WO2002008122A1 - Poudre fine de diamant monocristalline a faible distribution en taille des particules et son procede de fabrication - Google Patents

Poudre fine de diamant monocristalline a faible distribution en taille des particules et son procede de fabrication Download PDF

Info

Publication number
WO2002008122A1
WO2002008122A1 PCT/JP2001/006337 JP0106337W WO0208122A1 WO 2002008122 A1 WO2002008122 A1 WO 2002008122A1 JP 0106337 W JP0106337 W JP 0106337W WO 0208122 A1 WO0208122 A1 WO 0208122A1
Authority
WO
WIPO (PCT)
Prior art keywords
diamond
particle size
particles
less
value
Prior art date
Application number
PCT/JP2001/006337
Other languages
English (en)
French (fr)
Inventor
Hiroshi Yamanaka
Ryuji Ohshima
Ryouichi Sato
Nobuyuki Saito
Hiroshi Ishizuka
Original Assignee
The Ishizuka Research Institute, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000221119A external-priority patent/JP3655811B2/ja
Priority claimed from JP2001142118A external-priority patent/JP4925233B2/ja
Application filed by The Ishizuka Research Institute, Ltd. filed Critical The Ishizuka Research Institute, Ltd.
Priority to KR10-2003-7000926A priority Critical patent/KR20030038673A/ko
Priority to CA002416522A priority patent/CA2416522A1/en
Priority to EA200300182A priority patent/EA200300182A1/ru
Priority to AU2001272778A priority patent/AU2001272778A1/en
Priority to IL15403801A priority patent/IL154038A0/xx
Priority to BR0112596-6A priority patent/BR0112596A/pt
Publication of WO2002008122A1 publication Critical patent/WO2002008122A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03BSEPARATING SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS
    • B03B5/00Washing granular, powdered or lumpy materials; Wet separating
    • B03B5/62Washing granular, powdered or lumpy materials; Wet separating by hydraulic classifiers, e.g. of launder, tank, spiral or helical chute concentrator type
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/04Diamond
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1409Abrasive particles per se
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Definitions

