WO2001082384A1 - Composant semi-conducteur emetteur de rayonnement et son procede de fabrication - Google Patents

Composant semi-conducteur emetteur de rayonnement et son procede de fabrication Download PDF

Info

Publication number
WO2001082384A1
WO2001082384A1 PCT/DE2001/001002 DE0101002W WO0182384A1 WO 2001082384 A1 WO2001082384 A1 WO 2001082384A1 DE 0101002 W DE0101002 W DE 0101002W WO 0182384 A1 WO0182384 A1 WO 0182384A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor
radiation
substrate
reflector
Prior art date
Application number
PCT/DE2001/001002
Other languages
German (de)
English (en)
Inventor
Stefan Bader
Berthold Hahn
Volker HÄRLE
Hans-Jürgen LUGAUER
Manfred Mundbrod-Vangerow
Dominik Eisert
Original Assignee
Osram Opto Semiconductors Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10020464A external-priority patent/DE10020464A1/de
Priority claimed from DE10026255A external-priority patent/DE10026255A1/de
Priority claimed from DE10051465A external-priority patent/DE10051465A1/de
Application filed by Osram Opto Semiconductors Gmbh filed Critical Osram Opto Semiconductors Gmbh
Priority to US10/239,106 priority Critical patent/US6878563B2/en
Priority to EP01931363.4A priority patent/EP1277240B1/fr
Priority to JP2001579374A priority patent/JP2003532298A/ja
Publication of WO2001082384A1 publication Critical patent/WO2001082384A1/fr
Priority to US11/067,349 priority patent/US7691659B2/en
Priority to US11/065,769 priority patent/US20060011925A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor
    • H01L33/405Reflective materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0093Wafer bonding; Removal of the growth substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • H01L33/22Roughened surfaces, e.g. at the interface between epitaxial layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/26Materials of the light emitting region
    • H01L33/30Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table
    • H01L33/32Materials of the light emitting region containing only elements of Group III and Group V of the Periodic Table containing nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating

Definitions

  • the invention relates to a radiation-emitting
  • Radiation-emitting semiconductor components based on GaN are known, for example, from US Pat. No. 5,210,051.
  • Such semiconductor components contain a semiconductor body with an active GaN layer which is applied to an SiC substrate. The semiconductor body is contacted on the front on the light-coupling GaN layer and on the rear on the SiC substrate.
  • III-V nitride semiconductor refers to these ternary and quaternary mixed crystals and gallium nitride itself.
  • the GaN layers grown on sapphire have a high number of lattice defects.
  • a disadvantage of radiation-emitting GaN semiconductor devices is that on the surface, at which the radiation generated in the semiconductor body is coupled out, a large refractive index jump occurs during the transition from the semiconductor body to the environment.
  • a large jump in the refractive index means that a considerable part of the radiation is reflected back into the semiconductor body and the radiation yield of the component is thereby reduced.
  • One reason for this is the total reflection of the radiation generated on the coupling-out surface. Light rays are completely reflected back into the semiconductor body if the angle of incidence of the light rays on the decoupling surface is greater than the total reflection angle, based in each case on the surface normal. With increasing difference between the refractive index of the semiconductor body and the environment, the total reflection angle decreases and the proportion of the total reflected radiation increases.
  • One means of increasing the radiation yield is to apply a reflector to the substrate of the semiconductor body. This is shown for example in DE 43 05 296. As a result, the radiation reflected back into the semiconductor body is in turn directed in the direction of
  • Decoupling surface directed so that the part of the radiation reflected back is not lost, but at least partially is also coupled out after one or more internal reflections.
  • the radiation yield of the component is reduced by the SiC layer, since part of the radiation generated is absorbed in the SiC layer. Furthermore, the epitaxial formation of an SiC layer with sufficient crystal quality also requires a high manufacturing effort.
  • the present invention has for its object to provide a III-V nitride semiconductor device with increased luminous efficiency. Furthermore, it is an object of the present invention to develop a method for producing such semiconductor components.
  • the radiation-emitting semiconductor component is designed as a thin-film component which in particular has no radiation-absorbing substrate.
  • the semiconductor body of the component is formed by a stack-like plurality of different III-V nitride semiconductor layers.
  • an active semiconductor layer based on GaN or a related nitride generates electromagnetic radiation which is coupled out through a first main surface of the stack.
  • a reflector is applied to a second main surface of the stack, so that the part of the radiation which is initially reflected back into the semiconductor body when decoupled is again directed in the direction of the decoupling surface by means of this reflector.
  • a further portion is decoupled after one or more internal reflections on the reflector. Overall, the degree of coupling out is increased compared to a GaN semiconductor component according to the prior art.
  • the GaN-based semiconductor layers consist of GaN, AlN, InN, AlGaN, InGaN, InAlN or AIInGaN.
  • the central wavelength of the radiation generated can be set in a wide range from the visible spectral range to the ultraviolet spectral range.
  • blue and green light-emitting diodes, UV light-emitting diodes and corresponding laser diodes can be realized with particular advantage.
  • the reflector can be formed by a metallic contact surface his. This serves both as a reflector and for the electrical contacting of the semiconductor body. In this embodiment, advantageously no further devices for contacting the semiconductor body are required on the reflector side. Al and Ag as well as Al and Ag alloys are particularly suitable as the material for the contact surfaces.
  • the reflector is formed by a dielectric mirror coating.
  • Such mirroring can be produced by applying a layer sequence of Si0 2 or Ti0 2 to the semiconductor body. Dielectric mirroring can advantageously achieve a loss-free reflection in a wide wavelength range.
  • the reflector has a transparent first layer applied to the second main surface and a reflecting second layer applied thereon.
  • the contact layer can be optimized both in terms of its electrical properties and its reflection properties in a simple manner.
  • the entire free surface of the semiconductor body or a partial area thereof is roughened. This roughening interferes with the total reflection on the coupling-out surface and thereby advantageously further increases the degree of optical coupling-out.
  • an intermediate layer is first applied to a substrate.
  • a plurality of different III-V nitride semiconductor layers are deposited on this intermediate layer. These layers form the semiconductor body of the component.
  • the substrate including the intermediate layer is formed from the stack of III-V nitride layers thus formed replaced.
  • a reflector is applied to one of the two main surfaces of the semiconductor body.
  • an Si substrate is used, on which an SiC intermediate layer is applied.
  • SiC is particularly suitable for the production of GaN-based components, since it has a lattice constant similar to GaN, so that GaN-based layers deposited on SiC have a small number of lattice defects.
  • the intermediate layer is applied by means of a wafer bonding process and then thinned.
  • the Si wafer can advantageously be connected to the SiC wafer by forming an SiO 2 layer.
  • the intermediate layer can be grown epitaxially, as a result of which particularly homogeneous intermediate layers can be produced.
  • the reflector is formed by applying a reflective metal contact to the GaN semiconductor body. Due to their reflectivity and their bonding properties, Ag and Al as well as Ag and Al alloys are particularly suitable as materials for the metal contact.
  • a further embodiment of the manufacturing method consists in designing the reflector as a dielectric mirror in the form of a plurality of dielectric layers, which results in the advantages of a dielectric reflector described above.
  • the manufacturing process is continued by a
  • Roughening of the semiconductor body the entire free surface of the semiconductor body or partial areas thereof to be roughened.
  • a roughening that is particularly effective with regard to increasing the light yield is produced by etching the semiconductor body or by means of a sandblasting process.
  • a mask layer is applied to the intermediate layer before the III-V nitride layers are deposited.
  • This mask layer structures the layers and in particular divides the III-V nitride layers into several, non-contiguous areas. This prevents cracking and detachment of the intermediate layer from the substrate with great advantage.
  • An oxide mask is advantageously formed as a mask, in particular when SiC is used as the interlayer material.
  • a plurality of III-V nitride layers are applied epitaxially to a composite substrate which has a substrate body and an intermediate layer, the thermal
  • Expansion coefficient of the substrate body is similar or greater than the thermal expansion coefficient of the III-V nitride layers.
  • a composite substrate is to be understood here as a substrate which contains at least two regions, the substrate body and the intermediate layer, and as such represents the starting substrate for the epitaxy process.
  • the intermediate layer is not applied epitaxially to the substrate body, but preferably by means of a wafer bonding process.
  • the thermal properties are determined primarily by the substrate body, while the epitaxial surface and, in particular, its lattice constant are determined largely independently by the intermediate layer.
  • the intermediate layer can thus advantageously be optimally adapted to the lattice constant of the layers to be applied.
  • the intermediate layer is therefore preferably made so thin that the thermal expansion coefficient of the entire composite substrate essentially corresponds to the expansion coefficient of the substrate body.
  • the substrate body is at least twenty times thicker than the intermediate layer.
  • the substrate body contains SiC, preferably polycrystalline (poly-SiC), sapphire, GaN or AlN.
  • Expansion coefficient of SiC is similar to the expansion coefficient of GaN-based materials, the other materials mentioned have a larger thermal expansion coefficient than GaN-based materials. This advantageously prevents cracking when the epitaxially applied layers cool.
  • the intermediate layer contains SiC, silicon, sapphire, MgO, GaN or AlGaN. These materials are particularly suitable for forming an essentially monocrystalline surface with a lattice constant matched to GaN.
  • An Si (111) surface or a monocrystalline SiC surface on which the GaN-based layers are grown is preferably used as the epitaxial surface.
  • the GaN-based layers are deposited on a composite substrate in which the intermediate layer is covered by a
  • Wafer bonding method is applied to the substrate body. Is preferably between the substrate body and Intermediate layer, an adhesive layer, for example made of silicon oxide.
  • a thicker intermediate layer can first be bonded onto the substrate body, which is then thinned to the required thickness, for example by grinding or splitting.
  • a mask layer is formed on the composite substrate before the III-V nitride layers are deposited, so that the III-V nitride layers only grow on the areas of the epitaxial surface uncovered by the mask.
  • these layers are advantageously interrupted in the layer plane and additional protection against tensile stress and the associated crack formation are achieved.
  • a further preferred embodiment of the invention consists in structuring the III-V nitride layers into individual semiconductor layer stacks after the deposition on the composite substrate.
  • a carrier is then applied to the III-V nitride semiconductor layer stack and the composite substrate is detached.
  • the composite substrate can thus be reused at least in part.
  • a thin-film component is produced in this way.
  • a thin-film component is to be understood as a component that does not contain an epitaxial substrate. In the case of radiation-emitting semiconductor components, an increase in the radiation yield is achieved since absorption of the radiation generated in the epitaxial substrate, as occurs in particular with SiC substrates, is avoided.
  • the so-called re-bonding of the semiconductor layer stacks from the composite substrate to a carrier just described can also be carried out in two steps in the invention, the GaN-based semiconductor layer stacks first being bonded to an intermediate carrier and then to the actual carrier, so that finally the actual carrier is bonded to the carrier Place of the composite substrate occurs.
  • Semiconductor layer stacks produced in this way advantageously have a corresponding layer sequence such as GaN-based ones
  • the manufacturing process is based on the
  • Semiconductor layer stack formed a reflector layer to increase the radiation yield. Due to the high refractive index of GaN-based materials, the radiation yield in GaN-based semiconductor components is largely limited by reflection at the interfaces of the semiconductor body. In the case of radiation-emitting semiconductor bodies without an absorbing substrate, the reflector layer can advantageously be used on the
  • Decoupling area reflected radiation components are in turn directed back to the outcoupling area. This further increases the radiation yield.
  • the reflector layer is preferably formed as a metal layer which contains, for example, aluminum, silver or a corresponding aluminum or silver alloy. Such a metal layer can advantageously also be used as a contact surface. Alternatively, the reflector layer can also be formed by dielectric mirroring in the form of a plurality of dielectric layers.
  • At least part of the surface of the semiconductor layer stack is roughened. This will make one
  • the roughening is preferably carried out by etching or a sandblasting process.
  • FIG. 1 shows a schematic sectional view of a first exemplary embodiment of a semiconductor component according to the invention
  • Figure 2 is a schematic sectional view of a second embodiment of an inventive
  • Figure 3 is a schematic representation of a first
  • FIG. 4 is a schematic representation of a second embodiment of a manufacturing method according to the invention.
  • FIG. 5 shows a schematic sectional illustration of a further exemplary embodiment of a production method according to the invention.
  • Figure 6 is a schematic sectional view of a further embodiment of a manufacturing method according to the invention.
  • Figure 7 is a schematic sectional view of another embodiment of an inventive
  • the radiation-emitting semiconductor component shown in FIG. 1 has a plurality of different semiconductor layers 1 arranged in a stack, which consist of GaN or a ternary or quaternary compound based thereon. During operation, an active zone 2 is formed within these layers, in which the radiation 5 is generated.
  • the layer stack is delimited by a first main surface 3 and a second main surface 4. Essentially, the radiation 5 generated is coupled out through the first main surface 3 into the adjacent environment.
  • a reflector 6 is applied to the second main surface 4, formed by an Ag layer which is vapor-deposited directly onto the semiconductor body.
  • the semiconductor body is contacted on the coupling-out side via the contact surface 12 and on the reflector side via the Ag reflector layer.
  • the contacting on the reflector side can take place, for example, in that the semiconductor body is placed on the reflector side on a metal body which serves both as a carrier and for the current supply.
  • the reflector 6 causes part of the radiation 5, which is reflected back into the semiconductor body at the coupling out on the first main surface 3, again in the direction of the first main surface 3 is reflected, so that the total amount of radiation coupled out by the first main surface 3 is increased.
  • This increase is made possible by the fact that the component is designed as a thin-layer component without a radiation-absorbing substrate and the
  • Reflector 6 is applied directly to the GaN semiconductor body.
  • the exemplary embodiment of a semiconductor component according to the invention shown in FIG. 2 differs from the component shown in FIG. 1 in that the surface of the semiconductor body has a roughening 7.
  • This roughening 7 causes the radiation 5 to be scattered on the first main surface 3, so that the total reflection on the first main surface 3 is disturbed. Furthermore, this scattering prevents the generated radiation from being guided by continuous, identical reflections between the two main surfaces 3 and 4 or the reflector 6 in the manner of a light guide without leaving the semiconductor body.
  • the roughening 7 thus further increases the light yield.
  • FIG. 3 shows a first exemplary embodiment of a manufacturing method according to the invention.
  • the starting point is an Si substrate 8, FIG. 3a.
  • an SiC intermediate layer 9 is applied to this Si substrate by means of a wafer bonding process, an SiO 2 layer 10 being formed between the two substrates, FIG. 3b.
  • the SiC substrate 9 is thinned down to a few micrometers, FIG. 3c.
  • a plurality of different GaN semiconductor layers 1, which form the semiconductor body of the component according to the invention, are deposited epitaxially on the thinned SiC substrate 9 by means of a MOCVD method, FIG. 3d.
  • the Si substrate 8 and the SiC intermediate layer 9 are removed, FIG. 3e.
  • a reflective metallic surface is applied to a main surface 4 of the GaN semiconductor body Contact surface 6, consisting of an Ag or Al alloy, evaporated, Fig. 3f.
  • the semiconductor body can then be moved by a sandblast or roughened by etching with a suitable etching mixture.
  • FIG. 4 runs up to and including the thinning of the SiC substrate 9 (FIGS. 4a to 4c) analogously to the first exemplary embodiment described above.
  • an oxide mask 11 is applied to the SiC layer 9 before the GaN layers 1 are deposited, FIG. 4d.
  • This oxide mask 11 has the effect that in the next step the GaN layers 1 only grow on the partial areas of the SiC intermediate layer not covered by the mask.
  • the reflector 6, FIG. 4g is produced as described above.
  • a composite substrate with a substrate body 21 made of poly-SiC is used, on which a monocrystalline SiC intermediate layer 22 is bonded in a known manner.
  • an adhesive layer 23, for example made of silicon oxide, is formed between the substrate body 21 and the intermediate layer 22, FIG. 5a.
  • a plurality of Ga ⁇ -based layers 24 are grown epitaxially on this Nerbund substrate, FIG. 5b.
  • the structure of the layer sequence is not subject to any fundamental restrictions.
  • an active, radiation-generating layer is preferably formed, which is surrounded by one or more cladding layers and / or waveguide layers.
  • the active layer can be formed by a plurality of thin individual layers in the form of a single or multiple quantum well structure.
  • a buffer layer for example based on AlGa ⁇
  • electrically conductive channels for example based on InGa ⁇ , can be included in the buffer layer.
  • the Ga ⁇ -based layers 24 are then divided into individual semiconductor layer stacks 25 by a lateral structuring, preferably by a mesa etching, FIG. 5c.
  • the composite substrate including the intermediate layer 22 is then detached from the semiconductor layer stacks 25, FIG. 5e. This can be done for example by a
  • Etching processes are carried out in which the intermediate layer 22 or the adhesive layer 23 is destroyed.
  • the can Substrate body 21 can be reused in a further production cycle.
  • contact surfaces 30 are applied to the thin-film semiconductor bodies 25 thus formed, FIG. 5f.
  • the semiconductor layer stacks 25 are separated, FIG. 5g, and further processed in the usual way.
  • a composite substrate is again used, which is essentially formed by a poly-SiC substrate body 21 and an Si (III) intermediate layer 22.
  • the intermediate layer 22 is applied to the substrate body 21 " with the aid of a wafer bonding process, with the formation of a silicon oxide adhesive layer 23, FIG. 6a.
  • FIG. 6b A plurality of GaN-based layers are in turn grown on this composite substrate, FIG. 6b, which is finally provided with a contact layer 28, for example made of platinum, FIG. 6c.
  • the GaN-based layers 24 are subsequently subdivided into individual semiconductor layer stacks 25 by means of an etching structuring, FIG. 6d.
  • a bond solder 32 and then a reflector 29 made of a silver or aluminum alloy are deposited on the areas of the contact layer 28 which are not covered by the passivation layer, FIG. 6f.
  • the semiconductor layer stacks 25 are then eutectically bonded to a carrier 26 with the reflector 29, FIG. 6g.
  • the substrate body 21 is removed and can thus be reused.
  • the individual semiconductor layer stacks are provided on the upper side with contact areas 30, FIG. 6i.
  • the semiconductor layer stacks can subsequently be separated and, if appropriate, installed in a housing (not shown).
  • FIG. 7 The exemplary embodiment of a manufacturing method according to the invention shown in FIG. 7 represents a variant of the previous exemplary embodiments.
  • FIG. 7a a composite substrate is used as the epitaxial substrate, FIG. 7a.
  • a mask layer 27 is applied to the epitaxial surface of the intermediate layer 22, FIG. 7b.
  • the GaN-based layers 24 thus only grow on the areas of the epitaxial surface that are not covered by the mask layer 27 (epitaxial window), FIG. 7c.
  • the GaN-based layers 24 are interrupted in the direction of the layer plane. This also prevents tensile stress in the eptiactically deposited layers in the cooling phase.
  • the manufacturing process can subsequently be continued as in the other exemplary embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

