WO2001081993A1 - Dispositif d'affichage a cristaux liquides - Google Patents

Dispositif d'affichage a cristaux liquides Download PDF

Info

Publication number
WO2001081993A1
WO2001081993A1 PCT/JP2001/003475 JP0103475W WO0181993A1 WO 2001081993 A1 WO2001081993 A1 WO 2001081993A1 JP 0103475 W JP0103475 W JP 0103475W WO 0181993 A1 WO0181993 A1 WO 0181993A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
pixel electrode
pixel
liquid crystal
crystal display
Prior art date
Application number
PCT/JP2001/003475
Other languages
English (en)
French (fr)
Inventor
Katsuhiko Kumagawa
Masanori Kimura
Tetsuo Fukami
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2001081993A1 publication Critical patent/WO2001081993A1/ja
Priority to US10/279,382 priority Critical patent/US6717628B2/en
Priority to US10/775,664 priority patent/US6801264B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136213Storage capacitors associated with the pixel electrode

Definitions

  • the present invention relates to an active matrix type liquid crystal display device using a thin film switching element.
  • Liquid crystal display devices are widely used as display devices for various electronic devices as thin and lightweight flat displays. Among them, active matrix type liquid crystal display devices using switching elements such as thin film transistors are being applied to monitor displays for personal computers and liquid crystal televisions due to their excellent image characteristics.
  • FIGS. 16A to 16C are enlarged views of the pixel portion in each of the portions A, B, and C in FIG.
  • reference numeral 211 denotes a scanning electrode
  • reference numeral 211 denotes a video signal electrode
  • a thin film transistor 212 as a switching element is provided at the intersection.
  • the pixel electrode 215 is connected to the video signal electrode 213 via the thin film transistor 212.
  • the gate electrode of the thin film transistor 211 is connected to the scanning electrode 211.
  • 220 a, 220 b, and 220 c are storage capacitance lines provided below the interlayer insulating film (not shown), and overlapped with the pixel electrodes 215, 214 a, 214 b, and 2 c By having 14 c, a storage capacitor is formed.
  • the overlapping portion 214 a of the portion A is large and the overlapping portion 214 c of the portion C is small.
  • the storage capacitance formed in the overlapping portion decreases, and it is possible to eliminate the difference in feedthrough voltage due to the rounding of the scanning voltage waveform.
  • the auxiliary capacitance lines 220a, 220b, and 220c with transparent electrodes, the area through which light is transmitted in the portions A, B, and C can be equalized.
  • the present invention applies to the display part while changing the area of the storage capacitor for each pixel. It is an object of the present invention to provide an active matrix type liquid crystal display device capable of making a generated electric field uniform regardless of pixels.
  • the liquid crystal display device of the present invention is an improvement of an active matrix type liquid crystal display device in which each pixel has a storage capacitor and a pixel group having a pixel area having a partial area not covered by a pixel electrode. It is.
  • the liquid crystal display device of the first invention has the following basic configuration to achieve the above object. At least some of the pixels have a storage capacitance value different from that of the other pixels because at least one of the plurality of electrodes forming the storage capacitance has a shape different from that of the other pixels. . In all of the pixels, the outer periphery of the storage capacitor formed by the plurality of electrodes has the same shape, and the same portion of the outer edge is formed by the same electrode.
  • the aperture ratio and the electric field in the vicinity of the liquid crystal display area can be kept constant irrespective of the pixel, so that a uniform display can be obtained without display disturbance or a difference in display characteristics between pixels.
  • the storage capacity is configured by sandwiching a dielectric between a pixel electrode and a common electrode, and the pixel electrode enters inside the common electrode.
  • the pixel electrode has a different storage capacitance value due to the different shape of the pixel electrode.
  • this configuration has the advantage that large-screen display and high-definition display are easy because both the time constants of the scanning electrode and the common electrode can be reduced, and the design and processing process are easy because of the simple structure.
  • the storage capacitance is configured by sandwiching a dielectric between a pixel electrode and a common electrode, and the common electrode is provided inside the pixel electrode. It has a penetrated structure and the shape of the common electrode Have different storage capacitance values.
  • this configuration makes it possible to reduce the time constant of the scanning electrode, making large-screen display and high-definition display easy.
  • the storage capacity is large, so it is strong against driving waveform noise. Therefore, it is also characterized in that the yield is improved and that a higher uniformity can be obtained by the electric field shielding effect.
  • a liquid crystal display device is the liquid crystal display device according to the above basic configuration, wherein the storage capacitance is formed by sandwiching a dielectric between a pixel electrode and a common electrode, and the pixel electrode extends outside the common electrode.
  • the first portion has the same planar shape in all pixels, and has different storage capacitance values due to the different shape of the pixel electrode in the second portion.
  • this configuration can reduce the time constant of both the scanning electrode and common electrode, making large-screen display and high-definition display easy.
  • the storage capacity is large, so it is strong against noise in driving waveforms.
  • a liquid crystal display device is the liquid crystal display device according to the above basic configuration, wherein the storage capacitance is formed by sandwiching a dielectric between a pixel electrode and a common electrode, and the common electrode extends outside the pixel electrode.
  • the first portion has the same planar shape in all pixels, and has different storage capacitance values due to the different shape of the common electrode in the second portion.
  • the same uniform display can be obtained as described above. Further, this configuration has a feature that large-screen display and high-definition display are easy because the time constant of the scanning electrode can be reduced.
  • the storage capacity is configured by sandwiching a dielectric between a pixel electrode and a scanning electrode, and the pixel electrode enters inside the scanning electrode.
  • the pixel electrode has a different storage capacitance value due to the different shape of the pixel electrode.
  • the same uniform display can be obtained as described above.
  • this configuration has a feature that the aperture ratio can be improved by reducing the width of the common electrode, and the design and processing process are easy because the structure is simple.
  • the storage capacitance is configured by sandwiching a dielectric between a pixel electrode and a scanning electrode, and the scanning electrode enters inside the pixel electrode.
  • the scanning electrodes have different storage capacitance values due to the different shapes of the scanning electrodes.
  • this configuration also has the advantage that the width of the common electrode can be narrowed to increase the aperture ratio, the storage capacitance is large, so it is resistant to drive waveform noise, and the yield is improved because the electrodes are not easily disconnected. There are advantages.
  • the storage capacity is configured by sandwiching a dielectric between a pixel electrode and a scanning electrode, and the pixel electrode extends outside the scanning electrode. And a second portion in which the pixel electrode is inserted inside the scanning electrode.
  • the first portion has the same planar shape in all pixels, and has different storage capacitance values due to the different shape of the pixel electrode in the second portion.
  • this configuration also has the advantage that the width of the common electrode can be narrowed to increase the aperture ratio, the storage capacitance is large, so it is resistant to drive waveform noise, and the yield is improved because the electrodes are not easily disconnected. There are advantages.
  • a liquid crystal display device is the liquid crystal display device according to the above basic configuration, A first portion in which a dielectric is interposed between the pixel electrode and the scan electrode, wherein the first portion extends the scan electrode outside the pixel electrode; and the first portion includes the scan electrode inside the pixel electrode. And a second part penetrated therethrough.
  • the first portion has the same planar shape in all pixels, and has a different storage capacitance value due to the different shape of the scan electrode in the second portion.
  • the aperture ratio can be increased by reducing the width of the common electrode.
  • the storage capacitor is formed by sandwiching a dielectric between a pixel electrode and a common electrode, and the shapes of the pixel electrode and the common electrode are different. Have different storage capacity values. In a portion where the shape of the pixel electrode is different, the common electrode extends to the outside of the pixel electrode. In a portion where the shape of the common electrode is different, the pixel electrode extends to the outside of the common electrode. I have.
  • the storage capacitor is configured by sandwiching a dielectric between a pixel electrode and a scan electrode, and the shapes of the pixel electrode and the scan electrode are different. Have different storage capacity values. In a portion where the shape of the pixel electrode is different, the scanning electrode extends to the outside of the pixel electrode. In a portion where the shape of the scanning electrode is different, the pixel electrode extends to the outside of the scanning electrode. I have.
  • this configuration increases the aperture ratio by reducing the width of the common electrode, and changes the capacitance by changing the pattern of the two electrodes.
  • the feature is that it is resistant to fluctuations and the yield is high.
  • FIG. 1A and 1B are plan views showing a pixel configuration of a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a pixel cross section of the liquid crystal display device according to Embodiment 1 of the present invention
  • 3A and 3B are plan views showing a pixel configuration of a liquid crystal display device used in the comparative description.
  • FIGS. 4A and 4B are plan views showing a pixel configuration of a liquid crystal display device according to Embodiment 2 of the present invention.
  • 5A and 5B are plan views showing a pixel configuration of a liquid crystal display device according to Embodiment 3 of the present invention.
  • FIGS. 6A and 6B are plan views showing a pixel configuration of a liquid crystal display device according to Embodiment 4 of the present invention.
  • FIG. 7A and 7B are plan views showing a pixel configuration of a liquid crystal display device according to Embodiment 5 of the present invention.
  • FIGS. 8A and 8B are plan views illustrating a pixel configuration of a liquid crystal display device according to Embodiment 6 of the present invention.
  • FIGS. 9A and 9B are plan views showing a pixel configuration of a liquid crystal display device according to Embodiment 6 of the present invention.
  • 10A and 10B are plan views showing a pixel configuration of a liquid crystal display device according to Embodiment 7 of the present invention.
  • FIGS. 11A and 11B are plan views showing a pixel configuration of a liquid crystal display device according to Embodiment 8 of the present invention.
  • FIGS. 12A and 12B show a pixel configuration of a liquid crystal display device according to Embodiment 9 of the present invention. A plan view,
  • FIGS. 13A and 13B are plan views showing a pixel configuration of a liquid crystal display device according to Embodiment 9 of the present invention.
  • FIGS. 14A and 14B are block diagrams showing the configuration of the liquid crystal display device of the present invention.
  • FIG. 15 is a plan view showing a conventional liquid crystal display device.
  • FIGS. 16A, 16B and 16C are plan views showing a pixel configuration of a conventional liquid crystal display device. BEST MODE FOR CARRYING OUT THE INVENTION
  • FIG. 1A and 1B are plan views illustrating a configuration of a liquid crystal display device according to Embodiment 1 of the present invention.
  • 1 is a scanning electrode
  • 2 is a video signal electrode
  • Reference numeral 4 denotes a semiconductor layer for forming a TFT 3 channel.
  • the gate electrode of the TFT 3 is connected to the scanning electrode 1
  • the source electrode is connected to the video signal wiring 2
  • the drain electrode is connected to the pixel electrode 5.
  • the pixel electrode 5 and the counter electrode 6 have a comb shape, and the liquid crystal between them operates by an electric field between the electrodes 5 and 6 to perform display.
  • FIG. 1 is a scanning electrode
