WO2000050775A1 - Control valve for variable displacement compressor - Google Patents

Control valve for variable displacement compressor Download PDF

Info

Publication number
WO2000050775A1
WO2000050775A1 PCT/JP1999/000786 JP9900786W WO0050775A1 WO 2000050775 A1 WO2000050775 A1 WO 2000050775A1 JP 9900786 W JP9900786 W JP 9900786W WO 0050775 A1 WO0050775 A1 WO 0050775A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
valve
chamber
peripheral surface
rod
Prior art date
Application number
PCT/JP1999/000786
Other languages
French (fr)
Japanese (ja)
Inventor
Kazuya Kimura
Hiroaki Kayukawa
Original Assignee
Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP23101097A priority Critical patent/JP3591234B2/en
Priority claimed from JP23101097A external-priority patent/JP3591234B2/en
Application filed by Kabushiki Kaisha Toyoda Jidoshokki Seisakusho filed Critical Kabushiki Kaisha Toyoda Jidoshokki Seisakusho
Priority to US09/600,504 priority patent/US6443707B1/en
Priority to PCT/JP1999/000786 priority patent/WO2000050775A1/en
Priority to EP99905271A priority patent/EP1081379A4/en
Publication of WO2000050775A1 publication Critical patent/WO2000050775A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1854External parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B27/00Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders
    • F04B27/08Multi-cylinder pumps specially adapted for elastic fluids and characterised by number or arrangement of cylinders having cylinders coaxial with, or parallel or inclined to, main shaft axis
    • F04B27/14Control
    • F04B27/16Control of pumps with stationary cylinders
    • F04B27/18Control of pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B27/1804Controlled by crankcase pressure
    • F04B2027/184Valve controlling parameter
    • F04B2027/1859Suction pressure

Definitions

  • the present invention relates to, for example, a control valve of a variable displacement compressor used in a vehicle air conditioning system.
  • variable displacement compressor has a control passage that connects the discharge pressure area and the crankcase, and controls the discharge capacity by adjusting the pressure in the crankcase to change the inclination of the cam plate. What is known is.
  • a control valve of this type for a conventional variable displacement compressor is disclosed, for example, in Japanese Patent Application Laid-Open No. HEI 4-119271.
  • a valve chamber 101 is defined at a distal end portion of a valve housing 102.
  • the valve chamber 101 is connected to the discharge pressure region via a control passage 103 on the upstream side, and has a valve hole 104 and a valve hole 10 formed in the axial direction of the valve housing 102. It is connected to the crank chamber via a port 105 orthogonal to 4 and a downstream control passage 103.
  • a valve body 106 for opening and closing the valve hole 104 is housed in the valve chamber 101.
  • the pressure sensing chamber 107 is formed adjacent to the valve chamber 101 and is connected to the suction pressure area.
  • a bellows 108 for sensing the pressure in the suction pressure region is housed in a pressure-sensitive chamber 107.
  • the guide hole 109 extends continuously from the valve hole 104 to the partition wall 102a of the valve housing 102 that separates the valve chamber 101 from the pressure-sensitive chamber 1 ⁇ 7. The two rooms are connected by 101 and 107.
  • the rod 110 is slidably passed through the guide hole 109 to operatively connect the bellows 108 and the valve body 106. Accordingly, the displacement of the bellows 108 responsive to the pressure of the sucked refrigerant gas is transmitted to the valve body 106 via the rod 110.
  • the solenoid part 111 is joined to the base end side of the valve housing 102, and is operatively connected to the valve body 106 via a bellows 108.
  • Solenoid part 1 1 1 1 Excitation and demagnetization change the attraction force between the fixed iron core 112 and the movable iron core 113, and change the load applied to the valve element 106. Therefore, the opening degree of the control passage 103 is determined by the balance between the biasing force from the solenoid node 111, the biasing force from the bellows 108, and the like.
  • the rod 110 and the guide hole 109 are connected between the high-pressure side port 105 side and the low-pressure side pressure-sensitive chamber 107 side while ensuring slidability. It is processed with great care to reduce gas leakage. However, a slight machining error is inevitable, and the gap between the outer peripheral surface of the rod 110 and the inner peripheral surface of the guide hole 109 is between the port 105 side and the pressure-sensitive chamber 107. Different on the side.
  • the pressure difference between the port 105 and the pressure sensing chamber 107 causes the outer peripheral surface of the port 110 to Lateral force may be generated in the direction in which the rod 110 is pressed against the inner peripheral surface of the guide hole 109, and the resistance of the rod 110 to slide in the guide hole 109 is increased (fluid sticking phenomenon). ).
  • control valves have tended to reduce the size of the solenoid section 111 in order to achieve downsizing of the compressor.
  • the bellows 108 have been downsized accordingly, and the solenoid section 111 and the bellows have been reduced.
  • the valve body 106 is operated with a balance of a small force between the valve body 106 and the valve body 106. Therefore, the control valve is susceptible to an increase in sliding resistance between the rod 110 and the guide hole 109 due to the fluid sticking phenomenon described above.
  • the sliding resistance which can be almost neglected, causes hysteresis, causing a problem that capacity controllability is greatly reduced. Disclosure of the invention
  • the present invention has been made in view of the problems existing in the prior art described above, and its object is to prevent an increase in sliding resistance between a rod and a guide hole.
  • An object of the present invention is to provide a control valve for a variable displacement compressor.
  • a control passage connecting a suction pressure area or a discharge pressure area to a control pressure chamber so as to change a discharge capacity of a variable displacement compressor is provided.
  • a valve body is provided so as to open and close the control passage.
  • the valve body side and the drive unit side are connected by the provided guide hole, and a variable capacity in which a port for operatively connecting the valve body and the drive unit is slidably inserted into the guide hole.
  • a control valve for the compressor wherein at least one of an outer peripheral surface of the rod and an inner peripheral surface of the guide hole is provided with means for preventing occurrence of a fluid sticking phenomenon.
  • a control valve for a compressor is provided.
  • the means for preventing the occurrence of the fluid sticking phenomenon between the rod and the guide hole is provided, so that the hysteresis of the control valve can be reduced and the capacity controllability is reduced. Can be prevented.
  • the means may be configured such that a gap between an outer peripheral surface of the rod and an inner peripheral surface of the guide hole is widened toward a higher pressure side of the valve body or the drive unit.
  • the outer peripheral surface of the head or the inner peripheral surface of the guide hole may include at least one tapered surface.
  • a plurality of the tapered surfaces may be formed in an axial direction of the rod.
  • the guide hole penetrates the partition wall. It is not troublesome to insert a tool into a narrow guide hole and correct the inner peripheral surface to a tapered surface.
  • at least one of the outer peripheral surface of the rod and the inner peripheral surface of the guide hole may include an annular groove formed in a circumferential direction thereof.
  • the pressure-sensitive member is displaced by the pressure in the suction pressure area or the control pressure chamber introduced into the pressure-sensitive chamber, and this displacement is transmitted to the valve via the rod.
  • the drive unit includes a solenoid unit, the solenoid unit operates a plunger housed in a plunger chamber by excitation and demagnetization, and the opening operates the plunger and the valve body. They may be connected.
  • the plunger is displaced by excitation and demagnetization of the solenoid, and the displacement is transmitted to the valve via the rod.
  • the driving unit includes a pressure-sensitive mechanism and a solenoid unit, and the pressure-sensitive mechanism is connected to the suction pressure area or the control pressure chamber via a pressure detection passage;
  • a pressure-sensitive member disposed in the pressure-sensitive chamber, wherein the solenoid operates a plunger housed in the plunger chamber by excitation and demagnetization, and the rod connects the pressure-sensitive member and the valve body. It may include a first rod portion that is operatively connected, and a second mouth portion that is operatively connected between the plunger and the valve body.
  • the degree of opening of the control passage by the valve body is determined by the balance between the urging force from the pressure-sensitive mechanism and the urging force from the solenoid.
  • the control passage may connect a discharge pressure region and a control pressure chamber.
  • the discharge capacity is controlled by adjusting the amount of the discharged refrigerant gas introduced into the control pressure chamber, and a high-pressure discharged refrigerant gas is circulated inside the control valve. Therefore, the fluid sticking phenomenon that occurs between the rod and the guide hole is more likely to occur in the rod than in the control valve that controls the discharge capacity of the compressor by adjusting the amount of refrigerant gas discharged from the control pressure chamber. Since the degree of pressing against the guide hole is increased, the effect when the present invention is applied is large.
  • FIG. 1A is a longitudinal sectional view showing a capacity control valve according to a first embodiment of the present invention, in which an outer peripheral surface of a rod is a tapered surface.
  • FIG. 1B is a longitudinal sectional view showing the capacity control valve in which the inner peripheral surface of the guide hole is a tapered surface in the first embodiment.
  • FIGS. 1C and 1D are enlarged cross-sectional views of main parts of the capacity control valve in which the outer peripheral surface of the mouth and the inner peripheral surface of the guide hole are both tapered in the first embodiment.
  • FIG. 2 is a longitudinal sectional view showing a clutchless variable displacement compressor.
  • FIG. 3 is an enlarged sectional view of a main part showing a minimum discharge capacity state of the compressor.
  • FIG. 4 is a schematic diagram illustrating the operation.
  • FIG. 5A is an enlarged sectional view of a main part of a capacity control valve having a plurality of taper surfaces on an outer peripheral surface of a rod according to a second embodiment.
  • FIG. 5B is an enlarged cross-sectional view of a main part of the capacity control valve having a plurality of tapered surfaces on the inner peripheral surface of the guide hole in the second embodiment.
  • FIG. 5C is an enlarged sectional view of a main part of the capacity control valve having a plurality of tapered surfaces on both the outer peripheral surface of the rod and the inner peripheral surface of the guide hole in the second embodiment.
  • FIG. 6A is a longitudinal sectional view showing a capacity control valve having a plurality of annular grooves on an outer peripheral surface of a rod according to a third embodiment.
  • FIG. 6B is a longitudinal sectional view showing the capacity control valve having a plurality of annular grooves on the inner peripheral surface of the guide hole in the third embodiment.
  • FIG. 6C is an enlarged sectional view of a main part of the capacity control valve having a plurality of annular grooves on both the outer peripheral surface of the rod and the inner peripheral surface of the guide hole in the third embodiment.
  • FIG. 7 is a longitudinal sectional view showing a conventional capacity control valve. BEST MODE FOR CARRYING OUT THE INVENTION
  • the front housing 11 is fixed to the front end of the cylinder block 12.
  • the rear housing 13 is fixed to the rear end of the cylinder block 12 via a valve forming body 14.
  • a crankcase 15 as a control pressure chamber is partitioned by a front housing 11 and a cylinder block 12.
  • the drive shaft 16 is rotatably supported between the front housing 11 and the cylinder block 12 so as to pass through the crank chamber 15.
  • the pulley 17 is rotatably supported by the front housing 11.
  • the pulley 17 is connected to a drive shaft 16, and is directly connected to a vehicle engine 20 via a belt 19 wound around the outer periphery thereof without an electromagnetic clutch or the like.
  • the drive shaft 16 is inserted into the inside of the blocking body 28 with its rear end.
  • the radial bearing 30 is interposed between the rear end of the drive shaft 16 and the inner peripheral surface of the breaker 28, and can slide along the breaker 28 along the axis L with respect to the drive shaft 16. It is.
  • the suction passage 32 constituting the suction pressure region is formed at the center of the rear housing 13 and the valve forming body 14.
  • the suction passage 32 communicates with the accommodation hole 27, and a positioning surface 33 is formed around the opening that appears on the front surface of the valve forming body 14.
  • the blocking surface 34 is formed on the distal end surface of the blocking member 28, and is moved toward and away from the positioning surface 33 by the movement of the blocking member 28. Since the blocking surface 34 is in contact with the positioning surface 33, the communication between the suction passage 32 and the inner space of the housing hole 27 is blocked by the sealing action between the two surfaces 33, 34.
  • the thrust bearing 35 is interposed between the swash plate 23 and the interrupter 28 and is supported on the drive shaft 16 so as to be slidable.
  • the thrust bearing 35 is urged by a spring 29 and is usually held between the swash plate 23 and the blocking body 28. Then, as the swash plate 23 tilts toward the interrupter 28, the tilt of the swash plate 23 is transmitted to the interrupter 28 via the thrust bearing 35. Therefore, the blocking body 28 is moved toward the positioning surface 33 against the urging force of the panel 29, and the blocking body 28 is moved to the blocking surface 34. Is brought into contact with the positioning surface 3.
  • the blocking surface 34 is brought into contact with the positioning surface 33, further tilting of the swash plate 23 is restricted, and in this restricted state, the swash plate 23 becomes a minimum slightly larger than 0 °. It becomes a tilt angle.
  • the cylinder bore 12a is formed through the cylinder block 12 and the single-headed screw 36 is housed in the cylinder bore 12a.
  • the piston 36 is moored to the outer periphery of the swash plate 23 via the shoe 37, and is reciprocated back and forth within the cylinder bore 12a by rotation of the swash plate 23.
  • the suction chamber 38 that forms the suction pressure region and the discharge chamber 39 that forms the discharge pressure region are formed separately in the rear housing 13.
  • the suction port 40, the suction valve 41 for opening and closing the suction port 40, the discharge port 42, and the discharge valve 43 for opening and closing the discharge port 42 are formed in the valve forming body 14, respectively.
  • the refrigerant gas in the suction chamber 38 is sucked into the cylinder bore 12a via the suction port 40 and the suction valve 41 by the reciprocating operation of the piston 36.
  • the refrigerant gas drawn into the cylinder bore 12a is compressed to a predetermined pressure by the forward movement of the piston 36, and is discharged to the discharge chamber 39 via the discharge port 42 and the discharge valve 43.
  • the suction chamber 38 communicates with the accommodation hole 27 via a communication port 45 formed through the valve forming body 14. Then, when the blocking body 28 is brought into contact with the positioning surface 33 with its blocking surface 34, the opening 45 is blocked from the suction passage 32.