L"invention concerne un composant semi-conducteur émetteur de rayonnement à base GaN, dont le corps semi-conducteur est formé par un empilement de différentes couches de semi-conducteurs GaN (1). Le corps semi-conducteur présente une première face principale (3) et une seconde face principale (4). L"invention est caractérisée en ce que le rayonnement produit est extrait par la première face principale (3) et en ce qu"un réflecteur (6) est agencé sur la seconde face principale (4). En outre, l"invention concerne un procédé de fabrication d"un composant semi-conducteur selon l"invention, caractérisé en ce qu"on applique tout d"abord sur un substrat (8) une couche intermédiaire (9) et, sur celle-ci, une pluralité de couches GaN (1) qui forment le corps semi-conducteur du composant, puis en ce qu"on sépare le substrat (8) et la couche intermédiaire (9), et en ce qu"on forme un réflecteur (6) sur une face principale du corps semi-conducteur.
PCT/DE2001/001002 2000-04-26 2001-03-16 Composant semi-conducteur emetteur de rayonnement et son procede de fabrication WO2001082384A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/239,106 US6878563B2 (en) 2000-04-26 2001-03-16 Radiation-emitting semiconductor element and method for producing the same
EP01931363.4A EP1277240B1 (fr) 2000-04-26 2001-03-16 Procédé de fabrication d'un composant semi-conducteur emetteur de lumière
JP2001579374A JP2003532298A (ja) 2000-04-26 2001-03-16 発光半導体素子
US11/067,349 US7691659B2 (en) 2000-04-26 2005-02-25 Radiation-emitting semiconductor element and method for producing the same
US11/065,769 US20060011925A1 (en) 2000-04-26 2005-02-25 Radiation-emitting semiconductor element and method for producing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE10020464A DE10020464A1 (de) 2000-04-26 2000-04-26 Strahlungsemittierendes Halbleiterbauelement auf GaN-Basis
DE10020464.3 2000-04-26
DE10026255.4 2000-05-26
DE10026255A DE10026255A1 (de) 2000-04-26 2000-05-26 Lumineszenzdiosdenchip auf der Basis von GaN und Verfahren zum Herstellen eines Lumineszenzdiodenbauelements mit einem Lumineszenzdiodenchip auf der Basis von GaN
DE10051465A DE10051465A1 (de) 2000-10-17 2000-10-17 Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis
DE10051465.0 2000-10-17

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US10239106 A-371-Of-International 2001-03-16
US11/065,769 Division US20060011925A1 (en) 2000-04-26 2005-02-25 Radiation-emitting semiconductor element and method for producing the same
US11/067,349 Continuation US7691659B2 (en) 2000-04-26 2005-02-25 Radiation-emitting semiconductor element and method for producing the same

Publications (1)

Publication Number Publication Date
WO2001082384A1 true WO2001082384A1 (fr) 2001-11-01

Family

ID=27213826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2001/001002 WO2001082384A1 (fr) 2000-04-26 2001-03-16 Composant semi-conducteur emetteur de rayonnement et son procede de fabrication

Country Status (6)

Country Link
US (3) US6878563B2 (fr)
EP (2) EP2270875B1 (fr)
JP (1) JP2003532298A (fr)
CN (1) CN1292494C (fr)
TW (1) TW567616B (fr)
WO (1) WO2001082384A1 (fr)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1385215A2 (fr) * 2002-07-08 2004-01-28 Nichia Corporation Dispositif semiconducteur à nitrure avec un substrat soudé et procédé de fabrication correspondant
JP2004128507A (ja) * 2002-09-30 2004-04-22 Osram Opto Semiconductors Gmbh 電磁ビームを放出する半導体チップおよびその製造方法
WO2003052838A3 (fr) * 2001-12-13 2004-05-27 Rensselaer Polytech Inst Diode electroluminescente a reflecteur plan omnidirectionnel
WO2005010231A2 (fr) * 2003-07-24 2005-02-03 Aixtron Ag Procede cvd pour deposer au moins une couche iii-v-n sur un substrat
JP2005516393A (ja) * 2002-01-22 2005-06-02 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ 分離可能な半導体組立体の調整方法、とくにエレクトロニクスおよびオプティクス用の基板を形成するための方法
EP1614160A2 (fr) * 2003-04-15 2006-01-11 Luminus Devices, Inc. Dispositifs electroluminescents
WO2007036198A3 (fr) * 2005-09-29 2007-05-24 Osram Opto Semiconductors Gmbh Puce a semi-conducteur optoelectronique
EP1848026A1 (fr) * 2002-04-09 2007-10-24 LG Electronics Inc. Diode électroluminescente avec une structure verticale et son procédé de fabrication
US7301175B2 (en) 2001-10-12 2007-11-27 Nichia Corporation Light emitting apparatus and method of manufacturing the same
JP2008294482A (ja) * 2002-01-28 2008-12-04 Nichia Corp 窒化物半導体素子
JP2009065182A (ja) * 2002-09-30 2009-03-26 Osram Opto Semiconductors Gmbh 半導体構成素子の製造方法
US7649266B2 (en) 2004-07-30 2010-01-19 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology, and semiconductor chip using thin film technology
WO2010017807A2 (fr) * 2008-08-12 2010-02-18 Osram Opto Semiconductors Gmbh Composant optoélectronique et son procédé de fabrication
EP2201616A2 (fr) * 2007-10-15 2010-06-30 LG Innotek Co., Ltd. Dispositif electroluminescent et procede de fabrication dudit dispositif
EP1598875A3 (fr) * 2004-05-18 2011-03-09 LG Electronics, Inc. Dispositif semiconducteur en nitrure et méthode pour sa fabrication
US7939349B2 (en) 2002-04-23 2011-05-10 Sharp Kabushiki Kaisha Nitride-based semiconductor light emitting device and manufacturing method thereof
US8728937B2 (en) 2004-07-30 2014-05-20 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology
US9281454B2 (en) 2002-06-26 2016-03-08 Lg Innotek Co., Ltd. Thin film light emitting diode
WO2022058217A1 (fr) * 2020-09-17 2022-03-24 Osram Opto Semiconductors Gmbh Composant à semi-conducteur optoélectronique et son procédé de fabrication

