WO2002023504A1 - Überwachung und führung des verkehrsflusses in strassentunneln, auf brücken und anderen beengten strecken. - Google Patents

Überwachung und führung des verkehrsflusses in strassentunneln, auf brücken und anderen beengten strecken. Download PDF

Info

Publication number
WO2002023504A1
WO2002023504A1 PCT/CH2001/000544 CH0100544W WO0223504A1 WO 2002023504 A1 WO2002023504 A1 WO 2002023504A1 CH 0100544 W CH0100544 W CH 0100544W WO 0223504 A1 WO0223504 A1 WO 0223504A1
Authority
WO
WIPO (PCT)
Prior art keywords
monitoring
vehicle
guidance system
speed
wim
Prior art date
Application number
PCT/CH2001/000544
Other languages
English (en)
French (fr)
Inventor
Hans Conrad Sonderegger
Original Assignee
K.K. Holding Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by K.K. Holding Ag filed Critical K.K. Holding Ag
Priority to AU2001283754A priority Critical patent/AU2001283754A1/en
Publication of WO2002023504A1 publication Critical patent/WO2002023504A1/de

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/22Platooning, i.e. convoy of communicating vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01GWEIGHING
    • G01G19/00Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups
    • G01G19/02Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles
    • G01G19/022Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing wheeled or rolling bodies in motion
    • G01G19/024Weighing apparatus or methods adapted for special purposes not provided for in the preceding groups for weighing wheeled or rolling bodies, e.g. vehicles for weighing wheeled or rolling bodies in motion using electrical weight-sensitive devices
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/02Detecting movement of traffic to be counted or controlled using treadles built into the road

