WO2002012919A1 - Détecteur de rayonnement radioactif et procédé de fabrication - Google Patents

Détecteur de rayonnement radioactif et procédé de fabrication Download PDF

Info

Publication number
WO2002012919A1
WO2002012919A1 PCT/JP2001/006700 JP0106700W WO0212919A1 WO 2002012919 A1 WO2002012919 A1 WO 2002012919A1 JP 0106700 W JP0106700 W JP 0106700W WO 0212919 A1 WO0212919 A1 WO 0212919A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiation detector
transparent film
light receiving
imaging
detector according
Prior art date
Application number
PCT/JP2001/006700
Other languages
English (en)
French (fr)
Inventor
Takuya Homme
Toshio Takabayashi
Original Assignee
Hamamatsu Photonics K.K.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics K.K. filed Critical Hamamatsu Photonics K.K.
Priority to US10/343,438 priority Critical patent/US7019303B2/en
Priority to AU2001276727A priority patent/AU2001276727A1/en
Publication of WO2002012919A1 publication Critical patent/WO2002012919A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20188Auxiliary details, e.g. casings or cooling
    • G01T1/20189Damping or insulation against damage, e.g. caused by heat or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors
    • G01T1/2018Scintillation-photodiode combinations
    • G01T1/20187Position of the scintillator with respect to the photodiode, e.g. photodiode surrounding the crystal, the crystal surrounding the photodiode, shape or size of the scintillator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/49007Indicating transducer