Families Citing this family (110)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10051465A1 (de) * 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis
US7319247B2 (en) * 2000-04-26 2008-01-15 Osram Gmbh Light emitting-diode chip and a method for producing same
EP2270875B1 (fr) * 2000-04-26 2018-01-10 OSRAM Opto Semiconductors GmbH Dispositf à semiconducteur émetteur de lumière et son procédé de fabrication
TWI292227B (en) * 2000-05-26 2008-01-01 Osram Opto Semiconductors Gmbh Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
US7148520B2 (en) * 2001-10-26 2006-12-12 Lg Electronics Inc. Diode having vertical structure and method of manufacturing the same
DE10203809B4 (de) 2002-01-31 2010-05-27 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement
US20040140474A1 (en) * 2002-06-25 2004-07-22 Matsushita Electric Industrial Co., Ltd. Semiconductor light-emitting device, method for fabricating the same and method for bonding the same
DE10234977A1 (de) * 2002-07-31 2004-02-12 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Dünnschicht-Halbleiterbauelement auf GaN-Basis
DE10244200A1 (de) 2002-09-23 2004-04-08 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement
JP4116387B2 (ja) * 2002-09-30 2008-07-09 株式会社東芝 半導体発光素子
US6900474B2 (en) * 2002-12-20 2005-05-31 Lumileds Lighting U.S., Llc Light emitting devices with compact active regions
CN1791682B (zh) 2003-02-26 2013-05-22 凯利达基因组股份有限公司 通过杂交进行的随机阵列dna分析
DE10308866A1 (de) 2003-02-28 2004-09-09 Osram Opto Semiconductors Gmbh Beleuchtungsmodul und Verfahren zu dessen Herstellung
KR20080005314A (ko) * 2003-08-29 2008-01-10 오스람 옵토 세미컨덕터스 게엠베하 방사선 방출 반도체 소자
US7915085B2 (en) 2003-09-18 2011-03-29 Cree, Inc. Molded chip fabrication method
TWI223460B (en) * 2003-09-23 2004-11-01 United Epitaxy Co Ltd Light emitting diodes in series connection and method of making the same
WO2005041313A1 (fr) * 2003-09-26 2005-05-06 Osram Opto Semiconductors Gmbh Puce semi-conductrice en couche mince emettant un rayonnement
JP5719493B2 (ja) 2003-12-09 2015-05-20 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 表面粗化による高効率の(B,Al,Ga,In)Nベースの発光ダイオード
JP2005252222A (ja) * 2004-02-03 2005-09-15 Matsushita Electric Ind Co Ltd 半導体発光装置、照明モジュール、照明装置、表示素子、および半導体発光装置の製造方法
JP2005223165A (ja) 2004-02-06 2005-08-18 Sanyo Electric Co Ltd 窒化物系発光素子
JP4868709B2 (ja) * 2004-03-09 2012-02-01 三洋電機株式会社 発光素子
WO2005088743A1 (fr) * 2004-03-15 2005-09-22 Tinggi Technologies Private Limited Fabrication de dispositifs a semiconducteur
DE102005016592A1 (de) * 2004-04-14 2005-11-24 Osram Opto Semiconductors Gmbh Leuchtdiodenchip
CN101366121B (zh) * 2004-04-28 2011-05-04 沃提科尔公司 垂直结构半导体器件
DE112004002809B9 (de) * 2004-04-29 2024-02-01 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Verfahren zum Herstellen eines strahlungsemittierenden Halbleiterchips und durch dieses Verfahren hergestellter Halbleiterchip
DE102004037868A1 (de) * 2004-04-30 2005-11-24 Osram Opto Semiconductors Gmbh Strahlungsemittierendes und/oder -empfangendes Halbleiterbauelement und Verfahren zur strukturierten Aufbringung eines Kontakts auf einen Halbleiterkörper
US7795623B2 (en) 2004-06-30 2010-09-14 Cree, Inc. Light emitting devices having current reducing structures and methods of forming light emitting devices having current reducing structures
JP2006027929A (ja) * 2004-07-13 2006-02-02 Toshiba Ceramics Co Ltd 電気光学的単結晶薄膜成長用基板及びその製造方法
US20060054919A1 (en) * 2004-08-27 2006-03-16 Kyocera Corporation Light-emitting element, method for manufacturing the same and lighting equipment using the same
KR101217659B1 (ko) * 2004-09-03 2013-01-02 스탠리 일렉트릭 컴퍼니, 리미티드 El소자
DE102004047324A1 (de) * 2004-09-29 2006-04-13 Osram Opto Semiconductors Gmbh Leuchtdiodenanordnung
EP1962340A3 (fr) * 2004-11-09 2009-12-23 S.O.I. TEC Silicon Procédé de fabrication de plaquettes composites
US20100140627A1 (en) * 2005-01-10 2010-06-10 Shelton Bryan S Package for Semiconductor Devices
US20060151868A1 (en) * 2005-01-10 2006-07-13 Zhu Tinggang Package for gallium nitride semiconductor devices
US20060154393A1 (en) * 2005-01-11 2006-07-13 Doan Trung T Systems and methods for removing operating heat from a light emitting diode
TWI308396B (en) * 2005-01-21 2009-04-01 Epistar Corp Light emitting diode and fabricating method thereof
US7335920B2 (en) 2005-01-24 2008-02-26 Cree, Inc. LED with current confinement structure and surface roughening
US7932111B2 (en) 2005-02-23 2011-04-26 Cree, Inc. Substrate removal process for high light extraction LEDs
JP4818732B2 (ja) * 2005-03-18 2011-11-16 シャープ株式会社 窒化物半導体素子の製造方法
KR100638819B1 (ko) * 2005-05-19 2006-10-27 삼성전기주식회사 광추출효율이 개선된 수직구조 질화물 반도체 발광소자
DE102005055293A1 (de) * 2005-08-05 2007-02-15 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung von Halbleiterchips und Dünnfilm-Halbleiterchip
KR100691363B1 (ko) * 2005-09-23 2007-03-12 삼성전기주식회사 수직구조 발광 다이오드의 제조 방법
US8334155B2 (en) * 2005-09-27 2012-12-18 Philips Lumileds Lighting Company Llc Substrate for growing a III-V light emitting device
US20070069225A1 (en) * 2005-09-27 2007-03-29 Lumileds Lighting U.S., Llc III-V light emitting device
DE102005046942A1 (de) * 2005-09-30 2007-04-05 Osram Opto Semiconductors Gmbh Verfahren zur Verbindung von Schichten, entsprechendes Bauelement und organische Leuchtdiode
DE602006008256D1 (de) * 2005-12-15 2009-09-17 Lg Electronics Inc LED mit vertikaler Struktur und deren Herstellungsverfahren
JP2007180059A (ja) * 2005-12-26 2007-07-12 Toshiba Corp 光半導体装置とその製造方法
US20070194342A1 (en) * 2006-01-12 2007-08-23 Kinzer Daniel M GaN SEMICONDUCTOR DEVICE AND PROCESS EMPLOYING GaN ON THIN SAPHIRE LAYER ON POLYCRYSTALLINE SILICON CARBIDE
JP2007207981A (ja) * 2006-02-01 2007-08-16 Rohm Co Ltd 窒化物半導体発光素子の製造方法
US8124957B2 (en) 2006-02-22 2012-02-28 Cree, Inc. Low resistance tunnel junctions in wide band gap materials and method of making same
US7737451B2 (en) * 2006-02-23 2010-06-15 Cree, Inc. High efficiency LED with tunnel junction layer
JP2007258338A (ja) * 2006-03-22 2007-10-04 Rohm Co Ltd 半導体発光素子
JP2007258277A (ja) * 2006-03-20 2007-10-04 Matsushita Electric Works Ltd 半導体発光素子
US9335006B2 (en) * 2006-04-18 2016-05-10 Cree, Inc. Saturated yellow phosphor converted LED and blue converted red LED
DE102006061167A1 (de) * 2006-04-25 2007-12-20 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauelement
US7885306B2 (en) 2006-06-30 2011-02-08 Osram Opto Semiconductors Gmbh Edge-emitting semiconductor laser chip
DE102006060410A1 (de) * 2006-06-30 2008-01-03 Osram Opto Semiconductors Gmbh Kantenemittierender Halbleiterlaserchip
DE102007004303A1 (de) 2006-08-04 2008-02-07 Osram Opto Semiconductors Gmbh Dünnfilm-Halbleiterbauelement und Bauelement-Verbund
JP2008053685A (ja) * 2006-08-23 2008-03-06 Samsung Electro Mech Co Ltd 垂直構造窒化ガリウム系発光ダイオード素子及びその製造方法
JP2008066590A (ja) * 2006-09-08 2008-03-21 Matsushita Electric Works Ltd 化合物半導体発光素子およびそれを用いる照明装置ならびに化合物半導体素子の製造方法
DE102006057747B4 (de) * 2006-09-27 2015-10-15 Osram Opto Semiconductors Gmbh Halbleiterkörper und Halbleiterchip mit einem Halbleiterkörper
JP2008130799A (ja) * 2006-11-21 2008-06-05 Sharp Corp 半導体発光素子および半導体発光素子の製造方法
DE102007004304A1 (de) 2007-01-29 2008-07-31 Osram Opto Semiconductors Gmbh Dünnfilm-Leuchtdioden-Chip und Verfahren zur Herstellung eines Dünnfilm-Leuchtdioden-Chips
DE102007008524A1 (de) * 2007-02-21 2008-08-28 Osram Opto Semiconductors Gmbh Strahlung emittierender Chip mit mindestens einem Halbleiterkörper
GB2447091B8 (en) 2007-03-02 2010-01-13 Photonstar Led Ltd Vertical light emitting diodes
US8362503B2 (en) * 2007-03-09 2013-01-29 Cree, Inc. Thick nitride semiconductor structures with interlayer structures
US8368114B2 (en) * 2007-05-18 2013-02-05 Chiuchung Yang Flip chip LED die and array thereof
WO2008155960A1 (fr) * 2007-06-15 2008-12-24 Rohm Co., Ltd. Dispositif électroluminescent à semi-conducteurs
EP2017898A1 (fr) * 2007-07-17 2009-01-21 Vishay Israel Ltd. Dispositif semi-conducteur émetteur de lumière et son procédé de fabrication
JP4985260B2 (ja) * 2007-09-18 2012-07-25 日立電線株式会社 発光装置
DE102008005344A1 (de) * 2007-09-21 2009-04-02 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Bauelement
CN101488539B (zh) * 2008-01-17 2010-12-08 晶元光电股份有限公司 发光元件
DE102008009108A1 (de) * 2008-02-14 2009-08-20 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterlasers sowie Halbleiterlaser
US8637883B2 (en) * 2008-03-19 2014-01-28 Cree, Inc. Low index spacer layer in LED devices
DE102008030584A1 (de) 2008-06-27 2009-12-31 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines optoelektronischen Bauelementes und optoelektronisches Bauelement
TWI495141B (zh) * 2008-08-01 2015-08-01 Epistar Corp 晶圓發光結構之形成方法及光源產生裝置
US8287346B2 (en) * 2008-11-03 2012-10-16 Cfph, Llc Late game series information change
KR101103882B1 (ko) * 2008-11-17 2012-01-12 엘지이노텍 주식회사 반도체 발광소자 및 그 제조방법
JP2010147446A (ja) * 2008-12-22 2010-07-01 Panasonic Electric Works Co Ltd 発光装置
DE102009019161A1 (de) 2009-04-28 2010-11-04 Osram Opto Semiconductors Gmbh Leuchtdiode und Verfahren zur Herstellung einer Leuchtdiode
US20120086035A1 (en) * 2009-05-11 2012-04-12 SemiLEDs Optoelectronics Co., Ltd. LED Device With A Light Extracting Rough Structure And Manufacturing Methods Thereof
US8434883B2 (en) 2009-05-11 2013-05-07 SemiOptoelectronics Co., Ltd. LLB bulb having light extracting rough surface pattern (LERSP) and method of fabrication
JP5350070B2 (ja) * 2009-05-11 2013-11-27 フューチャー ライト リミテッド ライアビリティ カンパニー 発光素子
US20100327300A1 (en) 2009-06-25 2010-12-30 Koninklijke Philips Electronics N.V. Contact for a semiconductor light emitting device
TWI394299B (zh) * 2009-11-06 2013-04-21 Semileds Optoelectronics Co 具有外移式電極之垂直發光二極體
TWI467798B (zh) * 2009-12-28 2015-01-01 Hon Hai Prec Ind Co Ltd 發光二極體晶片之製備方法
JP4509217B2 (ja) * 2010-02-01 2010-07-21 三洋電機株式会社 発光素子の製造方法
KR100969127B1 (ko) * 2010-02-18 2010-07-09 엘지이노텍 주식회사 발광 소자, 발광 소자 제조방법 및 발광 소자 패키지
DE102010012602B4 (de) 2010-03-24 2023-02-09 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Strahlungsemittierendes Halbleiterbauteil sowie Anzeigevorrichtung und Herstellungsverfahren
CN102237348B (zh) * 2010-04-20 2015-08-05 鸿富锦精密工业(深圳)有限公司 Led微阵列封装结构及其制造方法
SG185547A1 (en) 2010-05-18 2012-12-28 Agency Science Tech & Res Method of forming a light emitting diode structure and a light emitting diode structure
JP2010263251A (ja) * 2010-08-25 2010-11-18 Sanyo Electric Co Ltd 発光素子およびその製造方法
DE102011012298A1 (de) 2010-12-28 2012-06-28 Osram Opto Semiconductors Gmbh Verbundsubstrat, Halbleiterchip mit Verbundsubstrat und Verfahren zur Herstellung von Verbundsubstraten und Halbleiterchips
US9166126B2 (en) 2011-01-31 2015-10-20 Cree, Inc. Conformally coated light emitting devices and methods for providing the same
DE102011112000B4 (de) 2011-08-31 2023-11-30 OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung Leuchtdiodenchip
WO2013078219A1 (fr) * 2011-11-23 2013-05-30 University Of South Carolina Procédé de croissance de films épitaxiaux de sic épais de haute qualité par élimination de la nucléation en phase gazeuse de silicium et suppression de dépôt parasitaire
US9818912B2 (en) 2011-12-12 2017-11-14 Sensor Electronic Technology, Inc. Ultraviolet reflective contact
US9184346B2 (en) 2011-12-12 2015-11-10 Sensor Electronic Technology, Inc. Ultraviolet reflective contact
GB201202222D0 (en) * 2012-02-09 2012-03-28 Mled Ltd Enhanced light extraction
US8952413B2 (en) 2012-03-08 2015-02-10 Micron Technology, Inc. Etched trenches in bond materials for die singulation, and associated systems and methods
KR101945791B1 (ko) * 2012-03-14 2019-02-11 삼성전자주식회사 반도체 발광소자의 제조방법
FR2992465B1 (fr) * 2012-06-22 2015-03-20 Soitec Silicon On Insulator Procede de fabrication collective de leds et structure pour la fabrication collective de leds
US10276749B2 (en) 2013-01-09 2019-04-30 Sensor Electronic Technology, Inc. Ultraviolet reflective rough adhesive contact
US9768357B2 (en) 2013-01-09 2017-09-19 Sensor Electronic Technology, Inc. Ultraviolet reflective rough adhesive contact
WO2014110197A1 (fr) 2013-01-09 2014-07-17 Sensor Electronic Technology, Inc. Contact adhésif rugueux réfléchissant les ultraviolets
CN103346233A (zh) * 2013-07-10 2013-10-09 合肥彩虹蓝光科技有限公司 一种提高发光亮度的led倒装结构
DE102016104965A1 (de) 2016-03-17 2017-09-21 Osram Opto Semiconductors Gmbh Lichtemittierender Halbleiterchip und Verfahren zur Herstellung eines lichtemittierenden Halbleiterchips
CN110600435A (zh) * 2019-09-05 2019-12-20 方天琦 多层复合基板结构及其制备方法
JP2020010056A (ja) * 2019-09-11 2020-01-16 晶元光電股▲ふん▼有限公司Epistar Corporation 半導体発光部品
WO2022109990A1 (fr) * 2020-11-27 2022-06-02 苏州晶湛半导体有限公司 Dispositif électroluminescent à semi-conducteur et procédé de fabrication correspondant