  • the passage 46 is formed in the axis of the drive shaft 16, and the crank chamber 25 and the inner space of the shutoff 28 communicate with each other through the passage 46.
  • the pressure release port 47 extends through the peripheral surface of the blocking body 28, and the internal space of the blocker 28 and the internal space of the housing hole 27 are communicated through the pressure releasing port 47.
  • the control passage 48 communicates the discharge chamber 39 with the crank chamber 15.
  • the capacity control valve 49 is provided in the middle of the control passage 48.
  • the pressure detection passage 50 is formed between the suction passage 32 and the displacement control valve 49.
  • An external refrigerant circuit 52 connects the suction passage 32 for introducing the refrigerant gas into the suction chamber 38 and the discharge flange 51 for discharging the refrigerant gas from the discharge chamber 39.
  • the condenser 53, the expansion valve 54, and the evaporator 55 are interposed on the external refrigerant circuit 52.
  • the sensor 56 is installed near the evaporator 55. The sensor 56 detects the temperature in the evaporator 55, and the detected temperature information is sent to the computer 57.
  • a temperature setting device 58 for setting the temperature in the cabin of the vehicle, a sensor 59 for detecting the temperature in the cabin, and an air conditioner switch 60 are connected to a computer 57.
  • the computer 57 includes, for example, a room temperature specified in advance by a setting device 58, a detected temperature obtained from the sensor 56, a detected temperature obtained from the sensor 59, and an external signal such as an ON or OFF signal from the air switch 60.
  • the current value is commanded to the drive circuit 61 based on the signal.
  • the drive circuit 61 outputs the commanded current value to the capacity control valve 49.
  • Other external signals include signals from a sensor (not shown) for detecting the outside air temperature and a sensor for detecting the rotational speed of the engine, and the current value is determined according to the environment of the vehicle.
  • the displacement control valve 49 is configured by joining a valve housing 71 and a solenoid 72 near the center.
  • the valve chamber 73 is formed between the valve housing 71 and the solenoid 72.
  • the valve chamber 73 is connected to the discharge chamber 39 via a port 77 and a control passage 48 on the upstream side.
  • the valve element 74 is housed in the valve chamber 73.
  • the valve hole 75 is opened in the valve chamber 73 so as to face the valve element 74.
  • the valve hole 75 is formed so as to extend in the axial direction of the valve housing 71.
  • the spring 76 is interposed between the valve element 74 and the inner wall surface of the valve chamber 73, and biases the valve element 74 in a direction to open the valve hole 75.
  • the guide hole 8 8 is provided through the partition wall 7 1 a of the valve housing 71 that separates the pressure sensing chamber 84 and the valve chamber 73, and connects the pressure sensing chamber 84 and the valve chamber 73. .
  • the guide hole 88 is formed continuously with the valve hole 75.
  • Rod 89 can slide in guide hole 88 It is inserted and its tip is fitted to bellows 87.
  • the rod 89 is integrally formed with the valve element 74 and operatively connects the bellows 87 and the valve element 74.
  • the portion of 89 that is continuous with the valve element 74 has a small diameter in order to secure the passage of the refrigerant gas in the valve hole 75.
  • the port 90 is formed between the valve chamber 73 and the pressure-sensitive chamber 84 on the partition wall 71 a of the valve housing 71. Port 90 is orthogonal to valve hole 75.
  • the port 90 communicates with the crank chamber 15 via a control passage 48 on the downstream side. That is, the port 77, the valve chamber 73, the valve hole 75 and the port 90 constitute a part of the control passage 48.
  • the plunger chamber 91 is formed in a solenoid part 72, and a fixed iron core 92 is fitted into an upper opening of the plunger chamber 91 so as to be separated from the valve chamber 73.
  • the movable iron core 93 as a plunger has a substantially closed cylindrical shape, and is accommodated in the plunger chamber 91 so as to be able to reciprocate in the axial direction of the valve housing 71.
  • the follower spring 94 is interposed between the movable iron core 93 and the bottom of the plunger chamber 91.
  • a guide hole 95 is formed in a fixed iron core 92 as a partition wall, and connects the plunger chamber 91 and the valve chamber 73.
  • the rod 96 is formed integrally with the valve body 74 and has a guide hole.
  • the plunger chamber 91 has a communication groove 81 formed in the side surface of the fixed iron core 92, a communication hole 82 formed in the non-return housing 71, and a capacity control valve 49 when the rear housing 1 is mounted. It communicates with the port 90 through a small chamber 83 formed between the inner wall of the third and the inner wall of the third. That is, the plunger chamber 91 has the same crank chamber pressure as the port 90.
  • the cylindrical coil 97 is disposed outside the fixed iron core 92 and the movable iron core 93 so as to straddle both the iron cores 92 and 93.
