WO2002016916A1 - Floodlight for appearance inspection - Google Patents

Floodlight for appearance inspection Download PDF

Info

Publication number
WO2002016916A1
WO2002016916A1 PCT/JP2001/007216 JP0107216W WO0216916A1 WO 2002016916 A1 WO2002016916 A1 WO 2002016916A1 JP 0107216 W JP0107216 W JP 0107216W WO 0216916 A1 WO0216916 A1 WO 0216916A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical system
illumination light
condensing optical
visual inspection
Prior art date
Application number
PCT/JP2001/007216
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuaki Imai
Makoto Nishizawa
Original Assignee
Olympus Optical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co., Ltd. filed Critical Olympus Optical Co., Ltd.
Priority to KR1020027004474A priority Critical patent/KR20020065480A/en
Priority to KR10-2004-7008035A priority patent/KR20040053375A/en
Priority to JP2002521961A priority patent/JP4383047B2/en
Publication of WO2002016916A1 publication Critical patent/WO2002016916A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8806Specially adapted optical and illumination features

Definitions

  • the present invention relates to a light projecting device for visual inspection used for visual inspection of a large-sized substrate such as a liquid crystal glass substrate.
  • FIG. 7 is a diagram showing a schematic configuration of a light projecting device for appearance inspection disclosed in Japanese Patent Application Laid-Open No. 5-232302.
  • an unevenness of the thickness of the resist on the glass substrate and the appearance of the pinhole on the ITO film are inspected.
  • Error 102 is located.
  • Illumination light from the light source 101 is reflected by the elliptical rotating mirror 102 and collected by the gate 104 through the heat ray absorption filter 103. Further, the illumination light is incident on the light-collecting Fresnel lens 106 through the filter 105, and is regulated into a parallel light beam. Parallelism regulated by this condensing Fresnel lens 106
  • a glass substrate 107 as a member to be measured is arranged at a predetermined angle with respect to the optical axis.
  • the surface of the glass substrate 107 is evenly illuminated, and the observer 108 receives minute scattering generated from the surface of the glass substrate 107. Light can be observed visually. As a result, unevenness in film thickness such as a resist on the glass substrate 107 and a defective portion 109 such as a pinhole on the ITO film are detected.
  • FIG. 8 is a diagram showing a schematic configuration of a light projecting device for appearance inspection disclosed in Japanese Patent Application Laid-Open No. 5-232302.
  • the appearance inspection light-emitting device shown in Fig. 8 performs an appearance inspection for irregularities and irregularities in the pattern printed on the glass substrate, or dust and scratches attached to the substrate surface.
  • a light-emitting Fresnel lens 110 is further arranged in a parallel light beam regulated by the light-collecting Fresnel lens 106.
  • a glass substrate 107 to be inspected is arranged at a predetermined angle with respect to the optical axis. ing.
  • the surface of the glass substrate 107 is evenly illuminated, and the observer 108 is positioned at the convergence position of the reflected light from the glass substrate 107. In the vicinity of S, minute scattered light generated from the surface of the glass substrate 107 can be visually observed. As a result, the glass substrate 107 Disorders and irregularities in the printed pattern, or defective portions 111 such as dust and scratches attached to the surface of the glass substrate 107 are detected.
  • liquid crystal displays have been increasing in size.
  • glass substrates used for liquid crystal displays have been increased in size, and some have a size of 100 Omm X 120 Omm.
  • the condensing Fresnel lens 10 having a size equal to or greater than the size of the glass substrate is used. 6 ⁇ Requires a light emitting Fresnel lens 110. For this reason, these condensing Fresnel lenses 106 ⁇ light projecting Fresnel lenses 110 tend to become larger and larger.
  • An object of the present invention is to provide a small light emitting device for visual inspection capable of uniformly illuminating a large test object with its entirety.
  • the light-emitting device for visual inspection comprises: an illumination light source; A reflecting optical system for reflecting light from the illumination light source toward the object to be inspected; and a condensing optical system arranged in a reflecting optical path of the reflecting optical system, wherein the condensing optical system is at least The entire surface of the inspection target member can be irradiated with the illumination light beams from each of the divided light-collecting optical systems.
  • the light projecting device for visual inspection is the device according to the above (1), and the illumination light flux from each of the condensing optical systems respectively irradiates a partial region of the inspection object. I do.
  • the light projecting device for visual inspection according to the present invention is the device according to the above (1), and the illumination light source and the reflecting optical system are provided for each of the condensing optical systems.
  • the light projecting device for visual inspection according to the present invention is the device described in (1) above, and intersects or concentrates the optical axes of the condensing optical systems near the focal point.
  • the light projecting device for visual inspection according to the present invention is the device described in (1) above, and the illumination light source is provided in common for each of a plurality of sets of the condensing optical systems.
  • the light projecting device for visual inspection is the device according to the above (1), wherein the reflecting optical system comprises a first reflecting member and a second reflecting member.
  • the reflecting member reflects light from the illumination light source toward the second reflecting member, and the second reflecting member reflects light from the first reflecting member toward the inspected member. .
  • the light projecting device for visual inspection according to the present invention is the device according to the above (6), and the second reflecting member is swingable.
  • the light projecting device for visual inspection according to the present invention is the device according to the above (7), wherein the illumination light source and the first reflecting member are linked to each other, so that an irradiation area of the inspected member is provided. Can be changed.
  • the light projection device for visual inspection is the device according to any one of the above (1) to (8), and further comprises: the illumination light source and the condensing optical system are relatively positioned in the optical axis direction. It is possible to move to.
  • FIG. 1 is a side view showing a schematic configuration of a light emitting device for visual inspection according to a first embodiment of the present invention.
  • FIG. 2 is a front view showing a schematic configuration of the external appearance inspection light emitting device according to the first embodiment of the present invention.
  • FIG. 3 is a side view showing a schematic configuration of a light-emitting device for appearance inspection according to a second embodiment of the present invention.
  • FIG. 4 is a front view showing a schematic configuration of an appearance inspection light emitting device according to a second embodiment of the present invention.
  • FIG. 5 is a side view showing a schematic configuration of a light emitting device for visual inspection according to a third embodiment of the present invention.
  • FIG. 6 is a bottom view showing a schematic configuration of a light projecting device for visual inspection according to a third embodiment of the present invention.
  • FIG. 7 is a diagram showing a schematic configuration of a light emitting device for visual inspection according to a conventional example.
  • FIG. 8 is a diagram showing a schematic configuration of another light emitting device for visual inspection according to a conventional example.
  • FIG. 1 is a side view showing a schematic configuration of a light projector for visual inspection according to a first embodiment of the present invention.
  • a holder 2 is arranged inside a device body 1.
  • the holder 2 holds a large glass substrate 3 used as a member to be inspected, for example, a flat display such as an LCD.
  • the center of the holder 2 is rotatably supported, and the holder 2 can be tilted (swinged) or inverted in the front-rear direction within a predetermined angle range around the support. Further, the holder 2 can be swung right and left, or back and forth and left and right.
  • the illumination light source 4 is made of, for example, a metal halide lamp.
  • a total of four illumination light sources 4 are arranged in the front, rear, left and right directions from the front side of the apparatus main body 1. In FIG. 1, for convenience, only the two left and right illumination light sources 4 and 4 are shown.
  • a plurality of reflection mirrors 5 as reflection optical systems are provided above the interior of the body 1 in a manner corresponding to each of the illumination light sources 4 individually.
  • a total of four reflection mirrors 5 are arranged in the front, rear, left and right directions from the front side. Each reflection mirror 5 is arranged at a predetermined angle with respect to the horizontal direction.
  • the front two reflection mirrors 5 have their front surfaces directed downward so as to reflect the light from each of the illumination light sources 4 on the front side toward a glass substrate described later.
  • the rear two reflection mirrors 5 have their surfaces directed downward and rearward so as to reflect the light from each of the illumination light sources 4 on the rear side toward a glass substrate described later.
  • Each reflection optical path of these reflection mirrors 5 Optical system 6 is arranged.
  • Each condenser optical system 6 has a first Fresnel lens 61 and a second Fresnel lens 62 formed in a rectangular shape.
  • the first Fresnel lens 61 receives the illumination light from the reflection mirror 15 and emits a parallel light beam.
  • the second Fresnel lens 62 converges the parallel light beam incident from the first Fresnel lens 61 and irradiates it onto the glass substrate 3 as an illumination light beam 7.
  • These four condensing optical systems 6 (6FL, 6FR, 6RL, 6RR) are arranged side by side in the front-rear direction and the left-right direction of the apparatus body 1.
  • FIG. 1 only two light collection optical systems 6 (6FL, 6RL) on the left and front sides are shown for convenience.
  • the two condensing optical systems 6 (6 FL, 6 FR) positioned symmetrically on the front side of the device body 1 are the two condensing optical systems 6 (6 RL) positioned symmetrically on the rear side. , 6 RR), the width dimension (left-right dimension) is the same, and the depth dimension (front-rear dimension) is formed slightly shorter.
  • the two condensing optical systems 6 (6RL, 6RR) positioned symmetrically on the rear side of the device main body 1 are moved relative to the two converging optical systems 6 (6FL, 6FR) on the front side.
  • the width dimension is the same, and the depth dimension is formed slightly longer.
  • the illumination light source 8 is made of, for example, a sodium lamp.
  • a total of four illumination light sources 8 are arranged in the front-rear and left-right directions from the front side of the device body 1. These illumination light sources 8 transmit light having different wavelengths from the metal halide lamp of the illumination light source 4 via the corresponding reflection mirror 5 and condensing optical system 6, respectively. To irradiate on the glass substrate 3.
  • FIG. 2 is a front view showing a schematic configuration of the light emitting device for visual inspection.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • one side edge of each of the two condensing optical systems 6 (6FL, 6FR) on the front side of the apparatus main body 1 is in contact with each other near the center of the apparatus main body 1 in the width direction.
  • Each of the condensing optical systems 6 (6FL, 6FR) arranged on the front side is inclined downward by a predetermined angle ⁇ 1 around each side edge in contact.
  • the optical axes of the condensing optical systems 6 (6FL, 6FR) are so arranged that the illuminating light beams 7, 7 from the condensing optical systems 6 (6FL, 6FR) partially overlap each other on the glass substrate 3. Intersect or concentrate near the focal point. As a result, the front half area 31 on the glass substrate 3 is partially illuminated.
  • each of the two condenser optical systems 6 (6RL, 6RR) on the rear side of the apparatus main body 1 is in contact with each other near the center in the width direction of the apparatus main body 1 as described above.
  • Each of the condensing optical systems 6 (6RL, 6RR) arranged on the rear side is inclined downward by a predetermined angle ⁇ 1 around each side edge in contact.
  • the light of each condensing optical system 6 (6 RL, 6 RR) is illuminated by the light of each condensing optical system 6 so that the illuminating light beams 7, 7 partially overlap each other on the glass substrate 3. Intersect or concentrate the axes near the focal point.
  • the rear half region 32 on the glass substrate 3 is partially illuminated.
  • the convergent light of the four condensing optical systems 6 (6FL, 6FR, 6RL, 6RR) arranged in front, rear, left and right is a part of all the convergent light on the glass substrate 3. Overlap.
  • the inclination angles of the front and rear and left and right of these condensing optical systems 6 depend on the illumination light beam 7 transmitted through each condensing optical system 6 even when the glass substrate 3 is rotated together with the holder 2.
  • the glass substrate 3 is set at an arbitrary angle so that the entire surface can be uniformly illuminated.
  • the two condensing optical systems 6 (6FL, 6FR) located on the front side of the main unit 1 and the two condensing optical systems 6 (6RL, 6RR) located on the rear side of the main unit 1 are However, those having substantially the same focal length are used.
  • the focal lengths of the two focusing optical systems 6 (6FL, 6FR) located on the front side of the device body 1 are set shorter, and the two focusing optical systems located on the rear side of the device body 1 are set.
  • the focal length of 6 (6 RL, 6 RR) may be set longer.
  • the observer places and holds the glass substrate 3 as the member to be inspected on the holder 2.
  • the observer raises the holder 2 corresponding to the height of the line of sight and tilts it at a predetermined angle.
  • the light from each of the illumination light sources 4 is reflected by each of the reflection mirrors 5 and enters each of the four condensing optical systems 6.
  • the first Fresnel lens A parallel light beam is emitted from the lens 61
  • an illumination light beam 7 is emitted from the second Fresnel lens 62, so that the partial area of the glass substrate 3 on the holder 2 is uniformly irradiated. This allows the observer to visually inspect the entire surface of the glass substrate 3 illuminated by each illumination light beam 7 for a macro inspection for scratches, dirt, and the like.
  • the light from each of the illumination light sources 4 is reflected by the reflection mirror 5 toward the glass substrate 3, and the condensing optical system 6 is arranged in the reflected light path. ing.
  • the entire surface of the glass substrate 3 is illuminated. For this reason, even if the glass substrate 3 becomes large, it is possible to illuminate the entire surface of the substrate evenly, and it is possible to accurately perform a mac mouth observation for inspecting scratches and dirt.
  • FIG. 3 is a side view showing a schematic configuration of a light projector for visual inspection according to a second embodiment of the present invention.
  • the same parts as those in FIG. 1 are denoted by the same reference numerals.
  • each condensing optical system 6 (6FL, 6FR, 6RL, 6RR) is inclined toward the center of the glass substrate 3 as in the first embodiment, and each converging light Are different positions A, A ', B, The light converges at B ′ and a part of all the converged light overlaps on the glass substrate 3.
  • illumination light source 10 on the left side is shown for convenience.
  • These illumination light sources 10 can be rotated by a drive mechanism (not shown) in the range of 180 ° in the direction of the arrow in the figure with respect to the vertical direction.
  • FIG. 4 is a front view showing a schematic configuration of the light emitting device for visual inspection.
  • the same parts as those in FIG. 3 are denoted by the same reference numerals.
  • the light from each of the illumination light sources 10 is rotated by 180 ° in the same direction and directed toward each of the reflection mirrors 5 on the front side of the apparatus body 1. Then, the light is radiated to the front half region 31 on the glass substrate 3 via each reflection mirror 5 and each light condensing optical system 6, respectively.
  • each illumination light source 10 is rotated 180 ° in the same other direction, and the light from each illumination light source 10 is directed toward each of the reflection mirrors 5 on the rear side of the apparatus main body 1.
  • the light is radiated to the rear half region 32 on the glass substrate 3 via each reflection mirror 5 and each light condensing optical system 6.
  • each illumination light source 10 by turning each illumination light source 10 by 180 ° to switch the irradiation direction, the front half and rear half of the glass substrate 3 can be alternately illuminated. You. Thereby, it is possible to accurately perform a macroscopic observation for inspecting the glass substrate 3 for scratches, dirt, and the like.
  • the second embodiment since it can be constituted by two illumination light sources 10, the number of parts is smaller than that of the first embodiment.
  • the device can be miniaturized, and it can be manufactured at a low price.
  • FIG. 5 is a side view showing a schematic configuration of a light projecting device for visual inspection according to a third embodiment of the present invention.
  • a plurality of sets (two sets in the illustrated example) of a driving type illumination optical system 20 including an illumination light source 21 and a reflection mirror 22 are provided above the inside of the apparatus main body 1.
  • the illumination light source 21 is, for example, a metal halide lamp.
  • a total of two sets of the illumination optical systems 20 are arranged in the left-right direction on the rear side from the front side of the apparatus main body 1. In FIG. 5, only the left illumination optical system 20 (20 L) is shown for convenience.
  • a plurality of reflection mirrors 51 as reflection optical systems are provided above the inside of the apparatus main body 1 so as to correspond to the respective illumination optical systems 20 (20 L 2 OR). .
  • a total of two reflection mirrors 51 are arranged in the left-right direction on the rear side from the front side.
  • Each of the reflection mirrors 51 can swing back and forth within a predetermined angle around the support portion 52, and emits light from each of the illumination optical systems 20 (20L, 2OR) as described later. Reflects in the direction of the glass substrate.
  • each of the reflection optical paths of these reflection mirrors 51 a collecting optical system 6 divided into two is arranged.
  • These two condensing optical systems 6 (6L, 6R) are arranged side by side at a predetermined angle downward in the left-right direction of the apparatus main body 1.
  • each convergent light of each condensing optical system 6L, 6R converges at different positions A, A 'near the convergence point, and a part of all convergent light is on the glass substrate 3.
  • FIG. 5 for convenience, only one condensing optical system 6 (6L) on the left side is shown.
  • FIG. 6 is a bottom view showing a schematic configuration of the light emitting device for visual inspection.
  • the same parts as those in FIG. 5 are denoted by the same reference numerals.
  • the illumination light source 21 and the reflection mirror 22 are driven in conjunction with each other in the left and right direction, and the reflection mirror 22 is not shown. Rotated by the cam mechanism.
  • Each illumination light source 21 of the illumination optical system 20 (20L, 20R) emits light in the left direction and the right direction, respectively.
  • a reflection mirror 22 is arranged in the optical path of each illumination light source 21.
  • Each of the reflection mirrors 22 reflects the light from each of the illumination light sources 21 toward the reflection mirror 51 obliquely upward.
  • each illumination optical system 20 (20L, 2OR) When each illumination optical system 20 (20L, 2OR) is driven from the state of A to the state of B, each of the illumination light sources 21 moves outward (leftward and rightward) of the apparatus body 1, respectively. I do.
  • Each reflection mirror 22 moves in the outward direction in conjunction with each illumination light source 21 and rotates slightly outward by the cam mechanism. Light from each of the illumination light sources 21 is radiated obliquely upward by the respective reflection mirrors 22.
  • the light from each illumination optical system 20 (20 L, 2 OR) is transmitted to the outside (left side) on the glass substrate 3 via each reflection mirror 51 and each condensing optical system 6. , Right).
  • Each of the illumination optical systems 20L and 2OR can be driven independently, or can be driven in conjunction in the same direction.
  • each illumination optical system 20 (20L, 20R) When driven to state A, each illumination light source 21 moves toward the inside (left direction, right direction) of device body 1, respectively.
  • Each reflection mirror 22 moves inward in conjunction with each illumination light source 21 and rotates slightly inward by the cam mechanism.
  • the light from each illumination light source 21 Are radiated obliquely upward by the reflection mirrors 22 respectively.
  • the light from each illumination optical system 20 (20 L, 2 OR) passes through each reflection mirror 51 and each condensing optical system 6 to the inside (right side, right side) on the glass substrate 3. (Left side).
  • the third embodiment since it can be composed of two illumination light sources 21 and two reflection mirrors 51, the number of parts is smaller than in the first and second embodiments.
  • the device can be miniaturized and can be manufactured at a low price.
  • the entire surface on the glass substrate 3 is uniformly illuminated by using four or two condensing optical systems 6.
  • the present invention is not limited thereto, and the partial illumination area on the glass substrate 3 may be further subdivided by using three or more condensing optical systems 6.
  • the light collecting optical system 6 can be configured by a convex lens instead of the Fresnel lens.
  • the illumination light source 10 is rotated.
  • one illumination light source 10 and one reflection mirror 5 can be driven in conjunction with each other.
  • the front half and the rear half of the glass substrate 3 may be alternately illuminated. With this configuration, the number of parts is further reduced, the device can be downsized, and the device can be manufactured at a low cost.
  • the illumination light sources 4, 10 and 21 in the first to third embodiments are respectively driven with respect to the reflection mirrors 5, 5, and 22 (in the optical axis direction) by a driving mechanism (not shown). It may be movable. In this case, as the illumination light sources 4, 10 and 21 approach the reflection mirrors 5 and 5 22, the reflected mirror 5, 5 and 22 2, and the reflected light spreads out. The irradiation range becomes larger. Further, as the illumination light sources 4, 10, and 21 are moved away from the reflection mirrors 5, 5, and 22, the luminous flux reflected from the reflection mirrors 5, 5, and 22 becomes narrower. The range becomes smaller.
  • the condensing optical system 6 may be made movable with respect to the reflection mirrors 5, 5, 51 (in the optical axis direction) by a drive mechanism (not shown).
  • a drive mechanism not shown.
  • the converging optical system 6 is moved closer to the reflection mirrors 5, 5, 51, the luminous flux reflected from the reflection mirrors 5, 5, 51 increases, so that the irradiation range on the glass substrate 3 is reduced.
  • each illumination light source and each condensing optical system can be individually movable, and the inclination angle of each condensing optical system can be individually adjusted.
  • the size of the glass substrate 3 is adjusted. It is possible to adjust the irradiation range.
  • a liquid crystal scattering plate transmission type liquid crystal plate
  • a liquid crystal scattering plate transmission type liquid crystal plate
  • the entire surface of the large substrate can be illuminated without unevenness, and defects such as uneven film thickness and pinholes on the transparent conductive film can be detected satisfactorily.
  • the present invention it is possible to uniformly illuminate the entire surface of a large inspected member, and it is possible to accurately perform a macro inspection for scratches and dirt.
  • the light from the illumination system is turned back by a mirror, and the focusing optical system is further divided into a plurality of parts to shorten the focal length of the illumination system and suppress the height of the apparatus, thereby reducing the apparatus height. The size can be reduced.
  • the present invention is not limited to only the above embodiments, and can be implemented with appropriate modification within a range that does not change the gist.
  • the whole is uneven with respect to a large test object member. It is possible to provide a small light emitting device for external inspection that can be illuminated.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

A floodlight for appearance inspection, comprising an illuminating light source, a reflecting optical system reflecting the light from the illuminating light source to an inspected member, and a converging optical system disposed in the reflecting light route of the reflecting optical system, wherein the converging optical system is divided into at least two parts so that the entire surface of the inspected member can be radiated by an illumination light flux from each part of the converging optical system.

Description

明 細 書  Specification
外観検査用投光装置  Light inspection device for visual inspection
技術分野 Technical field
本発明は、 液晶ガラ ス基板などの大型基板の外観検査に用 いられる外観検査用投光装置に関する ものである。  The present invention relates to a light projecting device for visual inspection used for visual inspection of a large-sized substrate such as a liquid crystal glass substrate.
背景技術 Background art
従来、 液晶ディ ス プ レイ のガラス基板の品質を安定した状 態に保っため、 基板上の レジス ト などの膜厚のむらや I T O 膜上のピ ンホールなどの外観検查を始め、 基板上に印刷され たパター ンの乱れやむら、 あるいは基板表面に付着したごみ や傷などの外観検査が極めて重要になっている。 このよ う な 基板の外観検査には、 特開平 5 — 2 3 2 0 4 0 号公報、 特開 平 5 — 2 3 2 0 3 2号公報、 特開平 9 一 2 7 3 9 9 6 号公報 特開 2 0 0 0 - 9 7 8 6 4号公報に開示された外観検查用投 光装置が用い られている。  Conventionally, in order to keep the quality of the glass substrate of the liquid crystal display in a stable state, we began to inspect the appearance of irregularities in the thickness of the resist on the substrate, pinholes on the ITO film, etc., and printed on the substrate. It is extremely important to inspect the appearance of the resulting patterns for irregularities and irregularities, or for dust and scratches attached to the substrate surface. Such a board appearance inspection is described in Japanese Patent Application Laid-Open Nos. Hei 5-232230, Hei 5-232203, Hei 9-2373996. The light projector for external appearance inspection disclosed in Japanese Patent Application Laid-Open No. 2000-097864 is used.
図 7 は、 特開平 5 — 2 3 2 0 3 2号公報に開示された外観 検査用投光装置の概略構成を示す図である。 図 7 に示す外観 検査用投光装置では、 ガラス基板上の レジス ト などの膜厚の むらや I T O膜上のピンホールなどの外観検査が行なわれる 光源 1 0 1 の背部には、 楕円回転ミ ラー 1 0 2 が配置され ている。 光源 1 0 1 からの照明光は、 楕円回転ミ ラー 1 0 2 で反射され、 熱線吸収フ ィ ルタ 1 0 3 を介してゲー ト 1 0 4 に集め られる。 さ らに照明光は、 フィルタ 1 0 5 を介して集 光用フ レネル レ ンズ 1 0 6 に入射され、 平行光束に規制され る。 こ の集光用フ レネル レ ンズ 1 0 6 によ り 規制される平行 光束中に、 被検查部材であるガラス基板 1 0 7 が、 光軸に対 し所定の角度を有して配置されている。 FIG. 7 is a diagram showing a schematic configuration of a light projecting device for appearance inspection disclosed in Japanese Patent Application Laid-Open No. 5-232302. In the appearance inspection light projector shown in Fig. 7, an unevenness of the thickness of the resist on the glass substrate and the appearance of the pinhole on the ITO film are inspected. Error 102 is located. Illumination light from the light source 101 is reflected by the elliptical rotating mirror 102 and collected by the gate 104 through the heat ray absorption filter 103. Further, the illumination light is incident on the light-collecting Fresnel lens 106 through the filter 105, and is regulated into a parallel light beam. Parallelism regulated by this condensing Fresnel lens 106 In the light beam, a glass substrate 107 as a member to be measured is arranged at a predetermined angle with respect to the optical axis.
このよ う な構成をなす外観検査用投光装置では、 ガラス基 板 1 0 7 の表面がむらなく 照明され、 観察者 1 0 8 は、 ガラ ス基板 1 0 7 の表面から発生する微小な散乱光を、 目視によ り観察する こ とができ る。 これによ り 、 ガラス基板 1 0 7上 のレジス トなどの膜厚のむらや、 I T O膜上のピンホールな どの欠陥部 1 0 9 が検出される。  In the light-emitting device for visual inspection having such a configuration, the surface of the glass substrate 107 is evenly illuminated, and the observer 108 receives minute scattering generated from the surface of the glass substrate 107. Light can be observed visually. As a result, unevenness in film thickness such as a resist on the glass substrate 107 and a defective portion 109 such as a pinhole on the ITO film are detected.
図 8 は、 特開平 5 — 2 3 2 0 3 2号公報に開示された外観 検査用投光装置の概略構成を示す図である。 図 8 において図 7 と 同一な部分には同符号を付してある。 図 8 に示す外観検 查用投光装置では、 ガラス基板上に印刷されたパターンの乱 れゃむら、 あるいは基板表面に付着したごみや傷などの外観 検査が行なわれる。  FIG. 8 is a diagram showing a schematic configuration of a light projecting device for appearance inspection disclosed in Japanese Patent Application Laid-Open No. 5-232302. In FIG. 8, the same parts as those in FIG. 7 are denoted by the same reference numerals. The appearance inspection light-emitting device shown in Fig. 8 performs an appearance inspection for irregularities and irregularities in the pattern printed on the glass substrate, or dust and scratches attached to the substrate surface.
図 8 では、 図 7 の構成に加え、 集光用フ レネルレンズ 1 0 6 によ り 規制される平行光束中に、 さ らに投光用フ レネルレ ンズ 1 1 0 が配置されている。 こ の投光用フ レネルレンズ 1 1 0 によ る光束の収束位置 Aの手前の光路中に、 被検査部材 であるガラス基板 1 0 7 が、 光軸に対し所定の角度を有して 配置されている。  In FIG. 8, in addition to the configuration of FIG. 7, a light-emitting Fresnel lens 110 is further arranged in a parallel light beam regulated by the light-collecting Fresnel lens 106. In the optical path before the convergence position A of the light beam by the light emitting Fresnel lens 110, a glass substrate 107 to be inspected is arranged at a predetermined angle with respect to the optical axis. ing.
こ のよ う な構成をなす外観検査用投光装置では、 ガラス基 板 1 0 7 の表面がむらなく 照明され、 観察者 1 0 8 は、 ガラ ス基板 1 0 7 からの反射光の収束位置 S の近傍で、 ガラス基 板 1 0 7 の表面から発生する微小な散乱光を、 目視によ り観 察する こ とができ る。 これによ り 、 ガラス基板 1 0 7上に印 刷されたパターンの乱れやむら、 あるいはガラス基板 1 0 7 表面に付着したごみや傷などの欠陥部 1 1 1 が検出される。 In the light emitting device for visual inspection having such a configuration, the surface of the glass substrate 107 is evenly illuminated, and the observer 108 is positioned at the convergence position of the reflected light from the glass substrate 107. In the vicinity of S, minute scattered light generated from the surface of the glass substrate 107 can be visually observed. As a result, the glass substrate 107 Disorders and irregularities in the printed pattern, or defective portions 111 such as dust and scratches attached to the surface of the glass substrate 107 are detected.
と ころで、 最近、 液晶ディ スプレイは、 ますます大型化の 傾向にある。 これにと もない、 液晶ディ スプレイ に用レヽ られ るガラス基板は大型化され、 1 0 0 O m m X l 2 0 O m mの 大き さのもの もある。  In recent years, however, liquid crystal displays have been increasing in size. Along with this, glass substrates used for liquid crystal displays have been increased in size, and some have a size of 100 Omm X 120 Omm.
と ころが、 上述した構成をなすいずれの外観検查用投光装 置でも、 ガラス基板が大型化される と、 そのガラス基板の大 き さ と 同等以上の集光用フ レネル レ ンズ 1 0 6ゃ投光用フ レ ネルレンズ 1 1 0 が必要と なる。 このため、 これら集光用フ レネル レ ンズ 1 0 6ゃ投光用フ レネル レ ンズ 1 1 0 は、 ます ます大型化する傾向にある。  However, in any of the above-described appearance inspection light-emitting devices having the above-described configuration, when the size of the glass substrate is increased, the condensing Fresnel lens 10 having a size equal to or greater than the size of the glass substrate is used. 6 光 Requires a light emitting Fresnel lens 110. For this reason, these condensing Fresnel lenses 106 ゃ light projecting Fresnel lenses 110 tend to become larger and larger.
現在の技術では、 レ ンズ径を必要以上に大き く する こ と は レンズ性能を一定に保つ上で製作上困難であ り 、 これによ り ガラス基板 1 0 7上をむらなく 照明する こ と も難しく なる。 このため、 大型基板の外観検査の信頼性が低下する とい う 問 題がある。 また大型の集光用フ レネル レ ンズ 1 0 6ゃ投光用 フ レネル レンズ 1 1 0 を使用する と、 自重による レンズの撓 みが生じないよ う 、 装置に取 り付ける こ とが困難になる と と もに、 装置の大型化も避けられないとい う 問題が生じる。 本発明の 目 的は、 大型の被検查部材に対して全体をむらな く 照明でき る小型の外観検査用投光装置を提供するこ と にあ る。  With current technology, it is difficult to make the lens diameter unnecessarily large in order to maintain a constant lens performance, which makes it difficult to illuminate the glass substrate 107 evenly. Is also difficult. For this reason, there is a problem that the reliability of the appearance inspection of a large-sized substrate is reduced. In addition, using a large condensing Fresnel lens 106 ゃ light emitting Fresnel lens 110 makes it difficult to mount the lens on the device to prevent the lens from bending due to its own weight. At the same time, there is a problem that the size of the equipment is inevitable. An object of the present invention is to provide a small light emitting device for visual inspection capable of uniformly illuminating a large test object with its entirety.
発明の開示 Disclosure of the invention
( 1 ) 本発明の外観検査用投光装置は、 照明光源と、 こ の 照明光源からの光を被検查部材に向けて反射させる反射光学 系と 、 こ の反射光学系の反射光路に配置される集光光学系 と を具備し、 前記集光光学系は少なく と も 2分割され、 これら 分割された各集光光学系からの照明光束によ り 前記被検査部 材の全面を照射可能と した。 (1) The light-emitting device for visual inspection according to the present invention comprises: an illumination light source; A reflecting optical system for reflecting light from the illumination light source toward the object to be inspected; and a condensing optical system arranged in a reflecting optical path of the reflecting optical system, wherein the condensing optical system is at least The entire surface of the inspection target member can be irradiated with the illumination light beams from each of the divided light-collecting optical systems.
( 2 ) 本発明の外観検査用投光装置は上記 ( 1 ) に記載の 装置であ り 、 かつ前記各集光光学系からの照明光束は、 それ ぞれ前記被検査部材の部分領域を照射する。  (2) The light projecting device for visual inspection according to the present invention is the device according to the above (1), and the illumination light flux from each of the condensing optical systems respectively irradiates a partial region of the inspection object. I do.
( 3 ) 本発明の外観検査用投光装置は上記 ( 1 ) に記載の 装置であ り 、 かつ前記照明光源及び前記反射光学系は、 前記 各集光光学系ごとに設けられる。  (3) The light projecting device for visual inspection according to the present invention is the device according to the above (1), and the illumination light source and the reflecting optical system are provided for each of the condensing optical systems.
( 4 ) 本発明の外観検査用投光装置は上記 ( 1 ) に記載の 装置であ り 、 かつ前記各集光光学系の光軸を焦点近傍で交差 または集中させる。  (4) The light projecting device for visual inspection according to the present invention is the device described in (1) above, and intersects or concentrates the optical axes of the condensing optical systems near the focal point.
( 5 ) 本発明の外観検査用投光装置は上記 ( 1 ) に記載の 装置であ り 、 かつ前記照明光源は、 複数組の前記集光光学系 ごと に共通に設け られる。  (5) The light projecting device for visual inspection according to the present invention is the device described in (1) above, and the illumination light source is provided in common for each of a plurality of sets of the condensing optical systems.
( 6 ) 本発明の外観検査用投光装置は上記 ( 1 ) に記載の 装置であ り 、 かつ前記反射光学系は第 1 の反射部材と第 2 の 反射部材とからな り 、 前記第 1 の反射部材は前記照明光源か らの光を前記第 2 の反射部材に向けて反射させ、 前記第 2 の 反射部材は前記第 1 の反射部材からの光を前記被検査部材に 向けて反射させる。  (6) The light projecting device for visual inspection according to the present invention is the device according to the above (1), wherein the reflecting optical system comprises a first reflecting member and a second reflecting member. The reflecting member reflects light from the illumination light source toward the second reflecting member, and the second reflecting member reflects light from the first reflecting member toward the inspected member. .
( 7 ) 本発明の外観検査用投光装置は上記 ( 6 ) に記載の 装置であ り 、 かつ前記第 2 の反射部材は揺動可能である。 ( 8 ) 本発明の外観検査用投光装置は上記 ( 7 ) に記載の 装置であ り 、 かつ前記照明光源と前記第 1 の反射部材が連動 する こ と で、 前記被検査部材の照射領域を変更可能と した。 (7) The light projecting device for visual inspection according to the present invention is the device according to the above (6), and the second reflecting member is swingable. (8) The light projecting device for visual inspection according to the present invention is the device according to the above (7), wherein the illumination light source and the first reflecting member are linked to each other, so that an irradiation area of the inspected member is provided. Can be changed.
( 9 ) 本発明の外観検査用投光装置は上記 ( 1 ) 乃至 ( 8 ) のいずれかに記載の装置であ り 、 かつ前記.照明光源と前記 集光光学系を光軸方向へ相対的に移動可能と した。  (9) The light projection device for visual inspection according to the present invention is the device according to any one of the above (1) to (8), and further comprises: the illumination light source and the condensing optical system are relatively positioned in the optical axis direction. It is possible to move to.
図面の簡単な説明 BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 本発明の第 1 の実施の形態に係る外観検査用投光 装置の概略構成を示す側面図。  FIG. 1 is a side view showing a schematic configuration of a light emitting device for visual inspection according to a first embodiment of the present invention.
図 2 は、 本発明の第 1 の実施の形態に係る外観検查用投光 装置の概略構成を示す正面図。  FIG. 2 is a front view showing a schematic configuration of the external appearance inspection light emitting device according to the first embodiment of the present invention.
図 3 は、 本発明の第 2 の実施の形態に係る外観検查用投光 装置の概略構成を示す側面図。  FIG. 3 is a side view showing a schematic configuration of a light-emitting device for appearance inspection according to a second embodiment of the present invention.
図 4 は、 本発明の第 2 の実施の形態に係る外観検査用投光 装置の概略構成を示す正面図。  FIG. 4 is a front view showing a schematic configuration of an appearance inspection light emitting device according to a second embodiment of the present invention.
図 5 は、 本発明の第 3 の実施の形態に係る外観検査用投光 装置の概略構成を示す側面図。  FIG. 5 is a side view showing a schematic configuration of a light emitting device for visual inspection according to a third embodiment of the present invention.
図 6 は、 本発明の第 3 の実施の形態に係る外観検査用投光 装置の概略構成を示す下面図。  FIG. 6 is a bottom view showing a schematic configuration of a light projecting device for visual inspection according to a third embodiment of the present invention.
図 7 は、 従来例に係る外観検査用投光装置の概略構成を示 す図。  FIG. 7 is a diagram showing a schematic configuration of a light emitting device for visual inspection according to a conventional example.
図 8 は、 従来例に係る他の外観検査用投光装置の概略構成 を示す図。  FIG. 8 is a diagram showing a schematic configuration of another light emitting device for visual inspection according to a conventional example.
発明を実施するための最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
以下、 本発明の実施の形態を図面を参照して説明する。 図 1 は、 本発明の第 1 の実施の形態に係る外観検査用投光 装置の概略構成を示す側面図である。 図 1 において、 装置本 体 1 の内部には、 ホルダ 2 が配置されている。 このホルダ 2 は、 被検査部材と して、 例えば L C Dなどのフラ ッ トデイ ス プレイに用い られる大型のガラス基板 3 を保持する。 ホルダ 2 は、 その中心部が回転自在に支持され、 その支持部を中心 に所定角度の範囲で前後方向に起倒 (揺動) または反転が可 能である。 さ らに、 ホルダ 2 を左右方向に、 または前後と左 右方向に揺動させる こ と もでき る。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a side view showing a schematic configuration of a light projector for visual inspection according to a first embodiment of the present invention. In FIG. 1, a holder 2 is arranged inside a device body 1. The holder 2 holds a large glass substrate 3 used as a member to be inspected, for example, a flat display such as an LCD. The center of the holder 2 is rotatably supported, and the holder 2 can be tilted (swinged) or inverted in the front-rear direction within a predetermined angle range around the support. Further, the holder 2 can be swung right and left, or back and forth and left and right.
装置本体 1 内部の上方には、 複数個の第 1 の照明光源 4が 設け られている。 照明光源 4 は、 例えばメ タルハライ ドラ ン プからなる。 照明光源 4 は、 装置本体 1 の正面側から向かつ て前後左右方向に合計 4個配置されている。 図 1 では、 便宜 上、 左側前後の 2個の照明光源 4 , 4 のみを図示している。  Above the inside of the apparatus body 1, a plurality of first illumination light sources 4 are provided. The illumination light source 4 is made of, for example, a metal halide lamp. A total of four illumination light sources 4 are arranged in the front, rear, left and right directions from the front side of the apparatus main body 1. In FIG. 1, for convenience, only the two left and right illumination light sources 4 and 4 are shown.
また、 装匱本体 1 内部の上方には、 反射光学系である複数 個の反射ミ ラー 5 が、 それぞれ各照明光源 4 に個別に対応し て設けられている。 反射ミ ラー 5 は、 正面側から向かって前 後左右方向に合計 4個配置されている。 各反射ミ ラー 5 は、 水平方向に対して所定の角度傾けて配置されている。 前側の 二つの反射ミ ラー 5 は、 それぞれ前側の各照明光源 4 からの 光を後述するガラス基板方向に反射する よ う 、 表面が前側下 方に向け られている。 後側の二つの反射ミ ラー 5 は、 それぞ れ後側の各照明光源 4 からの光を後述するガラス基板方向に 反射する よ う 、 表面が後側下方に向け られている。  In addition, a plurality of reflection mirrors 5 as reflection optical systems are provided above the interior of the body 1 in a manner corresponding to each of the illumination light sources 4 individually. A total of four reflection mirrors 5 are arranged in the front, rear, left and right directions from the front side. Each reflection mirror 5 is arranged at a predetermined angle with respect to the horizontal direction. The front two reflection mirrors 5 have their front surfaces directed downward so as to reflect the light from each of the illumination light sources 4 on the front side toward a glass substrate described later. The rear two reflection mirrors 5 have their surfaces directed downward and rearward so as to reflect the light from each of the illumination light sources 4 on the rear side toward a glass substrate described later.
これら反射ミ ラー 5 の各反射光路には、 4分割された集光 光学系 6 が配置されている。 各集光光学系 6 は、 矩形状に形 成された第 1 の フ レネル レ ンズ 6 1 と第 2 の フ レネル レンズ 6 2 を有してレ、る。 第 1 のフ レネルレンズ 6 1 は、 反射ミ ラ 一 5 から照明光を入射して平行光束を出射する。 第 2 の フ レ ネル レンズ 6 2 は、 第 1 の フ レネル レ ンズ 6 1 から入射され る平行光束を収束させて照明光束 7 と してガラス基板 3上に 照射する。 Each reflection optical path of these reflection mirrors 5 Optical system 6 is arranged. Each condenser optical system 6 has a first Fresnel lens 61 and a second Fresnel lens 62 formed in a rectangular shape. The first Fresnel lens 61 receives the illumination light from the reflection mirror 15 and emits a parallel light beam. The second Fresnel lens 62 converges the parallel light beam incident from the first Fresnel lens 61 and irradiates it onto the glass substrate 3 as an illumination light beam 7.
これら 4個の集光光学系 6 ( 6 F L , 6 F R , 6 R L , 6 R R ) は、 装置本体 1 の前後方向 と左右方向に 2個ずつ並べ て配置されている。 図 1 では、 便宜上、 左側前後の 2個の集 光光学系 6 ( 6 F L , 6 R L ) のみを図示している。 装置本 体 1 の前側に左右対称に位置された 2個の集光光学系 6 ( 6 F L, 6 F R ) は、 後側に左右対称に位置された 2個の集光 光学系 6 ( 6 R L , 6 R R ) に対して、 幅寸法 (左右寸法) が同 じであ り 、 奥行き寸法 (前後寸法) がやや短めに形成さ れている。 装置本体 1 の後側に左右対称に位置された 2個の 集光光学系 6 ( 6 R L, 6 R R ) は、 前側の 2個の集光光学 系 6 ( 6 F L, 6 F R ) に対して、 幅寸法が同じであ り 、 奥 行き寸法がやや長めに形成されている。  These four condensing optical systems 6 (6FL, 6FR, 6RL, 6RR) are arranged side by side in the front-rear direction and the left-right direction of the apparatus body 1. In FIG. 1, only two light collection optical systems 6 (6FL, 6RL) on the left and front sides are shown for convenience. The two condensing optical systems 6 (6 FL, 6 FR) positioned symmetrically on the front side of the device body 1 are the two condensing optical systems 6 (6 RL) positioned symmetrically on the rear side. , 6 RR), the width dimension (left-right dimension) is the same, and the depth dimension (front-rear dimension) is formed slightly shorter. The two condensing optical systems 6 (6RL, 6RR) positioned symmetrically on the rear side of the device main body 1 are moved relative to the two converging optical systems 6 (6FL, 6FR) on the front side. The width dimension is the same, and the depth dimension is formed slightly longer.
また、 装置本体 1 内部の上方には、 複数個の第 2 の照明光 源 8 が設け られている。 照明光源 8 は、 例えばナ ト リ ウムラ ンプからなる。 照明光源 8 は、 装置本体 1 の正面側から向か つて前後左右方向に合計 4個配置されている。 これら照明光 源 8 は、 照明光源 4 のメ タルハライ ドランプと異なる波長の 光を、 それぞれ対応する反射ミ ラー 5 、 集光光学系 6 を介し てガラス基板 3 上に照射する。 Further, a plurality of second illumination light sources 8 are provided above the inside of the apparatus main body 1. The illumination light source 8 is made of, for example, a sodium lamp. A total of four illumination light sources 8 are arranged in the front-rear and left-right directions from the front side of the device body 1. These illumination light sources 8 transmit light having different wavelengths from the metal halide lamp of the illumination light source 4 via the corresponding reflection mirror 5 and condensing optical system 6, respectively. To irradiate on the glass substrate 3.
図 2 は、 上記外観検査用投光装置の概略構成を示す正面図 である。 図 2 において図 1 と 同一な部分には同符号を付して ある。 図 2 に示すよ う に、 装置本体 1 前側の 2個の集光光学 系 6 ( 6 F L , 6 F R ) の各一側縁は、 装置本体 1 の幅方向 の中心付近で互いに接している。 そ して、 前側に配列された 各集光光学系 6 ( 6 F L , 6 F R ) は、 接する各側縁を中心 に、 下方へ所定の角度 Θ 1傾斜している。 この と き、 各集光 光学系 6 ( 6 F L , 6 F R ) からの照明光束 7 , 7 が、 ガラ ス基板 3 上で一部が互いに重なる よ う に、 各集光光学系 6 の 光軸を焦点近傍で交差も しく は集中させる。 これによ り 、 ガ ラ ス基板 3上の前側半分の領域 3 1 が部分照明 される。  FIG. 2 is a front view showing a schematic configuration of the light emitting device for visual inspection. In FIG. 2, the same parts as those in FIG. 1 are denoted by the same reference numerals. As shown in FIG. 2, one side edge of each of the two condensing optical systems 6 (6FL, 6FR) on the front side of the apparatus main body 1 is in contact with each other near the center of the apparatus main body 1 in the width direction. Each of the condensing optical systems 6 (6FL, 6FR) arranged on the front side is inclined downward by a predetermined angle Θ1 around each side edge in contact. At this time, the optical axes of the condensing optical systems 6 (6FL, 6FR) are so arranged that the illuminating light beams 7, 7 from the condensing optical systems 6 (6FL, 6FR) partially overlap each other on the glass substrate 3. Intersect or concentrate near the focal point. As a result, the front half area 31 on the glass substrate 3 is partially illuminated.
また、 装置本体 1 後側の 2個の集光光学系 6 ( 6 R L , 6 R R ) の各一側縁は、 上述したと 同様に装置本体 1 の幅方向 の中心付近で互いに接している。 そ して、 後側に配列された 各集光光学系 6 ( 6 R L , 6 R R ) は、 接する各側縁を中心 に、 下方へ所定の角度 Θ 1傾斜している。 こ の と き 、 各集光 光学系 6 ( 6 R L , 6 R R ) からの照明光束 7 , 7 が、 ガラ ス基板 3 上で一部が互いに重なる よ う に、 各集光光学系 6 の 光軸を焦点近傍で交差も しく は集中させる。 これによ り 、 ガ ラ ス基板 3上の後側半分の領域 3 2 が部分照明 される。  Also, one side edge of each of the two condenser optical systems 6 (6RL, 6RR) on the rear side of the apparatus main body 1 is in contact with each other near the center in the width direction of the apparatus main body 1 as described above. Each of the condensing optical systems 6 (6RL, 6RR) arranged on the rear side is inclined downward by a predetermined angle Θ1 around each side edge in contact. At this time, the light of each condensing optical system 6 (6 RL, 6 RR) is illuminated by the light of each condensing optical system 6 so that the illuminating light beams 7, 7 partially overlap each other on the glass substrate 3. Intersect or concentrate the axes near the focal point. As a result, the rear half region 32 on the glass substrate 3 is partially illuminated.
さ ら に、 装置本体 1 後側に位置する 2 個の集光光学系 6 ( 6 R L , 6 R R ) は、 装置本体 1 前側に位置する 2個の集 光光学系 6 ( 6 F L , 6 F R ) に対しても、 下方へ所定の角 度傾斜している。 これによ り 、 前後に配列された各集光光学 系 6 F R と 6 F L、 または 6 R R と 6 R L の各収束光は、 焦 点近傍で、 それぞれ異なる位置 A , A ' 、 B, B ' で収束す る。 Further, the two condensing optical systems 6 (6 RL, 6 RR) located on the rear side of the apparatus main body 1 are combined with the two condensing optical systems 6 (6 FL, 6 FR ) Is also inclined downward by a predetermined angle. As a result, each condensing optics arranged before and after The convergent lights of the systems 6 FR and 6 FL or 6 RR and 6 RL converge at different positions A, A ', B and B', respectively, near the focal point.
これによ り 、 前後左右に配列 された 4 個の集光光学系 6 ( 6 F L , 6 F R , 6 R L , 6 R R ) の収束光は、 ガラス基 板 3 上で全ての収束光の一部が重なる。  As a result, the convergent light of the four condensing optical systems 6 (6FL, 6FR, 6RL, 6RR) arranged in front, rear, left and right is a part of all the convergent light on the glass substrate 3. Overlap.
なお、 これら集光光学系 6 の前後と左右の傾斜角度は、 ホ ルダ 2 と と もにガラス基板 3 を回転させた際にも、 各集光光 学系 6 を透過した照明光束 7 によ り ガラス基板 3全面を均一 に照明でき る よ う 、 任意の角度に設定される。 また、 装置本 体 1 前側に位置する 2個の集光光学系 6 ( 6 F L , 6 F R ) と装置本体 1 後側に位置する 2個の集光光学系 6 ( 6 R L , 6 R R ) は、 各焦点距離がほぼ等しいものを用いている。 し かし、 例えば装置本体 1 前側に位置する 2個の集光光学系 6 ( 6 F L , 6 F R ) の焦点距離を短く 設定し、 装置本体 1 後 側に位置する 2個の集光光学系 6 ( 6 R L , 6 R R ) の焦点 距離を長く 設定しても よい。  Note that the inclination angles of the front and rear and left and right of these condensing optical systems 6 depend on the illumination light beam 7 transmitted through each condensing optical system 6 even when the glass substrate 3 is rotated together with the holder 2. The glass substrate 3 is set at an arbitrary angle so that the entire surface can be uniformly illuminated. Also, the two condensing optical systems 6 (6FL, 6FR) located on the front side of the main unit 1 and the two condensing optical systems 6 (6RL, 6RR) located on the rear side of the main unit 1 are However, those having substantially the same focal length are used. However, for example, the focal lengths of the two focusing optical systems 6 (6FL, 6FR) located on the front side of the device body 1 are set shorter, and the two focusing optical systems located on the rear side of the device body 1 are set. The focal length of 6 (6 RL, 6 RR) may be set longer.
次に、 以上のよ う に構成された外観検査用投光装置の動作 を説明する。 まず、 観察者は、 被検査部材であるガラス基板 3 をホルダ 2 上に載置して保持させる。 次に観察者は、 図 1 に示すよ う に、 ホルダ 2 を視線の高さに対応させて立ち上げ 所定角度に傾斜させる。  Next, the operation of the light-emitting device for visual inspection configured as described above will be described. First, the observer places and holds the glass substrate 3 as the member to be inspected on the holder 2. Next, as shown in FIG. 1, the observer raises the holder 2 corresponding to the height of the line of sight and tilts it at a predetermined angle.
こ の状態で、 各照明光源 4 からの光は、 それぞれ各反射ミ ラー 5 で反射され、 4個の各集光光学系 6 に入射される。 す る と、 これら集光光学系 6 では、 それぞれ第 1 の フ レネル レ ンズ 6 1 から平行光束を出射し、 第 2 のフ レネルレンズ 6 2 から照明光束 7 を出射して、 ホルダ 2上のガラス基板 3 の部 分領域を均一に照射する。 これによ り観察者は、 各照明光束 7 で照明されたガラス基板 3全面について、 目視によ り傷や 汚れなどのマク ロ検査を行な う こ とができ る。 In this state, the light from each of the illumination light sources 4 is reflected by each of the reflection mirrors 5 and enters each of the four condensing optical systems 6. Then, in each of the condenser optics 6, the first Fresnel lens A parallel light beam is emitted from the lens 61, and an illumination light beam 7 is emitted from the second Fresnel lens 62, so that the partial area of the glass substrate 3 on the holder 2 is uniformly irradiated. This allows the observer to visually inspect the entire surface of the glass substrate 3 illuminated by each illumination light beam 7 for a macro inspection for scratches, dirt, and the like.
本第 1 の実施の形態によれば、 各照明光源 4 からの光を、 それぞれ反射ミ ラー 5 でガラス基板 3側へ反射させる と と も に、 その反射光路に集光光学系 6 が配置されている。 このよ う な集光光学系 6 を 4個設けて、 これら集光光学系 6 からの 照明光束 7 をガラス基板 3 の部分領域に照射する こ と で、 ガ ラス基板 3全面が照明される。 このため、 ガラス基板 3 が大 型になっても、 基板全面をむらなく 照明する こ と ができ 、 傷 や汚れなどを検査するマク 口観察を精度良く 行な う こ とがで さる。  According to the first embodiment, the light from each of the illumination light sources 4 is reflected by the reflection mirror 5 toward the glass substrate 3, and the condensing optical system 6 is arranged in the reflected light path. ing. By providing four such condensing optical systems 6 and irradiating the illumination light beam 7 from these condensing optical systems 6 to a partial region of the glass substrate 3, the entire surface of the glass substrate 3 is illuminated. For this reason, even if the glass substrate 3 becomes large, it is possible to illuminate the entire surface of the substrate evenly, and it is possible to accurately perform a mac mouth observation for inspecting scratches and dirt.
図 3 は、 本発明の第 2 の実施の形態に係る外観検査用投光 装置の概略構成を示す側面図である。 図 3 において、 図 1 と 同一な部分には、 同符号を付してある。  FIG. 3 is a side view showing a schematic configuration of a light projector for visual inspection according to a second embodiment of the present invention. In FIG. 3, the same parts as those in FIG. 1 are denoted by the same reference numerals.
図 3 では、 装置本体 1 の前後方向に 2個づっ並べて配置さ れる 4個の集光光学系 6 の上方に、 2個の照明光源 1 0 が設 けられている。 照明光源 1 0 は、 例えばメ タルハライ ドラン プからなる。 照明光源 1 0 は、 装置本体 1 の正面側から向か つて左右方向に並べて配置されている。 なお、 各集光光学系 6 ( 6 F L , 6 F R , 6 R L , 6 R R ) は、 第 1 の実施の形 態と 同様に、 ガラス基板 3 の中心に向けて傾斜しており 、 各 収束光は収束点近傍でそれぞれ異なる位置 A, A ' 、 B , B ' で収束し、 全ての収束光の一部がガラス基板 3上で重な る。 In FIG. 3, two illumination light sources 10 are provided above four condensing optical systems 6 arranged two by two in the front-rear direction of the apparatus main body 1. The illumination light source 10 is, for example, a metal halide lamp. The illumination light sources 10 are arranged side by side in the left-right direction from the front side of the apparatus main body 1. Note that each condensing optical system 6 (6FL, 6FR, 6RL, 6RR) is inclined toward the center of the glass substrate 3 as in the first embodiment, and each converging light Are different positions A, A ', B, The light converges at B ′ and a part of all the converged light overlaps on the glass substrate 3.
図 3 では、 便宜上、 左側の 1 個の照明光源 1 0 のみを図示 している。 これら照明光源 1 0 は、 図示しない駆動機構によ り 、 鉛直方向に対して図中矢印方向へ 1 8 0 ° の範囲で回動 可能である。  In FIG. 3, only one illumination light source 10 on the left side is shown for convenience. These illumination light sources 10 can be rotated by a drive mechanism (not shown) in the range of 180 ° in the direction of the arrow in the figure with respect to the vertical direction.
図 4 は、 上記外観検査用投光装置の概略構成を示す正面図 である。 図 4 において図 3 と 同一な部分には同符号を付して ある。 こ の構成では、 各照明光源 1 0 を同 じ一方向に 1 8 0 ° 回動させ、 それぞれ装置本体 1 前側の各反射ミ ラー 5 に 向けた状態で、 各照明光源 1 0 からの光が、 それぞれ各反射 ミ ラー 5及び各集光光学系 6 を介してガラス基板 3上の前側 半分の領域 3 1 に照射される。  FIG. 4 is a front view showing a schematic configuration of the light emitting device for visual inspection. In FIG. 4, the same parts as those in FIG. 3 are denoted by the same reference numerals. In this configuration, the light from each of the illumination light sources 10 is rotated by 180 ° in the same direction and directed toward each of the reflection mirrors 5 on the front side of the apparatus body 1. Then, the light is radiated to the front half region 31 on the glass substrate 3 via each reflection mirror 5 and each light condensing optical system 6, respectively.
また、 各照明光源 1 0 を同 じ他方向に 1 8 0 ° 回動させ、 それぞれ装置本体 1 後側の各反射ミ ラー 5 に向けた状態で、 各照明光源 1 0 からの光が、 それぞれ各反射ミ ラー 5及ぴ各 集光光学系 6 を介してガラス基板 3上の後側半分の領域 3 2 に照射される。  Further, each illumination light source 10 is rotated 180 ° in the same other direction, and the light from each illumination light source 10 is directed toward each of the reflection mirrors 5 on the rear side of the apparatus main body 1. The light is radiated to the rear half region 32 on the glass substrate 3 via each reflection mirror 5 and each light condensing optical system 6.
すなわち、 各照明光源 1 0 を 1 8 0 ° 回動する こ と によ り 照射方向を切換える こ と で、 ガラス基板 3 の前側半分と後側 半分の各領域を交互に照明する こ とができ る。 これによ り 、 ガラス基板 3 の傷や汚れなどを検査するマク 口観察を精度良 く 行な う こ とができ る。  That is, by turning each illumination light source 10 by 180 ° to switch the irradiation direction, the front half and rear half of the glass substrate 3 can be alternately illuminated. You. Thereby, it is possible to accurately perform a macroscopic observation for inspecting the glass substrate 3 for scratches, dirt, and the like.
本第 2 の実施の形態によれば、 2個の照明光源 1 0 で構成 でき るので、 第 1 の実施の形態に比べて部品点数が少なく な り 、 装置を小型化でき る と と もに、 価格的にも安価に製作で さ る。 According to the second embodiment, since it can be constituted by two illumination light sources 10, the number of parts is smaller than that of the first embodiment. In addition, the device can be miniaturized, and it can be manufactured at a low price.
図 5 は、 本発明の第 3 の実施の形態に係る外観検査用投光 装置の概略構成を示す側面図である。 図 5 において、 図 1 と 同一な部分には、 同符号を付してある。 図 5 では、 装置本体 1 内部の上方に、 照明光源 2 1 と反射ミ ラー 2 2 からなる駆 動式の照明光学系 2 0 が複数組 (図示例では 2組) 設けられ ている。 照明光源 2 1 は、 例えばメ タルハライ ドランプから なる。 照明光学系 2 0 は、 装置本体 1 の正面側から向かって 後側の左右方向に合計 2組配置されている。 図 5 では、 便宜 上、 左側の照明光学系 2 0 ( 2 0 L ) のみを図示 している。  FIG. 5 is a side view showing a schematic configuration of a light projecting device for visual inspection according to a third embodiment of the present invention. In FIG. 5, the same parts as those in FIG. 1 are denoted by the same reference numerals. In FIG. 5, a plurality of sets (two sets in the illustrated example) of a driving type illumination optical system 20 including an illumination light source 21 and a reflection mirror 22 are provided above the inside of the apparatus main body 1. The illumination light source 21 is, for example, a metal halide lamp. A total of two sets of the illumination optical systems 20 are arranged in the left-right direction on the rear side from the front side of the apparatus main body 1. In FIG. 5, only the left illumination optical system 20 (20 L) is shown for convenience.
また、 装置本体 1 内部の上方には、 反射光学系である複数 個の反射ミ ラー 5 1 が、 それぞれ各照明光学系 2 0 ( 2 0 L 2 O R ) に個別に対応して設けられている。 反射ミ ラー 5 1 は、 正面側から向かって後側の左右方向に合計 2個配置され ている。 各反射ミ ラー 5 1 は、 支持部 5 2 を中心に所定角度 の範囲で前後方向に揺動可能であ り 、 各照明光学系 2 0 ( 2 0 L , 2 O R ) からの光を後述するガラス基板方向に反射す る。  Further, a plurality of reflection mirrors 51 as reflection optical systems are provided above the inside of the apparatus main body 1 so as to correspond to the respective illumination optical systems 20 (20 L 2 OR). . A total of two reflection mirrors 51 are arranged in the left-right direction on the rear side from the front side. Each of the reflection mirrors 51 can swing back and forth within a predetermined angle around the support portion 52, and emits light from each of the illumination optical systems 20 (20L, 2OR) as described later. Reflects in the direction of the glass substrate.
これら反射ミ ラー 5 1 の各反射光路には、 2分割された集 光光学系 6 が配置されている。 これ ら 2 個の集光光学系 6 ( 6 L , 6 R ) は、 下方へ所定の角度傾斜して装置本体 1 の 左右方向に並べて配置されている。 この と き、 各集光光学系 6 L , 6 Rの各収束光は、 収束点の近傍でそれぞれ異なる位 置 A , A ' で収束し、 全ての収束光の一部がガラス基板 3 上 で重なる。 図 5 では、 便宜上、 左側の 1 個の集光光学系 6 ( 6 L ) のみを図示している。 In each of the reflection optical paths of these reflection mirrors 51, a collecting optical system 6 divided into two is arranged. These two condensing optical systems 6 (6L, 6R) are arranged side by side at a predetermined angle downward in the left-right direction of the apparatus main body 1. At this time, each convergent light of each condensing optical system 6L, 6R converges at different positions A, A 'near the convergence point, and a part of all convergent light is on the glass substrate 3. Overlap. In FIG. 5, for convenience, only one condensing optical system 6 (6L) on the left side is shown.
図 6 は、 上記外観検査用投光装置の概略構成を示す下面図 である。 図 6 において図 5 と 同一な部分には同符号を付して ある。 各照明光学系 2 0 ( 2 0 L , 2 0 R ) では、 照明光源 2 1 と反射ミ ラー 2 2 が連動して左右方向へ駆動される と と もに、 反射ミ ラー 2 2 が図示しないカム機構によ り 回動され る。 照明光学系 2 0 ( 2 0 L , 2 0 R ) の各照明光源 2 1 は それぞれ左方向、 右方向へ光を照射する。 各照明光源 2 1 の 光路には、 それぞれ反射ミ ラー 2 2 が配置されている。 各反 射ミ ラー 2 2 は、 各照明光源 2 1 からの光をそれぞれ反射ミ ラー 5 1 に向け斜め上方向へ反射する。  FIG. 6 is a bottom view showing a schematic configuration of the light emitting device for visual inspection. In FIG. 6, the same parts as those in FIG. 5 are denoted by the same reference numerals. In each illumination optical system 20 (20L, 20R), the illumination light source 21 and the reflection mirror 22 are driven in conjunction with each other in the left and right direction, and the reflection mirror 22 is not shown. Rotated by the cam mechanism. Each illumination light source 21 of the illumination optical system 20 (20L, 20R) emits light in the left direction and the right direction, respectively. A reflection mirror 22 is arranged in the optical path of each illumination light source 21. Each of the reflection mirrors 22 reflects the light from each of the illumination light sources 21 toward the reflection mirror 51 obliquely upward.
各照明光学系 2 0 ( 2 0 L , 2 O R ) が Aの状態から B の 状態へ駆動された場合、 各照明光源 2 1 がそれぞれ装置本体 1 の外側方向 (左方向, 右方向) へ移動する。 各照明光源 2 1 に連動して各反射ミ ラー 2 2 は、 該外側方向へ移動する と と もに、 上記カム機構によ り やや外側方向へ回動する。 各照 明光源 2 1 からの光は、 それぞれ反射ミ ラー 2 2 によ り斜め 上方向へ照射される。 これによ り 、 各照明光学系 2 0 ( 2 0 L , 2 O R ) からの光が、 それぞれ各反射ミ ラー 5 1 及ぴ各 集光光学系 6 を介してガラス基板 3上の外側 (左側, 右側) の領域に照射される。 各照明光学系 2 0 L , 2 O Rは、 独立 して駆動 した り 、 または同一方向に連動させて駆動する こ と もでき る。  When each illumination optical system 20 (20L, 2OR) is driven from the state of A to the state of B, each of the illumination light sources 21 moves outward (leftward and rightward) of the apparatus body 1, respectively. I do. Each reflection mirror 22 moves in the outward direction in conjunction with each illumination light source 21 and rotates slightly outward by the cam mechanism. Light from each of the illumination light sources 21 is radiated obliquely upward by the respective reflection mirrors 22. As a result, the light from each illumination optical system 20 (20 L, 2 OR) is transmitted to the outside (left side) on the glass substrate 3 via each reflection mirror 51 and each condensing optical system 6. , Right). Each of the illumination optical systems 20L and 2OR can be driven independently, or can be driven in conjunction in the same direction.
また、 各照明光学系 2 0 ( 2 0 L , 2 0 R ) が B の状態か ら Aの状態へ駆動された場合、 各照明光源 2 1 がそれぞれ装 置本体 1 の内側方向 (左方向, 右方向) へ移動する。 各照明 光源 2 1 に連動 して各反射ミ ラー 2 2 は、 該内側方向へ移動 する と と もに、 上記カム機構によ り やや内側方向へ回動する , 各照明光源 2 1 からの光は、 それぞれ反射ミ ラー 2 2 によ り 斜め上方向へ照射される。 これによ り 、 各照明光学系 2 0 ( 2 0 L , 2 O R ) からの光が、 それぞれ各反射ミ ラー 5 1 及び各集光光学系 6 を介してガラス基板 3上の内側 (右側, 左側) の領域に照射される。 Also, whether each illumination optical system 20 (20L, 20R) is in B state When driven to state A, each illumination light source 21 moves toward the inside (left direction, right direction) of device body 1, respectively. Each reflection mirror 22 moves inward in conjunction with each illumination light source 21 and rotates slightly inward by the cam mechanism. The light from each illumination light source 21 Are radiated obliquely upward by the reflection mirrors 22 respectively. As a result, the light from each illumination optical system 20 (20 L, 2 OR) passes through each reflection mirror 51 and each condensing optical system 6 to the inside (right side, right side) on the glass substrate 3. (Left side).
すなわち、 照明光源 2 1 と反射ミ ラー 2 2 からな り 左右対 称に配置された各照明光学系 2 0 ( 2 0 L , 2 O R ) を、 左 右方向へ移動可能と し、 さ らに各反射ミ ラー 5 1 を前後方向 へ回動可能とする こ と によ り 、 照射光を前後左右に走査し、 ガラス基板 3 上の各領域を任意に照明する こ と ができ る。 こ れによ り 、 各反射ミ ラー 2 2 と 5 1 によ り ガラス基板 3 の全 面に対して照明光を走査でき、 ガラス基板 3 の傷や汚れなど を検查するマク ロ観察を精度良く 行な う こ と ができる。  That is, the illumination optical systems 20 (20L, 2OR), which are composed of the illumination light source 21 and the reflection mirror 22 and are arranged symmetrically to the left and right, can be moved in the left and right directions, and furthermore, By making each of the reflection mirrors 51 rotatable in the front-rear direction, the irradiation light can be scanned back and forth and right and left, and each area on the glass substrate 3 can be illuminated arbitrarily. As a result, the illumination light can be scanned over the entire surface of the glass substrate 3 by the respective reflection mirrors 22 and 51, and the macro observation for detecting scratches and dirt on the glass substrate 3 can be performed accurately. Can do well.
本第 3 の実施の形態によれば、 2個の照明光源 2 1 と 2個 の反射ミ ラー 5 1 で構成でき るので、 第 1 , 第 2 の実施の形 態に比べて部品点数が少なく な り 、 装置を小型化でき る と と もに、 価格的にも安価に製作でき る。  According to the third embodiment, since it can be composed of two illumination light sources 21 and two reflection mirrors 51, the number of parts is smaller than in the first and second embodiments. In addition, the device can be miniaturized and can be manufactured at a low price.
上述した第 1 〜第 3 の実施の形態では、 集光光学系 6 を 4 個または 2個用いて、 ガラス基板 3上の全面を均一に照明 し ている。 これに限らず、 集光光学系 6 を 3個以上用いて、 ガ ラス基板 3 上での部分照明の領域をさ らに細分化しても よい また、 照明領域の細分割化によ り集光光学系 6 の光束径を小 さ く できれば、 集光光学系 6 をフ レネルレンズに代えて凸レ ンズで構成する こ と も可能である。 In the above-described first to third embodiments, the entire surface on the glass substrate 3 is uniformly illuminated by using four or two condensing optical systems 6. However, the present invention is not limited thereto, and the partial illumination area on the glass substrate 3 may be further subdivided by using three or more condensing optical systems 6. Further, if the luminous flux diameter of the light collecting optical system 6 can be reduced by subdividing the illumination area, the light collecting optical system 6 can be configured by a convex lens instead of the Fresnel lens.
また、 上記第 2 の実施の形態では、 照明光源 1 0 のみを回 動させる よ う にしたが、 1 個の照明光源 1 0 と 1個の反射ミ ラー 5 と を連動して駆動可能と し、 ガラス基板 3上の前側半 分と後側半分の各領域を交互に照明 しても よい。 このよ う に 構成すれば、 さ らに部品点数が少なく な り 、 装置を小型化で き る と と もに、 価格的にも安価に製作でき る。  In the second embodiment, only the illumination light source 10 is rotated. However, one illumination light source 10 and one reflection mirror 5 can be driven in conjunction with each other. Alternatively, the front half and the rear half of the glass substrate 3 may be alternately illuminated. With this configuration, the number of parts is further reduced, the device can be downsized, and the device can be manufactured at a low cost.
また、 上記第 1 〜第 3 の実施の形態における照明光源 4 , 1 0 , 2 1 を、 図示しない駆動機構によ り 、 それぞれ反射ミ ラー 5, 5 , 2 2 (光軸方向) に対して移動可能と しても よ い。 この場合、 照明光源 4, 1 0, 2 1 を反射ミ ラー 5, 5 2 2 に近づけるに従い、 反射ミ ラー 5, 5, 2 2 力、ら反射さ れる光束が広がるため、 ガラス基板 3 上の照射範囲が大き く なる。 また、 照明光源 4 , 1 0, 2 1 を反射ミ ラー 5 , 5 , 2 2 力 ら遠ざけるに従い、 反射ミ ラー 5 , 5 , 2 2 から反射 される光束が狭まるため、 ガラス基板 3上の照射範囲が小さ く なる。  In addition, the illumination light sources 4, 10 and 21 in the first to third embodiments are respectively driven with respect to the reflection mirrors 5, 5, and 22 (in the optical axis direction) by a driving mechanism (not shown). It may be movable. In this case, as the illumination light sources 4, 10 and 21 approach the reflection mirrors 5 and 5 22, the reflected mirror 5, 5 and 22 2, and the reflected light spreads out. The irradiation range becomes larger. Further, as the illumination light sources 4, 10, and 21 are moved away from the reflection mirrors 5, 5, and 22, the luminous flux reflected from the reflection mirrors 5, 5, and 22 becomes narrower. The range becomes smaller.
同様に、 集光光学系 6 を、 図示しない駆動機構によ り 、 反 射ミ ラー 5, 5 , 5 1 (光軸方向) に対して移動可能と して も よい。 この場合、 集光光学系 6 を反射ミ ラー 5, 5 , 5 1 に近づけるに従い、 反射ミ ラー 5, 5 , 5 1 カゝら反射される 光束が広がるため、 ガラス基板 3 上の照射範囲が大き く なる また、 集光光学系 6 を反射ミ ラー 5 , 5, 5 1 から遠ざける に従い、 反射ミ ラー 5 , 5 , 5 1 から反射される光束が狭ま るため、 ガラス基板 3 上の照射範囲が小さ く なる。 なお、 各 照明光源と各集光光学系を、 それぞれ個別に移動可能と し、 さ らに各集光光学系の傾斜角度を、 個別に調整可能とする こ と もでき る。 Similarly, the condensing optical system 6 may be made movable with respect to the reflection mirrors 5, 5, 51 (in the optical axis direction) by a drive mechanism (not shown). In this case, as the converging optical system 6 is moved closer to the reflection mirrors 5, 5, 51, the luminous flux reflected from the reflection mirrors 5, 5, 51 increases, so that the irradiation range on the glass substrate 3 is reduced. Also, move the focusing optics 6 away from the reflection mirrors 5, 5, 51. Accordingly, the luminous flux reflected from the reflection mirrors 5, 5, 51 becomes narrower, so that the irradiation range on the glass substrate 3 becomes smaller. Note that each illumination light source and each condensing optical system can be individually movable, and the inclination angle of each condensing optical system can be individually adjusted.
このよ う に、 照明光源と集光光学系 と を相対的に移動させ 集光光学系の焦点位置に対して照明光源の位置を光軸方向に ずらすこ とで、 ガラス基板 3 のサイズに合わせた照射範囲の 調整が可能になる。  In this way, by moving the illumination light source and the condensing optical system relatively, and shifting the position of the illumination light source in the optical axis direction with respect to the focal position of the condensing optical system, the size of the glass substrate 3 is adjusted. It is possible to adjust the irradiation range.
また、 集光光学系から導光された収束光束に所定の光学的 特性を与える 目 的で、 不透明または透明に切換え可能な液晶 散乱板 (透過型液晶板) を設ける こ と もでき る。 この液晶散 乱板を用いたシ,ヤーカス照明によ り 、 大型基板の全面を斑な く 照明でき、 膜厚のむらや透明導電膜上のピンホールなどの 欠陥を良好に検出でき る。  In addition, a liquid crystal scattering plate (transmission type liquid crystal plate) that can be switched to opaque or transparent can be provided for the purpose of giving predetermined optical characteristics to the convergent light beam guided from the condensing optical system. By using the sheer and cascade illumination using the liquid crystal scattering plate, the entire surface of the large substrate can be illuminated without unevenness, and defects such as uneven film thickness and pinholes on the transparent conductive film can be detected satisfactorily.
以上のよ う に本発明によれば、 大型の被検査部材の全面を むらなく 照明する こ とができ、 傷や汚れなどのマク ロ検查を 精度良く 行な う こ とができ る。 また、 照明系からの光を ミ ラ 一で折り 返し、 さ らに集光光学系を複数に分割 して照明系の 焦点距離を短く し、 装置の高さ を抑える こ と によ り 、 装置の 小型化を図る こ とでき る。  As described above, according to the present invention, it is possible to uniformly illuminate the entire surface of a large inspected member, and it is possible to accurately perform a macro inspection for scratches and dirt. In addition, the light from the illumination system is turned back by a mirror, and the focusing optical system is further divided into a plurality of parts to shorten the focal length of the illumination system and suppress the height of the apparatus, thereby reducing the apparatus height. The size can be reduced.
本発明は上記各実施の形態のみに限定されず、 要旨を変更 しない範囲で適時変形して実施でき る。  The present invention is not limited to only the above embodiments, and can be implemented with appropriate modification within a range that does not change the gist.
産業上の利用可能性 Industrial applicability
本発明によれば、 大型の被検查部材に対して全体をむらな く 照明でき る小型の外観検査用投光装置を提供できる。 ADVANTAGE OF THE INVENTION According to this invention, the whole is uneven with respect to a large test object member. It is possible to provide a small light emitting device for external inspection that can be illuminated.

Claims

請 求 の 範 囲 The scope of the claims
1 . 照明光源と 、  1. Lighting source and
この照明光源からの光を被検查部材に向けて反射させる反 射光学系 と、  A reflection optical system for reflecting light from the illumination light source toward the test object;
この反射光学系の反射光路に配置される集光光学系 と 、 を具備し、  And a condensing optical system disposed in the reflection optical path of the reflection optical system.
前記集光光学系は少なく と も 2分割され、 これら分割され た各集光光学系からの照明光束によ り 前記被検査部材の全面 を照射可能と したこ と を特徴とする外観検査用投光装置。 The condensing optical system is divided into at least two parts, and the entire surface of the member to be inspected can be illuminated by an illumination light beam from each of the divided condensing optical systems. Light device.
2 . 前記各集光光学系からの照明光束は、 それぞれ前記被 検查部材の部分領域を照射する こ と を特徴とする請求項 1 に 記載の外観検査用投光装置。 2. The light projecting device for visual inspection according to claim 1, wherein the illuminating light flux from each of the condensing optical systems irradiates a partial region of the member to be inspected.
3 . 前記照明光源及び前記反射光学系は、 前記各集光光学 系ごとに設け られる こ と を特徴とする請求項 1 に記載の外観 検査用投光装置。  3. The light projecting device for appearance inspection according to claim 1, wherein the illumination light source and the reflecting optical system are provided for each of the condensing optical systems.
4 . 前記各集光光学系の光軸を焦点近傍で交差または集中 させる こ と を特徴とする請求項 1 に記載の外観検査用投光装 置。  4. The light projection device for visual inspection according to claim 1, wherein the optical axes of the respective condensing optical systems are crossed or concentrated near a focal point.
5 . 前記照明光源は、 複数組の前記集光光学系ごと に共通 に設けられる こ と を特徴とする請求項 1 に記載の外観検査用 投光装置。  5. The light-emitting device for visual inspection according to claim 1, wherein the illumination light source is provided in common for each of a plurality of sets of the condensing optical systems.
6 . 前記反射光学系は第 1 の反射部材と第 2 の反射部材と からな り 、  6. The reflection optical system includes a first reflection member and a second reflection member,
前記第 1 の反射部材は前記照明光源からの光を前記第 2 の 反射部材に向けて反射させ、 前記第 2 の反射部材は前記第 1 の反射部材からの光を前記被検査部材に向けて反射させる こ と を特徴とする請求項 1 に記載の外観検査用投光装置。 The first reflecting member reflects light from the illumination light source toward the second reflecting member, and the second reflecting member reflects the light from the first reflecting member. 2. The light projecting device for visual inspection according to claim 1, wherein the light from the reflecting member is reflected toward the member to be inspected.
7 . 前記第 2 の反射部材は摇動可能である こ と を特徴とす る請求項 6 に記載の外観検査用投光装置。  7. The light projecting device for visual inspection according to claim 6, wherein the second reflecting member is movable.
8 . 前記照明光源と前記第 1 の反射部材が連動する こ と で 前記被検査部材の照射領域を変更可能と したこ と を特徴とす る請求項 7 に記載の外観検査用投光装置。  8. The light projecting device for visual inspection according to claim 7, wherein an illumination area of the inspected member can be changed by interlocking the illumination light source and the first reflecting member.
9 . 前記照明光源と前記集光光学系を光軸方向へ相対的に 移動可能と したこ と を特徴とする請求項 1 乃至 8 のいずれか に記載の外観検査用投光装置。  9. The light projecting device for visual inspection according to any one of claims 1 to 8, wherein the illumination light source and the condensing optical system are relatively movable in an optical axis direction.
PCT/JP2001/007216 2000-08-24 2001-08-23 Floodlight for appearance inspection WO2002016916A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020027004474A KR20020065480A (en) 2000-08-24 2001-08-23 Floodlight for appearance inspection
KR10-2004-7008035A KR20040053375A (en) 2000-08-24 2001-08-23 Device for appearance inspection
JP2002521961A JP4383047B2 (en) 2000-08-24 2001-08-23 Light projection device for visual inspection and visual inspection device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000253924 2000-08-24
JP2000-253924 2000-08-24

Publications (1)

Publication Number Publication Date
WO2002016916A1 true WO2002016916A1 (en) 2002-02-28

Family

ID=18742953

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/007216 WO2002016916A1 (en) 2000-08-24 2001-08-23 Floodlight for appearance inspection

Country Status (5)

Country Link
JP (1) JP4383047B2 (en)
KR (2) KR20020065480A (en)
CN (2) CN1272624C (en)
TW (1) TW514725B (en)
WO (1) WO2002016916A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508190B1 (en) * 2003-11-11 2005-08-17 주식회사 에이디피엔지니어링 A Flood Light for appearance inspection of LCD surface
JP2006234721A (en) * 2005-02-28 2006-09-07 Olympus Corp Visual inspection device and visual inspection method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200614412A (en) * 2004-09-27 2006-05-01 Olympus Corp Macroscopic inspection apparatus and macroscopic inspection method
KR101032079B1 (en) * 2004-11-18 2011-05-02 엘아이지에이디피 주식회사 Apparatus for inspecting substrate
KR100834853B1 (en) * 2007-03-27 2008-06-03 호서대학교 산학협력단 Lighting apparatus of checking large glass plate for display device
JP2011175735A (en) * 2008-06-27 2011-09-08 Abel Systems Inc Light beam adder
CN102778461A (en) * 2012-08-21 2012-11-14 深圳市华星光电技术有限公司 Detection method and detection device of glass substrate in liquid crystal display
CN103868938A (en) * 2012-12-17 2014-06-18 中国振华集团永光电子有限公司 Filling quality detection method and apparatus for LED module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106705A (en) * 1995-10-11 1997-04-22 Mitsubishi Electric Corp Light source device and projection display device using it
JPH09273996A (en) * 1996-04-03 1997-10-21 Olympus Optical Co Ltd Projector for inspecting appearance
JP2000097864A (en) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd Floodlight device for visual inspection

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09106705A (en) * 1995-10-11 1997-04-22 Mitsubishi Electric Corp Light source device and projection display device using it
JPH09273996A (en) * 1996-04-03 1997-10-21 Olympus Optical Co Ltd Projector for inspecting appearance
JP2000097864A (en) * 1998-09-21 2000-04-07 Olympus Optical Co Ltd Floodlight device for visual inspection

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100508190B1 (en) * 2003-11-11 2005-08-17 주식회사 에이디피엔지니어링 A Flood Light for appearance inspection of LCD surface
JP2006234721A (en) * 2005-02-28 2006-09-07 Olympus Corp Visual inspection device and visual inspection method
JP4633499B2 (en) * 2005-02-28 2011-02-16 オリンパス株式会社 Appearance inspection apparatus and appearance inspection method

Also Published As

Publication number Publication date
TW514725B (en) 2002-12-21
KR20020065480A (en) 2002-08-13
CN1388897A (en) 2003-01-01
CN1645115A (en) 2005-07-27
KR20040053375A (en) 2004-06-23
JP4383047B2 (en) 2009-12-16
CN1272624C (en) 2006-08-30

Similar Documents

Publication Publication Date Title
US8223326B2 (en) Dark-field examination device
KR101318483B1 (en) Inspection system and method for identifying surface and body defects in a glass sheet
JP3973659B2 (en) Macro lighting device
US20020057429A1 (en) Apparatus for inspecting a substrate
CN1828280B (en) Appearance checking device and method
JP2013033068A (en) Surface inspection device
WO2002016916A1 (en) Floodlight for appearance inspection
KR20120014765A (en) Apparatus for inspecting defects and method for inspecting defects using the same
TW201925764A (en) Methods and apparatus for detecting surface defects on glass sheets
KR100873057B1 (en) Illumination device for visual inspection based on reflected light and transmitted light
JP4576006B2 (en) Projection device for visual inspection
JP5230240B2 (en) Laser processing equipment
JP2006194896A (en) Floodlight for visual inspection
JP2007085781A (en) Illuminator for inspecting substrate
JP2009092481A (en) Lighting device for visual inspection and visual inspection device
JP2008170153A (en) Macro inspection device
JP2021120932A (en) Luminaire and vehicular lighting tool
JPH09273996A (en) Projector for inspecting appearance
JP2005249475A (en) Lighting device
JPH04168351A (en) Detecting apparatus for defect of light transmitting body
JP2007107887A (en) Visual examination device
JP2004309262A (en) Sealant application inspection device
KR100636505B1 (en) Optical illumination system of pattern inspection using line CCD
JP2008164321A (en) Light projector for visual inspection
JP4712284B2 (en) Surface inspection device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR

WWE Wipo information: entry into national phase

Ref document number: 1020027004474

Country of ref document: KR

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2002 521961

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 01802520X

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020027004474

Country of ref document: KR

WWR Wipo information: refused in national office

Ref document number: 1020027004474

Country of ref document: KR