WO2002040934A1 - Kondensationswärmeübertrager - Google Patents

Kondensationswärmeübertrager Download PDF

Info

Publication number
WO2002040934A1
WO2002040934A1 PCT/IB2001/002079 IB0102079W WO0240934A1 WO 2002040934 A1 WO2002040934 A1 WO 2002040934A1 IB 0102079 W IB0102079 W IB 0102079W WO 0240934 A1 WO0240934 A1 WO 0240934A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
coating
layers
hard
heat exchanger
Prior art date
Application number
PCT/IB2001/002079
Other languages
English (en)
French (fr)
Inventor
Francisco Blangetti
Harald Reiss
Original Assignee
Alstom (Switzerland) Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom (Switzerland) Ltd filed Critical Alstom (Switzerland) Ltd
Priority to DE50110964T priority Critical patent/DE50110964D1/de
Priority to KR1020037006477A priority patent/KR100622886B1/ko
Priority to EP01980811A priority patent/EP1344013B1/de
Priority to US10/416,485 priority patent/US6942022B2/en
Priority to AU2002212597A priority patent/AU2002212597A1/en
Priority to CA2428650A priority patent/CA2428650C/en
Priority to JP2002542817A priority patent/JP3984542B2/ja
Publication of WO2002040934A1 publication Critical patent/WO2002040934A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/18Arrangements for modifying heat-transfer, e.g. increasing, decreasing by applying coatings, e.g. radiation-absorbing, radiation-reflecting; by surface treatment, e.g. polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D17/00Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles
    • F28D17/005Regenerative heat-exchange apparatus in which a stationary intermediate heat-transfer medium or body is contacted successively by each heat-exchange medium, e.g. using granular particles using granular particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/50Intrinsic material properties or characteristics
    • F05D2300/512Hydrophobic, i.e. being or having non-wettable properties
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • F28F2245/04Coatings; Surface treatments hydrophobic

Definitions

  • the invention relates to a condensation heat exchanger for the condensation of non-metallic vapors and in particular to a coating of the heat transfer surfaces of the condensation heat exchanger.
  • the coating serves to extend the service life of the cooling pipes and to improve the heat transfer on the heat transfer surfaces.
  • condensation heat exchangers In the case of condensation heat exchangers, the service life of the heat transfer surfaces plays an important role, since damage to the heat transfer surfaces causes the entire system in which the condensation heat exchanger is installed to fail.
  • the condition of the heat transfer surfaces of condensation heat exchangers is impaired by drop erosion and corrosion, among other things. Damage due to drop impact erosion occurs particularly on those heat transfer surfaces which are exposed to a steam flow at high speed. There drops, which are contained in the steam to be condensed, hit the heat transfer surfaces, energy being transferred to the surface by the impact or by shear forces. Erosion occurs when the transferred energy is sufficient to plastically deform the surface material if the drop is very frequent, creep in the case of ductile material or intercrystalline fatigue in hard materials.
  • drop impact erosion depends heavily on the material properties, such as hardness, ductility, elasticity, microstructure and roughness, whereby materials made of titanium and titanium alloys are characterized by a certain but not sufficient erosion resistance, which is mainly due to their high hardness.
  • material properties such as hardness, ductility, elasticity, microstructure and roughness
  • drop impact erosions are contained by a suitable choice of material for the cooling pipes, such as, for example, stainless steels, titanium or chromium steels.
  • Drop impact erosion is also a problem, particularly at low condenser pressures and thus higher steam speeds, such as, for example, with steam condensers in steam power plants which operate at partial load.
  • Teflon or enamel layers have been tried with little success, these layers showing low strength against erosion and corrosion.
  • the problem of stability against erosion and corrosion as well as that of the adhesion of the coating to the heat transfer surfaces must be solved.
  • these problems can be solved in view of the desired long operating time of the condensation heat exchanger, such as, for example, the cooling pipes of a steam condenser, which must be able to operate over a period of several years.
  • a coating is disclosed in WO 96/41901 and EP 0 625 588.
  • Amorphous carbon is known for its elastic, exceptionally hard and chemically stable properties.
  • the incorporation of elements such as fluorine and silicon changes the wetting behavior of the hard material layer of amorphous carbon in such a way that it acquires a hydrophobic property.
  • an intermediate layer is applied between the substrate and the hard material layer, the transition from the intermediate layer to the hard material layer being realized by a gradient layer.
  • the hard material layer ultimately has wear resistance to erosion only because of its inherent hardness.
  • DE 34 37 898 describes a coating for the surfaces of a heat exchanger, in particular for the surfaces of condenser cooling tubes, consisting of a triazine dithiol derivative. This layer material causes drop condensation and thus an improvement in the heat transfer. The coating is also characterized by good adhesion to the cooling tubes.
  • DE 196 44 692 describes a coating made of amorphous carbon which brings about drop condensation on the cooling tubes of steam condensers.
  • the surface of a cooling tube is roughened before the amorphous carbon is applied, which makes the effective Interface between the cooling tube surface and the coating is increased. This reduces the thermal resistance between the coating and the base material. After coating, the surface is smoothed so that coated and uncoated areas are created side by side.
  • the present invention has for its object to provide a coating for the heat transfer surfaces of a condensation heat exchanger for the condensation of non-metallic vapors, the stability against drop erosion and corrosion is increased compared to the prior art and at the same time an improved heat transfer by the production of drop condensation takes place.
  • the heat transfer surfaces of a condensation heat exchanger have a coating that contains amorphous carbon, also known as diamond-like carbon.
  • the coating has a layer sequence with at least one hard layer made of amorphous carbon and at least one soft layer made of amorphous carbon, the hard and soft layers being applied alternately and the bottom or first layer on the heat transfer surface being a hard layer and the top or last layer of the layer sequence is a soft layer.
  • the last and soft layer of the layer sequence has in particular a hydrophobic or water-repellent property.
  • amorphous carbon should be understood to mean hydrogen-containing carbon layers with a hydrogen content of 10 to 50 at% and with a ratio of sp 3 to sp bonds between 0.1 and 0.9.
  • all amorphous or dense carbon layers as well as plasma polymer layers, polymer-like or dense carbon and hydrocarbon layers produced by means of carbon or hydrocarbon precursome can be used, provided they have the hydrophobic and the mechanical or chemical properties of the amorphous carbon mentioned below for the production of layer sequences exhibit.
  • the wettability of the surface of amorphous carbon can be changed by varying its hardness. The lower the wettability, the higher its hardness. A very hard layer with, for example, more than 3000 Vickers would be less suitable as an outermost, hydrophobic layer than a layer of lower hardness.
  • the formation of extensive condensate films on the soft, hydrophobic surface is prevented by the condensate instead forming droplets which slide off the surface of the pipe when a certain size is reached.
  • a larger proportion of the heat transfer surface area remains free of condensate, on the other hand, the dwell time of the condensate on a given heat transfer surface is also greatly reduced.
  • the layer sequence according to the invention in each case a hard layer followed by a soft layer, in particular brings about increased resistance to drop erosion.
  • the impulse from impinging drops is absorbed by the soft and hard layers, in that the compression waves, which emanate from the impact of the drops in the surface material, are canceled out by the pairs of hard and soft layers by interference.
  • This extinction of compression waves is similar to the extinction of optical waves, which is brought about by layer pairs of thin layers, each with a high and low refractive index.
  • the extinction of compression waves is increased by a layer sequence of several layer pairs of hard and soft layers. An optimal number of layers depends on the angle of inclination of the direction of incidence of the drops on the surface. In the case of oblique incidence, a smaller number of layers are necessary to extinguish the compression waves.
  • the total heat resistance of the coated heat transfer surface increases with increasing number of layers and layer thickness.
  • the number of layers must therefore be optimized in view of the absorption of the compression waves emanating from impinging drops as well as the overall thermal resistance of the heat transfer surfaces.
  • the combination of one or more pairs of layers of hard and soft layers results in a greatly improved erosion resistance compared to coatings with amorphous carbon with only one layer of relatively high hardness.
  • the coating according to the invention has the ability to form drop condensation. This ensures increased resistance to drop erosion and at the same time high heat transfer due to the increased condensate-free area portion of the heat transfer surfaces, so that both an extended service life of the heat transfer surfaces and an increased performance of the condensation heat exchanger is achieved.
  • the coating according to the invention is excellently suitable for the cooling tubes of condensation heat exchangers.
  • the cooling tubes, on which steam of any substance is deposited, are arranged vertically or horizontally in tube bundles.
  • the cooling tubes at the periphery of a tube bundle are particularly exposed to the drops flowing in at high speed than cooling tubes inside a bundle.
  • the two- or multi-layer coating is therefore particularly suitable for those cooling pipes on the
  • the cooling tubes inside the bundle can have the same coating or just a simple, soft, hydrophobic layer be provided with amorphous carbon. This brings about drop condensation and the associated increase in heat transfer. Protection against drop erosion is less necessary there.
  • the drop condensation reduces the dwell time of the condensate on the cooling pipes of the steam condenser. This results in a reduction in the pressure drop on the steam side, the pressure drop depending on the size of the tube bundle and the volume of the condensate and on the web width.
  • the reduction in the pressure drop on the steam side leads to an improvement in the overall heat transfer coefficient.
  • the heat transfer coefficient can be increased by at least 25 percent, whereby the condensation heat exchanger can condense up to 20 percent more steam.
  • the coating is also suitable as erosion and corrosion protection in heat exchangers, for example against ammonia erosion in steam condensers with heat transfer surfaces made of copper alloys.
  • Another application is protection against SO 3 or NO 2 corrosion in condensers in devices for heat recovery from flue gases.
  • the interfacial energy must be very small compared to the surface tension of the condensate. Since the surface tension of sulfuric acid is lower than that of water, the interfacial energy of the outermost layer must be lower than that in steam condensers.
  • the hardness of the outermost layer should be between 600 and 1500 Vickers.
  • the coating according to the invention can be used with other condensation heat exchangers, such as, for example, in refrigeration machines and in general with all heat exchangers in which condensation takes place and droplet erosion must be prevented.
  • the coating according to the invention can be implemented using various, generally known production processes, such as, for example, deposition by means of glow discharge in a plasma from hydrocarbon-containing precursors, ion beam coating and sputtering of carbon in hydrogen-containing working gas. In these methods, the substrate is exposed to a current of ions of several 100 eV. During the glow discharge, the substrate is arranged in a reactor chamber in contact with a cathode, which is capacitively connected to a 13.56 MHz RF generator. The grounded walls of the plasma chamber form a large counter electrode.
  • any hydrocarbon vapor or hydrocarbon gas can be used as the first working gas for the coating.
  • different gases are added to the first working gas.
  • nitrogen fluorine- or silicon-containing gases, for example, high or low surface energies are achieved.
  • the addition of nitrogen additionally increases the hardness of the resulting layer.
  • the resulting hardness of the layer can be controlled by changing the bias voltage across the electrodes between 100 and 1000 V, a high bias voltage leading to a hard, amorphous carbon layer and a low voltage leading to a soft amorphous carbon layer ,
  • the hardness of a hard layer of a pair of layers is between 1500 and 3000 Vickers, while the hardness of a soft layer of a pair of layers is between 800 and 1500 Vickers.
  • the thicknesses of the individual layers are between 0.1 and 2 ⁇ m, preferably between 0.2 and 0.8 ⁇ m, if several layers are applied in succession in the layer sequence.
  • the total layer thickness is in the range from 2 to 10 ⁇ m, preferably between 2 and 6 ⁇ m.
  • the thickness of the harder and softer layers are preferably inversely related to their hardness.
  • the coating according to the invention has at least one pair of layers with a hard layer and a soft layer.
  • a larger number of pairs of layers can be realized, such as two pairs of layers, each with a hard and a soft layer, provided the sequence of layers begins with a hard and ends with a soft layer with hydrophobic properties.
  • the adhesion of the coating according to the invention is well guaranteed for most types of substrates, in particular for the materials which form carbides, such as titanium, iron and silicon, and also aluminum, but not on noble metals, copper or copper-nickel alloys. It is not necessary to roughen the substrate surface to improve the adhesion. If the coating is applied to a smooth substrate surface, a layer composite results which is even more stable against drop impact erosion, because this reduces the absorption of the impact energy by the base material.
  • the coating according to the invention can therefore be applied to various substrate materials which are used for the heat transfer surfaces, such as titanium, stainless steels, chromium steels, aluminum and all carbide formers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