  • a predetermined current is supplied to the coil 97 from the drive circuit 61 based on a command from the computer 57.
  • the portion of the outer peripheral surface of the rod 89 facing the inner peripheral surface 88 a of the guide hole 88 has a cylindrical sealing surface 89. a and a tapered surface 89 b continuous with the sealing surface 89 a on the port 90 side (valve body side) and having a smaller diameter toward the port 90 side. Therefore, the gap between the taper surface 89b of the rod 89 and the inner peripheral surface 88a of the guide hole 88 is such that the port 90 side is larger than the pressure sensing chamber 84 side (drive unit side). I have.
  • the portion of the outer peripheral surface of the rod 96 facing the inner peripheral surface 95a of the guide hole 95 has a cylindrical sealing surface 96a and a sealing surface 96a.
  • a tapered surface 96b which is continuous on the valve chamber 73 side (valve body side) and has a smaller diameter toward the valve chamber 73 side. Therefore, the gap between the tapered surface 96 b of the rod 96 and the inner peripheral surface 95 a of the guide hole 95 is such that the valve chamber 73 side is larger than the plunger chamber 91 side (drive section side). I have.
  • the tapered surfaces 89b and 96b of the rod 89 and the mouth 96 are machined so that the port 90 side and the valve chamber 73 side have small diameters including machining errors.
  • the outer surfaces of the rods 89, 96 were machined so that the gaps between the inner surfaces 88a, 95a of the guide holes 88, 95 became larger on the high pressure side.
  • the slopes of the tapered surfaces 89 b and 96 b are exaggerated for easy understanding.
  • the diameter difference between the large diameter side and the small diameter side is actually larger. Is about several m to several tens of m.
  • the computer 57 is connected to the solenoid. Command the excitation of the oscillating section 72. Then, a predetermined current is supplied to the coil 97 via the drive circuit 61, and an attractive force corresponding to the current value is generated between the two cores 92, 93. This suction force is transmitted to the valve element 74 against the urging force of the spring 76, and acts on the valve element 74 in a direction in which the opening of the valve hole 75 decreases.
  • the solenoid 72 when the solenoid 72 is energized, the bellows 87 It is displaced from 32 according to the fluctuation of the suction pressure introduced into the pressure sensing chamber 84 via the pressure detection passage 50. Then, the displacement of the bellows 87 is transmitted to the valve element 74 via the rod 89. Therefore, in the capacity control valve 49, the opening of the valve hole 75 is determined by the balance between the urging force from the solenoid 72, the urging force from the bellows 87, and the urging force of the spring 76. .
  • the opening degree of the valve hole 75 becomes smaller, the amount of refrigerant gas flowing from the discharge chamber 39 through the control passage 48 into the crank chamber 15 becomes smaller.
  • the refrigerant gas in the crank chamber 15 flows out to the suction chamber 38 via the passage 46, the pressure release port 47, the accommodation hole 27 and the port 45. For this reason, the pressure in the crank chamber 15 decreases.
  • the pressure in the suction chamber 38 is also high, and the difference between the pressure in the crank chamber 15 and the pressure in the cylinder bore 12a becomes small. For this reason, the inclination angle of the swash plate 23 becomes large.
  • the cooling load is small.
  • the computer 57 instructs the drive circuit 61 to decrease the current value as the detected temperature is lower. For this reason, the suction force between the fixed iron core 92 and the movable iron core 93 is weakened, and the urging force on the valve element 74 in the direction of decreasing the opening of the valve hole 7 & is reduced. Then, the valve hole 75 is opened and closed with a higher suction pressure. Therefore, the capacity control valve 49 operates so as to maintain a higher suction pressure by reducing the current value.
  • the degree of opening of the valve hole 75 increases, the amount of coolant gas flowing into the crank chamber 15 from the discharge chamber 39 increases, and the pressure in the crank chamber 15 increases.
  • the cooling load is small, the pressure in the suction chamber 38 is low, and the difference between the pressure in the crank chamber 15 and the pressure in the cylinder bore 12a increases. For this reason, the inclination angle of the swash plate 23 becomes small.
  • the temperature at the evaporator 55 decreases so as to approach the temperature at which frost occurs.
  • the computer 57 instructs the drive circuit 61 to demagnetize the solenoid 72.
  • This set temperature is a temperature at which frost is likely to occur in the evaporator 55. Then, the supply of current to the coil 97 is stopped, the solenoid 72 is demagnetized, and the attractive force between the fixed core 92 and the movable core 93 disappears.
  • valve element 74 is moved downward by the urging force of the spring 76 against the urging force of the follower panel 94 acting via the movable iron core 93. Then, the valve element 74 shifts to the opening position where the valve hole 75 is opened to the maximum. Therefore, a large amount of the high-pressure refrigerant gas in the discharge chamber 39 is supplied to the crank chamber 15 via the control passage 48, and the pressure in the crank chamber 15 increases. Due to the pressure increase in the crank chamber 15, the inclination angle of the swash plate 23 is minimized as shown in FIG.
  • the computer 57 instructs demagnetization of the solenoid 72, and this demagnetization also minimizes the tilt angle of the swash plate 23.
  • the opening / closing operation of the capacity control valve 49 is controlled by the coil 97 of the solenoid 72. It changes according to the magnitude of the current value. That is, when the current value increases, the control passage 48 is opened and closed at a low suction pressure, and when the current value decreases, the control passage 48 opens and closes at a high suction pressure.
  • the compressor changes the inclination of the swash plate 23 so as to maintain the set suction pressure, and changes the discharge capacity.
  • the capacity control valve 49 has a role of changing the set value of the suction pressure by changing the current value and a role of performing the minimum capacity operation regardless of the suction pressure.
  • the compressor plays a role of changing the refrigeration capacity of the refrigeration circuit.
  • the blocking body 28 contacts the positioning surface 33 with the blocking surface 34, and the suction passage 32 is blocked. In this state, the passage cross-sectional area in the suction passage 32 becomes zero, and the flow of the refrigerant gas from the external refrigerant circuit 52 into the suction chamber 38 is prevented.
  • the blocking body 28 is disposed at the closed position that blocks communication between the suction passage 32 and the accommodation hole 27, the inclination angle of the swash plate 23 is minimized.
  • the minimum inclination angle of the swash plate 23 is set to be slightly larger than 0 °.
  • the blocking body 28 is arranged between the position where the suction passage 32 is closed and the position where the suction passage 32 is opened, in conjunction with the tilt of the swash plate 23.
  • the refrigerant gas is discharged from the cylinder bore 12a to the discharge chamber 38 even at the minimum inclination angle.
  • the refrigerant gas discharged from the cylinder bore 12 a into the discharge chamber 38 flows into the crank chamber 15 through the control passage 48.
  • the refrigerant gas in the crank chamber 15 flows into the suction chamber 38 through the passage 46, the inside of the blocker 28, the pressure relief port 47, the housing hole 27, and the port 45.
  • the refrigerant gas in the suction chamber 38 is drawn into the cylinder bore 12a, and is discharged again to the discharge chamber 39.
  • the present embodiment having the above configuration has the following effects.
  • the gap between the outer peripheral surface (89a, 89b) of the rod 89 and the inner peripheral surface 88a of the guide hole 88 is a port on the high-pressure side.
  • the 90 side is the low pressure side. It is larger than the pressure sensitive chamber 84 side. Therefore, the fluid sticking phenomenon can be prevented from occurring between the rod 89 and the guide hole 88, and the hysteresis of the capacity control valve 49 can be reduced, thereby preventing the capacity controllability from lowering.
  • the solenoid 72 can be downsized, and the compressor can be downsized.
  • the gap between the outer peripheral surface (96a, 96b) of the rod 96 and the inner peripheral surface 96a of the guide hole 96 is a valve on the high pressure side.
  • the chamber 73 side is larger than the plunger chamber 91 side which is the low pressure side. Therefore, the same operation and effect as the above (1) can be obtained.
  • the compressor has a configuration in which the discharge capacity is controlled by adjusting the amount of refrigerant gas discharged into the crank chamber 15, and the high pressure discharge is supplied to the valve chamber 73 of the capacity control valve 49. Refrigerant gas is introduced. Therefore, the fluid sticking phenomenon occurring between the rod 96 and the guide hole 95 is more likely to occur in the rod 96 than in the compressor configured to regulate the amount of refrigerant gas discharged from the crank chamber 15. Increase the degree of pressing against guide holes 9 5 You. In the present embodiment, since the means for preventing the fluid sticking phenomenon is applied to such a capacity control valve 49 of the compressor, the effect is particularly large.
  • the tapered surface is not located on the side of the openings 89, 96 but on the side of the guide holes 88, 95 as shown by the enlarged circles A ′ and B ′ in FIG. 1B.
  • the gap between the outer peripheral surfaces of the rods 89, 96 and the inner peripheral surfaces of the guide holes 88, 95 may be configured such that the high pressure side is wider than the low pressure side. In this case, the diameter of the tapered surface increases toward the high pressure side.
  • the tapered surface must be formed on both the rods 89 and 96 and the guide holes 88 and 95.
  • the gap between the outer peripheral surfaces of the rods 89 and 96 and the inner peripheral surfaces of the guide holes 88 and 95 may be configured such that the high pressure side is wider than the low pressure side.
  • FIG. 5A shows a second embodiment.
  • the rods 89 and 96 have a plurality of tapered surfaces 89b and 96b in the axial direction. Therefore, the gap between each tapered surface 89b, 96b and the inner peripheral surface 88a, 95a of the guide hole 88, 95 is such that the high pressure side (73, 90) is on the low pressure side (73, 90). 8 4, 9 1) It is larger.
  • the rod 100 has a cylindrical shape, and operatively connects the valve element 74 and the diaphragm 99.
  • the annular groove 100 Ob is formed in the outer circumferential surface 100 a of the rod 100 facing the guide hole 88 in the circumferential direction thereof, and a plurality of annular grooves are arranged at predetermined intervals in the axial direction.
  • the present embodiment also has the same effect as the effect (1) of the first embodiment.
  • the annular groove is not formed on the outer peripheral surface 100 a of the rod 100, but on the guide hole as shown by 88 b in the enlarged circle C ′ in FIG. 6B. It may be formed on the inner peripheral surface 8 8 a of 8 8.
  • annular groove is formed on both the outer peripheral surface 100a of the mouth 100 and the inner peripheral surface 88a of the guide hole 88. Is also good.
  • the annular groove is preferably formed on the outer peripheral surface 100a side of the mouthpiece 100.
  • the reason is that, for example, when an annular groove is provided on the inner peripheral surface 88a side of the guide hole 88, the guide hole 88 extends through the partition wall 71a, and the narrow guide hole Inserting a tool into 8 8 has the trouble of forming an annular groove on its inner peripheral surface 8 8 a. is there.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

A control valve for variable displacement compressor free from any hydraulic lock between a rod and a guide hole, wherein a first rod (89) is inserted into a first guide hole (88) to operably connect a bellows (87) to a valve disc (74), a second rod (96) is inserted into a second guide hole (95) to operably connect a movable iron core (93) to the valve disc (74), tapered surfaces (89b, 96b) are formed on the outer peripheral surfaces of the first and second rods (89, 96), and clearances between the inner peripheral surfaces (88a, 95a) of the first and second guide holes (88, 95) opposed to each other and the tapered surfaces are larger on the high pressure sides (73, 90) than on the low pressure sides (84, 91).

Description

可変容量型圧縮機用制御弁 技術分野  Technical field of control valves for variable displacement compressors
本発明は、 例えば、 車両空調システムに使用される可変容量型圧縮機の制御弁 に関する。 背景技術  The present invention relates to, for example, a control valve of a variable displacement compressor used in a vehicle air conditioning system. Background art
この種の可変容量型圧縮機としては、 吐出圧領域とクランク室とを接続する制 御通路を備え、 クランク室の圧力を調節することによりカムプレートの傾角を変 更して、 吐出容量を制御するものが知られている。  This type of variable displacement compressor has a control passage that connects the discharge pressure area and the crankcase, and controls the discharge capacity by adjusting the pressure in the crankcase to change the inclination of the cam plate. What is known is.
この種の従来の可変容量型圧縮機用の制御弁は、 例えば、 特開平 4 1 1 9 2 7 1号公報に開示されている。 この制御弁においては、 図 7に示すように、 弁室 1 0 1がバルブハウジング 1 0 2の先端部に区画されている。 弁室 1 0 1は、 上 流側の制御通路 1 0 3を介して吐出圧領域に接続されるとともに、 バルブハウジ ング 1 0 2の軸線方向に形成された弁孔 1 0 4、 弁孔 1 0 4に直交されるポート 1 0 5及び下流側の制御通路 1 0 3を介してクランク室に接続されている。 弁孔 1 0 4を開閉するための弁体 1 0 6は、 弁室 1 0 1に収容されている。  A control valve of this type for a conventional variable displacement compressor is disclosed, for example, in Japanese Patent Application Laid-Open No. HEI 4-119271. In this control valve, as shown in FIG. 7, a valve chamber 101 is defined at a distal end portion of a valve housing 102. The valve chamber 101 is connected to the discharge pressure region via a control passage 103 on the upstream side, and has a valve hole 104 and a valve hole 10 formed in the axial direction of the valve housing 102. It is connected to the crank chamber via a port 105 orthogonal to 4 and a downstream control passage 103. A valve body 106 for opening and closing the valve hole 104 is housed in the valve chamber 101.