  • 2 is a video signal electrode
  • a thin film transistor (hereinafter abbreviated as TFT) 3 as a switching element is formed at the intersection.
  • Reference numeral 4 denotes a semiconductor layer for forming
  • reference numeral 15 denotes one substrate, on which a pixel electrode 5 and a counter electrode 6 are formed. 13 is an interlayer insulating film used for separation of two electrodes, and 12 is a passive film for protecting the thin film transistor.
  • Reference numeral 1 denotes a liquid crystal layer, which is sandwiched between the substrate 15 and the other substrate 14. You.
  • a voltage difference between the pixel electrode 5 and the counter electrode 6 generates lines of electric force indicated by arrows.
  • the lines of electric force mainly consist of components parallel to the substrate 15, and a horizontal electric field on the substrate 15 operates the liquid crystal.
  • the pixel electrode 5 does not exist in every region where the liquid crystal actually operates, so that the electric field is likely to differ due to a subtle difference in the shape and position of the electrode edge portion. It looks uneven.
  • the plurality of opposed electrodes 6 are mutually conducted by a bus bar 7.
  • a part of the pixel electrode 5 is overlapped on the bus bar 7, and an interlayer insulating film is sandwiched between the first conductive layer forming the counter electrode 6 and the second conductive layer forming the pixel electrode 5.
  • the storage capacitor 8 is formed. That is, the bus bar 7 functions as a common electrode for the storage capacitor 8.
  • the area of the overlap portion is gradually reduced from the power supply end to the terminal end by changing the shape of the pixel electrode 5 for each pixel.
  • the pixel electrode is H-shaped on the terminal side as shown in Fig. 1B, and the shape is such that both sides protrude from the power supply end as shown in Fig. 1A. May be gradually changed.
  • the value of the storage capacitor 8 also gradually decreases from the feeding end to the end.
  • the pattern in the overlapping portion, is designed so that the pixel electrode 5 whose shape is changed for each pixel fits inside the bus bar 7 as the other electrode. Therefore, the outer edges of the plurality of electrodes forming the storage capacitor 8 have the same shape in all the pixels, and the aperture ratio is constant regardless of the pixels. In addition, since the outer edge is formed of the same electrode in all pixels, the electric field around the storage capacitor 8 is also constant regardless of the pixel. It is fixed. Therefore, uniform display without display unevenness can be performed. Hereinafter, this will be described.
  • the pixel electrode 5 whose shape is changed for each pixel protrudes outside the bus bar 17 which is a common electrode. For this reason, as shown on the power supply side in FIG. 3A and the terminal side in FIG. 3B, the aperture ratio differs depending on the pixel. To solve this problem, if the pixel electrode 5 is formed of a transparent electrode, or a portion that causes a difference in the opening area is covered with a light-shielding film, the aperture ratio can be kept constant. The problem of non-uniformity of the indicated electric field remains.
  • the pixel electrode 5 at the power supply end (FIG. 3A), the bus bar 7 at the terminal end side (FIG. 3B), and the storage capacitor 8 are in contact with the storage capacitor neighborhood 31 shown by hatching in the figure. I have. Since the two potentials are different, a difference occurs in the electric field in the vicinity 31 of the storage capacitor between the power supply side and the terminal side. For this reason, a difference in the display brightness occurs due to a difference in the orientation of the liquid crystal, and the display appears to be uneven. If the difference in display brightness is eliminated by hiding this part using a light-shielding film, the aperture ratio will be greatly reduced.
  • the electrode that is in contact with the vicinity 9 of the storage capacitor from the side of the storage capacitor 8 (upper or lower in the figure) is connected to both the power supply side (FIG. 1A) and the terminal side. (Fig. 1B) This is also busbar 7.
  • the electric field in the portion related to display (the gap between the pixel electrode 5 and the counter electrode 6) is kept equal.
  • the aperture ratios are equal without forming a light-shielding film.
  • the width is wider than that of the configuration in FIG. Since a light-shielding film having a small width is sufficient, the aperture ratio does not significantly decrease.
  • the storage capacitor is not formed on 1, the time constant of scan electrode 1 is low, and there is no need to form a constriction in bus bar 7, which is the common electrode. It is suitable for large size and high definition because there is no increase in the time constant. Another advantage is that the simple structure allows easy design and processing.
  • FIGS. 4A and 4B are plan views showing the configuration of the liquid crystal display device according to Embodiment 2 of the present invention.
  • the pixel electrode 5 is formed of the same electrode layer as the video signal wiring 2 as in the above embodiment, but hatching is omitted for the sake of clarity of the figure, and the outer shape is thick. It is drawn.
  • the thickness of the bus bar 7 of the counter electrode 6 functioning as a common electrode is reduced.
  • the storage capacitance value is reduced from the power supply side (Fig. 4A) to the terminal side (Fig. 4B).
  • the electrode in contact with the storage capacitor vicinity 41 from the storage capacitor 8 side is the pixel electrode 5 on both the power supply side and the terminal side. Therefore, the same effect as that of the first embodiment can be obtained. That is, while the area of the storage capacitor 8 is different for each pixel, the electric field in a portion related to display (a gap between the pixel electrode 5 and the counter electrode 6) is kept equal. Also, the aperture ratios are the same without forming a light shielding film. Furthermore, even when a light-shielding film is formed to improve contrast, a light-shielding film having a width smaller than that of the comparative example shown in FIG. 3 is sufficient, so that the aperture ratio may be significantly reduced. Absent. Other features of the present embodiment will be described below.
  • the storage capacitor 8 is not formed on the scan electrode 1, the time constant of the scan electrode 1 is low, and there is no need to form a constriction in the passper 7, so that the resistance of the common electrode does not increase. Since there is no increase in the time constant of the common electrode, it is suitable for large size and high definition.
  • the pixel electrode 5 In order to form the storage capacitor 8, the pixel electrode 5 needs to ride on a step formed by the edge measurement of the bus bar 7. In the configuration shown in FIG. 1, since the comb-shaped electrode portion rides on the stepped portion, disconnection may occur at the stepped portion, and a pixel defect may occur. In the configuration of the present embodiment, the pixel electrode 5 runs over the step portion using the width of the storage capacitor portion, and the comb-shaped electrode portion is disposed on a flat surface. For this reason, disconnection at the step is less likely to occur, and the yield is improved.
  • the pixel electrode 5 in the upper layer close to the liquid crystal layer completely covers the bus bar 7 in the lower layer, and completely blocks the electric field of the bus bar 7 from leaking to the liquid crystal layer. are doing. Therefore, even if the shape of the bus bar 7 is changed in order to change the storage capacitance value, no leakage electric field is generated, so that a more uniform display can be performed as compared with the first embodiment.
  • FIG. 5A and 5B are plan views showing the configuration of the liquid crystal display device according to Embodiment 3 of the present invention.
  • the difference from the first embodiment is that, of the portion forming the storage capacitor 8 in the pixel electrode 5, the portion having the common shape on the power supply side (FIG. 5A) and the terminal side (FIG. 5B) (the common shape portion)
  • the portion 53 that extends outside the passper 7 and is added on the power supply side is configured to fit inside the bus bar 7.
  • the bus bar 7 functions as a common electrode of the storage capacitor 8.
  • the electrode in contact with the storage capacitor neighborhood 52 corresponding to the common shape portion of the storage capacitor 8 from the storage capacitor side is the pixel electrode 5 on both the power supply side and the terminal side.
  • the electrode that is in contact with the storage capacitance neighborhood 51 corresponding to the changed portion of the storage capacitance 8 from the storage capacitance 8 side is the pass bar 7 on both the power supply side and the terminal side.
  • the electric field in the portion related to display (the gap between the pixel electrode 5 and the counter electrode 6) is kept equal.
  • the aperture ratios are the same without forming a light shielding film. Furthermore, even when a light-shielding film is formed to improve the contrast, it is sufficient to use a light-shielding film that is narrower than the configuration shown in FIG. There is no.
  • the portion of the pixel electrode 5 constituting the common portion of the storage capacitor 8 is configured to protrude outside the bus bar 7, so that The storage capacity can be increased. For this reason, the stability of the pixel potential is increased, and a liquid crystal display device resistant to image disturbance due to noise in the driving voltage waveform can be obtained.
  • the storage capacitor 8 is not formed on the scanning electrode 1, the time constant of the scanning electrode 1 is low, so that it is suitable for enlargement and high definition. Further, as in the case of the second embodiment, there is also an advantage that disconnection is less likely to occur at the step portion and the product yield is improved.
  • FIGS. 6A and 6B are plan views showing a configuration of a liquid crystal display device according to Embodiment 4 of the present invention.
  • the pixel electrode 5 is formed of the same electrode layer as the video signal wiring 2 in the same manner as in the above-described embodiment, but hatching is omitted for the sake of clarity of the drawing. Is drawn thick.
  • the feature of this embodiment is that a portion forming the storage capacitor 8 in the bus bar 7 Among them, the common shape part on the power supply side (Fig. 6A) and the terminal side (Fig. 6B) extend outside the pixel electrode 5, and the narrow part 63 on the terminal side is inside the pixel electrode 5. That is to make it fit.
  • the bus bar 7 functions as a common electrode of the storage capacitor 8.
  • the electrode that is in contact with the storage capacitor neighboring portion 62 corresponding to the common shape portion of the storage capacitor 8 from the storage capacitor 8 side is the bus bar 7 on both the power supply side and the terminal side.
  • the electrode that is in contact with the vicinity of the storage capacitor 61 corresponding to the changed portion of the storage capacitor 8 from the storage capacitor 8 side is the pixel electrode 5 on both the power supply side and the terminal side.
  • the electric field of the portion related to display (the gap between the pixel electrode 5 and the counter electrode 6) is kept equal, although the area of the storage capacitor 8 differs for each pixel.
  • the aperture ratio is the same without forming a light shielding film. Further, even when a light-shielding film is formed for improving the contrast, the aperture ratio is not significantly reduced because the width is narrower than the configuration shown in FIG. 3 shown as a comparative example.
  • the storage capacitor 8 is not formed on the scanning electrode 1, the time constant of the scanning electrode 1 is low, so that it is suitable for enlargement and high definition.
  • FIG. 7A and 7B are plan views showing a configuration of a liquid crystal display device according to Embodiment 5 of the present invention.
  • the scan electrode 1 is used instead of the bus bar 7 in the above-described embodiment as a location where the storage capacitor 8 is formed, and the storage capacitor is sandwiched between the scan electrode 1 and the pixel electrode 5 with an interlayer insulating film interposed therebetween. 8 is formed.
  • the outline of the pixel electrode 5 is located inside the scanning electrode 1.
  • the overlapping area moves from the power supply side (Fig. 7A) to the terminal side (Fig. 7B). Once smaller.
  • the value of the storage capacitance also gradually decreases from the feed end to the end.
  • the pattern is designed so that the pixel electrode 5, which is the electrode whose shape changes for each pixel, fits inside the other scanning electrode 1. ing. For this reason, even if the protruding portion 71 is provided on the pixel electrode 5, the electric field around the storage capacitor 8 and the pixel aperture ratio can be made constant regardless of the pixel, and uniform display without display unevenness can be performed. Can be.
  • the electrode in contact with the storage capacitor vicinity 72 from the storage capacitor 8 side is the scanning electrode 1 on both the power supply side and the terminal side. Therefore, while the area of the storage capacitor 8 differs for each pixel, the electric field in a portion related to display (a gap between the pixel electrode 5 and the counter electrode 6) is kept equal.