  • the present invention is applicable to ultra-precision polishing of a single-crystal diamond fine powder having a narrow particle size width, particularly a high-hardness material, or a composite material including a plurality of materials having different hardnesses such as a thin-film magnetic head. Also, about single crystal diamond fine abrasive, stomach & landscape technology
  • the particle size of diamond powder used as an abrasive has gradually shifted to finer particles, and the use of diamond particles with a particle size of less than lm, that is, submicron class diamond powder has also been increasing.
  • the requirements for the quality of the fine powder, particularly the particle size distribution tend to be stricter year by year.
  • monocrystalline diamond synthesized using static ultra-high pressure is used as a raw material. It is common practice to pulverize and then subject it to a classification process to produce a product with uniform particle size.
  • diamond fines produced by this method are commercially available with a particle size of 0 to 0.1 ⁇ m and a D50 value of 0.12 ⁇ m in Microtrac UPA measurement values of around 0.12 ⁇ m. It is the minimum size of the product.
  • diamond synthesized by these impact pressures is a polycrystalline secondary particle with an apparent particle size of several hundred nm to several / Is known to form
  • the secondary particle size of the above-mentioned Dupont-type diamond is available in the same range as the monocrystalline pulverized powder, in the range of 0 to 0.1 m in particle size display, and 0.12 / m in D50 value by Microtrac UPA measurement. It is the smallest commercially available size.
  • the above cluster diamonds obtained by conversion from explosives are commercially available as aggregated particles with an apparent size of several m, but are broken down into primary particles of 5 to 10 nm by strong oxidation treatment. It is possible.
  • the fine diamond powder currently available for polishing is nominally 0 to 0.1 ⁇ m, and the lower limit is 0.12 / m in D50 value measured by micro-track UPA, 0.01 ⁇ m (10 nm)
  • fine diamond powder of 0.25 m or less is collected and commercialized, including all undersizes, as shown in the indications of 0 to 0.25, 0 to 1/8, etc.
  • fine particle size side it contains fine powder that not only does not contribute to the polishing process but also sometimes has a bad influence.
  • the D50 value tends to be displayed smaller than the real value.
  • Uz de to thin-film magnetic is one of the workpiece diamond fines present invention is directed to a polishing, which also AlTiC (A1 2 0 3 - TiC) substrate such as alumina ( A1 2 0 3) ceramic Shitsumaku for protection / isolation consisting etc., and a composite material composed of permalloy (Fe- Ni) and sendust (Fe- Al- Si) magnetic metal film or the like.
  • One solution to reducing the step due to the difference in hardness between the constituent materials of the thin-film magnetic head is to reduce the particle size of diamond used as an abrasive.
  • conventional abrasives polycrystalline type
  • These fine particle components do not function as effective abrasives for relatively hard ceramic parts composed of Altic / alumina, etc., but are relatively soft abrasives such as Permalloy and Sendust. Has a polishing effect on the metallic material.
  • a first object of the present invention is to provide a finely classified single-crystal diamond fine powder that contains almost no harmful undersized fine powder and is suitable for precision polishing of various high-hardness materials as described above. To provide.
  • Another object is to suppress the selective polishing of a metal film, which is a relatively soft constituent material, and reduce the size of diamond particles in the polishing of composite materials composed of substances with different hardness, especially thin-film magnetic heads.
  • An object of the present invention is to provide a monocrystalline diamond particle abrasive capable of achieving a low PTR and a high quality polished metal surface by avoiding piercing.
  • the present inventors have found that, when preparing a diamond particle abrasive, the fine particle component contained in a relatively large proportion in a conventional diamond particle abrasive is greatly reduced, thereby achieving a thin film magnetic head. In the working of the material, it was found that the above PTR can be reduced and the generation of piercing particles can be significantly suppressed, and the present invention has been achieved. Disclosure of the invention
  • a diamond abrasive suitable for ultra-precision polishing of a general work material is obtained according to the present invention by pulverizing a single crystalline diamond synthesized under static ultrahigh pressure.
  • the D50 value particle size is 120 nm or less, particularly 100 nm or less, and the ratio of the D10 value particle size and the D90 value particle size to the D50 value particle size is Achieved by finishing to not less than 50% and not more than 200%, respectively.
  • a diamond abrasive material suitable for ultra-precision polishing of a work material composed of a material having a different hardness, such as a thin film type polishing head is a monocrystalline diamond.
  • the above-mentioned diamond fine powder is typically obtained by subjecting a monocrystalline diamond powder synthesized under static ultra-high pressure to a fine pulverizing step and a fine classification step. By repeating the process, an aggregate of sized fine particles having a D50 value average particle size of 120 nm or less, particularly preferably 100 nm or less, is obtained.
  • FIG. 1 is a graph showing the results of measuring the particle size of the single crystalline diamond fine powder obtained in the example of the present invention.
  • FIG. 2 is a graph showing the result of particle size measurement of another single-crystalline diamond fine powder obtained in the example of the present invention. .
  • the fine pulverization step can be performed based on impact crushing or grinding using steel balls, such as a ball mill, and attrition.
  • the precision classification step can be performed based on elutriation by adjusting the flow rate. In this case, in the elutriation classification process, the separation of the undersized fine powder is promoted by setting the ascending water flow velocity to 2 to 4 times the sedimentation velocity of the particles calculated from Stokes' law, thereby promoting efficient Classification can be performed.
  • the diamond fine powder of the present invention is heat-treated at a specific temperature range of 800 to L400 ° C in the course of sizing in order to be particularly suitable for a work material having relatively low hardness.
  • the diamond particles themselves exhibit a heat-affected structure such as a decrease in strength value,
  • non-diamond carbon such as graphite
  • the impact during contact with the workpiece during the polishing process is reduced, resulting in deep polishing flaws and diamond particle surface
  • the protrusion height of the cutting edge is relatively reduced by coating the surface of the diamond particles, so that the occurrence of deep polishing scratches on the processed surface is suppressed.
  • the effect of non-diamond carbon is remarkable when the mass ratio of the non-diamond carbon to the whole diamond particles is 0.5% or more.
  • a steel ball mill pot with an inner diameter and length of 250 mm was used, into which 20 kg of 6 mm steel balls and 300 g of raw material diamond powder were put, and ground for 120 hours at a rotation speed of 80 rpm. .
  • the elutriator used was a straight cylinder with a length of 20 cm and a cross section of 2500 cm for the first stage and 5000 cm 2 for the second stage.
  • 1 kg of the above-mentioned finely ground diamond powder was charged into the apparatus, and elutriation operation was performed by supplying 120 liters of ion-exchanged water at a flow rate of 25 cc / hour.
  • the suspension flowing out from the second stage was collected in a storage tank, and maintained at pH 2 by adding hydrochloric acid.
  • the measured values of the particle size at each stage after separation by Microtrac UPA are as shown in the table below.
  • the values of the ratio D90 / D50 are 156%, 132%, and 177%, respectively, and the values of D10 / D50 are 60%, 75%, and 58%.
  • diamond fine powder with a narrow particle size width is obtained.
  • Figures 1 and 2 show the results of the particle size measurement of the fine diamond powder collected from the first stage and the effluent in the above example using Microtrac UPA.
  • the bar graph shows the frequency of the fraction in each particle size range, and the curve shows the cumulative amount.
  • Micron-size diamond abrasive grains MD100 (trade name) for precision machining manufactured by Tomei Diamond manufactured by classification operation by elutriation were used as raw materials.
  • the raw material before re-elutriation classification and the diamond particles obtained by re-elutriation classification were each subjected to heat treatment in nitrogen gas.
  • the treatment was performed by placing diamond particles as a processing raw material in a porcelain boat, replacing the atmosphere with nitrogen gas, and maintaining the temperature at 1200 ° C for 3 hours.
  • Each of the oil-soluble slurries was prepared using the diamond particles of the present invention which had been subjected to elutriation classification and heat treatment as described above, and a conventional diamond which had been subjected to heat treatment without re-elutriation classification for comparison. Fabricated and lap-polished ABS of thin-film magnetic head.
  • the polishing performance of both slurries was evaluated based on the PTR value and the phenomenon of sticking to the metal film. That AlTiC (A1 2 0 3 - TiC) , alumina (A1 2 0 3) and Pas one Malloy (Fe- Ni), composed of sendust (Fe-Al- Si), composite materials testing simulating a head to the magnetic Measure the step on one piece, observe the corner metal film with a scanning electron microscope, The number of pierced diamond abrasive grains was counted.
  • the number of piercing particles was three in the case of the diamond particle abrasive of the present invention, compared with fifteen in the conventional product.
  • the diamond fine powder of the present invention exhibits a narrow particle size range in a particle size range of 120 dishes or less while retaining the single crystal characteristic of diamond synthesized by the static pressure method, it can be used for general hard materials and thin-film magnetic heads. It is suitable for ultra-precision polishing of different hardness composites such as low PTR processing of metal and other various precision applications.

