WO2001018828A1 - Weichmagnetische folie und verfahren zu deren herstellung - Google Patents

Weichmagnetische folie und verfahren zu deren herstellung Download PDF

Info

Publication number
WO2001018828A1
WO2001018828A1 PCT/DE2000/003037 DE0003037W WO0118828A1 WO 2001018828 A1 WO2001018828 A1 WO 2001018828A1 DE 0003037 W DE0003037 W DE 0003037W WO 0118828 A1 WO0118828 A1 WO 0118828A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal powder
film
film according
plastic material
foil
Prior art date
Application number
PCT/DE2000/003037
Other languages
English (en)
French (fr)
Inventor
Wolfgang Von Gentzkow
Dieter Nützel
Gotthard Rieger
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2001018828A1 publication Critical patent/WO2001018828A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15358Making agglomerates therefrom, e.g. by pressing
    • H01F1/15366Making agglomerates therefrom, e.g. by pressing using a binder
    • H01F1/15375Making agglomerates therefrom, e.g. by pressing using a binder using polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/0027Thick magnetic films
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/153Amorphous metallic alloys, e.g. glassy metals
    • H01F1/15333Amorphous metallic alloys, e.g. glassy metals containing nanocrystallites, e.g. obtained by annealing

Definitions

  • the invention relates to a film with soft magnetic properties in the form of a composite structure made of a plastic material and metal powder made of a material with at least one ferromagnetic element, and to methods for producing such a film.
  • Corresponding films and their production are e.g. known from DE 43 22 371 AI.
  • the static and dynamic properties of soft magnetic solid materials depend heavily on the respective geometry of the material used and / or on its mechanical stress. For example, the thickness of a sheet made of this material or that of a film the eddy current losses occurring at higher frequencies.
  • Soft magnetic foils are also used in HF and LF technology.
  • known foils for example made of ferrite material and a thickness between 0.2 and 0.4 mm, flat coils for identification systems, electronic article surveillance systems, sensors or contactless chip cards can be realized.
  • interference shielding of coils against metals for radiation absorption at frequencies above 500 MHz from the point of view of electromagnetic compatibility (EMC), for compensation of yoke ring coils for image equalization in television sets or monitors or as spacers between ferrite cores instead of air gaps or non-magnetic foils for the purpose of suppressing stray fields or for setting a pre-magnetization characteristic.
  • EMC electromagnetic compatibility
  • Corresponding metal foils can be obtained directly from the melt with a typical thickness of about 25 ⁇ m by special rapid solidification processes according to the literature from “etz”, volume 109 (1988), number 20, pages 958 to 961.
  • Such foils with a generally amorphous Material structures can be deformed elastically, but due to the manufacturing technology they only have very limited geometries and limited mechanical and magnetic properties.
  • EMC shielding housings are often made from crystalline NiFe sheets, which, however, are hardly mechanically flexible.
  • toroidal tape cores are currently practically exclusively made from soft magnetic, nanocrystalline materials, but due to their brittleness they must not be exposed to any mechanical stress. It is also known to form corresponding cores from a composite material from a plastic material with embedded, soft-magnetic, flake-like powder particles (cf.
  • a process for the production of threads or foils with magnetic properties can be found in the DE-A1 document mentioned at the outset, in which a ferromagnetic material with particle sizes of at most 10 ⁇ m and a weight fraction of at most 50%, based on a polymeric plastic material the polymer weight is added.
  • the composite material obtained in this way is then spun into the threads or films in a so-called melt spinning process.
  • the corresponding manufacturing process is, however, relatively complex. In addition, it can only be used to produce a composite structure with a limited geometry.
  • the object of the present invention is to provide a soft magnetic film which can be produced in a relatively simple manner with a geometry which is expanded compared to the prior art, which is sufficiently mechanically flexible in accordance with the respective requirements and can be used on the application fields mentioned. Suitable procedures should also be specified for this.
  • anisotropic powder particles made of an amorphous and / or nanocrystalline metal powder are provided to create the composite structure with magnetic anisotropy.
  • the ferromagnetic material of the powder particles contains at least one ferromagnetic element and possibly further non-magnetic and / or non-metallic elements.
  • Corresponding flexible films with amorphous and / or nanocrystalline powder incorporated in the plastic material have a significantly higher saturation induction and lower coercive field strength
  • higher permeabilities are also possible in the MHz range, and the good magnetic properties of plastic films can also be transferred to these initially brittle, nanocrystalline soft magnetic materials.
  • a ferromagnetic material (with at least one of the ferromagnetic elements Fe, Co, Ni and possibly other elements) with a suitable plastic (binder), which can guarantee both sufficient mechanical flexibility and the required temperature stability, is the production of a composite film with excellent soft magnetic Properties enabled.
  • a suitable plastic binder
  • the composite structure is created with metal powders with an average particle size that is less than 100 ⁇ m.
  • Such powders are characterized by good processability with the plastic material to form the composite structure and by a high saturation induction with a sufficiently low coercive field strength.
  • Such powders can be aligned relatively easily during the production process of the film, as a result of which a pronounced anisotropy of the material can be achieved with simultaneous high compression.
  • the proportion of the metal powder which, in the case of an amorphous structure, can be regarded as consisting of a metallic glass or has an at least partially recrystallized structure, can advantageously be within wide limits within the composite structure and in particular make up between 50 and 85% by volume , This gives a wide range of variation with regard to the mechanical and magnetic properties of the film.
  • thermoplastic or an elastomer or a duroplastic is advantageously provided as the plastic material. From the family of these materials, those can preferably be selected which ensure good wetting and binding to the soft magnetic filler. This ensures good processability.
  • a film according to the invention can advantageously be produced in accordance with a first method by mixing the metal powder and the plastic material in powder or liquid form, heating it and converting it into the film form.
  • the magnetic properties of the film are advantageously only slightly influenced by the mechanical stress that occurs. With these process steps it is consequently easy to form foils with the special soft magnetic properties with any geometry and thickness according to the requirements of the respective application.
  • Another method of producing the film according to the invention provides that the metal powder is first applied to a carrier film made of the plastic material and then mechanically incorporated into the carrier film. Both the application of the metal powder and the incorporation into the carrier film should take place by means of a rolling process. However, it is also possible that the metal powder is first applied to a carrier film made of the plastic material and there in particular by spraying with a ⁇ 0) X d ß ß 4 CD " s * - ⁇ . CQ ü 4J
  • the metal powder can be made from any ferromagnetic material which, depending on the required application, has sufficiently soft magnetic properties and whose particles have a nanocrystalline structure and an anisotropy (see, for example, the book “Magnetic Materials and Magnetic Systems", ed. H.Warlimont, DGM Information Society - Verlag, Oberursel, 1991, pages 137 to 146. "The material consists of at least one of the ferromagnetic elements and optionally of further metallic elements and / or non-metals (metalloids). Examples of further metallic elements Cu and Nb; Examples of solid metalloids are B and Si.
  • the coercive field strength of the metal powder to be provided should advantageously have a low value and preferably be less than 20 A / m.
  • this powder should have a relatively high saturation induction, which is therefore preferably above 0.4 Tesla n
  • Amorphous or nano-crystalline structure metal powders are obtained from starting materials, which are preferably obtained by mechanical alloying or by a rapid solidification technique. In the latter technique, an amorphous or fine-crystalline intermediate product is produced from a melted master alloy from the starting components in a first process step. For this, the
  • the master alloy was melted at a high temperature and then sprayed onto a rotating body in accordance with the so-called “melt spinning” process, which thus leads to a high cooling rate of well over 100 K / s, in particular up to 10 6 K / s, at a relatively high level Surface speed on its wheel circumference.
  • the intermediate product pieces can have an amorphous and / or crystalline structure.
  • the amorphous structure can be converted into a nanocrystalline structure in a known manner by means of heat treatment.
  • Such a nanocrystalline structure is assumed for the following consideration:
  • the pieces of the intermediate product are then converted into the powder with a desired powder particle size with a desired aspect ratio using a grinding technique.
  • the powder particles should preferably have an average diameter which is less than 200 ⁇ m, in particular less than 100 ⁇ m. Your aspect ratio should be at least 3, preferably at least 10.
  • An ultracentrifugal mill is advantageously used to adjust the powder particle size (see, for example, the unpublished DE application 198 37 630.8). A corresponding centrifugal mill is shown in FIG.
  • the mill designated there 10 has a receiving funnel 9, via which a millbase 2 reaches the inside of the mill from the pieces of the intermediate product.
  • a rotor 3 with a multiplicity of wedge-shaped rotor teeth 4 oriented at their tips. These teeth are mounted on a rotor plate 5 which rotates at high speed.
  • the ground material 2 is thrown outwards as a result of the high centrifugal forces and crushed on the inner edges of the rotor teeth 4.
  • the rotor 3 can contain a ring sieve 6, which is only partially executed in the figure, the sieve hole size of which as a rule largely determines the particle size distribution of the ground cn CD ß X ß -H ⁇ ⁇ ß ⁇ XI TJ 0
  • thermoplastics ethylene copolymers such as polyethylene vinyl acetate or polyethylene ethyl acrylate have proven successful.
  • Polycarbonates, polyesters or polyurethanes are also suitable. All rubbers, in particular silicone rubber, can be used in the elastomeric plastics.
  • Silicone or epoxy resins and UP resins have also proven particularly useful as plastic binders.
  • the anisotropic metal powder produced is then mixed or mixed with the special plastic material according to a first method.
  • the magnetic properties of the film-like end product can advantageously be varied within wide limits via the proportion or degree of filling of the metal powder within the metal powder-plastic binder mixture.
  • the proportion of metal powder can preferably be between 50 and 85% by volume.
  • the processing of the mixture into the film form takes place according to processes known per se. Corresponding processes are used, for example, in the production of audio or video tapes in the entertainment industry. In principle, the mixture is generally compacted at an elevated temperature of, for example, 100 to 150 ° C. and then by means of a deformation process such as, for example, B. transferred by rolling or pressing into the film form.
  • the thickness of the film can be set between 0.1 and 2 mm.
  • the powder particles can be oriented, for example, after a casting process and before the film is pulled off a support.
  • the particles can orientate themselves during their solidification in a magnetic field, which can also be pulsed to save energy, according to their preferred direction.
  • Such an orientation also enables high compression ß ß 4-1 4H ⁇ ⁇ 3 ⁇ 4-J ⁇ -H ß ß ß xi 1: rö
  • CD Cn CQ X! ß -H XI 0 0 -H CQ 4H ⁇ CD CD Xl Cn O r-i CQ CD ⁇ : j 4-1 cn ⁇ ä ß ß>
  • E ⁇ ß is CQ XI XI ⁇ SH 4-1 Cn ri o ⁇ ⁇ 0 ß -H, -. , EH 4-J rö TJ W ⁇ -rl cn ri o Cn TJ ü ß rö ⁇ -H 4-1 04 for 4-> ⁇ 4-1
  • the film is drawn through a roller mill with heated rollers.
  • the magnetic powder is mechanically pressed into the softening film material.
  • This monolayer can be compacted by arranging the glass plates at an angle> 45 ° by shaking so that the degree of volume filling increases to over 80% by volume. After this compaction, the upper glass plate can be removed and the monolayer can be bound to form a metal / plastic film by spraying with a solution of a reactive resin and then evaporating the solvent. This process can also be carried out continuously by applying the metal powder monolayer emerging from the gap to a carrier film, then spraying it with the reactive resin solution and removing the solvent in a drying section. Flexibilized epoxy resins, polyurethane resins or silicone resins are particularly suitable as reaction resins. The films produced in this way still contain reactive resin, so that these monolayers can be pressed and hardened into multilayers. In such layers it is ensured that all particles with their largest area are absolutely parallel to the film surface and thus giving the entire film an anisotropic behavior.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Dispersion Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Soft Magnetic Materials (AREA)
  • Powder Metallurgy (AREA)