Definitions

  • the present invention relates to a radiation detector, and more particularly to a radiation detector in which a plurality of image sensors are arranged to capture a large-area radiation image, and a method of manufacturing the same.
  • an X-ray image sensor using a CCD instead of an X-ray photosensitive film has been widely used.
  • a two-dimensional image data due to radiation is acquired as an electric signal using a radiation detecting element having a plurality of pixels, and this signal is processed by a processing device.
  • An X-ray image is displayed on the monitor.
  • a typical radiation detection element has a structure in which scintillation light is arranged on a one-dimensional or two-dimensionally arranged photodetector, and incident radiation is converted into light by the scintillation light and detected. I have.
  • a radiation detector includes: (1) a plurality of substrates each including: a substrate; (2) a base on which the light receiving sections of the plurality of imaging boards are placed side by side, and (3) a flat transparent film on the surface which covers the entire light receiving sections of the plurality of imaging elements at once. And (4) a scintillator formed directly on the transparent film.
  • a configuration is conceivable in which two imaging substrates are connected or four imaging substrates are connected vertically and horizontally two by two.
  • the method for manufacturing a radiation detector includes the steps of (1) providing a plurality of imaging substrates each having a light receiving portion in which a plurality of photoelectric conversion elements are two-dimensionally arranged at least near one side of the substrate; (2) a step of placing the plurality of imaging substrates on a base with the respective light receiving portions arranged side by side; and (3) a process of placing the plurality of imaging substrates on the entire surface of the light receiving portions of the plurality of imaging substrates.
  • this scintillator be 100 m to 100 m.
  • the gap formed between the plurality of imaging substrates is 50 5m or less, and the thickness of the transparent film is 2 ⁇ ! It is desirably about 30 / m.
  • the gap may be 50 to 70 / m, and the thickness of the transparent film may be 5111 to 30 / m.
  • a light receiving unit having a large imaging area is formed by arranging the light receiving units of a plurality of imaging substrates side by side. Then, a transparent film is collectively formed on the light receiving portion to make the surface flat, and a scintillation film is formed directly on the film. As a result, uniform scintillation can be formed, and a detector having uniform image characteristics can be obtained. Furthermore, the formation of scintillation over a flat film effectively prevents the peeling.
  • these imaging substrates have a circuit portion electrically connected to the photoelectric conversion element. In this way, it is not necessary to separately form a signal readout circuit, and the manufacturing is facilitated, and the handling after forming the scintillation is also simplified.
  • a protective film that covers and seals the scintillator.
  • the scintillator is made of a moisture-absorbing material or a low-strength material, durability is secured by sealing with the protective film.
  • FIG. 1 is a perspective view showing an embodiment of the radiation detector according to the present invention
  • FIG. 2 is a sectional view thereof
  • FIG. 3 is a partially enlarged view of FIG.
  • FIGS. 4 to 8 are diagrams illustrating the steps of manufacturing the detector of FIG. 1, that is, the method of manufacturing the radiation detector according to the present invention.
  • FIG. 9 is a plan view showing another embodiment of the radiation detector according to the present invention.
  • FIGS. 10 and 11 are plan views each showing an imaging substrate used in another embodiment of the radiation detector according to the present invention.
  • FIG. 1 is a perspective view showing one embodiment of the radiation detector according to the present invention
  • FIG. FIG. 3 is a partially enlarged view of FIG.
  • the radiation detector 100 of this embodiment is a solid-state imaging device 2a to 2d, which is four imaging substrates, arranged on a ceramic base 1 in a state of 2 ⁇ 2 arranged side by side.
  • the imaging elements 2 a to 2 d are fixed to the base 1 by an adhesive resin 11.
  • Each solid-state imaging device 2 is configured by two-dimensionally arranging photoelectric conversion elements 21 for performing photoelectric conversion on a substrate 20 made of a crystal Si, for example.
  • the photoelectric conversion element 21 includes a photodiode (PD) and a transistor.
  • the portion where the photoelectric conversion elements 21 are arranged is hereinafter referred to as a light receiving section.
  • Each photoelectric conversion element 21 is electrically connected to a corresponding one of the electrode pads 22 arranged on two adjacent sides of the solid-state imaging element 2 through a shift register 23 by a signal line (not shown). It is connected to the.
  • Each of the solid-state imaging devices 2a to 2d is arranged so that the light receiving portions are adjacent to each other, in other words, the electrode pad 22 is located in the peripheral portion. By arranging in this manner, the light receiving sections of each solid-state imaging device 2 can be arranged as close as possible, and the gap between the respective light receiving sections is made as small as possible to narrow the dead area where an image cannot be obtained. can do.
  • a transparent film 3 is formed.
  • a resin having excellent surface flatness and good light transmission properties for example, a polyimide resin.
  • a scintillator 4 having a columnar structure for converting incident radiation into light in a wavelength band in which the photoelectric conversion element 21 has sensitivity is formed.
  • Various kinds of materials can be used for the scintillation, but T1-doped Csl or the like, which has high luminous efficiency, is preferable.
  • a protective film 5 that covers the scintillator 4 and extends between the electrode pad 22 of each solid-state imaging device 2 and the shift register 23 and seals the scintillator 4 is formed.
  • the protective film 5 is X-ray permeable and blocks water vapor.
  • polyparaxylylene resin manufactured by Sri-Bond Co., trade name: Parylene
  • parachloroxylylene brand name: Parylene C
  • Parylene coating film has extremely low water vapor and gas permeability, high water repellency and chemical resistance, and has excellent electrical insulation even in a thin film, and is transparent to radiation and visible light. It has excellent features suitable for 5.
  • FIG. 4 a manufacturing process of the radiation detector, that is, a method of manufacturing the radiation detector according to the present invention will be specifically described with reference to FIGS.
  • four solid-state imaging devices 2 having the structure shown in FIG. 4 are prepared.
  • the solid-state imaging devices 2a to 2d are arranged on the surface of the base 1 having a flat surface so that their light receiving portions are adjacent to each other, in other words, each electrode pad 22 is arranged outside.
  • the light-receiving surfaces of the photoelectric conversion elements 21 facing up, two sheets are placed side by side vertically and horizontally and fixed to the base 1 with the adhesive resin 11 (see Fig. 5).
  • each electrode pad 22 part After masking each electrode pad 22 part, apply polyimide on the entire light receiving part (including the gap 25 part formed between them), and then cure it to obtain a thickness of about 5 im.
  • a transparent film 3 having a shape is formed (see FIG. 6).