Description

明 細 書 粒度幅の狭い単結晶質: ド微粉及びその製造法
技術分野
本発明は、 粒度幅の狭い単結晶質ダイヤモンド微粉、 特に高硬度材料や、 薄膜型磁気へッド等のように硬さの異なる複数の物質からなる複合材の超 精密研磨加工等に適合させた、 単結晶質ダイヤモンド微粉研磨材に関する, 胃&景技術
精密加工技術の高度化に伴って、研磨材として用いられるダイヤモンド粉 末の粒度は次第に細かな方へ移行してきており、 粒度が l m以下、 即ちサ ブミクロン級のダイヤモンド微粉の使用も増加してきている。 これと共に、 かかる微粉の品質、特に粒度分布に対する要求も年々厳しくなる傾向がある ダイヤモンド微粉の製造方法としては、静的超高圧力を用いて合成した単 結晶質のダイヤモンドを原料として用い、 これを粉砕したのち分級工程に供 して、 粒度の揃った製品にする方法が一般的である。 この方法で製造される ダイヤモンド微粉は、 粉碎工程及び分級工程上の制約から、 粒度表示におい て 0〜0. 1〃m、 マイクロトラック U P A測定値における D50値として 0. 12〃 m付近が、 市販品の最小サイズとなっている。
一方、 爆薬を用いた衝撃加圧によって、 グラフアイ トまたは爆薬成分をダ ィャモンドに転換する、 衝撃乃至動的加圧方法も工業的に確立されている。 原料としてグラフアイ トを用いて合成されたダイヤモンドはデュポンタイ プ ·ダイヤモンドと呼ばれ、 一方、 爆薬自体を炭素源に用いて合成したダイ ャモンドはクラス夕一ダイヤモンド、 またはウルトラファイン ·ダイヤモン ドなどと呼ばれており、 いずれも精密加工分野における研磨材として広く用 いられている。
これらの衝撃加圧によって合成されたダイヤモンドは、 一般に数 nm〜数十 nmの粒径の一次粒子が凝集ないし結合して、 見掛け粒径が数百 nm〜数/ の 多結晶質の二次粒子を形成していることが知られている。 上記デュポンタイプ ·ダイヤモンドの二次粒子サイズは、 単結晶質の粉砕 粉と同じく、 粒度表示において 0〜0. 1 m、 マイクロトラック U P A測定に よる D50値において 0. 12 / mあたりが、 入手可能な市販の最小サイズとなつ ている。
また爆薬からの転化によって得られる上記クラスターダイヤモンドは、 見 掛けサイズ数 mの凝集粒子として市販されているが、 強力な酸化処理を施 すことによって、 5〜10nmと言われる一次粒子に解砕することが可能である。 以上のような状況において、 現在使用可能な研磨用のダイヤモンド微粉は、 公称 0〜0. 1〃m、 マイクロ トラヅク U P A測定による D50値で 0.12 / mを下 限としており、 0.01〃m ( 10nm)のオーダ一から 0.12 / m ( 120nm)までの範囲 の研磨材、 特に単結晶質の微粉は市場で得ることができず、 より多様化する 超微細加工の要求に応えられなかった。
そのうえ 0.25 m以下のダイヤモンド微粉は、 0〜0.25や、 0〜1/8等の表 示に示されるように、 アンダーサイズを全て含めて捕集し製品化されている 従って粒度幅が比較的広く、小粒径側に、研磨工程に寄与しないだけでなく、 時には悪影響を及ぼすことさえある微粉を含有している。 さらには微細なフ ラクシヨンのために、 D50値が実質より小さく表示される傾向にある。
一方、 光学部品、 電子部品、 精密機械部品などの性能や機能に対する要求 が近年ますます高度化し、 これに伴って、 使用される材料も金属材料、 セラ ミックス、 ガラス、 プラスチックと非常に多岐にわたる。 このような部品の 製造工程においては、 硬度の異なる複数の材料で構成された複合材料を研磨 する必要性が増している。薄膜型磁気へヅ ド(素材)は本発明のダイヤモンド 微粉が研磨加工の対象とする被削材の一つであるが、 これもアルチック (A1203- TiC )等の基材、アルミナ(A1203 )等から成る保護/絶縁のためのセラミ ック質膜、 及びパーマロイ(Fe- Ni )やセンダスト(Fe- Al- Si )等の磁性金属膜 から成る複合材料である。
これらの磁気へッ ドの A B S (Air Bearing Surface:空気浮上面) の研 磨加工を行う場合、 研磨材としては従来、 衝撃圧力下で合成されるいわゆる 多結晶ダイヤモンドが多用されている。 このタイプの研磨材を用いて薄膜型 磁気へッ ドを研磨する場合、 へッ ド構成材料間の硬度差により、 相対的に軟 質材料である金属膜が選択的に加工され、段差や面粗れの発生が避けられな い。 そのため、 金属膜から成る磁極部がセラミック質の A B Sから後退する ポ一ルチヅプリセヅシヨン(Pole Tip Recession: P T R )が生じて記録媒体 との磁気間隔が増大し、結局実質的なへヅド浮上量が増すことになるという 問題があった。
薄膜型磁気へッ ド構成材料間の硬度差による段差を小さくするための解 決策の一つとして、研磨材として使用するダイヤモンドの粒径を小さくする ことが考えられる。 しかし従来の研磨材(多結晶型)には、 充分な研磨能力を 持つ有効粒子成分のほかに、 充分な研磨能力を持たない有効粒子より細かな 粒子成分が、 かなりの割合で含有されている。 これらの微細な粒子成分は、 アルチック /アルミナ等で構成される相対的に硬質のセラミヅク部分に対 しては有効な研研磨材として機能しないが、 パ一マロイやセンダスト等の相 対的に軟質の金属材に対しては研磨作用を示す。