Abstract

Die Folie (20) mit weichmagnetischen Eigenschaften (Koerzitivfeldstärke insbesondere unter 20 A/m, Sättigungsinduktion insbesondere über 0,4 T) weist einen magnetisch anisotropen Verbundaufbau (V) aus anisotropen Partikeln eines amorphen und/oder nanokristallinen, ferromagnetischen Metallpulvers (21) und aus einem Kunststoffmaterial (22) auf. Zu ihrer Herstellung werden das Metallpulver (21) und das in pulvriger oder flüssiger Form vorliegende Kunststoffmaterial (22) vermengt, erwärmt und in die Folienform überführt. Auch kann das Metallpulver in eine Trägerfolie aus dem Kunststoffmaterial eingearbeitet oder auf diese aufgebracht werden.

Description

Beschreibung
Weichmagnetische Folie und Verfahren zu deren Herstellung
Die Erfindung bezieht sich auf eine Folie mit weichmagnetischen Eigenschaften in Form eines Verbundaufbaus aus einem Kunststoffmaterial und Metallpulver aus einem Werkstoff mit mindestens einem ferromagnetischen Element sowie auf Verfahren zur Herstellung einer solchen Folie. Entsprechende Folien und deren Herstellung sind z.B. aus der DE 43 22 371 AI bekannt .
Die statischen und dynamischen Eigenschaften von weichmagnetischen Massivwerkstoffen hängen neben den reinen Material- eigenschaften stark von der jeweiligen Geometrie des eingesetzten Werkstoffs und/oder auch von dessen mechanischer Beanspruchung ab. So bestimmt z.B. die Dicke eines Blechs aus diesem Werkstoff oder die einer Folie die bei höheren Frequenzen auftretenden Wirbelstromverluste.
Weichmagnetische Folien finden ein weiteres Anwendungsfeld in der HF- und NF-Technik. Mit entsprechenden, bekannten Folien beispielsweise aus Ferritmaterial und einer Dicke zwischen 0,2 und 0,4 mm lassen sich flache Spulen für Identifikations- Systeme, elektronische Artikelsicherungssysteme, Sensoren oder kontaktlose Chipkarten realisieren. Auch an eine Verwendung als Störabschirmung von Spulen gegenüber Metallen, zur Strahlungsabsorption bei Frequenzen oberhalb 500 MHz unter dem Gesichtspunkt einer elektromagnetischen Verträg- lichkeit (EMV) , zur Kompensation von Jochringspulen zur Bildentzerrung in Fernsehgeräten oder Monitoren oder als Abstandselemente zwischen Ferritkernen anstatt von Luft- spalten oder unmagnetischen Folien zum Zwecke einer Unterdrückung von Streufeldern oder zur Einstellung einer Vor- magnetisierungskennlinie ist gedacht. Entsprechende Metallfolien können gemäß der Literaturstelle aus „etz", Band 109 (1988), Heft 20, Seiten 958 bis 961, durch spezielle Rascherstarrungsverfahren direkt aus der Schmelze mit einer typischen Dicke von etwa 25 μm gewonnen werden. Solche Folien mit einem im allgemeinen amorphen Materialgefüge sind zwar elastisch verformbar, besitzen jedoch aufgrund der Herstellungstechnik nur sehr eingeschränkte Geometrien sowie eingeschränkte mechanische und magnetische Eigenschaften.
Entsprechendes gilt auch für weichmagnetisches Kernmaterial. Auch hier wird die Formgebung durch den Werkstoff beschränkt, da bereits mit der mechanischen Bearbeitung eine Verschlechterung der magnetischen Eigenschaften einhergeht.
EMV-Schirmgehäuse werden häufig aus kristallinen NiFe-Blechen hergestellt, die jedoch mechanisch kaum flexibel sind.
Aus weichmagnetischen, nanokristallinen Werkstoffen werden gegenwärtig praktisch ausschließlich sogenannte Ringbandkerne hergestellt, die aber aufgrund ihrer Sprödigkeit keiner mechanischen Belastung ausgesetzt werden dürfen. Es ist auch bekannt, entsprechende Kerne aus einem Verbundwerkstoff aus einem Kunststoffmaterial mit eingelagerten, weichmagneti- sehen, flockenartigen Pulverpartikeln auszubilden (vgl.
EP 0 959 480 A2) . Derartige Kerne aus dem Verbundwerkstoff haben jedoch einen verhältnismäßig massiven Aufbau und stellen folglich keine selbsttragende Folie dar.
Aus der eingangs genannten DE-Al-Schrift ist ein Verfahren zur Herstellung von Fäden oder Folien mit magnetischen Eigenschaften zu entnehmen, bei dem einem polymeren Kunststoff- material ein ferromagnetischer Werkstoff mit Partikelgrößen von höchsten 10 μm und einem Gewichtsanteil von maximal 50 %, bezogen auf das Polymergewicht, zugesetzt wird. Der so erhaltene Verbundwerkstoff wird dann zu den Fäden oder Folien in einem sogenannten Schmelzspinnverfahren versponnen. Das entsprechende Herstellungsverfahren ist jedoch verhältnismäßig aufwendig. Außerdem lässt sich damit nur ein Verbund- aufbau mit einer begrenzten Geometrie herstellen.
Aufgabe der vorliegenden Erfindung ist es, eine weichmagnetische Folie anzugeben, die sich auf verhältnismäßig einfache Weise mit gegenüber dem Stand der Technik erweiterter Geometrie herstellen lässt, die gemäß den jeweiligen Anforderungen hinreichend mechanisch flexibel ist und sich auf den genannten Anwendungsfeidern einsetzen lässt. Außerdem sollen hierfür geeignete Verfahren angegeben werden.
Diese Aufgabe wird bezüglich der Folie erfindungsgemäß dadurch gelöst, dass zur Erstellung des Verbundaufbaus mit magnetischer Anisotropie anisotrope Pulverpartikel aus einem amorphen und/oder nanokristallinen Metallpulver vorgesehen sind. Der ferromagnetische Werkstoff der Pulverpartikel enthält dabei mindestens ein ferromagnetisches Element und gegebenenfalls weitere nicht-magnetische und/oder nichtmetallische Elemente.
Entsprechende flexible Folien mit in dem Kunststoffmaterial eingebundenem amorphen und/oder nanokristallinen Pulver, dessen Pulverpartikel vor der Verarbeitung mit dem Kunststoffmaterial vorzugsweise in Form von Plättchen (sogenannten „Flakes") vorliegen oder aus solchen gewonnen werden können, besitzen eine deutliche höhere Sättigungsinduktion und geringere Koerzitivfeidstärke als Folien aus Ferritmaterial. Weiterhin sind aufgrund einer vorbestimmten Partikelgröße auch im MHz-Bereich höhere Permeabilitäten möglich. Zudem lassen sich die guten magnetischen Eigenschaften von Kunststofffolien auf diese zunächst spröden, nanokristallinen Weichmagnetmaterialien übertragen.
Durch die erfindungsgemäße Kombination von amorphen und/oder nanokristallinen weichmagnetischen Metallpulvern auf Basis eines ferromagnetischen Werkstoffs ( mit mindestens einem der ferromagnetischen Elemente Fe, Co, Ni und gegebenenfalls weiteren Elementen ) mit einem geeigneten Kunststoff (binder) , der sowohl eine hinreichende mechanische Flexibilität als auch eine geforderte Temperaturstabilität garantieren kann, wird die Herstellung einer Verbundfolie mit hervorragenden weichmagnetischen Eigenschaften ermöglicht. Mit der neuen mechanischen und magnetischen Eigenschaftskombination lassen sich folglich bisherige Lösungen bzw. Anwendungsfälle er- setzen oder neue erschließen.
Diese liegen aufgrund der gegenüber Ferritfolien höheren Sättigungsinduktion, der geringeren Verluste und der Möglichkeit einer Einstellung magnetisch anisotroper Eigenschaften sowohl in den Bereichen „Übertrager" und „Flussführung" allgemein, als auch in dem Bereich der EMV aufgrund einer Abschirmwirkung in unterschiedlichen Frequenzbereichen.
Vorteilhafte Ausgestaltungen der erfindungsgemäßen Folie sowie des Verfahrens zu ihrer Herstellung gehen aus den jeweils abhängigen Ansprüchen hervor.
So ist es als vorteilhaft anzusehen, wenn der Verbundaufbau mit Metallpulvern mit einer mittleren Partikelgröße erstellt ist, die unter 100 μm liegt. Solche Pulver zeichnen sich durch gute Verarbeitbarkeit mit dem Kunststoffmaterial zu dem Verbundaufbau und durch eine hohe Sättigungsinduktion bei hinreichend niedriger Koerzitivfeidstärke aus.
Vorteilhaft wird ein Metallpulver verwendet, dessen Partikel ein Aspektverhältnis (= Länge zu Breite) von mindestens 3, vorzugsweise mindestens 10, aufweisen. Solche Pulver lassen sich während des Herstellungsprozesses der Folie verhältnismäßig leicht ausrichten, wodurch eine ausgeprägte Anisotropie des Materials bei gleichzeitig hoher Verdichtung zu erreichen ist. Der Anteil des Metallpulvers , das im Falle eines amorphen Gefüges als aus einem metallischen Glas bestehend angesehen werden kann oder ein zumindest teilweise rekristallisiertes Gefüge aufweist, kann vorteilhaft innerhalb des Verbundauf- baus in weiten Grenzen liegen und insbesondere zwischen 50 und 85 Vol.-% ausmachen. Damit ist eine große Variationsbreite hinsichtlich der mechanischen und magnetischen Eigenschaften der Folie gegeben.
Als Kunststoffmaterial wird vorteilhaft ein Thermoplast oder ein Elastomer oder ein Duroplast vorgesehen. Aus der Familie dieser Materialien lassen sich vorzugsweise solche auswählen, die eine gute Benetzung und Anbindung an den weichmagnetischen Füllstoff gewährleisten. Eine gute Verarbeitbarkeit ist damit zu gewährleisten.
Eine erfindungsgemäße Folie lässt sich vorteilhaft gemäß einem ersten Verfahrensweg dadurch herstellen, dass man das Metallpulver und das in pulvriger oder flüssiger Form vor- liegende Kunststoffmaterial vermengt, erwärmt und in die Folienform überführt. Dabei werden die magnetischen Eigenschaften der Folie von einer auftretenden mechanischen Beanspruchung vorteilhaft nur geringfügig beeinflusst. Mit diesen Verfahrensschritten lassen sich folglich Folien mit den besonderen weichmagnetischen Eigenschaften mit beliebiger Geometrie und Dicke gemäß den Forderungen des jeweiligen Anwendungsfalles leicht ausbilden.
Ein weiterer Verfahrensweg zur Herstellung der erfindungs- gemäßen Folie sieht vor, dass zunächst auf eine Trägerfolie aus dem Kunststoffmaterial das Metallpulver aufgebracht und anschließend in die Trägerfolie mechanisch eingearbeitet wird. Sowohl das Aufbringen des Metallpulvers als auch das Einarbeiten in die Trägerfolie soll mittels eines Walzprozes- ses erfolgen. Es ist aber auch möglich, dass zunächst auf eine Trägerfolie aus dem Kunststoffmaterial das Metallpulver aufgebracht und dort insbesondere durch Besprühung mit einem ^ 0) X d ß ß 4 CD "s*-^. CQ ü 4J
•H SH Cü cυ Λ ß -Q CQ Ό 1 n 0 Cn -rl
Q Cü 4-) ,ß Ό υ Cü CU ^1 ß -H ß ß ß > ε ß X > U SH 4-) CQ Xi cn cυ ß CU ß ) ß ß -H Cü o . cυ V rH ε CQ Cü rH CQ ß ü cυ CÜ > ^ rH rH CQ Ό Cü 4 4 -H
Ό ß H ß -rl <: <-\ -rl CQ ü ε ß Ό Cü cυ CÜ rH -ß -H rH rH
© S-I ß τ) & ß ß rö § -H n ß CD cυ ß 4H -H -rl ü N rH 0 o -H =o rH cυ ß N 4-) 4-> AS cυ 5 • =fÖ a SH rö > X) CU Λ H SH CU fe
W 5 --ü B rH SH CD rH cυ H Cn tS3 ß & rH CD ß X -H -H CD rH <D 4 g =i rö CD 5 ε 2 ß cu rH -H N U 4J 4H a ß 0 CQ ß
JJ ß 4-J M cυ Ü Xi CD 4-> CÜ rö CQ -Q H ß CQ < Cü CÜ CÜ
C tu o CU o - ß 4-) CQ ü -H ω rH ß 4-> -H SH cυ N rö -H Ό Cn ciQ
Cü -H H s -H ß -H CQ rö CD Ό T rö -H cυ rH CÜ ε cυ =rö
-H τ) Cü cυ ω 0 4 X cu 2 rH > CÜ CÜ Λ X ß 0 CÜ ε
X 0 Ό ε i Cn CQ ε rö r-i :(Ö 0 ε CQ o N 4H Ό ! CÜ
-H 4-4 ß ω SH CD CQ ß Cn ß ß cu cn CQ 4 ß s W X Cn CQ SH n
4-1 S-ι ß Ό cυ CQ ß CD -H ß 4J ß Cü CQ fr rö ß -H CD cυ cn ^ CD
CD ß rö -ß ß - Λi ß ß Ό -H T) ß ß 4 rH ß Cn
CD cn in 4 -rl N AS ß ß N rH ε ß cυ n rö X cu ß cυ ß ß -H cυ ß Cü CQ -H u rH -^ <u ß cn ß ! ε =ß -H r- > ß ß ß ε rö AS CD ß rö SH 4J cυ CD CQ Ό H N =ß Cü 2 rH rH r-i τi ß H ω 3 o 4H Λ 4-) -ß CQ CU 4J Ό ß ß ^ CD 4H X o cυ ß ß
- Λ CD N 4-> =ß 4H U CQ rö 0 > CQ 0 <: ß cu T5 PQ CQ υ 4-> fr -H
O ß u JH • 4H 4-> 0 cυ 4H rH -H u cυ ß CQ CÜ CQ 4H
0 Q) CQ CD 0 ß rö 4 4J CD M ß cυ Cü ß X -H SH ß cυ SH •
>H -H SH ß cυ X CQ X cυ -H D, X X -H cυ rö ß Cü CQ •rl cυ cυ cυ cυ
EH rö 5 i ß Ό rH AJ M X U > 2 rH V U CΛ 4H 4 ß r- CD :(Ö Λ ß «. -H
3 N cu SH -H rö CQ rH ω =ß =0 4 ß cυ -H ö ε =ß -H ß SH rH
S-I ε 4-1 CD cυ ß cυ 2 rö CQ <D r > 4-> ^ CÜ -H ß 4-) cu ß cυ ß rH CÜ cu 0
0) ß CD rH ϊ 4-) -ß S CU cυ ß 4-> CQ cυ cn > ε cn s rö cn cυ rH ß n w τJ Cü co ß CD o SH 4J -H CU ß 4 in ß rH Ό ß cu -Q CQ cn rö & -H ß 5 H ß Oi 4-> O ω ß cυ cυ cυ rH 2 ft ΛJ cυ Ä ß N -r-i 4H cn cυ 4-> 4-> cυ cυ
Φ S-i Cü rö rö Cü > 4-> cυ ß ß ß rH rH ß Ό 0 rö ω Cü ß ß CD CQ ß w
03 Cü ϊ τj 4-> 4-> CQ xi -rl -H Cn rö ^ rH Ό w 2 > Cn O ß <! ß -H CU cυ =rö
0) > CQ CQ -H CQ cn u CD W -H 4-> cu rö 0 CQ r-i • -i > CÜ Ό cυ SH rH > ε
-H rH ß CD CD SH ß CQ cυ CQ Ό 4 r-i SH cu ß ß 0 CD cn ß ß X X X cυ rH Cü CD cu cn -Q cυ ß -H CQ . cu -H CU ft cυ CU r-i fr CÜ 4H -Q -H cu -H o 0 =ß ß Cn