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404565A1 (fr) * 1989-06-21 1990-12-27 Mitsubishi Kasei Corporation Dispositif semi-conducteur composé et méthode de traitement de sa surface
US5157468A (en) * 1990-09-21 1992-10-20 Eastman Kodak Company Light emitting diode resistant to change in operating temperature
JPH08116090A (ja) * 1994-08-22 1996-05-07 Rohm Co Ltd 半導体発光素子の製法
EP0740376A1 (fr) * 1995-04-28 1996-10-30 Mitsubishi Denki Kabushiki Kaisha Diode laser à semi-conducteur et méthode de fabrication
US5661074A (en) * 1995-02-03 1997-08-26 Advanced Technology Materials, Inc. High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same
EP0810674A2 (fr) * 1996-05-31 1997-12-03 Sumitomo Electric Industries, Ltd. Dispositif émetteur de lumière, plaquette pour un dispositif émetteur de lumière et méthode de fabrication
US5780873A (en) * 1995-09-01 1998-07-14 Kabushiki Kaisha Toshiba Semiconductor device capable of easily forming cavity and its manufacturing method
US5786606A (en) * 1995-12-15 1998-07-28 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
EP0871228A2 (fr) * 1997-04-09 1998-10-14 Matsushita Electronics Corporation Substrat semi-conducteur, dispositif semi-conducteur et procédé de fabrication
DE19830838A1 (de) * 1997-07-10 1999-01-14 Rohm Co Ltd Halbleiter-Lichtemissionseinrichtung
US5862167A (en) * 1994-07-19 1999-01-19 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound
EP0896405A2 (fr) * 1997-08-05 1999-02-10 Canon Kabushiki Kaisha Procédé de fabrication d'un dispositif semi-conducteur à émission de surface, dispositif semi-conducteur à émission de surface fabriqué selon ce procédé et dispositif d'affichage utilisant ce dispositif
JPH1168157A (ja) * 1997-08-19 1999-03-09 Sumitomo Electric Ind Ltd 半導体発光素子及びその製造方法
EP0905797A2 (fr) * 1997-09-29 1999-03-31 Siemens Aktiengesellschaft Source lumineuse à semi-conducteur et méthode de fabricaton
DE19741442A1 (de) * 1997-09-19 1999-04-01 Siemens Ag Verfahren zum Herstellen einer Halbleitervorrichtung