  • the aperture ratio is the same without forming the light shielding film. Furthermore, even when a light-shielding film is formed for improving contrast, the aperture ratio is not significantly reduced because the width is narrower than the configuration of FIG. 3 shown as a comparative example. .
  • the width of the bus bar 7 of the counter electrode 6 can be reduced as compared with the devices of the first to fourth embodiments.
  • This has the advantage that the aperture ratio is increased.
  • Another advantage is that the design is simple and the fabrication process is easy because the structure is simple.
  • FIG. 8A and 8B are plan views illustrating a configuration of a liquid crystal display device according to Embodiment 6 of the present invention.
  • the pixel electrode 5 is formed of the same electrode layer as the video signal wiring 2, but hatching is omitted for the sake of clarity of the figure, and the outline is drawn thick.
  • the area of the pixel electrode 5 forming the storage capacitor 8 is changed for each pixel.
  • the thickness of the scanning electrode 1 is changed for each pixel, and the storage capacitance value is changed to the power supply side (FIG. 8). The size is reduced from A) to the terminal side (Fig. 8B).
  • the pattern is designed so that the scanning electrode 1 whose shape is changed for each pixel fits inside the pixel electrode 5 whose shape does not change. For this reason, even if a concave portion is provided in the scanning electrode 1, the electric field around the storage capacitor and the pixel aperture ratio can be kept constant regardless of the pixel, and uniform display without display unevenness can be performed. it can.
  • the electrode in contact with the storage capacitor vicinity 81 from the storage capacitor 8 side is the scanning electrode 1 on both the power supply side and the terminal side.
  • the electrode in contact with the vicinity of the storage capacity 82 is the pixel electrode 5 on both the power supply side and the terminal side.
  • the electric field in the display-related portion (the gap between the pixel electrode 5 and the counter electrode 6) is kept equal, although the area of the storage capacitor 8 differs for each pixel. Furthermore, the aperture ratios are equal without forming a light-shielding film. Further, even when a light-shielding film is formed for improving the contrast, the aperture ratio is not significantly reduced because the width is smaller than that of the configuration of FIG. 3 shown as a comparative example.
  • the liquid crystal display device of the present embodiment has the advantage that the width of the bus bar 7 of the counter electrode 6 can be reduced because the storage capacitor 8 is formed on the scanning electrode 1, and the aperture ratio is increased. ⁇
  • the storage capacitor 8 can be increased, the stability of the pixel potential is increased, and the driving voltage waveform is improved. Obtain a liquid crystal display device that is resistant to image disturbance due to noise Can be
  • FIG. 10A and 10B are plan views showing the configuration of a liquid crystal display device according to Embodiment 7 of the present invention.
  • the difference from the fifth embodiment is that among the portions forming the storage capacitance 8 in the pixel electrode 5, the common shape portion on the power supply side (FIG. 10A) and the terminal side (FIG. 10B) is located outside the scan electrode 1.
  • the portion 93 added on the power supply side is set to fit inside the scanning electrode 1.
  • the electrode that is in contact with the storage capacitor neighboring portion 92 corresponding to the common shape portion of the storage capacitor 8 from the storage capacitor 8 side is the pixel electrode 5 on both the power supply side and the terminal side.
  • the electrode in contact with the storage capacitor vicinity 91 corresponding to the change portion of the storage capacitor from the storage capacitor 8 side is the scanning electrode 1 on both the power supply side and the terminal side.
  • the electric field of the portion related to display (the gap between the pixel electrode 5 and the counter electrode 6) is kept equal, although the area of the storage capacitor 8 differs for each pixel. Furthermore, the aperture ratio is the same without forming a light-shielding film. Further, even when a light-shielding film is formed for improving the contrast, the aperture ratio is not significantly reduced because the width is narrower than the configuration of FIG. 3 shown as a comparative example.
  • the pixel electrode 5 constituting the common shape portion of the storage capacitor 8 is configured to protrude outside the scanning electrode 1, so that the storage capacity is smaller than that of the fifth embodiment.
  • the capacity can be increased. For this reason, the stability of the pixel potential 5 is increased, and a liquid crystal display device resistant to image disturbance due to noise in the driving voltage waveform can be obtained.
  • the storage capacitor 8 is formed on the scanning electrode 1, the width of the bus bar 7 can be reduced, and there is an advantage that the aperture ratio is increased. Further, similar to the configuration described in the second embodiment or the like, disconnection occurs at the step portion. Also, there is an advantage that the yield is improved and the product yield is improved.
  • FIG. 11A and 11B are plan views showing a configuration of a liquid crystal display device according to Embodiment 8 of the present invention.
  • the pixel electrode 5 is formed of the same electrode layer as the video signal wiring 2, but for simplicity of the drawing, eight tappings are omitted and the outline is drawn thick.
  • the feature of the present embodiment is that, among the portions forming the storage capacitor 8 in the scanning electrode 1, the common shape portion on the power supply side (FIG. 11A) and the terminal side (FIG. 11B) is located outside the pixel electrode 5. In the portion 113 extended and narrowed on the terminal side, the scanning electrode 1 is made to fit inside the pixel electrode 5, and the storage capacitance value is changed by changing the width of the scanning electrode 1 in this portion 113. Are different.
  • the electrode that is in contact with the vicinity of the storage capacitor 1 12 corresponding to the changing portion of the storage capacitor 8 from the storage capacitor 8 side is the pixel electrode 5 on both the power supply side and the terminal side.
  • the electrode in contact with the storage capacitor 8 corresponding to the common shape portion of the storage capacitor 8 from the storage capacitor 8 side is the scanning electrode 1 on both the power supply side and the terminal side.
  • the electric field of the portion related to display (the gap between the pixel electrode 5 and the counter electrode 6) is kept equal, although the area of the storage capacitor 8 differs for each pixel. Furthermore, the aperture ratio is the same without forming a light-shielding film. Further, even when a light-shielding film is formed for improving the contrast, the aperture ratio is not significantly reduced because the width is narrower than the configuration of FIG. 3 shown as a comparative example.
  • the storage capacitor 8 is formed on the scanning electrode 1, the width of the bus bar 7 can be reduced, and there is an advantage that the aperture ratio is increased.
  • FIGS. 12A and 12B are plan views showing the configuration of the liquid crystal display device according to Embodiment 9 of the present invention.
  • the pixel electrode 5 is formed of the same electrode layer as the video signal wiring 2, but hatching is omitted and the outline is drawn thick for the sake of clarity.
  • the feature of the present embodiment is that the storage capacitance 8 is formed between the pixel electrode 5 and the bus bar 7 functioning as a common electrode, and the shape of both the pixel electrode 5 and the bus bar 7 is made different, so that the storage capacitance value is changed to the pixel.
  • the difference is that In the narrow portion 124 of the pixel electrode 5 in FIG. 12B and the corresponding portion in FIG. 12A, the pass bar 7 extends to the outside of the pixel electrode 5. In the narrow portion 123 of the bus bar 7 in FIG. 12B and the corresponding portion in FIG. 12A, the pixel electrode 5 extends to the outside of the bus bar 7.
  • the electrode that is in contact with the vicinity of the storage capacitor 12 1 from the side of the storage capacitor 8 is the pixel electrode on both the power supply side (FIG. 12A) and the terminal side (FIG. 12B). 5
  • the electrode that is in contact with the storage capacitor vicinity 1 2 2 from the storage capacitor 8 side is the bus bar 7 on both the power supply side and the terminal side.
  • the electric field of the portion related to display (the gap between the pixel electrode 5 and the counter electrode 6) is kept equal, although the area of the storage capacitor 8 differs for each pixel. Furthermore, the aperture ratio is the same without forming a light-shielding film. Further, even when a light-shielding film is formed for improving the contrast, the aperture ratio is not significantly reduced because the width is narrower than the configuration of FIG. 3 shown as a comparative example.
  • the storage capacitance value is changed by changing the pattern of the two electrodes.
  • electrode patterning is performed by a photolithography method, and in this patterning, dimensional unevenness often occurs due to manufacturing lots and positions in a screen. No.
  • the storage capacitance is made different by changing the pattern of one electrode, the pattern unevenness directly leads to the storage capacitance unevenness.
  • the combination of the pattern changes of the two electrodes is used, so that the dimensional unevenness of the pattern processing hardly leads to the unevenness of the storage capacity. In other words, the occurrence of display unevenness is reduced and defective products are less likely to occur, so that the yield is improved.
  • the idea of the present embodiment is also effective for a configuration in which the storage capacitor 8 is formed between the pixel electrode 5 and the scanning electrode 1.
  • the configuration shown in FIGS. 13A and 13B may be used instead of the configuration shown in FIG.
  • the scanning electrode 1 extends outside the pixel electrode 5.
  • the pixel electrode 5 extends to the outside of the scanning electrode 1.
  • FIGS. 14A and 14B a video signal drive circuit 141 and a scan signal drive circuit 144 are mounted on a liquid crystal panel 140 having the array configuration of each of the above embodiments, and a controller is provided.
  • the liquid crystal display device was configured to be controlled by 144.
  • FIG. 14A shows a one-sided power supply configuration in which the scanning signal driving circuit 144 is formed on one side of the liquid crystal panel 140
  • FIG. 14B shows the scanning signal driving circuit 1442 on both sides of the liquid crystal panel 140.
  • the formed double-sided power supply configuration is shown.
  • the double-sided power supply configuration in Fig. 14B is used to reduce the time constant of the scanning electrodes. It is valid. When these liquid crystal display devices were driven, a display with better uniformity could be performed as compared with the conventional one.
  • the storage capacity is changed depending on the pixel position, so that the storage capacity value at the power supply end becomes larger than usual, and insufficient charging may occur on the power supply side.
  • two scanning lines are selected at the same time and pre-charging is performed. Good results could be obtained by combining with the driving method.
  • the configuration is such that the storage capacitance is gradually reduced from the power supply end to the end of the scan electrode.
  • the present invention is not limited thereto, and the present invention can be sufficiently applied to a liquid crystal display device having pixels having different storage capacities even if the configuration is different.
  • the present invention can be applied to a configuration in which the storage capacitance is gradually reduced from the power supply end of the video signal to the terminal end in order to compensate for the distortion of the video signal.
  • the present invention can be applied to a case where the storage capacitance is changed in order to compensate for a difference in characteristics of the drive circuit and a difference in external wiring resistance.
  • the present invention is not limited to the case where the display mode of the liquid crystal is the IPS mode, and the present invention can be applied to a configuration in which a part of the pixel region is not covered with the pixel electrode.
  • the aperture ratio is constant and the electric field in the display portion is kept equal, although the area of the storage capacitor differs for each pixel. Therefore, the display characteristics are not deteriorated or non-uniform. Also, when a light-shielding film is formed to improve contrast, a light-shielding film having a width smaller than that of the conventional configuration is sufficient, so that the aperture ratio is not significantly reduced.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Geometry (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Description