_ß cn -H ß Ό SH 4-) - ß tn SH 4 2 ß 4-) Ό rH TJ ,ß CU r-i 4H CD ß 2 i CQ o u a ß ß rö ß cυ CD cυ ΛJ -H cυ 4-) CÜ -rH ü CQ N r-i SH .. -H rö CD Cn
CG £ CQ =0 Ü SH 0 rö ß 4 Ό Q 0 ε X -H Cn -H Cü CD rö CD 0) Cü CQ SH ß ß -H ß ß w •H M -H υ CQ 4-) tn 4-> SH ß rö CÜ υ ε ß N -Q ϊ ß ß CQ -H SH rö cu CQ ß a CÜ rH > Cü CQ rö -H Cü CD rö Ό Ό Q ß cυ rö -H W α, cu Cü r-i ß ß cυ T) ω Λ CU O SH Ά SH ε ε Ϊ T ß -H » rH a Ό 4-> Ό cυ -H -H > r-i cυ CÜ ß
Ό CQ 4H Cü CD x ß Ό -H 3: ß rH CQ r-H SH • N τJ r- Ü M Ό CD -H ß xi .. -H SH 4-1 CQ X o Ό 4J 0 ß CD N CU CÜ ß rH -H Ό 4 ß ß -Q CD 4 4H ß rö ß cυ CÜ -H rH H ß SH CQ Cü ß -Q •o 4J X ω (D ä ß -H SH CU rö =rö -H CQ U
4-1 ß ≥ CD CD rö CQ cυ ω -ß CD τ) CQ ß 4J rö CU =ß r-i 4 4J X cυ
N =ß CQ =rö 5 rö na =ß -Q 0 QJ ß cυ cυ ß ^4 ß CQ Cn Λ 4-> Ά 4H r-i CQ ü ffi
SH ω Ό 01 SH CQ CU CD 4H "~^_ M ß Ό 5 -H ß =0 CU ß ß ß rö cu Ό CQ CD rö > ß EH cυ CD CQ H SH ß T o rö W P X cn ß rö :(0 ß CQ 4J ß rH H cu ß
Xi S-I N -H SH CD <-i CD ß =ß ; cn ß Ό rH CU CÜ ω -H CD Cü -H -H
CQ CD _ SH Ü rH 4-> CD Ό Xi A cυ ß 4 ß cυ cυ • ß cυ ß σi Tl O 2 cu 4H > Ό CD ß O CD 0 ß O CQ ß υ =ß CQ CQ ß X ß 4 υ X -H ß CÜ
0 -H CD > cu 4H -H -H 4 CQ i CD 4J rH rH cυ -rt CQ 4H ß H CN ΓO ^
∞ -H cυ xi 4-> cυ AS ß SH υ X M Ό CQ CU -H X cυ SH ß oo 4-) Λ -H . cυ B -H ß rö CD -H a ß rö ß ω rö -* W X Cü SH >H SH i CD ß CQ rö CD CQ Ό > ) 4H rö Cn ß 4H SH u 4 ß ß ß ß
— rö SH Λ -H SH CQ -Q rH 0 cυ rH B 0 0 ß X cu ü :rö Cü -H -H n Cn cn Ό cn o Cü =ß rö CU CÜ CD rö ω -H ß =rö ε cυ CD 0 Tl X tu 4-) -H cυ CD -H -H -H ß -H
O CU 4-1 Ό CQ > CD Q 4-> Ά O 0. ß rö ft ß -Q > o υ > CQ Q N > Cxi fe Cn ß Cn
Figure imgf000008_0001
Die Herstellung einer erfindungsgemäßen Folie gliedert sich in die folgenden Abschnitte unter:
1) Bereitstellung des Metallpulvers
Das Metallpulver kann aus jedem ferromagnetischen Werkstoff hergestellt werden, der je nach gefordertem Anwendungsfall hinreichend weichmagnetische Eigenschaften hat und dessen Partikel eine nanokristalline Struktur sowie eine Anisotropie besitzen (vgl. z.B. das Buch „Magnetwerkstoffe und Magnetsysteme", Hrsg. H.Warlimont, DGM Informationsgesellschaft - Verlag, Oberursel, 1991, Seiten 137 bis 146) . Der Werkstoff besteht aus wenigstens einem der ferromagnetischen Elemente und gegebenenfalls aus weiteren metallischen Elementen und/oder Nichtmetallen (Metalloiden) . Beispiele für weitere metallische Elemente Cu und Nb; Beispiele für feste Metalloide sind B und Si. Die Koerzitivfeidstärke des bereitzustellenden Metallpulvers sollte dabei vorteilhaft einen niedrigen Wert haben und vorzugsweise unter 20 A/m liegen. Außerdem sollte dieses Pulver eine verhältnismäßig hohe Sättigungsinduktion besitzen, die deshalb vorzugsweise über 0,4 Tesla liegt. Entsprechende weichmagnetische, ein amorphes oder nano- kristallines Gefüge aufweisende Metallpulver werden aus Ausgangsmaterialien gewonnen, die bevorzugt durch mechanisches Legieren oder durch eine Rascherstarrungstechnik gewonnen werden. Bei letztgenannter Technik wird in einem ersten Verfahrensschritt aus einer erschmolzenen Vorlegierung aus den Ausgangskomponenten ein amorphes oder fein- kristallines Zwischenprodukt erzeugt. Hierzu wird die
Vorlegierung auf einer hohen Temperatur erschmolzen und anschließend gemäß dem sogenannten „melt spinning" (Schmelzspinnverfahren) auf einen rotierenden Körper gespritzt, der so zu einer hohen Abkühlrate von deutlich über 100 K/s, insbesondere bis 106 K/s, bei einer verhältnismäßig hohen Oberflächengeschwindigkeit an seinem Radumfang führt. Man erhält so bandförmige Stücke des Zwi- schenproduktes, sogenannte „Flakes", die zwar im allgemeinen verhältnismäßig spröde sind, aber die geforderte Anisotropie haben können. Denn solche Zwischenprodukte haben üblicherweise ein hohes Aspektverhältnis (= Länge zu Breite) und lassen sich während des Herstellungsprozesses der Folie leicht ausrichten.
Die Zwischenproduktstücke können in Abhängigkeit von den Parametern der Apparatur zur Rascherstarrung ein amorphes und/oder kristallines Gefüge haben. Das amorphe Gefüge kann in bekannter Weise mittels einer Wärmebehandlung in ein nanokristallines Gefüge überführt werden. Für die nachfolgende Betrachtung sei ein solches nanokristallines Gefüge angenommen: Die Stücke des Zwischenproduktes werden anschließend mittels einer Mahltechnik in das Pulver mit einer gewünschten Pulverpartikelgröße mit einem gewünschten Aspektverhältnis überführt . Die Pulverpartikel sollten dabei vorzugsweise einen mittleren Durchmesser aufweisen, der unter 200 μm, insbesondere unter 100 μm liegt. Ihr Aspektverhältnis sollte dabei mindestens 3, vorzugsweise mindestens 10 betragen. Zur Einstellung der Pulverpartikelgröße wird vorteilhaft eine Ultrazentrifugalmühle verwendet (vgl. z.B. die nicht-vorveröffentlichte DE-Anmeldung 198 37 630.8). Eine entsprechende Zentrifugalmühle zeigt Figur 1. Die dort mit 10 bezeichnete Mühle weist einen Aufnahmetrichter 9 auf, über welchen ein Mahlgut 2 aus den Stücken des Zwischenproduktes in das Mühleninnere gelangt. Dort befindet sich ein Rotor 3 mit einer Vielzahl keilförmiger, an ihren Spitzen zueinander gerichteter Rotorzähne 4. Diese Zähne sind an einer Rotorplatte 5 gelagert, die mit hoher Geschwindigkeit rotiert . Das Mahlgut 2 wird in Folge der hohen Zentrifugalkräfte nach außen geschleudert und an den inneren Kanten der Rotorzähne 4 zerkleinert . Ferner kann der Rotor 3 ein in der Figur nur teilweise ausgeführtes Ringsieb 6 enthalten, dessen Sieblochgröße in der Regel maßgeblich die Partikelgrößenverteilung des gemahlenen cn CD ß X ß -H Φ φ ß ^ XI TJ 0
CÜ X o ß ß S -H ß N φ ü ß CD ß cu cn υ cu > -H -rl CD Cü r-i CQ TJ X! ε 4-) -H ß -rl Φ
-rl
© -H ß -rl rH -rl rH ß r-i -H rH - rö Cn ß 0 Φ ß r-i rö Φ
Ό ör CQ XI 4-> ß -H = ε rö X ß 4-> <U ß Q ß ß -. r-i φ rt AS ß φ 4 fr CQ ε SH
Φ Φ ^ -H
4H = rö XI rö CU r-i 4-> rl -H ß ß Φ Φ XI Φ φ rl ß ß rl ß > O Q o a o ß cυ 4-> ε N ß υ 2 SH ß ω cυ • Φ N - Φ AS AS -H r-i ß :rö i -H Φ SH φ -H Φ w CD cn CQ rH SH cυ X! CQ > T) 4-) 4-) ß -H Φ X -rl 4J ü Φ TJ Φ > Φ SH r-i Φ •