Die Wärmeübertragungsflächen eines Kondensationswärmeübertragers sind mit einer erfindungsgemässen Beschichtung versehen, die aus einer Schichtenfolge mit mindestens einer harten Schicht mit amorphem Kohlenstoff oder einem Plasmapolymer und mindestens einer weichen Schicht mit amorphem Kohlenstoff oder einem Plasmapolymer besteht. Dabei sind die harten und weichen Schichten alternierend aufgetragen, wobei die erste Schicht auf der Wärmeübertragungsfläche eine harte und die letzte Schicht der Beschichtung eine weiche Schicht ist. Die letzte, weiche Schicht zeichnet sich insbesondere durch hydrophobe Eigenschaften aus. Die Schichtenfolge gewährleistet Tropfenkondensation und zugleich einen Schutz gegen Tropfenschlagerosion.

Description

Beschreibung
Kondensationswärmeübertrager
Technisches Gebiet
Die Erfindung betrifft einen Kondensationswärmeübertrager zur Kondensation von nicht-metallischen Dämpfen und insbesondere eine Beschichtung der Wärmeübertragungsflächen des Kondensationswärmeübertragers. Die Beschichtung dient der Verlängerung der Lebensdauer der Kühlrohre und der Verbesserung des Wärmeübergangs an den Wärmeübertragungsflächen.
Stand der Technik
Bei Kondensationswärmeübertragern spielt die Lebensdauer der Wärme- Übertragungsflächen eine bedeutende Rolle, da ein Schaden bei den Wärmeübertragungsflächen einen Ausfall der gesamten Anlage herbeiführt, in welcher der Kondensationswärmeübertrager eingebaut ist. Der Zustand der Wärmeübertragungsflächen von Kondensationswärmeübertragern wird unter anderem durch Tropfenschlagerosion sowie Korrosion beeinträchtigt. Schäden aufgrund von Tropfenschlagerosion entstehen insbesondere an jenen Wärmeübertragungsflächen, welche einem Dampfstrom von hoher Geschwindigkeit ausgesetzt sind. Dort prallen Tropfen, welche in dem zu kondensierenden Dampf enthalten sind, auf die Wärmeübertragungsflächen, wobei Energie durch den Aufschlag oder durch Scherkräfte auf die Oberfläche übertragen wird. Erosion entsteht, wenn bei sehr häufigem Tropfeneinschlag die übertragene Energie zur plastischen Verformung des Oberflächenmaterials ausreicht, bei duktilem Material zu Kriechen oder bei Hartwerkstoffen zu interkristallinem Ermüdungseinbruch führt. Bei Dampfkondensatoren in Dampfkraftanlagen wurde beobachtet, dass vergrösserte Tropfen mit Durchmessern im Bereich von 100 μm und Geschwindigkeiten von 250 m/s Tropfenschlagerosion verursachen. Es sind dabei insbesondere die Kühlrohre an der Peripherie eines Rohrbündels betroffen, während die Rohre im Innern eines Rohrbündels von direkter Tropfenschlagerosion verschont bleiben.
Das Auftreten von Tropfenschlagerosion hängt stark von den Materialeigenschaften ab, wie Härte, Duktilität, Elastizität, MikroStruktur und Rauhigkeit, wobei sich Werkstoffe aus Titan und Titanlegierungen durch einen gewissen, aber nicht ausreichenden Erosionswiderstand auszeichnen, der vorwiegend durch ihre hohe Härte bedingt ist. Bei Dampfkondensatoren in Dampfkraftanlagen werden solche Tropfenschlagerosionen durch eine geeignete Materialwahl für die Kühlrohre eingedämmt, wie zum Beispiel durch rostfreie Stähle, Titan oder Chromstähle. Tropfenschlagerosion ist ferner besonders bei tiefen Kondensatordrücken und somit höheren Dampfgeschwindigkeiten ein Problem wie zum Beispiel bei Dampfkondensatoren in Dampfkraftanlagen, welche auf Teillast arbeiten. Bei der Kondensation von Dampf an Wärmeübertragungsflächen wird nach dem Stand der Technik ein Kondensatfilm gebildet, der sich über die gesamte Fläche ausbreitet. Durch diesen Kondensatfilm erhöht sich der Gesamt-Wärmewiderstand zwischen Dampf und Kühlflüssigkeit, die in den Rohren strömt, wodurch die Wärmeübertragungsleistung verringert wird. Aus diesem Grund sind seit längerer Zeit Bestrebungen im Gange, Wärmeübertragungsflächen mit einer Beschichtung zu versehen, welche aufgrund von hydrophoben Eigenschaften die Bildung eines Kondensatfilms verhindert, sodass an der Oberfläche Tropfenkondensation entsteht. Durch die Bildung von Tropfen kann das Kondensat schneller als bei einer Filmbildung abrinnen. Die Oberfläche des Wärmeübertragers wird dadurch freigegeben, so dass Dampf erneut an der Oberfläche kondensieren kann, ohne durch einen Kondensatfilm behindert zu sein. Der Gesamt-Wärmewiderstand bleibt damit relativ gering. Hierzu sind beispielsweise Teflon- oder Email-Schichten jedoch ohne grossen Erfolg versucht worden, wobei diese Schichten gegen Erosion und Korrosion eine geringe Festigkeit zeigten. Bei der Beschichtung gilt es, das Problem der Standfestigkeit gegen Erosion und Korrosion sowie auch jenes der Haftung der Beschichtung an den Wärmeübertragungsflächen zu lösen. Insbesondere sind diese Probleme in Anbetracht der gewünschten, langen Betriebsdauer des Kondensationswärme-übertragers zu lösen, wie zum Beispiel bei den Kühlrohren eines Dampf-kondensators, der über eine Zeit von mehreren Jahren betriebsfähig sein muss.
Ein Beispiel einer Beschichtung ist in der WO 96/41901 und EP 0 625 588 offenbart. Hier ist eine metallene Wärmeübertragungsfläche mit einer sogenannten Hartstoffschicht aus plasmamodifizierten amorphen Kohlenwasserstoffschichten, auch unter Diamond-Like-Carbon bekannt, beschrieben. Amorpher Kohlenstoff ist für seine elastischen, aussergewöhnlich harten und chemisch stabilen Eigenschaften bekannt. Die Hartstoffschicht von amorphem Kohlenstoff wird durch den Einbau von Elementen wie Fluor und Silizium in ihrem Benetzungsverhalten derart verändert, dass sie eine hydrophobe Eigenschaft erhält. Zwecks Haftung auf dem Substrat wird zwischen dem Substrat und der Hartstoffschicht eine Zwischenschicht aufgetragen, wobei der Übergang von der Zwischenschicht zur Hartstoffschicht durch eine Gradientenschicht realisiert wird. Die Hartstoffschicht besitzt jedoch letztendlich eine Verschleißfestigkeit gegen Erosion lediglich aufgrund ihrer inhärenten Härte.
In der DE 34 37 898 ist eine Beschichtung für die Oberflächen eines Wärmeübertragers, insbesondere für die Oberflächen von Kondensatorkühlrohren beschrieben, bestehend aus einem Triazin-Dithiol-Derivat. Dieses Schichtmaterial bewirkt Tropfenkondensation und somit eine Verbesserung des Wärmeübergangs. Ferner zeichnet sich die Beschichtung durch eine gute Haftung an den Kühlrohren aus.