従来のダイヤモンド研磨材において、粒子径の小さな研磨材を使用すると、 P T Rが減少する傾向は認められる反面、 軟質材料である金属膜の選択研磨 は、 大きな粒子径のものを用いる場合よりむしろ顕著になる。 この現象は次 のように解釈される。 即ち、 薄膜型磁気へッドの研磨加工は、 研磨材を分散 させたスラリ一を滴下した定盤(研磨板)上で実施されている。 この際、 より 大きな有効粒子は定盤面に埋め込まれて固定された状態で研磨作用に寄与 するのに対し、 より小さな微細粒子はへッ ドと定盤面の間で転動することか ら、 軟質材料が選択的に研磨されると考えられる。
また、従来の単結晶質ダイヤモンド研磨材を用いて薄膜型磁気へッ ドの A B Sの研磨加工を行う場合、上記金属膜にダイヤモンド粒子が突き刺さると いう問題があった。金属膜に粒子が突き刺さった状態の磁気へッドをハ一ド ディスクドライブに実装すると、駆動されてへッ ドがディスク上に浮上して いる間に、 突き刺さり粒子が脱落し、 ディスク面に触れてクラヅシュの原因 となり得る。従ってこのような突き刺さりは可能な限り抑制すべき重要な問 題である。 上記突き刺さり粒子の個数は、 従来の研磨材を使用する場合、 研磨材の^: H粒子径が小さくなるにつれて増加する傾向が見られ、前述した低 P T R値 の達成との両立は困難であった。
従って、 ハードディスクの記録密度向上のために、 低 P T R加工を可能と し、 同時に金属膜への突き刺さりを生じない研磨材の開発が望まれていた。 以上のような状況において、 本発明の第一の目的は、 上記のように有害な アンダーサイズ微粉を殆ど含まず、各種高硬度材料の精密研磨加工に適する 精密分級された単結晶質ダイヤモンド微粉を提供することにある。
また別の目的は、 硬度の異なる物質で構成される複合材、 特に薄膜型磁気 へッドの研磨加工において、相対的に軟質の構成材料である金属膜の選択的 研磨の抑制及びダイヤモンド粒子の突き刺さりの回避により、低 P T R及び 高品質の研磨金属表面を達成可能な単結晶質ダイヤモンド粒子研磨材を提 供することにある。
本発明者等は、 ダイヤモンド粒子研磨材を調製する際に、 従来のダイヤモ ンド粒子研磨材に比較的大きな割合で含有されている微細粒子成分を大幅 に減少させることにより、 薄膜型磁気へヅ ド材の加工において、 上記 P T R を減少させ、突き刺さり粒子の発生を大幅に抑制することができるとの知見 を得、 本発明を達成するに至った。 発明の開示
上掲せる課題において、 一般被削材の超精密研磨加工に適するダイヤモン ド研磨材は、 本発明によれば、 静的超高圧下にて合成された単結晶質ダイヤ モンドの微粉碎によって得られる、 単結晶質サブミクロン級ダイヤモンドを、 マイクロトラック U P A粒度測定器による測定値において、 D50値粒径が 120nm以下、 特に lOOnm以下であり、 かつ D50値粒度に対する D10値粒度および D90値粒度の比がそれぞれ 50%以上および 200 %以下となるように仕上げる ことによって達成される。
次に薄膜型研磨へッ ド等、異硬度物質で構成される被削材の超精密研磨加 ェに適するダイヤモンド研磨材は、 本発明によれば、 単結晶質ダイヤモンド 粒子の集合体で構成されるダイヤモンド粒子研磨材であって、 マイクロトラ ック U P A測定器による測定値において、 上記集合体の平均粒子径 d D50の 70 % ( 0. 7 x d D5fl )以下の粒子径を示す微小粒子の割合が、 測定された粒子全 体の 15 %以下であることを特徴とする、 D 50平均粒子径 d D5()が 120nm以下の ダイヤモンド粒子研磨材となるように仕上げることによって達成される。 上記ダイヤモンド微粉は、 典型的には、 静的超高圧下にて合成された単結 晶質ダイヤモンド粉を微粉砕工程および精密分級工程に供することによつ て得られ、微粉砕工程および精密分級工程の反復により D50値平均粒度 120nm 以下、 特に好ましくは lOOnm以下の整粒された微粒子の集合体とする。 図面の簡単な説明
図 1は本発明実施例で得られた単結晶質ダイヤモンド微粉の、粒度測定結 果を示すグラフである。
図 2は本発明実施例で得られた別の単結晶質ダイヤモンド微粉の、粒度測 定結果を示すグラフである。 .
図 1および図 2において、棒グラフは各粒度範囲のフラクションの頻度を、 曲線は累積量を表す。 発明を実施するための最良の形態
上記微粉砕工程は、 ボールミル等、 鋼球を用いた衝撃破砕ないしは磨砕、 アトリシヨンに基づいて実施できる。 また、 上記精密分級工程は流速を調整 して水簸に基づいて実施できる。 この場合、 水簸分級工程において、 上昇水 流速度をストークスの法則から計算される粒子の沈降速度の 2乃至 4倍の速 度にすることによって、 アンダーサイズ微粉の分離を促進し、 効率的な分級 を行うことができる。
なお必須ではないが、 本発明のダイヤモンド微粉は、 特に比較的低硬度の 被削材に適合させるために、 整粒の途中でダイヤモンド粒子を 800〜: L400°C の特定温度範囲にて加熱処理に供することも有用である。即ちこの処理によ つて、 ダイヤモンド粒子自体が強度値低下等の熱影響構造を呈すると共に、 表面の一部が黒鉛等非ダイヤモンド炭素に転ずることにより、研磨工程にお いて被削材との接触時の衝撃が軽減される結果、 深い研磨傷の発生や、 ダイ ャモンド粒子の被削材表面への食い込みが抑制され、 一方で、 ダイヤモンド 粒子の表面が被覆されることにより相対的に切れ刃の突き出し高さが減少 する結果、 加工面に深い研磨傷の発生が抑制される。非ダイヤモンド炭素は ダイヤモンド粒子全体に対する割合が質量比において 0. 5 %以上であれば効 果が顕著になる。 実施例 1
公称粒度 2-6 zmのトーメイダイヤ製 I R M級単結晶質. ド粉末 を、 微粉砕及び精密分級に供した。
粉砕には、 内径及び長さが共に 250顧の鋼製のボ一ルミルポットを用い、 この中へ 6mmの鋼球 20kgと共に、 原料のダイヤモンド粉末 300gを入れ、 回転 数 80rpmで 120時間粉砕を行った。 ポッ トから取り出した粉砕粉末は、 10 H C 1- 1 H N 03混合溶液を用いて、 鉄粉を溶解除去し、 十分に水洗した。
水簸装置として、 直円筒部の長さがそれぞれ 20cm、 断面積は第 1段目とし て 2500cm 第 2段目として 5000cm2の分級管を直列に結合した構成を用いた。 この装置内へ上記の微粉砕ダイヤモンド粉末を lkg仕込み、 25cc/時の流量で 120リツトルのイオン交換水を供給して水簸操作を行った。第 2段目から流出した 懸濁液は貯槽へ集め、 塩酸を加えて pH2に保った。
分離後の各段における粒度のマイクロトラック U P Aによる測定値は下 表のとおりであった。 第 1段、 第 2段及び流出捕集分について、 比 D90/D50 の値はそれぞれ 156 %、 132%、 177%、 また D10/D50の値は 60%、 75 %、 及び 58%となっており、 粒度幅の狭いダイヤモンド微粉が得られている。
D10 D50 D90 D90/D50 第 1段 59 99 154 156% 第 2段 56 75 99 132 流出液 31 53 94 177 上記実施例において第 1段及び流出液から回収したダイヤモンド微粉の、 マイクロ トラック U P Aによる粒度測定結果を、 図 1および図 2に示す。棒 グラフは各粒度範囲のフラクションの頻度を、 曲線は累積量を表す。 実施例 2
水簸による分級操作によって製造された、 トーメイダイヤ製精密加工向け ミクロンサイズダイヤモンド砥粒 MD100 (商品名)を原料として用いた。 この 砥粒のマイクロトラック U P Aによる粒度分布は、 D 50値 d D5flが 103.9nmで あり、 d D5。の 70%値に対応する 27チャンネル(72.3nm)での累積%が 19.75、 即ち粒子径 70nm以下の粒子の含有率は約 20%であった。
この原料 l kgを実施例 1と同じ構成の分級装置に投入し、 毎分 0.5ccの流 量でイオン交換水を供給して水簸作業を行った。
再水簸分級後の粒子径は、 マイクロトラック U P A測定値において、 D 50 値 d D5。が: I07.4nmであって、 再水簸分級前と平均粒径と実質的に同じであつ たが、 d の 70%値(75.2M)に対応する 27チャンネル(72.3nm)での累積%は 11.07であった。 即ち粒子径 70nm以下の粒子の含有量は約 11 %に低下してい た。
再水簸分級前の原料と、再水簸分級によって得られたダイヤモンド粒子の それぞれについて、 窒素ガス中で加熱処理を行った。 処理は、 磁器製ボート に処理原料のダイヤモンド粒子を入れ、 窒素ガスで雰囲気置換を行った後、 1200°Cに 3時間保持して行った。
上記において再度水簸分級し、加熱処理を施した本発明のダイヤモンド粒 子と、 比較用として、 再度の水簸分級を施さず加熱処理した従来のダイヤモ ンドとを用いて、 それぞれ油溶性スラリーを作製し、 薄膜型磁気ヘッドの A B Sのラップ研磨を行った。
両スラリーの研磨性能を P T R値及び金属膜への突き刺さり現象で評価 した。即ちアルチック(A1203- TiC )、アルミナ(A1203)及びパ一マロイ(Fe- Ni )、 センダスト(Fe-Al- Si )で構成し、磁気へッ ドを模した複合材料試験片におけ る段差を測定し、 また 角の金属膜を走査型電子顕微鏡で観察して、 突 き刺さったダイヤモンド砥粒の個数を計数した。
P T R値は、 本発明品においては 2. 355 Aが得られたが、 これは従来品に ぉける4.464 の52.2%でぁる。
一方、 突き刺さり粒子の個数は、 従来品における 15個に対し、 本発明のダ ィャモンド粒子研磨材の場合は 3個であった。 産業上の利用可能性
本発明のダイヤモンド微粉は、静圧法で合成されたダイヤモンドの特徴で ある単結晶質を保持しながら、 120皿以下の粒度域において狭い粒度範囲を 呈することから、 一般硬質材、 並びに薄膜型磁気ヘッ ドの低 PTR加工のよう な異硬度複合材の超精密研磨、 その他各種の精密用途に適する。