Ό 4H CQ rö CU X! ε ε =ß ω cυ r-i ß 4J Φ CQ Φ :(β 4-) XI r Cn 0 ü cυ 4H rl X! ß -rl CQ CD - :2 φ O ß J rH Φ rö XI ß rl ß =ö rl r-i 4-> rl o
H ε r-i TJ rö CQ 4-> ß ß SH -H ü Φ υ CD rö r-i ß W -rl CD ß =ß fr CQ -H ß X CD rö CQ rH AS rH rö Cn ß fr -H XI X CQ xi
-ä 4H CQ TJ -H ß cυ ß Φ ß rö TJ fr Cn rö Φ ß τj φ 0 -rl rö -H υ r-i ^ -rl SH ß Cü cυ AS cυ ß ß rH ε φ ε r-i *-- ß Cn X! 4H Φ rH -H CQ CQ •rl 4 •rl r» CU 4-) rl CU 4-> Cü 4-> rl n cυ CÜ rö ε ε Φ Φ -H ß ü > Cn » Φ 4-) Φ 4 SH ß Φ H
AS CQ 4-> Cn Cn n -rl AS =rö cυ ß 4 -H rö xi cn 4H Φ S 4H -H -H φ XI XI rö TJ AS O ß ß Cn
•H -H ß -H H r-i CU CD 4J CD -rl r- SH CQ -H rH 4J -H φ ß > XI -H ß > cn =o cυ 4 tu CD 0 X! 4H CQ rH rö Φ ß Φ -H =0 ü 4-> -H rH -H φ SH ß TJ Φ rö
4-> SH 4 N TJ N 4H <υ TJ cυ rH X! 4 l 4-) r-i 4J CΛ Jp ö Φ 0 r-i ε ß rl rH rö CD CD rl CÜ TJ r-i ß rö rö ß ß N CΛ r-i r
X H Cn ß φ SH φ r-i > 4 Φ -rl ε φ
:(Ö fr 4-> SH -H CD cυ rl cυ -H 4-> CÜ ε Φ =ß N TJ ß Φ TJ φ 4-> ε Φ 4H Cu AS φ Φ
X ß CD ß W CÜ ß 4H cu CQ 4-) Φ ß ε ß Φ N O Φ X! SH rö TJ -H 4-) ß
CD ß ω Ό X! Tj 4 > -H ß AS TJ Cn Φ ß Cn 4-1 i4 Φ ß rö Φ XI ß 4 rH XI N
XI CD Ό Cn • cυ ß AS -H ω rl N ß N ß 0 -rl Φ -H Es -H H ß ü ω rö ü
Cn 4 CD ß ß ß -H 0 ß 4-> r-i AS T) 4J -rl fcU CD 4 4 ε SH Φ -rl CQ rö -H CQ Φ ß cn cn -H ß -H CD CQ SH -H r-i 0 ß o -H Φ Cn Φ ß Φ φ ß ß • Cu ß -H rö ß ß r- cυ cn CU 4 N Cü ß CD u r H rH φ 4 -H Φ Φ ß rl Φ rH
4H rö ö ε rH X! Φ φ ö r XI CÜ CD ß X! C SH X! rö £ a r-i υ xi -rH Φ Φ Φ T) -H Q CQ Cn tn φ Φ 4J § o
4H r-i CD -H -H CQ CU rö ß ß CQ Φ D 0 TJ Φ N AS ß ß ε rH -H -rl CQ 4H rö Φ Cn ß ω >H -H N U ß ß O EH 4-> φ -H i ß XI TJ Φ -H -H Φ • φ ω CQ =ß Cn ß XI CQ rö Φ SH Cn 4J Φ XI Φ 4-> 4-> ε rö 4 ε
< n ß CQ ^ •H -rl N « ß H U
<S\ X Cn CJ1 W cυ TJ o CD o rö EH XI cn Φ rl r-i o rH CQ 4J ß =0 rH fr 4H Φ Φ ε o - l ß 4 ß 4-J CQ ß CU > rH CQ CQ -rl -H ß Φ φ rö AS φ Xi -H -H Φ 4H 0 -H TJ Ü rl Cn -H rl rl ß 4-> r-i CD ß X! -rl &H Φ OQ -H ß -H fr rl =ß Φ ε xi ß ß Φ 4J TJ ß ß U ß 0 -H rö SH - l ß =ß 5 φ Φ TJ xi :f0 φ -rl TJ 4-) a ε s o Φ Φ -H CD n
- l Ό SH N > rl rl -H CD Ü Cü 2 tsl Cn u ε r-i φ -H CQ rH 4H X! CQ -H r-i TJ 4-1 0 ß
CÜ ß CD CQ 0 XI SH XI AS co CQ AS 4-> φ ε 4 rö ß υ -rl rH rH CD CQ ß
-H T rö ß ß 4 o cυ =o ε SH ß φ 4H Φ -H ^ 4H TJ ß Cn rö -rl 4J 0 Φ ß ß 4-> ß Xl TJ ß o o CQ -U XI SH =rö CD 4 ß -rl rl ß φ φ rö XI Φ ß CQ Φ 4H 4-> Φ ß ö > cu CQ rö 0 4- ε XI
H rH r > ß Cn rö φ 4-) -ι— 1 XI X! 4 o 4H ε ß CQ CQ « ß ü
X) -H 4H AS cn 2 SH Cn CQ Cü Φ ß rH =ß r-i -H ß Φ -H ε CQ cn CQ ß CQ -H
• CÜ cu ß rt ß ß CD Tj T) r-i CQ * -H :fÖ - ß -H φ Φ ε rö -rt rt CQ rö Φ -H =ß ε .. SH
4-) -rt EH rö CQ rö Cü ß ß ß ß r-i (U φ rö CQ Φ X! 4-> Q 4J IT) rö ε TJ Φ ε Φ ß CQ ε CQ Ü cn X! ω -H -rl cυ -H Cn r-i rl CQ Cn 4-> ^ TJ ß CN TJ Ό φ ß ε Cn ß CQ - l 0 ü cυ ß Cü 4H XI CD - 4-> Φ -H φ rl 4 ß • φ ~ Φ Φ XI Φ CQ <
-H ß cυ r-i Q CD CQ ß H 4-> > ü φ -H > ü O Φ ß T) tNl o - -rt -H O r-i 4J -H
4J -H 4-) rH -H -H r-i ß Cn -rl CQ τj CQ -H ε rl > TJ ß φ TJ TJ -H rH -H Φ .
CQ U XI rö • ß 5 ω rH -H -H 4-) SH ß Φ n Φ Φ • ß -H ß X! Φ =05 r CD -H Φ ε -ä ϊϊ
Cü o 4H ß cυ N rH ö ß X! φ ß 04 4-J TJ Φ φ CQ φ 0 ü Φ X! SH Cn 4H N
-Q CQ CD ß CÜ AS AS 4J CÜ N N > SM U X) -H •rl =0 CD rl s CQ ß > rö Q-l Φ Cn ß Xi rö CD 4-> SH SH SH CQ -H rl Cn CQ TJ Φ ^ -H •H CQ ß -H CQ =0 ß cn Φ ß rö
CQ Ό ß XI =rö CD CD H TJ CN CD 4-> ß •rl ß cn Z Φ Φ Φ Φ cn 4-> rö r-i ß cn
SH B CÜ 4 τj N SH O -H N rH u ß SH ^^ > ε 4J ß rö Cn ß rH 4-> φ ß
Cü X -H X! -rl CD AS -. SH tu ε rH Φ Φ o Φ φ XI rH ß ß EH r-i 4-> φ rö -H -H ß oo > υ CÜ N Ό CQ CD 0 ß ß SH rö - Cn > CQ CΛ rH X) o rö Φ XI Φ -H 4-> Φ a -i
00 SH cυ cn SH r-i CQ XI ß ß ß Cn rl Φ Φ 4-> r- -H r-i =0 X! φ rl XI ß ü φ AS ε - l 4H XI o Φ
00 ß ß -rl CD CÜ cυ rö ü rö rö cυ -rl CD •rl •rl Φ Φ φ ß ε ^1 =ß -H ß rl Φ o -H -H rö φ ß SH -H fr XI IS cn > 4H τJ CQ ß AS Cn TJ CQ XI ε Cn N fr Cn ε c Q φ TJ Xi TJ 4-) TJ 5 rö 4-1 4-)
Figure imgf000011_0001
t~- rr, o CQ
© φ
© o 4 w Φ
5 ß
Cn
H - l
U φ
Φ
Cn ß
-H
Φ
XI o
ΪH ß i ß
-rl φ rH
rl φ
TJ φ
4-> ß
Φ ß ß rö
AS
Cn ß ß
4
XI υ
-H
00 rl
CQ
00
0 ^0 ß
Figure imgf000012_0001
CN
Figure imgf000012_0002
Bei den Thermoplasten haben sich Ethylencopolymere, wie Polyethylenvinylacetat oder Polyethylenethylacrylat bewährt. Des weiteren kommen Polycarbonate, Polyester oder Polyurethane in Frage. Bei den elastomeren Kunststoffen können alle Kautschuke, insbesondere Siliconkautschuk, verwendet werden.
Besonders bewährt als Kunststoffbinder haben sich auch Silicon- oder Epoxidharze sowie UP-Harze.
3) Bereitstellung des Metallpulver-Kunststoffbinder-Gemisches und dessen Verarbeitung zu der Folienform
Das erzeugte, anisotrope Metallpulver wird anschließend gemäß einem ersten Verfahrensweg mit dem besonderen Kunst- Stoffmaterial vermengt oder vermischt. Dabei lassen sich vorteilhaft über den Anteil bzw. Füllgrad des Metallpulvers innerhalb des Metallpulver-Kunststoffbinder-Gemischs die magnetischen Eigenschaften des folienförmigen End- produkts in weiten Grenzen variieren. Bevorzugt kann der Metallpulveranteil zwischen 50 und 85 Vol.-% liegen. Die Verarbeitung des Gemischs zu der Folienform geschieht nach an sich bekannten Prozessen. Entsprechende Prozesse werden beispielsweise bei der Herstellung von Audio- oder Video- bändern der Unterhaltungsindustrie angewandt. Prinzipiell wird im allgemeinen bei erhöhter Temperatur von beispielsweise 100 bis 150°C das Gemisch kompaktiert und anschließend mittels eines Verformungsprozesses wie z. B. mittels Walzens oder Pressens in die Folienform überführt. Es kann dabei eine Dicke der Folie zwischen 0,1 und 2 mm eingestellt werden. Eine Orientierung der Pulverpartikel kann z.B. nach einem Gießvorgang und vor einem Abziehen der Folie von einem Träger erfolgen. Die Partikel können sich dabei während der Verfestigung in einem Magnetfeld, das aus Gründen einer Energieeinsparung auch gepulst sein kann, gemäß ihrer Vorzugsrichtung orientieren. Eine derartige Orientierung ermöglicht auch eine hohe Verdichtung ß ß 4-1 4H ε φ 3 φ 4-J Φ -H ß ß ß xi 1 :rö
TJ ß CQ 1 TJ TJ ß ε rö 1 ß ß 1 ü -rl ε ß φ cn CQ ß ß rl • Φ AS 4-J Φ rö -H X! φ CQ 4-J φ o φ XI ß =rö φ ß 4-1 φ ß N TJ 1 ß rö -H cn AS Φ ü TJ -H Φ Cn -H
CQ υ Φ r-i N -H EΪ φ rl ß rl φ > l ß 4-J ß Φ o ε -r
-rl CQ -i 4-1 ε ε TJ rö ß φ Cn Φ Cn φ φ Φ Cn CD Xl φ H Φ ^ rö XI 4-> XI φ X) ß ε ß AS ß =ß Eϊ Cn ß rö Φ
4-1 -H 4-1 Es: U CQ N CD φ TJ J 4-1 0 ß - l Φ υ ß 4H rH cn ε •rl EH
4H Φ r- cn CQ CQ 4-1 Φ -rt ß ß 4H xi -H -H 4-J 0 rö EΪ ß ß 0 ß 4H -H Φ Φ -rt X -rl ß 4H o ß r- TJ Φ φ 4H ε φ n υ rö cn Cn :(C ß ε N CQ TJ 4-1 0 XI =ß 0 CQ Φ 0 ß =rö -H ß -H φ <tf rö xl rö Φ O Φ N
PM a 4H TJ 4-J -H J Cn φ W τj -H Φ φ TJ -H
CQ ε ß ß Cn rl Cn XI 4-> w 4H SH CQ 2 -rl Φ 4 -H rH o
-rl Φ Φ 4-1 fr ß υ Φ 0 Φ r-i Φ Φ rH - 4-> T Cn 0 ß rl XI ε Cn 4H -H rö ß 4-1 > r-i ß 5 -H 0 Φ φ r-i rö ß Cn rö
4-1 φ ü ε ß 4H ε φ ß rl Φ CQ =ß Φ TJ Cn TJ > Φ XI φ ß EΪ r-i T CQ rö N 0 φ φ TJ 4-1 ß Cn CQ ß -H PQ CQ 4-J Φ 4->
=rö - l CQ rl 4-1 CD 4-1 C > 0 CQ r-i Φ Φ ß Φ XI ß a Φ l l CQ XI -H Φ xi φ 4-J ß O CD Φ AS -H ß Φ φ -rl - l Φ 4-1 ü AS CD -H - -rt υ Q
SH 4-> Φ N > r-i H φ CQ xi ß 4-1 -H TJ rH TJ XI rö CD -H r-i N -rl ß
Φ =ß ß φ rH TJ SH rö u ß tu 4-1 TJ O ü £ -rl Φ O -H CQ rl • O
> CD Cn CQ X! =ß -H XI 0 0 -H CQ 4H φ CD CD Xl Cn O r-i CQ CD Φ : j 4-1 cn Φ ä ß ß >
4-1 rö rH Cn XI TJ SH ß υ CQ ε CD ß 4 Eϊ ß • Φ CO n φ Φ
AS φ ε rö ß ü Φ -rl X! 4-1 n ß
Φ -H XI - l . Φ ß rö ß ε XI r-i rö cn rö -H XI 3 Φ Φ ß CQ ε SH rö rö 0 a TJ o rl ß TJ Φ ß Φ 0 ü -rl ß TJ • CD ü φ 4-J • 4-1 ß Φ
U -H ß 3. Φ ß rl -H
CQ -H Φ φ X! -H 4-1 CQ CO ß ß TJ rö cn SH ß CD r TJ -H 4-1 4-1
< xi φ 4-1 xi Φ υ TJ rH CQ -rH φ CQ » SH Φ ß :(Ö Φ ι X Q O TJ φ AS υ EΪ rö o E CQ ß 0 rö rH ß N =0 4-J -H 4-1 rö Φ Xl TJ tü =ß - σ> ß cn Cn ß
CN CQ -rl ε -H -H Φ Cn r-i rö 0 rl Xi X! Eϊ r-i Q - l Φ SH 4H . r Φ • ß o 4H TJ
Φ rH ß 4-1 φ Φ 4-1 ω AS > rö ü r-i TJ Cn Φ CQ 4-1 Φ CD r-i u ß ß ß
02 4-1 φ Φ rl Φ X Φ •rl tu 4-1 CQ 4-1 Φ • E Φ ß Xl Cn - l o 4-1 ß rö -rl o ß 4-1 ß φ ß =rö 4-1 4H TJ cn 1 -rl -H N 4-1 4-1 4H ß TJ < -rl Xl a o Xi -H CQ ß Cn cn φ ε cn ts r- ß rö ß fr ε ε 4-J CQ -rl ß φ 4-1 Cn • • 0 in υ ,—, Cn
Cn rö ß rö o rö rH rö ß to Φ Φ Φ φ rö
• Φ TJ 4-1 ε ß ε CQ rl rH o SH H -rl TJ rö ß
AS φ 2 φ 4-1 ε Cn ß Cn SH SH ε Φ φ rö t- δ U ß rH ß ß φ N 4-J CQ X! 4-1 4-J ß ^1 ß TJ Cn Φ 4H CD =rö Φ rö 4-J -H •• ß CQ cn
-H XI CQ =ß rö Φ CQ φ φ Φ ß ß 0 X! φ Φ rl EΪ 4H SH r- xl • • rH rl ß Φ -rl
Φ Φ Φ CD r-i H 4-1 Φ -H J Eϊ ß ist CQ XI XI φ SH 4-1 Cn r-i o φ φ 0 ß -H ,— . , EH 4-J rö TJ W Φ -rl cn r-i o Cn TJ ü ß rö Φ -H 4-1 04 fr 4-> ε 4-1
Φ Q rl Φ Es Φ rt 0 Φ ß 0 ß - l φ r-i ß φ -rl 4-1 CQ rö =0 rö TJ o ß =rö
CQ φ TJ XI J XI φ Cn Xl > rö > SH TJ -H Φ rö XI P CQ 2 U • • ß \. -H O
-H • TJ rö o ß ε X! ü xl Φ φ ß r-i 4-J r-i υ φ Φ Φ cn rH φ -H ; - — -
Φ r-i SH XI ß Φ rö ß CQ 4-1 XI > :rö 0 4-1 rö SH -rl ß Cn -H CQ r-i rö a CQ φ
EΪ Φ ß cn TJ SH ß Φ -H φ φ r-i 4-1 4H -rl tu ß rH -H rH Φ Φ -H ε PQ ß
SH AS φ rH φ φ Φ φ CD ε ß SH φ ß CD rl ε TJ o Φ φ o Xl AS rl Φ ε -rl -rl
Φ -H 4-1 rH ß 4-1 4-1 > 4-J CD Φ -H CQ 4-J - — ß I Φ φ r-i rH ε φ
X! 4-1 4H =ß -H CQ -H CQ Cn cn φ TJ rl 4-> CQ 4-J 4-1 CQ rö 0 ö ε ß rö =2 X ε u r l a rH Φ CQ CD 4H xl Cn ü -H φ rl rö Cn φ r -i •rl r-i 0 :(Ö ß ß ß φ Cn J ß -H SH rö Cn ffi -H
-rl ε rö xi rH Φ r- Φ 0 TJ rö > SH ß -rl ß Cn -H ß φ 4-J rö ε ß Cn 4-1 B rH a ü ε 0 a ß H a CQ rH fr 4-1 EH CD φ :(0 Φ φ xi • • Φ fr 4H ß rö φ AS rö
X) SH CQ Φ CQ 0 Φ r-i 0 ß CQ rH ß φ Φ =0 4-1 rl N xi o ß 4H 4-J -rl AS ß
=ß Φ ß TJ ε r-i O ε φ Φ rö φ Φ 2 XI rt J φ Xl EH o CQ φ Cn Φ 0 -H Q rl TJ Cn
00 > Φ X X Cn rl ß N Cn -H TJ U Φ 4H ü n φ -H 4-1 rö rl 4-1 Φ :(0 ß rö
< rl r-
00 Cn 4-J ü Φ =ß φ ß o EΪ rl ß =rö ß ε r-i rö φ SH 4-1 φ ε Φ CQ l ε 4-1 H -rl 00 φ ß -H -rl -H XI 4-1 ß XI =0 rl ε 0 φ Φ r-i -H 0 •rl SH -H rl a Φ ε xi r-i 4-> rl Φ CQ Q
TJ fr ω ε H CQ N H AS fr H Ϊ TJ 4H Φ > tü X) TJ ß ß rö o 4-J rö TJ TJ Φ o cn Cn -H 4-1 ß rl r-i Xi
-H ß rö rö φ -H φ ε ß Φ o φ o Cn φ ε fr ts 2 > H Cn TJ
Figure imgf000014_0001
o o
H υ c-
00
00
00
Figure imgf000015_0001
net wird. Um eine möglichst gute Flächenbelegung zu erreichen, wird dieser Vorgang mehrmals wiederholt. Nach diesem Prozess wird die Folie durch einen Walzenstuhl mit geheizten Walzen gezogen. Dabei wird das Magnetpulver in das erweichende Folienmaterial mechanisch eingedrückt.
Auf diese Art und Weise lassen sich selbsttragende Filme von ca. 20 bis 30 μm Schichtdicke und einem Füllgrad von > 80 Vol.-% erzeugen. In derartigen Schichten ist sichergestellt, dass sich alle Partikel mit ihrer größten Fläche absolut parallel zur Folienoberfläche befinden und damit der Gesamtfolie ein anisotropes Verhalten verleihen. Aus diesen Primärfolien lassen sich dickere Folien mit anisotropem Verhalten durch Verpressen von Stapeln mehrerer Primärfolien herstellen. Das flockenartige Metallpulver wird in einem Spalt, der z.B. durch die Anordnung von zwei Glasplatten, die durch Metallbedampfung oberflächlich leitfähig ausgerüstet wurden, so orientiert, dass es quasi eine Monolage bildet. Diese Monolage kann durch Anordnung der Glasplatten in einem Winkel > 45° durch Rütteln so kompaktiert werden, dass der Volumenfüllgrad auf über 80 Vol.-% steigt. Nach dieser Verdichtung kann die obere Glasplatte entfernt und die Monoschicht durch Besprühen mit einer Lösung eines Reaktionsharzes und nachfolgendes Abdampfen des Lösungs- mittels zu einer Metall/Kunststoff-Folie gebunden werden. Dieser Prozess lässt sich auch kontinuierlich gestalten, indem man die aus dem Spalt austretende Metallpulver- monolage auf eine Trägerfolie aufbringt, danach mit der Reaktionsharzlösung besprüht und das Lösungsmittel in einer Trockenstrecke entfernt. Als Reaktionsharze sind insbesondere flexibilisierte Epoxidharze, Polyurethanharze oder Silikonharze geeignet. Die derartig hergestellten Folien enthalten noch reaktives Harz, so dass diese Monoschichten zu Multischichten verpresst und ge- härtet werden können. In derartigen Schichten ist sichergestellt, dass sich alle Partikel mit ihrer größten Fläche absolut parallel zur Folienoberfläche befinden und damit der Gesamtfolie ein anisotropes Verhalten verleihen.

Claims

Patentansprüche
1. Folie mit weichmagnetischen Eigenschaften in Form eines Verbundaufbaus aus einem Kunststoffmaterial und Metallpulver aus einem Werkstoff mit mindestens einem ferromagnetischen Element, d a d u r c h g e k e n n z e i c h n e t , dass zur Erstellung des Verbundaufbaus (V) mit magnetischer Anisotropie anisotrope Pulverpartikel aus einem amorphen und/oder nanokristallinen Metallpulver (21) vorgesehen sind.
2. Folie nach Anspruch 1, g e k e n n z e i c h n e t durch eine Foliendicke (D) unter 2 mm, vorzugsweise unter 0,5 mm.
3. Folie nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t , dass der Verbundaufbau (V) mit Metallpulvern (21) mit einer mittleren Partikelgröße (δ) erstellt ist, die unter 100 μm liegt.
4. Folie nach einem der vorangehenden Ansprüche, g e k e n n z e i c h n e t durch ein Metallpulver (21) , dessen Partikel ein Aspektverhältnis von mindestens 3, vorzugsweise mindestens 10, aufweisen.
5. Folie nach einem der vorangehenden Ansprüche, e k e n n z e i c h n e t durch ein Metallpulver (21) aus einem ferromagnetischen Werkstoff mit mindestens einem der Elemente Fe oder Ni oder Co.
6. Folie nach Anspruch 5, d a d u r c h g e k e n n z e i c h n e t , dass der ferromagnetische Werkstoff zusätzlich mindestens ein nicht-magnetisches Element enthält.
7. Folie nach einem der vorangehenden Ansprüche, g e - k e n n z e i c h n e t durch ein Metallpulver (21) aus einem metallischen Glas.
8. Folie nach einem der vorangehenden Ansprüche, g k e n n z e i c h n e t durch ein Metallpulver (21) mit einem zumindest teilweise rekristallisierten Gefüge.
9. Folie nach einem der vorangehenden Ansprüche, k e n n z e i c h n e t durch ein Kunststoffmaterial (22) aus einem Thermoplast oder einem Elastomer oder einem Duroplast .
10. Folie nach einem der vorangehenden Ansprüche, g e k e n n z e i c h n e t durch einen Anteil des Metallpulvers (21) zwischen 50 und 85 Vol-% in dem Verbundaufbau (V) .
11. Folie nach einem der vorangehenden Ansprüche, g e - k e n n z e i c h n e t durch eine Koerzitivfeidstärke von unter 20 A/m.
12. Folie nach einem der vorangehenden Ansprüche, g e k e n n z e i c h n e t durch eine Sättigungsinduktion von über 0,4 T.
13. Verfahren zur Herstellung einer weichmagnetischen Folie nach einem der vorangehenden Ansprüche, d a d u r c h g e k e n n z e i c h n e t , dass das Metallpulver (21) und das in pulvriger oder flüssiger Form vorliegende Kunststoffmaterial (22) vermengt, erwärmt und in die Folienform überführt werden.
14. Verfahren zur Herstellung einer weichmagnetischen Folie nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t , dass zunächst auf eine Trägerfolie aus dem Kunststoffmaterial das Metallpulver aufgebracht und anschließend in die Trägerfolie mechanisch eingearbeitet wird.
15. Verfahren nach Anspruch 14, d a d u r c h g e k e n n z e i c h n e t , dass auf die mit einer Klebstoff- Schicht versehene Oberfläche der Trägerfolie das Metallpulver mittels eines Walzprozesses aufgebracht wird.
16. Verfahren nach Anspruch 14 oder 15, d a d u r c h g e k e n n z e i c h n e t , dass das auf die Oberfläche der Trägerfolie aufgebrachte Metallpulver mittels eines Walzprozesses bei erhöhter Temperatur in die Trägerfolie eingearbeitet wird.
17. Verfahren zur Herstellung einer weichmagnetischen Folie nach einem der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t , dass zunächst auf eine Trägerfolie aus dem Kunststoffmaterial das Metallpulver aufgebracht und anschließend dort fixiert wird.
18. Verfahren nach Anspruch 17, d a d u r c h g e k e n n z e i c h n e t , dass zum Fixieren des Metall- pulvers auf der Trägerfolie eine Besprühung mit einem Reaktionsharz und eine anschließende Trocknung vorgesehen werden.
19. Verfahren nach einem der Ansprüche 14 bis 18, d a d u r c h g e k e n n z e i c h n e t , dass mehrere mit dem Metallpulver versehene Trägerfolien gestapelt und zu einer dickeren Gesamtfolie verarbeitet werden.
20. Verfahren nach einem der Ansprüche 13 bis 19, d a d u r c h g e k e n n z e i c h n e t , dass mittels einer Rascherstarrungstechnik Stücke aus einem Zwischen- produkt des ferromagnetischen Werkstoffes hergestellt werden, die anschließend mittels einer Mahltechnik in das Metallpulver (21) überführt werden.
21. Verfahren nach Anspruch 20, d a d u r c h g e - k e n n z e i c h n e t , dass die Zwischenproduktstücke in einer Ultrazentrifugalmühle, gegebenenfalls ohne Sieb, gemahlen werden.
22. Verfahren nach einem der Ansprüche 13 bis 21, d a d u r c h g e k e n n z e i c h n e t , dass bei der Metallpulverherstellung eine Wärmebehandlung der Zwischen- produktstücke oder des Metallpulvers vorgesehen wird.
23. Verfahren nach einem der Ansprüche 13 bis 22, d a d u r c h g e k e n n z e i c h n e t , dass eine Orientierung der Pulverpartikel des Metallpulvers (21) in einem Magnetfeld vorgesehen wird.
PCT/DE2000/003037 1999-09-08 2000-09-04 Weichmagnetische folie und verfahren zu deren herstellung WO2001018828A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19942939.1 1999-09-08
DE1999142939 DE19942939A1 (de) 1999-09-08 1999-09-08 Weichmagnetische Folie und Verfahren zu deren Herstellung

Publications (1)

Publication Number Publication Date
WO2001018828A1 true WO2001018828A1 (de) 2001-03-15

Family

ID=7921249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2000/003037 WO2001018828A1 (de) 1999-09-08 2000-09-04 Weichmagnetische folie und verfahren zu deren herstellung

Country Status (2)

Country Link
DE (2) DE19942939A1 (de)
WO (1) WO2001018828A1 (de)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8287664B2 (en) 2006-07-12 2012-10-16 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
US8298352B2 (en) 2007-07-24 2012-10-30 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
US8327524B2 (en) 2000-05-19 2012-12-11 Vacuumscmelze Gmbh & Co. Kg Inductive component and method for the production thereof
US8372218B2 (en) 2006-06-19 2013-02-12 Vacuumschmelze Gmbh & Co. Kg Magnet core and method for its production

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4370160B2 (ja) 2001-06-25 2009-11-25 ツェーヴェーヴェー ゲルコ アクスティク ゲゼルシヤフト ミット ベシュレンクテル ハフツング 磁気パウダーを含むビチューメン薄膜を製造及び磁化する方法
DE10204884A1 (de) * 2002-02-06 2003-08-14 Schreiner Gmbh & Co Kg Transponderetikett
DE102005057445B3 (de) * 2005-12-01 2007-03-29 Trithor Gmbh Herstellung magnetischer Memorymetalle
CN100424505C (zh) * 2005-12-21 2008-10-08 宋京伟 塑料制品裂纹的涡流探伤方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301561A2 (de) * 1987-07-31 1989-02-01 TDK Corporation Magnetisches Weicheisenpulver zur Formung magnetischer Abschirmung, Verbindung und Verfahren zur Herstellung
JPH06112031A (ja) * 1992-09-24 1994-04-22 Hitachi Metals Ltd 軟磁性部材
EP0959480A2 (de) * 1998-05-18 1999-11-24 Daido Tokushuko Kabushiki Kaisha Kernmaterial für Storungsfilter

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853022A (ja) * 1981-09-24 1983-03-29 Hitachi Maxell Ltd 磁気記録媒体
JPS59158016A (ja) * 1983-02-28 1984-09-07 ティーディーケイ株式会社 電磁シ−ルド材料
FR2655997B1 (fr) * 1988-01-18 1992-04-30 Commissariat Energie Atomique Enduit absorbant, son procede de fabrication et revetement obtenu a l'aide de cet enduit.
DE3901354A1 (de) * 1989-01-18 1990-07-26 Eugen Otto Butz Transportvorrichtung fuer kraftfahrzeuge
US5252148A (en) * 1989-05-27 1993-10-12 Tdk Corporation Soft magnetic alloy, method for making, magnetic core, magnetic shield and compressed powder core using the same
DE4322371A1 (de) * 1993-07-06 1994-02-03 Thueringisches Inst Textil Verfahren zur Herstellung von synthetischen Fäden und Folien mit magnetischen Eigenschaften
DE19860691A1 (de) * 1998-12-29 2000-03-09 Vacuumschmelze Gmbh Magnetpaste

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0301561A2 (de) * 1987-07-31 1989-02-01 TDK Corporation Magnetisches Weicheisenpulver zur Formung magnetischer Abschirmung, Verbindung und Verfahren zur Herstellung
JPH06112031A (ja) * 1992-09-24 1994-04-22 Hitachi Metals Ltd 軟磁性部材
EP0959480A2 (de) * 1998-05-18 1999-11-24 Daido Tokushuko Kabushiki Kaisha Kernmaterial für Storungsfilter

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 018, no. 382 (E - 1580) 19 July 1994 (1994-07-19) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8327524B2 (en) 2000-05-19 2012-12-11 Vacuumscmelze Gmbh & Co. Kg Inductive component and method for the production thereof
US8372218B2 (en) 2006-06-19 2013-02-12 Vacuumschmelze Gmbh & Co. Kg Magnet core and method for its production
US8287664B2 (en) 2006-07-12 2012-10-16 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core
US8298352B2 (en) 2007-07-24 2012-10-30 Vacuumschmelze Gmbh & Co. Kg Method for the production of magnet cores, magnet core and inductive component with a magnet core

Also Published As

Publication number Publication date
DE10040439B4 (de) 2005-05-12
DE10040439A1 (de) 2001-05-10
DE19942939A1 (de) 2001-03-15
DE10040439B8 (de) 2005-09-15

Similar Documents

Publication Publication Date Title
DE10348810B4 (de) Verfahren zur Herstellung von Metallpulvern mit Körnern im Nanomaßstab und einer hervorragenden Hochfrequenzcharakteristik sowie Verfahren zur Herstellung eines Hochfrequenz-Weichmagnetkerns unter Verwendung solcher Pulver
EP2131373B1 (de) Weichmagnetischer Werkstoff und Verfahren zur Herstellung von Gegenständen aus diesem weichmagnetischen Werkstoff
DE60036586T2 (de) Hartmagnetisches interstitielles Material mit mehreren Elementen und Herstellungsverfahren eines magnetischen Pulvers und Magnet daraus
DE2851388C2 (de)
DE19626049A1 (de) Magnetwerkstoff und Verbundmagnet
DE60009772T2 (de) Abgeschrecktes, dünnes Band aus einer Magnetlegierung auf Basis Seltene Erde/Eisen/Bor
DE69922891T2 (de) Magnetkern für HF-beschleunigenden Hohlraum und der Hohlraum
DE102008026887A1 (de) Weichmagnetischer Kompositwerkstoff
DE102006032517A1 (de) Verfahren zur Herstellung von Pulververbundkernen und Pulververbundkern
WO2009013711A2 (de) Verfahren zur herstellung von magnetkernen, magnetkern und induktives bauelement mit einem magnetkern
DE102015115217A1 (de) Hochtemperatur-Hybridpermanentmagnet
DE19639428A1 (de) Weichmagnetisches, dielektrisches Hochfrequenz-Verbundmaterial und Verfahren zu seiner Herstellung
WO2001018828A1 (de) Weichmagnetische folie und verfahren zu deren herstellung
DE10310572A1 (de) Permanentmagnet und Motor
DE102019135634A1 (de) Vorrichtungen und verfahren zum bilden von ausgerichteten magnetkernen
DE102021113180A1 (de) Anisotroper gebundener magnet und verfahren zu seiner herstellung
DE102017223268A1 (de) Verfahren zur Herstellung eines magnetischen Materials, magnetisches Material, Hartmagnet, Elektromotor, Starter und Generator
DE102020128947A1 (de) Verfahren zur herstellung eines anisotropen magnetpulvers aus seltenerdelement
DE102013102154B4 (de) Verfahren zum Herstellen eines magnetokalorisch aktiven Bauteils für magnetischen Wärmetausch
EP1053552A1 (de) Magnetfolie und verfahren zu deren herstellung
DE19849781A1 (de) Spritzgegossener weichmagnetischer Pulververbundwerkstoff und Verfahren zu seiner Herstellung
DE4021990A1 (de) Verfahren zur herstellung eines permamentmagneten aus metall der seltenerden und einer eisenkomponente
DE102019113879A1 (de) Magnetherstellung durch additive herstellung unter verwendung von aufschlämmung
DE1696391B1 (de) Verfahren zur Herstellung einer Mehrzahl gleichartiger Dauermagnetkoerper hoher Anisotropie
DE102006032520B4 (de) Verfahren zur Herstellung von Magnetkernen, Magnetkern und induktives Bauelement mit einem Magnetkern

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
122 Ep: pct application non-entry in european phase
NENP Non-entry into the national phase

Ref country code: JP