明 細 書
技術分野
本発明は、 薄膜 ツチング素子を用いたァクテ イブマトリクス型の液晶表示装置に関する, 背景技術
液晶表示装置は、 薄型軽量のフラットディスプレイとして、 各種電子 機器の表示装置に広く用いられている。 なかでも、 薄膜トランジスタな どのスィツチング素子を用いたァクティブマトリクス型の液晶表示装置 は、 その優れた画像特性により、 パーソナルコンピュータ用のモニター ディスプレイや、 液晶テレビなどへの応用がさかんである。
これらの用途に対する液晶表示装置の大型化や高解像度化の進展に伴 つて、 表示むらが問題となっている。 これは、 走査線の C R時定数によ り生ずる走査電圧波形の歪に起因するものである。 即ち、 走査配線の給 電端では走査電圧パルスにはほとんどなまりがないが、 給電端から離れ るにしたがい、 走査電圧パルスの波形がなまる。 この結果、 走査パルス の立下り時に各画素に印加されるフィードスルー電圧に差が生じ、 この 差が液晶印加電圧の D C成分として残るため、 フリッカとして見えるも のである。 また、 この D C電圧成分は、 表示の焼付き現象ゃシミなどの 課題も発生させている。
このフィードスルー電圧を画面内で均一化し、 上記の課題を解決する 技術が特開平 1 0— 3 9 3 2 8号公報に開示されている。 図 1 5と図 1 6は、 その構成を示す。 囟 1 5は液晶表示装置の平面図であり、 2 0 1 は液晶パネル、 202は走査側の駆動回路、 203は映像信号側の駆動 回路である。 図 1 6 A〜図 1 6 Cは、 図 1 5の A, B, Cの各部におけ る画素部の拡大図である。
図 1 6 A〜図 1 6 Cにおいて、 2 1 1は走査電極、 2 1 3は映像信号 電極であり、 その交点にはスイッチング素子としての薄膜トランジスタ 2 12が設けられている。 映像信号電極 2 1 3には、 薄膜トランジスタ 2 12を介して画素電極 2 1 5が接続されている。 薄膜トランジスタ 2 1 2のゲート電極は、 走査電極 2 1 1に接続されている。 220 a、 2 20 b、 220 cは、 層間絶縁膜 (図示せず) の下に設けた補助容量線 であり、 画素電極 2 1 5との間に重なり部 2 14 a、 2 14 b、 2 14 cを有することにより、 蓄積容量が形成されている。
B部の重なり部 2 14 bの面積に比べて、 A部の重なり部 2 14 aが 大きく、 C部の重なり部 2 14 cが小さい。 この結果、 走査配線の給電 端から離れるにしたがって、 重なり部で形成される蓄積容量が小さくな り、 走査電圧波形のなまりに伴うフィードスルー電圧の差をなくすこと ができる。 また、 補助容量線 220 a、 220 b、 22 0 cを透明電極 で形成することにより、 A部、 B部、 C部で光が透過する面積を等しく できる。
しかしながら、 上記のような構成を横電界型 ( I P S型:イン · プレ インスイッチング型) のように、 画素領域に画素電極で覆われていない 一部の領域を有する液晶表示装置に適用した場合、 蓄積容量部の面積変 化により液晶層にかかる電界が乱されてしまう。 その結果、 表示特性が 損なわれたり、 画素ごとに表示特性が異なるという課題が生じていた。 発明の開示
本発明は、 蓄積容量の面積を画素ごとに変えながら、 表示部分に印加 される電界を画素によらず一様にすることが可能な、 ァクティブマトリ クス型の液晶表示装置を提供することを目的とする。
本発明の液晶表示装置は、 各画素が、 蓄積容量を有するとともに、 そ の画素領域に画素電極に覆われていない一部の領域を有する画素群を備 えたァクティブマトリクス型液晶表示装置の改良である。
第 1の発明の液晶表示装置は、 上記目的を達成するために、 以下の基 本構成を有する。 少なくとも一部の前記画素は、 前記蓄積容量を構成す る複数の電極のうち少なくとも一つの電極の形状が他の前記画素とは異 なることにより、 他の前記画素とは異なる蓄積容量値を有する。 全ての 前記画素において、 前記複数の電極により構成された前記蓄積容量の外 緣が同一形状であり、 かつ、 前記外縁の同一部分は同一の電極で形成さ れている。
この構成により、 開口率や液晶表示エリア近傍の電界を画素によらず 一定にできるので、 表示乱れや画素ごとの表示特性差のない、 均一な表 示を得ることができる。
第 2の発明の液晶表示装置は、 上記の基本構成において、 前記蓄積容 量が、 画素電極と共通電極の間に誘電体を挟んで構成され、 前記画素電 極が前記共通電極の内側に入り込んだ構造を持ち、 前記画素電極の形状 が異なることにより異なる蓄積容量値を有する。
これにより、 上記と同じく均一な表示を得ることができる。 更にこの 構成は、 走査電極 ·共通電極の時定数を共に低くできるので大画表示や 高精細表示が容易であり、 構造がシンプルなため設計や加工プロセスが 容易であるという特長を持つ。
' 第 3の発明の液晶表示装置は、 上記の基本構成において、 前記蓄積容 量が、 画素電極と共通電極の間に誘電体を挟んで構成され、 前記共通電 極が前記画素電極の内側に入り込んだ構造を持ち、 前記共通電極の形状 が異なることにより異なる蓄積容量値を有する。
これにより、 上記と同じく均一な表示を得ることができる。 更にこの 構成は、 走査電極の時定数を低くできるので大画表示や高精細表示が容 易である点、蓄積容量を大きくしゃすいため駆動波形のノイズに強い点、 電極の段切れが生じにくいため歩留りが向上する点、 電界遮蔽効果によ りさらに高い均一度を得られる点にも特徴がある。
第 4の発明の液晶表示装置は、 上記の基本構成において、 前記蓄積容 量が、 画素電極と共通電極の間に誘電体を挟んで構成され、 前記画素電 極を前記共通電極の外側に延在させた第 1の部分と、 前記画素電極を前 記共通電極の内側に入り込ませた第 2の部分とを含む。 前記第 1の部分 は全ての画素において同一の平面形状を持ち、 前記第 2の部分の前記画 素電極の形状が異なることにより異なる蓄積容量値を有する。
これにより、 上記と同じく均一な表示を得ることができる。 更にこの 構成は、 走査電極 ·共通電極の時定数を共に低くできるので大画表示や 高精細表示が容易である点、 蓄積容量を大きくしゃすいため駆動波形の ノイズに強い点、 電極の段切れが生じにくいため歩留りが向上する点に も利点がある。
第 5の発明の液晶表示装置は、 上記の基本構成において、 前記蓄積容 量が、 画素電極と共通電極の間に誘電体を挟んで構成され、 前記共通電 極を前記画素電極の外側に延在させた第 1の部分と、 前記共通電極を前 記画素電極の内側に入り込ませた第 2の部分とを含む。 前記第 1の部分 は全ての画素において同一の平面形状を持ち、 前記第 2の部分の前記共 通電極の形状が異なることにより異なる蓄積容量値を有する。
これにより、 上記と同じく均一な表示を得ることができる。 更にこの 構成は、 走査電極の時定数を低くできるので、 大画表示や高精細表示が 容易であるという特徴がある。 第 6の発明の液晶表示装置は、 上記の基本構成において、 前記蓄積容 量が、 画素電極と走査電極の間に誘電体を挟んで構成され、 前記画素電 極が前記走査電極の内側に入り込んだ構造を持ち、 前記画素電極の形状 が異なることにより異なる蓄積容量値を有する。
これにより、 上記と同じく均一な表示を得ることができる。 更にこの 構成は、 共通電極幅を狭くすることにより開口率が向上でき、 構造がシ ンプルなため設計や加工プ口セスが容易であるという特長を持つ。 第 7の発明の液晶表示装置は、 上記の基本構成において、 前記蓄積容 量が、 画素電極と走査電極の間に誘電体を挟んで構成され、 前記走査電 極が前記画素電極の内側に入り込んだ構造を持ち、 前記走査電極の形状 が異なることにより異なる蓄積容量値を有する。
これにより、 上記と同じく均一な表示を得ることができる。 更にこの 構成は、 共通電極幅を狭くできるので開口率が高くなる点、 蓄積容量を 大きくしゃすいため駆動波形のノイズに強い点、 電極の段切れが生じに くいため歩留りが向上する点にも利点がある。
第 8の発明の液晶表示装置は、 上記の基本構成において、 前記蓄積容 量が、 画素電極と走査電極の間に誘電体を挟んで構成され、 前記画素電 極を前記走査電極の外側に延在させた第 1の部分と、 前記画素電極を前 記走査電極の内側に入り込ませた第 2の部分とを含む。 前記第 1の部分 は全ての画素において同一の平面形状を持ち、 前記第 2の部分の前記画 素電極の形状が異なることにより異なる蓄積容量値を有する。
これにより、 上記と同じく均一な表示を得ることができる。 更にこの 構成は、 共通電極幅を狭くできるので開口率が高くなる点、 蓄積容量を 大きくしゃすいため駆動波形のノイズに強い点、 電極の段切れが生じに くいため歩留りが向上する点にも利点がある。
第 9の発明の液晶表示装置は、 上記の基本構成において、 前記蓄積容 量が、 画素電極と走査電極の間に誘電体を挟んで構成され、 前記走査電 極を前記画素電極の外側に延在させた第 1の部分と、 前記走査電極を前 記画素電極の内側に入り込ませた第 2の部分とを含む。 前記第 1の部分 は全ての画素において同一の平面形状を持ち、 前記第 2の部分の前記走 査電極の形状が異なることにより異なる蓄積容量値を有する。