Family Cites Families (98)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2716143A1 (de) 1977-04-12 1978-10-19 Siemens Ag Lichtemittierendes halbleiterbauelement
FR2423869A1 (fr) 1978-04-21 1979-11-16 Radiotechnique Compelec Dispositif semiconducteur electroluminescent a recyclage de photons
US4232440A (en) 1979-02-27 1980-11-11 Bell Telephone Laboratories, Incorporated Contact structure for light emitting device
DE3041358A1 (de) 1980-11-03 1982-06-09 Siemens AG, 1000 Berlin und 8000 München Lichtreflektirender ohmscher kontakt fuer bauelemente
US4448636A (en) 1982-06-02 1984-05-15 Texas Instruments Incorporated Laser assisted lift-off
DE3508469A1 (de) 1985-03-09 1986-09-11 Messerschmitt-Bölkow-Blohm GmbH, 8012 Ottobrunn Verfahren zum strukturieren von auf einem transparenten substrat aufgebrachten schichtfolgen
US5373171A (en) 1987-03-12 1994-12-13 Sumitomo Electric Industries, Ltd. Thin film single crystal substrate
US4982538A (en) * 1987-08-07 1991-01-08 Horstketter Eugene A Concrete panels, concrete decks, parts thereof, and apparatus and methods for their fabrication and use
JPH067594B2 (ja) 1987-11-20 1994-01-26 富士通株式会社 半導体基板の製造方法
US4912532A (en) 1988-08-26 1990-03-27 Hewlett-Packard Company Electro-optical device with inverted transparent substrate and method for making same
DE4038216A1 (de) 1990-01-20 1991-07-25 Telefunken Electronic Gmbh Verfahren zur herstellung von leuchtdioden
US5362667A (en) 1992-07-28 1994-11-08 Harris Corporation Bonded wafer processing
US5210051A (en) * 1990-03-27 1993-05-11 Cree Research, Inc. High efficiency light emitting diodes from bipolar gallium nitride
US5102821A (en) 1990-12-20 1992-04-07 Texas Instruments Incorporated SOI/semiconductor heterostructure fabrication by wafer bonding of polysilicon to titanium
JPH0831419B2 (ja) 1990-12-25 1996-03-27 名古屋大学長 単結晶珪素基板上への化合物半導体単結晶の作製方法
US5300788A (en) 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
US5578839A (en) * 1992-11-20 1996-11-26 Nichia Chemical Industries, Ltd. Light-emitting gallium nitride-based compound semiconductor device
DE4305296C3 (de) 1993-02-20 1999-07-15 Vishay Semiconductor Gmbh Verfahren zum Herstellen einer strahlungsemittierenden Diode
US5376580A (en) 1993-03-19 1994-12-27 Hewlett-Packard Company Wafer bonding of light emitting diode layers
US5965698A (en) 1993-04-23 1999-10-12 Virginia Commonwealth University Polypeptides that include conformation-constraining groups which flank a protein--protein interaction site
US5385632A (en) 1993-06-25 1995-01-31 At&T Laboratories Method for manufacturing integrated semiconductor devices
US5753134A (en) 1994-01-04 1998-05-19 Siemens Aktiengesellschaft Method for producing a layer with reduced mechanical stresses
JP3344056B2 (ja) 1994-02-08 2002-11-11 日亜化学工業株式会社 窒化ガリウム系化合物半導体発光素子及びその製造方法
JP2669368B2 (ja) 1994-03-16 1997-10-27 日本電気株式会社 Si基板上化合物半導体積層構造の製造方法
JP3561536B2 (ja) 1994-08-23 2004-09-02 三洋電機株式会社 半導体発光素子
US5523589A (en) 1994-09-20 1996-06-04 Cree Research, Inc. Vertical geometry light emitting diode with group III nitride active layer and extended lifetime
US5585648A (en) * 1995-02-03 1996-12-17 Tischler; Michael A. High brightness electroluminescent device, emitting in the green to ultraviolet spectrum, and method of making the same
JPH08250687A (ja) 1995-03-08 1996-09-27 Komatsu Electron Metals Co Ltd Soi基板の製造方法およびsoi基板
US5670798A (en) 1995-03-29 1997-09-23 North Carolina State University Integrated heterostructures of Group III-V nitride semiconductor materials including epitaxial ohmic contact non-nitride buffer layer and methods of fabricating same
US5739554A (en) 1995-05-08 1998-04-14 Cree Research, Inc. Double heterojunction light emitting diode with gallium nitride active layer
JPH08322116A (ja) 1995-05-25 1996-12-03 Nissin Electric Co Ltd 柱上ガス開閉器
US5625202A (en) * 1995-06-08 1997-04-29 University Of Central Florida Modified wurtzite structure oxide compounds as substrates for III-V nitride compound semiconductor epitaxial thin film growth
US6046840A (en) 1995-06-19 2000-04-04 Reflectivity, Inc. Double substrate reflective spatial light modulator with self-limiting micro-mechanical elements
US5917202A (en) 1995-12-21 1999-06-29 Hewlett-Packard Company Highly reflective contacts for light emitting semiconductor devices
WO1997026680A1 (fr) 1996-01-19 1997-07-24 Matsushita Electric Industrial Co., Ltd. Dispositif emetteur de lumiere a semi-conducteur a base de composes de nitrure de gallium et procede de fabrication d'un semi-conducteur a base de composes de nitrure de gallium
US5874747A (en) 1996-02-05 1999-02-23 Advanced Technology Materials, Inc. High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same
US5889295A (en) * 1996-02-26 1999-03-30 Kabushiki Kaisha Toshiba Semiconductor device
US5985687A (en) * 1996-04-12 1999-11-16 The Regents Of The University Of California Method for making cleaved facets for lasers fabricated with gallium nitride and other noncubic materials
JPH11510968A (ja) 1996-06-11 1999-09-21 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 紫外発光ダイオード及び紫外励起可視光放射蛍光体を含む可視発光ディスプレイ及び該デバイスの製造方法
US5684309A (en) 1996-07-11 1997-11-04 North Carolina State University Stacked quantum well aluminum indium gallium nitride light emitting diodes
JP3179346B2 (ja) 1996-08-27 2001-06-25 松下電子工業株式会社 窒化ガリウム結晶の製造方法
DE19640594B4 (de) 1996-10-01 2016-08-04 Osram Gmbh Bauelement
JPH10150220A (ja) * 1996-11-15 1998-06-02 Toyoda Gosei Co Ltd 半導体発光素子
JPH10209494A (ja) 1997-01-24 1998-08-07 Rohm Co Ltd 半導体発光素子
US5880491A (en) 1997-01-31 1999-03-09 The United States Of America As Represented By The Secretary Of The Air Force SiC/111-V-nitride heterostructures on SiC/SiO2 /Si for optoelectronic devices
JP3679914B2 (ja) 1997-02-12 2005-08-03 株式会社東芝 半導体発光装置及びその製造方法
TW353202B (en) 1997-02-28 1999-02-21 Hewlett Packard Co Scribe and break of hard-to-scribe materials
JP3792041B2 (ja) * 1997-04-09 2006-06-28 松下電器産業株式会社 半導体素子及びその製造方法
US6239033B1 (en) * 1998-05-28 2001-05-29 Sony Corporation Manufacturing method of semiconductor device
US5955756A (en) * 1997-05-29 1999-09-21 International Business Machines Corporation Trench separator for self-defining discontinuous film
US5877070A (en) 1997-05-31 1999-03-02 Max-Planck Society Method for the transfer of thin layers of monocrystalline material to a desirable substrate
JP3537643B2 (ja) 1997-08-28 2004-06-14 京セラ株式会社 電子部品
DE19838810B4 (de) 1998-08-26 2006-02-09 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen einer Mehrzahl von Ga(In,Al)N-Leuchtdiodenchips
TW393785B (en) * 1997-09-19 2000-06-11 Siemens Ag Method to produce many semiconductor-bodies
JP3130292B2 (ja) 1997-10-14 2001-01-31 松下電子工業株式会社 半導体発光装置及びその製造方法
JP3631359B2 (ja) 1997-11-14 2005-03-23 日亜化学工業株式会社 窒化物半導体発光素子
DE69839300T2 (de) 1997-12-15 2009-04-16 Philips Lumileds Lighting Company, LLC, San Jose Licht-emittierende Vorrichtung
US6071795A (en) 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
US6347101B1 (en) * 1998-04-16 2002-02-12 3D Systems, Inc. Laser with absorption optimized pumping of a gain medium
DE19921987B4 (de) 1998-05-13 2007-05-16 Toyoda Gosei Kk Licht-Abstrahlende Halbleitervorrichtung mit Gruppe-III-Element-Nitrid-Verbindungen
US6936859B1 (en) 1998-05-13 2005-08-30 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using group III nitride compound
TW369731B (en) 1998-05-29 1999-09-11 Visual Photonics Epitaxy Co Ltd Light-emitting diode (LED) with transparent glass or quartz as permanent substrate and process for the same
US6291839B1 (en) 1998-09-11 2001-09-18 Lulileds Lighting, U.S. Llc Light emitting device having a finely-patterned reflective contact
JP3201475B2 (ja) 1998-09-14 2001-08-20 松下電器産業株式会社 半導体装置およびその製造方法
JP3525061B2 (ja) 1998-09-25 2004-05-10 株式会社東芝 半導体発光素子の製造方法
JP4530234B2 (ja) 1998-10-09 2010-08-25 シャープ株式会社 半導体発光素子
JP3469484B2 (ja) 1998-12-24 2003-11-25 株式会社東芝 半導体発光素子およびその製造方法
US6744800B1 (en) 1998-12-30 2004-06-01 Xerox Corporation Method and structure for nitride based laser diode arrays on an insulating substrate
US6328796B1 (en) 1999-02-01 2001-12-11 The United States Of America As Represented By The Secretary Of The Navy Single-crystal material on non-single-crystalline substrate
US20010042866A1 (en) 1999-02-05 2001-11-22 Carrie Carter Coman Inxalygazn optical emitters fabricated via substrate removal
US6320206B1 (en) * 1999-02-05 2001-11-20 Lumileds Lighting, U.S., Llc Light emitting devices having wafer bonded aluminum gallium indium nitride structures and mirror stacks
DE69900096T2 (de) 1999-02-11 2001-08-09 Avalon Photonics Ltd Halbleiterlaser und Herstellungsverfahren
US6222207B1 (en) * 1999-05-24 2001-04-24 Lumileds Lighting, U.S. Llc Diffusion barrier for increased mirror reflectivity in reflective solderable contacts on high power LED chip
US6133589A (en) 1999-06-08 2000-10-17 Lumileds Lighting, U.S., Llc AlGaInN-based LED having thick epitaxial layer for improved light extraction
US6803603B1 (en) * 1999-06-23 2004-10-12 Kabushiki Kaisha Toshiba Semiconductor light-emitting element
JP3675234B2 (ja) 1999-06-28 2005-07-27 豊田合成株式会社 半導体発光素子の製造方法
JP2001053336A (ja) 1999-08-05 2001-02-23 Toyoda Gosei Co Ltd Iii族窒化物系化合物半導体発光素子
US6355497B1 (en) * 2000-01-18 2002-03-12 Xerox Corporation Removable large area, low defect density films for led and laser diode growth
DE10008583A1 (de) 2000-02-24 2001-09-13 Osram Opto Semiconductors Gmbh Verfahren zum Herstellen eines optisch transparenten Substrates und Verfahren zum Herstellen eines lichtemittierenden Halbleiterchips
JP4060511B2 (ja) 2000-03-28 2008-03-12 パイオニア株式会社 窒化物半導体素子の分離方法
TW441859U (en) 2000-04-12 2001-06-16 Uni Light Technology Inc Flip-chip light emitting diode device
US7319247B2 (en) 2000-04-26 2008-01-15 Osram Gmbh Light emitting-diode chip and a method for producing same
EP2270875B1 (fr) 2000-04-26 2018-01-10 OSRAM Opto Semiconductors GmbH Dispositf à semiconducteur émetteur de lumière et son procédé de fabrication
DE10051465A1 (de) 2000-10-17 2002-05-02 Osram Opto Semiconductors Gmbh Verfahren zur Herstellung eines Halbleiterbauelements auf GaN-Basis
TWI292227B (en) 2000-05-26 2008-01-01 Osram Opto Semiconductors Gmbh Light-emitting-dioed-chip with a light-emitting-epitaxy-layer-series based on gan
US6380564B1 (en) 2000-08-16 2002-04-30 United Epitaxy Company, Ltd. Semiconductor light emitting device
DE10042947A1 (de) 2000-08-31 2002-03-21 Osram Opto Semiconductors Gmbh Strahlungsemittierendes Halbleiterbauelement auf GaN-Basis
US6518079B2 (en) 2000-12-20 2003-02-11 Lumileds Lighting, U.S., Llc Separation method for gallium nitride devices on lattice-mismatched substrates
US6446571B1 (en) 2001-01-25 2002-09-10 Printmark Industries, Inc. Light reflecting warning kit for vehicles
US6468824B2 (en) 2001-03-22 2002-10-22 Uni Light Technology Inc. Method for forming a semiconductor device having a metallic substrate
US6562701B2 (en) 2001-03-23 2003-05-13 Matsushita Electric Industrial Co., Ltd. Method of manufacturing nitride semiconductor substrate
US6861130B2 (en) 2001-11-02 2005-03-01 General Electric Company Sintered polycrystalline gallium nitride and its production
US6881261B2 (en) 2001-11-13 2005-04-19 Matsushita Electric Industrial Co., Ltd. Method for fabricating semiconductor device
US6617261B2 (en) 2001-12-18 2003-09-09 Xerox Corporation Structure and method for fabricating GaN substrates from trench patterned GaN layers on sapphire substrates
US6869820B2 (en) 2002-01-30 2005-03-22 United Epitaxy Co., Ltd. High efficiency light emitting diode and method of making the same
US20040104395A1 (en) * 2002-11-28 2004-06-03 Shin-Etsu Handotai Co., Ltd. Light-emitting device, method of fabricating the same, and OHMIC electrode structure for semiconductor device
JP4217093B2 (ja) 2003-03-27 2009-01-28 スタンレー電気株式会社 半導体発光素子及びその製造方法