Claims

請 求 の 範 囲
1. 静的超高圧下にて合成された単結晶質ダイヤモンドの粉砕によって得ら れる、単結晶質サブミクロン級ダイヤモンド微粉であって、マイクロトラ ック U P A粒度測定器による測定値において、 D50値粒径が 120 以下であ り、 かつ D50値粒度に対する D10値粒度および D90値粒度の比がそれぞれ 50%以上および 200%以下である、 粒度幅の狭い単結晶質ダイヤモンド微 粉。
2. 上記 D50値粒径が ΙΟΟηιη以下である、請求項 1に記載のダイヤモンド微粉。
3. 単結晶質ダイヤモンド粒子の集合体で構成されるダイヤモンド粒子研磨 材であって、 マイクロトラック U P A測定器による測定値において、上記 集合体の D 50平均粒子径 d D5。の 70 % ( 0. 7 x d D5Q )以下の粒子径を示す微小 粒子の割合が、 測定された粒子全体の 15 %以下であることを特徴とする、 平均粒子径 d D5flが 120nm以下のダイヤモンド粒子研磨材。
4. 上記ダイヤモンド粒子の表面が、 加熱処理による熱影響構造を有し、 か つ上記ダイヤモンド粒子集合体全体に対する質量比において 0.5 %以上の 非ダイヤモンド炭素で被覆されている、請求項 3に記載のダイヤモンド粒 子研磨材。
5. 上記熱影響構造を有するダイヤモンド粒子が、 800〜; 1400°Cの範囲の加熱 処理温度における加熱処理を経た粒子である、請求項 4に記載のダイヤモ ンド粒子研磨材。
6. 静的超高圧下にて合成された単結晶質ダイヤモンド粒子を微粉砕工程お よび精密分級工程に供することにより、 D50値平均粒度 120nm以下の整粒さ れた微粒子の集合体とすることを特徴とする、単結晶質ダイャモンド微粉 の製造法。
7. 上記 D50値平均粒度が lOOnm以下である、 請求項 6に記載のダイヤモン微 粉の製造法。
8. 上記微粉砕工程が、 鋼球を用いた衝撃破砕ないしは磨砕に基づくもので ある、 請求項 6に記載のダイヤモンド微粉の製造法。
9. 上記精密分級工程が水簸に基づくものである、 請求項 6に記載のダイヤ モンド微粉の製造法。
10. 上記水簸に基づく分級工程において、 上昇水流速度をスト一クスの法 則から計算される粒子の沈降速度の 2乃至 4倍とする、請求項 6に記載のダ ド微粉の製造法。
PCT/JP2001/006337 2000-07-21 2001-07-23 Poudre fine de diamant monocristalline a faible distribution en taille des particules et son procede de fabrication WO2002008122A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR10-2003-7000926A KR20030038673A (ko) 2000-07-21 2001-07-23 입도폭이 좁은 단결정질 다이아몬드 미분말 및 그 제조법
CA002416522A CA2416522A1 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
EA200300182A EA200300182A1 (ru) 2000-07-21 2001-07-23 Монокристаллический тонкий алмазный порошок, имеющий узкое распределение частиц по размерам, и способ его получения
AU2001272778A AU2001272778A1 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
IL15403801A IL154038A0 (en) 2000-07-21 2001-07-23 Single crystal fine diamond powder having narrow particle size distribution and method for production thereof
BR0112596-6A BR0112596A (pt) 2000-07-21 2001-07-23 Partìculas mìnimas de diamante cristalino único e método para a produção das mesmas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2000-221119 2000-07-21
JP2000221119A JP3655811B2 (ja) 2000-07-21 2000-07-21 単結晶質ダイヤモンド微粉
JP2001142118A JP4925233B2 (ja) 2001-05-11 2001-05-11 ダイヤモンド粒子研磨材
JP2001-142118 2001-05-11

Publications (1)

Publication Number Publication Date
WO2002008122A1 true WO2002008122A1 (fr) 2002-01-31

Family

ID=26596458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/006337 WO2002008122A1 (fr) 2000-07-21 2001-07-23 Poudre fine de diamant monocristalline a faible distribution en taille des particules et son procede de fabrication

Country Status (8)

Country Link
KR (1) KR20030038673A (ja)
CN (1) CN1447775A (ja)
AU (1) AU2001272778A1 (ja)
BR (1) BR0112596A (ja)
CA (1) CA2416522A1 (ja)
EA (1) EA200300182A1 (ja)
IL (1) IL154038A0 (ja)
WO (1) WO2002008122A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338952A (ja) * 2001-05-11 2002-11-27 Ishizuka Kenkyusho:Kk ダイヤモンド粒子研磨材
WO2004054943A1 (ja) * 2002-12-18 2004-07-01 Japan Science And Technology Agency 耐熱性ダイヤモンド複合焼結体とその製造法
US7292550B2 (en) 2003-03-27 2007-11-06 Kyocera Wireless Corp. System and method for minimizing voice packet loss during a wireless communications device candidate frequency search (CFS)
US8506919B2 (en) 2005-01-11 2013-08-13 Hiroshi Ishizuka Fine powder of single crystalline diamond particles and a method for the production thereof
CN108855585A (zh) * 2018-07-10 2018-11-23 辽宁新瑞碳材料科技有限公司 一种分离金刚石混合物的方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123603A4 (en) * 2007-02-09 2014-01-29 Ishizuka Hiroshi DIAMOND MICROPOWDER AND ITS TRAPPING METHOD, AND DIAMOND KETTLE IN WHICH A DIAMOND MICROPOWDER IS DISPERSED
EP1990313A1 (en) 2007-05-10 2008-11-12 INSERM (Institut National de la Santé et de la Recherche Médicale) Method to produce light-emitting nano-particles of diamond
CN101831243A (zh) * 2010-04-30 2010-09-15 中国计量学院 高精密非水基纳米级金刚石研磨液、制备方法及用途
CN101975731A (zh) * 2010-07-28 2011-02-16 常州天合光能有限公司 SiC砂子检测方法
CN102250582B (zh) * 2011-05-19 2013-10-30 北京保利世达科技有限公司 一种窄分布亚微米尺寸的多晶金刚石磨料的制备方法
CN105176406B (zh) * 2015-10-09 2017-05-24 同济大学 一种利用高纯气体混合搅拌的微米亚微米抛光液精选方法
WO2018087110A1 (en) * 2016-11-10 2018-05-17 Element Six Technologies Limited Synthesis of thick single crystal diamond material via chemical vapour deposition
CN114199610A (zh) * 2021-12-13 2022-03-18 郑州磨料磨具磨削研究所有限公司 一种金刚石强度测试装置和方法
CN115895596B (zh) * 2022-11-28 2024-03-22 宁波平恒电子材料有限公司 一种不锈钢粗磨液及其制备方法和用途

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016966A (ja) * 1973-06-18 1975-02-22
JPH04243559A (ja) * 1991-01-24 1992-08-31 Mitsubishi Kasei Corp 連続湿式向流分級装置
JPH08252766A (ja) * 1995-03-17 1996-10-01 Fuji Electric Co Ltd 研磨砥粒およびこの研磨砥粒を用いて製造された磁気ディスク
JPH09206627A (ja) * 1996-02-01 1997-08-12 Nippon Micro Coating Kk 粉体分級装置及び方法
JPH11250448A (ja) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd 磁気記録媒体
JP2000030242A (ja) * 1998-07-14 2000-01-28 Fuji Photo Film Co Ltd 磁気記録媒体
JP2000136376A (ja) * 1998-08-28 2000-05-16 Hiroshi Ishizuka ダイヤモンド研磨材粒子及びその製法
JP2000144113A (ja) * 1998-11-17 2000-05-26 Tokyo Magnetic Printing Co Ltd 遊離砥粒スラリー組成物