これにより、 上記と同じく均一な表示を得ることができる。 更にこの 構成によれば、 共通電極幅を狭くすることにより開口率を高められる。 第 1 0の発明の液晶表示装置は、 上記の基本構成において、 前記蓄積 容量が、 画素電極と共通電極の間に誘電体を挟んで構成され、 前記画素 電極および前記共通電極の形状が異なることにより異なる蓄積容量値を 有する構造を有する。 前記画素電極の形状が異なる部分では前記共通電 極が前記画素電極の外側にまで延在し、 前記共通電極の形状が異なる部 分では前記画素電極が前記共通電極の外側にまで延在している。
これにより、 上記と同じく均一な表示を得ることができる。 更にこの 構成は、 走査電極の時定数を低くできるので大画表示や高精細表示が容 易である点と、 2つの電極のパターンを変えることで容量変化させてい るので、 プロセス変動に強く歩留りが高いという点に特長がある。 第 1 1の発明の液晶表示装置は、 上記の基本構成において、 前記蓄積 容量が、 画素電極と走査電極の間に誘電体を挟んで構成され、 前記画素 電極および前記走査電極の形状が異なることにより異なる蓄積容量値を 有する構造を有する。 前記画素電極の形状が異なる部分では前記走査電 極が前記画素電極の外側にまで延在し、 前記走査電極の形状が異なる部 分では前記画素電極が前記走査電極の外側にまで延在している。
これにより、 上記と同じく均一な表示を得ることができる。 更にこの 構成は、 共通電極幅を狭くすることにより開口率を高められる点と、 2 つの電極のパターンを変えることで容量変化させているので、 プロセス 変動に強く歩留りが高いという点に特長がある。 図面の簡単な説明
図 1A、 Bは、 本発明の実施形態 1に係る液晶表示装置の画素構成を 示す平面図、
図 2は、 本発明の実施形態 1に係る液晶表示装置の画素断面を示す断 面図、
図 3A、 Bは、 比較説明に用いた液晶表示装置の画素構成を示す平面 図、
図 4A、 Bは、 本発明の実施形態 2に係る液晶表示装置の画素構成を 示す平面図、
図 5A、 Bは、 本発明の実施形態 3に係る液晶表示装置の画素構成を 示す平面図、
図 6A、 Bは、 本発明の実施形態 4に係る液晶表示装置の画素構成を 示す平面図、
図 7A、 Bは、 本発明の実施形態 5に係る液晶表示装置の画素構成を 示す平面図、
図 8A、 Bは、 本発明の実施形態 6に係る液晶表示装置の画素構成を 示す平面図、
図 9A、 Bは、 本発明の実施形態 6に係る液晶表示装置の画素構成を 示す平面図、
図 10 A、 Bは、 本発明の実施形態 7に係る液晶表示装置の画素構成 を示す平面図、
図 1 1 A、 Bは、 本発明の実施形態 8に係る液晶表示装置の画素構成 を示す平面図、
図 1 2 A、 Bは、 本発明の実施形態 9に係る液晶表示装置の画素構成 を示す平面図、
図 1 3 A、 Bは、 本発明の実施形態 9に係る液晶表示装置の画素構成 を示す平面図、
図 1 4 A、 Bは、 本発明の液晶表示装置の構成を示すブロック図、 図 1 5は、 従来例の液晶表示装置を示す平面図、
図 1 6 A、 B、 Cは、 従来例の液晶表示装置の画素構成を示す平面図 である。 発明を実施するための最良の形態
以下、 本発明の実施の形態について、 図面を参照しながら説明する。 各図面において、 同一の機能を有する電極については、 形状が異なる場 合でも、 理解し易さのため同一の符号を付して説明する。
(実施形態 1 )
図 1 A、 Bは、 本発明の実施形態 1における液晶表示装置の構成を示 す平面図である。 図 1において、 1は走査電極、 2は映像信号電極であ り、 その交点にはスイッチング素子としての薄膜トランジスタ (以下 T F Tと略称する) 3が形成されている。 4は T F T 3のチャネルを形成 するための半導体層である。 T F T 3のゲート電極は走査電極 1に、 ソ ース電極は映像信号配線 2に、 ドレイン電極は画素電極 5に、 それぞれ 接続されている。 画素電極 5と対向電極 6は櫛型形状をしており、 この 間にある液晶が両電極 5、 6間の電界により動作して表示が行われる。 図 1 Aの A— A ' 線における断面図が、 図 2に示される。 図 2におい て、 1 5は一方の基板であり、 画素電極 5および対向電極 6が形成され ている。 1 3は 2つの電極のセパレーシヨンに用いられる層間絶縁膜、 1 2は薄膜トランジスタを保護するためのパッシベ一シヨン膜である。 1 1は液晶層であり、 基板 1 5と他方の基板 1 4との間に挟持されてい る。
図 2に示すように、 画素電極 5と対向電極 6の間の電圧差により、 矢 印に示す電気力線が生じる。 図には液晶層 1 1の内部を通過するものが 示されている。 電極の上部を除く部分では、 電気力線は基板 1 5に平行 な成分が主となっており、 この基板 1 5に水平な電界が液晶を動作させ ている。 このような液晶表示装置では、 実際に液晶が動作する領域のす ベてに画素電極 5が存在するわけではないので、 電極エツジ部の形状や 位置の微妙な違いにより電界が異なりやすく、 これが表示むらとなって 見える。
図 1に示すように、 複数の対向電極 6は、 バスバー 7により相互の導 通が取られている。 このバスバー 7上に画素電極 5の一部がォ一バーラ ップされ、 対向電極 6を形成する第 1の導電層と画素電極 5を形成する 第 2の導電層の間に層間絶縁膜を挟みこんで、 蓄積容量 8が形成されて いる。即ち、バスバ一 7は蓄積容量 8に対する共通電極として機能する。 オーバーラップ部の面積は、 画素電極 5の形状を画素ごとに変えるこ とにより、 給電端から終端に向かって徐々に小さくされている。 一例と しては、 終端側では図 1 Bに示すように画素電極を H型にしておき、 給 電端では図 1 Aに示すように両サイドを突き出した形状にして、 この突 き出し量を徐々に変化させればよい。 この結果、 蓄積容量 8の値も給電 端から終端に向かって徐々に小さくなる。
本実施形態においてはオーバ一ラップ部において、 画素ごとに形状が 変化している画素電極 5が、 他方の電極であるバスバー 7の内側に収ま るようにパターン設計されている。 このため、 蓄積容量 8を構成する複 数の電極の外縁が、 全ての画素において同一形状であり、 従って開口率 が画素によらず一定である。 また、 この外縁は全ての画素において同一 の電極で構成されているので、 蓄積容量 8周辺の電界も画素によらず一 定である。 従って、 表示むらのない均一な表示を行うことができる。 以 下、 これについて説明する。
まず、 図 3 A、 Bを参照して比較例を説明する。 同図の構成では、 画 素ごとに形状を変化させた画素電極 5が、 共通電極であるバスバ一 7の 外側にはみ出している。 このため、 図 3 Aの給電側、 図 3 Bの終端側に 示すように、 画素により開口率が異なってしまう。 これを解消するため に、 画素電極 5を透明電極で形成したり、 開口面積の差を生じさせる部 分を遮光膜で覆ったりすれば、 開口率を一定とすることはできるが、 以 下に示す電界の不均一の課題が残る。
即ち、 図に斜線で示す蓄積容量近傍部 3 1に対して、 給電端(図 3 A) では画素電極 5が、 終端側 (図 3 B ) ではバスバー 7が、 蓄積容量 8の 側から接している。 両者の電位は異なっているため、 給電側と終端側で は蓄積容量近傍部 3 1の電界に差が生じる。 このため液晶の配向が異な つて表示輝度に差が生じ、 表示むらとなって見える。 遮光膜を用いてこ の部分を隠すことにより表示輝度の差を解消すると、 開口率が大きく低 下してしまう。 なぜならば、 電界による液晶配向の違いが電極端から数 ミクロンの範囲に及ぶこと、 及び、 遮光膜形成時のパターニングゃ 2つ の基板の貼合わせ時の寸法マージンが数ミクロン必要なことの 2つの理 由により、 遮光膜の面積をかなり大きくとる必要があるからである。 一方、 本発明による図 1の構成によれば、 蓄積容量近傍部 9に対して 蓄積容量 8の側(図では上または下)から接している電極は、給電側(図 1 A) でも終端側 (図 1 B ) でも、 バスバー 7である。 このため蓄積容 量 8の面積が画素ごとに相違しながらも、 表示に関わる部分 (画素電極 5と対向電極 6の間隙部) での電界は等しく保たれている。 また、 遮光 膜を形成しなくても開口率は等しくなつている。 さらに、 コントラスト 向上のために遮光膜を形成する場合であっても、 図 3の構成に比べて幅 の狭い遮光膜で十分なので、 開口率が大幅に低下することがない。
本実施形態の構成は、 以下に述べる他の実施形態に比べて、 走査電極
1上に蓄積容量が形成されないので走査電極 1の時定数が低い点、 およ び共通電極であるバスバー 7にくびれ部を形成する必要がないので、 共 通電極の抵抗が上昇せず共通電極の時定数増がない点で、 大型化や高精 細化に適している。 また、 構造がシンプルであるため、 設計や加工プロ セスが容易であるという利点もある。
(実施形態 2 )
図 4 A、 Bは、 本発明の実施形態 2における液晶表示装置の構成を示 す平面図である。 この図において、 画素電極 5は、 上記の実施形態と同 様映像信号配線 2と同じ電極層で形成されているが、 図の見易さのため にハッチングが省略され、 また、 外形線が太く描かれている。
実施形態 1において蓄積容量 8を形成する画素電極 5の面積を画素ご とに変化させたのとは異なり、 本実施形態では、 共通電極として機能す る対向電極 6のバスバ一 7の太さを画素ごとに変えることにより、 蓄積 容量値を給電側 (図 4 A) から終端側 (図 4 B ) に向かって小さくなる ようにしている。