In der DE 196 44 692 ist eine Beschichtung aus amorphem Kohlenstoff beschrieben, die auf den Kühlrohren von Dampfkondensatoren Tropfenkondensation herbeiführt. Die Oberfläche eines Kühlrohres wird dabei vor dem Aufbringen des amorphen Kohlenstoffs aufgerauht, wodurch die effektive Grenzfläche zwischen der Kühlrohroberfläche und der Beschichtung vergrössert wird. Dadurch wird der Wärmewiderstand zwischen Beschichtung und Grundmaterial verringert. Nach der Beschichtung wird die Oberfläche geglättet, sodass nebeneinander beschichtete sowie unbeschichtete Bereiche entstehen.
Darstellung der Erfindung
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Beschichtung für die Wärmeübertragungsflächen eines Kondensationswärmeübertragers für die Kondensation von nicht-metallischen Dämpfen zu schaffen, deren Standfestigkeit gegen Tropfenschlagerosion und Korrosion im Vergleich zum Stand der Technik erhöht ist und an denen zugleich eine verbesserte Wärmeübertragung durch die Herbeiführung von Tropfenkondensation stattfindet.
Diese Aufgabe ist durch einen Kondensationswärmeübertrager gemäss dem Anspruch 1 gelöst. Die Wärmeübertragungsflächen eines Kondensationswärmeübertragers weisen eine Beschichtung auf, die amorphen Kohlenstoff enthält, auch unter Diamond Like Carbon bekannt. Erfindungsgemäss weist die Beschichtung eine Schichtenfolge auf mit mindestens einer harten Schicht aus amorphem Kohlenstoff und mindestens einer weichen Schicht aus amorphem Kohlenstoff, wobei die harten und weichen Schichten alternierend aufgetragen sind und die unterste oder erste Schicht auf der Wärmeübertragungsoberfläche eine harte Schicht ist und die oberste oder letzte Schicht der Schichtenfolge eine weiche Schicht ist. Die letzte und weiche Schicht der Schichtenfolge besitzt insbesondere eine hydrophobe oder wasserabweisende Eigenschaft.
Die erfindungsgemässe Beschichtung bewirkt somit durch ihre letzte oder äusserste Schicht ein hydrophobes Verhalten des gesamten Schichtsystems. Dieses Verhalten beruht auf der niedrigen Oberflächenenergie des amorphen Kohlenstoffs, wenn er relativ weich ist. Unter amorphem Kohlenstoff sollen im folgenden wasserstoffhaltige Kohlenstoffschichten mit 10 bis 50 at -% Wasserstoffgehalt und mit einem Verhältnis von sp3 zu sp -Bindungen zwischen 0.1 bis 0.9 verstanden werden. Generell können alle mittels Carbon- oder Hydro-Carbon-Precursom hergestellten amorphen oder dichten Kohlenstoffschichten sowie Plasmapolymerschichten, polymerähnliche oder dichte Kohlenstoff- und Kohlenwasserstoffschichten verwendet werden, sofern sie die hydrophoben und die im folgenden genannten mechanischen oder chemischen Eigenschaften des amorphen Kohlenstoffs zur Herstellung von Schichtfolgen aufweisen. Die Benetzbarkeit der Oberfläche von amorphem Kohlenstoff ist durch Variierung seiner Härte veränderbar. Die Benetzbarkeit ist je geringer, je höher seine Härte. Eine sehr harte Schicht mit zum Beispiel mehr als 3000 Vickers würde sich als äusserste, hydrophobe Schicht weniger gut eignen als eine Schicht geringerer Härte. Auf der weichen, hydrophoben Oberfläche wird die Bildung von ausgedehnten Kondensatfilmen verhindert, indem das Kondensat statt dessen Tropfen bildet, welche bei einer bestimmten erreichten Grosse von der Oberfläche des Rohrs abgleiten. Dabei bleibt einerseits ein grösserer Flächenanteil der Wärmeübertragungsfläche frei von Kondensat, anderseits ist auch die Verweilzeit des Kondensats auf einer gegebenen Wärmeübertragungsfläche stark reduziert.
Hiermit wird die Wärmeübertragung an den Flächen und letztendlich die Leistung des Kondensationswärmeübertragers erhöht.
Die erfindungsgemässe Schichtenfolge von jeweils einer harten Schicht gefolgt von einer weichen Schicht bewirkt insbesondere eine erhöhte Beständigkeit gegen Tropfenschlagerosion. Der Impuls von aufprallenden Tropfen wird durch die weichen und harten Schichten aufgenommen, indem die Kompressionswellen, die im Oberflächenmaterial vom Aufprall der Tropfen ausgehen, durch die Paare von harten und weichen Schichten durch Interferenz ausgelöscht werden. Diese Auslöschung von Kompressionswellen ist der Auslöschung von optischen Wellen ähnlich, die durch Schichtpaare von dünnen Schichten mit jeweils hohem und niedrigem Brechungsindex herbeigeführt wird. Die Auslöschung von Kompressionswellen wird durch eine Schichtenfolge von mehreren Schichtpaaren von harten und weichen Schichten erhöht. Eine optimale Anzahl Schichten hängt dabei vom Neigungswinkel der Einfallrichtung der Tropfen auf die Oberfläche ab. Bei schrägem Einfall ist eine kleinere Anzahl Schichten notwendig, um die Kompressionswellen auszulöschen.
Der Gesamtwärmewiderstand der beschichteten Wärmeübertragungsfläche nimmt mit steigender Schichtzahl und Schichtdicke zu. Es ist also die Anzahl der Schichten in Anbetracht der Aufnahme der Kompressionswellen, die von aufprallenden Tropfen ausgehen, sowie auch des Gesamtwärmewiderstands der Wärmeübertragungsflächen zu optimieren.
Die Zusammenführung von einem oder mehreren Schichtpaaren von harten und weichen Schichten erbringt eine stark verbesserte Erosionsbeständigkeit gegenüber Beschichtungen mit amorphem Kohlenstoff mit nur einer Schicht von relativ hoher Härte. Zugleich besitzt die erfindungsgemässe Beschichtung dank ihrer äussersten, weichen Schicht die Fähigkeit, Tropfenkondensation zu bilden. Dadurch ist eine erhöhte Beständigkeit gegen Tropfenschlagerosion und zugleich eine hohe Wärmeübertragung aufgrund des vergrösserten kondensatfreien Flächenanteils der Wärmeübertragungsflächen gewährleistet, sodass sowohl eine verlängerte Lebensdauer der Wärmeübertragungsflächen als auch eine erhöhte Leistung des Kondensationswärmeübertragers erreicht wird.
Die erfindungsgemässe Beschichtung eignet sich ausgezeichnet für die Kühlrohre von Kondensationswärmeübertragern. Die Kühlrohre, an denen Dampf eines beliebigen Stoffes niedergeschlagen wird, sind dort senkrecht oder waagerecht in Rohrbündeln angeordnet. Im Fall eines Dampfkondensators, wie zum Beispiel in einer Dampfkraftanlage, sind insbesondere die Kühlrohre an der Peripherie eines Rohrbündels den mit hoher Geschwindigkeit heranströmenden Tropfen mehr ausgesetzt sind als Kühlrohre im Innern eines Bündels. Die zwei- oder mehrschichtige Beschichtung ist also besonders für jene Kühlrohre an der
Peripherie geeignet. Die Kühlrohre im Innern des Bündels können mit der gleichen Beschichtung oder lediglich mit einer einfachen, weichen, hydrophoben Schicht von amorphem Kohlenstoff versehen werden. Diese bewerkstelligt Tropfenkondensation und die damit verbundene Erhöhung der Wärmeübertragung. Ein Schutz vor Tropfenschlagerosion ist dort weniger notwendig. Wie erwähnt bewirkt die Tropfenkondensation eine Reduktion der Verweilzeit des Kondensats auf den Kühlrohren des Dampfkondensators. Dadurch resultiert eine Reduktion des dampfseitigen Druckabfalls, wobei der Druckabfall von der Grosse des Rohrbündels sowie des Volumens des Kondensats sowie von der Stegbreite abhängt. Die Reduktion des dampfseitigen Druckabfalls führt eine Verbesserung des gesamten Wärme-übertragungskoeffizienten herbei. Im Vergleich zu Kondensatoren mit unbeschichteten Kühlrohren ist eine Erhöhung des Wärmeübertragungskoeffizienten um mindestens 25 Prozent erreichbar, wobei der Kondensationswärmeübertrager um bis zu 20 Prozent mehr Dampf zu kondensieren vermag.
Weiter eignet sich die Beschichtung als Erosions- und Korrosionsschutz in Wärmeübertragern, wie zum Beispiel gegen Ammoniakerosion bei Dampfkondensatoren mit Wärmeübertragungsoberflächen aus Kupferlegierungen. Eine weitere Anwendung liegt im Schutz gegen SO3- oder NO2-Korrosion bei Kondensatoren in Apparaten zur Wärmerekuperation aus Kaminabgasen. In dieser Anwendung muss die Grenzflächenenergie sehr klein sein gegenüber der Oberflächen-spannung des Kondensats. Da die Oberflächenspannung von Schwefelsäure kleiner ist als die von Wasser, muss also die Grenzflächenenergie der äussersten Schicht eher kleiner sein als die in Dampfkondensatoren. Hier sollte die Härte der äussersten Schicht zwischen 600 und 1500 Vickers liegen.
Ferner ist die erfindungsgemässe Beschichtung bei weiteren Kondensationswärmeübertragern anwendbar wie zum Beispiel in Kältemaschinen und überhaupt allen Wärmeübertragern, in denen eine Kondensation stattfindet und Tropfen- schlagerosion verhindert werden muss. Die erfindungsgemässe Beschichtung kann nach verschiedenen, allgemein bekannten Herstellungsverfahren realisiert werden, wie zum Beispiel Abscheidung mittels Glimmentladung in einem Plasma aus kohlenwasserstoffhaltigen Precursorn, lonenstrahlbeschichtung und Sputtem von Kohlenstoff in wasser- stoffhaltigem Arbeitsgas. Bei diesen Verfahren wird das Substrat einem Strom von Ionen von mehreren 100 eV ausgesetzt. Bei der Glimmentladung wird das Substrat in einer Reaktorkammer in Kontakt mit einer Kathode, die kapazitiv mit einem 13.56 MHz RF Generator verbunden ist, angeordnet. Die geerdeten Wände der Plasmakammer bilden dabei eine grosse Gegenelektrode. In dieser Anordnung lässt sich jeder Kohlenwasserstoffdampf oder jedes Kohlenwasserstoffgas als erstes Arbeitsgas für die Beschichtung verwenden. Um besondere Schichteigenschaften zu erzielen, beispielsweise verschiedene Oberflächenenergien, Härten, optische Eigenschaften usw. werden verschiedene Gase zum ersten Arbeitsgas dazugegeben. Unter Zugabe von Stickstoff, fluor-, oder silizium- haltigen Gasen werden beispielsweise hohe oder niedrige Oberflächenenergien erreicht. Die Zugabe von Stickstoff führt zusätzlich zu einer Erhöhung der Härte der resultierenden Schicht. Ferner ist mittels der Veränderung der Bias-Spannung über den Elektroden zwischen 100 und 1000 V die resultierende Härte der Schicht steuer-bar, wobei eine hohe Bias-Spannung zu einer harten, amorphen Kohlenstoff-schicht und eine tiefe Spannung zu einer weichen amorphen Kohlenstoffschicht führt.
In einem Ausführungsbeispiel beträgt die Härte einer harten Schicht eines Schichtpaares zwischen 1500 und 3000 Vickers während die Härte einer weichen Schicht eines Schichtpaares zwischen 800 und 1500 Vickers liegt. Die Dicken der Einzelschichten liegen dabei zwischen 0.1 und 2 μm, vorzugsweise zwischen 0.2 und 0.8 μm, wenn in der Schichtenfolge mehrere Schichten nacheinander aufgetragen werden. Die Gesamt-Schichtdicke liegt dabei im Bereich .von 2 bis 10 μm, vorzugsweise zwischen 2 und 6 μm. Die Dicke der härteren und weicheren Schichten sind dabei vorzugsweise in umgekehrtem Verhältnis zu ihren Härten. Die erfindungsgemässe Beschichtung weist mindestens ein Schichtpaar mit einer harten Schicht und einer weichen Schicht auf. Dabei ist eine grössere Anzahl von Schichtpaaren realisierbar, wie zum Beispiel zwei Schichtpaare von je einer harten und einer weichen Schicht, vorausgesetzt die Schichtenfolge beginnt mit einer harten und endet mit einer weichen Schicht mit hydrophoben Eigenschaften. Je grösser die Anzahl Schichten, umso besser funktioniert die Auslöschung der Einschlagenergie, umso grösser wird allerdings auch der Wärmewiderstand, da die harten und weichen Schichten unterschiedliche Wärmeleitfähigkeit haben.
Die Haftung der erfindungsgemässen Beschichtung ist bei den meisten Substrattypen gut gewährleistet, insbesondere bei den Werkstoffen, die Karbide bilden wie zum Beispiel Titan, Eisen und Silizium sowie auch Aluminium, jedoch nicht auf Edelmetallen, Kupfer oder Kupfer-Nickel-Legierungen. Dabei ist eine Aufrauhung der Substratoberfläche zur Verbesserung der Haftung nicht notwendig. Wird die Beschichtung auf eine glatte Substratoberfläche aufgebracht, ergibt sich ein Schichtverbund, der gegen Tropfenschlagerosion noch stabiler ist, weil dies die Absorption der Anschlagenergie durch das Grundmaterial verringert. Die erfindungsgemässe Beschichtung lässt sich deshalb auf verschiedene Substratmaterialien, die für die Wärmeübertragungsflächen verwendet werden, wie zum Beispiel Titan, rostfreie Stähle, Chromstähle, Aluminium sowie sämtliche Karbidbildner, anwenden.

Claims

Patentansprüche
1. Kondensationswärmeübertrager mit Wärmeübertragungsflächen zur Kondensation von nicht-metallischen Dämpfen, wobei die
Wärmeübertragungsflächen eine Beschichtung aufweisen, die amorphen
Kohlenstoff enthält dadurch gekennzeichnet, dass die Beschichtung aus einer Schichtenfolge besteht mit mindestens einer harten Schicht mit amorphem Kohlenstoff oder einem Plasmapolymer, die auf die
Wärmeübertragungsfläche aufgebracht ist, und mindestens einer weichen Schicht mit amorphem Kohlenstoff oder einem Plasmapolymer, wobei die harten Schichten und weichen Schichten alternierend aufgebracht sind und die letzte Schicht eine weiche Schicht ist und hydrophobe Eigenschaften besitzt.
2. Kondensationswärmeübertrager nach Anspruch 1 dadurch gekennzeichnet, dass die Beschichtung eine Anzahl von zwei Schichtpaaren mit jeweils einer harten und einer weichen Schicht mit amorphem Kohlenstoff oder einem Plasmapolymer aufweist.
3. Kondensationswärmeübertrager nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die harten Schichten jeweils eine Härte im Bereich von 1500 bis 3500 Vickers und die weichen Schichten eine Härte im Bereich von 600 bis 1500 Vickers aufweisen.
4. Kondensationswärmeübertrager nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die Dicke der harten und weichen Schichten der Beschichtung jeweils zwischen
0.1 und 2 Mikrometern liegen.
5. Kondensationswärmeübertrager nach Anspruch 1 oder 2 dadurch gekennzeichnet, dass die Beschichtung mehrere Schichtpaare von jeweils einer harten und einer weichen Schicht aufweist und die Gesamtdicke der Beschichtung zwischen 2 und 10 Mikrometern liegt.
6. Kondensationswärmeübertrager nach einem der vorangehenden Ansprüche dadurch gekennzeichnet, dass die Wärmeübertragungsflächen Titan, rostfreien Stahl, Chromstahl, Aluminium, Kupferlegierungen oder Karbidbildner enthalten.
7. - Kondensationswärmeübertrager nach einem der vorangehenden Ansprüche dadurch gekennzeichnet, dass die Beschichtung als Schutz gegen Ammoniakerosion oder Korrosion verwendet wird.
8. Kondensationswärmeübertrager nach einem der Ansprüche 1 bis 6 dadurch gekennzeichnet, dass der Kondensationswärmeübertrager in der Gestaltung von Rohrbündeln bestehend aus mehreren senkrecht oder waagerecht angeordneten Kühlrohren, an denen Dampf eines beliebigen Stoffes niedergeschlagen wird, und die äusseren Kühlrohre an der Peripherie der Rohrbündel die Beschichtung mit mindestens einer harten und mindestens einer weichen Schicht aufweisen, und die inneren Kühlrohre der Bündel die gleiche Beschichtung oder eine Beschichtung mit nur einer weichen, hydrophoben Schicht mit amorphem Kohlenstoff aufweisen.
PCT/IB2001/002079 2000-11-14 2001-11-07 Kondensationswärmeübertrager WO2002040934A1 (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
DE50110964T DE50110964D1 (de) 2000-11-14 2001-11-07 Kondensationswärmeüberträger
KR1020037006477A KR100622886B1 (ko) 2000-11-14 2001-11-07 응축열 전달 장치
EP01980811A EP1344013B1 (de) 2000-11-14 2001-11-07 Kondensationswärmeüberträger
US10/416,485 US6942022B2 (en) 2000-11-14 2001-11-07 Condensation heat-transfer device
AU2002212597A AU2002212597A1 (en) 2000-11-14 2001-11-07 Condensation heat-transfer device
CA2428650A CA2428650C (en) 2000-11-14 2001-11-07 Condensation heat exchanger
JP2002542817A JP3984542B2 (ja) 2000-11-14 2001-11-07 凝縮熱媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10056242A DE10056242A1 (de) 2000-11-14 2000-11-14 Kondensationswärmeübertrager
DE10056242.6 2000-11-14

Publications (1)

Publication Number Publication Date
WO2002040934A1 true WO2002040934A1 (de) 2002-05-23

Family

ID=7663157

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2001/002079 WO2002040934A1 (de) 2000-11-14 2001-11-07 Kondensationswärmeübertrager

Country Status (9)

Country Link
US (1) US6942022B2 (de)
EP (1) EP1344013B1 (de)
JP (1) JP3984542B2 (de)
KR (1) KR100622886B1 (de)
CN (1) CN1320160C (de)
AU (1) AU2002212597A1 (de)
CA (1) CA2428650C (de)
DE (2) DE10056242A1 (de)
WO (1) WO2002040934A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044374A1 (de) * 2001-11-19 2003-05-30 Alstom Technology Ltd Verdichter für gasturbinen
EP1562018A1 (de) * 2004-02-03 2005-08-10 Siemens Aktiengesellschaft Wärmetauscherrohr, Wärmetauscher und Verwendung
WO2005089960A1 (de) * 2004-03-17 2005-09-29 Behr Gmbh & Co. Kg Beschichtungsverfahren
EP1802947A1 (de) * 2004-10-01 2007-07-04 BAE Systems PLC Radiator mit hoher emissivität
EP1925782A1 (de) * 2006-11-23 2008-05-28 Siemens Aktiengesellschaft Unbenetzbare Flächenbeschichtung von Nassdampfturbinenbauteilen