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0404565A1 (fr) * 1989-06-21 1990-12-27 Mitsubishi Kasei Corporation Dispositif semi-conducteur composé et méthode de traitement de sa surface
US5157468A (en) * 1990-09-21 1992-10-20 Eastman Kodak Company Light emitting diode resistant to change in operating temperature
US5862167A (en) * 1994-07-19 1999-01-19 Toyoda Gosei Co., Ltd. Light-emitting semiconductor device using gallium nitride compound
JPH08116090A (ja) * 1994-08-22 1996-05-07 Rohm Co Ltd 半導体発光素子の製法
US5661074A (en) * 1995-02-03 1997-08-26 Advanced Technology Materials, Inc. High brightness electroluminescent device emitting in the green to ultraviolet spectrum and method of making the same
EP0740376A1 (fr) * 1995-04-28 1996-10-30 Mitsubishi Denki Kabushiki Kaisha Diode laser à semi-conducteur et méthode de fabrication
US5780873A (en) * 1995-09-01 1998-07-14 Kabushiki Kaisha Toshiba Semiconductor device capable of easily forming cavity and its manufacturing method
US5786606A (en) * 1995-12-15 1998-07-28 Kabushiki Kaisha Toshiba Semiconductor light-emitting device
EP0810674A2 (fr) * 1996-05-31 1997-12-03 Sumitomo Electric Industries, Ltd. Dispositif émetteur de lumière, plaquette pour un dispositif émetteur de lumière et méthode de fabrication
EP0871228A2 (fr) * 1997-04-09 1998-10-14 Matsushita Electronics Corporation Substrat semi-conducteur, dispositif semi-conducteur et procédé de fabrication
DE19830838A1 (de) * 1997-07-10 1999-01-14 Rohm Co Ltd Halbleiter-Lichtemissionseinrichtung
EP0896405A2 (fr) * 1997-08-05 1999-02-10 Canon Kabushiki Kaisha Procédé de fabrication d'un dispositif semi-conducteur à émission de surface, dispositif semi-conducteur à émission de surface fabriqué selon ce procédé et dispositif d'affichage utilisant ce dispositif
JPH1168157A (ja) * 1997-08-19 1999-03-09 Sumitomo Electric Ind Ltd 半導体発光素子及びその製造方法
DE19741442A1 (de) * 1997-09-19 1999-04-01 Siemens Ag Verfahren zum Herstellen einer Halbleitervorrichtung
EP0905797A2 (fr) * 1997-09-29 1999-03-31 Siemens Aktiengesellschaft Source lumineuse à semi-conducteur et méthode de fabricaton

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 1996, no. 09 30 September 1996 (1996-09-30) *
PATENT ABSTRACTS OF JAPAN vol. 1999, no. 08 30 June 1999 (1999-06-30) *