本実施形態の構成をとれば、 蓄積容量近傍部 4 1に対して蓄積容量 8 の側から接している電極は、 給電側でも終端側でも画素電極 5である。 従って、 実施形態 1の場合と同様の効果を得ることができる。 即ち、 蓄 積容量 8の面積が画素ごとに相違しながらも、 表示に関わる部分 (画素 電極 5と対向電極 6の間隙部) での電界は等しく保たれている。 また、 遮光膜を形成しなくても開口率は等しくなつている。 さらに、 コントラ スト向上のために遮光膜を形成する場合であっても、 比較例として示し た図 3の構成に比べて幅の狭い遮光膜で十分なので、 開口率が大幅に低 下することがない。 本実施形態のこのほかの特徴を以下に説明する。
第 1には、 走査電極 1上に蓄積容量 8が形成されないので、 走査電極 1の時定数が低いこと、 およびパスパー 7にくびれ部を形成する必要が ないので、 共通電極の抵抗が上昇せず共通電極の時定数増がないことに より、 大型化や高精細化に適している。
第 2には、 歩留り向上の効果があることである。 蓄積容量 8を形成す るためには、 画素電極 5が、 バスバー 7の測縁により形成される段差部 分に乗り上げる必要がある。 図 1の構成では、 この段差部分に櫛型電極 部が乗り上げているため、 この段差部分で断線が生じて、 画素欠陥が発 生する場合がある。 本実施形態の構成では、 画素電極 5は蓄積容量部の 幅いつばいを使って段差部分に乗り上げており、 櫛型電極部は平坦な面 上に配置される。 このため、 段差部分での断線が発生しにくくなり、 歩 留りが向上する。
第 3には、蓄積容量部 8では、液晶層に近い上層にある画素電極 5が、 下層にあるバスバ一 7を完全におおっており、 バスバー 7の電界が液晶 層に漏れるのを完全に遮蔽している。 従って、 蓄積容量値を変化させる ためにバスバー 7の形状を異ならせても、 漏れ電界の発生がないので、 実施形態 1に比べて、 さらに均一な表示を行うことができる。
(実施形態 3 )
図 5 A、 Bは、 本発明の実施形態 3における液晶表示装置の構成を示 す平面図である。 実施形態 1との違いは、 画素電極 5における蓄積容量 8を形成する部分のうち、 給電側 (図 5 A) と終端側 (図 5 B ) で共通 の形状を有する部分 (共通形状部分) はパスパー 7の外側に延在させ、 給電側で追加されている部分 5 3は、 バスバ一 7の内側に収まるように している点にある。 なお、 上記の実施形態と同じく、 バスバー 7は蓄積 容量 8の共通電極として機能する。 本実施形態によれば、 蓄積容量 8の共通形状部分に対応する蓄積容量 近傍部 5 2に蓄積容量の側から接している電極は、 給電側でも終端側で も画素電極 5である。 一方、 蓄積容量 8の変化部分に対応する蓄積容量 近傍部 5 1に蓄積容量 8の側から接している電極は、 給電側でも終端側 でもパスバー 7である。
従って本実施形態でも、 蓄積容量 8の面積が画素ごとに相違しながら も、 表示に関わる部分 (画素電極 5と対向電極 6の間隙部) の電界は等 しく保たれている。 また、 遮光膜を形成しなくても開口率は等しくなつ ている。 さらに、 コントラスト向上のために遮光膜を形成する場合であ つても、 比較例として示した図 3の構成に比べて幅の狭い遮光膜を用い れば十分なので、 開口率が大幅に低下することがない。
本実施形態の液晶表示装置では、 蓄積容量 8の共通部分を構成する画 素電極 5の部分を、 バスバー 7の外側にはみ出した構成をとつているの で、 実施形態 1のものに比べて、 蓄積容量を大きくすることができる。 このため、 画素電位の安定度が高まり、 駆動電圧波形のノイズによる画 像の乱れに強い液晶表示装置を得ることができる。
また、 走査電極 1上に蓄積容量 8が形成されないので、 走査電極 1の 時定数が低い点で大型化や高精細化に適している。 さらに、 実施形態 2 の場合と同様に、 段差部分での断線が発生しにくくなり製品歩留りが向 上するという利点もある。
(実施形態 4 )
図 6 A、 Bは、 本発明の実施形態 4における液晶表示装置の構成を示 す平面図である。 この図において、 画素電極 5は、 上記の実施形態と同 様に映像信号配線 2と同じ電極層で形成されているが、 図の見易さのた めにハッチングが省略され、 また、 外形線が太く描かれている。
本実施形態の特徴は、 バスバー 7における蓄積容量 8を形成する部分 のうち、 給電側 (図 6 A) と終端側 (図 6 B ) の共通形状部分は画素電 極 5の外側に延在させ、 終端側において細くした部分 6 3は、 画素電極 5の内側に収まるようにしていることである。 なお、 上記の実施形態と 同じく、 バスバー 7は蓄積容量 8の共通電極として機能している。
本実施形態によれば、 蓄積容量 8の共通形状部分に対応する蓄積容量 近傍部 6 2に蓄積容量 8の側から接している電極は、 給電側でも終端側 でもバスバー 7である。 蓄積容量 8の変化部分に対応する蓄積容量近傍 部 6 1に蓄積容量 8の側から接している電極は、 給電側でも終端側でも 画素電極 5である。
従って本実施形態の構成でも、 蓄積容量 8の面積が画素ごとに相違し ながらも、 表示に関わる部分 (画素電極 5と対向電極 6の間隙部) の電 界は等しく保たれている。 また、 遮光膜を形成しなくても開口率は等し くなつている。 さらに、 コントラスト向上のために遮光膜を形成する場 合であっても、 比較例として示した図 3の構成に比べて幅の狭いもので 済むので、 開口率が大幅に低下することがない。
また、 走査電極 1上に蓄積容量 8が形成されないので、 走査電極 1の 時定数が低い点で大型化や高精細化に適している。
(実施形態 5 )
図 7 A、 Bは、 本発明の実施形態 5における液晶表示装置の構成を示 す平面図である。 本実施形態では、 蓄積容量 8の形成箇所として、 上記 の実施形態におけるバスバー 7に代えて走査電極 1が用いられ、 走査電 極 1と画素電極 5の間に層間絶縁膜を挟みこんで蓄積容量 8が形成され る。
蓄積容量 8を形成する部分では、 画素電極 5の外形線が走査電極 1の 内側に収まっている。画素電極 5の形状を画素ごとに変えることにより、' オーバーラップする面積が給電側 (図 7 A) から終端側 (図 7 B ) に向 かって徐々に小さくされている。 この結果、 蓄積容量の値も給電端から 終端に向かって徐々に小さくなる。
本実施形態においても実施形態 1と同様、オーバーラップ部において、 画素ごとに形状が変化している方の電極である画素電極 5が、 他方の走 査電極 1の内側に収まるようにパターン設計されている。 このため、 画 素電極 5に突出し部分 7 1を設けても、 蓄積容量 8周辺の電界、 および 画素開口率を画素によらず一定とすることができ、 表示むらのない均一 な表示を行うことができる。
また、 本実施形態の構成では、 蓄積容量近傍部 7 2に蓄積容量 8の側 から接している電極は、 給電側でも終端側でも走査電極 1である。 この ため蓄積容量 8の面積が画素ごとに相違しながらも、 表示に関わる部分 (画素電極 5と対向電極 6の間隙部) の電界は等しく保たれている。 ま た、 遮光膜を形成しなくても開口率は等しくなつている。 さらに、 コン トラスト向上のために遮光膜を形成する場合であっても、 比較例として 示した図 3の構成に比べて幅の狭いもので済むので、 開口率が大幅に低 下することがない。
本実施形態の液晶表示装置では、 蓄積容量 8が走査電極 1上に形成さ れているので、 実施形態 1から 4の装置に比べて対向電極 6のバスバー 7の幅を狭くすることができ、 開口率が高くなるという利点を有する。 また、 構造がシンプルであるため、 設計や加工プロセスが容易であると いう利点もある。
(実施形態 6 )
図 8 A、 Bは、 本発明の実施形態 6における液晶表示装置の構成を示 す平面図である。 この図において、 画素電極 5は、 映像信号配線 2と同 じ電極層で形成されているが、 図の見易さのためにハッチングが省略さ れ、 また、 外形線が太く描かれている。 実施形態 5では蓄積容量 8を形成する画素電極 5の面積を画素ごとに 変化させたが、 本実施形態では走査電極 1の太さを画素ごとに変えて、 蓄積容量値を給電側 (図 8 A ) から終端側 (図 8 B ) に向けて小さくし ている。
本実施形態においても実施形態 5と同様、オーバーラップ部において、 画素ごとに形状が変化している走査電極 1が、 形状が変化しない画素電 極 5の内側に収まるようにパターン設計されている。 このため、 走査電 極 1に凹部を設けても、 蓄積容量周辺の電界、 および画素開口率を、 画 素によらず一定とすることができ、 表示むらのない均一な表示を行うこ とができる。
本実施形態の構成をとれば、 蓄積容量近傍部 8 1に蓄積容量 8の側か ら接している電極は、 給電側でも終端側でも走査電極 1である。 蓄積容 量近傍部 8 2に接している電極は、 給電側でも終端側でも画素電極 5で ある。
このため上記の各実施形態と同様、 蓄積容量 8の面積が画素ごとに相 違しながらも、 表示に関わる部分 (画素電極 5と対向電極 6の間隙部) の電界は等しく保たれている。 さらに、 遮光膜を形成しなくても開口率 は等しくなつている。 また、 コントラスト向上のために遮光膜を形成す る場合であっても、 比較例として示した図 3の構成に比べて幅の狭いも ので済むので、 開口率が大幅に低下することがない。
本実施形態の液晶表示装置は、 蓄積容量 8を走査電極 1上に形成して いるので、 対向電極 6のバスバー 7の幅を狭くすることができ、 開口率 が高くなるという利点を有する。 ·
また図 9 A、 Bに示すように、 蓄積容量 8形成部を左右に広げた構造 をとれば、 蓄積容量 8を大きくすることができ、 画素電位の安定度を高 めて、 駆動電圧波形のノイズによる画像の乱れに強い液晶表示装置を得 ることができる。
(実施形態 7 )
図 1 0 A、 Bは、 本発明の実施形態 7における液晶表示装置の構成を 示す平面図である。 実施形態 5との違いは、 画素電極 5における蓄積容 量 8を形成する部分のうち、 給電側 (図 1 0 A) と終端側 (図 1 0 B ) の共通形状部分は走査電極 1の外側に延在させ、 給電側において追加し た部分 9 3は走查電極 1の内側に収まるようにしている点にある。
本実施形態によれば、 蓄積容量 8の共通形状部分に対応する蓄積容量 近傍部 9 2に蓄積容量 8の側から接している電極は、 給電側でも終端側 でも画素電極 5である。 蓄積容量の変化部分に対応する蓄積容量近傍部 9 1に蓄積容量 8の側から接している電極は、 給電側でも終端側でも走 查電極 1である。
従って本実施形態の構成でも、 蓄積容量 8の面積が画素ごとに相違し ながらも、 表示に関わる部分 (画素電極 5と対向電極 6の間隙部) の電 界は等しく保たれている。 さらに、 遮光膜を形成しなくても開口率は等 しくなつている。 また、 コントラスト向上のために遮光膜を形成する場 合であっても、 比較例として示した図 3の構成に比べて幅の狭いもので 済むので、 開口率が大幅に低下することがない。
本実施形態の液晶表示装置では、 蓄積容量 8の共通形状部分を構成す る画素電極 5を、走査電極 1の外側にはみ出した構成をとつているので、 実施形態 5のものに比べて、 蓄積容量を大きくすることができる。 この ため、 画素電位 5の安定度が高まり、 駆動電圧波形のノイズによる画像 の乱れに強い液晶表示装置を得ることができる。
また、 蓄積容量 8を走査電極 1上に形成しているので、 バスバ 7の 幅を狭くすることができ、 開口率が高くなるという利点を有する。 さら に、 実施形態 2などで説明した構成と同様に、 段差部分での断線が発生 しにくくなり製品歩留りが向上するという利点もある。
(実施形態 8 )
図 1 1 A、 Bは、 本発明の実施形態 8における液晶表示装置の構成を 示す平面図である。 この図において、 画素電極 5は、 映像信号配線 2と 同じ電極層で形成されているが、 図の見易さのために八ツチングが省略 され、 また、 外形線が太く描かれている。
本実施形態の特徴は、 走査電極 1における蓄積容量 8を形成する部分 のうち、 給電側 (図 1 1 A) と終端側 (図 1 1 B ) での共通形状部分は 画素電極 5の外側に延在させ、終端側において細くした部分 1 1 3では、 走査電極 1が画素電極 5の内側に収まるようにし、 この部分 1 1 3にお いて走査電極 1の幅を変化させることにより蓄積容量値を異ならせてい る点にある。
本実施形態によれば、 蓄積容量 8の変化部分に対応する蓄積容量近傍 部 1 1 2に対して蓄積容量 8の側から接している電極は、 給電側でも終 端側でも画素電極 5である。 蓄積容量 8の共通形状部分に対応する蓄積 容量近傍部 1 1 1に対して蓄積容量 8の側から接している電極は、 給電 側でも終端側でも走査電極 1である。
従って本実施形態の構成でも、 蓄積容量 8の面積が画素ごとに相違し ながらも、 表示に関わる部分 (画素電極 5と対向電極 6の間隙部) の電 界は等しく保たれている。 さらに、 遮光膜を形成しなくても開口率は等 しくなつている。 また、 コントラスト向上のために遮光膜を形成する場 合であっても、 比較例として示した図 3の構成に比べて幅の狭いもので 済むので、 開口率が大幅に低下することがない。
また、 蓄積容量 8を走査電極 1上に形成しているのでバスバー 7の幅 を狭くすることができ、 開口率が高くなるという利点を有する。
(実施形態 9 ) 図 1 2 A、 Bは、 本発明の実施形態 9における液晶表示装置の構成を 示す平面図である。 この図において、 画素電極 5は、 映像信号配線 2と 同じ電極層で形成されているが、 図の見易さのために、 ハツチングが省 略され、 また、 外形線が太く描かれている。
本実施形態の特徴は、 蓄積容量 8を、 画素電極 5と、 共通電極として 機能するバスバー 7の間に形成し、 画素電極 5およびバスバー 7双方の 形状を異ならせることにより、 蓄積容量値を画素により異ならせた点に ある。 図 1 2 Bにおける画素電極 5の細い部分 1 2 4と、 図 1 2 Aにお けるそれに対応する部分では、 パスバー 7が画素電極 5の外側にまで延 在している。 図 1 2 Bにおけるバスバー 7の細い部分 1 2 3と、 図 1 2 Aにおけるそれに対応する部分では、 画素電極 5がバスバー 7の外側に まで延在している。
本実施形態によれば、 蓄積容量近傍部 1 2 1に対して蓄積容量 8の側 から接している電極は、 給電側 (図 1 2 A) でも終端側 (図 1 2 B ) で も画素電極 5である。 蓄積容量近傍部 1 2 2に対して蓄積容量 8の側か ら接している電極は、 給電側でも終端側でもバスバー 7である。
従って本実施形態の構成でも、 蓄積容量 8の面積が画素ごとに相違し ながらも、 表示に関わる部分 (画素電極 5と対向電極 6の間隙部) の電 界は等しく保たれている。 さらに、 遮光膜を形成しなくても開口率は等 しくなつている。 また、 コントラスト向上のために遮光膜を形成する場 合であっても、 比較例として示した図 3の構成に比べて幅の狭いもので 済むので、 開口率が大幅に低下することがない。
本実施形態では、 2つの電極のパターンを変えることにより蓄積容量 値を変化させている。 一般に、 液晶表示装置の製造においては、 フォト リソグラフィ一法による電極パターニングが行われ、 このパターニング には、 製造のロットや、 画面内の位置による寸法むらが生じることが多 い。 1つの電極のパターンを変えて蓄積容量の差をつける場合には、 こ のパターンむらが直接蓄積容量のむらにつながる。 これに対して、 本実 施形態では、 2つの電極のパターン変化の組合せを用いているので、 パ ターン加工の寸法むらが、 蓄積容量のむらに結びつき難い。 すなわち表 示むらの発生が軽減され、 不良品が生じ難いので、 歩留りが向上する。 なお、 本実施形態の着想は、 蓄積容量 8を画素電極 5と走査電極 1の 間に形成した構成にも有効である。この場合は、図 1 2の構成に代えて、 図 1 3 A、 Bの構成を用いれば良い。 図 1 3 Bにおける画素電極 5の細 い部分 1 3 4と、 図 1 3 Aにおけるそれに対応する部分では、 走査電極 1が画素電極 5の外側にまで延在している。 走査電極 1の細い部分 1 3 3と、 図 1 3 Aにおけるそれに対応する部分では、 画素電極 5が走査電 極 1の外側にまで延在している。
図 1 4 A、 Bに示すように、 上記の各実施形態のアレイ構成を持つ液 晶パネル 1 4 0に、 映像信号駆動回路 1 4 1、 および走査信号駆動回路 1 4 2を実装し、 コントローラ 1 4 3で制御するようにして液晶表示装 置を構成した。 図 1 4 Aは、 走査信号駆動回路 1 4 2を液晶パネル 1 4 0の片側に形成した片側給電構成、 図 1 4 Bは、 走査信号駆動回路 1 4 2を液晶パネル 1 4 0の両側に形成した両側給電構成を示す。 2 0型以 上の大型液晶表示装置や、 走査線が 1 0 0 0本以上の高解像度の液晶表 示装置では、 図 1 4 Bの両側給電構成が、 走査電極の時定数低減のため に有効である。 これらの液晶表示装置を駆動したところ、 従来のものに 比べて均一性の良好な表示を行うことができた。
これらの液晶表示装置は、 蓄積容量を画素位置によって変化させてい るので、 給電端での蓄積容量値が通常より大きくなり、 給電側で充電不 足が生じることがある。 この場合には、 走査線を 1ラインずつ駆動する 通常の駆動方式ではなく、 2本の走査線を同時に選択し、 予備充電を行 う駆動方式と組合せることで良好な結果を得ることができた。
特に、 2 0型以上の大型液晶表示装置や走査線が 1 0 0 0本以上の高 解像度の液晶表示装置を、 図 1 4 Aの片側給電構成で動作させる場合に は、 蓄積容量の変化を大きくとる必要があるので、 2本の走査線を同時 に選択する駆動方式を用いるのが望ましい。
上記の実施の形態では、 蓄積容量は走査電極の給電端から終端に向け て徐々に小さくされている構成とした。 これに限らず、 蓄積容量の異な る画素を有する液晶表示装置であれば、 別の構成の場合であっても、 本 発明を適用して、 その効果を十分に発揮することができる。 例えば、 映 像信号の歪を補償するために、 蓄積容量を映像信号の給電端から終端に 向けて徐々に小さくした構成に、本発明を適用することができる。また、 駆動回路の特性差や外部配線抵抗の差を補償するために蓄積容量を変化 させる場合にも、 本発明を適用することができる。
また、液晶の表示モードが I P S方式の場合に限られるものではなく、 画素領域の一部に画素電極に覆われていない領域が存在する構成であれ ば、 本発明を適用できる。 産業上の利用の可能性
本発明の液晶表示装置によれば、 蓄積容量の面積が画素ごと相違しな がらも、 開口率は一定であり、 表示部分の電界は等しく保たれる。 この ため、 表示特性が損なわれたり、 不均一になることがない。 また、 コン トラスト向上等のために遮光膜を形成する場合にも、 従来構成に比べて 幅の狭い遮光膜で済むので、 開口率が大幅に低下することがない。

Claims

請 求 の 範 囲
1 . 各画素が、 蓄積容量を有するとともに、 その画素領域に画素電極 に覆われていない一部の領域を有する画素群を備えたァクティブマトリ クス型液晶表示装置であって、
少なくとも一部の前記画素は、 前記蓄積容量を構成する複数の電極の うち少なくとも一つの電極の形状が他の前記画素とは異なることにより、 他の前記画素とは異なる蓄積容量値を有し、
全ての前記画素において、 前記複数の電極により構成された前記蓄積 容量の外縁が同一形状であり、 かつ、 前記外縁の同一部分は同一の電極 で形成されている液晶表示装置。
2 . 前記蓄積容量は、 画素電極と共通電極の間に誘電体を挟んで構成 され、 前記画素電極が前記共通電極の内側に入り込んだ構造を持ち、 前記画素電極の形状が異なることにより異なる蓄積容量値を有する請 求項 1に記載の液晶表示装置。
3 . 前記蓄積容量は、 画素電極と共通電極の間に誘電体を挟んで構成 され、 前記共通電極が前記画素電極の内側に入り込んだ構造を持ち、 前記共通電極の形状が異なることにより異なる蓄積容量値を有する請 求項 1に記載の液晶表示装置。
4 . 前記蓄積容量は、 画素電極と共通電極の間に誘電体を挟んで構成 され、 前記画素電極を前記共通電極の外側に延在させた第 1の部分と、 前記画素電極を前記共通電極の内側に入り込ませた第 2の部分とを含み、 前記第 1の部分は全ての画素において同一の平面形状を持ち、 前記第 2の部分の前記画素電極の形状が異なることにより異なる蓄積 容量値を有する請求項 1に記載の液晶表示装置。
5 . 前記蓄積容量は、 画素電極と共通電極の間に誘電体を挟んで構成 され、 前記共通電極を前記画素電極の外側に延在させた第 1の部分と、 前記共通電極を前記画素電極の内側に入り込ませた第 2の部分とを含み、 前記第 1の部分は全ての画素において同一の平面形状を持ち、 前記第 2の部分の前記共通電極の形状が異なることにより異なる蓄積 容量値を有する請求項 1に記載の液晶表示装置。
6 . 前記蓄積容量は、 画素電極と走査電極の間に誘電体を挟んで構成 され、 前記画素電極が前記走査電極の内側に入り込んだ構造を持ち、 前記画素電極の形状が異なることにより異なる蓄積容量値を有する請 求項 1に記載の液晶表示装置。
7 . 前記蓄積容量は、 画素電極と走査電極の間に誘電体を挟んで構成 され、 前記走査電極が前記画素電極の内側に入り込んだ構造を持ち、 前記走査電極の形状が異なることにより異なる蓄積容量値を有する請 求項 1に記載の液晶表示装置。
8 . 前記蓄積容量は、 画素電極と走査電極の間に誘電体を挟んで構成 され、 前記画素電極を前記走査電極の外側に延在させた第 1の部分と、 前記画素電極を前記走査電極の内側に入り込ませた第 2の部分とを含み、 前記第 1の部分は全ての画素において同一の平面形状を持ち、 前記第 2の部分の前記画素電極の形状が異なることにより異なる蓄積 容量値を有する請求項 1に記載の液晶表示装置。
9 . 前記蓄積容量は、 画素電極と走査電極の間に誘電体を挟んで構成 され、 前記走査電極を前記画素電極の外側に延在させた第 1の部分と、 前記走査電極を前記画素電極の内側に入り込ませた第 2の部分とを含み, 前記第 1の部分は全ての画素において同一の平面形状を持ち、 前記第 2の部分の前記走査電極の形状が異なることにより異なる蓄積 容量値を有する請求項 1に記載の液晶表示装置。
1 0 . 前記蓄積容量は、 画素電極と共通電極の間に誘電体を挟んで構 成され、 前記画素電極および前記共通電極の形状が異なることにより異 なる蓄積容量値を有する構造を有し、
前記画素電極の形状が異なる部分では前記共通電極が前記画素電極の 外側にまで延在し、
前記共通電極の形状が異なる部分では前記画素電極が前記共通電極の 外側にまで延在している請求項 1に記載の液晶表示装置。
1 1 . 前記蓄積容量は、 画素電極と走査電極の間に誘電体を挟んで構 成され、 前記画素電極および前記走査電極の形状が異なることにより異 なる蓄積容量値を有する構造を有し、
前記画素電極の形状が異なる部分では前記走査電極が前記画素電極の 外側にまで延在し、
前記走査電極の形状が異なる部分では前記画素電極が前記走査電極の 外側にまで延在している請求項 1に記載の液晶表示装置。
PCT/JP2001/003475 2000-04-24 2001-04-23 Dispositif d'affichage a cristaux liquides WO2001081993A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US10/279,382 US6717628B2 (en) 2000-04-24 2002-10-23 Liquid crystal display device
US10/775,664 US6801264B2 (en) 2000-04-24 2004-02-09 Liquid crystal display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000122687A JP4058882B2 (ja) 2000-04-24 2000-04-24 液晶表示装置
JP2000-122687 2000-04-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/279,382 Continuation US6717628B2 (en) 2000-04-24 2002-10-23 Liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2001081993A1 true WO2001081993A1 (fr) 2001-11-01

Family

ID=18633135

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2001/003475 WO2001081993A1 (fr) 2000-04-24 2001-04-23 Dispositif d'affichage a cristaux liquides

Country Status (4)

Country Link
US (2) US6717628B2 (ja)
JP (1) JP4058882B2 (ja)
TW (1) TWI247160B (ja)
WO (1) WO2001081993A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7120134B2 (en) * 2001-02-15 2006-10-10 Qualcomm, Incorporated Reverse link channel architecture for a wireless communication system
JP4344131B2 (ja) * 2002-12-19 2009-10-14 奇美電子股▲ふん▼有限公司 画像表示装置
KR101352099B1 (ko) * 2004-06-22 2014-01-23 엘지디스플레이 주식회사 횡전계방식 액정표시소자
TWI263082B (en) * 2005-03-02 2006-10-01 Chi Mei Optoelectronics Corp Liquid crystal display, pixel array substrate and method for preventing flicker in display panel applied thereto
US20090258251A1 (en) * 2005-10-03 2009-10-15 Dainichiseika Color & Chemicals Mfg. Co., Ltd. Pearlescent Pigment, Process for Producing the Same, Coating Composition and Multilayered Coat
JP4693131B2 (ja) 2008-02-14 2011-06-01 東芝モバイルディスプレイ株式会社 液晶表示装置
JP5100822B2 (ja) * 2010-12-14 2012-12-19 株式会社ジャパンディスプレイセントラル 液晶表示装置
CN104267552A (zh) * 2014-09-24 2015-01-07 深圳市华星光电技术有限公司 阵列基板及液晶显示面板
CN107589607A (zh) * 2017-09-11 2018-01-16 惠科股份有限公司 显示面板及其制造方法
CN109448635B (zh) * 2018-12-06 2020-10-16 武汉华星光电半导体显示技术有限公司 Oled显示面板
CN113205747A (zh) * 2021-04-30 2021-08-03 惠科股份有限公司 阵列基板、显示面板和显示设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232509A (ja) * 1992-02-21 1993-09-10 Sanyo Electric Co Ltd 液晶表示装置
JP2000019558A (ja) * 1998-06-23 2000-01-21 Internatl Business Mach Corp <Ibm> 液晶表示装置
JP2000162627A (ja) * 1998-12-01 2000-06-16 Hitachi Ltd 液晶表示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3062090B2 (ja) 1996-07-19 2000-07-10 日本電気株式会社 液晶表示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05232509A (ja) * 1992-02-21 1993-09-10 Sanyo Electric Co Ltd 液晶表示装置
JP2000019558A (ja) * 1998-06-23 2000-01-21 Internatl Business Mach Corp <Ibm> 液晶表示装置
JP2000162627A (ja) * 1998-12-01 2000-06-16 Hitachi Ltd 液晶表示装置

Also Published As

Publication number Publication date
US6801264B2 (en) 2004-10-05
JP2001305565A (ja) 2001-10-31
US20030117534A1 (en) 2003-06-26
US20040160541A1 (en) 2004-08-19
JP4058882B2 (ja) 2008-03-12
TWI247160B (en) 2006-01-11
US6717628B2 (en) 2004-04-06

Similar Documents

Publication Publication Date Title
US8395744B2 (en) Display device including dummy pixel region
US6787829B2 (en) LCD panel
US8908114B2 (en) Liquid crystal display device
JPH0862582A (ja) 液晶表示パネル
JP2002040480A (ja) 液晶表示装置
JP2003195330A (ja) 液晶表示装置
KR20010095132A (ko) 액티브 매트릭스형 액정표시장치
JP2001109018A (ja) 液晶表示装置およびその駆動方法
WO2002027392A1 (fr) Afficheur a cristaux liquides
CN108508661B (zh) 液晶显示面板及液晶显示装置
JP4115649B2 (ja) アクティブマトリクス型液晶表示装置
JP4065645B2 (ja) アクティブマトリクス型液晶表示装置
WO2001081993A1 (fr) Dispositif d&#39;affichage a cristaux liquides
JP4293867B2 (ja) 画素の大型化に対応したips液晶ディスプレイ
TWI574245B (zh) 顯示器及其畫素結構
US11846858B2 (en) Array substrate and display panel
US8743305B2 (en) Liquid crystal display device utilizing storage capacitor lines
WO2019017301A1 (ja) タッチパネル付き表示装置
JP4374950B2 (ja) 電気光学装置及び電子機器
US7636143B2 (en) In-plane switching mode liquid crystal display panel with slitted common electrodes
KR100529556B1 (ko) 평면 구동 액정 표시 장치
US10048555B2 (en) Array substrate, manufacturing method thereof and display device
KR20010015376A (ko) 액정 표시 장치
KR101903604B1 (ko) 횡전계형 액정표시장치용 어레이 기판
US20230112631A1 (en) Active matrix substrate and display device

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR SG US

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10279382

Country of ref document: US