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1296517C (zh) * 2004-10-14 2007-01-24 北京工业大学 后续表面氟化处理的非晶碳薄膜疏水材料的制备方法
DE102005035673A1 (de) * 2005-07-29 2007-02-01 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Photokatalytisches Schichtsystem mit hohem Schalthub
US20070028588A1 (en) * 2005-08-03 2007-02-08 General Electric Company Heat transfer apparatus and systems including the apparatus
DE102005037549A1 (de) * 2005-08-09 2007-02-15 Robert Bosch Gmbh Beschichtung für mechanisch hochbelastete Bauteile
DK200600137A (da) * 2005-12-21 2007-06-22 Petersen Peder Vejsig Varmeveksler i tynde profilerede plader
JP4735309B2 (ja) * 2006-02-10 2011-07-27 トヨタ自動車株式会社 耐キャビテーションエロージョン用部材及びその製造方法
US7854754B2 (en) 2006-02-22 2010-12-21 Zeltiq Aesthetics, Inc. Cooling device for removing heat from subcutaneous lipid-rich cells
US20070270925A1 (en) * 2006-05-17 2007-11-22 Juniper Medical, Inc. Method and apparatus for non-invasively removing heat from subcutaneous lipid-rich cells including a coolant having a phase transition temperature
US20080077201A1 (en) 2006-09-26 2008-03-27 Juniper Medical, Inc. Cooling devices with flexible sensors
US8192474B2 (en) 2006-09-26 2012-06-05 Zeltiq Aesthetics, Inc. Tissue treatment methods
US9132031B2 (en) 2006-09-26 2015-09-15 Zeltiq Aesthetics, Inc. Cooling device having a plurality of controllable cooling elements to provide a predetermined cooling profile
CA2667964A1 (en) * 2006-10-31 2008-05-08 Zeltiq Aesthetics, Inc. Method and apparatus for cooling subcutaneous lipid-rich cells or tissue
US20080287839A1 (en) 2007-05-18 2008-11-20 Juniper Medical, Inc. Method of enhanced removal of heat from subcutaneous lipid-rich cells and treatment apparatus having an actuator
US8523927B2 (en) 2007-07-13 2013-09-03 Zeltiq Aesthetics, Inc. System for treating lipid-rich regions
US20090018627A1 (en) * 2007-07-13 2009-01-15 Juniper Medical, Inc. Secure systems for removing heat from lipid-rich regions
ES2693430T3 (es) 2007-08-21 2018-12-11 Zeltiq Aesthetics, Inc. Monitorización del enfriamiento de células subcutáneas ricas en lípidos, como el enfriamiento de tejido adiposo
GB0717921D0 (en) * 2007-09-14 2007-10-24 Teer Coatings Ltd Coatings to resist and protect against aquatic biofouling
WO2010036732A1 (en) 2008-09-25 2010-04-01 Zeltiq Aesthetics, Inc. Treatment planning systems and methods for body contouring applications
US8603073B2 (en) 2008-12-17 2013-12-10 Zeltiq Aesthetics, Inc. Systems and methods with interrupt/resume capabilities for treating subcutaneous lipid-rich cells
KR101701137B1 (ko) 2009-04-30 2017-02-01 젤티크 애스세틱스, 인코포레이티드. 피하 지질 과다 세포로부터 열을 제거하는 디바이스, 시스템 및 방법
WO2011091431A1 (en) 2010-01-25 2011-07-28 Zeltiq Aesthetics, Inc. Home-use applicators for non-invasively removing heat from subcutaneous lipid-rich cells via phase change coolants, and associated devices, systems and methods
US8676338B2 (en) 2010-07-20 2014-03-18 Zeltiq Aesthetics, Inc. Combined modality treatment systems, methods and apparatus for body contouring applications
WO2012103242A1 (en) 2011-01-25 2012-08-02 Zeltiq Aesthetics, Inc. Devices, application systems and methods with localized heat flux zones for removing heat from subcutaneous lipid-rich cells
RU2014126369A (ru) * 2011-11-28 2016-01-27 Альфа Лаваль Корпорейт Аб Спиральный теплообменник с противообрастающими свойствами
US9545523B2 (en) 2013-03-14 2017-01-17 Zeltiq Aesthetics, Inc. Multi-modality treatment systems, methods and apparatus for altering subcutaneous lipid-rich tissue
US9844460B2 (en) 2013-03-14 2017-12-19 Zeltiq Aesthetics, Inc. Treatment systems with fluid mixing systems and fluid-cooled applicators and methods of using the same
US9534476B2 (en) 2013-11-26 2017-01-03 Baker Hughes Incorporated Scale-inhibiting coating
US9809712B2 (en) * 2013-11-26 2017-11-07 Baker Hughes, A Ge Company, Llc Hydrophobic and oleophobic coatings
WO2015117001A1 (en) 2014-01-31 2015-08-06 Zeltiq Aesthetics, Inc. Compositions, treatment systems and methods for improved cooling of lipid-rich tissue
US10675176B1 (en) 2014-03-19 2020-06-09 Zeltiq Aesthetics, Inc. Treatment systems, devices, and methods for cooling targeted tissue
USD777338S1 (en) 2014-03-20 2017-01-24 Zeltiq Aesthetics, Inc. Cryotherapy applicator for cooling tissue
US10952891B1 (en) 2014-05-13 2021-03-23 Zeltiq Aesthetics, Inc. Treatment systems with adjustable gap applicators and methods for cooling tissue
US10568759B2 (en) 2014-08-19 2020-02-25 Zeltiq Aesthetics, Inc. Treatment systems, small volume applicators, and methods for treating submental tissue
US10935174B2 (en) 2014-08-19 2021-03-02 Zeltiq Aesthetics, Inc. Stress relief couplings for cryotherapy apparatuses
US11154418B2 (en) 2015-10-19 2021-10-26 Zeltiq Aesthetics, Inc. Vascular treatment systems, cooling devices, and methods for cooling vascular structures
EP3399950A1 (de) 2016-01-07 2018-11-14 Zeltiq Aesthetics, Inc. Temperaturabhängige haftung zwischen applikator und haut während der kühlung von gewebe
US10765552B2 (en) 2016-02-18 2020-09-08 Zeltiq Aesthetics, Inc. Cooling cup applicators with contoured heads and liner assemblies
US10682297B2 (en) 2016-05-10 2020-06-16 Zeltiq Aesthetics, Inc. Liposomes, emulsions, and methods for cryotherapy
US10555831B2 (en) 2016-05-10 2020-02-11 Zeltiq Aesthetics, Inc. Hydrogel substances and methods of cryotherapy
US11382790B2 (en) 2016-05-10 2022-07-12 Zeltiq Aesthetics, Inc. Skin freezing systems for treating acne and skin conditions
CN109791023A (zh) * 2016-08-05 2019-05-21 仁诺特斯实验室有限责任公司 壳管式冷凝器和壳管式冷凝器的换热管
US11076879B2 (en) 2017-04-26 2021-08-03 Zeltiq Aesthetics, Inc. Shallow surface cryotherapy applicators and related technology
DE102018102416A1 (de) * 2017-10-23 2019-04-25 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung einer kohlenstoffhaltigen Beschichtung zum Schutz eines passiven elektrischen Bauteils vor Angriff durch Ammoniak und Anlage, umfassend ein passives elektrisches Bauteil, das gegen Angriff von Ammoniak geschützt ist
EP3829496A1 (de) 2018-07-31 2021-06-09 Zeltiq Aesthetics, Inc. Verfahren, vorrichtungen und systeme zur verbesserung der hauteigenschaften
WO2022253859A1 (en) * 2021-06-04 2022-12-08 Nanofilm Technologies International Limited Anti-static coating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154993A (ja) * 1988-12-05 1990-06-14 Matsushita Refrig Co Ltd 熱交換器用フィン材
JPH0344485A (ja) * 1989-07-12 1991-02-26 Matsushita Refrig Co Ltd 熱交換器用フィン材
JPH08337874A (ja) * 1995-06-13 1996-12-24 Matsushita Electric Ind Co Ltd 基材表面被覆層及びその形成方法並びに熱交換器用フィン及びその製造方法。
WO1996041901A1 (de) * 1995-06-12 1996-12-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung von plasmapolymer-schichten in stofftransport- oder wärmetauschersystemen
DE10026477A1 (de) * 2000-05-27 2001-11-29 Abb Patent Gmbh Schutzüberzug für metallische Bauelemente

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3899366A (en) * 1973-10-31 1975-08-12 Allied Chem Treated substrate for the formation of drop-wise condensates and the process for preparing same
DE3316693A1 (de) * 1983-05-06 1984-11-08 Leybold-Heraeus GmbH, 5000 Köln Verfahren zum herstellen von amorphen kohlenstoffschichten auf substraten und durch das verfahren beschichtete substrate
JPS6086192A (ja) * 1983-10-19 1985-05-15 Yoshiro Nakamura 伝熱促進剤およびその使用方法
DE3706340A1 (de) * 1987-02-27 1988-09-08 Winter & Sohn Ernst Verfahren zum auftragen einer verschleissschutzschicht und danach hergestelltes erzeugnis
JP2603257B2 (ja) 1987-06-05 1997-04-23 株式会社神戸製鋼所 ダイヤモンド多層薄膜
JPH0353070A (ja) 1989-07-20 1991-03-07 Mitsubishi Materials Corp 耐摩耗性のすぐれた表面被覆工具部材
CA2044543C (en) * 1990-08-10 1999-12-14 Louis Kimball Bigelow Multi-layer superhard film structure
EP0596619A1 (de) * 1992-11-03 1994-05-11 Crystallume Diamantbeschichteter Gegenstand mit integriertem Verschleissanzeiger
US5645900A (en) * 1993-04-22 1997-07-08 The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration Diamond composite films for protective coatings on metals and method of formation
EP0625588B1 (de) * 1993-05-21 2001-10-24 Fraunhofer-Gesellschaft Zur Förderung Der Angewandten Forschung E.V. Plasmapolymer-Schichtenfolge als Hartstoffschicht mit definiert einstellbarem Adhäsionsverhalten
FR2726579A1 (fr) * 1994-11-07 1996-05-10 Neuville Stephane Procede de depot d'un revetement protecteur de type pseudo carbonne diamant amorphe
DE4445427C2 (de) * 1994-12-20 1997-04-30 Schott Glaswerke Plasma-CVD-Verfahren zur Herstellung einer Gradientenschicht
DE19502568C1 (de) * 1995-01-27 1996-07-25 Fraunhofer Ges Forschung Harte, amorphe, wasserstofffreie C-Schichten und Verfahren zu ihrer Herstellung
DE19523208A1 (de) * 1995-06-27 1997-01-02 Behr Gmbh & Co Wärmeübertrager, insbesondere Verdampfer für eine Kraftfahrzeug-Klimaanlage
JP3675577B2 (ja) * 1995-07-05 2005-07-27 日本特殊陶業株式会社 ダイヤモンド被覆物品の製造方法
DE19625329A1 (de) * 1996-06-25 1998-01-08 Karlsruhe Forschzent Stoffverbund und Verfahren zu dessen Herstellung
DE19644692A1 (de) 1996-10-28 1998-04-30 Abb Patent Gmbh Beschichtung sowie ein Verfahren zu deren Herstellung
US6150719A (en) * 1997-07-28 2000-11-21 General Electric Company Amorphous hydrogenated carbon hermetic structure and fabrication method
DE19808180A1 (de) * 1998-02-26 1999-09-09 Bosch Gmbh Robert Kombinierte Verschleißschutzschicht, Verfahren zur Erzeugung derselben, die damit beschichteten Objekte und deren Verwendung
GB9910841D0 (en) * 1999-05-10 1999-07-07 Univ Nanyang Heat transfer surface
AU4566400A (en) * 1999-06-08 2000-12-28 N.V. Bekaert S.A. A doped diamond-like carbon coating
DE19955971A1 (de) * 1999-06-18 2001-01-25 Christa Schoenefeld Verfahren zur dynamisch-chemischen Herstellung von diamantartigen Kohlenstoffstrukturen, diamantartige Kohlenstoffstrukturen und Verwendungen von diamantartigen Kohlenstoffstrukturen
EP1186749A1 (de) 2000-09-07 2002-03-13 Siemens Aktiengesellschaft Strömungsmaschine sowie Turbinenschaufel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154993A (ja) * 1988-12-05 1990-06-14 Matsushita Refrig Co Ltd 熱交換器用フィン材
JPH0344485A (ja) * 1989-07-12 1991-02-26 Matsushita Refrig Co Ltd 熱交換器用フィン材
WO1996041901A1 (de) * 1995-06-12 1996-12-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Verwendung von plasmapolymer-schichten in stofftransport- oder wärmetauschersystemen
JPH08337874A (ja) * 1995-06-13 1996-12-24 Matsushita Electric Ind Co Ltd 基材表面被覆層及びその形成方法並びに熱交換器用フィン及びその製造方法。
DE10026477A1 (de) * 2000-05-27 2001-11-29 Abb Patent Gmbh Schutzüberzug für metallische Bauelemente

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 014, no. 404 (M - 1018) 31 August 1990 (1990-08-31) *
PATENT ABSTRACTS OF JAPAN vol. 015, no. 181 (C - 0830) 9 May 1991 (1991-05-09) *
PATENT ABSTRACTS OF JAPAN vol. 1997, no. 04 30 April 1997 (1997-04-30) *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003044374A1 (de) * 2001-11-19 2003-05-30 Alstom Technology Ltd Verdichter für gasturbinen
US7083389B2 (en) 2001-11-19 2006-08-01 Alstom Technology Ltd. Compressor for gas turbines
EP1562018A1 (de) * 2004-02-03 2005-08-10 Siemens Aktiengesellschaft Wärmetauscherrohr, Wärmetauscher und Verwendung
WO2005075926A1 (de) * 2004-02-03 2005-08-18 Siemens Aktiengesellschaft Wärmetauscherrohr, wärmetauscher und verwendung
CN100516762C (zh) * 2004-02-03 2009-07-22 西门子公司 热交换管、热交换器和涂层材料在热交换管上的应用
US7640969B2 (en) 2004-02-03 2010-01-05 Siemens Aktiengesellschaft Heat exchanger tube, heat exchanger and use
US8240364B2 (en) 2004-02-03 2012-08-14 Siemens Aktiengesellschaft Heat exchanger tube, heat exchanger and use
WO2005089960A1 (de) * 2004-03-17 2005-09-29 Behr Gmbh & Co. Kg Beschichtungsverfahren
EP1802947A1 (de) * 2004-10-01 2007-07-04 BAE Systems PLC Radiator mit hoher emissivität
US7812327B2 (en) 2004-10-01 2010-10-12 Bae Systems Plc High-emissivity radiator
EP1925782A1 (de) * 2006-11-23 2008-05-28 Siemens Aktiengesellschaft Unbenetzbare Flächenbeschichtung von Nassdampfturbinenbauteilen
WO2008062051A1 (en) * 2006-11-23 2008-05-29 Siemens Aktiengesellschaft Non wetable surface coating of steam turbine parts which work in wet steam

Also Published As

Publication number Publication date
DE50110964D1 (de) 2006-10-19
CN1320160C (zh) 2007-06-06
JP3984542B2 (ja) 2007-10-03
KR100622886B1 (ko) 2006-09-18
EP1344013B1 (de) 2006-09-06
CA2428650C (en) 2010-09-14
KR20030059247A (ko) 2003-07-07
CN1474929A (zh) 2004-02-11
DE10056242A1 (de) 2002-05-23
US20040069466A1 (en) 2004-04-15
EP1344013A1 (de) 2003-09-17
AU2002212597A1 (en) 2002-05-27
US6942022B2 (en) 2005-09-13
JP2004514110A (ja) 2004-05-13
CA2428650A1 (en) 2002-05-23

Similar Documents

Publication Publication Date Title
EP1344013B1 (de) Kondensationswärmeüberträger
DE10056241B4 (de) Niederdruckdampfturbine
DE69815014T2 (de) Kolbenring
DE102005057277B4 (de) Absorberrohr
DE19521344C2 (de) Verwendung von Plasmapolymer-Hartstoff-Schichtenfolgen als Funktionsschichten in Stofftransport - oder Wärmetauschersystemen
DE10192241B4 (de) Schutzüberzug für metallische Bauelemente
EP3320127B1 (de) Konturtreue schutzschicht für verdichterbauteile von gasturbinen
DE69924341T2 (de) Verschleissfestes beschichtetes Teil
EP1458981A1 (de) Verdichter für gasturbinen
CH663455A5 (de) Rohr mit einer innenbeschichtung.
EP1690058B1 (de) Wärmetauscher
WO2005075926A1 (de) Wärmetauscherrohr, wärmetauscher und verwendung
EP0951580B1 (de) Verfahren zur Herstellung einer Beschichtung
DE102007050141A1 (de) Verschleißschutzbeschichtung
DE69724662T2 (de) Komponente zur verwendung in einem leichtwasserreaktor,ein verfahren zur herstellung einer schicht und verwendung der komponente
EP3728695A1 (de) Korrosions- und erosionsbeständige beschichtung für turbinenschaufeln von gasturbinen
DE19744080C2 (de) Verfahren zur gezielten Einstellung von Tropfenkondensation auf ionenimplantierten Metalloberflächen
DE102008014272A1 (de) Beschichtung für ein Wärmeübertragungselement, Wärmeübertragungselement, Wärmeübertragungsvorrichtung und Verfahren zur Herstellung einer Beschichtung
DE19581642C2 (de) Kalt- und Heißwasserzuführungs-Kupferlegierungsrohr mit einem Schutzfilm auf der inneren Oberfläche, Verfahren zu seiner Herstellung sowie ein Heißwasserzuführungs-Wärmeaustauscher
DE2129164A1 (de) Erosionsfeste Nickel Titan Legierungen
DE69106494T2 (de) Beschichtung und beschichtungsverfahren für dampfturbinen und benachbarte stahloberflächen.
DE10119348A1 (de) Verfahren zum Herstellen eines Heizkörpers und Heizkörper
EP0864667B1 (de) Verfahren zur Herstellung eines korrosionsbeständigen Rohres

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PH PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2001980811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2428650

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 1020037006477

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2002542817

Country of ref document: JP

Ref document number: 018188710

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037006477

Country of ref document: KR

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2001980811

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 10416485

Country of ref document: US

WWG Wipo information: grant in national office

Ref document number: 2001980811

Country of ref document: EP