Cited By (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390684B2 (en) 2001-10-12 2008-06-24 Nichia Corporation Light emitting apparatus and method of manufacturing the same
US7301175B2 (en) 2001-10-12 2007-11-27 Nichia Corporation Light emitting apparatus and method of manufacturing the same
WO2003052838A3 (fr) * 2001-12-13 2004-05-27 Rensselaer Polytech Inst Diode electroluminescente a reflecteur plan omnidirectionnel
US6784462B2 (en) 2001-12-13 2004-08-31 Rensselaer Polytechnic Institute Light-emitting diode with planar omni-directional reflector
KR100984887B1 (ko) * 2001-12-13 2010-10-01 렌슬러 폴리테크닉 인스티튜트 평면형 전방향성 반사기를 가진 발광 다이오드
KR100984921B1 (ko) * 2001-12-13 2010-10-01 렌슬러 폴리테크닉 인스티튜트 평면형 전방향성 반사기를 가진 발광 다이오드
JP4854925B2 (ja) * 2002-01-22 2012-01-18 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ 分離可能な半導体組立体の調整方法、とくにエレクトロニクスおよびオプティクス用の基板を形成するための方法
JP2005516393A (ja) * 2002-01-22 2005-06-02 エス.オー.アイ.テック、シリコン、オン、インシュレター、テクノロジーズ 分離可能な半導体組立体の調整方法、とくにエレクトロニクスおよびオプティクス用の基板を形成するための方法
EP2262008A3 (fr) * 2002-01-28 2011-03-16 Nichia Corporation Dispositif à semi-conducteur à base de nitrure comprenant un substrat de support, et son procedé de réalisation
EP2262007A3 (fr) * 2002-01-28 2011-03-09 Nichia Corporation Dispositif à semi-conducteur à base de nitrure comprenant un substrat de support, et son procedé de réalisation
EP2105977A1 (fr) * 2002-01-28 2009-09-30 Nichia Corporation Dispositif à semi-conducteur à base de nitrure comprenant un substrat de support, et son procedé de réalisation
JP2008294482A (ja) * 2002-01-28 2008-12-04 Nichia Corp 窒化物半導体素子
EP2860779A1 (fr) * 2002-04-09 2015-04-15 LG Innotek Co., Ltd. Procédé de fabrication de DEL à structure verticale
US10461217B2 (en) 2002-04-09 2019-10-29 Lg Innotek Co., Ltd. Vertical structure LEDs
EP1848026A1 (fr) * 2002-04-09 2007-10-24 LG Electronics Inc. Diode électroluminescente avec une structure verticale et son procédé de fabrication
EP2860753A1 (fr) * 2002-04-09 2015-04-15 LG Innotek Co., Ltd. Procédé de fabrication de DEL à structure verticale
US7563629B2 (en) 2002-04-09 2009-07-21 Lg Electronics Inc. Method of fabricating vertical structure LEDs
US7569865B2 (en) 2002-04-09 2009-08-04 Lg Electronics Inc. Method of fabricating vertical structure LEDs
US7576368B2 (en) 2002-04-09 2009-08-18 Lg Electronics Inc. Method of fabricating vertical structure LEDs
US7588952B2 (en) 2002-04-09 2009-09-15 Lg Electronics Inc. Method of fabricating vertical structure LEDs
US8896017B2 (en) 2002-04-09 2014-11-25 Lg Innotek Co., Ltd. Vertical structure LEDs
US10600933B2 (en) 2002-04-09 2020-03-24 Lg Innotek Co., Ltd. Vertical structure LEDs
EP2261950B1 (fr) * 2002-04-09 2015-09-30 LG Innotek Co., LTD. Diode électroluminescente avec une structure verticale et son procédé de fabrication
US9882084B2 (en) 2002-04-09 2018-01-30 Lg Innotek Co., Ltd. Vertical structure LEDs
US10453993B1 (en) 2002-04-09 2019-10-22 Lg Innotek Co., Ltd. Vertical structure LEDs
US9224907B2 (en) 2002-04-09 2015-12-29 Lg Innotek Co., Ltd. Vertical structure LEDs
US9472727B2 (en) 2002-04-09 2016-10-18 Lg Innotek Co., Ltd. Vertical structure LEDs
EP2261951A3 (fr) * 2002-04-09 2011-02-16 LG Electronics Inc. Diode électroluminescente avec une structure verticale et son procédé de fabrication
US7816705B2 (en) 2002-04-09 2010-10-19 Lg Electronics Inc. Method of fabricating vertical structure LEDs
US7928465B2 (en) 2002-04-09 2011-04-19 Lg Electronics Inc. Method of fabricating vertical structure LEDs
US10243101B2 (en) 2002-04-09 2019-03-26 Lg Innotek Co., Ltd. Vertical structure LEDs
EP2261949A3 (fr) * 2002-04-09 2011-02-02 LG Electronics Inc. Diode électroluminescente avec une structure verticale et son procédé de fabrication
EP2261950A3 (fr) * 2002-04-09 2011-02-02 LG Electronics Inc. Diode électroluminescente avec une structure verticale et son procédé de fabrication
EP2863444A1 (fr) * 2002-04-09 2015-04-22 LG Innotek Co., Ltd. Procédé de fabrication de DEL à structure verticale
US7939349B2 (en) 2002-04-23 2011-05-10 Sharp Kabushiki Kaisha Nitride-based semiconductor light emitting device and manufacturing method thereof
US9716213B2 (en) 2002-06-26 2017-07-25 Lg Innotek Co., Ltd. Thin film light emitting diode
US9281454B2 (en) 2002-06-26 2016-03-08 Lg Innotek Co., Ltd. Thin film light emitting diode
US10326059B2 (en) 2002-06-26 2019-06-18 Lg Innotek Co., Ltd. Thin film light emitting diode
US10825962B2 (en) 2002-06-26 2020-11-03 Lg Innotek Co., Ltd. Thin film light emitting diode
US7378334B2 (en) 2002-07-08 2008-05-27 Nichia Corporation Nitride semiconductor device comprising bonded substrate and fabrication method of the same
EP1385215A3 (fr) * 2002-07-08 2007-04-04 Nichia Corporation Dispositif semiconducteur à nitrure avec un substrat soudé et procédé de fabrication correspondant
EP1385215A2 (fr) * 2002-07-08 2004-01-28 Nichia Corporation Dispositif semiconducteur à nitrure avec un substrat soudé et procédé de fabrication correspondant
JP4623953B2 (ja) * 2002-09-30 2011-02-02 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツング 電磁ビームを放出する半導体チップおよびその製造方法
JP2004128507A (ja) * 2002-09-30 2004-04-22 Osram Opto Semiconductors Gmbh 電磁ビームを放出する半導体チップおよびその製造方法
US7655488B2 (en) 2002-09-30 2010-02-02 Osram Gmbh Method for fabricating a plurality of electromagnetic radiation emitting semiconductor chips
JP2009065182A (ja) * 2002-09-30 2009-03-26 Osram Opto Semiconductors Gmbh 半導体構成素子の製造方法
EP1614160A4 (fr) * 2003-04-15 2010-12-08 Luminus Devices Inc Dispositifs electroluminescents
EP1614160A2 (fr) * 2003-04-15 2006-01-11 Luminus Devices, Inc. Dispositifs electroluminescents
WO2005010231A3 (fr) * 2003-07-24 2005-03-10 Aixtron Ag Procede cvd pour deposer au moins une couche iii-v-n sur un substrat
WO2005010231A2 (fr) * 2003-07-24 2005-02-03 Aixtron Ag Procede cvd pour deposer au moins une couche iii-v-n sur un substrat
EP1598875A3 (fr) * 2004-05-18 2011-03-09 LG Electronics, Inc. Dispositif semiconducteur en nitrure et méthode pour sa fabrication
US8728937B2 (en) 2004-07-30 2014-05-20 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology
US7649266B2 (en) 2004-07-30 2010-01-19 Osram Opto Semiconductors Gmbh Method for producing semiconductor chips using thin film technology, and semiconductor chip using thin film technology
WO2007036198A3 (fr) * 2005-09-29 2007-05-24 Osram Opto Semiconductors Gmbh Puce a semi-conducteur optoelectronique
US8158995B2 (en) 2005-09-29 2012-04-17 Osram Opto Semiconductors Gmbh Optoelectronic semiconductor chip
US9893118B2 (en) 2007-10-15 2018-02-13 Lg Innotek Co., Ltd. Light emitting device and method for fabricating the same
EP2201616A4 (fr) * 2007-10-15 2011-01-19 Lg Innotek Co Ltd Dispositif electroluminescent et procede de fabrication dudit dispositif
EP2201616A2 (fr) * 2007-10-15 2010-06-30 LG Innotek Co., Ltd. Dispositif electroluminescent et procede de fabrication dudit dispositif
US8299477B2 (en) 2007-10-15 2012-10-30 Lg Innotek Co., Ltd. Light emitting device and method for fabricating the same
WO2010017807A3 (fr) * 2008-08-12 2010-04-15 Osram Opto Semiconductors Gmbh Composant optoélectronique et son procédé de fabrication
WO2010017807A2 (fr) * 2008-08-12 2010-02-18 Osram Opto Semiconductors Gmbh Composant optoélectronique et son procédé de fabrication
US8648368B2 (en) 2008-08-12 2014-02-11 Osram Opto Semiconductors Gmbh Optoelectronic component with a protected passivation layer
WO2022058217A1 (fr) * 2020-09-17 2022-03-24 Osram Opto Semiconductors Gmbh Composant à semi-conducteur optoélectronique et son procédé de fabrication

Also Published As

Publication number Publication date
EP2270875B1 (fr) 2018-01-10
CN1292494C (zh) 2006-12-27
EP1277240B1 (fr) 2015-05-20
EP1277240A1 (fr) 2003-01-22
US20040056254A1 (en) 2004-03-25
US20050282373A1 (en) 2005-12-22
US6878563B2 (en) 2005-04-12
US7691659B2 (en) 2010-04-06
EP2270875A1 (fr) 2011-01-05
JP2003532298A (ja) 2003-10-28
TW567616B (en) 2003-12-21
CN1426603A (zh) 2003-06-25
US20060011925A1 (en) 2006-01-19

Similar Documents

Publication Publication Date Title
EP2270875B1 (fr) Dispositf à semiconducteur émetteur de lumière et son procédé de fabrication
EP1327267B1 (fr) Procede de fabrication d'un composant semi-conducteur a base de gan
DE10017757B4 (de) LED auf AlGaInN-Basis mit dicker Epitaxieschicht für eine verbesserte Lichtextraktion und Verfahren zum Herstellen des Bauelements
EP1920469B1 (fr) Procede pour separer lateralement une plaquette a semi-conducteurs et element optoelectronique
EP2149160B1 (fr) Composant optoélectronique et procédé de fabrication d'une pluralité de composants optoélectroniques
EP2695207B1 (fr) Puce semi-conductrice optoélectronique
EP1314209B1 (fr) Procede pour produire une puce a semi-conducteur photoemettrice a base de semi-conducteur nitrure iii-v et puce a semi-conducteur photoemettrice correspondante
DE112004002809B4 (de) Verfahren zum Herstellen eines strahlungsemittierenden Halbleiterchips und durch dieses Verfahren hergestellter Halbleiterchip
EP2248235B1 (fr) Laser à semi-conducteurs à émission par la tranche et procédé de fabrication d'un laser à semi-conducteurs à émission par la tranche
WO2007121739A2 (fr) Composant à semi-conducteurs opto-électronique
WO2001061765A1 (fr) Composant semi-conducteur emetteur de rayonnements et son procede de production
EP2289113A1 (fr) Composant optoélectronique et son procédé de production
DE19953609A1 (de) Dickenanpassen von waferverbundenen Al¶x¶Ga¶y¶In¶z¶N-Strukturen durch Laserschmelzen
DE19953588A1 (de) Waferverbundene Al¶x¶Ga¶y¶In¶z¶N-Strukturen
DE102008050573A1 (de) Verfahren zur Herstellung eines optoelektronischen Halbleiterbauelements und optoelektronisches Halbleiterbauelement
DE10020464A1 (de) Strahlungsemittierendes Halbleiterbauelement auf GaN-Basis
EP1929546B1 (fr) Puce semi-conductrice opto-électronique et son procédé de fabrication
DE10026255A1 (de) Lumineszenzdiosdenchip auf der Basis von GaN und Verfahren zum Herstellen eines Lumineszenzdiodenbauelements mit einem Lumineszenzdiodenchip auf der Basis von GaN
DE102020200468A1 (de) Halbleiterlaserdiode und verfahren zur herstellung einer halbleiterlaserdiode
DE102018111954B4 (de) Verfahren zur herstellung eines halbleiterbauelements mit isolierendem substrat und halbleiterbauelement mit isolierendem substrat und optoelektronische vorrichtung dieses umfassend
EP1649497B1 (fr) Procede de fabrication d'une pluralite de puces a semi-conducteur optoelectroniques et puce a semi-conducteur optoelectronique ainsi obtenue
WO2023025937A2 (fr) Procédé de fabrication d'au moins une puce laser et puce laser

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2001931363

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 018086616

Country of ref document: CN

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 579374

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 10239106

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2001931363

Country of ref document: EP