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016966A (ja) * 1973-06-18 1975-02-22
JPH04243559A (ja) * 1991-01-24 1992-08-31 Mitsubishi Kasei Corp 連続湿式向流分級装置
JPH08252766A (ja) * 1995-03-17 1996-10-01 Fuji Electric Co Ltd 研磨砥粒およびこの研磨砥粒を用いて製造された磁気ディスク
JPH09206627A (ja) * 1996-02-01 1997-08-12 Nippon Micro Coating Kk 粉体分級装置及び方法
JPH11250448A (ja) * 1998-03-03 1999-09-17 Fuji Photo Film Co Ltd 磁気記録媒体
JP2000030242A (ja) * 1998-07-14 2000-01-28 Fuji Photo Film Co Ltd 磁気記録媒体
JP2000136376A (ja) * 1998-08-28 2000-05-16 Hiroshi Ishizuka ダイヤモンド研磨材粒子及びその製法
JP2000144113A (ja) * 1998-11-17 2000-05-26 Tokyo Magnetic Printing Co Ltd 遊離砥粒スラリー組成物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002338952A (ja) * 2001-05-11 2002-11-27 Ishizuka Kenkyusho:Kk ダイヤモンド粒子研磨材
WO2004054943A1 (ja) * 2002-12-18 2004-07-01 Japan Science And Technology Agency 耐熱性ダイヤモンド複合焼結体とその製造法
CN1300053C (zh) * 2002-12-18 2007-02-14 独立行政法人科学技术振兴机构 耐热性金刚石复合烧结体及其制造方法
US7292550B2 (en) 2003-03-27 2007-11-06 Kyocera Wireless Corp. System and method for minimizing voice packet loss during a wireless communications device candidate frequency search (CFS)
US8506919B2 (en) 2005-01-11 2013-08-13 Hiroshi Ishizuka Fine powder of single crystalline diamond particles and a method for the production thereof
CN108855585A (zh) * 2018-07-10 2018-11-23 辽宁新瑞碳材料科技有限公司 一种分离金刚石混合物的方法

Also Published As

Publication number Publication date
CN1447775A (zh) 2003-10-08
AU2001272778A1 (en) 2002-02-05
EA200300182A1 (ru) 2003-06-26
IL154038A0 (en) 2003-07-31
CA2416522A1 (en) 2003-01-21
KR20030038673A (ko) 2003-05-16
BR0112596A (pt) 2003-09-09

Similar Documents

Publication Publication Date Title
Zhang et al. A novel approach of high-performance grinding using developed diamond wheels
WO2002008122A1 (fr) Poudre fine de diamant monocristalline a faible distribution en taille des particules et son procede de fabrication
TWI409323B (zh) Hard crystalline substrate grinding methods and oily grinding slurry
JP3411239B2 (ja) ダイヤモンド研磨材粒子及びその製法
JP5325387B2 (ja) 単結晶質ダイヤモンド微粉及びその製造方法
CN105668599A (zh) 一种纳米氧化铝抛光料及其制备方法
CN102250582A (zh) 一种窄分布亚微米尺寸的多晶金刚石磨料的制备方法
JP2004339412A (ja) 研磨材用サブミクロンダイヤモンド粉及びその製造方法
JP3655811B2 (ja) 単結晶質ダイヤモンド微粉
JPH05294719A (ja) 非伝導性酸化アルミニウム−炭化チタン、その製造方法、およびそれを組み込んだスライダーエレメント
CN111100599B (zh) 一种具有高微破碎特性的超硬聚集体磨料及其制备方法
JP2007149203A (ja) テクスチャ加工方法及び加工スラリー
WO2002014452A1 (fr) Particules abrasives en diamant et procede de production desdites particules
CN105086939B (zh) 一种单晶金刚石磨粒及其制备方法
CN109485046B (zh) 一种碳化钨粉及其制备方法
Zhang et al. Subsurface crystal lattice deformation machined by ultraprecision grinding of soft-brittle CdZnTe crystals
WO2006006721A1 (ja) テクスチャリング加工用組成物
JP4284771B2 (ja) 金属研磨用αアルミナ研磨材およびその製法
CN113234951A (zh) 一种纳米级超细均质硬质合金及其制备方法
CN105586005B (zh) 一种纳米刚玉磨料的制备方法
JP4940289B2 (ja) 研摩材
JP3416855B2 (ja) 研磨用組成物および研磨方法
JP3694478B2 (ja) セリウム系研磨材及びその製造方法
JP2020029472A (ja) 多結晶yag研磨用スラリー組成物
JP4925233B2 (ja) ダイヤモンド粒子研磨材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AU BA BB BG BR BZ CA CN CO CR CU CZ DM DZ EC EE GD GE HR HU ID IL IN IS KR LC LK LR LT LV MA MG MK MN MX NO NZ PL RO SG SI SK TT UA US UZ VN YU ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 154038

Country of ref document: IL

WWE Wipo information: entry into national phase

Ref document number: 1020037000926

Country of ref document: KR

Ref document number: 2416522

Country of ref document: CA

Ref document number: 2001272778

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: 87/KOLNP/2003

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2001951972

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200301406

Country of ref document: ZA

Ref document number: 200300182

Country of ref document: EA

WWE Wipo information: entry into national phase

Ref document number: 018144810

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 1020037000926

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 2001951972

Country of ref document: EP