Definitions

  • the desired goal of traffic planning is today in tunnels or other bottlenecks - such as e.g. Bridges to achieve the highest possible traffic flow speed with the greatest possible security in order to provide the necessary traffic performance.
  • the means to do this are completely inadequate, because after entering the tunnel, each driver is left to his own devices and has a very limited control area: in the best case, up to the vehicle in front, i.e. approx. 5 to 20m.
  • the invention provides a remedy with the features of claim 1.
  • the driving control area mentioned is substantially enlarged by suitably controlled display means and instructions to the vehicle driver, for example via speeds or vehicle distances to be maintained.
  • the larger this control area the faster you can drive.
  • the monitoring system according to the invention thus becomes the guidance system for faster travel and thus for larger and at the same time safer passage performance in the tunnel or another bottleneck.
  • Monitoring and guiding the vehicles It is advantageous to use a certain distance, for example about 2 km, in front of the tunnel so that the vehicles are guided into the tunnel as soon as they enter the tunnel.
  • the control system guides the driver through the tunnel in a computer-controlled manner, so that he drives continuously at the permissible maximum speed to which he is bound within limits.
  • This top speed is continuously adapted to the optimal driving situation of the overall tunnel and can be changed within seconds.
  • the driver is in the tunnel at short intervals along the entire route by means of boards or on his own information system about the guide means, e.g. the speed limits that he must comply with as precisely as possible.
  • the driver will follow the vehicle in front in the event of rush hour traffic, but will also follow the electronic guidance system, which will enable a significantly higher speed with greater driving safety because the automatic monitoring system has the entire tunnel section under constant control.
  • the basic concept of the monitoring system consists of a network of WIM sensors that are installed at intervals of e.g. 250m to 500m, laid in front of and within the entire tunnel section in the road surface and connected to a computer with the appropriate software.
  • each vehicle is recorded as a signature before and after entering the tunnel with an axle load code and tracked over the entire tunnel route, so that vehicle distances, driving speed and speed changes, axle loads, wheel loads, changes in wheel loads while driving, e.g. changes in load distributions during the journey and vehicle class can be recorded.
  • a vehicle convoy is under control at all times and, in the event of changes, the driving speed can be adapted immediately to the new situation along the entire tunnel route with the slightest delay. This means that instead of the previous rigid information to the driver, sequential and individual influencing is made possible, which has significant advantages brings.
  • the WIM sensors which enable the calculation of the traffic flow, video systems can be coupled at certain intervals, with which additional information can be incorporated into the monitoring and management program, in particular for the automatic registration of vehicle registration numbers.
  • FIG. 1 shows a cross section of a WIM sensor as an example.
  • Fig. 2 A WIM sensor Wx for a road.
  • Fig. 3 Two force-time signals of a WIM sensor after crossing a vehicle axis.
  • Fig. 4 The force-time signals of a 5-axle truck after crossing the WIM sensor.
  • Fig. 5 The total force signals of the two vehicle halves of a truck after crossing the WIM sensor.
  • Fig. 6 The force-time signals of a 5-axle truck in almost
  • FIG. 9 The axle load codes of different vehicles according to Fig. 8 after crossing the WIM sensor W3.
  • Fig. 10 The changed axle load codes of the same vehicle column after crossing the WIM sensor W7.
  • Fig. 11 The floor plan of an equipped according to the invention
  • FIG. 12 The cross section through a tunnel with a roadway and one of the placed at regular intervals
  • Fig. 13 The longitudinal section through a tunnel with a
  • Video station is equipped.
  • WIM Weight in Motion
  • LINEAS registered trademark of the applicant
  • Fig. 2 shows one of the many WIM sensors installed in the tunnel for a roadway consisting of two strip sensors 1 at a distance A (e.g. 4m), each sensor 1 covering approximately one half of the roadway, so that the left and right half of the vehicle are detected separately.
  • An axis for example the front axis of a truck Ll, is indicated on the left.
  • Both sensors 1 are connected to a central computer C via signal lines 5.
  • FIG. 3 shows the two force-time diagrams R and L for the right and left wheel of the front axle of the indicated truck L 1 shown in FIG. 2 after crossing over a WIM sensor Wx.
  • FIG. 4 shows a 5-axle truck (semitrailer) L2 after crossing over a WIM sensor Wx, which has recorded the time-shifted force-time signals of the left vehicle half L and the right vehicle half R shown separately.
  • the center of gravity S of the load with respect to the length and width of the vehicle can be determined by summing the L and R values, as a result of which impermissible wheel overloads which lead to the known formation of ruts can be determined.
  • FIG. 5 Such an asymmetry in the transverse direction is indicated in FIG. 5, in which the summed wheel loads of the right and left half of the vehicle are shown in KN (kilo-Newtons).
  • Fig. 6 shows a 5-axle truck L3, which is almost unloaded and thus only displaces space, but protects the road.
  • Fig. 7 shows a similar 5-axle truck L4 in normal loading condition. From the summed up L / R force-time signals of the single axes, it is easily possible to draw conclusions about the internal load distribution and thus about the center of gravity S. Overloaded axles and wheels can also be found in the event of incorrect loads in the direction of travel. However, it is also possible that loads can shift during travel, both in the transverse and longitudinal directions, which can lead to accidents. Such changes are recorded in the individual WIM sensors Wx and immediately evaluated by the monitoring computer C. With video stations V (FIG. 13) the corresponding vehicle registration number can be recorded and the driver can be informed.
  • a preselection station P is located at a sufficient distance in front of the tunnel entrance and branches off into a bypass street U.
  • This preselection station P consists of the WIM sensor Wl and a notice board Tl.
  • WIM sensors W2 ... Wx are located at certain intervals distributed the entire tunnel route and connected to the computer C via signal lines 5.
  • information panels T2 ... Tx are attached to each WIM sensor, on which information from computer C is available without delay over the entire tunnel route. As indicated in FIG. 12, instructions T for the respective driver are shown on the boards T for a narrow speed range to be observed.
  • Figure 9 shows a series of e.g. 8 of the vehicle flow from FIG. 8, ie 4 different vehicles F 1 and F 2 or L5 and L7 with different distances XI, X2, X3 and different speeds.
  • Fig. 10 shows the same vehicle column after passing a WIM sensor W6 later in the direction of travel, e.g. 200m according to FIG. 9.
  • the relative position of vehicle L6 has changed due to acceleration, so that the distance to vehicle L7 has become considerably smaller and dangerous. This triggers a warning signal that can be transmitted to the driver in various ways.
  • FIG. 11 shows a tunnel with two lanes, the second lane also being equipped with WIM sensors.
  • information panels Tl ... Tx are provided for each WIM sensor.
  • the second lane can be driven at higher average speeds than the first. Potentially faster vehicles can therefore - if the flow of traffic permits - switch to the faster lane (vehicle F3). Conversely, on this moving vehicle, which for some reason is slowing down, vehicles can re-enter the first lane (truck L8). To do this, the monitoring software for the system must be more complex. However, the bar codes B of every vehicle are immediately recognizable even after changing the lane and are tracked and checked as in previous lanes.
  • Fig. 12 shows a cross section through a WIM station of a one-way tunnel with the information panel Tx, which primarily the prescribed driving speed limits, e.g. 75 to 70 km / h as well as other instant information.
  • the prescribed driving speed limits e.g. 75 to 70 km / h as well as other instant information.
  • FIG. 13 shows a tunnel section in longitudinal section, on which a video camera V is shown, with which the vehicle number is read from a selected vehicle with a determined bar code B.
  • the swarm effect is made usable by notifying all at-risk drivers at the same time about the suddenly new danger, thereby preventing the known mass collisions.
  • the basic concept of the monitoring system is the highest possible, but safe driving speed over the entire length of the tunnel, which is continuously optimized by the computer and corrected step by step up or down. Every speed deceleration of a driver brings a reduction in the speed limits of e.g. 80/75 km / h to 75/70 km / h.
  • the main parameter speed and the distance to the preceding and following vehicle are tracked for each individual vehicle along the entire tunnel route. In the event of an incident, this process can be reconstructed at any time, similar to the data of a black box.
  • the invention thus enables a new safety concept for tunnels in which a fixed maximum speed is not prescribed as previously, but in which continuously optimized maximum speed limits are prescribed, which must be strictly observed and in which further current driving information is continuously visible along the entire tunnel route.
  • the data acquisition for such a monitoring and guidance system is based on WIM sensors installed in front of and in the tunnel lane, which record the signature of each vehicle according to axle loads and distances in bar code form and track it over the entire tunnel route.
  • the system can simultaneously transmit all computer information to the driver, for which different means can be used.
  • An advantage of the new fully automatic monitoring and guidance system is that it does not require any additional lighting and is neither visible nor perceptible to the driver. All necessary measurements are carried out completely invisibly on the road.
  • a new feature of the system according to the invention is the assignment of bar codes to each vehicle, which are tracked over the entire route by means of a line of WIM stations. All important driving clates are continuously linked with these codes. It is irrelevant whether the computer information is sent directly to the driver using display boards or transponders. The decisive factor is the data acquisition and its processing.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

Die Erfindung stellt ein neues Überwachungs- und Führungssystem für Verkehrsströme in Tunneln und anderen beengten und unübersichtlichen Durchgängen vor, das auf Basis von Abstands- und Geschwindigkeitsmessungen eines Stranges von WIM-Sensoren (W), die in regelmässigen Abständen in die Fahrbahn verlegt sind, den gesamten Verkehrsstrom mit Zentralrechner (c) verfolgt. Jedes Fahrzeug wird mit einem Bar-Code (B), bestehend aus den Achsgewichten und Achsabständen versehen, und über die ganze Fahrstrecke überwacht. Gleichzeitig bedient der Rechner (C) ein Übermittlungssystem, z.B. Hinweistafeln (T), bei jedem WIM-Sensor (W) oder Direktübertragung, welche u.a. die optimalen oberen Geschwindigkeitsgrenzen festhalten, die genau eingehalten werden müssen. Diese Grenzwerte werden vom Rechner (C) laufend optimert, nach oben oder unten. Durch die gleichzeitige Information aller Fahrer wird der Kontrollbereich des Einzelfahrers nicht nur bis zum nächsten Fahrzeug, sondern auf die ganze Fahrbahn eirweitert, sodass aucch bei Stossbetrieb optimale Abstände und höhere Fahrgeschwindigkeit möglich werden. Die Kosten für ein solches Leitsystem werden auf weniger als 1% der Tunnelkosten geschätzt.

Description

Überwachung und Führung des Verkehrsflusses in Strassentunneln, auf Brücken und anderen beengten Strecken.
In Strassentunneln sind in den letzten Jahren schwere Unfälle passiert, die mit entsprechenden Verkehrsüberwachungsanlagen hätten verhindert werden können. Der Hauptgrund der Unfälle liegt oft in unvorsichtiger Fahrweise. Dadurch entstehen Auffahrten infolge Fahrens in zu kurzen Abständen. Ist eine Auffahrkollision entstanden, weisen die nachfolgenden Fahrzeuge meist nicht genügend Abstand auf, um rechtzeitig anzuhalten, sodass eine Massenkarambolage die Folge ist.
In seltenen Fällen sind Unfälle durch plötzlich auftretende Fahrzeugschäden entstanden. Ältere und schlecht gewartete Fahrzeuge sollten Tunnel nur in verkehrsarmen Zwischenzeiten passieren dürfen. Es müsste somit eine Möglichkeit'geschaffen werden, diese auszuscheiden.
Angestrebtes Ziel der Verkehrsplanung ist es, heute in — in Stoss- zeiten hochbelasteten — Tunneln oder anderen Engpässen, wie z.B. Brücken, eine möglichst hohe Verkehrsflussgeschwindigkeit bei gleichzeitig möglichst grosser Sicherheit zu erreichen, um die notwendige Verkehrsleistung zu erbringen. Die Mittel dazu sind heute jedoch völlig unzureichend, weil nach Tunneleintritt jeder Fahrzeugführer sich selbst überlassen ist und einen sehr beschränkten Kontrollbereich vor sich hat: Im besten Fall bis zum Vorfahrzeug, also ca. 5 bis 20m. Hier schafft die Erfindung mit den Merkmalen von Anspruch 1 Abhilfe.
Durch die erfindungsgemässe Überwachungsanlage wird der genannte Fahrkontrollbereich durch geeignet gesteuerte Anzeigemittel und Anweisungen an die Fahrzeugführer, beispielsweise über einzuhaltende Geschwindigkeiten oder Fahrzeugabstände, wesentlich vergrös- sert. Je grösser dieser Kontrollbereich ist, desto schneller kann gefahren werden. Die erfindungsgemässe Überwachungsanlage wird damit zur Führungsanlage für schnellere Fahrt und damit für grössere und gleichzeitig sicherere Durchfahrtleistungen im Tunnel oder einem anderen Engpass. Die Überwachung und Führung der Fahrzeuge setzt mit Vorteil schon eine gewisse Strecke, beispielsweise etwa 2 km, vor dem Tunnel ein, damit die Fahrzeuge bereits bei Einfahrt in den Tunnel geführt werden.
Statt mit Selbstkontrolle durch den Tunnel zu fahren, wird der Fahrer durch ein Leitsystem computergesteuert durch den Tunnel geführt, sodass er dauernd mit der zulässig errechneten Höchstgeschwindigkeit fährt, an die er innert Grenzen gebunden ist. Diese Höchstgeschwindigkeit wird laufend an die optimale Fahrsituation des Gesamttunnels angepasst und kann innert Sekunden verändert werden. Der Fahrer ist auf der ganzen Strecke mittels Tafeln in kurzen Abständen im Tunnel oder auf seinem eigenen Informationssystem über die Führungsmittel, z.B. die Geschwindigkeitsgrenzen, die er möglichst genau einhalten muss, orientiert. Nach wie vor wird der Fahrer bei Stossverkehr dem Vorderfahrzeug folgen, zusätzlich aber das elektronische Führungsmittel befolgen, wodurch eine wesentlich höhere Geschwindigkeit bei höherer Fahrsicherheit möglich wird, weil das automatische Uberwachungssystem die gesamte Tunnelstrecke dauernd unter Kontrolle hat.
Das Grundkonzept der Überwachungsanlage besteht aus einem Netz von WIM-Sensoren, die in Abständen, von z.B. 250m bis- 500m, vor und innerhalb der ganzen Tunnelstrecke in die Fahrbahnoberfläche verlegt und mit einem Rechner mit entsprechender Software verbunden sind.
Mit diesen WIM-Sensoren wird jedes Fahrzeug vor und nach Tunneleintritt mit einem Achslastcode als Signatur erfasst und über die ganze Tunnelstrecke verfolgt, sodass dauernd Fahrzeugabstände, Fahrgeschwindigkeit und Geschwindigkeitsänderungen, Achslasten, Radlasten, Änderungen der Radlasten während der Fahrt, also z.B. Änderungen von Lastverteilungen während der Fahrt sowie Fahrzeugklasse erfasst werden können. Kurz, ein Fahrzeugkonvoi ist jederzeit unter Kontrolle und bei Veränderungen kann die Fahrgeschwindigkeit sofort auf der ganzen Tunnelstrecke mit geringstem Verzug der neuen Situation angepasst werden. D.h. anstelle der bisherigen starren Information an die Fahrer wird eine sequentielle und individuelle Beeinflussung ermöglicht, was wesentliche Vorteile er- bringt. Mit den WIM-Sensoren, welche die Berechnungsbasis des Verkehrsflusses ermöglichen, können in gewissen Abständen auch Videosysteme gekoppelt werden, womit zusätzliche Informationen in das Uberwachungs- und Führungsprogramm eingebaut werden können, insbesondere zur automatischen Registrierung von Fahrzeugkennzeichen.
Die Erfindung soll nun anhand von Beispielen näher erläutert werden. Diese sollen an 13 Figuren erklärt werden. Es zeigen: Fig. 1 Einen WIM-Sensor als Beispiel im Querschnitt dargestellt . Fig. 2 Einen WIM-Sensor Wx für eine Fahrbahn. Fig. 3 Zwei Kraft-Zeit Signale eines WIM-Sensors nach Überfahrt einer Fahrzeugachse . Fig. 4 Die Kraft-Zeit Signale eines 5-Achs Lkw nach Überfahrt des WIM-Sensors . Fig. 5 Die aufsummierten Kraftsignale der beiden Fahrzeughälften eines Lkw nach Überfahrt des WIM-Sensors. Fig. 6 Die Kraft-Zeit Signale eines 5-Achs Lkw in nahezu
Leerfahrt . Fig. 7 Die Kraft-Zeit Signale eines ähnlichen 5-Achs Lkw mit
Normallast und Schwerpunkt-Ermittlung. Fig. 8 Die Grundrissskizze eines erfindungsgemäss ausgerüsteten
Tunnels mit einer Fahrbahn. Fig. 9 Die Achslast-Codes verschiedener Fahrzeuge nach Fig. 8 nach Überfahrt des WIM-Sensors W3. Fig. 10 Die veränderten Achslast-Codes derselben Fahrzeugkolonne nach Überfahrt des WIM-Sensors W7. Fig. 11 Die Grundrissskizze eines erfindungsgemäss ausgerüsteten
Tunnels mit zwei Fahrbahnen. Fig. 12 Den Querschnitt durch einen Tunnel mit einer Fahrbahn und einer der in regelmässigen Abständen angebrachten
Informationsta eln. Fig. 13 Den Längsschnitt durch einen Tunnel, der mit einer
Videostation ausgerüstet ist.
Im folgenden sollen die Figuren näher erläutert werden:
In Fig. 1 ist ein handelsüblicher WIM (Weight in Motion) Sensor 1 im Querschnitt gezeigt, der als sogenannter Stripsensor in einer Nut 2 der Tiefe T (z.B. 50mm) und Breite B (z.B. 70mm) in die Fahrbahn-Oberfläche 3 so eingegossen ist, dass seine Berührungsfläche mit den Pneus 4 der Fahrzeuge plan und bündig ist. Es sind eine Reihe verschiedener Produkte auf dem Markt. Höchste Genauig- keits- und Repetierbarkeitswerte werden mit piezoelektrischen Quarzkristall WIM-Sensoren LINEAS (eingetragenes Wz der Anmelderin) erreicht, wie sie beispielsweise in EP 0491655B1 und EP 0654654B1 beschrieben sind.
Fig. 2 zeigt eine der vielen im Tunnel verlegten WIM-Sensoren für eine Fahrbahn bestehend aus zwei Strip Sensoren 1 im Abstand A (z.B. 4m) angeordnet, wobei jeder Sensor 1 etwa eine Fahrbahnhälfte überdeckt, sodass die linke und rechte Fahrzeughälfte separat erfasst werden. Links ist eine Achse, beispielsweise die Frontachse eines Lkw Ll angedeutet. Mit den beiden Sensoren 1 kann die genaue Fahrgeschwindigkeit mit jedem WIM-Sensor Wx gemessen werden, ebenso der Mittelwert der Rad- bzw. Achslasten. Beide Sensoren 1 sind über Signalleitungen 5 mit einem Zentralrechner C verbunden.
Fig. 3 zeigt die beiden Kraft-Zeit Diagramme R und L für das rechte und das linke Rad der in Fig. 2 gezeigten Frontachse des angedeuteten Lkw Ll nach Überfahrt über einen WIM-Sensor Wx.
Fig. 4 zeigt einen 5-achsigen Lkw (Sattelschlepper) L2 nach Überfahrt über einen WIM-Sensor Wx, welcher die gezeigten, zeitversetzten Kraft-Zeitsignale der linken Fahrzeughälfte L und der rechten Fahrzeughälfte R separat aufgezeichnet hat. Durch Sum a- tion der L- und R-Werte kann die Schwerpunktlage S der Last bezüglich Länge und Breite des Fahrzeugs bestimmt werden, wodurch unzulässige Radüberlasten, die zur bekannten Spurrillenbildung führen, festgestellt werden können. Eine solche Asymmetrie in Querrichtung ist in Fig. 5 angedeutet, in der die summierten Radlasten der rechten und der linken Fahrzeughälfte in KN (Kilo-Newton) dargestellt sind.
Fig. 6 zeigt einen 5-Achs Lkw L3 , der nahezu unbeladen ist und damit nur Platz verdrängt, aber die Fahrbahn schont. Fig. 7 zeigt einen ähnlichen 5-Achs Lkw L4 in Normalladezustand. Aus den aufsummierten L/R Kraft-Zeitsignalen der Einzelachsen ist es einfach möglich, auf die interne Ladeverteilung und damit auf den Schwerpunkt S zu schliessen. Auch bei Fehlladungen in der Fahrrichtung können überlastete Achsen und Räder festgestellt werden. Es ist aber auch möglich, dass sich Lasten während der Fahrt verschieben können, sowohl in Quer- als auch Längsrichtung, was zu Unfällen führen kann. Solche Veränderungen werden in den einzelnen WIM-Sensoren Wx festgehalten und vom Überwachungs- Rechner C sofort ausgewertet. Mit Videostationen V (Fig. 13) kann das entsprechende Fahrzeugkennzeichen festgehalten und der Fahrer informiert werden.
Fig. 8 zeigt eine Fahrbahn im Grundriss, ausgerüstet mit der er- findungsgemässen Uberwachungs- und Führungs-Vorrichtung. In genügender Distanz vor dem Tunneleingang befindet sich eine Vorselektionsstation P mit Abzweigung in eine Umfahrungsstrasse U. Diese Vorselektionsstation P besteht aus dem WIM-Sensor Wl und einer Hinweistafel Tl. Im Tunnel selbst sind in bestimmten Abständen WIM-Sensoren W2....Wx über die gesamte Tunnelstrecke verteilt und über Signalleitungen 5 mit dem Rechner C verbunden.
Weiterhin sind bei jedem WIM-Sensor Informationstafeln T2....Tx angebracht, auf welchen Informationen des Rechners C ohne Verzögerung auf der gesamten Tunnelstrecke verfügbar sind. Wie in Fig. 12 angedeutet sind auf den Tafeln T beispielsweise für den jeweiligen Fahrer Anweisungen für einen engen einzuhaltenden Geschwindigkeitsbereich angezeigt .
Je dichter die WIM-Sensoren angelegt sind, desto grösser ist die Sicherheitswirkung .
Optimal ist eine Distanz Dl*=Dx= 100m
Rational ist eine Distanz Dl*=Dx= 500m
Minimal ist eine Distanz Dl=Dx= 1000m.
Selbstverständlich ist die Wahl der Distanz D auch eine ökonomische Frage. Erste Kostenberechnungen haben jedoch ergeben, dass eine optimale Uberwachungs-Ausrüstung weniger als 1% der Tunnelkosten betragen wird.
Fig. 9 zeigt eine Reihe der z.B. von der WIM Station W3 aufgenommenen Bar-Codes B des Fahrzeugflusses von Fig. 8, also 4 verschiedene Fahrzeuge F 1 und F 2 bzw. L5 und L7 mit verschiedenen Abständen XI , X2 , X3 und verschiedenen Geschwindigkei en.
Fig. 10 zeigt dieselbe Fahrzeugkolonne nach Passieren eines in Fahrtrichtung späteren WIM-Sensors W6, also z.B. 200m nach Fig. 9. Dabei hat sich die relative Lage von Fahrzeug L6 durch Beschleunigung verändert, sodass der Abstand zu Fahrzeug L7 wesentlich kleiner und gefährlich geworden ist. Dies löst ein Warnsignal aus, das auf verschiedene Weise an die Fahrer übertragen werden kann.
Fig. 11 zeigt einen Tunnel mit zwei Fahrspuren, wobei die zweite Spur ebenfalls mit WIM-Sensoren ausgerüstet ist. Auch hier sind pro WIM-Sensoren Informationstafeln Tl...Tx vorgesehen. Auf der zweiten Spur kann beispielsweise mit höheren Durchschnittsgeschwindigkeiten gefahren werden als auf der ersten. Potentiell schnellere Fahrzeuge können daher — falls der Verkehrsfluss es zu- lässt — auf die schnellere Spur wechseln (Fahrzeug F3 ) . Umgekehrt können sich auf dieser fahrende, aus irgend einem Grund langsamer werdende, Fahrzeuge wieder in die erste Spur einreihen (Lkw L8) . Dafür πiuss die Überwachungssoftware für die Anlage zwar komplexer sein. Die Bar-Codes B eines jeden Fahrzeugs sind jedoch auch nach Wechsel der Fahrspur sofort erkenntlich und werden wie auf vorherigen Fahrspuren weiter verfolgt und kontrolliert.
Fig. 12 zeigt einen Querschnitt durch eine WIM Station eines Einbahntunnels mit der Informationstafel Tx, die in erster Linie die vorgeschriebene Fahrgeschwindigkeits-Grenzen, z.B. 75 bis 70 km/h sowie auch andere Sofort-Informationen abbilden kann.
Fig 13 zeigt einen Tunnelabschnitt im Längsschnitt, auf dem eine Videokamera V abgebildet ist, mit welcher von einem selektierten Fahrzeug mit bestimmtem Bar-Code B die Fahrzeugnummer abgelesen wird. Mit diesen Sensor- und Anzeigemitteln kann die erfindungsgemässe Überwachung- und Führung des Verkehrsflusses in Tunnels und anderen Verkehrbeschränkungen auf neue Art optimiert und gesichert werden, womit gleichzeitig eine um 20% bis 30% höhere Durchschnitts-Fahrgeschwindigkeit möglich wird, bei wesentlich erhöhter Si herheit. Ein möglicher Unfall durch Auffahren kann schon im Entstehen erkannt werden.
Statt einer Kettenreaktion mit Dominoeffekt wird der Schwarmeffekt nutzbar gemacht, indem alle gefährdeten, Fahrer gleichzeitig über die plötzlich neue Gefahr orientiert werden, wodurch die bekannten Massenkarambolagen verhindert werden.
Grundkonzept des UberwachungsSystems ist eine möglichst hohe, jedoch sichere Fahrgeschwindigkeit über die gesamte Tunnellänge, die laufend vom Rechner optimiert und schrittweise nach oben oder unten korrigiert wird. Jede Geschwindigkeits-Verzögerung eines Fahrers bringt eine Reduktion der Geschwindigkeitsgrenzen von z.B. 80/75 km/h auf 75/70 km/h.
Fahrer, die sich nicht an die vorgegebenen Grenzen halten, werden am Tunnelende automatisch notiert und entsprechend gebüsst. Alle Einflüsse, welche die konstante Fahrgeschwindigkeit verändern, wie Motorschäden,_ neuschäden, Fahrerprobleme, etc. werden sofort erfasst und analysiert, da jedes Fahrzeug auf der gesamten Strecke geführt und unter Kontrolle bleibt.
Die Hauptparameter-Geschwindigkeit und der Abstand zum Vor- und Folgefahrzeug wird für jedes Einzelfahrzeug auf der ganzen Tunnelstrecke verfolgt. Dieser Vorgang kann im Falle eines Falles jederzeit rekonstruiert werden, ähnlich den Daten eines Flugschreibers.
Die Erfindung ermöglicht somit ein neues Sicherheitskonzept für Tunnel, in denen nicht wie bis anhin eine feste Maximalgeschwindigkeit vorgeschrieben wird, sondern in denen dauernd optimierte Maximalgeschwindigkeitsgrenzen vorgeschrieben werden, die strikte einzuhalten und in denen weitere aktuelle Fahrinformationen auf der ganzen Tunnelstrecke laufend sichtbar sind. Die Datenerfassung für ein solches Uberwachungs- und Führungssystem basiert auf vor und in der Tunnelfahrbahn verlegten WIM- Sensoren, welche die Signatur jedes Fahrzeugs nach Achslasten und Abständen in Bar-Codeform erfassen und über die ganze Tunnelstrecke verfolgen. Das System kann gleichzeitig alle Rechner-Informationen an die Fahrer übermitteln, wozu verschiedene Mittel einsetzbar sind. Ein Vorteil des neuen vollautomatischen Uberwachungs- und Führungssystems ist, dass es keine störende Zusatzbeleuchtung benötigt und vom Fahrer weder sichbar noch spürbar ist. Alle notwendigen Messungen werden in der Fahrbahn völlig unsichtbar durchgeführt.
Neu am erfindungsgemässen System ist die Zuordnung von Bar-Codes zu jedem Fahrzeug, die mittels eines Stranges von WIM Stationen über die ganze Fahrstrecke verfolgt werden. Alle wichtigen Fahr- claten sind kontinuierlich mit diesen Codes verbunden. Ob die Rechner-Informationen mittels Anzeigetafeln oder mittels Transpon- dern direkt dem Fahrer zugeleitet werden, ist unerheblich. Massge- bend ist die Datenerfassung und deren Verarbeitung.
Einzelne WIM-Sensoren mit entsprechenden hochpräzisen Strip- Sensoren der erwähnten Art sind seit Jahren in Tunneln, Express- strassen und vor Brücken im Einsatz. Der Einsatz ganzer Stränge solcher Stationen sowie die Umwandlung in Bar-Codes zur Kennzeichnung der Fahrzeuge ist neu und eröffnet das erfindungsgemässe Uberwachungs- und FührungsSystem.

Claims

Überwachung und Führung des Verkehrsflusses in Strassentunneln, auf Brücken und anderen beengten Strecken.Patentansprüche
1. Uberwachungs- und FührungsSystem zur Leitung und Optimierung des Verkehrsflusses in Strassentunneln und anderen beengten Strecken, dadurch gekennzeichnet, dass auf der ganzen Strecke in jeder Fahrbahn ein Strang von WIM-Sensoren (Wl...Wx) in definierten Abständen eingebaut und mit einem Zentralrechner (C) verbunden ist, dass ferner jedes Fahrzeug (F1...F4) mit einem Signatur-, beispielsweise einem Bar-Code (B) entsprechend seinen Achsdrücken und Achsabstanden versehen wird, durch den jedes Fahrzeug (FI..F4) auf der ganzen Strecke an jedem WIM-Sensor (Wl...Wx) identifiziert und auf Abstandsänderungen (Δx) und andere Parameter, wie z.B. Geschwindigkeit oder Lastverschiebungen, überprüft wird, wobei der gesamte Fahrzeugstrom in die Beurteilung einbezogen wird, und dass schliesslich entsprechende Informationen, beispielsweise bezüglich ihrer Sollgeschwindigkeit und/oder ihres Sollabstandes, sofort an alle Fahrzeugführer gleichzeitig übermittelt werden.
2. Uberwachungs- und Führungssystem nach Anspruch 1, dadurch gekennzeichnet, dass das Übermittlungssystem aus einer Reihe von Informationstafeln (Tl...Tx) besteht, die bei edem WIM-Sensor
(Wl...Wx) oder "in noch kürzeren Abständen in Sichtposition des Fahrers angebracht sind und alle wichtigen Verkehrsfluss-Informa- tionen des Rechners (C) sofort wiedergeben.
3. Uberwachungs- und Führungssystem nach Anspruch 1, dadurch gekennzeichnet, dass das Übermittlungssystem — von den einzelnen WIM-Sensoren (Wl ...Wx) aus — die Verkehrsfluss-Informationen direkt mit Fernübertragung an die Fahrzeuge (Fl...F4) und deren Anzeigegeräte leitet.
4. Uberwachungs- und Führungssystem nach Anspruch 1, dadurch gekennzeichnet, dass das Übermittlungssystem direkt in die Geschwindigkeitssteuerung der Fahrzeuge (Fl...F4) eingreift und damit au- automatisches Fahren ermöglicht.
5. Uberwachungs- und Führungssystem nach einem der Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die WIM-Sensoren (Wl...Wx) mit Videostationen (V) kombiniert werden, wodurch fehlerhaft bela- dene oder fahrende Fahrzeuge (Fl...F4) erfasst und deren Kennzeichen von der Videostation (V) abgelesen werden.
6. Uberwachungs- und Führungssystem nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass vor einer Tunneleinf hrt, bzw. einem anderen Engpass, ein WIM-Sensor (Wl) zur Vorselektion (P) eingerichtet ist mit Wegweisepfad U, damit den Verkehr gefährdende Fahrzeuge (F5) nicht in die begrenzte Fahrzone, resp. den Tunnel einfahren können.
7. Uberwachungs- und Führungssystem nach einem der Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass der Rechner (C) bei sicheren Fahrzeugabstände (xl ... x3) die Fahrgeschwindigkeit schrittweise erhöht und innert festgesetzter Grenzen laufend bekanntgibt und bei Gefahr sofort Geschwindigkeitsreduktionen anordnet.
8. Uberwachungs- und Führungssystem nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass es die Fahrer instruiert, welche dynamisch regulierte Geschwindigkeits-Grenzwerte strikte einzuhalten sind.
9. Uberwachungs- und Führungssystem nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass durch geführte Fahrweise auch bei Stossbetrieb höhere Fahrgeschwindigkeiten möglich sind, bei gleichzeitig optimalen Sicherheitsabständen.
10. Uberwachungs- und Führungssystem nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass Fahrzeuge zugelassen sind, die über einen Abstandskontrollautomat verfügen und mit der eingekoppelten ebenfalls automatischen Geschwindigkeitsregelung einen vollautomatisch geführten Fahrbetrieb in den maximal zulässig errechneten Geschwindigkeiten ermöglichen.
11. Uberwachungs- und Führungssystem nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass anhand einer Konvoi-Analyse eine Wechsel-Signalanlage derart gesteuert wird, dass Lastfahrzeuge (L) von Personenwagen (F) nach Spuren und/oder Zeitintervallen getrennt werden können.
PCT/CH2001/000544 2000-09-15 2001-09-10 Überwachung und führung des verkehrsflusses in strassentunneln, auf brücken und anderen beengten strecken. WO2002023504A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU2001283754A AU2001283754A1 (en) 2000-09-15 2001-09-10 Monitoring and guiding of the traffic flow in road tunnels, on bridges and otherrestricted stretches

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH18012000 2000-09-15
CH1801/00 2000-09-15

Publications (1)

Publication Number Publication Date
WO2002023504A1 true WO2002023504A1 (de) 2002-03-21

Family

ID=4566332

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2001/000544 WO2002023504A1 (de) 2000-09-15 2001-09-10 Überwachung und führung des verkehrsflusses in strassentunneln, auf brücken und anderen beengten strecken.

Country Status (2)

Country Link
AU (1) AU2001283754A1 (de)
WO (1) WO2002023504A1 (de)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845156A1 (fr) * 2002-09-27 2004-04-02 Osmos Sa Procede et dispositif pour mesurer le poids applique au sol par au moins un essieu
WO2009040217A1 (de) * 2007-09-24 2009-04-02 Siemens Aktiengesellschaft Verfahren und vorrichtung zur steuerung von sich durch einen sicherheitskritischen verkehrsbereich eines strassennetzes, insbesondere durch einen strassentunnel, bewegenden verkehrsströmen mit gefahrguttransport-fahrzeugen
CN102747698A (zh) * 2012-07-18 2012-10-24 招商局重庆交通科研设计院有限公司 一种地下通道二次事故防止方法
CN101315283B (zh) * 2007-05-30 2012-11-21 阿尔派株式会社 导航装置
US20130222175A1 (en) * 2012-02-24 2013-08-29 Collyer Allen Smith Speed limitation system
WO2013170394A1 (de) 2012-05-16 2013-11-21 Kistler Holding Ag Sensormodul eines wim-systems und messverfahren
EP3029435A1 (de) * 2014-12-01 2016-06-08 HAENNI Instruments AG Kraftsensorvorrichtung zum Erfassen eines Fahrzeuggewichts
DE102016000532A1 (de) * 2016-01-21 2017-07-27 Jenoptik Robot Gmbh Verfahren und Vorrichtung zum Betreiben eines Verkehrsüberwachungsgerätes, Verkehrsüberwachungsgerät und Verkehrsüberwachungssystem
CN107301782A (zh) * 2017-08-11 2017-10-27 青岛理工大学 一种基于交通监控的多车道隧道车流调控***
CN109903558A (zh) * 2019-03-07 2019-06-18 南京博瑞吉工程技术有限公司 一种道路桥梁车辆荷载监控***及监控方法
CN110231077A (zh) * 2018-03-05 2019-09-13 山西国强高科股份有限公司 智能称重***远程监控装置
CN110612434A (zh) * 2016-10-11 2019-12-24 国际道路动力有限公司 用于车辆测量***的参数扰动传感器
WO2020058242A1 (en) * 2018-09-17 2020-03-26 Fnv Ip B.V. Determining weights of vehicles in motion
EP3679317A4 (de) * 2017-09-07 2021-05-26 Scania CV AB Verfahren und steuerungsanordnung zur schätzung von fahrzeugabmessungen
EP2372322B2 (de) 2010-04-01 2023-08-09 Koninklijke BAM Groep N.V. Vorrichtung und Verfahren zur Bestimmung der Achslasten von Fahrzeugen und eine Sensoreinheit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491655A1 (de) * 1990-12-19 1992-06-24 K.K. Holding Ag Kraftsensorsystem, insbesondere zur dynamischen Achslast-, Geschwindigkeits-Achsabstands- und Gesamtgewichtsbestimmung von Fahrzeugen
US5583765A (en) * 1994-08-23 1996-12-10 Grumman Aerospace Corporation Remote system for monitoring the weight and emission compliance of trucks and other vehicles
US5777451A (en) * 1996-03-08 1998-07-07 Nissan Diesel Motor Co., Ltd. Vehicle longitudinal spacing controller
JPH11218438A (ja) * 1998-02-02 1999-08-10 Toyota Motor Corp 車両重量判定装置
EP0997713A1 (de) * 1998-10-29 2000-05-03 K.K. Holding AG Verkehrsüberwachungssystem

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0491655A1 (de) * 1990-12-19 1992-06-24 K.K. Holding Ag Kraftsensorsystem, insbesondere zur dynamischen Achslast-, Geschwindigkeits-Achsabstands- und Gesamtgewichtsbestimmung von Fahrzeugen
US5583765A (en) * 1994-08-23 1996-12-10 Grumman Aerospace Corporation Remote system for monitoring the weight and emission compliance of trucks and other vehicles
US5777451A (en) * 1996-03-08 1998-07-07 Nissan Diesel Motor Co., Ltd. Vehicle longitudinal spacing controller
JPH11218438A (ja) * 1998-02-02 1999-08-10 Toyota Motor Corp 車両重量判定装置
EP0997713A1 (de) * 1998-10-29 2000-05-03 K.K. Holding AG Verkehrsüberwachungssystem

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 13 30 November 1999 (1999-11-30) *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845156A1 (fr) * 2002-09-27 2004-04-02 Osmos Sa Procede et dispositif pour mesurer le poids applique au sol par au moins un essieu
CN101315283B (zh) * 2007-05-30 2012-11-21 阿尔派株式会社 导航装置
WO2009040217A1 (de) * 2007-09-24 2009-04-02 Siemens Aktiengesellschaft Verfahren und vorrichtung zur steuerung von sich durch einen sicherheitskritischen verkehrsbereich eines strassennetzes, insbesondere durch einen strassentunnel, bewegenden verkehrsströmen mit gefahrguttransport-fahrzeugen
EP2372322B2 (de) 2010-04-01 2023-08-09 Koninklijke BAM Groep N.V. Vorrichtung und Verfahren zur Bestimmung der Achslasten von Fahrzeugen und eine Sensoreinheit
US20130222175A1 (en) * 2012-02-24 2013-08-29 Collyer Allen Smith Speed limitation system
US9488517B2 (en) 2012-05-16 2016-11-08 Kistler Holding Ag Piezoelectric sensor module of a WIM system for two-track vehicles and measurement method
CN104303027A (zh) * 2012-05-16 2015-01-21 基斯特勒控股公司 Wim***的传感器模块和测量方法
WO2013170394A1 (de) 2012-05-16 2013-11-21 Kistler Holding Ag Sensormodul eines wim-systems und messverfahren
CH706539A1 (de) * 2012-05-16 2013-11-29 Kistler Holding Ag Sensormodul eines WIM-Systems und Messverfahren.
CN102747698B (zh) * 2012-07-18 2014-11-05 招商局重庆交通科研设计院有限公司 一种地下通道二次事故防止方法
CN102747698A (zh) * 2012-07-18 2012-10-24 招商局重庆交通科研设计院有限公司 一种地下通道二次事故防止方法
EP3029435A1 (de) * 2014-12-01 2016-06-08 HAENNI Instruments AG Kraftsensorvorrichtung zum Erfassen eines Fahrzeuggewichts
US10041826B2 (en) 2014-12-01 2018-08-07 Haenni Instruments Ag Force sensor device for detecting the weight of a vehicle
DE102016000532A1 (de) * 2016-01-21 2017-07-27 Jenoptik Robot Gmbh Verfahren und Vorrichtung zum Betreiben eines Verkehrsüberwachungsgerätes, Verkehrsüberwachungsgerät und Verkehrsüberwachungssystem
DE102016000532B4 (de) 2016-01-21 2019-04-25 Jenoptik Robot Gmbh Verfahren und Vorrichtung zum Betreiben eines Verkehrsüberwachungsgerätes, Verkehrsüberwachungsgerät und Verkehrsüberwachungssystem
CN110612434A (zh) * 2016-10-11 2019-12-24 国际道路动力有限公司 用于车辆测量***的参数扰动传感器
CN107301782A (zh) * 2017-08-11 2017-10-27 青岛理工大学 一种基于交通监控的多车道隧道车流调控***
EP3679317A4 (de) * 2017-09-07 2021-05-26 Scania CV AB Verfahren und steuerungsanordnung zur schätzung von fahrzeugabmessungen
CN110231077A (zh) * 2018-03-05 2019-09-13 山西国强高科股份有限公司 智能称重***远程监控装置
WO2020058242A1 (en) * 2018-09-17 2020-03-26 Fnv Ip B.V. Determining weights of vehicles in motion
CN109903558A (zh) * 2019-03-07 2019-06-18 南京博瑞吉工程技术有限公司 一种道路桥梁车辆荷载监控***及监控方法

Also Published As

Publication number Publication date
AU2001283754A1 (en) 2002-03-26

Similar Documents

Publication Publication Date Title
WO2002023504A1 (de) Überwachung und führung des verkehrsflusses in strassentunneln, auf brücken und anderen beengten strecken.
EP3670280A1 (de) Verfahren und assistenzsystem zur vorbereitung und/oder durchführung eines spurwechsels
EP3223257B1 (de) Verfahren und vorrichtung zur beeinflussung eines verkehrsleitsystems
WO2009146960A2 (de) Verfahren und vorrichtung zur bestimmung von brückenlasten
EP3807138B1 (de) Verfahren und spurführsystem zum steuern eines autonomen kraftfahrzeugs in einem urbanen gebiet
DE102018210779A1 (de) Verfahren und System zur Rettungsgassenbildung durch ein Fahrzeug
DE102013008545A1 (de) Verfahren und Vorrichtung zum Betreiben einer Sondersignalanlage für ein Sondereinsatzfahrzeug
DE102020106707A1 (de) Systeme und verfahren für den fahrzeugbetrieb
DE10109052A1 (de) Anordnung von Fahrzeugen in einem Zugverband
WO2011012344A1 (de) Verfahren zur erhöhung der sicherheit eines fahrzeugs und zentrale verarbeitungseinheit für ein fahrerassistenzsystem
DE4102381A1 (de) Stauwarnanlage
WO2015155120A1 (de) VERFAHREN ZUM BETREIBEN EINES FAHRERINFORMATIONSSYSTEM FÜR ENGSTELLEN IM STRAßENVERKEHR UND FAHRERINFORMATIONSSYSTEM
WO1999067117A2 (de) Verfahren zur datenreduktion im bahnbetrieb
DE19723309A1 (de) Verfahren und Vorrichtung zur Überwachung von Fahrzeugverbänden
DE102009036177A1 (de) Verfahren und Einrichtung zur Erhöhung der Verkehrssicherheit von Fahrzeugen
EP0910057B1 (de) Verfahren zur Sicherheitsüberwachung eines Kraftfahrzeuges
EP4112406B1 (de) Verfahren zum durchführen eines spurwechsels auf einem verzögerungsstreifen mittels eines assistenzsystems, computerprogrammprodukt sowie assistenzsystem
DE102018200937A1 (de) Verfahren zum Steuern von mehreren Kraftfahrzeugen, in einer Kolonne zu fahren
DE3207092A1 (de) Positionierungsvorrichtung fuer ein schienengebundenes fahrzeug, vorzugsweise einen kran
DE3840697A1 (de) Anlage zum warnen von fahrzeugfuehrern, die sich mit ihrem kraftfahrzeug in falscher fahrtrichtung bewegen
DE3223891C2 (de) Vorrichtung zur automatischen Verwarnung von Kraftfahrern bei Überschreitung einer zulässigen Höchstgeschwindigkeit
DE102018203483A1 (de) Verfahren zum Bilden einer Straßensperre mittels Fahrzeugen
EP0792230B1 (de) Verfahren zur zielbremsung von fahrzeugen auf haltepunkte
DE1605430A1 (de) Zugsicherungssystem mit linienformiger Informationsuebertragung zwischen Zug und Strecke
DE29709702U1 (de) Vorrichtung zur Überwachung von Fahrzeugverbänden

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP