WO2000077397A1 - Pompe a pistons, procede et installation de filtration d'eau - Google Patents

Pompe a pistons, procede et installation de filtration d'eau Download PDF

Info

Publication number
WO2000077397A1
WO2000077397A1 PCT/FR2000/001642 FR0001642W WO0077397A1 WO 2000077397 A1 WO2000077397 A1 WO 2000077397A1 FR 0001642 W FR0001642 W FR 0001642W WO 0077397 A1 WO0077397 A1 WO 0077397A1
Authority
WO
WIPO (PCT)
Prior art keywords
pistons
pumps
shaft
pump
chambers
Prior art date
Application number
PCT/FR2000/001642
Other languages
English (en)
Inventor
Bernard Marinzet
Original Assignee
Bernard Marinzet
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bernard Marinzet filed Critical Bernard Marinzet
Priority to AU64480/00A priority Critical patent/AU6448000A/en
Priority to US10/009,017 priority patent/US6652741B1/en
Priority to CA002412378A priority patent/CA2412378A1/fr
Priority to DE60012530T priority patent/DE60012530T2/de
Priority to AT00951586T priority patent/ATE272173T1/de
Priority to JP2001503428A priority patent/JP4659310B2/ja
Priority to EP00951586A priority patent/EP1194691B1/fr
Publication of WO2000077397A1 publication Critical patent/WO2000077397A1/fr
Priority to HK02107202.7A priority patent/HK1045869B/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B9/00Piston machines or pumps characterised by the driving or driven means to or from their working members
    • F04B9/08Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid
    • F04B9/10Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid
    • F04B9/109Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers
    • F04B9/111Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers with two mechanically connected pumping members
    • F04B9/113Piston machines or pumps characterised by the driving or driven means to or from their working members the means being fluid the fluid being liquid having plural pumping chambers with two mechanically connected pumping members reciprocating movement of the pumping members being obtained by a double-acting liquid motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/06Energy recovery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the object of the present invention is a method and an installation for filtering a liquid using a membrane filtration device.
  • the technical sector of the invention is the field of manufacturing filtration devices with semi-permeable membrane.
  • the present invention relates more particularly to a method and a device for desalinating seawater or brackish water by reverse osmosis, and to methods and devices for ultrafiltration of a liquid such as water, for provide water suitable for consumption or irrigation for example.
  • a drawback of seawater filtration systems for desalination is their low efficiency: the energy consumed to obtain a cubic meter of desalinated water is of the order of 5 to 10 kWh; in the case where a turbine, such as a "PELTON” type turbine, is used to recover the energy of the supersalted water produced, the efficiency of the turbine being low, the overall efficiency of the installation is little improvement; in addition, such installations equipped with centrifugal pumps and turbines are of high cost, and of reliability and a relatively short service life.
  • the water to be treated is delivered to the inlet of the filtration device, at an inlet pressure which is higher than the osmotic pressure of the water; generally, the water supply pressure at the inlet of the filter is at least equal to 25 bars, for example of the order of 30 to 1 00 bars, in particular of the order of 60 to 80 bars; on the one hand, a concentrated t of so-called “supersalted” water is recovered at the outlet of the filter, and on the other hand, a desalted water permeate (which is at a pressure close to atmospheric pressure); the pressure of the concentrate at the outlet of the filter is generally little lower than the pressure of supply of water to be desalted, for example less than this by a value of the order of 1 to 5 bars, since the drop pressure in the filter is low.
  • the filter In less extensive filtration installations, in particular in nanofiltration installations for the treatment of brackish water, the filter is supplied with water to be treated at a pressure of the order of 10 bars, and a concentrate is recovered at a pressure of in the range of 4 to 8 bars.
  • 3,825,122 describes a pumping device for the filtration of a fluid by reverse osmosis which comprises several aligned cylinders which delimit a main chamber for pumping the fluid, an auxiliary chamber (“booster”) used for recovery of the energy of the concentrate, and a hydraulic chamber for actuating the device by a hydraulic fluid pressurized by a pump, each chamber is provided with a piston movable in alternative translation under the action of a piston rod which is common to all pistons; although the objective announced in this document is to maintain a constant flow of pressurized fluid, the system for reversing the direction of movement of the rod by limit switches controlling distributors placed on the conduits connected to the chambers, does not ensure a continuous flow; this is probably the reason why this device, like all piston pump systems, has not known any effective industrial development for filtration by reverse osmosis.
  • the membranes are indeed extremely sensitive to variations in pressure and flow rate which cause their clogging or rupture.
  • US Patent 4,432,876 describes various devices aimed at reducing fluctuations in pressure and water flow at the outlet of the pump: A device for simultaneously varying the volume of the pumping chamber and the volume of the expansion chamber coupled to the chamber pumping; two variants of the device - with controlled valve and respectively with double flap piloted and mounted head to tail - cause the momentary communication between these two chambers, when the piston is at the end of its stroke, in order to limit the overpressures due to sudden openings and closing of the valves arranged on the water conduits, in addition this document proposes a device comprising three or more pistons - which are driven by a common crankshaft - or more, and recommends avoiding machines with 2, 4, 8 or 1 6 pistons In order to increase the compactness of the device described in US 4,432,876 and to delete the devices for varying the volume of the chambers, US Pat. No. 4,913,809 describes a pumping device with two pistons connected by a rod and driven by a double-acting hydraulic actuator, the pre s sion
  • reverse osmosis installations essentially include low-performance centrifugal pumps, the piston pumping devices being too complex and unsuitable for pressurization. water delivered to membrane filters.
  • An object of the present invention is to provide an improved liquid filtration method and installation.
  • An object of the present invention is to improve the overall efficiency of these filtration methods and installations.
  • the invention consists in proposing a water pumping device which comprises at least two pumps, each of the pumps comprising:
  • the pumping device comprises an actuator capable of supplying the water with the energy necessary for its compression - deduction made of the energy of the concentrate recovered by said pistons -, by causing an alternating movement, generally periodic, translation (sliding) of the shaft and pistons of each of the pumps, and means for causing a prolonged stop of the shaft and of the pistons of each pump, at each end of course e, this is to be said twice for each period of the periodic movement, which makes it possible to avoid or greatly limit variations in the water pressure at the inlet of the filter (s).
  • the pumping device further comprises means for accelerating one of said two pumps while another of said two pumps is in prolonged end-of-travel stop, which makes it possible to maintain the (cumulative) flow rate of water discharged by the pump. s towards the filter (s) at a substantially constant value.
  • the expression "prolonged stop” designates a period of time during which at least one of said pistons - and generally the two pedestals of a pump as well as their associated shaft - are substantially stationary, said duration of prolonged stopping e st such that its ratio to the period of movement of the tree (and pis tones) is generally greater than 1 0 ⁇ , this ratio can reach very high values s - for example of the order from 0, 1 or more - in particular in the case where said two pumps do not have the same capacity; in this case, the prolonged stop of the higher capacity pump will be of a longer duration than that of the stop of the lower capacity pump.
  • the two pumps will have the same capacity and will each be controlled so as to carry out an extended stop at the end of the race of duration substantially identical for the two pumps.
  • At least one of the chambers of at least one of the pumps will preferably be equipped with a piston position sensor (and / or the shaft) which is positioned so as to emit a detection signal before said piston (and / or said shaft) reaches its end of stroke position; this detection signal is transmitted to an electronic control unit which, in response to the reception of this signal, controls the stopping of the supply of energy by said actuator to the pump in question
  • the driving energy supplied by said actuator is preferably transmitted to water via a hydraulic fluid (motor) acting on a piston - called motor - linked to said shaft, in a similar manner to that described in the patents aroused; the prolonged shutdown of the delivery of the working fluid under pressure to the engine pedestal then causes the prolonged shutdown of the pump considered.
  • the invention consists in proposing a water pumping device comprising two pumps, each pump comprising two aligned chambers each receiving a movable piston in translation in the chamber, the two tones being connected by a shaft sliding; the device also comprises a double-acting hydraulic cylinder for driving each pump, and a loop of circulation of hydraulic fluid (motor) under pressure, which is unique and therefore common to all of the hydraulic cylinders of the device pumping, the device further comprises means for selective communication of each cylinder with said loop which are controlled so that the sum of the flow rates of hydraulic fluid (motor) delivered to the cylinders is substantially constant in temp s , so that the sum of the water flows re trodden by the pumps of the device is substantially constant.
  • Said common motor fluid circulation loop preferably comprises a single pump as well as a member for measuring the flow rate circulating in said loop.
  • Said means of selective communication include means preventing, permanently, the simultaneous closing of all the circuits for delivering motor fluid to the jacks, consequently, when part of said means of selective communication are closed from so as to prevent the delivery of the working fluid to one of said jacks - to cause the prolonged shutdown of the corresponding pump -, at least part of said means for selective communication are open; given that the overall (cumulative) flow of working fluid remains constant, the flow of working fluid delivered to the other cylinders supplied by said loop, is then increased, this results in acceleration of the latter and of the pump (s) ( s) spondant corre
  • Said selective communication means essentially consist of valves electrically controlled by the electronic control unit which receives signals representative of the position of the valves pistons, as well as, preferably, of a flow meter provided on said common loop; alternatively, this flowmeter measuring the overall flow of working fluid used by the pumping device, can be replaced by a flow meter placed on a water transport pipe discharged by the pumps to the membrane filter; it can also be replaced by several (at least two) flow meters placed on the oil transport pipes connecting each cylinder to the common loop; it can also be replaced by at least one sensor for the speed of movement of the sliding shaft of one of the pumps - at least -, in the case where the different pumps of the device are provided with chambers, sliding shafts and pistons of identical geometry; in this case, in fact, to ensure a constant overall flow of pumped water, it suffices to permanently maintain the sum of the speeds of the sliding shafts of the different pumps, at a constant value.
  • each pump comprises a drive piston fixed in the middle of said sliding shaft; in this embodiment, each of said pumps comprises three pistons and a common sliding shaft for transmitting forces, each of the pistons being movable in alternating translation in a respective cylindrical chamber, the three chambers being aligned (along the longitudinal axis of the tree, which corresponds to the axis of translation of the pedons); two identical end pistons each serve, on the one hand for compressing the liquid to be filtered and on the other hand for recovering energy from the concentrate, and are respectively arranged at the two longitudinal ends of the shaft; the third piston - said motor - (of smaller diameter) is fixed on the shaft and arranged at equal distance from s two ends of the shaft; thus, each of the two end chambers (called common chambers) in which the two end pistons move respectively, is divided into two portions or cavities (of variable volume depending on the position of the piston) separated by the piston: first portion of each chamber, in the central part of which grout is part of the tree, is connected to the
  • the structure of the device also makes it possible to reduce the mechanical stresses applied to the shaft, this structure allows the use of elongated chambers, in particular whose ratio of length to diameter is greater than or equal to 3, more particularly close to 5 to 10 or 10 to 20; this elongated (tubular) shape facilitates the production of bodies (delimiting the chambers) which must withstand high pressures; this also contributes to obtaining a continuously variable or constant flow, in order to eliminate (and / or significantly reduce) transient overpressures (at the end of the stroke), in particular by facilitating control of the speed of the pistons - (and consequently of the common tree).
  • connection can be constituted by a ball joint or a cardan joint, allowing relative rotation along at least one transverse axis (for example perpendicular to the longitudinal axis), by a bearing allowing relative translation along the longitudinal axis, or else by a combination of these means of connection;
  • the piston is not linked to the shaft, it has - as well as the shaft - a contact face (of support) on the end of the shaft: during the delivery of the water to be filtered under high pressure, the shaft transmits to the end piston via this face the force exerted by the working fluid on the central piston; during the filling of the end chamber by means (pump) of gavage under a low pressure, the end pedestal "follows" the end of the
  • a water filtration installation comprises at least two pumps as above, which are connected in parallel at the inlet and at the outlet, the operation of which is kept phase-shifted and the speeds of which are controlled and / or controlled to ensure a flow rate (cumulative for the different pumps) of liquid (water) admitted at the inlet and liquid (water) presurized at the outlet, which are substantially constant (preferably to within 10%, in particular at at most 5%).
  • the installation comprises two identical pumps, the shafts of which are mu s with a speed and a phase shift variable during of a cycle, the phase difference not being zero, nor equal to 1 80 °, the sum of the ab absolute values of the two trees of two trees being substantially constant over time.
  • a first of the two shafts is accelerated for this purpose when the second shaft stops at the end of its travel (neutral); in addition, the end chamber portion can be connected to a source of pressurized fluid in order to allow the pressurization by this fluid of the water sucked by the piston (and / or discharged by an upstream booster pump) in this chamber portion, up to the normal supply pressure of the filter, in order to avoid a (temporary) drop in pressure at the inlet of the filter, when this portion of the chamber is placed in communication with the inlet of the filter, this temporary pressurization is carried out when the corresponding piston is at the end of travel (neutral) following the filling of this portion; for this purpose, this portion of the chamber can be temporarily isolated from the suction and discharge circuits.
  • supersalt water concentrate
  • - tubular water pumping chambers with a diameter situated in a range from 50 to 1,000 mm, in particular from 100 to 600 mm, are chosen: - the top speed of the shafts and pistons is maintained at a value situated in a range ranging from 0.1 meters per second to 10 meters per second, preferably from 0.25 meters per second to 3 meters per second;
  • one causes the prolonged stop of the shafts and pistons at each end of the chambers ("top" and "bottom” dead center), in particular to carry out a water pressurization step, for a period of time whose ratio to the period of the movement of the tree is situated in a range going from 0.005 to 0.1, in particular close to 0.01 to 0.05;
  • a hollow shaft is used to reduce the inertia of the moving element and the friction on the bearings.
  • FIG. 1 schematically illustrates a seawater desalination installation comprising two identical pumps;
  • Figures 2 and 3 illustrate the same installation in two different states of the pumping cycle.
  • FIG. 4 is a histogram of the speed of the shaft of each of the pumps in FIGS. 1 to 3, which shows the variations of these speeds during a cycle.
  • FIG. 5 illustrates in the same manner as in FIGS. 1 to 3, a similar installation where two-way solenoid valves are used in place of the distributors of FIGS. 1 to 3.
  • FIG. 6 schematically illustrates means for maintaining the pressurization of the chambers of a pump.
  • FIG. 7 illustrates in partial schematic view an alternative embodiment of the invention in which the installation comprises three pumps arranged in parallel.
  • the installation 1 is intended for desalinating the water supplied at the inlet 2 by a pump - called a booster pump (not shown) under a pressure of 3 at 4 bars; for this purpose the salt water is pressurized by each of the two identical pumps 3, 4 at a pressure of 70 bars and delivered by conduits 5 to the inlet 6 of the filter 7 of reverse osmosis; the fresh water obtained is discharged at 8 while the supersalted water leaving at 9 from the filter 7, under a pressure of 69 bars, is transported to the pumps 3, 4 by conduits 10; the supersalted water transmits its energy to the seawater to be filtered in the pump and is discharged at 11 at a pressure of 1 bar.
  • a pump - called a booster pump not shown
  • the salt water is pressurized by each of the two identical pumps 3, 4 at a pressure of 70 bars and delivered by conduits 5 to the inlet 6 of the filter 7 of reverse osmosis; the fresh water obtained is discharged at 8 while the supersalted water leaving at 9 from the
  • the additional energy necessary for the pressurization of the sea water to be filtered up to 70 bars, is supplied to each pump 3, 4 by a hydraulic unit 12 which delivers at output 13 an oil flow under pressure and a substantially constant flow; the oil is sent to the pumps via a pipe 14 and returns to the cover of the power station via a pipe 15.
  • each of the pumps 3, 4 comprises: - a body 16 which delimits three cylindrical chambers 18a, 18b on the one hand, 19a, 19b on the other hand, and 20a, 20b of a third go ; these three tubular chambers aligned along the axis 17 are separated by two partitions 21, 22 pierced with an orifice equipped with a bearing provided with seals; and - a hollow shaft 23 extending along the axis 17 and carrying three pistons
  • the shaft is mounted sliding in translation (according to the arrows 28) in the bearings equipping the partitions 21, 22; the middle of the shaft 23 is equipped with a drive piston 25 which can slide in the central chamber 19a, 19b under the effect of the pressure which is applied to one of its faces by the oil introduced, according to the desired direction of movement, in the portion 19a (or cavity) or on the contrary in the portion (or cavity) 19b, depending on the position of the distributor 27 connecting this chamber to the conduits 14, 15; the piston 24 separates the portions 18a and 18b from a first end chamber while the piston 26 separates the portions (or cavities) 20a and 20b from the second end chamber; the geometrical configuration of the mobile assembly is symmetrical with respect to a median transverse plane, as well as for the configuration of the chambers of the body 16.
  • the control and command of the module and the direction of speed of movement of the two shafts is effected by the position variation command (and / or state) of the two hydraulic distributors 27 respectively associated with the two pumps 3, 4.
  • This regulation can be controlled electrically or hydraulically by usual movens not shown.
  • the oil discharged into the conduit 14 by the pump from the central unit 12 is partly transported into the cavity 1 9b of the pump 3 by the conduit 33b, and is partly transported into the cavity 1 9b of the pump 4 by the conduit 34b;
  • the flow rate of the two oil streams circulating respectively in the two conduits 33b, 34b, which are a function of the position of the distributors 27, are adjusted to cause the starting of the pump 3 (from its bottom dead center) and for have a speed of 1 meter per second for the pump shaft 4, as illustrated in Figures 2 and 4, the distributors are then controlled to increase the oil flow in line 33b and simultaneously decrease the oil flow in the duct 34b, until these two flows are substantially balanced (identical) so that they have a movement (FIG.
  • FIG. 4 shows that a stop stop at zero speed of 0, 1 takes place of duration e st effected at each neutral point (end of travel); the graphs of s speeds of the two pumps 3, 4 are phase shifted by a value which is variable for a period around a mean value of phase shift which is of the order of 1, 2 seconds, that is to say of 54 degrees taking into account the value (approximately 8 seconds) of the period of the movement.
  • a heat exchanger marked 80 in FIG. 7 is preferably connected to the low pressure supersalted water evacuation pipe 35 as well as to one of the pipes 14, 15 for transporting oil to cool the oil.
  • a member 36 sensitive to the proximity of the pedestal 24 (such as an electromagnetic sensor) is disposed in the vicinity of the longitudinal end of each chamber 1 8a, 20b and is connected to a reference control unit 81 Figure 7 for control valves and distributors.
  • a pressurizing member is momentarily placed in communication with the cavity so as not to reduce the pressure from 4 to 70 bars; this can be achieved, as illustrated in FIG.
  • the pumping installation illustrated in FIG. 7 comprises three identical pumps 3, 4, 60 which are connected in parallel at the inlet and at the outlet on the water suction and discharge pipes (not shown) in the same way as previously described.
  • the hydraulic cylinder 61 associated with each pump for its drive is not disposed in the central part of each pump, but may be spaced from the body delimiting the suction cavities and discharge water to be filtered (1 8a, 20b) and supersalted water (1 8b, 20a).
  • Each cylinder 61 comprises said driving piston 25 sliding in a cylindrical chamber 1 9a, 1 9b aligned with the chambers of the water pump 3, 4, 60 as associated with the cylinder, which worse 25 is linked by a rod 62 to the sliding shaft 23 of the pump;
  • the rod (or secondary shaft) 62 is slidably mounted relative to the bodies of the jack 61 and of the pump as associated, by means of sealed bearings such as 63 provided through the walls of said bodies; so that the ratio of the cross sections of the cavities 20a, 20b is identical to that of the cross sections of the cavities 1 8b, 1 8a, a rod 64 of identical section to that of the rod 62 is fixed to the piston 26 and is slidably mounted at the through an orifice drilled in the pump body, thanks to a sealed bearing 65; the rod s 62, 64 are aligned, as is the shaft 23, along the longitudinal axis 1 7 common to the pump and to the jack, which is preferably horizontal, so that the weight of the movable assembly (rod
  • the loop 66 common to the three pumps, for producing pressurized oil for driving the three jacks 61, comprises a pump 12 which discharges into a duct 1 4 fitted with a flow meter 67, and a duct 15 for returning oil to a tarpaulin 68 on which said cooler 80 is disposed.
  • the oil presurized by the pump 1 2 is transported via the conduit 14 to the inlet of a distributor 68 whose return outlet is connected to the conduit 1 5.
  • the distributor 68 causes the distribution of the oil flow delivered by the pump 12 to the cylinders 61 for the actuation of the pumps 3, 4, 60 as described above, under the control of the control unit 81 receiving the signals from the sensors 36, 67.
  • each double-acting cylinder 61 is connected to the distributor 68 by two conduits 69, 70.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Filtration Of Liquid (AREA)
  • Reciprocating Pumps (AREA)
  • Details Of Reciprocating Pumps (AREA)
  • Saccharide Compounds (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

La présente invention a pour objet un procédé et une installation de filtration d'un liquide utilisant un dispositif de filtration à membrane. Le secteur technique de l'invention est le domaine de la fabrication de dispositifs de filtration, en particulier de dispositifs à membrane semi-perméable. Selon l'invention, une pompe (3, 4) de pressurisation d'un liquide comporte trois pistons (24, 25, 26) liés à un arbre (23) commun et montés mobiles en translation dans trois chambres (18a, 18b, 19a, 19b, 20a, 20b) alignées; deux desdits pistons (24, 26) sont identiques, sont liés aux extrémités de l'arbre (23) et séparent un chambre (18, 20) en deux cavités (18a, 18b, 20a, 20b).

Description

Pompe à pistons, procédé et installation de filtration d'eau
La présente invention a pour obj et un procédé et une installation de filtration d'un liquide utilisant un dispositif de filtration à membrane. Le secteur technique de l'invention est le domaine de la fabrication de dispositifs de filtration à membrane semi-perméable.
La présente invention est plus particulièrement relative à un procédé et à un dispositif de dessalement d'eau de mer ou d'eau saumâtre par osmose inverse, et aux procédés et dispositifs d'ultrafiltration d'un liquide tel que de l'eau, pour fournir une eau apte à la consommation ou à l'irrigation par exemple.
Un inconvénient des installations de filtration d'eau de mer en vue de son dessalement est leur rendement faible: l'énergie consommée pour obtenir un mètre cube d'eau dessalée est de l'ordre de 5 à 10 kWh ; dans le cas où l'on utilise une turbine, telle qu'une turbine de type « PELTON », pour récupérer l'énergie de l'eau sursalée produite, le rendement de la turbine étant faible, le rendement global de l'installation est peu amélioré ; en outre, de telles installations équipées de pompes centrifuges et de turbines sont d'un coût élevé, et d'une fiabilité et d'une durée de vie relativement faibles.
Dans les installations de dessalement d'eau de mer par osmose inverse, on délivre l'eau à traiter à l'entrée du dispositif de filtration, à une pression d'entrée qui est supérieure à la pression osmotique de l'eau ; généralement, la pression d'alimentation en eau à l'entrée du filtre est au moins égale à 25 bars, par exemple de l'ordre de 30 à 1 00 bars, en particulier de l'ordre de 60 à 80 bars ; on récupère en sortie du filtre un concentr t d'eau dite « sursalée » d'une part, et un perméat d'eau dessalée (qui est à une pression voisine de la pression atmosphérique) d'autre part ; la pression du concentrât en sortie du filtre est généralement peu inférieure à la pression d'alimentation d'eau à dessaler, par exemple inférieure à celle- ci d'une valeur de l'ordre de 1 à 5 bars, étant donné que la chute de pression dans le filtre est faible. Dans les installations de filtration moins poussée, notamment dans les installations de nanofiltration pour le traitement d'eau saumâtre, on alimente le filtre en eau à traiter à une pression de l'ordre de 10 bars, et on récupère un concentrât à une pression de l'ordre de 4 à 8 bars. Le brevet US 3,825, 122 décrit un dispositif de pompage pour la filtration d'un fluide par osmose inverse qui comporte plusieurs cylindres alignés qui délimitent une chambre principale de pompage du fluide, une chambre d'appoint (« booster ») servant à la récupération de l'énergie du concentrât, et une chambre hydraulique pour l'actionnement du dispositif par un fluide hydraulique pressurisé par une pompe , chaque chambre est munie d'un piston mobile en translation alternative sous l'action d'une tige de piston qui est commune a tous les pistons ; bien que l'obj ectif annoncé dans ce document soit de maintenir un débit constant de fluide pressurisé, le système d'inversion du sens de déplacement de la tige par des capteurs de fin de course commandant des distributeurs placés sur les conduits raccordés aux chambres, ne permet pas d'assurer un débit continu ; c'est vraisemblablement la raison pour laquelle ce dispositif, comme tous les systèmes de pompe a piston, n'a pas connu de développement industriel effectif pour la filtration par osmose inverse. Les membranes sont en effet extrêmement sensibles aux variations de pression et de débit qui provoquent leur colmatage ou leur rupture.
Le brevet US 4,432,876 décrit différents dispositifs visant à réduire les fluctuations de pression et de débit d'eau en sortie de pompe : Un dispositif de variation simultanée du volume de la chambre de pompage et du volume de la chambre d'expansion couplée à la chambre de pompage ; deux variantes du dispositif - à vanne commandée et respectivement à double clapet pilotés et montés tête-bêche - provoquent la mise en communication momentanée de ces deux chambres, lorsque le piston est en fin de course, afin d'écrêter les surpressions dues au brusques ouvertures et fermeture des vannes disposées sur les conduits d'eau , en outre ce document propose un dispositif comportant trois pistons ou plus - qui sont entraînés par un vilebrequin commun - ou plus, et recommande d'éviter les machines à 2, 4, 8 ou 1 6 pistons Afin d'augmenter la compacité du dispositif décrit dans US 4,432,876 et d' en supprimer les dispositifs de variation de volume des chambre s, le brevet US 4,913,809 décrit un dispositif de pompage à deux pistons relié s par une tige et mû par un actionneur hydraulique à double effet, dont la pre s sion commande la po sition d'un distributeur prévu sur les conduits d'eau avec un faible décalage dans le temps .
Malgré ces améliorations apportée s aux pompes à piston, on constate à ce j our que les installations à osmose inverse comportent es sentiellement des pompes centrifuges de faible rendement, le s dispo sitifs de pompage à piston étant trop complexe s et inadaptés à la pressurisation d'eau délivrée aux filtres à membrane.
Un obj ectif de la pré sente invention e st de proposer un procédé et une ins tallation de filtration de liquide qui soient améliorés.
Un obj ectif de la présente invention est d'améliorer le rendement global de ce s procédés et installations de filtration.
Selon un premier aspect, l'invention consiste à proposer un dispositif de pompage d'eau qui comporte au moins deux pompe s, chacune des pompes comportant :
- au moins deux chambres alignée s selon un axe longitudinal, - au moins deux pistons re spectivement monté s mobiles en translation alternative dans chacune des deux chambres ,
- un arbre de transmis sion d'efforts entre les deux pistons, qui s'étend en partie dans chacune des chambres et est monté coulis sant par rapport à celles-ci selon ledit axe longitudinal ; en outre, le dispositi f de pompage comporte un actionneur susceptible d'apporter à l' eau l'énergie néce s saire à sa compression - déduction faite de l'énergie du concentrât récupérée par lesdits pistons - , en provoquant un mouvement alternatif, généralement périodique, de translation (coulis sement) de l'arbre et des pistons de chacune des pompe s, et des moyens pour provoquer un arrêt prolongé de l'arbre et des pistons de chaque pompe, à chaque fin de cours e, c'est à dire deux fois pour chaque période du mouvement périodique, ce qui permet d'éviter ou de limiter fortement de s variations de la pression d'eau à l'entrée du (ou des) filtre (s) . Le dispositif de pompage comporte en outre des moyens pour accélérer une desdites deux pompes pendant qu'une autre desdites deux pompes est en arrêt prolongé de fin de course, ce qui permet de maintenir le débit (cumulé) d'eau refoulée par le s pompe s vers le (ou les) fιltre (s) à une valeur sensiblement constante .
Au sens de la présente demande, l'expres sion " arrêt prolongé " désigne une durée pendant laquelle au moins un desdits pistons - et généralement les deux pi stons d'une pompe ainsi que leur arbre as socié - sont sensiblement immobile s , ladite durée de l'arrêt prolongé e st telle que son rapport à la période du mouvement de l'arbre (et des pis tons) est généralement supérieure à 1 0 ^ , ce rapport peut atteindre des valeurs très élevée s - par exemple de l'ordre de 0, 1 ou plus - en particulier dans le cas où lesdites deux pompes n'ont pas la même capacité ; dans ce cas, l'arrêt prolongé de la pompe de plus forte capacité sera d' une durée supérieure à celle de l'arrêt de la pompe de moins forte capacité.
Cependant, en général les deux pompes auront la même capacité et seront chacune commandées de manière à effectuer un arrêt prolongé en fin de course de durée sensiblement identique pour le s deux pompes .
En vue de commander le ralenti s sement suivi de l'arrêt prolongé en fin de course, au moins une de s chambre s d'au moins une des pompes sera de préférence équipée d'un capteur de position du piston (et/ou de l'arbre) qui soit po sitionné de façon a émettre un signal de détection avant que ledit piston (et/ou ledit arbre) atteigne sa po sition de fin de course ; ce signal de détection est transmis à une unité électronique de contrôle qui, en réponse à la réception de ce signal, commande l' arrêt de la délivrance d' énergie par ledit actionneur à la pompe considérée
L'énergie motrice fournie par ledit actionneur est de préférence transmi se à l'eau par l'intermédiaire d'un fluide hydraulique (moteur) agissant sur un piston - dit moteur - lié audit arbre, de façon similaire à celle décrite dans les brevets suscités ; l'arrêt prolonge de la délivrance du fluide moteur sous pres sion au pi ston moteur provoque alors l'arrêt prolongé de la pompe considérée. Selon un autre aspect, l'invention consiste a proposer un dispositif de pompage d'eau comportant deux pompes , chaque pompe comportant deux chambres alignées rec evant chacune un piston mobile en transl ation dans la chambre, les deux pis tons étant reliés par un arbre couli s sant ; le dispositif comporte en outre un vérin hvdraulique à double e ffet pour l'entraînement de chaque pompe, et une boucle de circulation de fluide hydraulique (moteur) sous pres sion, qui est unique et par conséquent commune à tous le s vérins hydrauliques du dispositif de pompage , le dispositif comporte en outre des moyens de mise en communication sélective de chaque vérin avec ladite boucle qui sont commandé s de façon a ce que la somme des débits de fluide hydraulique (moteur) délivré aux vérins soit sensiblement constante dans le temp s , de sorte que la somme des débits d'eau re foulée par les pompes du dispositif e s t sensiblement constante.
Ladite boucle commune de circulation de fluide moteur comporte de préférence une seule pompe ainsi qu'un organe de mesure du débit circulant dans ladite boucle.
Le sdits moyens de mise en communication sélective comportent des moyens empêchant, en permanence, la fermeture simultanée de tou s les circuits de délivrance de fluide moteur aux vérins , par conséquent, lorsqu'une partie desdits moj ens de mise en communication sélective sont fermés de façon à empêcher la délivrance du fluide moteur à un desdits vérins - pour provoquer l'arrêt prolongé de la pompe correspondante - , une partie au moins desdits moyens de mise en communication sélective sont ouverts ; étant donné que le débit global (cumulé) de fluide moteur reste constant, le débit du fluide moteur délivré aux autres vérins alimenté s par ladite boucle, est alors augmente , il en resuite une accélération de ces derniers et de la (des) pompe (s) corre spondante (s)
Lesdits moyens de mise en communication sélective consistent essentiellement en de s vannes commandées électriquement par 1 'unité électronique de commande qui reçoit des signaux représentatifs de la position des pistons des vannes, ainsi que, de pré férence, d'un débit -mètre prévu sur ladite boucle commune ; alternativement, ce débitmètre mesurant le débit global de fluide moteur utili sé par le di spositif de pompage, peut être remplacé par un débitmètre placé sur un conduit de transport d'eau refoulée par le s pompes vers le filtre à membrane ; il peut également être remplacé par plusieurs (au moins deux) débitmètres placés sur les conduits de transport d'huile reliant chaque vérin à la boucle commune ; il peut également être remplacé par au moins un capteur de la vites se de déplacement de l'arbre coulissant d'une des pompes - au moins - , dans le cas où les différente s pompes du dispositi f sont dotées de chambre s, d'arbres coulis sants et de pistons de géométrie identiques ; dans ce cas en effet, pour as surer un débit global d'eau refoulée constant, il suffit de maintenir en permanence la somme des vitesses des arbres coulis sants de s différentes pompes, à une valeur constante.
Selon un mode préféré de réalisation, chaque pompe comporte un piston moteur fixé au milieu dudit arbre coulissant ; dans ce mode de réalisation, chacune desdite s pompes comporte trois pistons et un arbre coulissant commun de transmis sion d'efforts , chacun des pistons étant mobile en translation alternative dans une chambre cylindrique respective, les trois chambres étant alignées (selon l'axe longitudinal de l'arbre, qui corre spond à l'axe de translation des pi stons) ; deux pistons d'extrémité identiques servent chacun, d'une part à la compre s sion du liquide à filtrer et d'autre part à la récupération d'énergie du concentrât, et sont respectivement disposés aux deux extrémités longitudinales de l'arbre ; le troisième piston — dit moteur — (de plus petit diamètre) est fixé sur l'arbre et disposé à égale distance de s deux extrémités de l'arbre ; ainsi, chacune des deux chambres d'extrémité (appelées chambres communes) dans lesquelles se déplacent respectivement les deux pistons d'extrémité, est divisée en deux portions ou cavités (de volume variable selon la position du piston) séparée s par le piston : une première portion de chaque chambre, dans la partie centrale de laquelle coulis se une partie de l'arbre, est raccordée au filtre à membrane pour recevoir le concentr t (eau sursalée) ; une deuxième portion de chaque chambre est raccordée aux conduits de liquide à filtrer (eau salée) . La chambre centrale dans laquelle se déplace le piston moteur est raccordée aux conduits d'alimentation et d'échappement du fluide hydraulique (moteur) , de préférence constitué par de l'huile. Le dispositif selon l'invention présente des avantages :
- chacun des pistons d'extrémité, qui est en contact par une première
(face avant) de ses deux faces avec le fluide à filtrer et qui est en contact par une deuxième (face arrière) de ses deux faces avec le concentrât sortant du filtre, est soumis a des contraintes mécaniques faibles, étant donné la faible différence de pression existant entre ces deux liquides , en outre cette faible différence de pression ne nécessite pas d'équiper le piston de garnitures (segments) d'étanchéite complexes et coûteux ; en tout état de cause, une légère fuite est parfaitement tolérable pour cette garniture , - contrairement au dispositif décrit dans le brevet US 3,825, 122, aucune portion d'arbre ne s'étend a l'extérieur des chambres, ce qui diminue le nombre de garnitures d'étanchéite et par conséquent le risque de fuite ; en outre cela simplifie grandement l'usinage et le montage des pièces fixes et mobiles en diminuant le nombre d'orifices (paliers) de passage de l'arbre — qui doivent être parfaitement alignés ; ceci diminue également les efforts de frottement de l'arbre et des pistons et augmente le rendement.
La structure du dispositif permet en outre de réduire les contraintes mécaniques appliquées à l'arbre , cette structure permet l'utilisation de chambres allongées, en particulier dont le rapport de la longueur au diamètre est supérieur ou égal à 3, plus particulièrement voisin de 5 à 10 ou de 10 à 20 ; cette forme allongée (tubulaire) facilite la réalisation des corps (délimitant les chambres) qui doivent résister a des hautes pressions ; ceci contribue également a l'obtention d'un débit continûment variable ou constant, pour éliminer (et/ou diminuer notablement) des surpressions transitoires (en fin de course) , notamment par un contrôle facilité de la vitesse des pistons — (et par conséquent de l'arbre commun) .
Ces avantages sont augmentés lorsque l'un au moins des deux pistons d'extrémité n'est pas liés rigidement à l'extrémité correspondante de l'arbre coulissant, en particulier lorsque le piston est hé a l'arbre par des moyens de liaison autorisant un déplacement (relatif) du piston par rapport à l'arbre , selon au moins un axe ; en particulier, la liaison peut être constituée par une rotule ou un cardan, autorisant une rotation relative selon au moins un axe transversal (par exemple perpendiculaire a l'axe longitudinal) , par un palier autorisant une translation relative selon l'axe longitudinal, ou bien par une combinaison de ce s moyens de liai son ; dans le cas où le piston n'est pas lié à l'arbre, il pré sente — ainsi que l' arbre - une face de contact (d'appui) sur l'extrémité de l'arbre : pendant le refoulement de l'eau à filtrer sous haute pres sion, l'arbre transmet au piston d'extrémité par cette face l' effort qu'exerce le fluide moteur sur le piston central ; pendant le rempli s sage de la chambre d' extrémité par de s moyens (pompe) de gavage sous une bas se pres sion, le pi ston d'extrémité " suit" l' extrémité d'arbre en re stant à son contact par cette face d'appui, sous l'e ffet- de la pre s sion (faible) que l'eau à filtrer exerce sur sa première face (face avant) ; dans ce cas, des moyens de guidage en couli s sement du piston dans la chambre, sont de préférence intégrés à la périphérie du pi ston d'extrémité .
Conformément à une des caractéristiques de l'invention, le rapport de la section transversale (par ré férence à l'axe longitudinal commun de s chambres et de l'arbre) de ladite première portion de la chambre d'extrémité à la section de ladite deuxième portion de la chambre d'extrémité, e st en proportion (égale) avec le taux de conversion du filtre, qui est généralement de l'ordre de 20 à 75 % ; le diamètre de l'arbre et des chambres de chacune de s pompe s sont choisis afin de respecter cette proportion.
De préférence, les deux chambres d'extrémités sont identiques et symétriques par rapport à la chambre centrale recevant le piston (moteur) mû par le fluide hydraulique ; les conduits de raccordement de la pompe au filtre s ont également sensiblement symétriques. Selon un autre aspect, une installation de filtration d'eau comporte au moins deux pompes telle s que ci-dessus, qui sont raccordées en parallèle en entrée et en sortie, dont le fonctionnement est maintenu déphasé et dont les vites ses sont commandées et/ ou contrôlée s pour as surer un débit (cumulé pour les différentes pompes) de liquide (eau) admis en entrée et de liquide (eau) pres surisé en sortie, qui sont sensiblement constants (de préférence à 1 0 % près , en particulier à au plus 5 % près) .
De préférence l'i nstallation comporte deux pompes identiques , dont les arbre s sont mu s avec une vites s e et un déphasage variables au cours d'un cycle, la différence de phase étant non nulle, ni égale à 1 80° , la somme des valeurs ab solues des \ ites se s de s deux arbres étant sensiblement constante au cours du temps.
Etant donné que les deux chambres de compression d'eau de chaque pompe fonctionnent, par con s truction, en opposition de phase, l'adj onction d'une deuxième pompe en parallèle avec la première et dont le déplacement de l'arbre est par exemple déphasé (avec le déplacement de l'arbre de la première pompe) d'une valeur comprise entre 10 et 1 70 degrés , permet d'éviter un passage à zéro du débit de fluide à filtrer qui interviendrait — en présence d'une seule pompe— lorsque l'arbre (et les trois pistons associés) de la pompe arriverait en fin de course.
Selon une caractéristique de l'invention, on accélère à cet effet un premier des deux arbres lorsque le deuxième arbre s'arrête en fin de course (point mort) ; en outre, la portion de chambre d'extrémité peut être raccordée à une source de fluide sous pression afin de permettre la pressurisation par ce fluide de l'eau aspirée par le piston (et/ ou refoulée par une pompe amont de gavage) dans cette portion de chambre, j usqu'à la pression normale d'alimentation du filtre, afin d'éviter une chute (temporaire) de la pression a l'entrée du filtre, lors de la mise en communication de cette portion de chambre avec l'entrée du filtre , cette pressurisation temporaire es t effectuée lorsque le piston correspondant est en fin de course (point mort) suite au remplis sage de cette portion ; a cet effet, cette portion de chambre peut être momentanément isolée des circuits d'aspiration et de re foulement . Selon un mode préférentiel de réalisation, on utilise en outre l'eau sursalée (concentrât) pour refroidir l'huile hydraulique de propulsion, par passage dans un échangeur thermique.
Selon d'autres caractéristiques préférées de l'invention :
- on choi sit des chambres tubulaire s de pompage d'eau de diamètre situé dans une plage allant de 50 a 1 000 mm, en particulier de 100 a 600 mm : - on maintient la vitesse de pointe des arbres et pistons à une valeur située dans une plage allant 0, 1 mètre par seconde à 10 mètres par seconde, de préférence de 0,25 mètre par seconde à 3 mètres par seconde ;
- on provoque l'arrêt prolongé des arbres et pistons à chaque extrémité des chambres (point mort « haut » et « bas ») , notamment pour réaliser une étape de pressurisation d'eau , pendant une durée dont le rapport à la période du mouvement de l'arbre est situé dans une plage allant de 0,005 à 0,1 , en particulier voisin de 0,01 à 0,05 ;
- on utilise un arbre creux pour réduire l'inertie de l'équipage mobile et les frottements sur les paliers.
Les avantages procurés par l'invention seront mieux compris au travers de la description suivante qui se réfère aux dessins annexés, qui illustrent sans aucun caractère limitatif des modes préférentiels de réalisation de l'invention. Dans les dessins, les éléments identiques ou similaires portent, sauf indication contraire, les mêmes références d'une figure à l'autre.
La figure 1 illustre schématiquement une installation de dessalement d'eau de mer comportant deux pompes identiques; les figures 2 et 3 illustrent la même installation dans deux états différents du cycle de pompage.
La figure 4 est un histogramme de la vitesse de l'arbre de chacune des pompes des figures 1 à 3, qui montre les variations de ces vitesses au cours d'un cycle.
La figure 5 illustre de la même manière qu'aux figures 1 à 3, une installation similaire où des électrovannes deux voies sont utilisées à la place des distributeurs des figures 1 à 3.
La figure 6 illustre schématiquement des moyens de maintien de la pressurisation des chambres d'une pompe.
La figure 7 illustre en vue schématique partielle une variante de réalisation de l'invention dans laquelle l'installation comporte trois pompes disposées en parallèle.
L'installation 1 est destinée à dessaler de l'eau délivrée en entrée 2 par une pompe — dite de gavage — (non représentée) sous une pression de 3 à 4 bars ; a cet effet l'eau salée est pressurisée par chacune des deux pompes identiques 3, 4 à une pression de 70 bars et délivrée par des conduits 5 à l'entrée 6 du filtre 7 à osmose inverse ; l'eau douce obtenue est évacuée en 8 tandis que l'eau sursalée sortant en 9 du filtre 7, sous une pression de 69 bars, est transportée vers les pompes 3, 4 par des conduits 10 ; l'eau sursalée transmet dans la pompe son énergie à l'eau de mer à filtrer et est évacué en 11 sous une pression de 1 bar.
L'appoint d'énergie nécessaire à la pressurisation de l'eau de mer à filtrer jusqu'à 70 bars, est fourni a chaque pompe 3, 4 par une centrale hydraulique 12 qui délivre en sortie 13 un débit d'huile sous une pression et un débit sensiblement constants ; l'huile est acheminée aux pompes par un conduit 14 et revient à la bâche de la centrale par un conduit 15.
Par référence à la figure 1 en particulier, chacune des pompes 3, 4 comporte : - un corps 16 qui délimite trois chambres cylindriques 18a, 18b d'une part, 19a, 19b d'autre part, et 20a, 20b d'une troisième part ; ces trois chambres tubulaires alignées selon l'axe 17 sont séparées par deux cloisons 21, 22 percées d'un orifice équipé d'un palier muni de joints d'étanchéite ; et - un arbre 23 creux s'étendant selon l'axe 17 et portant trois pistons
24, 25, 26 ; l'arbre est monté coulissant en translation (selon les flèches 28) dans les paliers équipant les cloisons 21, 22 ; le milieu de l'arbre 23 est équipé d'un piston moteur 25 qui peut coulisser dans la chambre centrale 19a, 19b sous l'effet de la pression qui est appliquée sur l'une de ses faces par l'huile introduite, selon le sens de déplacement souhaité, dans la portion 19a (ou cavité) ou au contraire dans la portion (ou cavité) 19b, en fonction de la position du distributeur 27 reliant cette chambre aux conduits 14, 15 ; le piston 24 sépare les portions 18a et 18b d'une première chambre d'extrémité tandis que le piston 26 sépare les portions (ou cavités) 20a et 20b de la deuxième chambre d'extrémité ; la configuration géométrique de l'équipage mobile est symétrique par rapport à un plan transversal médian, de même que pour la configuration des chambres du corps 16. Dans l'état représenté figure 1 , le mouvement (selon la flèche 28) du piston 24 de chaque pompe 3 , 4 provoque le refoulement à 70 b ars de l'eau à filtrer présente dans la cavité 1 8a de chaque pompe, dans les conduits 5 , par l'intermédiaire d'un distributeur 29 , 50, j usqu'au filtre 7 ; simultanément, l'eau à filtrer remplit la cavité 20b d'extrémité de chaque pompe, en s' écoulant dans les conduits 30, 31 , 32 ; l'énergie néces saire à la compression de l'eau dans la cavité 1 8a, par la face 24a du piston 24, est fournie pour partie par le concentrât pénétrant dans la cavité 1 8b et délivré par le conduit 1 0 et les di s tributeurs 51 , 52, la pres sion de ce concentrât s'exerçant sur la deuxième face 24b du piston 24, et pour partie par l'effet de pous sée sur le piston 25 par l'huile pénétrant dans la cavité 1 9b en provenance de la centrale 1 2, lequel e ffort est transmis au piston 24 par l'arbre 23
Le contrôle et la command e du module et du sens de la vites se de déplacement des deux arbre s s'e ffectue par la commande de variation de position (et/ ou d'état) des deux distributeurs hydrauliques 27 respectivement as sociée aux deux pompes 3 , 4.
Cette régulation peut être commandée électriquement ou hydrauliquement par des movens usuels non représentés . Dans la position de s distributeurs 27 illustrée figure 1 , l'huile refoulée dans le conduit 14 par la pompe de la centrale 12, e st pour partie transportée dans la cavité 1 9b de la pompe 3 par le conduit 33b , et est pour partie transpor tée dans la cavité 1 9b de la pompe 4 par le conduit 34b ; le débit des deux courants d'huile circulant respectivement dans les deux conduits 33b, 34b, qui sont fonction de la position des distributeurs 27 , sont aj ustés pour provoquer le démarrage de la pompe 3 (a partir de son point mort bas) et pour as surer une vites se de 1 mètre par seconde pour l'arbre de la pompe 4 , comme illustré figures 2 et 4, les distributeurs sont ensuite commandés pour augmenter le débit d'huile dans le conduit 33b et simultanément diminuer le débit d'huile dans le conduit 34b, j usqu'à ce que ces deux débits soient sensiblement équilibrés (identiques) de sorte qu'ils as surent (figure 2) un déplacement des deux arbres 23 selon une vitesse identique de 0,5 mètre par seconde Comme illustré figure 4, la vitesse de l'arbre de chacune des pompe s suit une variation périodique et alternative (de valeur moyenne nulle) , avec des paliers ; la vites se moyenne (en valeur ab solue) de chaque arbre de pompe est de 0,5 mètre par seconde, et la somme des module s des vites se s des deux arbres e st maintenue à une valeur de 1 mètre par seconde, c e qui provoque l'admis sion d'eau de mer et le refoulement d' eau de mer pres surisée, selon un débit constant. Les trois états de fonctionnement illustrés figures 1 à 3, correspondent respectivement aux points des graphe s de la figure 4 d'ab scis se 0,7 seconde (deuxièmes points des graphe s) , 0,8 seconde (troisièmes points des graphes) et 3,5 secondes (sixièmes points des graphes) .
La figure 4 montre qu' un palier d'arrêt à vitesse nulle de 0, 1 se conde de durée e st effectué à chaque point mort (extrémité de course) ; les graphes de s vitesses des deux pompes 3, 4 sont déphasés d'une valeur qui est variable pendant une période autour d'une valeur moyenne de déphasage qui est de l'ordre de 1 ,2 secondes, c'est-à-dire de 54 degrés compte tenu de la valeur (8 secondes environ) de la période du mouvement.
Un échangeur de chaleur repère 80 figure 7 est de préférence raccordé au conduit 35 d'évacuation d'eau sursalée basse pression ainsi qu'à un des conduits 14, 1 5 de transport d'huile pour refroidir l'huile.
Un organe 36 sensible à la proximité du pi ston 24 (tel qu'un capteur électromagnétique) est disposé au voisinage de l'extrémité longitudinale de chaque chambre 1 8a, 20b et est raccordé à une unité de contrôle repère 81 figure 7 pour la commande de s vannes et distributeurs . Durant le palier d'arrêt, après remplissage par de l'eau à filtrer des cavités 1 8a, 20b, un organe de pressurisation est momentanément mis en communication avec la cavité pour faire pas ser la pression de 4 à 70 bars ; ceci peut être réalisé, comme illustré figure 6, en utilisant un vase d'expansion 43 (à membrane 44) connecté à la chambre ainsi qu'à une réserve 40 d'huile sous pres sion par des conduits munis d'un organe 41 , 42 commandé (électrovanne) d'isolement ; un accumulateur 82 est raccordé à la cavité 1 8b de récupération recevant l'eau sursalée, qui permet d'amortir les variations de pre ssion dans cette cavité . L'installation de pompage illustrée figure 7 comporte trois pompe s identiques 3 , 4, 60 qui sont raccordées en parallèle en entrée et en sortie sur le s conduits d' aspiration et de refoulement d'eau (non représentés) de la même manière que décrit précédemment. A la différence des figures 1 , 2, 3 , 5 , le vérin hydraulique 61 associé à chaque pompe pour son entraînement n'est pas disposé en partie centrale de chaque pompe, mai s es t s éparé du corp s délimitant les cavités d'aspiration et de refoulement d'eau à filtrer (1 8a, 20b) et d' eau sursalée (1 8b, 20a) . Chaque vérin 61 comporte ledit piston moteur 25 coulissant dans une chambre 1 9a, 1 9b cylindrique alignée avec les chambre s de la pompe à eau 3, 4, 60 as sociée au vérin, lequel pis ton 25 est lié par une tige 62 à l'arbre coulis sant 23 de la pompe ; la tige (ou arbre secondaire) 62 est montée coulis sante par rapport aux corp s du vérin 61 et de la pompe as sociée, grâce à des paliers étanche s tels que 63 prévus au travers des parois desdits corps ; afin que le rapport des sections transversales des cavités 20a, 20b soit identique à celui des sections transversales des cavités 1 8b, 1 8a, une tige 64 de section identique à celle de la tige 62 e st fixé au piston 26 et est montée coulissante au travers d'un orifice percé dans le corps de pompe, grâce à un palier étanche 65 ; le s tige s 62, 64 sont alignées, de même que l'arbre 23, selon l'axe longitudinal 1 7 commun à la pompe et au vérin, qui est de préférence horizontal, afin que le poids de l'équipage mobile (tiges, pistons et arbres) de chaque pompe ne complique pas le contrôle de son mouvement. La boucle 66 commune aux trois pompes , de production d'huile sous pres sion pour l'entraînement des trois vérins 61 , comporte une pompe 12 refoulant dans un conduit 1 4 équipé d'un débimètre 67 , et un conduit 15 de retour d'huile à une bâche 68 sur lequel est disposé ledit refroidis seur 80.
L'huile pres surisée par la pompe 1 2 est transportée par le conduit 14 à l'entrée d'un distributeur 68 dont la sortie de retour est raccordée au conduit 1 5.
Le distributeur 68 provoque la répartition du débit d'huile refoulé par la pompe 12 vers les vérins 61 pour l'actionnement des pompes 3 , 4, 60 comme décrit précédemment, sous la commande de l'unité de contrôle 81 recevant les signaux des capteurs 36, 67.
A cet effet, chaque vérin 61 à double effet est raccordé au distributeur 68 par deux conduits 69 , 70.

Claims

REVENDICATIONS
1 . Dispositif de pompage d'eau qui comporte deux pompes (3, 4, 60) , chaque pompe comportant deux chambres (1 8a, 1 8b, 20a, 20b) alignées recevant chacune un piston mobile (24, 26) en translation dans la chambre, les deux pistons étant reliés par un arbre (23) coulissant, ledit dispositif comportant en outre un vérin (19a, 19b, 25, 61) hydraulique à double effet pour l'entraînement de chaque pompe, et une boucle (14, 15) de circulation de fluide hydraulique moteur, qui est commune auxdits vérins hydrauliques, le dispositif comportant en outre des moyens (27, 68) de mise en communication sélective de chaque vérin avec ladite boucle qui sont commandés de façon à ce que la somme des débits de fluide hydraulique moteur délivré aux vérins soit sensiblement constante dans le temps.
2. Dispositif de pompage d'eau qui comporte au moins deux pompes (3, 4, 60), chacune des pompes comportant : - au moins deux chambres (1 8a, 1 8b, 20a, 20b) alignées selon un axe longitudinal (17) ,
- au moins deux pistons (24, 26) respectivement montés mobiles en translation alternative dans chacune des deux chambres,
- un arbre (23) de transmission d'efforts entre les deux pistons, qui s'étend en partie dans chacune des chambres et est monté coulissant par rapport à celles-ci selon ledit axe longitudinal, le dispositif de pompage comportant en outre un actionneur (19a, 19b, 25, 61) susceptible d'apporter à l'eau l'énergie nécessaire à sa compression - déduction faite de l'énergie du concentrât récupérée par lesdits pistons - , en provoquant un mouvement alternatif de translation (coulissement) de l'arbre (23) et des pistons de chacune des pompes, et des moyens (27, 68, 81) pour provoquer un arrêt prolongé de l'arbre et des pistons de chaque pompe, à chaque fin de course, ainsi que des moyens (27, 68, 81) pour accélérer une desdites deux pompes pendant qu'une autre desdites deux pompes est en arrêt prolongé de fin de course, afin de maintenir le débit cumulé d'eau refoulée par les pompes à une valeur sensiblement constante.
3. Dispositif de pompage d'eau caractérisé en ce qu'il comporte : - deux pompes (3, 4, 60) disposées en parallèle, chacune des pompes comportant deux pistons (24, 26) montés mobiles en translation dans deux chambres (18a, 1 8b, 20a, 20b) alignées, ainsi qu'un arbre (23) coulissant de transmission d'efforts entre les pistons, dans laquelle une face arrière (24b, 26b) de chacun des deux pistons (24, 26) délimite avec le corps (16) de pompe et avec l'arbre (23) , une cavité (1 8b, 20a) recevant un concentrât sous pression pour contribuer à la pressurisation de l'eau dans une cavité (1 8a, 20b) délimitée par ledit corps et la face avant (24a, 26a) du piston (24, 26) , - un vérin (19a, 1 9b, 25, 61 ) associé à chaque pompe pour son entraînement,
- des moyens (27 , 68 , 81) de commande des vérins permettant d'assurer en permanence un déphasage entre les mouvements des deux pompes, dont la valeur n'est ni nulle ni égale à 1 80°.
4. Dispositif selon l'une quelconque des revendications 1 à 3, qui comporte en outre des moyens (40 à 44, 82) de pressurisation des chambres (1 8a, 18b, 20a, 20b) de pompage d'eau.
5. Dispositif selon l'une quelconque des revendications 1 à 4, qui comporte des moyens (12, 27, 68, 81 ) pour maintenir la somme des valeurs absolues des vitesses des arbres (23) à une valeur sensiblement constante.
6. Dispositif selon l'une quelconque des revendications 1 à 5, qui comporte une centrale hydraulique (12) commune aux pompes (3, 4, 60) .
7. Dispositif selon l'une quelconque des revendications 1 à 6, dans laquelle lesdits pistons (24, 26) sont identiques et sont disposés aux deux extrémités de l'arbre (23) .
8. Dispositif selon l'une quelconque des revendications 1 à 7, dans laquelle un troisième piston (25) est fixé à l'arbre (23) à égale distance des deux pistons (24, 26), lequel troisième piston est coulissant dans une chambre (19a, 1 9b) destinée à recevoir un fluide hydraulique moteur, et dans laquelle l'équipage mobile (23 à 26) et les chambres (18a à 20b) sont symétriques par rapport à un plan transversal médian.
9. Dispositif selon l'une quelconque des revendications 1 à 8, dans laquelle les chambres (1 8a, 18b, 20a, 20b) sont tubulaires et allongées, le rapport de leur longueur à leur diamètre étant supérieur ou égal à 3.
10. Dispositif selon l'une quelconque des revendications 1 à 9, dans laquelle les deux pistons (24, 26) ne sont pas liés rigidement aux extrémités de l'arbre (23) .
1 1. Dispositif selon l'une quelconque des revendications 1 à 10, dans laquelle les deux pistons (24, 26) sont liés aux extrémités de l'arbre
(23) par des moyens comportant une rotule, un cardan ou un palier de coulissement.
12. Procédé de dessalement d'eau de mer par osmose inverse, dans lequel on utilise un dispositif selon l'une quelconque des revendications 1 à 1 1 , et dans lequel on maintient la vitesse de pointe des arbres et pistons à une valeur située dans une plage allant de 0, 1 mètre par seconde à 10 mètres par seconde.
13. Procédé de dessalement d'eau de mer par osmose inverse, dans lequel on utilise un dispositif selon l'une quelconque des revendications 1 à 1 1 , et dans lequel on maintient un déphasage entre deux pompes (3, 4, 60) dont la valeur est située dans une plage allant de 10 à 170 degrés.
14. Procédé de dessalement d'eau de mer par osmose inverse, dans lequel on utilise un dispositif selon l'une quelconque des revendications 1 à 1 1 , et dans lequel on provoque un mouvement périodique de chaque pompe dont la période a une valeur située dans une plage allant de 1 à 100 secondes.
15. Procédé selon la revendication 14 dans lequel on provoque un arrêt prolongé en fin de course desdits pistons (24, 26) pendant une durée dont le rapport à ladite période a une valeur située dans une plage allant de 10-3 à 10-1.
PCT/FR2000/001642 1999-06-15 2000-06-14 Pompe a pistons, procede et installation de filtration d'eau WO2000077397A1 (fr)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU64480/00A AU6448000A (en) 1999-06-15 2000-06-14 Piston pump, method and installation for filtering water
US10/009,017 US6652741B1 (en) 1999-06-15 2000-06-14 Piston pump, method and installation for filtering water
CA002412378A CA2412378A1 (fr) 1999-06-15 2000-06-14 Pompe a pistons, procede et installation de filtration d'eau
DE60012530T DE60012530T2 (de) 1999-06-15 2000-06-14 Kolbenpumpe, verfahren und anlage zum filtrieren von wasser
AT00951586T ATE272173T1 (de) 1999-06-15 2000-06-14 Kolbenpumpe, verfahren und anlage zum filtrieren von wasser
JP2001503428A JP4659310B2 (ja) 1999-06-15 2000-06-14 水を濾過するためのピストンポンプを備えた揚水装置及び同揚水装置を用いて海水を脱塩する方法
EP00951586A EP1194691B1 (fr) 1999-06-15 2000-06-14 Pompe a pistons, procede et installation de filtration d'eau
HK02107202.7A HK1045869B (zh) 1999-06-15 2002-09-30 活塞泵,過濾水的方法及裝置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR99/07795 1999-06-15
FR9907795A FR2795141B1 (fr) 1999-06-15 1999-06-15 Pompe a pistons, procede et installation de filtration d'eau

Publications (1)

Publication Number Publication Date
WO2000077397A1 true WO2000077397A1 (fr) 2000-12-21

Family

ID=9547021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2000/001642 WO2000077397A1 (fr) 1999-06-15 2000-06-14 Pompe a pistons, procede et installation de filtration d'eau

Country Status (14)

Country Link
US (1) US6652741B1 (fr)
EP (1) EP1194691B1 (fr)
JP (1) JP4659310B2 (fr)
AT (1) ATE272173T1 (fr)
AU (1) AU6448000A (fr)
CA (1) CA2412378A1 (fr)
DE (1) DE60012530T2 (fr)
ES (1) ES2223556T3 (fr)
FR (1) FR2795141B1 (fr)
HK (1) HK1045869B (fr)
MA (1) MA25421A1 (fr)
PT (1) PT1194691E (fr)
TN (1) TNSN00132A1 (fr)
WO (1) WO2000077397A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1358407A2 (fr) * 2001-01-19 2003-11-05 Munters Corporation Pompe a eau haute pression
CN102937074A (zh) * 2012-11-12 2013-02-20 三一重工股份有限公司 连续供料***及其控制方法、登高平台消防车
US20150298062A1 (en) * 2012-07-31 2015-10-22 Ronghui Zhu Membrane seawater desalination pressurization and energy recovery integrated method and device
US9233340B1 (en) * 2015-01-13 2016-01-12 Renergy Technologies Ltd. Cylinder arrangement and method of use for energy recovery with seawater desalination
US9371922B2 (en) 2009-11-16 2016-06-21 Arkling Limited Valve having a rotatable stopper, and water treatment plant comprising such a valve

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2357320B (en) * 1999-12-15 2004-03-24 Calder Ltd Energy recovery device
FR2841611B1 (fr) * 2002-06-27 2006-02-17 Michel Magnoler Dispositif d'amplification hydraulique pour un systeme de pompage a haute pression
FR2850038B1 (fr) * 2003-01-20 2005-03-18 Sebastien Racagel Dispositif de purification de liquide a osmose inversee
AU2005252262B2 (en) * 2004-06-07 2011-07-28 Hitech Hippo Australia Ltd A pump assembly
WO2005121555A1 (fr) * 2004-06-07 2005-12-22 Hunter Hitech Pty Ltd Ensemble pompe
US7140429B2 (en) * 2004-10-04 2006-11-28 Nord Service Inc. Device for cutting of slot-like key seats in wells by a hydroabrasive method
US8727740B2 (en) * 2007-01-05 2014-05-20 Schlumberger Technology Corporation Cylinder assembly for providing uniform flow output
US20080185045A1 (en) * 2007-02-05 2008-08-07 General Electric Company Energy recovery apparatus and method
AT506086B1 (de) * 2008-03-11 2009-06-15 Bhdt Gmbh Kühleinrichtung für ein arbeitsfluid
WO2010044147A1 (fr) * 2008-10-15 2010-04-22 Ikuta Kazumasa Dispositif d’alimentation en pression d’un fluide
JP5026463B2 (ja) * 2009-04-22 2012-09-12 株式会社荏原製作所 容積形エネルギー回収装置
FR2953566B1 (fr) * 2009-12-08 2012-03-09 Laurence Technologies Sa Pompe a piston et installation de traitement d'eau equipee d'une telle pompe
US9644761B2 (en) 2011-09-30 2017-05-09 General Electric Company Desalination system with energy recovery and related pumps, valves and controller
US9387440B2 (en) 2011-09-30 2016-07-12 General Electric Company Desalination system with energy recovery and related pumps, valves and controller
FR2981704B1 (fr) 2011-10-25 2013-12-20 Arkling Ltd Echangeur de pression volumetrique pour une installation de dessalement d'eau de mer et installation de dessalement
CN102536725B (zh) * 2011-11-07 2014-05-21 北京市三一重机有限公司 泵送***及其控制方法、消防设备
JP5985222B2 (ja) * 2012-03-23 2016-09-06 住友重機械工業株式会社 作業機械
KR101686595B1 (ko) * 2012-03-23 2016-12-14 스미도모쥬기가이고교 가부시키가이샤 유체압 증감압기 및 작업기계
JP5972625B2 (ja) * 2012-03-23 2016-08-17 住友重機械工業株式会社 流体圧増減圧機
CN102600724B (zh) * 2012-03-30 2014-07-16 苏州市思玛特电力科技有限公司 一种恒冷/热源的压力回收溶液再生方法及装置
US9897080B2 (en) 2012-12-04 2018-02-20 General Electric Company Rotary control valve for reverse osmosis feed water pump with energy recovery
US9638179B2 (en) 2012-12-04 2017-05-02 General Electric Company Hydraulic control system for a reverse osmosis hydraulic pump
US9476415B2 (en) * 2012-12-04 2016-10-25 General Electric Company System and method for controlling motion profile of pistons
JP5985555B2 (ja) * 2014-08-20 2016-09-06 麻生フオームクリート株式会社 圧送ポンプ
JP6843063B2 (ja) * 2015-03-28 2021-03-17 プレッシャー バイオサイエンシズ インコーポレイテッドPressure Biosciences,Inc. 流体の高圧高剪断処理を行う装置
CN105619524A (zh) * 2016-03-17 2016-06-01 李春潜 水刀双增压高压同步发生器
CN107842480A (zh) * 2017-12-12 2018-03-27 浙江通森环保设备科技有限公司 一种污水泵
IT201800005264A1 (it) * 2018-05-11 2019-11-11 Apparato per il filtraggio di un fluido comprendente uno scambiatore di pressione a valvola rotante
FR3091316B1 (fr) * 2018-10-03 2020-12-04 Giraud Yves Echangeur de pression volumetrique a effet booster et mesure de debit integree, pour une installation de dessalement d'eau de mer
DE102019208707A1 (de) * 2019-06-14 2020-12-17 Thyssenkrupp Ag Vorrichtung und Verfahren zum Bereitstellen von druckbeaufschlagtem Medium zur Injektion in einen Hochdruck-Prozess
US11839854B2 (en) * 2020-07-15 2023-12-12 Parker-Hannifin Corporation Reverse osmosis unit
US11933260B2 (en) 2021-10-04 2024-03-19 Christopher Lory Whetzel Assembly and methods for pumping water to shore
CN114504869B (zh) * 2022-01-27 2023-05-23 浙江工业大学 一种便携手摇式海水淡化器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1396282A (fr) * 1964-05-27 1965-04-16 Worthington Corp Pompe à déplacement positif et à capacité variable
US3707881A (en) * 1970-03-12 1973-01-02 Uhde Gmbh Friedrich Control system for hydraulic fluid-feed mechanism
DE2249683A1 (de) * 1972-10-11 1974-04-25 Walter Gmbh Hellmuth Hydraulisch angetriebene kolbenpumpe, insbesondere dosierpumpe
US4913809A (en) * 1988-06-29 1990-04-03 Sasakura Engineering Co., Ltd. Concentrating apparatus with reverse osmosis membrane
US4929347A (en) * 1988-07-11 1990-05-29 Sasakura Engineering Co., Ltd. Concentrating apparatus with reverse osmosis membrane
FR2689421A1 (fr) * 1992-04-01 1993-10-08 Lebruno Roland Pompe haute pression pour pulvérisation de peinture destinée aux machines de marquage routier.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3825122A (en) * 1973-06-11 1974-07-23 J Taylor Reverse-osmosis pump
US4432876A (en) 1980-07-30 1984-02-21 Seagold Industries Corporation Reverse osmosis apparatus and method incorporating external fluid exchange
FR2595121B1 (fr) * 1986-03-03 1988-07-01 Beraud Jean Louis Pompe doseuse destinee a debiter deux composants en proportion determinee
IT240896Y1 (it) * 1996-09-19 2001-04-11 Telme S R L Dispositivo motorizzato di pompaggio per osmosi inversa
US6017200A (en) * 1997-08-12 2000-01-25 Science Applications International Corporation Integrated pumping and/or energy recovery system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1396282A (fr) * 1964-05-27 1965-04-16 Worthington Corp Pompe à déplacement positif et à capacité variable
US3707881A (en) * 1970-03-12 1973-01-02 Uhde Gmbh Friedrich Control system for hydraulic fluid-feed mechanism
DE2249683A1 (de) * 1972-10-11 1974-04-25 Walter Gmbh Hellmuth Hydraulisch angetriebene kolbenpumpe, insbesondere dosierpumpe
US4913809A (en) * 1988-06-29 1990-04-03 Sasakura Engineering Co., Ltd. Concentrating apparatus with reverse osmosis membrane
US4929347A (en) * 1988-07-11 1990-05-29 Sasakura Engineering Co., Ltd. Concentrating apparatus with reverse osmosis membrane
FR2689421A1 (fr) * 1992-04-01 1993-10-08 Lebruno Roland Pompe haute pression pour pulvérisation de peinture destinée aux machines de marquage routier.

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1358407A2 (fr) * 2001-01-19 2003-11-05 Munters Corporation Pompe a eau haute pression
EP1358407A4 (fr) * 2001-01-19 2004-08-11 Munters Corp Pompe a eau haute pression
US9371922B2 (en) 2009-11-16 2016-06-21 Arkling Limited Valve having a rotatable stopper, and water treatment plant comprising such a valve
US20150298062A1 (en) * 2012-07-31 2015-10-22 Ronghui Zhu Membrane seawater desalination pressurization and energy recovery integrated method and device
US9597638B2 (en) * 2012-07-31 2017-03-21 Ronghui Zhu Membrane seawater desalination pressurization and energy recovery integrated method and device
CN102937074A (zh) * 2012-11-12 2013-02-20 三一重工股份有限公司 连续供料***及其控制方法、登高平台消防车
CN102937074B (zh) * 2012-11-12 2015-06-10 三一汽车制造有限公司 连续供料***及其控制方法、登高平台消防车
US9233340B1 (en) * 2015-01-13 2016-01-12 Renergy Technologies Ltd. Cylinder arrangement and method of use for energy recovery with seawater desalination

Also Published As

Publication number Publication date
FR2795141B1 (fr) 2001-09-07
TNSN00132A1 (fr) 2002-05-30
EP1194691A1 (fr) 2002-04-10
HK1045869B (zh) 2004-12-31
ATE272173T1 (de) 2004-08-15
DE60012530D1 (de) 2004-09-02
JP2003502544A (ja) 2003-01-21
FR2795141A1 (fr) 2000-12-22
MA25421A1 (fr) 2002-04-01
DE60012530T2 (de) 2005-09-15
AU6448000A (en) 2001-01-02
US6652741B1 (en) 2003-11-25
CA2412378A1 (fr) 2000-12-21
HK1045869A1 (en) 2002-12-13
JP4659310B2 (ja) 2011-03-30
PT1194691E (pt) 2004-11-30
EP1194691B1 (fr) 2004-07-28
ES2223556T3 (es) 2005-03-01

Similar Documents

Publication Publication Date Title
EP1194691B1 (fr) Pompe a pistons, procede et installation de filtration d'eau
EP3189998B1 (fr) Dispositif hydraulique comprenant un sélecteur basse pression et véhicule incorporant un tel dispositif
CH702355A2 (fr) Pompe à piston et installation de traitement d'eau équipée d'une telle pompe.
FR2492470A1 (fr) Dispositif de recuperation d'energie, appareil de pompage de fluide a moto-pompes et procede de recuperation de l'energie du type utilisant ce dispositif et cet appareil
FR2981704A1 (fr) Echangeur de pression volumetrique pour une installation de dessalement d'eau de mer et installation de dessalement
FR2952691A1 (fr) Vanne a obturateur rotatif et installation de traitement d'eau comportant une telle vanne
EP3914828B1 (fr) Système de pompage et installation de refoulement de fluide
FR2651540A1 (fr) Appareil de reception et de vidange de fluide d'un circuit hydraulique.
EP0042774B1 (fr) Dispositif pour produire successivement des débits de fluide hydraulique de valeurs échelonnées
EP3677775B1 (fr) Microcentrale hydraulique
FR2817003A1 (fr) Systeme d'embrayage pour ligne de transmission de vehicule automobile
EP3861215B1 (fr) Échangeur de pression volumétrique à effet booster et mesure de débit integrée, pour une installation de dessalement d'eau de mer
KR101085526B1 (ko) 기어형 회전밸브로 구동되는 압력에너지 회수장치
FR2549904A1 (fr) Pompe a haute pression pour liquide
OA20354A (fr) Système de pompage et installation de refoulement de fluide
FR3039596A1 (fr) Pompe et dispositifs et installations comprenant une telle pompe
WO2004097222A1 (fr) Pompe a vis reversible
FR3129137A1 (fr) Pompe hydraulique réversible pour le calage de pas d’hélice, système hydraulique, turbopropulseur et aéronef associés
FR2975625A1 (fr) Dispositif d'ecorcage de troncs d'arbre
FR2836703A1 (fr) Convert-+ convertisseur air-huile multi-etages double effets
OA18103A (fr) Dispositif autonome d'énergies renouvelables par un procédé de transformations cycliques d'énergie potentielle de pesanteur et d'énergie cinétique de rotation.
WO2004003383A1 (fr) Dispositif d'amplification hydraulique pour un systeme de pompage a haute pression
CH702249A1 (fr) Vanne à obturateur rotatif et installation de traitement d'eau comportant une telle vanne.
FR2614655A1 (fr) Dispositif de commande pour actionner un verin hydraulique a double effet
CA2903129A1 (fr) Piston pompe-moteur

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY CA CH CN CR CU CZ DE DK DM DZ EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ PL PT RO RU SD SE SG SI SK SL TJ TM TR TT TZ UA UG US UZ VN YU ZA ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH GM KE LS MW MZ SD SL SZ TZ UG ZW AM AZ BY KG KZ MD RU TJ TM AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
WWE Wipo information: entry into national phase

Ref document number: 10009017

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2000951586

Country of ref document: EP

ENP Entry into the national phase

Ref country code: JP

Ref document number: 2001 503428

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 2000951586

Country of ref document: EP

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

WWE Wipo information: entry into national phase

Ref document number: 2412378

Country of ref document: CA

WWG Wipo information: grant in national office

Ref document number: 2000951586

Country of ref document: EP