  • the gap between the solid-state imaging devices 2a to 2d can be closed by the transparent film 3, and the surface of the transparent film 3 can be formed smoothly even when there is a step in the surface position between the devices.
  • four layers of scintillation are formed on the transparent film 3 thus formed by growing Ts-doped Csl as columnar crystals having a thickness of about 400 zm by a vacuum deposition method (see FIG. 7). .
  • the four layers of scintillation are formed on all the light receiving portions of the solid-state imaging devices 4a to 4d.
  • the surface of the transparent film 3 serving as a base on which the four layers of scintillation are formed is in a smooth state as described above, it is possible to form four layers of uniform scintillation over the entire light receiving portion including the gap. It is possible.
  • Csl is highly hygroscopic, and if left exposed, would absorb and dissolve water vapor in the air.
  • scintillation light was formed by CVD (chemical vapor deposition).
  • the solid-state imaging devices 2a to 2d are wrapped together with the base 1 in parylene having a thickness of 10 ⁇ m to form the protective film 5 (see FIG. 8).
  • coating by vapor deposition is carried out in a vacuum in the same manner as vacuum vapor deposition of metal, and the diparaxylylene monomer as a raw material is thermally decomposed and the product is dissolved in an organic solvent such as toluene or benzene.
  • parylene penetrates into this narrow gap to some extent, so that the protective film 5 adheres tightly to the four layers of scintillation and seals the layer of scintillation.
  • Parylene CVD is easier to process because it can be performed at room temperature with a lower degree of vacuum than when metal is deposited.
  • a cut is made between the electrode pad 22 and the shift register 23 in the protective film 5 formed thereafter, and the outer protective film 5 is peeled off to expose the electrode pad 22.
  • X-rays (radiation) incident from the incident surface side pass through the protective film 5 and reach the scintillator 4.
  • the X-rays are absorbed by the scintillator 4 and emit light of a predetermined wavelength proportional to the amount of X-rays.
  • the emitted light passes through the transparent film 3 and reaches each photoelectric conversion element 21.
  • an electric signal corresponding to the amount of light that has arrived is generated by photoelectric conversion and accumulated for a certain period of time.
  • the electric signal accumulated in each photoelectric conversion element 21 corresponds to the light amount of the incident X-ray.
  • An image signal corresponding to the line image is obtained.
  • This image signal stored in the photoelectric conversion element 21 is sequentially output from each electrode pad 22 through a shift register 23 from a signal line (not shown), and is transferred to an external unit. X on the monitor by processing in the circuit A line image can be displayed.
  • the present invention it is possible to arrange the light receiving portions of the solid-state imaging devices 2 in close proximity, and furthermore, to form four uniform scintillating layers on the surface thereof.
  • the dead area generated at the joint between the light receiving sections can be reduced, and the resolution can be prevented from deteriorating.
  • the portion including the joint portion is covered with the transparent film 3 and the scintillator 4 is formed thereon, the peeling of the scintillator 4 can be effectively prevented, and durability can be secured.
  • the yield per element can be prevented from lowering than when manufacturing a large-screen element, and manufacturing costs can be reduced.
  • the present inventors prepared four pairs of solid-state imaging devices to verify the effect of suppressing the peeling of the scintillator 4 by filling the gaps between the devices with the transparent film 3, and arranging each device side by side to arrange the devices.
  • the gaps are made different depending on the position, and then polyimide is applied to the surface of each element set and cured, so that A transparent film having a thickness was formed, and then Csl was vapor-deposited at a thickness of 400 ⁇ m as scintillation light 4. Then, the presence or absence of peeling of scintillation light 4 at the boundary was examined. Table 1 shows the results.
  • the thickness of the transparent film is set to 2 m or more, and when the gap is larger than 50 zm and not more than m, the thickness of the transparent film is set to 5 zm or more. -Prevents evening peeling. Also, if the transparent film is too thick, the image is scattered in the transparent film and the resolution is reduced. Therefore, the thickness of the transparent film is preferably 30 m or less.
  • the gap When the gap is as large as 100 m, the amount of the transparent film that has entered the gap increases, and the transparent film slightly dents in the gap due to shrinkage during curing of the transparent film. Has occurred. Furthermore, the larger the gap, the larger the dead space, and the smaller the gap, the better. For these reasons, it is preferable to keep the gap to 70 zm or less.
  • the relationship between the size of the gap and the thickness of the transparent film described above is such that the thickness of the thin film is satisfied in the range of 100 m to 1000 m.
  • FIG. 9 is a plan view showing a second embodiment of the radiation detector according to the present invention.
  • a large-screen radiation detector may be manufactured by connecting two solid-state imaging devices 2a and 2b as imaging substrates. Further, a large screen may be formed by arranging three or more solid-state imaging devices in a line, or by arranging 2 xm columns or mxn columns.
  • the solid-state image sensors are arranged in 2 xm rows (where m is an integer of 3 or more)
  • the solid-state image sensors 2 'other than those arranged at least at the four corners have the light-receiving unit 21 arranged at least up to the boundary of three sides. (See Figure 10).
  • the solid-state imaging device 2 "disposed outside the peripheral portion has a light-receiving section 21 disposed on the entire surface. (See Fig. 11.) In this case, it is preferable to provide the electrode pad on the back surface and read out the signal using the wiring penetrating the base 1.
  • a single-layer parylene protective film has been described as the protective film 5
  • a reflective film made of a metal thin film of Al, Ag, Au, etc. is provided on the parylene film surface, the A high-luminance image can be obtained by returning the emitted light to the photoelectric conversion element 21.
  • a parylene film or the like may be further provided on the surface thereof. Evening 3 uses moisture-proof material In such a case, or when the entire apparatus is housed in a moisture-proof protective case, the protective film 5 need not be provided.
  • the transparent film in the present invention does not mean a transparent film in the sense of transmitting visible light, but that the photoelectric conversion element of the imaging substrate provided with the transparent film has a property of transmitting light having sensitivity.
  • Means Therefore for example, when a photoelectric conversion element having sensitivity to a specific wavelength band in visible light is used, it may be opaque to visible light outside the sensitivity range. When a photoelectric conversion element having high sensitivity is used, it may be opaque to visible light as long as it transmits sensitive light. Further, it may be opaque for a part of the sensitivity band.
  • the radiation detector according to the present invention can be suitably used as a radiation detector that captures a large-screen radiation image.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Measurement Of Radiation (AREA)

