熱的定数、構造によって実際の感
度の逆数は計算値と若干具なることが危惧される。
Although it is possible to determine the reciprocal of the sensitivity (value equivalent to k) of the zero-level heat flow sensor according to the present invention from the thermal conductivity and thickness of the thermal resistor, Therefore, it is feared that the actual reciprocal of sensitivity may differ slightly from the calculated value depending on the thermal constants and structure of each element.

これに対しては、現在の変位法熱流センサーを検定する
ために使用している既知の熱流密度発生装置(例えば特
願昭45−36346)を用いて自然対流下で検定し、
感度の逆数k ((1)式の)を温度依存性も含めて検
定すれば良い。
To solve this problem, a known heat flow density generator (for example, Japanese Patent Application No. 45-36346) used to test current displacement method heat flow sensors is used to test the sensor under natural convection.
The reciprocal of sensitivity k (in equation (1)) may be tested including temperature dependence.

よって、本発明の零位法熱流計は上述の如き構成になる
ので各種誤差要因を含まず測定が可能であって、精密測
定に適すると共にその構成素子も市販品をアンセンプル
すれば比較的安価、容易に実施できるものにして実用性
の高い熱流計を市場に提供することが可能である。
Therefore, since the zero-level method heat flow meter of the present invention has the above-mentioned configuration, it is possible to perform measurements without including various error factors, and is suitable for precision measurement.If the components are assembled from commercially available products, they are relatively inexpensive. It is possible to provide the market with a heat flow meter that is easy to implement and highly practical.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は放熱壁面内部の温度、熱流密度の状況を示す説
明図、第2図は保温板貼着時の放熱壁面内部の状況説明
図、第3図は本発明における保温板の内容を示す説明図
、第4図は測温抵抗素子の差動線図、第5図は本発明に
係る零位法熱流討の電気系統図のブロックダイヤフラム
である。 11・・・・・・放熱壁面(被測定面)、11b・−・
・・熱流センサー表面温度(センサー中央部位壁面温度
)、13・・・・・・熱流センサー、14・・・・・・
測温素子、15・・・・・・冷却用素子。
Fig. 1 is an explanatory diagram showing the temperature and heat flow density inside the heat dissipating wall, Fig. 2 is an explanatory diagram showing the situation inside the heat dissipating wall when the heat insulating plate is attached, and Fig. 3 shows the contents of the heat insulating plate in the present invention. The explanatory diagram, FIG. 4 is a differential diagram of a temperature-measuring resistance element, and FIG. 5 is a block diaphragm of an electrical system diagram of a zero-level heat flow system according to the present invention. 11... Heat dissipation wall surface (measured surface), 11b...
...Heat flow sensor surface temperature (sensor center wall surface temperature), 13...Heat flow sensor, 14...
Temperature measuring element, 15... Cooling element.

Claims (1)

【特許請求の範囲】 1 被測定物に接した熱抵抗体の表裏の温度差を検出し
て熱流密度を測定する熱流センサーをその一構成部分と
する熱流計において (1)該熱流センサーの外気側の面に冷却用素子を備え
、更に (2)該熱流センサーの被測定物に接した面の表面温度
と該熱流センサーが接しない領域の被測定物の表面温度
との温度差 (以下(3頭のみにおいて「前記温度差」という。 )を測定するための測定素子を具備し、かつ (3)前記温度差を零とするための冷却用素子制御装置
を有することを特徴上する熱流計。
[Scope of Claims] 1. In a heat flow meter that includes a heat flow sensor that measures heat flow density by detecting the temperature difference between the front and back surfaces of a thermal resistor in contact with an object to be measured, (1) outside air of the heat flow sensor A cooling element is provided on the side surface, and (2) there is a temperature difference (hereinafter referred to as ( (referred to as "the temperature difference") between only three animals; and (3) a cooling element control device for reducing the temperature difference to zero. .
JP704679A 1979-01-26 1979-01-26 Zero-level heat flow meter Expired JPS5923369B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP704679A JPS5923369B2 (en) 1979-01-26 1979-01-26 Zero-level heat flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP704679A JPS5923369B2 (en) 1979-01-26 1979-01-26 Zero-level heat flow meter

Publications (2)

Publication Number Publication Date
JPS55101026A JPS55101026A (en) 1980-08-01
JPS5923369B2 true JPS5923369B2 (en) 1984-06-01

Family

ID=11655101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP704679A Expired JPS5923369B2 (en) 1979-01-26 1979-01-26 Zero-level heat flow meter

Country Status (1)

Country Link
JP (1) JPS5923369B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185372U (en) * 1985-05-14 1986-11-19

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5913932A (en) * 1982-07-15 1984-01-24 Keiji Nishimoto Method for measuring heat current amount
JPH0629799B2 (en) * 1985-06-17 1994-04-20 京都電子工業株式会社 Heat dissipation measurement device
JP2005030797A (en) * 2003-07-08 2005-02-03 Ishikawajima Harima Heavy Ind Co Ltd Heat flux meter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61185372U (en) * 1985-05-14 1986-11-19

Also Published As

Publication number Publication date
JPS55101026A (en) 1980-08-01

Similar Documents

Publication Publication Date Title
JP3114139B2 (en) Thermal conductivity meter
US6370950B1 (en) Medium flow meter
EP0159438A2 (en) Multi-layered thin film heat transfer gauge
US20230258506A1 (en) Thermometer having a diagnostic function
EP0962763A1 (en) Differential scanning calorimeter
US3417617A (en) Fluid stream temperature sensor system
JPH07151572A (en) Measuring device and measuring method
JPS5923369B2 (en) Zero-level heat flow meter
Diller et al. Heat flux measurement
US20240053209A1 (en) Thermometer with a diagnostic function
JP3953170B2 (en) Specific heat measurement method and differential scanning calorimeter
JP3193241B2 (en) Measuring device
JP3114137B2 (en) Thermal conductivity gas concentration analyzer
US4475392A (en) Skin friction gage for time-resolved measurements
JP3300110B2 (en) Gas detector
JP3328408B2 (en) Surface temperature measurement method
JPS634134B2 (en)
US3514998A (en) D.c. circuit for operating asymmetric thermopile
JPH0143903B2 (en)
JPS60146118A (en) Method and apparatus for measuring level of interface
JP3163558B2 (en) Flow velocity detector
RU2727564C1 (en) Self-calibrating temperature sensor
JPH0643906B2 (en) Flow sensor
JP2879256B2 (en) Thermal flow meter
EP1223411A1 (en) Universal sensor for measuring shear stress, mass flow or velocity of a fluid or gas, for determining a number of drops, or detecting drip or leakage