WO2002053301A1 - Procede de laminage a chaud et train de laminoirs a chaud - Google Patents

Procede de laminage a chaud et train de laminoirs a chaud Download PDF

Info

Publication number
WO2002053301A1
WO2002053301A1 PCT/JP2001/011401 JP0111401W WO02053301A1 WO 2002053301 A1 WO2002053301 A1 WO 2002053301A1 JP 0111401 W JP0111401 W JP 0111401W WO 02053301 A1 WO02053301 A1 WO 02053301A1
Authority
WO
WIPO (PCT)
Prior art keywords
leveler
hot rolling
metal plate
rolling line
diameter
Prior art date
Application number
PCT/JP2001/011401
Other languages
English (en)
French (fr)
Inventor
Yukihiro Matsubara
Toshiki Hiruta
Masanori Kitahama
Kazuya Miyagawa
Futoshi Goto
Kazuo Onda
Eiji Tohyama
Takeshi Hirabayashi
Original Assignee
Kawasaki Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corporation filed Critical Kawasaki Steel Corporation
Priority to EP01272853A priority Critical patent/EP1346780A4/en
Priority to KR1020027011298A priority patent/KR20020079921A/ko
Publication of WO2002053301A1 publication Critical patent/WO2002053301A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0242Flattening; Dressing; Flexing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/24Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
    • B21B1/26Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/74Temperature control, e.g. by cooling or heating the rolls or the product
    • B21B37/76Cooling control on the run-out table
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D1/00Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling
    • B21D1/02Straightening, restoring form or removing local distortions of sheet metal or specific articles made therefrom; Stretching sheet metal combined with rolling by rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0085Joining ends of material to continuous strip, bar or sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B15/0007Cutting or shearing the product
    • B21B2015/0021Cutting or shearing the product in the rolling direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0057Coiling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B15/00Arrangements for performing additional metal-working operations specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B2015/0071Levelling the rolled product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills
    • B21B45/02Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills for lubricating, cooling, or cleaning
    • B21B45/0203Cooling
    • B21B45/0209Cooling devices, e.g. using gaseous coolants
    • B21B45/0215Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes
    • B21B45/0218Cooling devices, e.g. using gaseous coolants using liquid coolants, e.g. for sections, for tubes for strips, sheets, or plates
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling

Definitions

  • the present invention relates to a hot rolling method and a hot rolling line for producing a high-strength metal plate.
  • a hot rolling line for a steel sheet will be described as a typical example of a metal sheet.
  • Steel sheets are generally manufactured, for example, in a hot rolling line schematically shown in FIG.
  • the metal piece of the material is called a slab or sheet par.
  • the slab may be extracted by being heated in a heating furnace (not shown), or may be directly sent in a hot state from an upper process without passing through the heating furnace.
  • the sheet-par is directly supplied to the finishing mill 3 to omit the rolling by the rough mill 2 to produce a steel sheet.
  • Reference numerals 5c and 5d in FIG. 13 are mandrels.
  • the rotation speed is controlled by a control device (not shown) attached to the coilers 5a and 5b, respectively.
  • the coiler winds the metal plate 1 cooled by the cooling device 4 around a mandrel to produce a coil-shaped metal plate product.
  • the slap paper to be rolled between these facilities is transported by a number of staple rollers (not shown).
  • a typical example is a so-called controlled rolling method disclosed in Japanese Patent Application Laid-Open No. 63-223124.
  • the principle of the controlled rolling method is that when transforming from austenite (hereinafter referred to as) to ferrite (hereinafter referred to as), ⁇ : increase the ⁇ grain boundaries where nuclei are formed and reduce lattice defects such as dislocations. By introducing it in a larger amount, a number of a grains are generated at the time of transformation from “7 to ⁇ ” to achieve the refinement of crystal grains.
  • Grain refinement or dislocation In order to introduce lattice defects, it is effective to apply as large a strain as possible to the steel sheet. However, since the thickness of the slap or sheet par and the thickness of the product are fixed, there is a limit to the amount of strain that can be introduced in the normal rolling process. Generally, it is said that the average crystal grain size of 5 ⁇ m is the limit in controlled rolling.
  • Japanese Patent Application Laid-Open No. 60-44106 discloses that in a hot rolling line in which a high-temperature material is connected and a finishing mill for hot rolling is arranged, a tension applying device is arranged near the exit of the final stand of the finishing mill. By doing so, it is disclosed that an ultrathin product having a uniform shape can be obtained.
  • the tension applying device disclosed in Japanese Patent Application Laid-Open No. 60-44106 has a large number of bending rolls, a metal plate after finish rolling is used so that an ultrathin product having a uniform shape can be obtained.
  • the bending strain that can be imparted to the metal plate after finish rolling was insufficient only by applying tension to the metal sheet.
  • the present invention realizes the refinement of the crystal grains in the structure of the metal plate by applying a strain to the metal plate without changing the thickness of the slab or sheet bar and the product plate thickness, and thereby achieves hot working for increasing the strength more than before.
  • a rolling method and a hot rolling line are proposed.
  • Another object of the present invention is to provide a hot rolling method and a hot rolling line that can further refine crystal grains under practical leveler conditions.
  • the metal plate referred to in the present invention includes a metal band. Disclosure of the invention
  • a roller leveler (hereinafter simply referred to as “leveler”), in which upper and lower work rolls (hereinafter simply referred to as “rolls”) are arranged in a staggered manner, is installed after the finish rolling mill exit side. It has been found that it is effective to repeatedly bend the metal plate after finish rolling with the leveler. Bending deformation can apply strain without reducing the thickness of the metal plate, so repeating this process can apply strain to the metal plate.
  • the work roll of the leveler may not be evenly distorted in the width direction of the metal plate due to the pressure applied from the metal plate.
  • the upper and lower work rolls may be backed up by backup rolls.
  • a leveler capable of repeatedly applying bending strain to a metal plate is installed on the finish rolling mill exit side.
  • strain for example, in the case of steel, further refinement of ⁇ grains (addition of grain boundaries) is aimed at.
  • lattice defects such as dislocations in ⁇ grains are introduced, and ⁇ grains can be further refined.
  • the product metal plate will be made stronger by further miniaturizing the metal crystal grains.
  • the metal plate strained by the leveler is further cooled, brought to a desired temperature, and wound up. Further, the present inventors provide a cooling device on the exit side of the finishing mill and on the entrance side of the leveler, cool the metal plate to a predetermined temperature, and further repeatedly perform bending. At the same time.
  • the present invention is as described below.
  • Hot rolling line for metal sheets 1.
  • a finishing mill a leveler for imparting bending strain to the metal sheets, and a cooling device are arranged in this order from upstream to downstream in the metal sheet transport direction.
  • a hot rolling line for metal sheets wherein the metal sheet is arranged from upstream to downstream in the metal sheet transport direction.
  • Hot rolling line for metal sheets In the hot rolling line for metal sheets, a finishing mill, a cooling device, a leveler, and a cooling device are arranged in this order from upstream to downstream in the metal sheet transport direction. Hot rolling line for metal sheet.
  • the finishing mill In the hot rolling line for metal sheets, the finishing mill, the cooling equipment, the leveler whose work rolls are backed up by back-up rolls, and the cooling equipment are further connected upstream of the metal sheet transport direction.
  • a hot rolling line for metal sheets which is arranged in this order from downstream to downstream.
  • the joining equipment, the finishing mill, the leveler for imparting bending strain to the metal sheet, the cooling equipment, the cutting device, and the coiler are transferred upstream in the metal sheet transport direction.
  • the joining equipment, the finishing mill, the leveler whose work ports are each packed up by the pack-up ports, the cooling equipment, the cutting equipment, and the coiler are arranged from upstream to downstream in the metal sheet conveying direction and in that order.
  • the joining equipment, the finishing mill, the cooling equipment, the leveler, and the cooling equipment, the cutting equipment, and the coiler are arranged from upstream to downstream in the metal sheet conveying direction.
  • leveler according to 1. to 8., wherein the leveler has at least one small-diameter work roll whose diameter is less than 40 times the thickness of the metal plate after finish rolling.
  • the hot rolling line according to any one of the above.
  • the leveler has at least one non-driven small-diameter work piece having a diameter of less than 40 times the thickness of the metal plate after finish rolling.
  • the hot rolling line according to item 8. wherein the leveler has at least one non-driven small-diameter work roll whose diameter is less than 40 times the thickness of the metal plate after finish rolling.
  • the small-diameter work roll and the small-diameter work roll A drive torque can be transmitted from the pack-up roll to the small-diameter work rolls via gears provided at respective necks of the rolls, and the diameter of the remaining work rolls is a metal plate after finish rolling.
  • FIG. 1A is a layout diagram of an example of a hot rolling line according to the present invention.
  • FIG. 1B is a layout diagram of a preferred hot rolling line.
  • FIG. 2 is a schematic diagram illustrating details of a leveler applied to the present invention and cooling equipment.
  • FIG. 3A is a partial longitudinal sectional view showing a roll arrangement of an example of a leveler used in the present invention.
  • FIG. 3B is a schematic view showing a driving mechanism of a large-diameter work roll adjacent to the upper-small-diameter work roll shown in FIG. 3A.
  • FIG. 3C is a diagram showing the effect of the ratio of the work roll diameter of the leveler to the thickness of the metal plate on the average crystal grain size of the metal plate.
  • FIG. 4 is a configuration diagram of a drive mechanism for driving a small-diameter work roll of a leveler used in the present invention.
  • FIG. 5A is a schematic diagram illustrating deformation between rolls of a metal plate in a leveler.
  • FIG. 5B is a schematic diagram when the pushing amount of the leveler is negative.
  • FIG. 5C is a diagram showing the relationship between the work roll diameter and the bending strain of the leveler.
  • FIG. 6 is a schematic diagram showing the state of a passing trap at the tip of a metal plate in a leveler.
  • FIG. 7 is a schematic diagram showing a leveler passing plate trap due to a metal plate slip.
  • Fig. 8 is a graph showing the relationship between the surface roughness of the leveler work roll and the rate of slip occurrence. .
  • FIG. 9 is a schematic diagram showing how the measuring roll is installed on the hot rolling line.
  • FIG. 10 is a diagram showing the configuration of the measuring roll.
  • FIG. 11 is a layout diagram of another preferred hot rolling line according to the present invention.
  • FIG. 12 is a graph comparing the tensile strength and the average crystal grain size of the present invention example and the conventional example.
  • FIG. 13 is an arrangement diagram of a hot rolling line for producing a conventional steel sheet. BEST MODE FOR CARRYING OUT THE INVENTION The hot rolling line according to the present invention will be described with reference to FIGS. 1A and IB.
  • the rough rolling mill 2 the first cooling equipment 4, the mandrels 5c and 5d, and the coilers 5a and 5b are assumed to be installed in the conventional hot rolling line shown in FIG. Since they are the same, the same reference numerals are given and the description is omitted.
  • FIG. 1A shows the first embodiment.
  • a finishing mill 3 In this hot rolling line, a finishing mill 3, a leveler 6, and a cooling facility 4 are arranged in this order from upstream to downstream of the rolling line.
  • the cooling equipment 4 is also referred to as a first cooling equipment 4.
  • FIG. 1B shows a second embodiment.
  • a second cooling facility 7 is arranged between the finishing mill 3 and the leveler 6.
  • reference numeral 3a denotes a work roll
  • 3b denotes a pack-up roll, which are incorporated in a housing (not shown).
  • the leveler 6 includes three or more work rolls 6a arranged in a zigzag pattern or a backup roll 6b for backing up the work roll 6a.
  • the diameter of the crawl 6a is desirably 300 mm or less from the viewpoint of imparting a leveler additional strain described later. If the diameter of the work roll 6a is less than 180 mm, the pack-up roll 6b is provided. It is desirable.
  • the metal piece S is rolled by the finish rolling mill 3 to form the metal plate 1, and then the metal plate 1 after finish rolling is repeatedly bent and then cooled. Due to the strain applied by the leveler 6 in the longitudinal direction of the metal sheet, the crystal grains of the metal sheet product can be refined. '
  • the metal plate is repeatedly bent by the leveler 6 to refine the ⁇ grains. At that time, it is more effective to repeatedly bend the metal plate in the two-phase temperature range where the ⁇ phase is slightly present, rather than repeatedly bending the metal plate in the ⁇ single-phase temperature range. This is preferable because ⁇ grains can be refined.
  • the mechanism of grain refinement in this steel is as follows: (1) increase of ⁇ grain boundaries due to refinement of ⁇ grains; (2) introduction of lattice defects such as dislocations in one grain; It is considered that it is generated.
  • a second cooling facility 7 is arranged between the final stand of the finishing mill and the leveler.
  • the metal plate 1 can be cooled to a desired temperature after the finish rolling and before the metal plate 1 is repeatedly bent. This is preferable because the crystal grains of the metal sheet product can be further refined.
  • the second cooling facility 7 can have the same configuration as the conventional first cooling facility 4.
  • it comprises a cooling nozzle that outputs cooling water to the front and back surfaces of the metal plate 1, a control device that controls the flow of the cooling water, a radiation thermometer that measures the surface temperature of the metal plate 1, and the like. It is desirable that the temperature of the metal plate 1 immediately before repeated bending is 900 to 750 ° C in the case of steel.
  • the bending strain ⁇ per one time in the leveler 6 is ⁇ / L on the surface of the metal plate 1 when the center distance between the lower rolls 6a is 2 L and the roll pushing amount is ⁇ . Proportional to 2 .
  • Figure 5C shows the relationship between the diameter d of the work roll 6a and the bending strain ⁇ per stroke on the metal plate surface.
  • the results are obtained when the plate thickness is 4 mm, the center distance 2 L between the work rolls 6 a is d + 10 mm, and the roll pushing amount ⁇ is the maximum pushing amount.
  • the bending strain ⁇ at one time on the metal plate surface is inversely proportional to the diameter d of the work roll 6a.
  • the diameter d of the work roll 6a exceeds 300rain, the bending strain ⁇ per one time on the surface of the metal plate becomes very small. Therefore, the diameter d of the work roll 6a is desirably 300 mm or less.
  • the diameter of the work roll 6a increases, the center distance 2L between the work rolls also increases, and the length of the leveler in the rolling line direction increases.
  • the cooling length of the cooling device must also be ensured. As a result, the length of the hot rolling line becomes longer.
  • the larger the diameter of the work roll 6a the larger the device. From the above viewpoint, the diameter d of the work roll 6a is desirably 300 mm or less.
  • the strain applied to the metal plate 1 by the leveler 6 can be obtained by multiplying the equation (1) by the number of times of bending (n_2).
  • n is the number of work rolls. As shown in FIGS.
  • n 1 Number of bends by large diameter work roll
  • n 2 Number of bending by small diameter work roll
  • n n 1 + n 2 + 2
  • the large-diameter work roll means a work roll 6a other than the small-diameter work roll 6a '.
  • the work roll 6a may become thin and bend due to the reaction force from the metal plate 1 caused by the roll pressing. If the diameter of the work roll 6a is less than 180 mm, it is desirable to have a backup roll that reinforces the work roll 6a.
  • the backup roll is an integrated backup port composed of an integral roll member in the roll axis direction. Rolls, or a divided pack-up roll composed of a plurality of roll members in the roll axis direction. The present invention is not limited to this.
  • the leveler 6 keeps the bending strain ⁇ in the longitudinal direction on the surface of the metal plate 1 at one time constant, increases the number of bendings, and imparts a desired bending strain ⁇ .
  • the number of work rolls exceeds 30, the temperature of the metal plate 1 decreases, and the problem that the reaction force from the metal plate 1 becomes too large occurs. For this reason, it is preferable that the number of the work rolls of the leveler arranged in the hot rolling line of the present invention is 30 or less.
  • each of the work rolls of the leveler is driven. ⁇ ⁇
  • the driving speed is the same as the traveling speed of the metal plate.
  • exceptional speed is taken. That is, the speed at the tip is higher than the traveling speed of the metal plate.
  • the speed at the tail end is lower than the running speed of the metal plate. It is preferable to prevent the doubling of the metal plate and the accompanying running obstacle of the metal plate.
  • the tip it is preferably 103 to 140% of the running speed of the metal plate.
  • the traveling speed of the tail end is preferably 60 to 95% of the traveling speed of the metal plate.
  • the surface roughness Ra of the leveler work roll applied to the present invention is preferably 0.5 ⁇ Ra ⁇ 2.0 ⁇ . This is to prevent the metal plate from passing through the inside of the leveler as shown in Fig. 7.
  • the surface roughness Ra refers to Ra (arithmetic average roughness) defined in JIS B 0601-1994, and was measured in the roll axis direction of the work roll with a cutoff value of 0.8 mm and an evaluation length of 4 mm. Value.
  • the reason for setting the surface roughness Ra of the leveler work roll to 0.5 ⁇ m and Ra is as follows. It is on the street. If Ra is less than 0.5 im, a slip may occur between the metal plate and the work roll of the leveler, and the metal plate may not pass through the leveler (see FIG. 7). Subsequent metal sheets are folded at the leveler entrance to form a threading trap, and rolling must be stopped. Therefore, in order to suppress such threading trapping due to slippage in the leveler, the surface roughness Ra of the work roll of the leveler is set to 0.5 ⁇ and Ra to prevent slippage in the leveler.
  • the stable leveling plate inside the leveler is designed.
  • Figure 8 shows the relationship between the surface roughness Ra ( ⁇ ) of the leveler work roll and the slip occurrence rate (%). It can be seen that when the surface roughness Ra of the work roll of the leveler exceeds 0.5 ⁇ , the slip generation rate (%) in the leveler decreases.
  • Example 12 Example 1 of the present invention
  • Bending was repeatedly performed while changing the surface roughness Ra ( ⁇ m) of the work roll of the leveler.
  • Ra (Aim) of the work roll the ratio of the number of coils of the metal plate that led to the passing-through trap by the slip in the leveler to the total number of treated coils was defined as the slip occurrence rate.
  • the surface roughness Ra ( ⁇ m) was measured at five points in the roll axis direction of the first crawl of the leveler, and the average value was obtained.
  • the slip inside the leveler often occurred when the work roll of the leveler was pushed in before the tip of the metal plate after reaching the leveler reached the coiler pinch roll or the coiler.
  • the cause can be estimated as follows.
  • the force in the direction to advance the metal plate that can be transmitted from the work roll of the leveler to the metal plate without slipping is F w
  • the pushing force given by the work roll of the final stand of the finishing mill is F c
  • the force applied through the metal plate in the leveler is F c .
  • F r be the force required to plate.
  • F w is increased
  • the metal plate is estimated not to slip in the sum F r greater than Doconnection leveler of F w and F c You.
  • the reason for setting the surface roughness Ra of the work roll of the leveler to Ra 2.0 m is that when the surface roughness Ra of the work roll of the leveler is 2.0 ⁇ or more, the work roll surface roughness Is transferred to the surface of the metal plate to increase the surface roughness of the metal plate. In the case of steel plate, partial peeling of the scale is caused, and surface quality is impaired.
  • a finishing mill, a leveler, and a cooling facility are arranged in this order from upstream to downstream in the metal sheet transport direction.
  • the metal plate after finishing rolling applied to the metal piece is repeatedly bent by a leveler, and then cooled. By doing so, the crystal grains are refined and a high-strength metal sheet product is obtained.
  • the surface roughness Ra of the work roll of the above-mentioned leveler is set to 0.5 ⁇ a ⁇ 2.0 ⁇ m, the trouble of passing through the inside of the leveler is reduced. This is preferable because the operation rate of the rolling line can be increased and the surface properties of the metal sheet can be maintained well.
  • a problem may occur when the tail end of the metal plate passes through the leveler. While the tail end is passing through the leveler, the metal plate may suddenly meander in the width direction, bend in a wrinkle shape and pass through the leveler. This phenomenon is called narrowing. The leveler work roll may be scratched, and the scratch may be transferred to the subsequent metal plate, resulting in poor surface quality.
  • a threading guide 6c or a side guide 6d between the work rolls 6a, as in the case of the tip problem.
  • the side guides 6d have guide plates arranged on both sides facing each other so as to sandwich the metal plate 1 in the width direction.
  • Tracking is to detect where the leading edge and the trailing edge of the metal plate are on the hot rolling line sequentially in real time.
  • the measuring ring 8 shown in FIG. 10 is installed on the entrance side of the finishing mill as shown in FIG. Index from the stored data in the computer that does not indicate the thickness ratio of the entrance and exit of the finishing mill. This sheet thickness ratio is multiplied by the number of pulse force parts generated by the measuring roll 8.
  • the starting point of the pulse count shall be when the tip of the metal plate enters the roll of the final stand of the finishing mill.
  • the measuring roll 8 is pressed against the metal plate 1 and rotates. A pulse is generated each time it rotates a predetermined angle (for example, 0.025 mm in circumference).
  • the speed of the metal plate on the entry side of the finishing mill is measured by force-counting the pulse generated by the measuring ring roll 8 by a control device (not shown). After that, by multiplying the thickness ratio between the entrance and exit of the finishing mill, the speed and tip position of the metal sheet on the exit of the finishing mill can be known in real time.
  • the tracking of the tail end of the metal plate requires some contrivance. The starting point is the time when the tail end of the metal plate comes off the roll of the final stand of the finishing mill.
  • Tracking is obtained by, for example, integrating the product of the winding diameter and the number of rotations of the mandrel from the time when the metal plate is wound around the coiler 5a or 5b.
  • the winding diameter is calculated by adding the product of the number of turns and the thickness to the diameter of the mandrel 5c or 5d.
  • the roll diameter and the number of revolutions of the final stand of the finishing mill can be obtained by a control device (not shown), and the advance rate can be indexed from data stored in a computer (not shown).
  • a control device not shown
  • the advance rate can be indexed from data stored in a computer (not shown).
  • a laser speedometer can be used instead of the measuring roll.
  • FIG. 11 shows a hot rolling line according to the third embodiment.
  • the case where the cooling device 7 is not installed before the leveler 6 corresponds to the present invention example (3), and the case where the cooling device 7 is installed corresponds to the present invention example (4).
  • the preceding sheet par (preceding metal plate la) and the succeeding sheet bar (subsequent metal plate lb) are joined by the joining equipment 10.
  • the metal plate 1 is rolled by the finishing mill 3
  • the metal plate 1 is repeatedly bent and deformed by the leveler 6.
  • the metal plate 1 is cut by the cutting equipment 16 and wound into two coilers 5a and 5b.
  • the joining equipment 10 joins a plurality of sheet pars. At the joint, it is possible to prevent the passage of the plate in the leveler 6 as shown in FIG. 6 and the narrowing in the leveler 6 described above.
  • the yield of high-strength metal plates can be greatly improved as compared with a case where sheet pars are rolled one by one and a metal plate having a front end and a tail end is repeatedly bent and deformed with a leveler 6 for each one.
  • the joining equipment 10 is mainly composed of a group of devices including a coil box 11, a cropper 9a, and a joining device 12, and further includes a paring device 13, a joining cooling device 14, and a sheet paring device indicated by dotted lines in FIG. A heating device 15 or the like may be added to this.
  • the welding principle is not only the combination of induction heating and pressure welding, but also filler wire welding with a laser. Any of these methods may be used, or any other method may be used.
  • the pulse may be counted in the same manner, with the tip of the first joint being the above-mentioned tip, and the tail end of the last joint being regarded as the above-mentioned tail end.
  • a method using a laser type speedometer instead of the measuring roll may be employed. In short, any method can be used as long as the position of the tip and tail can be tracked in real time.
  • the sheet bars are joined, continuously finish-rolled, and repeatedly bent and bent according to the present invention. Apply to the metal plate. This makes it possible to increase the strength of the entire length of the metal plate, including the joints in the middle, excluding the end of the first joint and the tail end of the last joint, which is advantageous in yield.
  • a cooling system 7 is provided between the exit side of the finishing mill and the leveler.
  • One preferable example is to cool the metal plate 1 after finish rolling to a predetermined temperature and then repeatedly perform bending with the leveler.
  • the exit temperature of the final stand of the finishing mill is usually 8 points or more. If a cooling system 7 is provided on the leveler entry side, cooling can be performed before the leveler after finish rolling. Maximize the effect of crystal grain refinement by setting the temperature at the leveler exit side to a temperature range from Ar 3 points or less, which is the temperature at which transformation from y to ⁇ starts, to Ar 3 points-50 ° C or more. be able to.
  • the cooling equipment 7 includes a cooling nozzle 7c for emitting cooling water to the front and back surfaces of the metal plate 1, a control device 7b for controlling the ejection of the cooling water from the cooling nozzle 7c, It comprises a ⁇ radiation thermometer 7a for measuring the temperature of the surface of the metal plate 1. It is possible to perform cooling to a predetermined temperature according to the surface temperature of the metal plate 1.
  • the cooling equipment 4 can have a similar configuration.
  • the metal plate 1 can be cooled in a predetermined cooling pattern and at a predetermined winding temperature.
  • the control device 4b and the control device 7b can be integrated into one unit, and information can be shared to perform temperature control.
  • Reference numeral 4a denotes a radiation thermometer provided near the outlet side of the cooling equipment 4, and 4c denotes a cooling nozzle provided in the cooling equipment 4.
  • Leveler 6 is exaggerated for clarity.
  • the levelers arranged in the hot rolling lines according to the first and second embodiments increase the strain applied to the metal plate 1 by using at least one work roll as a small-diameter work roll. can do.
  • the small-diameter work roll is not driven and the remaining large-diameter work roll is drivable (see FIGS. 3A and 3B). It is preferable that the diameter d of the small-diameter work rolls 6a and 6a is less than 40 times the thickness h of the metal plate after finish rolling.
  • the large-diameter work roll 6a preferably has a diameter d that is at least 40 times the thickness h of the metal plate after finish rolling.
  • a spindle yoke 61a of a known universal joint (universal joint) 61 shown in FIG. 3B is fitted in the oval neck portion of the large-diameter work row / roller 6a.
  • the large-diameter work roll is rotationally driven by a motor (not shown) via a universal joint 61.
  • a gear box having a plurality of gears may be interposed between the motor and the universal joint 61.
  • FIG. 3A is a partial schematic longitudinal sectional view of an example of a leveler arranged in the hot rolling line according to the first and second embodiments.
  • FIG. 3B is a schematic diagram showing a driving mechanism of one upper and smaller diameter work roll 6a arranged on the leveler and two large diameter work rolls 6a adjacent thereto. Other large-diameter work rolls 6a and back-up rolls 6b are omitted.
  • Reference numeral 63 in FIG. 3B denotes a bearing, and the work rolls 6a and 6a 'and the backup roll 6b are rotatably supported by a frame of a leveler (not shown) via bearings.
  • the leveler used in the present invention preferably has at least one small-diameter work roll 6a, whose diameter d is less than 40 times the thickness h of the metal plate after finish rolling.
  • the reason for this is that at least one small-diameter work roll with a diameter of less than 40 times the thickness of the metal plate after finish rolling is arranged on at least one leveler, and the bending strain per one stroke of the small-diameter work roll is ⁇ .
  • the crystal grains of the product can be further refined.
  • Figure 3C shows the effect of the ratio dZh of the work roll diameter d of the leveler to the thickness h of the metal plate on the average crystal grain size of the metal plate.
  • the thickness of the steel sheet on the exit side of the finishing mill is 4 mm and 5 mm.
  • the hot rolling conditions are as follows: the finishing temperature is 900 ° C, the steel sheet speed at the finishing mill is 720m / min, and the winding temperature is 600 ° C. From Fig. 3C, it can be seen that by setting the diameter d of the work roll to less than 40 times the thickness h of the metal plate after finish rolling, the crystal grains of the product can be reduced.
  • the reason that the work roll diameter d is expressed as d Z h with respect to the thickness h of the metal plate is that if the work roll diameter d is reduced, the roll interval 2 L can be reduced, and it is proportional to the reciprocal of d / h. This is because distortion is added.
  • the large-diameter work roll 6a can be driven and the small-diameter work roll 6a is not driven.
  • the upper work roll on the leveler must be able to move up and down.
  • C diameter work rolls 6a is this to be driven by a motor that uses a universal joint for instance ', because smaller diameter, and also be used for small-diameter shaft corresponding spindle yoke universal joint. This does not allow sufficient torque transmission. If the motor is designed to have a large drive torque facility to transmit a large torque, the universal joint may not be able to withstand mechanical strength and may be damaged.
  • the leveler arranged in the hot rolling line according to the present invention has a work roll of at least 1 It is preferable that the number of the work rolls is 30 or less, and that about 1/3 of the number of the work rolls is a small-diameter work roll having the above diameter.
  • the reason for this is that if the number of the non-driven small-diameter work rolls 6a , among the one work roll arranged on the leveler, is up to four, the metal plate on the non-driven small-diameter work roll 6a ' The torque required for bending can be transmitted to the remaining seven large-diameter crawls 6a from the unity-passal joint connected to it without any problem in strength. On the other hand, if the number of non-driven small-diameter single crawls 6a 'is 5 or more out of the 11 work rolls arranged on the leveler, there is a problem with the strength of the unity basal joint connected to the large-diameter work roll. Occurs.
  • the non-driven small-diameter work rolls 6a, out of the 30 work rolls installed on the leveler 6, are up to 10, the bending of the metal plate on the non-driven small-diameter work rolls 6a 'is performed.
  • the necessary torque can be transmitted from the unity basal joint 61 connected to the remaining 20 large-diameter work rolls 6a without any problem in strength.
  • the dual joint 61 connected to the large-diameter work roll 6a has strength. The above problems arise.
  • the unity bass joint that drives the large-diameter work rolls 6a can be used.
  • the large-diameter work roll 6a can be driven without generating the torque transmission problem of 61.
  • the diameter of the large-diameter work roll 6a is desirably 300 mm or less from the viewpoint of imparting sufficient strain to the metal plate and reducing the size of the apparatus.
  • the hot rolling line according to the third embodiment is connected to the hot rolling line according to the first and second embodiments by a known joining equipment 10 and continuous.
  • a cutting facility 16 for cutting the metal plate 1 is provided. After the metal pieces S are joined, finish rolling is performed, so that the continuous metal plate 1 can be cut between runs.
  • the joining equipment 10 in FIG. 11 is equipment for joining the tail end of the preceding metal piece and the tip of the following metal piece. It mainly consists of a coil box 11, a cropper 9a, and a joining device 12.
  • the welding device 12 is composed of a welding machine using induction heating or a laser. Further, a deburring device 13, a joint cooling device 14, a sheet bar heating device 15 and the like shown by dotted lines may be added thereto. Further, it is preferable that the second cooling facility 7 is arranged.
  • the second and subsequent metal plates 1 can be repeatedly bent by the leveler 6 over the entire length from the front end thereof. For this reason, the production yield of high-strength metal sheets is greatly improved. It is preferable to the hot rolling lines according to the first and second embodiments that are configured to roll the metal pieces S one by one.
  • the levelers arranged in the hot rolling lines according to the first, second, and third embodiments are such that when the small-diameter work rolls 6a are not driven as shown in FIGS. 3A and 3B, When the thickness of the metal plate is increased, slip may occur between the rolls during repeated bending. Sri Tsu c between the rolls slips rubbed flaw defect caused by the flops may occur in the metal plate, a leveler illustrated example FIG 3 A, Figure 3 B, a small diameter is positioned on the metal plate 1 Work This occurs between the roll 6a, and the backup roll 6b, which is disposed adjacent to the small-diameter work roll 6a, so as to reinforce the work roll 6a.
  • Fig. 4A and Fig. 4B The mechanism shown is conceivable.
  • Gears 64 and 64 ' are provided on the neck of the small-diameter work roll 6a' and the neck of the pack-up roll 6b, respectively.
  • the driving torque is transmitted from the backup roll 6b to the small-diameter work rolls 6a, via the gears 64, 64 '.
  • reference numeral 64 denotes a gear fixed to the neck of the pack-up opening 6b by a key or the like
  • FIG. 4A is a configuration diagram of a drive mechanism for driving the small-diameter work roll 6a ′ using the unity vasal joint 61. This is suitable when the passing speed of the metal plate 1 is relatively low, about 300 m / min.
  • FIG. 4A shows one small-diameter work roll 6a 'arranged on the upper side and one backup roll 6b reinforcing the small-diameter work roll 6a'. Illustration of other rolls is omitted.
  • reference numeral 62 denotes a bearing box provided with a bearing 63 for supporting the roll in rotation
  • 66 denotes a spindle support.
  • the small-diameter work roll 6a 'of the leveler the small-diameter work roll is driven from the pack-up roll 6b via gears provided on the neck of the small-diameter work roll 6a' and the neck of the backup roll 6b.
  • the driving torque can be transmitted to the roll 6a '.
  • the remaining work rolls have a large diameter and can be driven. According to such a mechanism, slip between rolls can be prevented.
  • the equipment cost is slightly higher than when the small diameter work rolls 6a, 6a are not driven.
  • FIG. 4B shows the configuration of several small-diameter work rolls 6a (four shown) arranged on the leveler and a back-up roll 6b that reinforces the work roll 6a '. Knockers and rolls are directly connected to the shaft of the motor 67, and can withstand high-speed rotation because a universal joint is not used.
  • the small diameter work roll is driven from the backup roll through gears. Not only the large-diameter work roll 6a but also the small-diameter work roll 6a 'can be driven. It is the same as the drive mechanism of the small-diameter work roll 6a 'shown in FIG. 4A except that the backup roll 6b is directly connected to the motor 67 axis. The description of the driving torque transmission path to the small-diameter work roll 6a 'is omitted.
  • a drive motor 67, a spindle support 66, and the like are installed on an elevating plate 68 for integrally moving the related components of the upper work roll 6a.
  • Items related to the upper work roll 6a ' are raised and lowered by a lifting mechanism (not shown). If the related parts of the upper work roll 6a are integrated as an elevating mechanism, there is no problem in strength even at a high rotation speed of 50 mm and a peripheral speed of 1000 m / min, that is, 12700 rotations.
  • the drive torque can be transmitted to the work roll 6a '.
  • the related product of the upper work roll 6a is an integral lifting mechanism, and the drive motor 67 and the axis of the upper work roll 6a 'are coaxial. And a drive mechanism directly connected to the drive mechanism. Incidentally, the pack app roll is not shown.
  • the drive motors 67 are arranged on both sides in the width direction of the metal plate 1 across the hot rolling line. Still, the drive motors 67 on the same side mechanically interfere with each other due to the installation space. To prevent this, ⁇ Change the length of the drive motor spindle 69 that fits.
  • the diameter of the upper small diameter work roll can be reduced to 25 mm.
  • the present inventors conducted various experiments on steel. As a result, we have obtained a new finding that the temperature at which repetitive bending at a leveler is applied has a significant effect on the effect of reducing the size of ⁇ grains.
  • the test material was 0.2 C—0.7Si-2.OMn—0.15Ti steel. It was rolled to a thickness of 4 mm by a finishing mill. The number of work rolls in the leveler was 23, the work roll diameter was 190 mm, the center axis distance of the work roll was 200 mm, and the roll pushing amount was 20 mm. After repeatedly bending with a leveler, it was wound up with a coiler. The Ar 3 point temperature of the above steel is 750 ° C. The experiment was performed by changing the finish rolling speed in various ways and adjusting the cooling time so that the steel sheet temperature at the leveler exit side was 550 to 800, and the crystal grain size and tensile strength of the experimental material were measured. Was measured.
  • the temperature of the steel sheet was measured by installing a thermometer (not shown) at a position 1 m downstream from the lowest roll of the leveler.
  • the average cross-sectional area of the crystal grains was determined based on JIS G 0552, and the average grain size was calculated assuming that the average cross-sectional area was circular.
  • the tensile strength was determined by cutting a No. 5 test piece in accordance with JIS Z 2201 and performing a tensile test. The test piece was finish-rolled, the steel sheet wound up by a coiler was rewound at another place, and a No. 5 test piece was cut out in accordance with JIS Z 2201.
  • the measurement of the crystal grain size and the tensile strength was performed by cutting out a measurement sample from the central portion in the longitudinal direction of the coil, that is, a portion subjected to repeated bending by a leveler.
  • Table 1 shows the results of these tests and measurements.
  • Experimental Material No. 1 is a conventional example, and no leveler was used on the exit side of the finishing mill.
  • Experimental materials Nos. 2 to 7 show the results of repeated bending using a leveler with a steel plate temperature at the exit side of the leveler of 800 to 550 ° C and a roll indentation of 20 mm. I have.
  • the crystal grains are It has been miniaturized. From this fact, it can be seen that it is preferable that the metal plate temperature at the leveler exit side be in the range of Ar 3 points + 50 ° C. to Ar 3 points / 100 ° C. In particular, Repera delivery temperature is Ar 3 point ⁇ Ar 3 point by 50 ° C to become No. 3, in No. 4, the crystal grains are extremely fine.
  • the deformation temperature at the leveler is low, which corresponds to the repeated bending after transformation from ⁇ to ⁇ . It can be seen that only the strain was applied to the ⁇ grains and the crystal grains were not refined.
  • the above-mentioned tracking is performed, and appropriate cooling is performed based on the metal plate temperature measured at the finish rolling mill output side. It is preferable that the metal plate is repeatedly bent by a leveler after the temperature is set to a predetermined temperature. Based on the temperature, rolling speed, etc. of the metal sheet on the exit side of the finishing mill, it is possible to repeatedly perform bending using the leveler while optimally maintaining the metal sheet temperature on the exit side of the leveler.
  • the temperature at the exit of the finishing mill is 900 ° C, and the thickness of the steel sheet at the exit of the finishing mill is ⁇ ⁇ ⁇ .
  • cooling which is normally performed is performed, and the coil is wound up by a coiler.
  • Example 1 of the present invention the conditions were basically the same as those of the conventional example. Repeated bending was performed using a leveler with a spacing of 200 mm and a roll indentation of 20 mm, then cooled and wound up with a coiler.
  • the center of the uppermost roll of the leveler was set 30 m downstream from the center of the final stand roll of the finishing mill.
  • the longitudinal surface strain applied to the hot-rolled steel sheet by this leveler is approximately 0.34.
  • Example 2 of the present invention the conditions are basically the same as those of the conventional example.
  • the finish further during the entry side of the outlet side and the leveler of the mill performs the cooling by the cooling device is disposed, the steel sheet temperature is Ar 3 point ⁇ Ar 3 point in leveler exit side - 50 ° C and so as Temperature control.
  • the steel sheet temperature is Ar 3 point ⁇ Ar 3 point in leveler exit side - 50 ° C and so as Temperature control.
  • After repeated bending with a leveler it was cooled again and wound up with a coiler.
  • the cooling device was installed in multiple punctures between the final stand of the finishing mill and the leveler.
  • the maximum cooling water flow per unit surface area of the steel sheet is 3200 1 / m 2 per minute (equivalent to the front and back of the steel sheet).
  • the number of punctures for injecting cooling water on both the upper and lower sides is adjusted to follow the running of the steel plate to eliminate local temperature unevenness in the longitudinal direction while reducing the steel plate on the leveler exit side.
  • the temperature was controlled so as to be 50 ° C. at three points of Ar to three points of Ar.
  • Table 3 shows the measurement results of crystal grain size and tensile strength for the conventional example and the present invention examples 1 and 2. Shown in comparison. The cut-out position of the measurement sample, the definition of the crystal grain size and the tensile strength, and the measurement method are the same as those described above.
  • the present invention examples 1 (No. 12, No. 15) and (No. 13, No. 16) have higher strength. Furthermore, the strength of the inventive example 2 (No. 13, No. 16) using the cooling device is higher than that of the inventive example 1 (No. 12, No. 15) using no cooling device. You can see that.
  • Fig. 12 shows a comparison between the tensile strength and the average grain size of experimental materials Nos. 11 to 13.
  • the hot rolling line shown in FIG. 1A was used in which the finishing mill, the leveler, and the first cooling equipment were arranged in this order from upstream to downstream of the rolling line.
  • the slab was hot-rolled, finished to a thickness of 4 mm, and then cooled.
  • the average grain size and tensile strength of ferrite of the resulting hot-rolled steel sheet product were examined.
  • the average grain size is determined by cutting a sample for measurement from the center in the longitudinal direction and the center in the width direction of the steel sheet product, obtaining the average cross-sectional area of the crystal grains in accordance with JIS G 0552, and assuming that it is circular. Was calculated.
  • the tensile strength was determined by cutting out a measurement sample from the center in the longitudinal direction of the steel sheet product, producing a No. 5 test piece in accordance with JIS Z 2201, and performing a tensile test at room temperature.
  • the steel sheet was made of Ti-added steel with the components shown in Table 4.
  • the exit temperature of the final stand of the finishing mill was 900 ° C
  • the steel sheet speed at the exit of the final stand of the finishing mill was 720 m / min
  • the coiler winding temperature was 600. ° C.
  • the finish rolling was performed using a leveler having at least two small-diameter work rolls whose diameter was less than 40 times the thickness of the metal plate after finish rolling.
  • the steel plate that has been subjected to bending is repeatedly bent, and the shape of the leveler after use I checked the condition.
  • the driving method of the small-diameter work roll 6a of the leveler was the gearing method shown in FIG. 4B.
  • the distance between the center axes of the work rolls in the upper and lower directions is 2 L (the distance between the upper side and the lower side) is 155 mm in Invention Examples 1 and 5 (the diameter of the small-diameter work roll is 10 Omm) and 180 mm in Invention Examples 2 to 4 ( The small-diameter work roll diameter was 150 mm) and the roll pushing amount ⁇ was 20 mm, and the leveler applied strain was set to the value in Table 5. The leveler added strain was calculated with m in Equation (2) set to 3. The operation was suddenly stopped during the operation of the leveler, and the curvature of the steel sheet by the small-diameter work roll was measured.
  • the leveler additional strain becomes larger.
  • Table 4 shows the three- point Ar temperature of the steel sheet. Rolling was performed so that the steel sheet temperature on the leveler entry side was as shown in Table 5. The leveler was installed 30m downstream from the center of the final stand of the finishing mill so that the center of the uppermost roll of the leveler coincided.
  • Example 6 in addition to the first cooling facility, a second cooling facility was arranged, and the second cooling facility was used to cool the steel sheet after finish rolling and before repeated bending, and to enter the leveler entrance side.
  • Table 5 shows the steel sheet temperature at the time of the test, and the other conditions were the same as those of the above-mentioned invention example 2.
  • the second cooling equipment was installed in multiple banks between the final stand of the finishing mill and the leveler.
  • Table 5 shows the average crystal grain size and tensile strength of ferrite of the obtained examples, comparative examples, and conventional examples of the hot-rolled steel sheet products. Table 5 also shows the state of the leveler after use in the invention examples and comparative examples.
  • the mechanical properties can be easily controlled without changing the components of the metal plate, it is useful from the viewpoint of reducing the steelmaking load, and has an energy saving effect.
  • crystal grains can be further refined, and a product with higher strength can be obtained as compared with a leveler having only a large-diameter work roll.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Metal Rolling (AREA)
  • Straightening Metal Sheet-Like Bodies (AREA)

Description

明細書
熱間圧延方法およぴ熱間圧延ライン
技術分野
本発明は、 高強度の金属板を製造するための熱間圧延方法ならびに熱間圧延ラ ィンに関する。 背景技術
金属板の代表例として鋼板の熱間圧延ラインについて述べる。 鋼板は、 例えば 図 1 3に模式的に示す熱間圧延ラインにおいて一般に製造される。
素材の金属片はスラブあるいはシートパーと呼ばれる。 スラブは、 図示しない 加熱炉で加熱されて抽出される場合や加熱炉を経ずに上工程から熱間状態で直 送される場合もある。 シート一パーが仕上圧延機 3に直接供給されて粗圧延機 2 による圧延を省略して鋼板が製造されることもある。 図 1 3中符号 5c、 5dはマン ドレルである。 それぞれコイラ 5a、 5bに付設され図示しない制御装置により回転 速度を制御される。 コイラは冷却装置 4で冷却された金属板 1をマンドレルに卷 き付けて、 コイル状の金属板製品にする。 これらの各設備間では圧延されるスラ プゃシ一トパ一は図示しない多数のテープルローラにより搬送される。
この金属板製品の高強度化のため、 従来から、 結晶粒の微細化を図る鋼の熱間 圧延方法が種々検討されてきている。 その代表的なものとして、 特開昭 63- 22312 4 号公報等に開示されているいわゆる制御圧延法がある。制御圧延法の原理は、 オーステナイ ト (以下 と記す) からフェライ ト (以下 αと記す) に変態する時 の α:核の生成場所となる γ粒界を増やすこと及ぴ転位などの格子欠陥をより多 量に導入することにより、 "7から αに変態する時に a粒を数多く生成して、 結晶 粒の微細化を実現しょうとするものである。 粒の微細化、 あるいは、 転位など の格子欠陥の導入のためには、できるだけ大きなひずみを鋼板に与えることが有 効である。 しかしスラプあるいはシートパー厚と製品である板厚が決まつている ので通常の圧延プロセスでは導入できるひずみ量に限界がある。 一般に、 制御圧 延法では平均結晶粒径 5 μ mが限界であると言われている。
特開昭 60- 44106号公報には、 高温の素材を接続し、 熱間で圧延する仕上圧延機 を配置した熱間圧延ラインにおいて、仕上圧延機の最終スタンド出側近傍に張力 付与装置を配置することにより、形状均一な極薄製品を得ることができることが 開示されている。
また、 特開昭 60- 44106号公報に示された張力付与装置は、 多数の曲げロール を有しているものの、 形状均一な極薄製品を得ることができるように、 仕上圧延 後の金属板に張力を付加しているだけで、仕上圧延後の金属板に付与できる曲げ ひずみは不十分であった。
本発明は、 スラブあるいはシートバー厚及び製品板厚を変更することなく金属 板にひずみを与えることで金属板の組織の結晶粒微細化を実現し、従来以上に高 強度化するための熱間圧延方法および熱間圧延ラインを提案するものである。更 に実用的なレベラ条件内で、結晶粒を一段と微細化することができる熱間圧延方 法及び熱間圧延ラインを提供することにある。 尚、 本発明にいう金属板は、 金属 帯をも含む意味とする。 発明の開示
本発明者らは、 金属板の高強度化について鋭意検討した結果、 スラブあるいは シートパー厚及び製品板厚を変更することなく金属板にひずみを与える方法を 見出した。 仕上圧延機出側の後に、 上下のワークロール (以下、 単にロールとも 称する) を千鳥状に配列したローラレベラ (以下、 単にレベラという) を設置し、 仕上圧延後の金属板に当該レベラで繰り返し曲げ加工を与えることが有効であ ることを見出した。 曲げ変形は、 金属板の板厚を減少させることなくひずみを与 えることができるので、 これを繰り返せば金属板にひずみを与えることが可能で ある。 レベラのワークロールが金属板から受ける圧力によって橈み、 金属板幅方 向に均一にひずみを与えられなくなる場合がある。 これを防止する目的で上下の ワークロールをそれぞれバックァップロールによってパックアップしてもよい。 該レベラを仕上圧延機とコイラ間に設置することで、 本発明を、 従来の熱間圧延 ラインへの追設で実現でき、 設備費を安く抑えられるとともに、 生産性の悪化等 を招くこともない。
本発明は、 仕上圧延機出側に、 金属板に繰り返し曲げ加工ひずみを与えること のできるレベラを設置する。 ひずみを追加的に付与することで、 例えば鋼の場合 ならより一層の γ粒の微細化 粒界の增加) を図る。 それとともに、 γ粒内へ の転位などの格子欠陥の導入を図り、 α粒のより一層の微細化を可能とする。 金 属結晶粒のより一層の微細化により製品金属板の高強度化を図る。 尚、 レベラに よりひずみを付与された金属板は、 さらに冷却されて所望の温度とされた上で卷 き取られる。 更に、 本発明者らは、 仕上圧延機出側であって、 上記レベラ入側に 冷却装置を配設し、 金属板を冷却して所定の温度とした上で、 さらに繰り返し曲 げ加工を行うことが好適であることを同時に見出した。
本発明は、 以下に示す通りである。
1 . 金属板の熱間圧延ラインにおいて、 仕上圧延機と、 該金属板に曲げひずみ を付与するレベラと、 冷却設備とを、 該金属板搬送方向上流から下流に向かって その順に配置したことを特徴とする金属板の熱間圧延ライン。
2 . 金属板の熱間圧延ラインにおいて、 仕上圧延機と、 ワークロールがそれぞ れパックアップロールによってパックアップされているレベラと、冷却設備とを、 該金属板搬送方向上流から下流に向かってその順に配設したことを特徼とする 金属板の熱間圧延ライン。
3 . 金属板の熱間圧延ラインにおいて、 仕上圧延機と、 冷却設備と、 レベラと、 さらにまた冷却設備とを、該金属板搬送方向上流から下流に向かってその順に配 設したことを特徴とする金属板の熱間圧延ライン。
4 . 金属板の熱間圧延ラインにおいて、 仕上圧延機と、 冷却設備と、 ワーク口 ールがそれぞれパックァップロールによってバックアップされているレベラと、 さらにまた冷却設備とを、該金属板搬送方向上流から下流に向かってその順に配 設したことを特徴とする金属板の熱間圧延ライン。
5 . 金属板の熱間圧延ラインにおいて、 接合設備と'、 仕上圧延機と、 該金属板 に曲げひずみを付与するレベラと、 冷却設備と、 切断装置と、 コイラを、 該金属 板搬送方向上流から下流に向かってその順に配置したことを特徴とする金属板 の熱間圧延ライン。
6 . 金属板の熱間圧延ラインにおいて、 接合設備と、 仕上圧延機と、 ワーク口 ールがそれぞれパックアップ口ールによってパックアップされているレベラと、 冷却設備と、 切断設備と、 コイラとを、 該金属板搬送方向上流から下流に向かつ てその順に配設したことを特徴とする金属板の熱間圧延ライン。
7 . 金属板の熱間圧延ラインにおいて、 接合設備と、 仕上圧延機と、 冷却設備 と、 レベラと、 さらにまた冷却設備と、 切断装置と、 コイラとを、 該金属板搬送 方向上流から下流に向かってその順に配置したことを特徴とする金属板の熱間 圧延ライン。
8 . 金属板の熱間圧延ラインにおいて、 接合設備と、 仕上圧延機と、 冷却設備 と、 ワーク口ールがそれぞれバックアップ口ールによってパックアップされてい るレベラと、 さらにまた冷却設備と、 切断設備と、 コイラとを、 該金属板搬送方 向上流から下流に向かってその順に配設したことを特徴とする金属板の熱間圧 延ライン。
9. 前記レベラは、 直径が 300mm以下のワークロールを有することを特徴とす る、 1. 〜8. のいずれかに記荦の熱間圧延ライン。
10. 前記レベラは、 3段から 30段のワークロールを有するレベラであることを 特徴とする 1. 〜8. のいずれかに記載の熱間圧延ライン。
11. 前記レベラのワークロールが、 それぞれ駆動式であることを特徴とする 1. 〜8. のいずれかに記載の熱間圧延ライン。
12. 前記レベラの上下ワークロー/レそれぞれのワークローノレとワークローノレの 間隙にガイ ドを設置したことを特徴とする 1. ~8. のいずれかに記載の熱間圧 延ライン。
13. 前記レベラのワークロールの表面粗さ R aを 0.5 < R a <2.0 μ m とした ことを特徴とする 1. ~8. のいずれかに記載の熱間圧延ライン。
14. 前記レベラは、 直径が仕上圧延後の金属板の厚みの 40倍未満の寸法とされ ている小径ワークロールを少なく とも一本有していることを特徴とする 1. ~ 8. の'いずれかに記載の熱間圧延ライン。
15. 1. -8. に記載の熱間圧延ラインにおいて、 前記レベラは、 直径が仕上 圧延後の金属板の厚みの 40倍未満の非駆動の小径-ワーク口ールを少なく とも一 本有し、 かつ残りのワークロールは、 直径が仕上圧延後の金属板の厚みの 40倍以 上の寸法とされていると共に駆動可能とされていることを特徴とする熱間圧延 ライン。
16. 1. -8. に記載の熱間圧延ラインにおいて、 前記レベラは、 直径が仕上 圧延後の金属板の厚みの 40倍未満の非駆動の小径ワークロールを少なく とも一 本有し、 前記小径ワークロールは、 前記小径ワークロール及ぴそのパックアップ ロールのそれぞれのネック部に設けられた歯車を介して前記パックァップロー ルから前記小径ワークロールに駆動トルクが伝達できるように構成され、残りの ワークロールに関しては、直径が仕上圧延後の金属板の厚みの 40倍以上でかつ駆 動可能に構成されていることを特徴とする熱間圧延ライン。
17. 仕上圧延を含む圧延を金属片に熱間で施す熱間圧延方法において、 該金属片に施した前記仕上圧延の終了後の金属板に、 レベラによって、 繰り返し 曲げ加工を施し、 しかるのち冷却することを特徴とする熱間圧延方法。
18. 前記仕上圧延終了後で、 かつ、 繰り返し曲げ加工の前の金属板に、 冷却を 施すことを特徴とする 17. に記載の熱間圧延方法。
19. 前記繰り返し曲げ加工後における金属板の温度を、 Ar3点 + 50 〜八1" 3点 一 100 °Cの範囲とすることを特徴とする 17. または 18. に記載の熱間圧延方法。
20. 前記レベラのワークロールのロール押し込み量を + 1〜十 30mmとすること を特徴とする 17. または 18. に記載の熱間圧延方法。
21. 前記仕上圧延終了後における金属板の温度を、 Ar3点以上とすることを特 徴とする 17. または 18. に記載の熱間圧延方法。
22. 該金属板の先端と尾端の搬送トラッキングを行い、 該金属板の先端がレべ ラの該当するワークロールを通過した後に上下のワークロールの締め込みを行 い、尾端が抜ける前に該当する上下のワークロールを開放する制御を行うように したことを特徴とする 17. または 18. に記載の熱間圧延方法。
23. 先行するシートバーと後行するシートパーとを接合した後に、 前記仕上圧 延を行うことを特徴とする 17. または 18. に記載の熱間圧延方法。 図面の簡単な説明
図 1 Aは本発明に係る熱間圧延ラインの一例の配置図である。 図 1 Bは好適な熱間圧延ラインの配置図である。
図 2は本発明に適用するレベラと、 冷却設備の詳細を説明する模式図である。 図 3 Aは本発明に用いるレベラの一例のロール配置を示す部分縦断面図である。 図 3 Bは図 3 Aに示した上小径ワークロールに隣接する大径ワークロールの駆 動機構を示した概略図である。
図 3 Cはレベラ一のワークロール直径と金属板の厚みの比が金属板の平均結晶 粒径に及ぼす影響を示す図である。
図 4は本発明に用いるレベラの小径ワークロールを駆動するための駆動機構の 構成図である。
図 5 Aはレベラにおける金属板のロール間変形を説明する模式図である。
図 5 Bはレベラの押し込み量がマイナスの場合の模式図である。
図 5 Cはレベラのワークロール直径と曲げひずみの関係を示す図である。
図 6はレベラにおける金属板先端の通過トラプルの様子を示す模式図である。 図 7は金属板スリップによるレベラ通板トラプルの様子を示す模式図である。 図
8はレベラのワークロールの表面粗さとスリ ップ発生率の関係を示すグラフで める。 .
図 9はメジャーリングロールの熱間圧延ラインへの設置の様子を示す模式図で 図 1 0はメジャーリングロールの構成を示す図である。
図 1 1は本発明に係る他の好適な熱間圧延ラインの配置図である。
図 1 2は本発明例と従来例の引張強度、 平均結晶粒径を比較したグラフ ある。 図 1 3は従来の鋼板を製造する熱閬圧延ラインの配置図である。 発明を実施するための最良の形態 本発明に係る熱間圧延ラインについて、 図 1 A、 図 I Bを用いて説明する。 図 1 A、 図 I Bにおいて、 粗圧延機 2、 第 1の冷却設備 4及ぴマンドレル 5c、 5d、 コイラ 5a、 5bは、 図 1 3に示す従来の熱間圧延ラインに設置されているものと同 じであるので、 同一符号を付して説明を省略する。
第 1の実施の形態を図 1 Aに示す。 この熱間圧延ラインでは、 仕上圧延機 3と、 レベラ 6 と、冷却設備 4とが圧延ライン上流から下流に向かってこの順に配置さ れている。 以下、 冷却設備 4を第 1の冷却設備 4ともいう。
第 2の実施の形態を図 1 Bに示す。 この熱間圧延ラインでは、 図 1 Aに示す熱 間圧延ラインの設備に加えて、仕上圧延機 3とレベラ 6との間に第 2の冷却設備 7が配置されている。 仕上圧延機 3における 3aはワークロール、 3bはパックアツ プロールであり、 図示しないハウジングに組み込まれている。
レベラ 6は、 千鳥状に配列された 3本以上のワークロール 6a、 あるいはさらに ワークロール 6aをバックアップするバックアップロール 6bを備えている。 このヮ —クロール 6aの直径は、 後述するレベラ付加ひずみを付与する観点から 300mm以 下とすることが望ましく、 また、 ワークロール 6aの直径が 180mmを下回る場合に は、 上記パックアップロール 6bを備えることが望ましい。
この熱間圧延ラインでは、金属片 Sに仕上圧延機 3により圧延を施して金属板 1 とし、 続いて仕上圧延後の金属板 1に繰り返し曲げ加工を施し、 その後冷却す る。 レベラ 6により金属板長手方向に付加されるひずみにより、 金属板製品の結 晶粒を微細化できる。 '
ここで、 鋼の場合には、 金属板が γから αに変態を完了する以前に、 レベラ 6 による繰り返し曲げ加工を金属板に施して、 α粒の微細化を図る。 その際、 γ単 相の温度域の金属板に繰り返し曲げ加工を施すよりも、 α相がわずかに存在する ようになった 2相温度域の金属板に繰り返し曲げ加工を施すようにすると更に α粒を微細化できるので好ましい。
この鋼における結晶粒微細化のメカュズムは、① γ粒の微細化による γ粒界の 増大、 ② 1粒内への転位などの格子欠陥の導入、 により γから aに変態する時に a粒が多数生成するからであると考えられる。
なお、 図 1 Bに示すように、 第 1の冷却設備 4に加えて、 第 2の冷却設備 7を 仕上圧延機の最終スタンドとレベラとの間に配置する。第 2の冷却設備 7を備え た熱間圧延ラインでは、 仕上圧延後、 金属板 1に繰り返し曲げ加工を施す前に金 属板 1を所望の温度に冷却することができる。金属板製品の結晶粒を一段と微細 化することができ好適である。
第 2の冷却設備 7は、従来の第 1の冷却設備 4と同様の構成とすることができ る。 例えば、 金属板 1の表裏面に冷却水を嘖出する冷却ノズル、 その冷却水の嘖 出を制御する制御装置、金属板 1の表面の温度を測定する放射温度計等で構成す る。 繰り返し曲げ加工を施す直前の金属板 1の温度は、 鋼の場合、 900 〜 750°C とするのが望ましい。
図 5 Aに示すように、 レベラ 6における一回当たりの曲げひずみ εは、 下ヮー クロール 6a同士の中心間隔を 2 Lとし、 ロール押し込み量を δ とすると、 金属板 1の表面で δ / L 2に比例する。 ここで、 δ = 0とは、 上下ワークロール間に金 属板を挟んだ状態を示す。 この状態からワークロールを押し込んだ距離を十で表 す。 レベラ 6により金属板表面に付加する 1回当たりの曲げひずみ εは、 近似的 に (1 ) 式で与えられることが知られている。
( 1 ) 式
ε = a X δ / L 2 ここで、
a : 2 X h
h :金属板 1の厚みである。
図 5 Cにワークロール 6 aの直径 dと金属板表面での一回当りの曲げひずみ ε の関係を示す。 ただし、 板厚を 4mm、 ワークロール 6 a同士の中心間隔 2 Lを d + 10mmとし、 ロール押し込み量 δを最大押し込み量とした場合の結果である。 金 属板表面での一回当りの曲げひずみ ε は、 ワークロール 6 aの直径 dに反比例す る。 ワークロール 6 aの直径 dが 300rainを越えると、 金属板表面での一回当りの 曲げひずみ εは非常に小さくなる。 このためワークロール 6 aの直径 dは 300mm 以下であることが望ましい。 ワークロール 6 aの直径が大きくなるほど、 ワーク ロール同士の中心間隔 2 Lも大きくなり、 レベラの圧延ライン方向長さが長くな る。 冷却装置の冷却長も確保しなければならない。 結局、 熱間圧延ライン長が長 くなる。 また、 ワークロール 6 aの直径が大きくなるほど装置が大型になる。 以 上の観点から、 ワークロール 6 aの直径 dは 300mm以下であることが望ましい。 レベラ 6で金属板 1に付与されるひずみは (1 ) 式に曲げ回数 (n _ 2 ) 、 を 乗じて求めることができる。 ただし、 nはワークロールの本数である。 図 3 A、 図 3 Bに示すように他のワークロールに比して小径なワークロール 6a' をレべ ラ 6内に設けると、 小径ワークロール 6 a ' による曲げの曲率半径が小さくなる ので、 金属板 1に付与されるひずみが大きくなる。 本願発明者らは (1 ) 式の a の値を m X hとすると実際のひずみの値に近づくことを見出した。 ここで mの値 は 2を超え 3程度までの値である。 mはレベラ 6の押し込み量 δ、 金属板 1に作 用する張力などの条件により変化し、実験的に求めることができる。以下の (2 ) 式で、小径ワークロール 6a' を設けた場合の金属板 1の表面に付加されるひずみ を求めることができる。 (2) 式
£ =h X 6 X { 2 Xn l / (L l ) 2 + (mXn 2) / (L 2) 2 } ここで、
n 1 : 大径ワークロールによる曲げ回数
n 2 : 小径ワークロールによる曲げ回数
L 1 :大径ワークロール同士の中心間隔の半分
L 2 :小径ワークロールと金属板を挟んで向かい合う 2つのロール 6 a 同士の中心間隔の半分
n = n 1 + n 2 + 2
大径ワークロールとは小径ワークロール 6a' 以外のワークロール 6aを意味して いる。
ところで、金属板 1表面での長手方向曲げひずみ ε を大きく しょうとしてロー ル押し込み量 δが大きくなり過ぎると、 図 6に示すように、 金属板 1の先端がレ ベラ内を正常に通過できなくなる場合が生じる。 これを防止するためには、 δを + 30mm以下に制限するのが望ましい。 一方、 金属板に必要最低限のひずみを付与 し、 結晶粒を微細化する観点から、 δを + lmm以上とするのが望ましい。 ヮー ク口一ル 6aの半径 rを小さく して、 ローノレ間隔 2 Lを狭め、 かつローノレ押し込み 量 δを維持すると金属板 1表面での長手方向曲げひずみ ε を大きくできる。 しか し、 ワークロール 6aが細くなり、 ロール押し込みに伴う金属板 1からの反力によ つてたわむ場合がある。 ワークロール 6aの直径が 180mmを下回る場合はワーク口 ール 6aを補強するパックアップ口ールがあつた方が望ましい。パックアップロー ルは、 ロール軸方向に渡って一体のロール部材で構成された一体バックアップ口 ールとしてもよいし、 ロール軸方向に渡って複数個のロール部材で構成された分 割パックアップロールとしてもよい。 本発明はこれに限るものではない。
また、 レベラ 6による一回当たりの金属板 1表面での長手方向曲げひずみ ε を 一定とし、 曲げ回数を増大して、 所望の曲げひずみ ε を付与することも考えられ る。 しかし、 ワークロールの数が 30本を超えると、 金属板 1の温度が低下し、 金 属板 1からの反力が大きくなりすぎるという問題が生じる。 このため、 本発明の 熱間圧延ラインに配置するレベラは、 ワークロールの数を 30本以下とするのが好 ましい。
さらに、 上記レベラのワークロールをそれぞれ駆動式とするのが好ましい。 ヮ 一クロールを駆動式とすることで、 金属板を送り出しつつ、 繰り返し曲げ加工を 行うことが可能となる。 原則として駆動速度は、 金属板の走行速度と等しい速度 とする。 ただし、 金属板の先端あるいは尾端が仕上圧延機最終スタンドとコイラ の間にある場合には例外的速度をとる。 すなわち、 先端に対しては金属板の走行 速度よりも速い速度とする。尾端に対しては金属板の走行速度よりも遅い速度と する。金属板のダブリ とそれに伴う金属板の走行障害を防止する上で好ましい。 先端に対しては金属板の走行速度の 103〜140 %が好ましい。 また尾端に対して は金属板の板厚と走行速度により変わるが、金属板の走行速度の 60~95%が好ま しい。
本発明に適用するレベラのワークロールの表面粗さ R aは 0. 5 < R a < 2. 0 μ πι とすることが好ましい。 図 7に示したような金属板のレベラ内通板トラプル を抑制するためである。 ここで表面粗さ R aは、 JIS B 0601-1994 に定義する R a (算術平均粗さ) を意味し、 カットオフ値 0. 8mm 、 評価長さ 4mm としてワーク ロールのロール軸方向に測定した値である。
レベラのワークロールの表面粗さ R aを 0. 5 μ m く R a とする理由は以下の 通りである。 R aが 0. 5 i m 以下であると金属板とレベラのワークロール間でス リップが生じ金属板がレベラ内を通過できなくなることがある (図 7参照) 。 後 続する金属板がレベラ入口で折れ重なって通板トラプルとなり、圧延を停止せざ るを得なくなる。 そこで、 このようなレベラ内スリップによる通板トラプルを抑 制するために、 レベラのワークロールの表面粗さ R aを 0. 5 μ χ& く R aとし、 レ ベラ内スリップを防止することにより、 レベラ内安定通板を図るようにしている。 図 8にレベラのワークロールの表面粗さ R a ( μ πι ) とスリ ップ発生率 (%) の関係を示す。 レベラのワークロールの表面粗さ R aが 0. 5 ηι を越えると、 レ ベラ内のスリップ発生率 (%) が減少することがわかる。
この調査は、 図 1に示した熱間圧延ラインを用いて後述する実施例の Ν 12 (本 発明例 1 ) と同じ条件で実施した。 レベラのワークロールの表面粗さ R a ( ^ m ) を変えて繰り返し曲げ加工を行った。 ワークロールの表面粗さ R a ( Ai m ) 毎に、 全処理コイル数に対するレベラ内スリ ップにより通板トラプルに至った金属板 のコイル数の比をスリ ップ発生率とした。 表面粗さ R a ( ^ m ) は、 レベラのヮ 一クロールのロール軸方向に各 5点測定し、 その平均値とした。
なお、 レベラ内スリ ップは、 レベラ通過後の金属板先端がコイラピンチロール 又はコィラに到達していないうちにレベラのワークロールが押し込まれたとき に多く発生していた。
この原因は以下の様に推定できる。 滑らずにレベラのワークロールから金属板 に伝達できる金属板を前進させる方向の力を F w , 仕上圧延機最終スタンドのヮ ークロールにより付与される押し込み力を F c、 レベラ内の金属板を通板させる のに要する力を F r とする。 レベラのワークロールの表面粗さ R aが小さい場合 には、 レベラ出側の金属板先端部に張力が付与されていない状態でレベラにより 繰り返し曲げ加工を行うと、 F wと F cとの和が F rより小さくなり、 レベラ内 で金属板がスリップする。 一方、 レベラのワークロールの表面粗さ R aを粗くす ると、 F wが大きくなり、 F wと F c との和が F rより大きくなつてレベラ内で 金属板がスリップしないと推定される。
前記レベラのワークロールの表面粗さ R aを R aく 2. 0 m とする理由は、 レ ベラのワークロールの表面粗さ R aを 2. 0 μ ΐΆ 以上にすると、 ワークロール表面 粗さが金属板の表面に転写されて金属板の表面粗さが大きくなるからである。鋼 板の場合、 スケールの部分剥離などを招き、 表面品質を損なう。
本発明においては、 金属板の熱間圧延ラインにおいて、 仕上圧延機と、 レベラ と、 冷却設備とを、 金属板搬送方向上流から下流に向かってその順に配設する。 金属片に施した仕上圧延の終了後の金属板にレベラによって繰り返し曲げ加工 を施し、 しかるのち冷却する。 こうすると結晶粒が微細化され高強度の金属板製 品が得られる。 上記レベラのワークロールの表面粗さ R aを 0. 5 < a < 2. 0 μ m とすると、 レベラ内通板トラブルが減る。 圧延ラインの稼働率を高くすること ができ、 かつ、 金属板の表面性状を良好に維持することができるので好ましい。
ところで、金属板の尾端がレベラを通過する時にも問題が生じる場合がある。 尾端がレベラ内を通過している間に、 急激に金属板が幅方向に蛇行し、 皺状に折 れ重なってレベラを通ることがある。 この現象は絞り込みと呼ばれる。 レベラの ワークロールに疵が入り、後続の金属板にその疵が転写して表面品質不良になる 場合がある。 この問題を解決するには、 先端の問題同様にワークロール 6a間にス レツディングガイ ド 6cあるいはさらにサイ ドガイ ド 6dを設置するのが 1つの手 段として好ましい。 サイ ドガイ ド 6dは金属板 1を幅方向に挟むように両側にガイ ド板を対向配置したものである。 もう 1つの手段は、 金属板の尾端の位置をトラ ッキングし、尾端がレベラに入る直前にレベラの上下ワークロールの間隙を広げ る。 ここで、 トラッキングについて説明する。 トラッキングとは、 金属板の先端や 尾端が熱間圧延ライン上のどこにあるかを逐次リアルタイムに検知することで ある。 例えば、 図 1 0に示すメジャーリングロール 8を図 9に示すように仕上圧 延機入側に設置する。仕上圧延機入側と出側の板厚比を ¾示しない計算機内の記 憶データから索引する。 この板厚比とメジャーリングロール 8の発するパルス力 ゥント数を掛け合せる。 こうすると金属板の熱間圧延ライン上の位置がわかる。 パルスカウントの起点は、仕上圧延機最終スタンドのロールに金属板先端が嚙み 込んだときとする。
このメジャーリングロール 8は、 金属板 1に押し付けられて回転する。 所定角 度 (例えば周長で 0. 025mm ) 回転するごとにパルスを発生する。 このメジャーリ ングロール 8が発するパルスを図示しない制御装置で力ゥントすることにより 仕上圧延機入側の金属板の速度を測定する。 あとは、 仕上圧延機入側と出側の板 厚比を掛け算すれば、仕上圧延機出側の金属板の速度と先端位置がリアルタイム にわかる。 金属板尾端のトラッキングに関しては少し工夫を要する。 起点を仕上 圧延機最終スタンドのロールから金属板尾端が抜けた時点とする。 トラッキング は、 例えば金属板がコイラ 5aまたは 5bに卷きついた時から、 卷径とマンドレルの 回転数との積を時間積分して求める。卷径は卷数と板厚の積をマンドレル 5cまた は 5dの径に加えて算出する。 別な例としては、 起点は同じとしながらも、 仕上圧 延機最終スタンドのロール径と延ぺ回転数を図示しない制御装置でとらぇ、先進 率を図示しない計算機内の記憶データから索引するかあるいはモデル式によつ て計算し、 掛け算することで行うようなやり方もある。 あるいはメジャーリング ロールの替わりにレーザ速度計を使う方法もある。本発明を実施する上で有用な、 先端、 尾端の位置をリアルタイムで追跡可能な方法であれば、 いかなる方法でも 適用できる。金属板 1の先尾端のレベラらに対する位置が図示しない制御装置内 で判定できたら、それに応じてレベラのローラを開閉するように制御すればよい。 第 3の実施形態に係る熱間圧延ラインを図 1 1に示す。 レベラ 6の前に冷却装 置 7を設置しない場合は本発明例 (3 ) 、 設置する場合は本発明例 (4 ) に相当 する。 接合設備 10にて先行するシートパー (先行の金属板 la) と後行するシート バー (後続の金属板 lb) を接合する。 次に、 仕上圧延機 3にて金属板 1に圧延後、 レベラ 6にて、 金属板 1に繰り返し曲げ変形を施す。 次に、 切断設備 16によって 金属板 1を切断し、 2つのコイラ 5a、 5bに分けて卷取る。
接合設備 10により複数本のシートパーが接合される。接合部では図 6に示すよ うなレベラ 6内での通板障害及ぴ前述のレベラ 6内での絞り込みを防止できる。 シートパーを 1本ずつ圧延し、 1本毎に先端と尾端を有する金属板にレベラ 6に て繰り返し曲げ変形を施す場合に比べて、高強度金属板の歩留まりを大幅に向上 できる。
接合設備 10は、 主としてコイルボックス 11、 クロップシャ 9a、 接合装置 12、 の 一群の装置から構成されるが、 さらに、 図 1 1に点線で示すパリ取り装置 13、 接 合部冷却装置 14、 シートパー加熱装置 15などがこれに加わってもよい。 また、 接 合の原理は、 誘導加熱と圧接の組み合わせのほか、 レーザによるフィラーワイヤ 溶接などが実用化されている。 そのいずれの方法でもよいし、 これら以外の方法 によってもよい。
トラッキングに関しては、 接合 1本目の先端を前述の先端とし、 接合最終本目 の尾端を前述の尾端に見立てて、 同じようにパルスをカウントするなどすればよ い。 また、 上述のようにメジャーリングロールの替わりにレーザ式の速度計を使 う方法などをとつてもよい。 要は、 先端、 尾端の位置をリアルタイムで追跡可能 な方法であれば、 いかなる方法でもよい。
シートバーを接合し、 連続的に仕上圧延し、 さらに、 本発明の繰り返し曲げ加 ェを金属板に施す。 こうすることにより接合 1本目の先端と接合最終本目の尾端 を除いて、 途中の接合部も含めた金属板全長を高強度化でき、 歩留上有利になる。 図 1 Bに示すように、仕上圧延機出側と上記レベラの間に冷却設備 7を配設す る。 仕上圧延後の金属板 1を所定の温度となるまで冷却し、 その後、 当該レベラ で繰り返し曲げ加工を施すのも 1つの好適な例である。
鋼の場合、 高強度鋼板とするためには、 仕上圧延機最終スタンド出側温度は、 普通、 八 点以上である。 レベラ入側に冷却設備 7を配設すると、 仕上圧延後、 レベラ前で冷却することができる。 レベラ出側での温度を yから αに変態を開始 する温度である Ar 3点以下〜 Ar3点一 50°C以上の温度範囲とすることにより、 結 晶粒の微細化効果を最大とすることができる。
結晶粒の微細化効果は、 Ar 3点を超える温度域で複数回の曲げひずみを加えた 場合よりも、大部分が V粒でわずかに α粒が存在する変態途中の金属組織で複数 回の曲げひずみを加えた場合の方が大きい。 この方が γ粒に導入された転位が OL 粒の核生成サイ トとなる作用が大きい。 γから αへの変態の完了後に複数回の曲 げひずみを加えても、 結晶粒の微細化効果は小さいと考えられる。
冷却設備 7は、 例えば図 2に点線で示すように、 金属板 1の表裏面に冷却水を 嘖出する冷却ノズル 7c、 その冷却ノズル 7cからの冷却水の噴出を制御する制御装 置 7b、 金属板 1の表面の温度を測定す δ放射温度計 7a等から構成される。 金属板 1の表面温度に応じ、 所定の温度までの冷却を行うことを可能としている。 冷却 設備 4も同様な構成とすることができる。 金属板 1を所定の冷却パターンで、 か つ所定の卷取温度となるように冷却できる。 制御装置 4bと制御装置 7bを一台に統 合し、 情報を共有して、 温度制御を行うようにすることもできる。 4aは冷却設備 4の出側近傍に設けた放射温度計であり、 4cは冷却設備 4に設けた冷却ノズルで ある。 図 2中、 レベラ 6はわかりやすさのため誇張して大きく描いている。 第 1、 第 2の実施の形態に係る熱間圧延ラインに配置したレベラは、 その内の 少なく とも一本のワークロールを小径ワークロールとすることにより、金属板 1 に付与されるひずみを大きくすることができる。小径ワークロールは非駆動とし、 残りの大径ワークロールは駆動可能とするのが好ましい (図 3 A、 図 3 B参照) 。 この小径ワークロール 6a, は直径 dが仕上圧延後の金属板の厚み hの 40倍未満 の寸法とされるのが好ましい。 大径ワークロール 6aは直径 dが仕上圧延後の金属 板の厚み hの 40倍以上の寸法とされるのが好ましい。 大径ワークロー/レ 6aの小判 形状のネック部には、 図 3 Bに示す公知の自在継手 (ユニバーサルジョイント) 61のスピンドルヨーク 61a がはめこんである。 大径ワークロールは、 ュニバーサ ルジョイント 61を介して図示しないモーターにより回転駆動される。モーターと ユニバーサルジョイント 61の間には複数の歯車を備えたギアボックスを介在さ せてもよい。
なお、 図 3 Aは、 第 1、 第 2の実施の形態に係る熱間圧延ラインに配置したレ ベラの一例の部分概略縦断面図である。 また、 図 3 Bは、 レベラに配置した一本 の上小径ワークロール 6a, とそれに隣接する 2つの大径ワークロール 6aの駆動機 構を示した概略図である。それ以外の大径ワークロール 6a及ぴパックアップロー ル 6bは省略した。 図 3 B中符号 63は軸受であり、 ワークロール 6a、 6a' 及ぴバッ クアップロール 6bは軸受を介して、図示しないレベラのフレームに回転自在に支 持されている。
本発明に用いるレベラは、直径 dが仕上圧延後の金属板の厚み hの 40倍未満の 寸法の小径ワークロール 6a, を少なく とも一本有するのが好ましい。 このように した理由は、仕上圧延後の金属板の厚みの 40倍未満の直径の小径ワークロールを 少なく とも一本レベラに配置するだけで、 当該小径ワークロールにおける一回当 たりの曲げひずみ εが大きくなって、製品の結晶粒をより微細化できるからであ る。 図 3 Cにレベラ一のワークロール直径 dと金属板の厚み hの比 d Z hが金属 板の平均結晶粒径に及ぼす影響を示す。仕上圧延機出側の鋼板の板厚は 4 mmと 5 mmである。 熱間圧延条件は、 仕上出側温度は 900°C、 仕上圧延機出側の鋼板速度 は 720m/min、 卷き取り温度は 600 °Cである。 図 3 Cからワークロールの直径 d を仕上圧延後の金属板の厚み hの 40倍未満とすることにより製品の結晶粒を微 細化できることがわかる。 ワークロールの直径 dを金属板の厚み hに対して、 d Z hで表すようにしている理由は、 ワークロール直径 dを小さくすると、 ロール 間隔 2 Lを小さくでき、 d / hの逆数に比例してひずみが付加されるためである。 本発明に用いるレベラは、 大径ワークロール 6aを駆動可能とし、 小径ワーク口 ール 6a, を非駆動とするのが好ましい。 以下に述べるように、 小径ワークロール 6a' を駆動することは難しい。 レベラの上ワークロールは上下動できる必要があ る。 これをモータで駆動するためには例えばユニバーサルジョイントを使用する c 小径ワークロール 6a ' は、 直径が小さいため、 ユニバーサルジョイントも小径の 軸対応のスピンドルヨークを使用することとなる。 これでは十分なトルク伝達が できない。無理に大きなトルクを伝達しようとモータ一を大きな駆動トルク設備 仕様のものにすると、ュュバーサルジョイントが機械強度的に耐えられなくて破 損する可能性が高い。 このように、 ユニバーサルジョイントを使って小径ワーク ロール 6a, を直接駆動するのは困難である。 一方、 直径が仕上圧延後の金属板の 厚みの 40倍以上の寸法の大径ワークロール 6aでは、ュュパーサルジョイントを用 いて直接ワークロールを駆動しても強度上の問題が生じることはない。 そこで金 属板の曲げ加工に要する大径ワークロール 6aの分と非駆動とされた小径ワーク ロールの分の両方を含めたトルクを伝達するよう、大径ワークロール 6aの側だけ を駆動することが好ましい。
本発明に係る熱間圧延ラインに配置するレベラは、ワークロールが' 1 1本以上 30本以下で構成され、 かつそのうちのワークロール本数の約 1 / 3までが上記径 を有する小径ワークロールとされているのが好ましい。
この理由は、 レベラに配置した 1 1本のワークロールのうち、 非駆動とした小 径ワークロール 6a, の本数が 4本までであれば、 非駆動とされた小径ワークロー ル 6a' における金属板の曲げ加工に要する トルクを残りの 7本の大径ヮ一クロー ル 6aに接続のュニーパサルジョイントから強度上問題なく伝達することができ る。 一方、 レベラに配置した 1 1本のワークロールのうち、 非駆動とした小径ヮ 一クロール 6a' の本数が 5本以上の場合、 大径ワークロールに接続するュニーバ サルジョイントには強度上の問題が生じる。
また、 レベラ 6に設置した 30本のワークロールのうち、 非駆動の小径ワーク口 ール 6a, が 10本までであれば、 非駆動とされた小径ワークロール 6a' における金 属板の曲げ加工に要するトルクを残りの 20本の大径ワークロール 6aに接続した ュニーバサルジョイント 61から強度上問題なく伝達できる。 一方、 レベラ 6に配 置された 30本のワークロールのうち、非駆動としたワークロールを 11本以上に増 やした場合、大径のワークロール 6aに接続のュユーパサルジョイント 61には強度 上の問題が生じる。 このように、 小径ワークロールの本数がワークロー/レ全体本 数の約 1 / 3まであれば、 小径ワークロール 6a ' を非駆動としても、 大径ワーク ロール 6aを駆動するュニーバサルジョィント 61のトルク伝達の問題が発生する ことなく、 大径ワークロール 6aを駆動することができる。
レベラの大径ワークロールとしては、 所要トルクを伝達する上からは、 径が大 きいほど有利である。 しかし、 金属板に十分にひずみを付与することと、 装置を 小さくする観点から、大径ワークロール 6aの径は 300mm 以下とすることが望まし い。
以上説明した第 1、 第 2の実施の形態に係る熱間圧延ラインでは、 金属片を仕 上圧延前に接合しない。 第 3の実施の形態に係る熱間圧延ラインは、 図 1 1に示 すように、 第 1、 第 2の実施の形態に係る熱間圧延ラインに、 公知の接合設備 10 及び連続している金属板 1を切断する切断設備 16が配置されている。金属片 Sを 接合してから仕上圧延を施し、連続している金属板 1を走間で切断することがで きるように構成されている。
図 1 1中の接合設備 10は、先行金属片の尾端と後行金属片の先端とを接合する ための設備である。 主としてコイルボックス 11、 クロップシャ 9a、 接合装置 12な どから構成される。接合装置 12は誘導加熱やレーザなどを用いた接合機他から構 成される。 さらに点線で示すバリ取り装置 13、 接合部冷却装置 14、 シートバー加 熱装置 15などがこれに加わってもよい。 また、 第 2の冷却設備 7は配置するのが 好ましい。
第 3の実施の形態に係る熱間圧延ラインによれば、接合 2本目以降の金属板 1 に対してその先端から全長、 レベラ 6で繰り返し曲げ加工を行うことができる。 このため、 高強度金属板の生産歩留まりが大幅に向上する。 1本ずつ金属片 Sを 圧延するように構成された第 1、第 2の実施の形態に係る熱間圧延ラインより好 ましい。
ところで、 第 1、 第 2、 第 3の実施の形態に係る熱間圧延ラインに配置するレ ベラは、 小径ワークロール 6a, が図 3 A、 図 3 Bに示すように非駆動であると、 金属板の厚みが厚くなった場合、繰り返し曲げ加工時にロール間でスリップが発 生することがある。 スリ ップに起因した擦り疵欠陥が金属板に生じることがある c このロール間スリップは、 例えば図 3 A、 図 3 Bに示したレベラでは、 金属板 1 の上に位置している小径ワークロール 6a, と、 この小径ワークロール 6a, を補強 するように隣接されて配置されているバックアップロール 6bとの間で発生する。 そこで、 レベラ内でのロール間スリップを防止するために、 図 4 A、 図 4 Bに 示す機構が考えられる。 小径ワークロール 6a' のネック部とパックアップロール 6bのネック部にそれぞれ歯車 64、 64'を設ける。 歯車 64、 64' を介してバックァ ップロール 6bから小径ワークロール 6a, に駆動トルクを伝達する。 図中符号 64は、 パックアップ口 ル 6bのネック部にキー等により固定された歯車であり、 また符 号 64' は小径ワークロール 6a' のネック部にキー等により固定された歯車である。 図 4 Aにおいて、 小径ワークロール 6a' の負荷トルクは次の順に伝わる。 小径ヮ 一クロール 6a, に固定された歯車 64' 、 パックアップロール 6bに固定された歯車 64、 パックアップロール 6bのネック部、 スピンドルヨーク 61a 、 それをもつュニ パーサルジョイント 61、複数の歯車を備えたギアボックス 65、モータ (図示省略)。 モータからの駆動トルクはこの逆順に供給される。
図 4 Aは、 小径ワークロール 6a' をュニーバサルジョイント 61を用いて駆動す るための駆動機構の構成図である。金属板 1の通板速度が比較的低速の 300m/分 程度の場合に好適である。 図 4 Aでは、 上側に配置される一本の小径ワークロー ノレ 6a' とこの小径ワークロール 6a' を補強している一本のパックアップロール 6b について示す。 その他のロールの図示は省略した。 図中符号 62はロールを回転自 在に支持する軸受 63を装着した軸受箱であり、 66はスピンドルサポートである。
このようなレベラの小径ワークロール 6a' の駆動機構によれば、小径ワーク口 ール 6a' のネック部およびバックァップロール 6bのネック部に設けられた歯車 を介してパックアップロール 6bから小径ワークロール 6a' へ駆動トルクが伝達 できる。 残りのワークロールは大径とされ、 駆動可能とされている。 このような 機構によればロール間スリ ップを防止できる。 小径ワークロール 6a, を非駆動と した場合より設備コストはやや高くなる。
一方、 lOOOmZ分程度の高速度でレベラに金属板 1を通板する場合には、 ュ- パーサルジョイントの駆動限界のためにそれが破損する可能性が高くなる。 そこ で、 図 4 Bに示すような小径ワークロール 6a' の駆動機構が好適である。 図 4 B はレベラに配置される何本かの小径ワークロール 6a, (図示は 4本) とこのヮー クロール 6a' を補強しているパックァップロール 6bの構成を示している。ノ ック ァ、ップロールをモータ 67の軸に直結しており、ユニバーサルジョイントは使用し ないため高速回転に耐えられる。
小径ワークロールをパックアップロールから歯車を介して駆動するようにし ている。 大径ワークロール 6aだけでなく、 小径ワークロール 6a' も駆動すること ができる。 パックアップロール 6bをモータ 67軸に直結した以外は、 図 4 Aに示し た小径ワークロール 6a' の駆動機構と同じである。小径ワークロール 6a' への駆 動トルク伝達経路の説明は省略する。
但し、 図 4 Bに示したレベラでは、 上側ワークロール 6a, の関係品を一体で昇 降させる昇降板 68上に駆動モーター 67、 スピンドルサポート 66などが設置されて いる。上側ワークロール 6a' の関係品が図示しない昇降機構により昇降されるよ うにしてある。 上側ワークロール 6a, の関係品を一体昇降機構とすれば、 ワーク ロールの直径が 50mm、 周速度が 1000m /分、 すなわち 12700 回転 分という高回 転速度でも強度上の問題がなく、上側の小径ワークロール 6a' へ駆動トルクを伝 達できる。
さらにワークロール 6a, の小径化を図るには、 図 4 Cに示すように、 上側ヮー クロール 6a, の関係品が一体昇降機構とされかつ駆動モーター 67と上側ワーク ロール 6a' の軸を同軸となるように直結した駆動機構とする。 なお、 パックアツ プロールは図示されていない。 このとき、 となり合うワークロール 6a, があまり に小径なため、 図 4 Cからわかる通り、 駆動モーター 67は熱間圧延ラインを挟ん で金属板 1の幅方向両側に配置する。 それでも同じ側にある駆動モーター 67同士 が設置スペース上機械的に干渉してしまう。 これを防止す δため、 同じ側でとな り合う駆動モーターのスピンドル 69の長さを変える。 このような小径ワークロー ルの駆動機構によれば、上側の小径ワークロールの直径を 25mmまで小径化できる。 以上説明した熱間圧延ラインにおいて、 本発明者らは、 鋼を対象として種々の 実験を行った。 その結果、 レベラでの繰り返し曲げ加工を加える温度が α粒の微 細化効果に大きな影響を与えるという新たな知見を得た。
実験材は 0. 2 C— 0. 7Si - 2. OMn — 0. 15Ti鋼である。 仕上圧延機で厚さ 4 mmに 圧延した。 レベラのワークローノレ本数を 23、 ワークローノレ直径 190mm 、 ワーク口 ールの中心軸間隔 200mm 、 ロール押し込み量 20mmとした。 レベラにて繰り返し曲 げ加工した後、 コイラにて卷き取りを行った。 上記鋼の Ar3点温度は 750°Cであ る。 仕上圧延速度を種々変更し、 放冷する時間を調整することで、 レベラ出側で の鋼板温度を 550 〜800 でとなるように調整して実験を行い、実験材の結晶粒径 と引張強度を実測した。
ちなみに、 鋼板温度は、 レベラの最下流ロールから 1 m下流の位置に図示しな い温度計を設置して測定した。 結晶粒径については、 JIS G 0552に準拠して結晶 粒の平均断面積を求め、 それを円形と仮定して平均粒径を算出した。 引張強度は JIS Z 2201に準拠して 5号試験片を切り出して引張試験を行い求めた。試験片は 仕上圧延しコイラにて卷き取った鋼板を別の場所で卷き戻して、 JIS Z 2201に準 拠して 5号試験片を切り出した。 なお、 結晶粒径、 引張強さの測定は、 コイル長 手方向の中央部分、 すなわち、 レベラによる繰り返し曲げ加工を施された部分か ら測定用サンプルを切り出して行った。
これらの試験および測定の結果を表 1に示す。 表 1において、 実験材 No. 1は、 従来例であり、 仕上圧延機出側でレベラは使用していない。 実験材 No. 2〜 7は- それぞれレベラ出側での鋼板温度を 800 〜 550°Cの各温度としロール押し込み 量 20mmになるようにレベラを使用して繰り返し曲げ加工を行った結果を示して いる。
表 1から明らかなように、 レベラを使用しない従来例の No. 1に対し、 レベラ を使用し、 レベラ出側での鋼板温度が 650°C以上である No. 2〜5では、 結晶粒 は微細化されている。 この事実より、 レベラ出側での金属板温度を Ar3点 + 50°C ~Ar 3点一 100 °Cの範囲とするのが好適であることがわかる。 特に、 レペラ出側 温度が Ar3点〜 Ar3点一 50°Cとなる No. 3、 No. 4では、 結晶粒は極めて微細化 されている。
一方、 レベラ出側温度が 600°C以下の No. 6、 7では、 レベラでの変形温度が 低く、 γから αに変態した後に操り返し曲げ加工を行うことに相当する。 α粒に ひずみを加えたのみで、 結晶粒の微細化はされていないことがわかる。
これら好適温度域が存在する理由は以下のように推定できる。 これらの温度域 においては変形中の金属組織が、 大部分 y粒で、 わずかに α粒が存在する変態途 中の組織となっている。 これに変形を加えると γ粒に導入された転位がそのまま α粒の核生成サイ トとなる作用が大きいと推定できる。
以上、 説明したことからわかるように、 仕上圧延された金属板にレベラにより 繰り返し曲げ加工を行うと結晶粒を微細化することが可能である。仕上圧延後、 レベラ前で冷却を行い、 レベラ出側での温度を Ar3点〜 Ar3点一 50°Cとすること で、 本発明における微細化効果を最大とすることができる。
レベラ出側での金属板温度を、 精度良く制御するためには、 前述のトラツキン グを行い、仕上圧延機出側で実測した金属板温度をベースにして適正な冷却を行 う。金属板を所定の温度としてからレベラにより繰り返し曲げ加工を行うことを 好適とする。 金属板の仕上圧延機出側での温度、 圧延速度等から、 レベラ出側で の金属板温度を最適に保持しつつレベラにより繰り返し曲げ加工を行うことが 可能となる。 実施例 1
本発明の効果を検証するための実施例として、表 2に示す Aと Bの 2種類の鋼 種の実験材を熱間圧延し、 従来例と本発明例 1、 2の比較検討を行った。
熱間圧延においては、 仕上圧延機出側温度を 900°Cとし、 仕上圧延機出側にお ける鋼板速度 ϊΖΟιηΖπΰη の条件で厚さ 4 mmに仕上圧延し 600 °Cで卷き取って いる。 従来例では、 熱間圧延ラインにおいて、 上記の仕上圧延後、 通常実施し ている冷却を行い、 コイラで卷き取った。
本発明例 1では、 基本的に従来例と同条件とするが、 仕上圧延直後に、 ワーク ロール段数を 23とし、 ワークロール直径 190mm 、 ワークロールの中心軸間隔 (上 側同士、 下側同士の間隔) 200顏 、 ロール押し込み量 20mmとしたレベラで繰り返 し曲げ加工を加え、 その後、 冷却を行ってコイラで卷き取った。
レベラの最上流ロールの中心を仕上圧延機最終スタンドロール中心から下流 に 30mの位置に設置した。本レベラによって熱延鋼板に与える長手方向表面ひず みは、 近似的に 0. 34となっている。
本発明例 2では、 基本的に従来例と同条件とする。 ただし、 仕上圧延機の出側 と上記レベラの入側の間に更に配設した冷却装置で冷却を行い、 レベラ出側での 鋼板温度が Ar 3点〜 Ar 3点— 50°Cとなるように温度制御を行った。 レベラでの繰 り返し曲げ加工を行い、 その後、 再び冷却を行ってコイラで卷き取りを行った。 冷却装置は、 仕上圧延機最終スタンドとレベラの間に複数パンク設置した。 冷却 水流量は鋼板単位表面積あたり最大で上下 (鋼板表裏相当) 毎分 3200 1 /m 2で ある。 仕上圧延後の鋼板に対し、 冷却水を噴射するパンク数を上下両面とも、 鋼 板の走行に追随して局部的な長手方向の温度ムラを解消していくようにしつつ レベラ出側での鋼板温度を Ar 3点〜 Ar 3点一 50°Cとするように制御した。
表 3に、 従来例と本発明例 1、 2について、 結晶粒径と引張強度の測定結果を 比較して示す。 測定用サンプルの切り出し位置、 また、 結晶粒径と引張強度の定 義および測定方法は前出のものと同じである。
A、 Bいずれの鋼種においても、 レベラを用いない従来例 (No. Π 、 No. 14 ) と比較し、 レベラを用いた本発明例 1 (No. 12 、 No. 15) 、 本発明例 2 (No. 13、 No. 16 ) の方が、 強度が高い。 さらに、 冷却装置を用いない本発明例 1 (No. 12 、 No. 15 ) に比べて、 冷却装置を適用した本発明例 2 (No. 13、 No. 16 ) の方が強 度がさらに高いことがわかる。 図 1 2に実験材 No. 11 〜13の引張強度と平均結晶 粒径の比較を示す。
実施例 2
仕上圧延機と、 レベラと、 第 1の冷却設備とが圧延ライン上流から下流に向か つてこの順に配列してある図 1 Aに示す熱間圧延ラインを用いた。熱間で鋼片に 圧延を施し、 厚み 4 m mに仕上げ、 その後冷却し、 得られた熱間圧延鋼板製品の フェライ トの平均結晶粒径及び引張強度を調べた。
平均結晶粒径は、鋼板製品の長手方向の中央部分でかつ幅方向の中央部分から 測定用サンプルを切り出し、 JIS G 0552に準拠して結晶粒の平均断面積を求め、 それを円形と仮定して算出した。 引張強度は、 鋼板製品の長手方向の中央部分か ら測定用サンプルを切り出し、 JIS Z 2201に準拠して 5号試験片を作製し、 常温 で引張試験を行い求めた。
なお鋼板は、 表 4に示す成分の Ti添加鋼とし、 仕上圧延機最終スタンド出側温 度を 900°C、仕上圧延機最終スタンド出側の鋼板速度を 720m/分、 コイラ卷取 温度を 600°Cとした。
発明例 1〜 6では、 表 5に示すように、 直径が仕上圧延後の金属板の厚みの 40 倍未満の寸法とされている小径ワークロールを少なく とも 2本有するレベラを 用いて、 仕上圧延を施された鋼板に繰り返し曲げ加工を施し、 使用後レベラの状 態を調べた。 また、 発明例 1〜6では、 レベラの小径ワークロール 6a, の駆動方 式は図 4 Bに示した歯車方式とした。
繰り返し曲げ加工は、 上下におけるワークロール中心軸間隔 2 L (上側同士、 下側同士の間隔) を発明例 1および 5では 155mm (小径ワークロール直径は 10 Omm) 、 発明例 2〜4では 180mm (小径ワークロール直径は 150mm) とし、 かつ ロール押し込み量 δを 20mmとして、 レベラ付加ひずみを表 5中の値とした。 レべ ラ付加ひずみは (2 ) 式の mを 3として計算した。 レベラ操業中に運転を急停止 し、 小径ワークロールによる鋼板の曲率を測定した。 この実験から得たレベラ付 加ひずみが m = 3で計算したレベラ付加ひずみと精度良く一致することを別途 確認している。 ワークロール直径が小さくなるほど (たとえば発明例 1、 2の比 較) 、 小径ワークロールを導入する本数が多くなるほど (たとえば発明例 3、 4 の比較) 、 レベラ付加ひずみは大きくなる。 また上記鋼板の Ar3点温度は、 表 4 に示す通りである。 レベラ入側の鋼板温度が表 5となるように圧延を行った。 レ ベラは、仕上圧延機最終スタンド中心から下流に 30mの位置にレベラ最上流ロー ル中心が一致するように設置した。
発明例 6では、 第 1の冷却設備に加えて、 第 2の冷却設備を配置し、 第 2の冷 却設備により、 仕上圧延後でかつ繰り返し曲げ加工前の鋼板を冷却して、 レベラ 入側での鋼板温度を表 5に示すようにし、その他の条件は上記発明例 2と同じと した。
ここで、 第 2の冷却設備は、 仕上圧延機最終スタンドとレベラの間に複数バン ク設置した。 冷却水流量は鋼板単位表面積あたり最大で上下 (表裏相当) 毎分 32
00 1 Zm 2である。 仕上圧延後の鋼板に対し、 冷却水を噴射するパンク数を上下 両面とも、鋼板の走行に追随して局部的な長手方向の温度ムラを解消していくよ うにした。 比較例では、 大径ワークロールのみを有するレベラを用い、 それ以外の条件は 発明例 1〜6 と同じとして仕上圧延を施された鋼板に繰り返し曲げ加工を施し た。
一方、 従来例としては、 図 1 Aに示す熱間圧延ラインにおいて、 レベラを設置 する以前に、 上記発明例 1 ~ 6と同じ成分の鋼片を用い、 それ以外の条件は発明 例 1〜6と同じとして、 仕上圧延を行い、 その後冷却した。
得られた発 例、比較例及ぴ従来例の熱間圧延鋼板製品のフェライ トの平均結 晶粒径、 引張強度を表 5に示す。 また、 発明例及び比較例における使用後レベラ の状態も表 5に合わせて示す。
表 5の結果から、 小径ワークロールを有するレベラを用い、 繰り返し曲げ加工 を施した発明例 1〜6の場合は、 レベラにより繰り返し曲げ加工を施していない 従来例より鋼板製品の結晶粒を微細化できることがわかる。
また、第 2の冷却装置により仕上圧延後の金属板に冷却を施した条件の発明例 6は、 第 2の冷却装置を設置せず、 繰り返し曲げ加工前に鋼板を第 2の冷却装置 により冷却していない以外は同じ条件とした発明例 2と比べて結晶粒をより微 細化できている。
また、 発明例においては、 小径ワークロールの本数を増やすことにより、 製品 の平均結晶粒を微細にすることができること、 及び鋼板製品の引張強度は、 結晶 粒^に対応しており、結晶粒が微細なものほど高強度となっていることもわかる c なお、 発明例 1〜6及び比較例の場合、 レベラによる繰り返し曲げ加工により、 ① γ粒が微細化して γ粒界が増大すると共に、② γ粒内へ転位などの格子欠陥が 導入されたため、 従来例より鋼板製品の α粒が微細化したと推定される。 産業上の利用可能性 本発明によって、金属板を従来と比較して更に高強度化することが可能となつた。 また、 金属板の成分を変更することなく、 機械的特性を容易に制御することが可 能となることから、 製鋼精鍊負荷低減の観点からも有益であり、 また、 省エネル ギー効果もある。 更に小径ワークロールレベラでは、 大径ワークロールのみを有 するレベラに比して、 結晶粒をより微細化することができ、 一段と高強度な製品 を得ることができる。
表 1
Figure imgf000033_0001
表 2
鋼種 組 成
A F e - 0.2C- 0.7S 一 2. OM n -0.15T i
B F e -0.07C- 1.8S 一 1.5 n — 0.03T i
表 3
No. 鋼種 レ ラ 冷却装置 結晶粒径 引張強度 備 考
11 A 4.7 / m 670 M Pa 従来例
12 A o 2.6jU m 750 Pa 本発明例 1
13 A o o 1.6j« m 830MPa 本発明例 2
14 B 10.9ju m 410MPa 従来例
15 B o 8.4jU m 510MPa 本発明例 1
16 B o o 7.1// m 550 Pa 本発明例 2 表 4
Figure imgf000034_0001
表 5
Figure imgf000034_0002
O: 当該装置有リ、 一: 当該装置無し - h :仕上圧延後のストリップ厚み (h = 4 mm)
小径ワークロールを有するレベラ *" : 23本のワークロールを有し、 表中の小径ワークロール以外は径が 1 90mm ( d / h = 7. 5) の ワークロール、 ワークロールは小径、 小径以外ともに駆動可能
小径以外のワークロールのみを有するレベラ *2) : 23本のワークロールを有し、 全て径 dが 1 9 Omm ( d / h = 47. 5) のワークロール で、 駆動可能
レベラの使用後の状態 o:異常なし

Claims

請求の範囲
1 . 金属板の熱間圧延ラインにおいて、 仕上圧延機と、 該金属板に曲げひずみ を付与するレベラと、 冷却設備とを、 該金属板搬送方向上流から下 に向かって その順に配設したことを特徴とする金属板の熱間圧延ライン。
2 . 金属板の熱間圧延ラインにおいて、 仕上圧延機と、 ワークロールがそれぞ れバックアップロールによってバックァップされているレベラと、冷却設備とを、 該金属板搬送方向上流から下流に向かってその順に配設したことを特徴とする 金属板の熱間圧延ライン。
3 . 金属板の熱間圧延ラインにおいて、 仕上圧延機と、 冷却設備と、 レベラと、 さらにまた冷却設備とを、該金属板搬送方向上流から下流に向かってその順に配 設したことを特徴とする金属板の熱間圧延ライン。
4 . 金属板の熱間圧延ラインにおいて、 仕上圧延機と、 冷却設備と、 ワーク口 ールがそれぞれパックァップロールによってパックァップされているレベラと、 さらにまた冷却設備とを、該金属板搬送方向上流から下流に向かってその順に配 設したことを特徴とする金属板の熱間圧延ライン。
5 . 金属板の熱間圧延ラインにおいて、 接合設備と、 仕上圧延機と、 該金属板 に曲げひずみを付与するレベラと、 冷却設備と、 切断装置と、 コイラを、 該金属 板搬送方向上流から下流に向かってその順に配置したことを特徴とする金属板 の熱間圧延ライン。
6 . 金属板の熱間圧延ラインにおいて、 接合設備と、 仕上圧延機と、 ワーク口 ールがそれぞれパックアップロールによってパックアップされているレべラと、 冷却設備と、 切断設備と、 コイラとを、 該金属板搬送方向上流から下流に向かつ てその順に配設したことを特徴とする金属板の熱間圧延ライン。
7 . 金属板の熱間圧延ラインにおいて、 接合設備と、 仕上圧延機と、 冷却設備 と、 レベラと、 さらにまた冷却設備と、 切断装置と、 コイラとを、 該金属板搬送 方向上流から下流に向かってその順に配置したことを特徴とする金属板の熱間 圧延ライン。
8 . 金属板の熱間圧延ラインにおいて、 接合設備と、 仕上圧延機と、 冷却設備 と、 ワークロールがそれぞれパックアップロールによってパックアップされてい るレベラと、 さらにまた冷却設備と、 切断設備と、 コイラとを、 該金属板搬送方 向上流から下流に向かってその順に配設したことを特徴とする金属板の熱間圧 延ライン。
9 . 前記レベラは、 直径が 300rani以下のワークロールを有することを特徴とす る、 請求項 1 ~ 8のいずれかに記載の熱間圧延ライン。
10. 前記レベラは、 3段から 30段のワークロールを有するレベラであることを 特徴とする請求項 1〜 8のいずれかに記載の熱閬圧延ライン。
11. 前記レベラのワークロールが、 それぞれ駆動式であることを特徴とする請 求項 1〜 8のいずれかに記載の熱間圧延ライン。
12. 前記レベラの上下ワークロー/レそれぞれのワークロー/レとワークロー/レの 間隙にガイ ドを設置したことを特徴とする請求項 1〜 8のいずれかに記載の熱 間圧延ライン。
13. 前記レベラのワークロールの表面粗さ R aを 0. 5 < R a < 2. 0 μ αι とした ことを特徴とする請求項 1〜 8のいずれかに記載の熱間圧延ライン。
14. 前記レベラは、 直径が仕上圧延後の金属板の厚みの 40倍未満の寸法とされ ている小径ワークロールを少なく とも一本有していることを特徴とする請求項 1〜 8のいずれかに記載の熱間圧延ライン。
15. 請求項 1〜 8に記載の熱間圧延ラインにおいて、 前記レベラは、 直径が仕 上圧延後の金属板の厚みの 40倍未満の非駆動の小径ワークロールを少なく とも 一本有し、 かつ残りのワークロールは、 直径が仕上圧延後の金属板の厚みの 40倍 以上の寸法とされていると共に駆動可能とされていることを特 とする熱間圧 延ライン。
16. 請求項 1〜8に記載の熱間圧延ラインにおいて、 前記レベラは、 直径が仕 上圧延後の金属板の厚みの 40倍未満の非駆動の小径ワークロールを少なく とも —本有し、 前記小径ワークロールは、 前記小径ヮ一クロール及びそのパックアツ プロールのそれぞれのネック部に設けられた歯車を介して前記パックアップ口 ールから前記小径ワークロールに駆動トルクが伝達できるように構成され、残り のワークロールに関しては、直径が仕上圧延後の金属板の厚みの 40倍以上でかつ 駆動可能に構成されていることを特徴とする熱間圧延ライン。
17. 仕上圧延を含む圧延を金属片に熱間で施す熱間圧延方法において、 該金属 片に施した前記仕上圧延の終了後の金属板に、 レベラによって、 繰り返し曲げ加 ェを施し、 しかるのち冷却することを特徴とする熱間圧延方法。
18. 前記仕上圧延終了後で、 かつ、 繰り返し曲げ加工の前の金属板に、 冷却を 施すことを特徴とする請求項 17に記載の熱間圧延方法。
19. 前記繰り返し曲げ加工後における金属板の温度を、 Ar 3点 + 50°C〜Ar 3点 - 100 での範囲とすることを特徴とする請求項 17または 18に記載の熱間圧延方
20. 前記レベラのワークロールのロール押し込み量を + 1〜十 30mmとすること を特徴とする請求項 17または 18に記載の熱間圧延方法。
21. 前記仕上圧延終了後における金属板の温度を、 Ar3点以上とすることを特 徴とする請求項 17または 18に記載の熱間圧延方法。
22. 該金属板の先端と尾端の搬送トラッキングを行い、 該金属板の先端がレべ ラの該当するワークロールを通過した後に上下のワークロールの締め込みを行 い、尾端が抜ける前に該当する上下のワークロールを開放する制御を行うように したことを特徴とする請求項 17または 18に記載の熱間圧延方法。
23. 先行するシートパーと後行するシートパーとを接合した後に、 前記仕上圧 延を行うことを特徴とする請求項 17または 18に記載の熱間圧延方法。
PCT/JP2001/011401 2000-12-28 2001-12-26 Procede de laminage a chaud et train de laminoirs a chaud WO2002053301A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP01272853A EP1346780A4 (en) 2000-12-28 2001-12-26 HOT ROLLING PROCESS AND HOT ROLLED TRAIN
KR1020027011298A KR20020079921A (ko) 2000-12-28 2001-12-26 열간압연방법 및 열간압연라인

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2000-402012 2000-12-28
JP2000402012 2000-12-28
JP2001-116897 2001-04-16
JP2001116897 2001-04-16
JP2001-355265 2001-09-28
JP2001-302509 2001-09-28
JP2001302509 2001-09-28
JP2001355265 2001-11-20

Publications (1)

Publication Number Publication Date
WO2002053301A1 true WO2002053301A1 (fr) 2002-07-11

Family

ID=27481949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/011401 WO2002053301A1 (fr) 2000-12-28 2001-12-26 Procede de laminage a chaud et train de laminoirs a chaud

Country Status (5)

Country Link
US (1) US20030084972A1 (ja)
EP (1) EP1346780A4 (ja)
KR (1) KR20020079921A (ja)
CN (1) CN1426330A (ja)
WO (1) WO2002053301A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209373A (zh) * 2014-08-18 2014-12-17 南京钢铁股份有限公司 一种多道次曲率递减式矫直工艺

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4160794B2 (ja) * 2002-07-11 2008-10-08 三菱重工業株式会社 鋼板連続化設備、鋼板連続化方法及び連続化鋼板
KR100990721B1 (ko) * 2003-10-07 2010-10-29 주식회사 포스코 연속압연에 의한 열간압연재의 냉각방법 및 그 장치
CN101983111B (zh) * 2008-03-31 2015-08-05 杰富意钢铁株式会社 厚钢板的材质保证***及其设备
CN102409149A (zh) * 2010-09-26 2012-04-11 鞍钢股份有限公司 一种工程机械用厚规格钢板的控制冷却方法
CN102240891A (zh) * 2011-05-23 2011-11-16 武汉钢铁(集团)公司 残余应力小于100MPa的热轧U型钢板桩的生产方法
CN102513383B (zh) * 2011-12-09 2015-03-11 东北大学 一种中厚板超快速和常规层流冷却方法
CN103266213A (zh) * 2013-06-11 2013-08-28 鞍钢股份有限公司 一种超低屈服点抗震用钢的生产方法
KR20170010789A (ko) 2014-05-12 2017-02-01 아르코닉 인코포레이티드 금속 압연 장치 및 방법
DE102017212529A1 (de) 2017-07-20 2019-01-24 Sms Group Gmbh Verfahren zur Herstellung eines metallischen Bandes
CN108664048B (zh) * 2018-03-30 2021-03-23 宝钢湛江钢铁有限公司 基于动量模型的板坯去毛刺优化控制方法
JP7313768B2 (ja) * 2019-05-23 2023-07-25 スチールプランテック株式会社 圧延機、並びに圧延方法及びワークロールの運用方法
CN117139414B (zh) * 2023-10-30 2023-12-29 河北燕山钢铁集团有限公司 一种低命中率的轧线升级设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129467A (ja) * 1974-03-31 1975-10-13
JPS57139406A (en) * 1981-02-24 1982-08-28 Sumitomo Metal Ind Ltd Production of steel strip
JPS60240306A (ja) * 1984-05-15 1985-11-29 Kawasaki Steel Corp 熱間仕上圧延機の出側装置
GB2163689A (en) * 1984-08-31 1986-03-05 Davy Mckee Hot rolling metal strip
JPH10263610A (ja) * 1997-03-24 1998-10-06 Kawasaki Steel Corp 鋼板の連続熱間圧延方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2537188C3 (de) * 1975-08-21 1978-05-18 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh, 4100 Duisburg Verfahren und Vorrichtung zur Herstellung von Warmband mit verbesserten Qualitätseigenschaften
DE3234160C2 (de) * 1982-09-15 1986-10-23 Bwg Bergwerk- Und Walzwerk-Maschinenbau Gmbh, 4100 Duisburg Verfahren und Warmbandstraße zum Herstellen von dünnem Metallband, insbesondere Metall-Breitband, aus Warmband
JPS6044106A (ja) * 1983-08-23 1985-03-09 Hitachi Ltd 連続ホツトストリツプミル
JPS62166014A (ja) * 1986-01-14 1987-07-22 Nippon Steel Corp 差厚熱鋼板の冷却方法
JP2688107B2 (ja) * 1990-05-31 1997-12-08 新日本製鐵株式会社 厚板製造設備
US5389164A (en) * 1993-02-10 1995-02-14 Nippon Steel Corporation Production method of strong and tough thick steel plate
US5727412A (en) * 1997-01-16 1998-03-17 Tippins Incorporated Method and apparatus for rolling strip or plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50129467A (ja) * 1974-03-31 1975-10-13
JPS57139406A (en) * 1981-02-24 1982-08-28 Sumitomo Metal Ind Ltd Production of steel strip
JPS60240306A (ja) * 1984-05-15 1985-11-29 Kawasaki Steel Corp 熱間仕上圧延機の出側装置
GB2163689A (en) * 1984-08-31 1986-03-05 Davy Mckee Hot rolling metal strip
JPH10263610A (ja) * 1997-03-24 1998-10-06 Kawasaki Steel Corp 鋼板の連続熱間圧延方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1346780A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104209373A (zh) * 2014-08-18 2014-12-17 南京钢铁股份有限公司 一种多道次曲率递减式矫直工艺

Also Published As

Publication number Publication date
EP1346780A1 (en) 2003-09-24
EP1346780A4 (en) 2005-03-16
CN1426330A (zh) 2003-06-25
KR20020079921A (ko) 2002-10-19
US20030084972A1 (en) 2003-05-08

Similar Documents

Publication Publication Date Title
US4074555A (en) Method of and apparatus for improving hot-rolled sheet-metal strips
WO2002053301A1 (fr) Procede de laminage a chaud et train de laminoirs a chaud
JPS63309306A (ja) 連続鋳造鋳片の圧延設備及び圧延方法
KR102264400B1 (ko) 금속 스트립을 위한 연속주조 및 열간압연 복합장치
WO2011042934A1 (ja) 熱延の冷却装置及び冷却方法
JP6922873B2 (ja) 調質圧延方法、調質圧延装置および鋼板の製造方法
JP4114701B2 (ja) 熱延鋼帯の冷却装置と、その冷却方法および熱延鋼帯の製造方法
KR20200008548A (ko) 금속 스트립을 위한 연속주조 및 열간압연 복합장치
JP3621915B2 (ja) 厚鋼板圧延方法
KR101984372B1 (ko) 평탄화가 가능한 리코일러 장치
JP4927008B2 (ja) 金属ストリップの変形抵抗予測方法および冷間タンデム圧延機のセットアップ方法
JP2003220401A (ja) 熱間圧延方法および熱間圧延ライン
JP3324692B2 (ja) 熱間圧延における金属帯の切断方法
JPH10146603A (ja) 熱延連続化プロセスを用いた材質ばらつきの少ない熱延鋼板の製造方法
CN211889848U (zh) 一种改善热轧卷板形的连续平整机组
JP2018069278A (ja) 厚肉高強度熱延鋼板の製造方法
WO2021205687A1 (ja) 冷延鋼帯の製造設備および冷延鋼帯の製造方法
JP4677702B2 (ja) 熱間圧延方法
CN117098613A (zh) 冷轧钢板的制造方法和制造设备
JP2004141925A (ja) 形鋼の曲げ加工方法およびその装置
KR101043075B1 (ko) 냉간압연라인의 코일 단부 압연장치
JP3491121B2 (ja) 連続焼鈍ラインおよび該連続焼鈍ラインにおける鋼帯の進行方向変更方法
JP2004122133A (ja) 熱間圧延方法
JP2003136109A (ja) 熱間圧延方法及び熱間圧延ライン
JPS63177904A (ja) 熱間連続仕上圧延設備

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

WWE Wipo information: entry into national phase

Ref document number: 10204171

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2001272853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020027011298

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1020027011298

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 018087280

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 2001272853

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 2001272853

Country of ref document: EP