Description

明細書
放射線検出器およびその製造方法
技術分野
本発明は放射線検出器に関し、 特に大面積の放射線画像を撮像するために複数 のイメージセンサを並べて構成した放射線検出器およびその製造方法に関する。 背景技術
医療用の X線診断装置として X線感光フィルムに代えて C C Dを用いた X線ィ メ一ジセンサが普及してきている。 このような放射線ィメ一ジングシステムにお いては、 複数の画素を有する放射線検出素子を用いて放射線による 2次元画像デ —夕を電気信号として取得し、 この信号を処理装置により処理して、 モニタ上に X線画像を表示している。 代表的な放射線検出素子は、 1次元あるいは 2次元に 配列された光検出器上にシンチレ一夕を配して、 入射する放射線をシンチレ一夕 で光に変換して、 検出する仕組みになっている。
この種の放射線検出素子は、 大画面化するほど製造時の歩留まりが劣化する。 その解決策として、 胸部のレントゲン撮影等に用いる大画面の撮像装置を製作す る際には、特開平 9-153606号公報に開示されているように複数の検出素子を並べ て大画面化する技術が知られている。 同公幸艮には、 実際の撮像画面より小さい受 光画面の素子を組み合わせることで、 素子あたりの歩留まりの低下を防止し、 製 作コストを低減すると記載されている。 発明の開示
しかしながら、 このように複数の検出素子を並べて大画面化した場合、 隣接す る検出素子との境界部分 (つなぎ目部分) からシンチレ一夕がはく離しやすいと いう問題点がある。 これは、 つなぎ目付近における解像度の低下や、
夕の全面はく離という問題を引き起こすおそれがある。 そこで本発明は、 シンチレ一夕の耐久性を確保し、 特につなぎ目付近における 解像度低下を予防し得る構成の放射線検出器およびその製造方法を提供すること を課題とする。
上記課題を解決するため本発明に係る放射線検出器は、 (1)基板と、複数の光電 変換素子を基板上の少なくともその 1辺近傍に 2次元に配列して形成した受光部 とを有する複数の撮像基板と、(2)これら複数の撮像基板の各受光部を隣り合わせ て並べて載置する基台と、(3)複数の撮像素子の受光部全体を一括して覆う表面の 平坦な透明膜と、 (4)この透明膜上に直接形成されているシンチレ一夕と、 を備え ていることを特徴とする。 本発明に係る放射線検出器としては、 例えば、 撮像基 板 2枚の連結、 あるいは、 撮像 ¾反 4枚を縦横 2枚ずつ連結する構成が考えられ る。
本発明に係る放射線検出器の製造方法は、(1)複数の光電変換素子が基板上の少 なくともその 1辺近傍に 2次元に配列されて形成されている受光部を有する撮像 基板を複数枚用意する工程と、(2)これら複数の撮像基板を基台上に各受光部を隣 り合わせて並べて載置する工程と、(3)これら複数の撮像基板の受光部全体の表面 上をその間に形成される隙間を含めて一括して覆う表面の平坦な透明膜を形成す る工程と、 (4)透明膜上にシンチレ一夕を直接形成する工程と、 を備えていること を特徴とする。
このシンチレ一夕の厚さとしては、 1 0 0 m〜1 0 0 0 mであることが望 ましい。
複数の撮像基板間に形成される隙間は 5 0〃m以下で、 かつ透明膜の厚さは 2 〃π!〜 3 0 /mであることが望ましい。 または、 上記隙間として 5 0〃m〜7 0 /mで、 かつ透明膜の厚さとして 5 111〜3 0〃mであってもよい。
本発明によれば、 複数の撮像基板の各受光部を隣り合わせて並べることで、 大 きな撮像面積を有する受光部が形成される。 そして、 この受光部上に一括して透 明膜を形成してその表面を平坦なものとし、 その膜上に直接シンチレ一夕を形成 しているので、 均一なシンチレ一夕を形成することができ、 均一な画像特性を有 する検出器が得られる。 さらにシンチレ一夕が平坦な膜上に形成されることでそ のはがれが効果的に防止される。
これらの撮像基板は光電変換素子に電気的に接続されている回路部を有してい ることが好ましい。 このようにすると、 信号読出し用の回路を別途形成する必要 がなく、 製造が容易になり、 シンチレ一夕形成後の取り扱いも簡単になる。
このシンチレ一夕を覆って密封する保護膜をさらに備えていることが好ましい シンチレ一夕が吸湿材料や強度の低い材料からなる場合、 保護膜で密封すること で、 耐久性が確保される。 図面の簡単な説明
図 1は、 本発明に係る放射線検出器の一実施形態を示す斜視図であり、 図 2は その断面図、 図 3は、 図 2の一部拡大図である。
図 4〜図 8は、 図 1の検出器の製造工程、 すなわち、 本発明に係る放射線検出 器の製造方法を説明する図である。
図 9は、 本発明に係る放射線検出器の別の実施形態を示す平面図である。
図 1 0、 図 1 1は、 本発明に係る放射線検出器の別の実施形態に用いられる撮 像基板をそれそれ示す平面図である。 発明を実施するための最良の形態
以下、添付図面を参照して本発明の好適な実施の形態について詳細に説明する。 説明の理解を容易にするため、 各図面において同一の構成要素に対しては可能な 限り同一の参照番号を附し、 重複する説明は省略する。 また、 各図面における寸 法、 形状は実際のものとは必ずしも同一ではなく、 理解を容易にするため誇張し ている部分がある。
図 1は、 本発明に係る放射線検出器の一実施形態を示す斜視図であり、 図 2は その断面図、 図 3は図 2の一部拡大図である。 この実施形態の放射線検出器 1 0 0は、 セラミヅク製の基台 1上に 4枚の撮像基板である固体撮像素子 2 a〜 2 d を 2 X 2枚並べて載置したものであり、 各固体撮像素子 2 a〜 2 dは、 接着樹脂 1 1によって基台 1に固定されている。
各固体撮像素子 2は、 例えば結晶 S i製の基板 2 0上に、 光電変換を行う光電 変換素子 2 1を 2次元上に配列することで構成されている。 この光電変換素子 2 1は、 フォトダイオード (P D ) やトランジスタからなる。 この光電変換素子 2 1の配列された部分を以下、 受光部と呼ぶ。 各光電変換素子 2 1は図示していな い信号ラインによって固体撮像素子 2の隣り合う二辺に配置された電極パヅド 2 2のうち対応する電極パッド 2 2とシフトレジス夕 2 3を介して電気的に接続さ れている。 そして、 各固体撮像素子 2 a〜 2 dは、 受光部が隣り合うように、 言 い換えると、 電極パヅ ド 2 2が周辺部に来るように配置されている。 このように 配置することで、 各固体撮像素子 2の受光部をできるだけ接近させて配置するこ とができ、 それそれの受光部間の隙間をできるだけ小さくして画像の得られない 不感領域を狭くすることができる。
固体撮像素子 2 a〜2 d上には、 それらの受光部と隣接する受光部間の隙間 2 5を一括して覆うようにして光電変換素子 2 1が感度を有する波長帯の光を透過 する透明膜 3が形成されている。 透明膜 3としては、 表面の平坦性に優れ、 光透 過特性の良好な樹脂、 例えば、 ポリイミド樹脂を用いることが好ましい。 この透 明膜 3上には、 入射した放射線を光電変換素子 2 1が感度を有する波長帯の光に 変換する柱状構造のシンチレ一夕 4が形成されている。 シンチレ一夕 4には、 各 種の材料を用いることができるが、 発光効率が良い T1ドープの Csl等が好ましい。 さらに、 このシンチレ一夕 4を覆って各固体撮像素子 2の電極パヅ ド 2 2とシ フトレジス夕 2 3との間まで広がり、 シンチレ一夕 4を密封する保護膜 5が形成 されている。 この保護膜 5は、 X線透過性で、 水蒸気を遮断するものであり、 例 えば、 ポリパラキシリレン樹脂(スリ一ボンド社製、商品名パリレン)、 特にポリ パラクロロキシリレン (同社製、 商品名パリレン C ) を用いることが好ましい。 パリレンによるコーティング膜は、 水蒸気及びガスの透過が極めて少なく、 撥水 性、 耐薬品性も高いほか、 薄膜でも優れた電気絶縁性を有し、 放射線、 可視光線 に対して透明であるなど保護膜 5にふさわしい優れた特徴を有している。
次に、 図 4〜図 8を用いてこの放射線検出器の製造工程、 すなわち、 本発明に 係る放射線検出器の製造方法を具体的に説明する。 最初に図 4に示されるような 構造の固体撮像素子 2を 4枚用意する。 そして、 平坦な表面を有する基台 1の表 面上に各固体撮像素子 2 a〜2 dをそれらの受光部が隣接するよう、 言い換える と各電極パッド 2 2部分が外側に配列されるように光電変換素子 2 1の受光面を 表にして縦横に 2枚ずつ並べて載置して接着樹脂 1 1によって基台 1へと固定す る (図 5参照)。
次に、 各電極パヅド 2 2部分をマスキングしたうえで、 受光部全体上 (その間 に形成された隙間 2 5部分を含む) にポリイミドを塗布したうえで、 硬化させる ことにより約 5 i mの厚さを有する透明膜 3を形成する (図 6参照)。 こうして、 透明膜 3により固体撮像素子 2 a〜2 d間の隙間を塞ぐとともに、 素子同士の表 面位置に段差がある場合でも透明膜 3の表面を平滑に形成することができる。 次に、 こうして形成された透明膜 3上に T1をドープした Cslを真空蒸着法によ つて厚さ約 400 z mの柱状結晶として成長させることによりシンチレ一夕 4層を 形成する(図 7参照)。 このシンチレ一夕 4層は、 固体撮像素子 4 a〜4 dの全受 光部の上に形成されることになる。 また、 シンチレ一夕 4層が形成される土台と なる透明膜 3の表面が前述したように平滑な状態であるため、 隙間を含む受光部 全体にわたって均一なシンチレ一夕 4層を形成することが可能である。
Cslは、 吸湿性が高く、 露出したままにしておくと空気中の水蒸気を吸湿して 溶解してしまうので、 その保護のため、 CVD (化学的蒸着)法によりシンチレ一 夕 4が形成された固体撮像素子 2 a〜2 dを基台 1ごと厚さ 10〃mのパリレン で包み込み、 保護膜 5を形成する (図 8参照)。 具体的には、 金属の真空蒸着と同様に真空中で蒸着によるコ一ティングを行う もので、原料となるジパラキシリレンモノマ一を熱分解して、生成物をトルエン、 ベンゼンなどの有機溶媒中で急冷しダイマ一と呼ばれるジパラキシリレンを得る 工程と、 このダイマ一を熱分解して、 安定したラジカルパラキシリレンガスを生 成させる工程と、 発生したガスを素材上に吸着、 重合させて分子量約 5 0万のポ リパラキシリレン膜を重合形成させる工程からなる。
Cslの柱状結晶の間には隙間があるが、 パリレンはこの狭い隙間にある程度入 り込むので、 保護膜 5は、 シンチレ一夕 4層に密着し、 シンチレ一夕 4を密封す る。 このパリレンコーティングにより、 凹凸のあるシンチレ一夕 4層表面に均一 な厚さの精密薄膜コーティングを形成することができる。 また、 パリレンの CVD 形成は、 金属蒸着時よりも真空度が低く、 常温で行うことができるため、 加工が 容易である。
この後で形成した保護膜 5に電極パヅド 2 2とシフ卜レジス夕 2 3との間に沿 つて切れ目を入れ、 外側の保護膜 5をはがすことで、 電極パッド 2 2を露出させ て図 1〜図 3に示される放射線検出器 1 0 0を得る。
続いて、 本実施形態の動作を図 1〜図 3により、 説明する。 入射面側から入射 した X線 (放射線) は、 保護膜 5を透過してシンチレ一夕 4に達する。 この X線 は、 シンチレ一夕 4で吸収され、 X線の光量に比例した所定の波長の光が放射さ れる。放射された光は透明膜 3を透過して各々の光電変換素子 2 1へと到達する。 各々の光電変換素子 2 1では、 光電変換により、 到達した光の光量に対応する電 気信号が生成されて一定時間蓄積される。 この光の光量は入射する X線の光量に 対応しているから、 つまり、 各々の光電変換素子 2 1に蓄積されている電気信号 は、 入射する X線の光量に対応することになり、 X線画像に対応する画像信号が 得られる。 光電変換素子 2 1に蓄積されたこの画像信号は、 図示していない信号 ラインからシフトレジス夕 2 3を介して各電極パヅド 2 2から順次出力されて外 部へと転送され、 これを所定の処理回路で処理することにより、 モニター上に X 線像を表示することができる。
前述したように、 本発明によれば、 各固体撮像素子 2の受光部を近接して配置 することが可能であり、 さらに、 その表面上に均一なシンチレ一夕 4層を形成し ているので、 それぞれの受光部の間のつなぎ目部分に生ずる不感領域を狭くする ことができ、 解像度の劣化も防止できる。 また、 つなぎ目部分も含めて透明膜 3 により覆われ、 その上にシンチレ一夕 4が形成されているので、 シンチレ一夕 4 のはく離現象を効果的に防止でき、 耐久性が確保できる。 そして、 受光画面の小 さい素子を組み合わせることで、 大画面の素子を製作する場合に比べて素子あた りの歩留まりの低下を防止することができ、 製作コストの低減も図れる。
本発明者らはこの透明膜 3によって素子間の隙間を充填することでシンチレ 夕 4のはく離を抑制する効果を検証するため、 固体撮像素子のペアを 4種類用意 し、 各素子を並べて素子間の隙間を一方が狭く、 他方が広くなるように配置する ことで隙間を位置により異ならせて配置したうえで、 各素子組の表面にポリイミ ドを塗布して硬化させることで、 それぞれに所定の厚みの透明膜を形成して、 そ の後シンチレ一夕 4として Cslを 400〃m蒸着した後、境界部分におけるシンチレ 一夕 4のはく離の有無を調べた。 表 1にその結果を示す。
表 1 シンチレ一夕のはく離の有無
Figure imgf000009_0001
隙間が 70 i mの場合でも 5 m厚の透明膜を形成することでシンチレ一夕 4 をはく離することなく蒸着できることが確認された。
この結果から隙間が 50 m以下の場合、 透明膜の厚さを 2 m以上とし、 隙間 が 50 z mより大きく m以下の場合、 透明膜の厚さを 5 z m以上とすることで -夕の剥離が防止できる。 また、 透明膜が厚すぎると透明膜中でィメー ジが散乱して解像度が低下してしまうので、 透明膜の厚さは 30 m以下であるこ とが好ましい。
尚、 隙間が 100 mと大きくなると隙間に入り込んだ透明膜の量が多くなり、 透明膜の硬化時の収縮により隙間部分で透明膜にわずかながら凹みができてしま うのでシンチレ一夕の剥離が生じてしまっている。 さらに隙間は大きければ大き いほどデッドスペースが増大することになり、 極力小さいほど良い。 これらのこ とから隙間は 70 zm以下に押さえることが好ましい。
なお、 上述した隙間の大きさと透明膜の厚さの関係は、 シンチレ一夕の厚さは 100〃m〜1000〃mの範囲において満たされるものである。
図 9は、 本発明に係る放射線検出器の第 2の実施形態を示す平面図である。 コ の図に示されるように、 2枚の撮像基板である固体撮像素子 2 a、 2 bを連結し て大画面の放射線検出器を製造してもよい。 さらに、 3枚以上の固体撮像素子を 一列に並べて大画面化したり、 2 x m列あるいは m x n列並べて大画面化しても 構わない。 固体撮像素子を 2 x m列 (ただし mは 3以上の整数) 並べる場合は、 少なくとも四隅に配置される以外の固体撮像素子 2 ' は、 少なくとも 3辺の境界 部分まで受光部 2 1が配置されている構造(図 10参照)を有している必要がある。 また、固体撮像素子を mx n列(ただし m、 nとも 3以上の整数)並べる場合は、 さらに周辺部以外に配置される固体撮像素子 2 " は、 表面全体に受光部 2 1が配 置される構造 (図 11参照) を有している必要がある。 この場合、 電極パヅドは背 面に設けて、 基台 1を貫通する配線を利用して信号を読み出すことが好ましい。 以上の説明では、 保護膜 5としてパリレン製の単一膜構造の保護膜について説 明してきたが、 パリレン膜の表面に Al、 Ag、 Au等の金属薄膜からなる反射膜を 設ければ、シンチレ一夕 3から放射された光を光電変換素子 2 1へと戻すことで、 輝度の高い画像を得ることができる。 この金属薄膜の保護のため、 さらにその表 面にパリレン膜等を施してもよい。 シンチレ一夕 3として防湿性の材料を使用し た場合や、 装置全体を防湿性の保護ケース内に収容するような場合は、 保護膜 5 を設けなくともよい。
また、 本発明における透明膜とは可視光を透過するという意味での透明膜を意 味するのではなく、 透明膜が設けられる撮像基板の光電変換素子が感度を有する 光を透過性質を有することを意味する。 したがって、 例えば可視光中の特定の波 長帯に感度を有する光電変換素子を利用する場合は、 その感度域外の可視光に対 しては不透明であってもよく、 可視光ではなく赤外線や紫外線等に感度を有する 光電変換素子を利用する場合は、 感度を有する光を透過すれば可視光に対しては 不透明であっても構わない。 さらに、 感度帯域の一部に対しては不透明であって もよい。
,産業上の利用可能性
本発明に係る放射線検出器は、 大画面の放射線画像を撮像する放射線検出器と して好適に使用できる。

Claims

請求の範囲
1 . 基板と、 複数の光電変換素子を前記基板上の少なくともその 1辺近傍に 2 次元に配列して形成した受光部とを有する複数の撮像基板と、
前記複数の撮像基板を各受光部を隣り合わせて並べて載置する基台と、 前記複数の撮像基板の受光部全体を一括して覆う表面の平坦な透明膜と、 前記透明膜上に直接形成されているシンチレ一夕と、
を備えている放射線検出器。
2 . 前記シンチレ一夕の厚さは 1 0 0〃m〜l 0 0 0 zmである請求項 1に記 載の放射線検出器。
3 . 前記複数の撮像基板間に形成される隙間は 5 0〃m以下であり、 かつ前記 透明膜の厚さは 2〃m〜 3 0 mである請求項 1又は 2に記載の放射線検出器。
4 . 前記複数の撮像基板間に形成される隙間は 5 0 zm~ 7 0〃mであり、 か つ前記透明膜の厚さは 5 m〜 3 0〃mである請求項 1又は 2に記載の放射線検 出器。
5 . 前記撮像基板は前記光電変換素子に電気的に接続されている回路部を有し ている請求項 1〜 4のいずれかに記載の放射線検出器。
6 . 前記撮像基板を 2枚備えている請求項 1〜 5のいずれかに記載の放射線検
7 . 前記撮像基板を 4枚備えており、 それらが縦横に 2枚ずつ連結されている 請求項 1〜 5のいずれかに記載の放射線検出器。
8 . 前記シンチレ一夕を覆って密封する保護膜をさらに備えている請求項 1〜 7のいずれかに記載の放射線検出器。
9 . 複数の光電変換素子が基板上の少なくともその 1辺近傍に 2次元に配列さ れて形成されている受光部を有する撮像基板を複数枚用意する工程と、
前記複数の撮像基板を基台上に各受光部を隣り合わせて並べて載置する工程と、 前記複数の撮像基板の受光部全体の表面上をその間に形成される隙間を含めて 一括して覆う表面の平坦な透明膜を形成する工程と、
前記透明膜上にシンチレ一夕を直接形成する工程と、
を備えている放射線検出器の製造方法。
1 0 . 前記シンチレ一夕を覆って密封する保護膜を形成する工程をさらに備え ている請求項 9記載の放射線検出器の製造方法。
PCT/JP2001/006700 2000-08-03 2001-08-03 Détecteur de rayonnement radioactif et procédé de fabrication WO2002012919A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/343,438 US7019303B2 (en) 2000-08-03 2001-08-03 Radiation ray detector and method of manufacturing the detector
AU2001276727A AU2001276727A1 (en) 2000-08-03 2001-08-03 Radioactive ray detector and method of manufacturing the detector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000-235874 2000-08-03
JP2000235874A JP4447752B2 (ja) 2000-08-03 2000-08-03 放射線検出器

Publications (1)

Publication Number Publication Date
WO2002012919A1 true WO2002012919A1 (fr) 2002-02-14

Family

ID=18728011

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006700 WO2002012919A1 (fr) 2000-08-03 2001-08-03 Détecteur de rayonnement radioactif et procédé de fabrication

Country Status (4)

Country Link
US (1) US7019303B2 (ja)
JP (1) JP4447752B2 (ja)
AU (1) AU2001276727A1 (ja)
WO (1) WO2002012919A1 (ja)

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1300694B1 (en) * 2000-05-19 2011-03-23 Hamamatsu Photonics K.K. Radiation detector and method of manufacture thereof
US6847041B2 (en) * 2001-02-09 2005-01-25 Canon Kabushiki Kaisha Scintillator panel, radiation detector and manufacture methods thereof
JP4247017B2 (ja) 2003-03-10 2009-04-02 浜松ホトニクス株式会社 放射線検出器の製造方法
US7355184B2 (en) * 2003-04-07 2008-04-08 Canon Kabushiki Kaisha Radiation detecting apparatus and method for manufacturing the same
EP2103958B1 (en) * 2004-05-11 2017-08-02 Hamamatsu Photonics K.K. Radiation imaging device
US7910892B2 (en) 2005-12-22 2011-03-22 Kabushiki Kaisha Toshiba Method for manufacturing X-ray detector and X-ray detector
JP4920994B2 (ja) * 2006-03-02 2012-04-18 キヤノン株式会社 シンチレータパネル、放射線検出装置及び放射線検出システム
US7772558B1 (en) * 2006-03-29 2010-08-10 Radiation Monitoring Devices, Inc. Multi-layer radiation detector and related methods
JP4455534B2 (ja) 2006-05-09 2010-04-21 株式会社東芝 放射線検出器およびその製造方法
US8483353B2 (en) * 2006-09-19 2013-07-09 General Electric Company Integrated X-ray detector assembly and method of making same
US8483352B2 (en) * 2006-09-19 2013-07-09 General Electric Company Stacked x-ray detector assembly and method of making same
US8488736B2 (en) * 2006-09-19 2013-07-16 General Electric Company Stacked flat panel x-ray detector assembly and method of making same
US7974377B2 (en) * 2006-09-19 2011-07-05 General Electric Company X-ray detection methods and apparatus
KR20080114695A (ko) 2006-12-27 2008-12-31 가부시끼가이샤 도시바 방사선 검출기
WO2008133078A1 (ja) * 2007-04-17 2008-11-06 Konica Minolta Medical & Graphic, Inc. 放射線像変換パネルの清掃方法、画像情報読み取り方法および画像情報読み取り装置
JP5004848B2 (ja) * 2007-04-18 2012-08-22 キヤノン株式会社 放射線検出装置及び放射線検出システム
JP4719201B2 (ja) * 2007-09-25 2011-07-06 浜松ホトニクス株式会社 固体撮像装置
JP5124226B2 (ja) 2007-10-01 2013-01-23 浜松ホトニクス株式会社 放射線検出器
JP5124227B2 (ja) * 2007-10-01 2013-01-23 浜松ホトニクス株式会社 放射線検出器
CN101849198A (zh) * 2007-11-09 2010-09-29 皇家飞利浦电子股份有限公司 吸湿性闪烁体的保护
JP4808748B2 (ja) * 2008-06-13 2011-11-02 浜松ホトニクス株式会社 ホトダイオードアレイの製造方法
JP4808759B2 (ja) * 2008-11-18 2011-11-02 浜松ホトニクス株式会社 放射線検出器
JP4808760B2 (ja) * 2008-11-19 2011-11-02 浜松ホトニクス株式会社 放射線検出器の製造方法
JP2011137665A (ja) * 2009-12-26 2011-07-14 Canon Inc シンチレータパネル及び放射線撮像装置とその製造方法、ならびに放射線撮像システム
JP5791281B2 (ja) * 2010-02-18 2015-10-07 キヤノン株式会社 放射線検出装置及び放射線検出システム
RU2461022C1 (ru) 2011-04-15 2012-09-10 Закрытое Акционерное Общество "Импульс" Плоскопанельный приемник рентгеновского излучения и способ его изготовления
JP6077787B2 (ja) 2012-08-22 2017-02-08 キヤノン株式会社 放射線撮像装置及び放射線撮像システム
WO2015048873A1 (en) * 2013-10-02 2015-04-09 Teledyne Dalsa, Inc. Moisture seal for a radiological image sensor
JP6333034B2 (ja) * 2014-04-11 2018-05-30 キヤノン株式会社 放射線撮像装置の製造方法
JP6576064B2 (ja) 2015-03-18 2019-09-18 キヤノン株式会社 放射線検出装置、放射線撮像システム及び放射線検出装置の製造方法
JP6487263B2 (ja) * 2015-04-20 2019-03-20 浜松ホトニクス株式会社 放射線検出器及びその製造方法
US11156727B2 (en) * 2015-10-02 2021-10-26 Varian Medical Systems, Inc. High DQE imaging device
JP1565085S (ja) * 2016-03-28 2019-11-25
JP6659182B2 (ja) * 2018-07-23 2020-03-04 キヤノン株式会社 放射線撮像装置、その製造方法及び放射線撮像システム
JP7325295B2 (ja) * 2019-10-24 2023-08-14 浜松ホトニクス株式会社 シンチレータパネル、放射線検出器、シンチレータパネルの製造方法、及び、放射線検出器の製造方法
US11253212B2 (en) * 2020-01-07 2022-02-22 General Electric Company Tileable X-ray detector cassettes

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114780A (ja) * 1987-10-28 1989-05-08 Kanegafuchi Chem Ind Co Ltd X線検出装置
JPH07209430A (ja) * 1993-12-06 1995-08-11 Minnesota Mining & Mfg Co <3M> 放射線固体検出パネル
JP2000009845A (ja) * 1998-06-19 2000-01-14 Hamamatsu Photonics Kk 放射線イメージセンサ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5489A (en) * 1848-03-28 Wkotjght-itail machinery
JPH0379075A (ja) * 1989-08-23 1991-04-04 Hitachi Medical Corp 光電変換素子
JP3544075B2 (ja) 1995-09-05 2004-07-21 キヤノン株式会社 光電変換装置の製造方法
TW331667B (en) 1995-09-05 1998-05-11 Canon Kk Photoelectric converter
JPH1093061A (ja) * 1996-09-11 1998-04-10 Toshiba Corp 画像検出装置、アレイ基板および画像検出装置の製造方法
WO1998036291A1 (fr) * 1997-02-14 1998-08-20 Hamamatsu Photonics K.K. Dispositif de detection de radiations et son procede de production
EP0932053B1 (en) 1997-02-14 2002-01-09 Hamamatsu Photonics K.K. Radiation detection device and method of producing the same
JP2000512084A (ja) * 1997-04-02 2000-09-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ センサマトリックスを有するx線装置
JPH11345956A (ja) 1998-03-16 1999-12-14 Canon Inc 撮像装置
JP4220017B2 (ja) * 1998-06-23 2009-02-04 浜松ホトニクス株式会社 シンチレータパネル、放射線イメージセンサ及びその製造方法
JP2000131444A (ja) 1998-10-28 2000-05-12 Canon Inc 放射線検出装置、放射線検出システム、及び放射線検出装置の製造方法
AU1507399A (en) 1998-12-14 2000-07-03 Hamamatsu Photonics K.K. Optical element and radiation detector using the same
DE19914701B4 (de) 1999-03-31 2005-07-07 Siemens Ag Verfahren zur Herstellung eines Festkörperbilddetektors sowie Festkörperbilddetektor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01114780A (ja) * 1987-10-28 1989-05-08 Kanegafuchi Chem Ind Co Ltd X線検出装置
JPH07209430A (ja) * 1993-12-06 1995-08-11 Minnesota Mining & Mfg Co <3M> 放射線固体検出パネル
JP2000009845A (ja) * 1998-06-19 2000-01-14 Hamamatsu Photonics Kk 放射線イメージセンサ

Also Published As

Publication number Publication date
AU2001276727A1 (en) 2002-02-18
US20030173493A1 (en) 2003-09-18
JP2002048872A (ja) 2002-02-15
US7019303B2 (en) 2006-03-28
JP4447752B2 (ja) 2010-04-07

Similar Documents

Publication Publication Date Title
WO2002012919A1 (fr) Détecteur de rayonnement radioactif et procédé de fabrication
JP4283427B2 (ja) 放射線検出器およびシンチレータパネル
KR100514546B1 (ko) 방사선검출소자및그제조방법
KR101218521B1 (ko) 방사선 촬상 소자 및 이를 구비한 방사선 촬상 장치
WO1998036291A1 (fr) Dispositif de detection de radiations et son procede de production
US7067817B2 (en) Radiation image sensor and making method of same
JP2000284053A (ja) 放射線検出素子
WO2001088569A1 (fr) Detecteur de rayonnement et fabrication de ce detecteur
JP4234304B2 (ja) 放射線検出器
EP1300694B1 (en) Radiation detector and method of manufacture thereof
JP4563042B2 (ja) 放射線イメージセンサ
JP3029873B2 (ja) 放射線検出素子及びその製造方法
JP4234305B2 (ja) 放射線検出器
JP4234303B2 (ja) 放射線検出器
JP4644307B2 (ja) 放射線イメージセンサ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 10343438

Country of ref document: US

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase