WO2001051426A1 - Produit constitue d'une couche de verre et son procede d'obtention - Google Patents

Produit constitue d'une couche de verre et son procede d'obtention Download PDF

Info

Publication number
WO2001051426A1
WO2001051426A1 PCT/JP2000/009370 JP0009370W WO0151426A1 WO 2001051426 A1 WO2001051426 A1 WO 2001051426A1 JP 0009370 W JP0009370 W JP 0009370W WO 0151426 A1 WO0151426 A1 WO 0151426A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass layer
product
antibacterial
layer
concentration
Prior art date
Application number
PCT/JP2000/009370
Other languages
English (en)
French (fr)
Inventor
Hiroaki Kuno
Shigeo Imai
Hiroyuki Miyamoto
Arata Matsumoto
Shinji Itou
Takahiro Morita
Noriyuki Sugiyama
Shozo Yamamoto
Akihito Suzuki
Kazuhiko Hattori
Shungo Tokushima
Yuuichirou Aihara
Rui Yamashita
Haruyuki Mizuno
Original Assignee
Inax Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2000006572A external-priority patent/JP2001199821A/ja
Priority claimed from JP2000269775A external-priority patent/JP2001261379A/ja
Application filed by Inax Corporation filed Critical Inax Corporation
Priority to AU2001224043A priority Critical patent/AU2001224043A1/en
Priority to EP00987780A priority patent/EP1270527A4/en
Publication of WO2001051426A1 publication Critical patent/WO2001051426A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/08Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests containing solids as carriers or diluents
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • A01N25/34Shaped forms, e.g. sheets, not provided for in any other sub-group of this main group
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N59/00Biocides, pest repellants or attractants, or plant growth regulators containing elements or inorganic compounds
    • A01N59/16Heavy metals; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C21/00Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface
    • C03C21/001Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions
    • C03C21/005Treatment of glass, not in the form of fibres or filaments, by diffusing ions or metals in the surface in liquid phase, e.g. molten salts, solutions to introduce in the glass such metals or metallic ions as Ag, Cu
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5022Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with vitreous materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/86Glazes; Cold glazes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2204/00Glasses, glazes or enamels with special properties
    • C03C2204/02Antibacterial glass, glaze or enamel
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00241Physical properties of the materials not provided for elsewhere in C04B2111/00
    • C04B2111/00405Materials with a gradually increasing or decreasing concentration of ingredients or property from one layer to another
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/2092Resistance against biological degradation

Definitions

  • the present invention relates to a product having a glass layer, such as a glass product, a ceramic product, or an enamel product, having an antibacterial action, and a method for determining the product.
  • antibacterial metals such as Ag, Cu, and Zn are known to have antibacterial properties.
  • the entire semifinished product before imparting the antibacterial action is a glass layer, or the semifinished product is a substrate. Since a glass layer called a glaze layer is provided thereon, it is common practice to disperse an antibacterial agent containing an antibacterial metal in the glass layer at the same time as manufacturing the base or forming the glaze layer.
  • the antibacterial agent in the glass layer acts on the bacteria, kills the bacteria, or suppresses the propagation thereof. Disclosure of the invention
  • the present invention has been made in view of the above-described conventional circumstances, and has an object to provide a product having a glass layer that can be manufactured at low cost and that can exhibit excellent antibacterial action. .
  • the present inventors have conducted intensive research to solve the above-mentioned problems.Firstly, in the above-mentioned general product having a glass layer, an antibacterial agent containing an antibacterial metal was dispersed in the glass layer. As a result, it was discovered that the antimicrobial metal was present in the glass layer in a metal state or a compound state, thereby reducing the activity. On the other hand, they have found that the activity can be enhanced if the antibacterial metal is present in the glass layer in an ionized state. Thus, the present invention has been completed.
  • the concentration of the antibacterial metal in the glass layer is the lowest on the surface and gradually increases in the depth direction, as schematically shown in Fig. 9. I found that. It was also confirmed that the product having such a concentration curve cannot exert an excellent antibacterial action against bacteria on the surface of the glass layer unless the concentration of the antibacterial agent dispersed in the glass layer is increased. On the other hand, for products with a glass layer whose surface has the highest antimicrobial metal concentration and whose concentration gradually decreases in the depth direction, even if the concentration of the antimicrobial agent used is not so high, the surface of the glass layer It has also been confirmed that it can exert an excellent antibacterial effect on bacteria.
  • the product having a glass layer of the present invention comprises a substrate having a glass layer, and the glass layer has an antibacterial metal ion ion-exchanged from an alkali metal ion or an alkaline earth metal ion in the glass layer. Is present.
  • the antibacterial metal has a high activity because it exists as an antibacterial metal ion ion-exchanged from an alkali metal ion or an alkaline earth metal ion in the glass layer. Therefore, an excellent antibacterial action against bacteria on the surface of the glass layer can be exhibited without increasing the amount of the antibacterial metal in the glass layer. For this reason, it is possible to lower the concentration of the antibacterial agent to be used and to avoid mass consumption of the antibacterial agent.
  • the antibacterial metal ion forms a high-concentration rich layer on the surface of the glass layer. This is because an antibacterial action against bacteria on the surface of the glass layer is originally desired.
  • the product having a glass layer according to the present invention comprises a substrate having a glass layer, the glass layer having a rich layer containing a high concentration of an antibacterial metal on the surface, and the antibacterial metal of the rich layer being formed of a metal.
  • the concentration is the highest on the surface side and is characterized by a gradual decrease in the depth direction. Since the product of the present invention has a rich layer containing a high concentration of antibacterial metal on the surface of the glass layer, the antibacterial metal can act on bacteria to kill them or suppress their proliferation. .
  • the concentration of the antibacterial metal in the rich layer is highest on the surface side and gradually decreases in the depth direction.
  • the test results of the present inventors it is possible to exert an excellent antibacterial action against bacteria on the surface of the glass layer without increasing the concentration of the antibacterial agent to be used so much. Mass consumption can be avoided.
  • the test results of the inventors by merely bringing the antibacterial agent into contact with the glass layer of the substrate, the alkali metal ions or earth metal ions in the glass layer are ion-exchanged into antibacterial metal ions, Metal ions are incorporated into the glass layer. Then, the amount of the antibacterial metal ion to be substituted in the glass layer can be determined by adjusting the concentration of the antibacterial agent, the contact temperature, the contact time, and the like. As a result, the antibacterial metal ions are not diffused evenly throughout the glass layer, and the surface side of the glass layer has a rich layer containing a high concentration of ion-exchanged antibacterial metal ions.
  • a substrate having a glass layer a glass product, a ceramic product, or a hollow product can be employed. Tiles and sanitary ware can be used as ceramic products.
  • the antibacterial agent it is possible to use an antibacterial metal by evaporation, a fine powder of the antibacterial metal, a color containing the antibacterial metal, or a solution in which the antibacterial metal is dissolved by ions. Ag, Cu, Zn, etc. can be adopted as the antibacterial metal.
  • it is an organic silver-copper compound or a silver / copper-supported inorganic compound; (1) silver, copper, silver-copper alloy, (2) silver phosphate, silver nitrate, silver chloride, silver sulfide, oxidized silver Silver, silver sulfate, silver citrate, silver lactate, (3) cuprous phosphate, cupric phosphate, organic copper compounds, cuprous chloride, cupric chloride, cuprous sulfide, cuprous oxide Copper, cupric oxide, cupric sulfide, cuprous sulfate, cupric sulfate, copper citrate, copper lactate and the like can be used.
  • zinc is an organic zinc compound or a zinc-supporting inorganic compound
  • zinc, zinc oxide, zinc chloride, zinc sulfide, zinc sulfate, zinc lactate, and the like can be used.
  • These antibacterial metals may be a single substance, an alloy, or a compound.
  • contact In order to reduce the contact temperature and shorten the contact time in order to perform the on-exchange, it is preferable to use a colloid II solution having a smaller size of a highly soluble antibacterial metal. More preferably, a solution of silver nitrate, silver sulfate or the like is used.
  • the size of the antimicrobial metal in colloids is larger than the atoms, whereas in these solutions the size of the antimicrobial metals is equal to the atoms.
  • the solution in which the antibacterial metal is dissolved by the ion can be embodied as a treatment liquid containing the antibacterial metal ion and a solvent.
  • the colloid preferably contains a large amount of antibacterial metal particles, and the solution preferably contains a high concentration of antibacterial metal ions.
  • the concentration of the antibacterial metal on the surface exceeds twice the concentration of the antibacterial metal inside 10 nm deep from the surface. According to the test results of the inventors, this provides a sufficient antibacterial effect.
  • the glass layer also contains an antibacterial metal even inside the back of the rich layer.
  • the concentration of the antibacterial metal becomes substantially uniform in the depth direction.
  • the antibacterial metal can exert its initial action by ion exchange performed from the surface side of the glass layer, and can exert its effect only by ion exchange performed only from the surface side of the glass layer.
  • the durability is improved and the amount of the antibacterial metal consumed is reduced, so that the production cost can be reduced.
  • the concentration of the antibacterial metal is the lowest on the surface side, and is directed toward the inner side at the back. It gradually increases and then tends to saturate. For this reason, in this case, if the glass layer contains a large amount of antibacterial metal and the concentration of saturation is not increased to some extent when the wear progresses from the surface to some extent after use, the antibacterial metal only works. Cannot be exhibited effectively. For this reason, in this case, it is difficult to exert the action of the antibacterial metal at an early stage.
  • the antibacterial metal is contained in the glass layer in advance, and the antibacterial metal is taken in by ion exchange from the surface side of the glass layer, and a rich layer is formed on the surface side of the glass layer.
  • Antimicrobial metals that saturate at about the same concentration as the rich layer can be included.
  • the glass layer of the substrate also contains the antibacterial metal in the interior deeper than the rich layer.
  • the rich layer exerts an excellent antibacterial metal action before wear from the surface immediately after use, and if the wear progresses from the surface to some extent after use, the internal antibacterial metal still exerts the effect. Excellent antibacterial metal action will be demonstrated. For this reason, the action of the antibacterial metal can be exhibited at an early stage, and both improvement in durability and reduction in manufacturing cost can be achieved.
  • the product having the glass layer of the present invention can be manufactured by the following second and third methods in addition to the above-described ion exchange method as the first method. That is, in the second method, an antimicrobial agent is attached to the surface of the glass layer of the base, and then the antibacterial agent is irradiated with a laser beam. According to the test results of the inventors, in the product having the antibacterial function manufactured in this way, a lithium layer of an antibacterial metal is formed on the surface of the glass layer by the action of a single laser beam, and the antibacterial performance is remarkably enhanced.
  • a first glaze capable of forming a first glass layer on the surface of the base and a second glaze capable of forming a second glass layer containing an antibacterial metal on the surface of the base are prepared. I do. Then, a first glaze layer made of the first glaze and a second glaze layer made of the second glaze are formed on the surface of the base, and the first glaze layer and the second glaze layer are melted to form the first glaze layer. Forming a glass layer and a second glass layer; According to the test results of the inventors, the product having antibacterial function produced in this way has a rich layer of antibacterial metal on the surface of the glass layer without using much antibacterial agent, and has an antibacterial performance. Is significantly increased.
  • a water-repellent layer containing a water-repellent component is formed on the surface side of the glass layer.
  • the surface of the glass layer has an antibacterial function and a water-repellent function. Both are provided, and even if water containing a large amount of dirt is used so that the antibacterial effect is insufficient with only the antibacterial function, the water repellent function makes it difficult for dirt to remain, and the antibacterial effect Can be fully exhibited.
  • a water-repellent layer having a silicon-containing functional group bonded to a hydroxyl group present on the surface of the glass layer by a dehydration reaction or a dehydrogenation reaction is used as a method of forming a water-repellent layer containing a water-repellent component on the surface side of the glass layer.
  • a water-repellent layer having a silicon-containing functional group bonded to a hydroxyl group present on the surface of the glass layer by a dehydration reaction or a dehydrogenation reaction is used.
  • Performing treatment with a water treatment liquid can be adopted. If this treatment is performed, the silicon-containing functional group will become a hydroxyl group (one) existing on the surface of the glass layer.
  • the water-repellent treatment liquid has this silicon-containing functional group, it is a product that uses water containing a large amount of metal ions such as soluble silica at the same time, and dirt such as human waste does not stick. The cleaning becomes easy.
  • the water-repellent treatment liquid a liquid which is not bonded between the silicon-containing functional groups can be used. According to the test results of the inventors, this makes it possible to enhance the antifouling effect on the water-resistant stain, the hair dye stain, the abrasion resistance and the alkali resistance. This is because if the silicon-containing functional groups of the water-repellent treatment solution are bonded to each other, the amount of silicon increases, and the acid having a network structure precipitates in the coating film, so that dirt is likely to be taken into the film.
  • a liquid having a terminal fluorocarbon group bonded to a silicon-containing functional group may be employed as the water-repellent treatment liquid.
  • the presence of such a fluorocarbon group has a high water-repellent effect due to the small critical surface tension of the fluorocarbon group, and is resistant to water-resistant stains, hair-dyeing liquid stains and the like. This is because the effect on alkalinity is large.
  • Fluorocarbon group (the n l ⁇ n ⁇ 1 natural number 2) _ C n F 2n + 1 may be assumed to be.
  • this has a large number of fluorines and increases the volume of fluorosilane, so that it has an effect on water-resistant stains, hair stains, abrasion resistance and resistance to abrasion. large.
  • the water-repellent treatment liquid a liquid having no terminal alkyl group bonded to the silicon-containing functional group can be used. According to the test results of the inventors, this makes it possible to enhance the effect on water-resistant stains, hair-dyeing stains, and alkali resistance.
  • a liquid having a terminal alkyl group bonded to a silicon-containing functional group can also be used as the water-repellent treatment liquid.
  • the presence of the alkyl group in this manner causes the antifouling effect to be exhibited as lipstick stain resistance and abrasion resistance due to the large critical surface tension of the alkyl group.
  • a methyl group may be employed as the alkyl group.
  • a propyl group or a hexyl group can be employed as the alkyl group.
  • the alkyl group becomes bulky and excellent in alkali resistance, but inferior in abrasion resistance.
  • the alkyl group is a methyl group, it is excellent in terms of abrasion resistance, but inferior in terms of resistance to abrasion.
  • the alkyl group is more than the fluoro group. It is preferable to use one. According to the test results of the inventors, this makes the water-repellent treatment liquid not only perfluoroalkylsilane, but also has a high effect on lipstick stain resistance and abrasion resistance.
  • the fluorocarbon group is more than the alkyl group. It is also preferable to employ a large number. According to the test results of the inventors, this increases the amount of perfluoroalkylsilane in the water-repellent treatment liquid, and reduces water-resistant stains, hair dye stains, abrasion resistance and alkali resistance. High effect. Is preferably bonded by dimethyl siloxane (0- S i (CH 3) 2) and Kei-containing functional group and an alkyl group.
  • this has a high effect on water-resistant stains, hair dye stains, abrasion resistance and alkali resistance.
  • This dimethylsiloxane has a linear bond between a silicon-containing functional group and an alkyl group, and a cyclic bond between a silicon-containing functional group and an alkyl group. It is preferable to employ According to the test results of the inventors, this stably exerts high effects on water-resistant stains, lipstick stains, hair dye stains, abrasion resistance and alkali resistance.
  • dimethylsiloxane in which a silicon-containing functional group and an alkyl group are bonded in a linear manner include a first agent and a second agent described in JP-A-8-209118.
  • the first part is a co-hydrolyzate of a perfluoroalkyl group-containing organic silicon compound and a hydrolyzable group-containing methylpolysiloxane compound in a hydrophilic solvent
  • the second part is an organo-organic compound. It is a mixture of a polysiloxane and a strong acid.
  • the first agent is C 8 F 17 CH 2 CH 2 S i (O CH 3 ) 3 and S i (CH 30 ) 3 CH 2 CH 2- (S i (CH 3 ) 2 0) 10 -S i (CH 3 ) 2 CH 2 CH 2 S i (0 ⁇ 11 3 ) 3 in co-hydrolysis in a hydrophilic solvent consisting of 0.1 N aqueous hydrochloric acid, t-butanol and hexane is obtained by decomposing the second agent, H 0- (S i (CH 3) 2 0) 30 - there is a mixture of S i (CH 3) 2 0 H and methanesulfonic acid.
  • the inventors have completed a method for determining a product according to the present invention. That is, the method for judging a product having a glass layer according to the present invention is a method for judging a product comprising a substrate having a glass layer, wherein the glass layer contains an antibacterial metal.
  • the antibacterial metal of the glass layer is ion-exchanged from the alkali metal ion or the alkaline earth metal ion in the glass layer. Judge that it exists. This makes it possible to determine whether the antibacterial metal is contained in the glass layer as antibacterial metal ions. In such a determination, it can also be determined that the antimicrobial metal ion forms a high concentration rich layer on the surface of the glass layer.
  • the method for judging a product of the present invention comprises a substrate having a glass layer, and the glass layer is a method for judging a product having a rich layer containing a high concentration of an antibacterial metal on the surface thereof.
  • the concentration of the antibacterial metal in the rich layer is highest on the surface side and gradually decreases in the depth direction. I do.
  • the concentration distribution of the antimicrobial metal in the lithium layer in the depth direction within a few hundred nm, so that the X-ray light having excellent resolution in the depth direction is required.
  • Electron spectroscopy is used. According to this method, it is possible to analyze not only the concentration distribution of the antibacterial metal in the depth method but also the state of the antibacterial metal. According to the test results of the inventors, it has been found that the antibacterial function differs depending on whether the antibacterial metal in the glass layer is in an atomic state or as an ion, so that X-ray photoelectron spectroscopy is used.
  • the method for determining a product of the present invention can be applied to a product of the present invention in which a water-repellent layer containing a water-repellent component is formed on the surface side of a glass layer.
  • FIG. 1 is a schematic sectional view of a substrate used in Test 1 and Examples of the present invention.
  • FIG. 2 is a schematic enlarged sectional view of a sample according to a test 1 and a product of an example of the present invention.
  • ⁇ FIG. 3 is a schematic enlarged sectional view of samples D and E according to a product of a comparative example of test 1.
  • FIG. 4 is a schematic enlarged sectional view of a sample according to the product of the example of the present invention.
  • FIG. 5 is a schematic enlarged sectional view of a sample according to the product of the example of the present invention.
  • FIG. 6 is a schematic enlarged sectional view of a sample according to the product of the example of the present invention.
  • FIG. 7 is a graph showing the measurement results of the Ag concentration in the glass layer in Test 2.
  • FIG. 8 is a schematic graph showing the measurement results of the Ag concentration of the glass layer in Test 3.
  • FIG. 9 is a schematic graph showing the measurement results of the concentration of Ag in the glass layer obtained by the conventional method.
  • a base 15 which is a semi-finished product of sanitary ware having a glass layer 12 made of a glaze having the following composition on the surface of a base material 10 is prepared.
  • the glass transition point of the glass layer 12 is 700 ° C.
  • Zinc flower 2.0
  • test pieces were prepared by cutting the base 15 into a square of 50 ⁇ 2 mm square (within a thickness of 10 mm). Each test piece was subjected to a pretreatment consisting of the following steps.
  • First step The surface of the glass layer 12 of the test piece is washed with a sponge impregnated with a neutral detergent.
  • Step 2 Rinse the surface of the glass layer 12 of the test piece in the order of tap water and distilled water.
  • Step 3 The whole test piece is subjected to ultrasonic cleaning with distilled water for 10 minutes, and then rinsed with distilled water. Repeat this operation three times.
  • Step 4 Put the test piece in a glass Petri dish and dry it overnight.
  • Step 6 As the processing liquid is an antibacterial agent, prepared 3 0 ° C silver nitrate (AgNO 3) solution, 1 sec test piece during the treatment liquid, thereby completely immersed collapsed.
  • AgNO 3 silver nitrate
  • Step 7 Wash the entire surface of the glass layer 12 of the test piece with distilled water.
  • Step 8 The whole test piece is subjected to ultrasonic cleaning with distilled water for 10 minutes, and then rinsed with distilled water.
  • sample A a test piece in which the concentration of the aqueous solution of silver nitrate in the sixth step was 0.10 m 01 / L is referred to as sample A.
  • Sample B a test piece in which the concentration of the aqueous solution of silver nitrate in the sixth step was 0.20 mo1 / L is designated as Sample B.
  • Sample C a test piece in which the concentration of the aqueous silver nitrate solution in the sixth step was 0.4 Omo 1 / L is used as sample C.
  • Each sample A to C Prepare 5 pieces at a time.
  • the surface of the glass layer 12 of each of the samples A to E was measured for the silver concentration (atom%) by the XPS method (X-ray photoelectron spectroscopy), and an antibacterial test was performed by the film adhesion method.
  • the XPS method irradiates the surface of the glass layer 12 of a sample placed in an ultra-vacuum with soft X-rays, which are spectroscopically separated by a curved single crystal, and detects photoelectrons emitted from the surface with an analyzer.
  • the information is used for element identification and quantification.
  • the elemental information on the surface can be obtained from the binding energy value of the bound electrons in the material, and the valence and bonding state can be obtained from the energy-shift of each beak. It can be quantified using the peak area.
  • Table 1 shows the results of the silver concentrations of the samples A to E. “#” Indicates that the value is below the detection limit.
  • Table 2 shows the results of the antibacterial activity test for each of the samples A to E.
  • Table 1 shows that, as shown in FIG. 2, the glass layers 12 of the samples A to C have a rich layer 13 containing a high concentration of ionic Ag on the surface. This is thought to be due to the fact that ion exchange occurred mainly between K ions and Ag ions whose ionic radii were close to each other. ⁇ In contrast, as shown in Fig. 3, samples D and E did not have rich layers. Thus, it can be seen that Ag in the metallic state exists up to the inside of the glass layer 12. As a result, when the antibacterial agent was diffused from the surfaces of samples A to C, Ag was present in the lithium layer 13 of the glass layer 12 in the ion state, whereas the antibacterial agent was added to the glaze. In this case, it was found that Ag was present in the entire glass layer 12 in a metallic state.
  • Step 6 As the processing liquid is an antibacterial agent, concentration prepared silver nitrate (A gN0 3) an aqueous solution of 0. 3 Omo 1 / L, to completely immerse the specimen in the treatment solution.
  • concentration prepared silver nitrate A gN0 3
  • Step 7 Wash the entire surface of the glass layer 12 of the test piece with distilled water.
  • Eighth step After heating the surface of the glass layer 12 of the test piece to 100 ° C., it is rapidly cooled to room temperature.
  • Ninth step The entire test piece is subjected to ultrasonic cleaning with distilled water for 10 minutes, and then rinsed with distilled water.
  • Step 10 Put the test piece in a glass Petri dish and dry it by desiccation overnight (about 12 hours).
  • the condition of the sixth step is set to 10 ° C. X 1 second, and a test piece not subjected to the eighth step is used as sample F.
  • the condition of the sixth step is set to 30 ° C. X I second, and the test piece that has not been subjected to the eighth step is sample G.
  • the condition of the sixth step is set to 60 ° C. x i seconds, and a test piece which has not been subjected to the eighth step is used as a sample H.
  • the condition of the sixth step is set to 60 ° C. ⁇ 180 seconds, and the test piece that has not been subjected to the eighth step is sample I.
  • the condition of the sixth step is set to 60 ° C. ⁇ 180 seconds, and the test piece subjected to the eighth step is designated as sample J.
  • One sample was prepared for each of these samples F to J.
  • the first agent is prepared by co-hydrolyzing these in a hydrophilic solvent consisting of 0.1 IN aqueous hydrochloric acid, t-butanol and hexane. These are considered to have silanol (Si-OH) groups, respectively. Further, the organopolysiloxane (HO- (S i (CH 3 ) 2 0) so- S i (CH 3) 2 ⁇ _H) and prepares a mixture of methanesulfonic acid as a strong acid as a second agent. Then, 5 ml of the first part and 5 ml of the second part are mixed and applied to the surface of the sample, and then left to dry for about 10 minutes. Thereafter, the surface is washed with ethanol and dried.
  • a hydrophilic solvent consisting of 0.1 IN aqueous hydrochloric acid, t-butanol and hexane. These are considered to have silanol (Si-OH) groups, respectively.
  • the silver concentration (atom%) was measured by the XPS method (X-ray photoelectron spectroscopy) for each of the five samples F to J that had not been subjected to the water-repellent treatment, and the samples F to J that had not been subjected to the water-repellent treatment.
  • XPS method X-ray photoelectron spectroscopy
  • Table 3 shows the results of the silver concentration of each of the samples F to J that were not subjected to the water-repellent treatment. Note that “#” indicates that the value is below the detection limit.
  • Table 4 shows the results of the antibacterial activity test.
  • the concentration of Ag in the rich layer 13 is highest on the surface side, and gradually decreases in the depth direction. For this reason, even if the concentration of the processing solution to be used is not so high, an excellent antibacterial action against the bacteria on the surface of the glass layer 12 can be exhibited, so that it can be understood that large consumption of the processing solution can be avoided.
  • the glass layers 12 of Samples F to J all showed that the concentration of Ag in the rich layer 13 exceeded twice the concentration of Ag inside 10 nm deep from the surface, and sufficient antibacterial properties were observed. Action was obtained.
  • Table 4 shows that even when the surface of the glass layer 12 was subjected to the water-repellent treatment, the antibacterial effect was hardly reduced as compared with the case where the water-repellent treatment was not performed. The reason is that even if the water-repellent layer 14 is formed on the glass layer 12 by the water-repellent treatment as shown in FIG. 5, the thickness is extremely small and the surface hydroxyl group of the glass layer 12 It is considered that the antibacterial effect permeates this drainage layer because it is only bonded to the part.
  • both the antibacterial function and the water-repellent function are imparted to the surface of the glass layer 12, and the antibacterial effect is obtained only by the antibacterial function. Even if moisture containing a large amount of dirt components is used, the water repellency of the dirt makes it difficult for dirt to remain, and the antibacterial effect can be sufficiently exhibited.
  • the product of this example can be manufactured at low cost and can exhibit excellent antibacterial action.
  • a sample K in which Ag was incorporated into the glass layer 12 was produced only by ion exchange performed from the surface side of the glass layer 12.
  • the Ag concentration in the glass layer 12 of this sample K was measured by the XPS method, and the relationship between the depth from the surface (nm) and the concentration index (Intensity (Counts)) by natural logarithm was obtained.
  • Fig. 7 shows the results.
  • K indicates the measurement result for sample K.
  • X is a glaze which contains a A g 3 P 0 4 as previously antimicrobial agent according to conventional methods glazed on matrix 1 0 shows a subsequently measured about the those firing results.
  • W From Fig. 7, in the case of X according to the conventional method the concentration of Ag is lowest on the surface of the glass layer 12 and gradually increases in the depth direction. In other words, it can be seen that the closer to the surface of the glass layer 12, the lower the concentration of Ag.
  • Sample K has a glass layer 12 having a rich layer 13 containing Ag at a high concentration on the surface.
  • the rich layer 13 has the highest concentration of Ag on the surface, and the concentration gradually decreases in the depth direction. More specifically, Ag has a concentration that has a peak on the surface side and attenuates in inverse proportion toward the inner side at the back. (Test 3)
  • Sample 1 in which Ag was incorporated into the glass layer 12 only by ion exchange performed from the surface side of the glass layer 12 Sample 2 in which Ag was previously contained in the glass layer 12, and Ag is preliminarily included in 12 and a sample 3 in which Ag is taken in by performing ion exchange from the surface side of the glass layer 12 is prepared.
  • the Ag concentration in the glass layer 12 of each of the samples 1 to 3 was measured by the XPS method, and the relationship between the depth (nm) from the surface and the concentration index (Intensity (Counts)) by natural logarithm was obtained.
  • Fig. 8 shows the model results.
  • sample 2 in Fig. 8 when Ag is contained in glass layer 12 in advance, the concentration of those Ag is the lowest on the surface side, and it goes to the inner side at the back. It gradually increases and eventually becomes saturated. This is the same as sample X in Fig. 7.
  • the rich layer 13 exerts an excellent antibacterial action before wear from the surface immediately after use, and when the wear progresses from the surface to some extent after use, the internal Ag causes a slight increase. It can be seen that excellent antibacterial action is exhibited. For this reason, it can be seen that, in such a case, the action of Ag can be exerted at an early stage, and it is possible to achieve both an improvement in durability and a reduction in manufacturing cost.
  • the water concentration of the glass layer 12 of Sample 3 was treated to form a water-repellent layer 14, and the Ag concentration in the glass layer 12 was measured by the XPS method.
  • the relationship between the depth from the surface (nm) and the concentration index (Intensity (Counts)) by natural logarithm was determined.
  • the method of water repellency treatment was the same as the case where samples F to J were subjected to water repellency treatment.
  • the glass layer 12 has a rich layer 13 containing Ag at a high concentration on the surface and also contains Ag inside the rich layer 13. I knew I was out.
  • the surface has the water-repellent layer 14 as shown in FIG. 6, so that the antibacterial effect alone becomes insufficient with the antibacterial function alone. Even if water containing a large amount of dirt components is used, the water repellent function makes it difficult for dirt to remain, and the antibacterial effect can be sufficiently exhibited.
  • the product of the present invention can be manufactured at low cost and can exhibit excellent antibacterial action.

Description

明細: ガラス層をもつ製品及びその判断方法 技術分野
本発明は、 抗菌作用を奏するガラス製品、 セラミ ックス製品又はホウロウ製品 等のガラス層をもつ製品と、 その製品の判断方法とに関する。 背景技術
例えば、 A g、 C u、 Z n等の抗菌金属は抗菌性を有することが知られている。 このため、 従来、 抗菌作用を奏する例えばガラス製品、 セラミックス製品又はホ ゥロウ製品を製造せんとする場合、 それらの抗菌作用を付与する前の半製品全体 がガラス層であったり、 それら半製品が基体上に釉薬層というガラス層を有する ため、 基体の製造時又は釉薬層の形成時に同時に抗菌金属を含む抗菌剤をガラス 層中に分散させることが一般的になされている。
こう して得られたガラス層をもつ製品では、 ガラス層中の抗菌剤が細菌に作用 し、 これを死滅させ、 或いはその繁殖を抑制することができる。 発明の開示
しかし、 上記一般的なガラス層をもつ製品では、 本来的にはガラス層の表面の 細菌に対して抗菌作用が望まれるのに対し、 ガラス層中に分散させる抗菌剤の濃 度を高く しなければ、 その効果が低いことが明らかとなった。 このため、 優れた 抗菌作用を発揮させるために大量の抗菌剤を消費することから、 製造コス トの高 騰化を招来していることが判明した。
本発明は、 上記従来の実情に鑑みてなされたものであって、 安価に製造可能で あるとともに、 優れた抗菌作用を発揮可能なガラス層をもつ製品を提供すること を解決すべき課題とする。
本発明者らは、 上記課題解決のために鋭意研究を行い、 まず、 上記一般的なガ ラス層をもつ製品では、 ガラス層内に抗菌金属を含む抗菌剤を分散させていただ けであるため、 抗菌金属がガラス層内に金属状態又は化合物状態で存在し、 これ により活性が低められていることを発見した。 他方、 抗菌金属をガラス層内にィ オン状態で存在させれば、活性を高めることができることを発見した。こうして、 本発明を完成させるに至った。
また、 上記一般的なガラス層をもつ製品では、 ガラス層内において、 図 9に模 式的に示すように、 抗菌金属の濃度が表面で最も低く、 深さ方向に向かって徐々 に増加していることを発見した。 そして、 かかる濃度曲線をもつ製品では、 ガラ ス層中に分散させる抗菌剤の濃度を高く しなければ、 ガラス層の表面の細菌に対 して優れた抗菌作用を発揮できないことも確認した。 他方、 表面で抗菌金属の濃 度が最も高く、 その濃度が深さ方向に徐々に減少するガラス層をもつ製品では、 使用する抗菌剤の濃度をさほど高く しなくても、 ガラス層の表面の細菌に対して 優れた抗菌作用を発揮できることも確認した。
こうして、 本発明を完成するに至った。
すなわち、 本発明のガラス層をもつ製品は、 ガラス層をもつ基体からなり、 該 ガラス層には、 該ガラス層中のアルカリ金属イオン又はアル力リ土類金属イオン からイオン交換された抗菌金属イオンが存在することを特徴とする。
本発明の製品では、 抗菌金属がガラス層中のアル力リ金属イオン又はアル力リ 土類金属イオンからイオン交換された抗菌金属イオンとして存在することから、 その活性が高い。このため、ガラス層中の抗菌金属の量をさほど多く しなくても、 ガラス層の表面の細菌に対して優れた抗菌作用を発揮できる。 このため、 使用す る抗菌剤の濃度を低く したり、 抗菌剤の大量消費を回避したりすること等もでき る。
抗菌金属イオンは、 ガラス層の表面で高い濃度のリツチ層を形成していること が好ましい。 本来的にはガラス層の表面の細菌に対して抗菌作用が望まれるから である。
また、 本発明のガラス層をもつ製品は、 ガラス層をもつ基体からなり、 該ガラ ス層は表面に抗菌金属を高い濃度で含むリ ツチ層をもち、 該リ ツチ層の該抗菌金 属の濃度は、 表面側で最も高く、 深さ方向に徐々に減少していることを特徴とす る。 本発明の製品では、 ガラス層の表面に抗菌金属を高い濃度で含むリ ツチ層をも つため、 それらの抗菌金属が細菌に作用し、 これを死滅させ、 或いはその繁殖を 抑制することができる。ここで、リ ツチ層の抗菌金属の濃度は、表面側で最も高く、 深さ方向に徐々に減少している。 本発明者らの試験結果によれば、 これにより使 用する抗菌剤の濃度をさほど高く しなくても、 ガラス層の表面の細菌に対して優 れた抗菌作用を発揮できることから、抗菌剤の大量消費を回避することができる。 発明者らの試験結果によれば、 基体のガラス層に抗菌剤を接触させるだけでガ ラス層中のアル力リ金属イオン又はアル力リ土類金属イオンが抗菌金属イオンに イオン交換され、 抗菌金属イオンがガラス層中に取り込まれる。 そして、 ガラス 層中に置換する抗菌金属イオンの量は、 抗菌剤の濃度、 接触温度及び接触時間等 の調整により決定し得る。 そして、 これにより抗菌金属イオンはガラス層全体に 亘つて満遍なく拡散せず、 ガラス層の表面側にイオン交換された抗菌金属イオン を高い濃度で含むリツチ層をもつこととなる。
このため、 リ ツチ層より奥の内部には無駄な抗菌金属イオンを存在させないよ うにすることができ、 抗菌金属イオンの無駄な消費を回避することができる。 ここで、 ガラス層をもつ基体としては、 ガラス製品、 セラミ ックス製品又はホ ゥロウ製品を採用することができる。 セラミックス製品としてはタイルゃ衛生陶 器を採用することができる。
抗菌剤としては、 蒸着による抗菌金属、 抗菌金属微粉末、 抗菌金属を含むコロ ィ ド、 抗菌金属をイオンで溶解させた溶液を採用することができる。 抗菌金属と しては A g、 C u、 Z n等を採用することができる。 具体的には、 有機銀 -銅化 合物や銀 ·銅担持無機化合物であり、 ( 1 )銀、 銅、 銀一銅合金、 ( 2 ) リン酸銀、 硝酸銀、 塩化銀、 硫化銀、 酸化銀、 硫酸銀、 クェン酸銀、 乳酸銀、 ( 3 ) リン酸第 一銅、 リン酸第二銅、 有機銅化合物、 塩化第一銅、 塩化第二銅、 硫化第一銅、 酸 化第一銅、 酸化第二銅、 硫化第二銅、 硫酸第一銅、 硫酸第二銅、 クェン酸銅、 乳 酸銅等を採用することができる。 また、 亜鉛についても、 同様に、 有機亜鉛化合 物や亜鉛担持無機化合物であり、 亜鉛、 酸化亜鉛、 塩化亜鉛、 硫化亜鉛、 硫酸亜 鉛、 乳酸亜鉛等を採用することができる。 これらの抗菌金属は、 単体であっても よく、 合金であってもよく、 また化合物であってもよい。 しかし、 接触によりィ オン交換を行わしめるため、 接触温度を低く し、 接触時間の短縮化を図るために は、 溶解度が高い抗菌金属の大きさがより小さいコロイ ドゃ溶液を採用すること が好ましい。 より好ましくは、 硝酸銀、 硫酸銀等の溶液を採用することである。 コロイ ドでは抗菌金属の大きさが原子より大きいのに対し、 これらの溶液では抗 菌金属の大きさが原子と同等だからである。 かかる抗菌金属をイオンで溶解させ た溶液は、抗菌金属イオンと溶媒とを含む処理液として具体化可能である。また、 コロイ ドは抗菌金属の微粒子を大量に含有することが好ましく、 溶液は抗菌金属 イオンを高濃度で溶解させていることが好ましい。
実用的な製造方法によれば、 表面の抗菌金属の濃度が表面から 1 0 n m奥の内 部の抗菌金属の濃度の 2倍を超えることとなる。 発明者らの試験結果によれば、 これにより十分な抗菌作用が得られる。
本発明の製品では、 ガラス層がリツチ層より奥の内部にも抗菌金属を含むこと も好ましい。 この場合、 抗菌金属の濃度は深さ方向に略均一となる。 こうであれ ば、 ガラス層の表面側から行うイオン交換により初期の抗菌金属の作用を発揮可 能であり、 かつガラス層の表面側から行うイオン交換のみにより作用を効果的に 発揮可能な抗菌金属をガラス層中に取り込む場合に比して、 耐久性が向上すると ともに、 消費する抗菌金属量が減少して製造コス 卜の低廉化を実現することがで きる。
すなわち、 ガラス層の表面側から行うイオン交換のみにより、 抗菌金属をガラ ス層中に取り込む場合、 ガラス層の表面側には上述のリ ツチ層が形成されること となる。 本発明者らの試験結果によれば、 かかるリ ッチ層は、 表面側にピークを もち、 奥の内部側に向かって反比例的に減衰する濃度を有している。 このため、 使用後にある程度表面から摩耗が進行する場合もあることを考慮すると、 大量の 抗菌金属をイオン交換して表面側よりやや奥の内部の抗菌金属の濃度を高く しな ければ、かかるリ ツチ層の金属のみで作用を効果的に発揮させることができない。 このため、 この場合には、 耐久性の向上と製造コス トの低廉化とを両立すること ができない。
他方、 ガラス層に予め抗菌金属を含ませておく場合には、 本発明者らの試験結 果によれば、 それらの抗菌金属の濃度は表面側で最も低く、 奥の内部側に向かつ て徐々に増加し、 いずれ飽和する傾向を示す。 このため、 この場合には、 使用後 にある程度表面から摩耗が進行した場合において、 ガラス層に大量の抗菌金属を 含ませて飽和する濃度をある程度高く しなければ、 やはりこれらの抗菌金属のみ で作用を効果的に発揮させることができない。 このため、 この場合には、 初期に 抗菌金属の作用を発揮しにくレ、。
この点、 ガラス層に予め抗菌金属を含ませておく とともに、 そのガラス層の表 面側からイオン交換を行つて抗菌金属を取り込めば、 ガラス層の表面側にリッチ 層が形成されるとともに、 そのリ ツチ層の濃度とほぼ同じ濃度で飽和する抗菌金 属を含めることができる。 つまり、 基体のガラス層はリ ッチ層より奥の内部にも 抗菌金属を含むことととなる。 こうであれば、 使用直後の表面からの摩耗前には リ ツチ層により優れた抗菌金属の作用が発揮され、 使用後のある程度表面から摩 耗が進行した場合においては、 内部の抗菌金属によりやはり優れた抗菌金属の作 用が発揮されることとなる。このため、初期に抗菌金属の作用を発揮可能であり、 かつ耐久性の向上と製造コス 卜の低廉化とを両立させることができる。
また、 本発明のガラス層をもつ製品は、 第 1の方法として、 上記イオン交換法 により製造することができる他、次の第 2、 3の方法でも製造することができる。 すなわち、 第 2の方法では、 基体のガラス層の表面に抗菌剤を付着させた後、 これにレーザービームを照射する。 発明者らの試験結果によれば、 このようにし て製造された抗菌機能を有する製品は、 レーザ一ビームの作用によりガラス層表 面に抗菌金属のリツチ層が生じ、 抗菌性能が著しく高められる。
他方、 第 3の方法では、 まず、 基体の表面に第 1ガラス層を形成し得る第 1釉 薬と、 基体の表面に抗菌金属を含む第 2ガラス層を形成し得る第 2釉薬とを用意 する。 そして、 基体の表面に第 1釉薬からなる第 1釉薬層と、 より表面側に第 2 釉薬からなる第 2釉薬層とを形成し、 第 1釉薬層及び第 2釉薬層を溶融させて第 1ガラス層及び第 2ガラス層を形成する。 発明者らの試験結果によれば、 このよ うにして製造された抗菌機能を有する製品は、 抗菌剤をさほど多く使用すること なく、ガラス層表面に抗菌金属のリ ツチ層が生じ、抗菌性能が著しく高められる。 本発明の製品では、 ガラス層の表面側には撥水成分を含む撥水層が形成されて いることが好ましい。 こうであれば、 ガラス層の表面に抗菌機能及び撥水機能の 両方が付与されることとなり、 抗菌機能だけでは抗菌効果が不充分となる程汚れ 成分を多く含んだ水分が使用されたとしても、 その撥水機能により汚れが残留し にく くなり、 抗菌効果を十分発揮することができる。
ここで、ガラス層の表面側に撥水成分を含む撥水層を形成させる方法としては、 ガラス層の表面に存在する水酸基と脱水反応又は脱水素反応により結合するケィ 素含有官能基を有する撥水処理液によって処理を行うことを採用することができ る。この処理を行えば、ケィ素含有官能基がガラス層の表面に存在する水酸基(一
0 H ) と脱水反応又は脱水素反応により結合してその水酸基をシールドする。 こ のため、 多くの溶性シリカ等の金属イオンを含む水を使用するとしても、 その水 酸基はもはや不能化されてそれら金属イオンと結合せず、 屎尿等の成分を結合し なくなる。 特に、 金属イオンとして溶性シリカを含む水を使用しても、 網目構造 をなすケィ酸として析出せず、 又は析出しにく く、 汚れを取り込みにくい。 こう して、 撥水処理液がこのケィ素含有官能基を有すれば、 溶性シリカ等の金属ィォ ンを多く含む水を同時に使う製品にあって、 屎尿等の汚れがこびり付きにく く、 その清掃が容易となる。
また、 撥水処理液として、 ケィ素含有官能基同士では結合していないものを採 用することもできる。 発明者らの試験結果によれば、 これにより耐水ァカ汚れ、 耐毛染め液汚れ、 耐摩耗性及び耐ァルカリ性に対して防汚効果を高めることがで きる。 撥水処理液のケィ素含有官能基同士が結合しておれば、 ケィ素が多くなつ て被膜に網目構造をなすケィ酸が析出し、 そこに汚れが取り込まれやすいと考え られるからである。
さらに、 撥水処理液としては、 ケィ素含有官能基と結合した末端のフッ化炭素 基を有するものを採用することもできる。 発明者らの試験結果によれば、 こうし てフッ化炭素基を有すれば、 フッ化炭素基の小さな臨界表面張力により撥水効果 が高く、 耐水ァカ汚れ、 耐毛染め液汚れ及び耐アルカリ性に対して効果が大きい からである。 フッ化炭素基は _ C n F 2n+1 ( nは l≤n≤ 1 2の自然数) であると することができる。 発明者らの試験結果によれば、 これによりフッ素数が多く、 フルォロシランが嵩高くなるため、 耐水ァカ汚れ、 耐毛染め液汚れ、 耐摩耗性及 び耐アル力リ性に対して効果が大きい。 また、 撥水処理液として、 ケィ素含有官能基と結合した末端のアルキル基を有 さないもの採用することもできる。 発明者らの試験結果によれば、 これにより耐 水ァカ汚れ、 耐毛染め液汚れ及び耐ァルカリ性に対して効果を高めることができ る。
他方、 撥水処理液として、 ケィ素含有官能基と結合した末端のアルキル基を有 するものも採用することもできる。 発明者らの試験結果によれば、 こうしてアル キル基を有すれば、 アルキル基の大きな臨界表面張力により、 防汚効果が耐口紅 汚れ、 耐摩耗性としても現れるからである。
耐摩耗性の観点からは、 アルキル基として、 メチル基を採用し得る。 他方、 耐 アルカリの観点からは、 アルキル基として、 プロピル基又はへキシル基を採用し 得る。 発明者らの試験結果によれば、 アルキル基がプロピル基、 へキシル基等で あれば、 アルキル基が嵩高くなつて耐アルカリの点で優れる一方、 耐摩耗性の点 で劣る。 他方、 アルキル基がメチル基であれば、 耐摩耗性の点で優れる一方、 耐 アル力リの点で劣る。
撥水処理液がケィ素含有官能基と結合した末端のフッ化炭素基を有するととも に、 ケィ素含有官能基と結合した末端のアルキル基を有する場合、 フッ化炭素基 よりアルキル基が多いものを採用することが好ましい。 発明者らの試験結果によ れば、 これにより撥水処理液がパ一フルォロアルキルシランだけでなくなり、 耐 口紅汚れ及び耐摩耗性に対して効果が高い。
他方、 撥水処理液がケィ素含有官能基と結合した末端のフッ化炭素基を有する とともに、 ケィ素含有官能基と結合した末端のアルキル基を有する場合、 アルキ ル基よりフッ化炭素基が多いものを採用することも好ましい。 発明者らの試験結 果によれば、これにより撥水処理液中のパ一フルォロアルキルシランが多くなり、 耐水ァカ汚れ、耐毛染め液汚れ、耐摩耗性及び耐ァルカリ性に対して効果が高い。 ケィ素含有官能基とアルキル基とはジメチルシロキサン (0— S i ( C H 3) 2) により結合していることが好ましい。 発明者らの試験結果によれば、 これにより 耐水ァカ汚れ、耐毛染め液汚れ、耐摩耗性及び耐ァルカリ性に対して効果が高い。 このジメチルシロキサンは、 直鎖状にケィ素含有官能基とアルキル基とを結合 しているものの他、 環状にケィ素含有官能基とアルキル基とを結合しているもの を採用することが好ましい。 発明者らの試験結果によれば、 これにより耐水ァカ 汚れ、 耐口紅汚れ、 耐毛染め液汚れ、 耐摩耗性及び耐アルカリ性に対して安定し て高い効果を発揮する。 ジメチルシロキサンが直鎖状にケィ素含有官能基とアル キル基とを結合しているものの具体例としては、 特開平 8 - 2 0 9 1 1 8号公報 記載の第 1剤と第 2剤とを混合した撥水処理液を採用することができる。ここで、 第 1剤はパ一フ口口アルキル基含有有機ケィ素化合物と加水分解性基含有メチル ポリシロキサン化合物との親水性溶媒中での共加水分解物であり、 第 2剤はオル ガノポリシロキサンと強酸との混合物である。 より具体的には、 第 1剤は、 C8 F17C H2C H2S i (O CH3) 3と、 S i ( C H30) 3C H2C H2- ( S i ( C H3) 20) 10- S i (CH3) 2CH2CH2S i (0〇113) 3とを 0. 1 N塩酸水、 t—プ 夕ノール及びへキサンからなる親水性溶媒中で共加水分解したものであり、 第 2 剤は、 H 0— (S i ( C H3) 20 ) 30 - S i ( C H3) 20 Hとメタンスルホン酸と の混合物がある。
また、 発明者らは本発明の製品の判断方法も完成した。 すなわち、 本発明のガ ラス層をもつ製品の判断方法は、 ガラス層をもつ基体からなり、 該ガラス層に抗 菌金属を含む製品の判断方法において、
前記ガラス層を X線光電子分光法により分析することにより、 該ガラス層の前 記抗菌金属が該ガラス層中のアル力リ金属イオン又はアル力リ土類金属イオンか らイオン交換されたイオン状態で存在することを判断する。 これにより、 抗菌金 属が抗菌金属イオンとしてガラス層中に含まれているか否かの判断ができる。 かかる判断において、 抗菌金属イオンがガラス層の表面で高い濃度のリ ツチ層 を形成していることも判断できる。
また、 本発明の製品の判断方法は、 ガラス層をもつ基体からなり、 ガラス層は 表面に抗菌金属を高い濃度で含むリツチ層をもつ製品の判断方法であって、
リツチ層の抗菌金属の濃度を X線光電子分光法により分析することにより、 リ ツチ層の抗菌金属の濃度が表面側で最も高く、 深さ方向に徐々に減少することを 判断することを特徴とする。
本発明の製品の判断方法では、 リ ツチ層の抗菌金属の数百 nm内での深さ方向 の濃度分布を測定する必要があるため、 かかる深さ方向の分解能に優れた X線光 電子分光法が用いられる。 この方法によれば、 深さ方法の抗菌金属の濃度分布の みならず、 抗菌金属の状態分析も可能である。 発明者らの試験結果によれば、 抗 菌機能はガラス層中の抗菌金属が原子状態なのか、 イオンとして存在しているの かによつて異なることが判明しているため、 X線光電子分光法における状態分析 を行うことによって、 本発明の製品の抗菌機能に関するより正確な判断を行うこ とができる。 また、 本発明の製品の判断方法は、 ガラス層の表面側に撥水成分を 含む撥水層が形成されている本発明の製品についても適用することができる。 図面の簡単な説明
第 1図は試験 1及び本発明の実施例に用いた基体の模式断面図である。
第 2図は試験 1及び本発明の実施例の製品に係る試料の模式拡大断面図である < 第 3図は試験 1の比較例の製品に係る試料 D、 Eの模式拡大断面図である。
第 4図は本発明の実施例の製品に係る試料の模式拡大断面図である。
第 5図は本発明の実施例の製品に係る試料の模式拡大断面図である。
第 6図は本発明の実施例の製品に係る試料の模式拡大断面図である。
第 7図は試験 2におけるガラス層の A gの濃度の測定結果を示したグラフであ る。
第 8図は試験 3におけるガラス層の A gの濃度の測定結果を示した模式グラフ である。
第 9図は従来法により得られたガラス層の A gの濃度の測定結果を示した模式 グラフである。 発明を実施するための最良の形態
(試験 1 )
図 1に示すように、 素地 1 0の表面に下記組成の釉薬からなるガラス層 1 2を もつ衛生陶器の半製品である基体 1 5を用意する。 なお、 ガラス層 1 2のガラス 転移点は 7 0 0 ° Cである。
<釉薬の調合割合 (重量%) >
長石 : 5 3 . 7 珪砂: 9. 8
石灰 : 1 2. 3
ドロマイ ト : 4. 8
蛙目 : 5. 1
亜鉛華 : 2. 0
ジルコン : 1 0. 1
フリツ 卜 : 2. 2
上記基体 1 5を 5 0 ± 2 mm角 (厚さ 1 0 mm以内) の正方形に切断した試験 片を 1 5個用意した。各試験片に対して以下の各工程からなる前処理をした。
第 1工程 :試験片のガラス層 1 2の表面を中性洗剤を染込ませたスポンジで洗 浄する。
第 2工程 :試験片のガラス層 1 2の表面を水道水、 蒸留水の順で濯ぐ。
第 3工程 :試験片全体を 1 0分間蒸留水による超音波洗浄をした後、 蒸留水で 濯ぐ。 この操作を 3回繰り返す。
第 4工程 :試験片をガラスシャーレに入れてデシケ一夕により乾燥する (約 1
2時間)。
第 5工程 :試験片のガラス層 1 2の表面をエタノールを染込ませた脱脂綿、 不 織布等で軽く拭く。
第 6工程:抗菌剤である処理液として、 3 0° Cの硝酸銀 (AgN03) 水溶液 を用意し、 この処理液中に試験片を 1秒間、 完全に浸潰させる。
第 7工程 :試験片のガラス層 1 2の全面を蒸留水で洗浄する。
第 8工程 :試験片全体を 1 0分間蒸留水による超音波洗浄をした後、 蒸留水で 濯ぐ。
第 9工程 :試験片をガラスシャーレに入れてデシケ一夕により乾燥する (約 1 2時間)。
これらの第 1 ~ 9工程において、 第 6工程の硝酸銀水溶液の濃度を 0. 1 0m 0 1/Lとした試験片を試料 Aとする。 また、 第 6工程の硝酸銀水溶液の濃度を 0. 2 0 mo 1/Lとした試験片を試料 Bとする。 さらに、 第 6工程の硝酸銀水 溶液の濃度を 0. 4 Omo 1/Lとした試験片を試料 Cとする。 各試料 A〜Cを 5個づっ用意する。
また、 上記の各工程を経た各試料 A〜Cとは別に、 抗菌剤としての銀パウダー (銀 9 9 %以上、 平均粒径 1 0〃m) を釉薬中に添加し、 これを素地 1 0上に施 釉した後、 焼成した試験片を製造する。 このとき、 抗菌剤を 0. 5重量%含有さ せた試験片を試料 Dとする。 また、 抗菌剤を 5. 0重量%含有させた試験片を試 料 Eとする。 試料 D及び Eを 5個づっ用意する。
そして、 各試料 A〜Eのガラス層 1 2の表面について、 X P S法 (X線光電子 分光法) により銀濃度 (a t o m%) の測定を行うとともに、 フィルム密着法に よる抗菌力試験を行った。
ここで、 XP S法は、 超真空中に置いた試料のガラス層 1 2の表面に湾曲した 単結晶で分光した集朿軟 X線を照射し、 表面から出た光電子をアナライザ一で検 出することにより、 その情報を元素の同定 ·定量に用いる方法である。 物質中の 束縛電子の結合エネルギー値から表面の元素情報が得られ、 各ビークのエネルギ —シフ トから価数や結合状態に関する情報が得られる。 また、 ピーク面積を用い て定量することができる。
各試料 A~Eについての銀濃度の結果を表 1に示す。なお、 「#」は検出限界以 下であることを示す。 他方、 各試料 A〜Eについての抗菌力試験の結果を表 2に 示す。
【表 1】
表面からの深さ (nm)
Agの状態
0 3 1 0
A イオン 0. 0 1 # #
B イオン 0. 02 # #
C イオン 0. 0 5 # #
D 金属 0. 0 1 0. 02 0. 04
E 金属 0. 02 0. 03 0. 07 【表 2】
Figure imgf000014_0001
表 1より、 図 2に示すように、 試料 A〜Cのガラス層 1 2は、 表面にイオン状 態の A gを高い濃度で含むリ ッチ層 1 3をもつことがわかる。 これは、 イオン交 換が互いにイオン半径の近い主に Kイオンと A gイオンとで生じたと考えられる < これに対し、 図 3に示すように、 試料 D及び Eは、 リッチ層をもつことはなく、 金属状態の A gがガラス層 1 2の内部まで存在していることがわかる。 これらよ り、 抗菌剤を試料 A〜Cの表面より拡散させた場合には A gがガラス層 1 2のリ ツチ層 1 3にイオン状態で存在するのに対し、 抗菌剤を釉薬中に添加した場合に は A gがガラス層 1 2の全体に金属状態で存在することが判明した。
また、 表 1及び表 2より、 抗菌金属である A gは、 イオン状態の方が金属状態 よりも高い活性を有することがわかる。 さらに、 ガラス層 1 2の表面に抗菌効果 を付与するためには、 A gはガラス層 1 2の極表面にのみ存在するだけで十分で あることがわかる。つまり、 ガラス層 1 2の表面の A gが細菌に作用し、 これを死 滅させ、 或いはその繁殖を抑制できることがわかる。このため、 A gをイオン状態 で存在させるのであれば、 ガラス層 1 2中の A gの量をさほど多く しなくても、 ガラス層 1 2の表面の細菌に対して優れた抗菌作用を発揮できることから、 抗菌 剤の大量消費を回避できることもわかる。
したがって、 実施例である試料 A〜Cの製品は、 安価に製造可能であるととも に、 優れた抗菌作用を発揮できることがわかる。
(実施例)
上記試験 1 と同種の基体 1 5から上記試験 1 と同様の試験片を 5 5個用意した c 各試験片に対して以下の各工程からなる前処理をした。 第 1工程〜第 5工程 :上記試験 1と同様である。
第 6工程:抗菌剤である処理液として、 濃度が 0. 3 Omo 1/Lの硝酸銀(A gN03) 水溶液を用意し、 この処理液中に試験片を完全に浸漬させる。
第 7工程 :試験片のガラス層 1 2の全面を蒸留水で洗浄する。
第 8工程 :試験片のガラス層 1 2の表面が 1 00 ° Cになるまで加熱した後、 室温レベルに急冷させる。
第 9工程 :試験片全体を 1 0分間蒸留水による超音波洗浄をした後、 蒸留水で 濯ぐ。
第 1 0工程 :試験片をガラスシャーレに入れてデシケ一夕により乾燥する (約 1 2時間)。
これらの第 1〜 1 0工程において、 第 6工程の条件を 1 0 ° C X 1秒とし、 第 8工程を行わなかった試験片を試料 Fとする。 また、 第 6工程の条件を 3 0 ° C X I秒とし、 第 8工程を行わなかった試験片を試料 Gとする。 さらに、 第 6工程 の条件を 6 0° C x i秒とし、 第 8工程を行わなかった試験片を試料 Hとする。 また、 第 6工程の条件を 6 0 ° C x 1 8 0 0秒とし、 第 8工程を行わなかった試 験片を試料 Iとする。 他方、 第 6工程の条件を 6 0° C x 1 8 0 0秒とし、 第 8 工程を行った試験片を試料 Jとする。 これらの各試料 F〜 Jについて各 1 1個づ つ用意した。
これらの試料 F〜 Jのうち、 各 8個づっはそのまま X線光電子分光法試験及び 抗菌力試験に供した。 また、 各試料 F〜Jについて、 残りの各 3個づっはガラス 層 1 2の表面に以下に示す撥水処理を施した後、 抗菌力試験に供した。
まず、 パ一フロロアルキル基含有有機ケィ素化合物としての
C 81*1 π C h2 C Η2 ύ 1 、O CH3 3
と、 加水分解性基含有メチルポリシロキサン化合物としての
S i (CH3〇) 3CH2CH2— ( S i ( C H3) 20) 10- S i ( C H3) 2C H2C H 2S i (O CH3) 3
とからなり、 これらを 0. I N塩酸水、 t—ブ夕ノール及びへキサンからなる親 水性溶媒中で共加水分解した第 1剤を用意する。これらはそれぞれシラノール( S i -OH) 基を有するものである考えられる。 また、 オルガノポリシロキサン (HO— (S i ( C H3) 20) so- S i (CH3) 2〇H) と、 強酸としてのメタンスルホン酸との混合物を第 2剤として用意する。 そして、 第 1剤 5mlに第 2剤 5mlを加えて混合し、 試料の表面に塗布する した後、 約 10分間を放置し乾燥させる。 この後、 表面をエタノールで洗浄し乾 燥させる。
こうして、 ガラス層の表面側に撥水成分を含む撥水層が形成された試料 F〜 J を得た。
撥水処理を行っていない試料 F〜 Jについて各 5個づっ XP S法 (X線光電子 分光法) により銀濃度 (a t o m%) の測定を行うとともに、 撥水処理を行って いない試料 F〜 J及び撥水処理を行った試料 F〜 Jについて、 各 3個づっフィル ム密着法による抗菌力試験を行った。
ここで、 撥水処理を行っていない各試料 F~ Jについての銀濃度の結果を表 3 に示す。 なお、 「#」 は検出限界以下であることを示す。抗菌力試験の結果を表 4 に示す。
【表 3】
Figure imgf000016_0001
【表 4】
Figure imgf000016_0002
表 3より、 試料 Jは、 図 4に示すように、 内部まで Agイオンが測定されてい るため、 処理液の接触により基体 1 5のガラス層 1 2中の Kイオンに A gイオン がイオン交換されて取り込まれ、 さらに加熱により A gイオンがガラス層 1 2の 内部に浸透することがわかる。
また、 表 3より、 リッチ層 1 3の A gの濃度は、 表面側で最も高く、 深さ方向 に徐々に減少している。 このため、 使用する処理液の濃度をさほど高く しなくて も、 ガラス層 1 2の表面の細菌に対して優れた抗菌作用を発揮できることから、 処理液の大量消費を回避できることもわかる。 特に、 試料 F〜 Jのガラス層 1 2 は、 いづれもリ ッチ層 1 3の A gの濃度が表面から 1 0 n m奥の内部の A gの濃 度の 2倍を超え、 十分な抗菌作用が得られた。
また、 表 4から、 ガラス層 1 2の表面に撥水処理を行った場合であっても、 撥 水処理を行わなかった場合に比べ、 抗菌効果はほとんど低下していないことがわ かる。 この理由は、 図 5に示すように撥水処理によりガラス層 1 2の上に撥水層 1 4が形成されたとしても、 その厚みは非常に薄く、 かつガラス層 1 2の表面水 酸基部分にのみ結合しているため、 抗菌効果がこの排水層を透過すると考えられ る。 このため、 ガラス層 1 2の表面に撥水処理を行った場合には、 ガラス層 1 2 の表面に抗菌機能及び撥水機能の両方が付与されることとなり、 抗菌機能だけで は抗菌効果が不充分となる程汚れ成分を多く含んだ水分が使用されたとしても、 その撥水機能により汚れが残留しにく くなり、 抗菌効果を十分発揮することがで きる。
したがって、 本実施例の製品は、 安価に製造可能であるとともに、 優れた抗菌 作用を発揮できることがわかる。
(試験 2 )
ガラス層 1 2の表面側から行うイオン交換のみにより A gをガラス層 1 2中に 取り込んだ試料 Kを製造した。 この試料 Kにおけるガラス層 1 2中の A g濃度を X P S法によ り測定し、 表面からの深さ ( n m ) と自然対数による濃度指数 ( Intensity (Counts) ) との関係を求めた。 結果を図 7に示す。 図中、 Kは試料 Kについての測定結果を示す。 また、 Xは、 従来法に従って予め抗菌剤としての A g 3 P 04 を含有させた釉薬により素地 1 0上に施釉し、 続いて焼成したものに ついての測定結果を示す。 W 図 7より、 従来法による Xの場合は、 A gの濃度がガラス層 1 2の表面で最も 低く、 深さ方向に向かって徐々に増加している。 つまり、 ガラス層 1 2の表面に 近くなる程 A gの濃度が低くなつていることがわかる。
これに対し、 試料 Kの場合は、 A gイオンが取り込まれていること、 また A g イオンがガラス層 1 2の表面に近づく程高い濃度で含まれていることがわかる。 つまり、 試料 Kは、 図 2に示すように、 ガラス層 1 2が表面に A gを高い濃度で 含むリ ッチ層 1 3を有している。 かかるリツチ層 1 3は、 表面で A gの濃度が最 も高く、 その濃度が深さ方向に徐々に減少している。 より詳しくは、 A gが表面 側にピークをもち、奥の内部側に向かつて反比例的に減衰する濃度を有している。 (試験 3 )
また、 ガラス層 1 2の表面側から行うイオン交換のみにより A gをガラス層 1 2中に取り込んだ試料 1 と、ガラス層 1 2に予め A gを含ませておいた試料 2と、 ガラス層 1 2に予め A gを含ませておく とともに、 そのガラス層 1 2の表面側か らイオン交換を行って A gを取り込んだ試料 3とを用意する。 これら試料 1 ~ 3 におけるガラス層 1 2中の A g濃度を X P S法により測定し、表面からの深さ(n m ) と自然対数による濃度指数 (Intensity ( Counts) ) との関係を求めた。 模式 結果を図 8に示す。
図 8の試料 1に示されるように、 ガラス層 1 2の表面側から行うイオン交換の みにより A gをガラス層 1 2中に取り込む場合、 ガラス層 1 2の表面側にはリ ッ チ層 1 3が形成されることがわかる。 この点、 図 7の試料 Kと同様である。
他方、 図 8の試料 2に示されるように、 ガラス層 1 2に予め A gを含ませてお く場合には、それらの A gの濃度は表面側で最も低く、奥の内部側に向かって徐々 に増加し、 いずれ飽和する傾向を示すことがわかる。 この点、 図 7の試料 Xと同 様である。
ここで、 試料 1では、 使用後にある程度表面から摩耗が進行する場合もあるこ とを考慮すると、 大量の A gをイオン交換して表面側よりやや奥の内部の A の 濃度を高く しなければ、 かかるリ ツチ層 1 3の A gみで作用を効果的に発揮させ ることができないと考えられる。 このため、 この場合には、 耐久性の向上と製造 コス トの低廉化とを両立することができないことがわかる。 他方、 試料 2では、 使用後にある程度表面から摩耗が進行した場合において、 ガラス層 1 2に大量の A gを含ませて飽和する濃度をある程度高く しなければ、 やはりこれらの A gの みで作用を効果的に発揮させることができないと考えられる。 このため、 この場 合には、 初期に金属の作用を発揮しにくいことがわかる。
このため、 図 8の試料 3に示されるように、 ガラス層 1 2に予め A gを含ませ ておく とともに、 そのガラス層 1 2の表面側からイオン交換を行って A gを取り 込めば、 ガラス層 1 2の表面側にリツチ層 1 3が形成されるとともに、 そのリ ツ チ層 1 3の濃度とほぼ同じ濃度で飽和する A gを含め得ることがわかる。つまり、 試料 3は、 図 4に示すように、 ガラス層 1 2が表面に A gを高い濃度で含むリ ツ チ層 1 3を有し、 リ ッチ層 1 3より奥の内部にも A gを含んでいる。 この基体 1 5のガラス層 1 2は、 A gの濃度が深さ方向に略均一となる。 こうであれば、 使 用直後の表面からの摩耗前にはリ ツチ層 1 3により優れた抗菌作用が発揮され、 使用後のある程度表面から摩耗が進行した場合においては、 内部の A gによりや はり優れた抗菌作用が発揮されることがわかる。 このため、 こうであれば、 初期 に A gの作用を発揮可能であり、 かつ耐久性の向上と製造コス 卜の低廉化とを両 立させ得ることがわかる。
また、 図 6に示すように、 試料 3のガラス層 1 2の表面に撥水処理を施して、 撥水層 1 4を形成させたものについて、 ガラス層 1 2中の A g濃度を X P S法に より測定し、 表面からの深さ ( n m ) と自然対数による濃度指数 (Intensity ( Counts ) ) との関係を求めた。 この場合の撥水処理の方法は、 試料 F〜 Jを撥水 処理した場合と同じ方法を用いた。 その結果、 図 8における試料 3と同様、 ガラ ス層 1 2が表面に A gを高い濃度で含むリ ッチ層 1 3を有し、 リッチ層 1 3より 奥の内部にも A gを含んでいることがわかった。 したがって、 試料 3の場合と同 様の作用効果を生ずるとともに、 その表面は図 6で示すように撥水層 1 4を有し ていることから、 抗菌機能だけでは抗菌効果が不充分となる程汚れ成分を多く含 んだ水分が使用されたとしても、 その撥水機能により汚れが残留しにく くなり、 抗菌効果を十分発揮することができる。
以上の実施例は例示であり、 本発明はその主旨を逸脱しない範囲において種々 変更を加えた態様で実施可能である。 産業上の利用可能性
したがって、 本発明の製品は、 安価に製造可能であるとともに、 優れた抗菌作 用を発揮できる。

Claims

請求の範囲
1 . ガラス層をもつ基体からなり、 該ガラス層には、 該ガラス層中のアルカリ金 属イオン又はアル力リ土類金属イオンからイオン交換された抗菌金属イオンが存 在することを特徴とするガラス層をもつ製品。
2 . 抗菌金属イオンは、 ガラス層の表面で高い濃度のリ ッチ層を形成しているこ とを特徴とする請求項 1記載のガラス層をもつ製品。
3 . ガラス層をもつ基体からなり、 該ガラス層は表面に抗菌金属を高い濃度で含 むリッチ層をもち、 該リッチ層の該抗菌金属の濃度は、 表面側で最も高く、 深さ 方向に徐々に減少していることを特徴とするガラス層をもつ製品。
4 . 表面の抗菌金属の濃度は該表面から 1 0 n m奥の内部の該抗菌金属の濃度の 2倍を超えていることを特徴とする請求項 3記載のガラス層をもつ製品。
5 . ガラス層は、 リ ッチ層より奥の内部にも抗菌金属を含むことを特徴とする請 求項 3又は 4記載のガラス層をもつ製品。
6 . 抗菌金属の濃度は深さ方向に略均一であることを特徴とする請求項 5記載の ガラス層をもつ製品。
7 . ガラス層の表面側には撥水成分を含む撥水層が形成されていることを特徴と する請求項 3、 4又は 6記載のガラス層をもつ製品。
8 . ガラス層の表面側には撥水成分を含む撥水層が形成されていることを特徴と する請求項 5記載のガラス層をもつ製品。
9 . ガラス層をもつ基体からなり、 該ガラス層に抗菌金属を含む製品の判断方法 において、
前記ガラス層を X線光電子分光法により分析することにより、 該ガラス層の前 記抗菌金属が該ガラス層中のアル力リ金属イオン又はアル力リ土類金属イオンか らイオン交換されたイオン状態で存在することを判断することを特徴とするガラ ス層をもつ製品の判断方法。
1 0 . 抗菌金属イオンがガラス層の表面で高い濃度のリ ツチ層を形成しているこ とを判断することを特徴とする請求項 9記載のガラス層をもつ製品の判断方法。
1 1 . ガラス層をもつ基体からなり、 該ガラス層は表面に抗菌金属を高い濃度で 含むリツチ層をもつ製品の判断方法であって、
前記リ ッチ層の前記抗菌金属の濃度を X線光電子分光法により分析することに より、 該リ ッチ層の該抗菌金属の濃度が表面側で最も高く、 深さ方向に徐々に減 少することを判断することを特徴とするガラス層をもつ製品の判断方法。
1 2 . ガラス層の表面側には撥水成分を含む撥水層が形成されていることを特徴 とする請求項 1 1記載のガラス層をもつ製品の判断方法。
PCT/JP2000/009370 2000-01-14 2000-12-27 Produit constitue d'une couche de verre et son procede d'obtention WO2001051426A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2001224043A AU2001224043A1 (en) 2000-01-14 2000-12-27 Product having glass layer and method for assessing the same
EP00987780A EP1270527A4 (en) 2000-01-14 2000-12-27 PRODUCT COMPRISING A GLASS LAYER AND METHOD OF OBTAINING THE SAME

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2000-6561 2000-01-14
JP2000-6572 2000-01-14
JP2000006572A JP2001199821A (ja) 2000-01-14 2000-01-14 ガラス層をもつ製品及びその判断方法
JP2000006561 2000-01-14
JP2000269775A JP2001261379A (ja) 2000-01-14 2000-09-06 ガラス層をもつ製品及びその判断方法
JP2000-269775 2000-09-06

Publications (1)

Publication Number Publication Date
WO2001051426A1 true WO2001051426A1 (fr) 2001-07-19

Family

ID=27342049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2000/009370 WO2001051426A1 (fr) 2000-01-14 2000-12-27 Produit constitue d'une couche de verre et son procede d'obtention

Country Status (4)

Country Link
EP (1) EP1270527A4 (ja)
AU (1) AU2001224043A1 (ja)
TW (1) TWI291941B (ja)
WO (1) WO2001051426A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028962B2 (en) 2011-03-28 2015-05-12 Corning Incorporated Antimicrobial action of Cu, CuO and Cu2O nanoparticles on glass surfaces and durable coatings
CN113716976A (zh) * 2020-05-25 2021-11-30 重庆鑫景特种玻璃有限公司 一种抗菌陶瓷及其制备方法

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1419118B1 (de) 2001-08-22 2006-07-12 Schott Ag Antimikrobielles, entzündungshemmendes, wundheilendes glaspulver und dessen verwendung
JP4602320B2 (ja) 2003-02-25 2010-12-22 ショット アクチエンゲゼルシャフト 抗微生物作用リン酸ガラス
WO2005042437A2 (en) * 2003-09-30 2005-05-12 Schott Ag Antimicrobial glass and glass ceramic surfaces and their production
PT105240A (pt) * 2010-08-06 2012-02-06 Univ Aveiro Processo de obtenção e utilização de grês porcelânico com acção anti-microbiana
US8973401B2 (en) * 2010-08-06 2015-03-10 Corning Incorporated Coated, antimicrobial, chemically strengthened glass and method of making
KR20150125951A (ko) 2013-02-11 2015-11-10 코닝 인코포레이티드 항균성 유리 제품 및 그 제조 방법 및 이용 방법
US20140356605A1 (en) * 2013-05-31 2014-12-04 Corning Incorporated Antimicrobial Articles and Methods of Making and Using Same
US9512035B2 (en) 2013-06-17 2016-12-06 Corning Incorporated Antimicrobial glass articles with improved strength and methods of making and using same
JP2017511785A (ja) 2014-02-13 2017-04-27 コーニング インコーポレイテッド 強度および抗菌性を高めたガラス、およびそれを製造する方法
EP3134369A1 (en) 2014-04-23 2017-03-01 Corning Incorporated Antimicrobial articles with silver-containing alkali silicate coating and methods of making thereof
US9840438B2 (en) 2014-04-25 2017-12-12 Corning Incorporated Antimicrobial article with functional coating and methods for making the antimicrobial article
CN107922257A (zh) 2015-09-02 2018-04-17 康宁股份有限公司 抗微生物‑抗反射制品及其制造方法
DE102016125544B4 (de) * 2016-12-23 2020-10-01 Glaswerke Arnold Gmbh & Co. Kg Verfahren zur Herstellung einer biozid wirkenden Glasoberfläche eines Kalk-Natronsilicatglases
CN110510878B (zh) * 2019-10-09 2022-02-18 山东健能陶瓷科技有限公司 具有抗菌功能的陶瓷釉料及其制备方法和陶瓷

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202678A (ja) * 1996-01-23 1997-08-05 Dantoo Kk 抗菌性を有するタイルの製造方法
JPH107438A (ja) * 1996-06-19 1998-01-13 Shin Etsu Chem Co Ltd 防汚処理された物品
JPH10158036A (ja) * 1996-11-22 1998-06-16 Akechi Ceramics Kk 表面抗菌処理方法
JP2000053451A (ja) * 1998-08-05 2000-02-22 Sumitomo Osaka Cement Co Ltd 抗菌性ガラス製品およびその製造方法
JP2001019573A (ja) * 1999-07-09 2001-01-23 Toto Ltd 施釉製品及びその製造方法
JP2001048595A (ja) * 1999-03-19 2001-02-20 Inax Corp ガラス層をもつ基体の表面処理方法及びその製品

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1186757A (ja) * 1997-09-04 1999-03-30 Nippon Electric Glass Co Ltd ブラウン管用パネル

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09202678A (ja) * 1996-01-23 1997-08-05 Dantoo Kk 抗菌性を有するタイルの製造方法
JPH107438A (ja) * 1996-06-19 1998-01-13 Shin Etsu Chem Co Ltd 防汚処理された物品
JPH10158036A (ja) * 1996-11-22 1998-06-16 Akechi Ceramics Kk 表面抗菌処理方法
JP2000053451A (ja) * 1998-08-05 2000-02-22 Sumitomo Osaka Cement Co Ltd 抗菌性ガラス製品およびその製造方法
JP2001048595A (ja) * 1999-03-19 2001-02-20 Inax Corp ガラス層をもつ基体の表面処理方法及びその製品
JP2001019573A (ja) * 1999-07-09 2001-01-23 Toto Ltd 施釉製品及びその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASAYUKI YAMANE ET AL.: "Glass kougaku hand book", 5 July 1999, ASAKURA SHOTEN, XP002937347 *
See also references of EP1270527A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9028962B2 (en) 2011-03-28 2015-05-12 Corning Incorporated Antimicrobial action of Cu, CuO and Cu2O nanoparticles on glass surfaces and durable coatings
US9439439B2 (en) 2011-03-28 2016-09-13 Corning Incorporated Antimicrobial action of Cu, CuO and Cu2O nanoparticles on glass surfaces and durable coatings
CN113716976A (zh) * 2020-05-25 2021-11-30 重庆鑫景特种玻璃有限公司 一种抗菌陶瓷及其制备方法

Also Published As

Publication number Publication date
TWI291941B (ja) 2008-01-01
AU2001224043A1 (en) 2001-07-24
EP1270527A1 (en) 2003-01-02
EP1270527A4 (en) 2005-02-09

Similar Documents

Publication Publication Date Title
WO2001051426A1 (fr) Produit constitue d&#39;une couche de verre et son procede d&#39;obtention
JP5836377B2 (ja) 被覆された、抗菌性の化学強化ガラスおよびその製造方法
JP4056877B2 (ja) ガラス層をもつ製品
US6673433B1 (en) Stainproof material and method for manufacturing the same, and coating composition and apparatus thereof
DE60310136T2 (de) Wasserabweisende oberflächenbehandlung und behandelte artikel
TWI285694B (en) Long-term antibiotic and deodorant textile and preparation method thereof
US20140356406A1 (en) Antimicrobial Articles and Methods of Making and Using Same
JP2000053451A (ja) 抗菌性ガラス製品およびその製造方法
JP6286562B2 (ja) 表面処理された基材およびこのための基材の表面処理方法
JP2001261379A (ja) ガラス層をもつ製品及びその判断方法
KR20010079620A (ko) 위생도기
JP2001080941A (ja) ガラス層をもつ基体の防汚処理方法及びその製品
JP2001048595A (ja) ガラス層をもつ基体の表面処理方法及びその製品
JP2001199821A (ja) ガラス層をもつ製品及びその判断方法
JP2002211992A (ja) ガラス層をもつ製品及びその製造方法
JP2002193690A (ja) 防汚処理方法及びガラス層をもつ製品
KR20230000292A (ko) 욕실용 유리 및 이의 제조 방법
CN113463158B (zh) 一种铝合金的表面抗菌阳极氧化工艺
CN112094134A (zh) 含有锌置换工艺制备的抗菌剂的天然石材及其制备工艺
CN118026730A (en) Long-acting antibacterial artificial stone and preparation method thereof
JP2002193692A (ja) 強化陶磁器及びその製造方法
TW200835833A (en) Method for manufacturing anti-staining and self-cleaning surface-decorative construction material
CZ2006491A3 (cs) Materiál k odstranení prosákavých kapalin a nesmácivých efektu
JP2001170143A (ja) 抗菌・防汚性物品及びその製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE TR BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2000987780

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWP Wipo information: published in national office

Ref document number: 2000987780

Country of ref document: EP