感圧室 1 0 7は弁室 1 0 1に隣接して形成され、吸入圧領域に接続されている。 吸入圧領域の圧力を感知するためのベローズ 1 0 8は感圧室 1 0 7に収容されて いる。 ガイ ド孔 1 0 9は、 弁室 1 0 1 と感圧室 1 ◦ 7とを区画するバルブハウジ ング 1 0 2の区画壁 1 0 2 aに対し、 弁孔 1 0 4に連続して貫設され、 両室 1 0 1 , 1 0 7を接続している。 ロッ ド 1 1 0はガイ ド孔 1 0 9に摺動可能に揷通さ れ、 ベローズ 1 0 8と弁体 1 0 6とを作動連結する。 従って、 吸入された冷媒ガ スの圧力に感応するべローズ 1 0 8の変位が、 ロッ ド 1 1 0を介して弁体 1 0 6 に伝達される。  The pressure sensing chamber 107 is formed adjacent to the valve chamber 101 and is connected to the suction pressure area. A bellows 108 for sensing the pressure in the suction pressure region is housed in a pressure-sensitive chamber 107. The guide hole 109 extends continuously from the valve hole 104 to the partition wall 102a of the valve housing 102 that separates the valve chamber 101 from the pressure-sensitive chamber 1◦7. The two rooms are connected by 101 and 107. The rod 110 is slidably passed through the guide hole 109 to operatively connect the bellows 108 and the valve body 106. Accordingly, the displacement of the bellows 108 responsive to the pressure of the sucked refrigerant gas is transmitted to the valve body 106 via the rod 110.
ソレノィ ド部 1 1 1はバルブハウジング 1 0 2の基端側に接合され、 ベローズ 1 0 8を介して弁体 1 0 6に作動連結されている。 ソレノィ ド部 1 1 1は、 その 励磁 ·消磁により固定鉄心 1 1 2と可動鉄心 1 1 3との間の吸引力を変更し、 弁 体 1 0 6に作用させる荷重を変更する。 従って、 制御通路 1 0 3の開度は、 ソレ ノイ ド部 1 1 1からの付勢力、 ベローズ 1 0 8からの付勢力等のバランスにより 決定される。 The solenoid part 111 is joined to the base end side of the valve housing 102, and is operatively connected to the valve body 106 via a bellows 108. Solenoid part 1 1 1 Excitation and demagnetization change the attraction force between the fixed iron core 112 and the movable iron core 113, and change the load applied to the valve element 106. Therefore, the opening degree of the control passage 103 is determined by the balance between the biasing force from the solenoid node 111, the biasing force from the bellows 108, and the like.
ここで、 ロッド 1 1 0及びガイ ド孔 1 0 9は、 摺動性を確保しつつ、 高圧側で あるポート 1 0 5側と低圧側である感圧室 1 0 7側との間でのガス漏れを抑え得 るよう、 細心の注意を払って加工される。 しカゝし、 微少な加工誤差は不可避であ り、 ロッド 1 1 0の外周面とガイ ド孔 1 0 9の内周面との間隙は、 ポート 1 0 5 側と感圧室 1 0 7側とで異なる。 特に、 感圧室 1 0 7側の間隙よりもポート 1 0 5側の間隙が小さい場合、 ポート 1 0 5と感圧室 1 0 7との圧力差から、 口ッ ド 1 1 0の外周面をガイ ド孔 1 0 9の内周面に押し付ける方向の横力が生じること があり、ロッド 1 1 0がガイ ド孔 1 0 9内を摺動する抵抗が大きくなっていた(流 体固着現象)。  Here, the rod 110 and the guide hole 109 are connected between the high-pressure side port 105 side and the low-pressure side pressure-sensitive chamber 107 side while ensuring slidability. It is processed with great care to reduce gas leakage. However, a slight machining error is inevitable, and the gap between the outer peripheral surface of the rod 110 and the inner peripheral surface of the guide hole 109 is between the port 105 side and the pressure-sensitive chamber 107. Different on the side. In particular, when the gap on the port 105 side is smaller than the gap on the pressure sensing chamber 107 side, the pressure difference between the port 105 and the pressure sensing chamber 107 causes the outer peripheral surface of the port 110 to Lateral force may be generated in the direction in which the rod 110 is pressed against the inner peripheral surface of the guide hole 109, and the resistance of the rod 110 to slide in the guide hole 109 is increased (fluid sticking phenomenon). ).
近年、 制御弁は、 圧縮機の小型化を達成するためにソレノィ ド部 1 1 1を小型 化する傾向にあり、 それに応じてべローズ 1 0 8を小型化し、 ソレノイ ド部 1 1 1 とべローズ 1 0 8との間の小さな力のバランスで弁体 1 0 6を動作させるよう になっている。 従って、 制御弁は、 前述した流体固着現象にともなう、 ロッ ド 1 1 0とガイ ド孔 1 0 9との間の摺動抵抗の増大による影響を受け易レ、。その結果、 大型のベローズ 1 0 8を用いた場合にはほとんど無視できるこの摺動抵抗までが ヒステリシスの要因となり、 容量制御性が大きく低下する問題が生じていた。 発明の開示  In recent years, control valves have tended to reduce the size of the solenoid section 111 in order to achieve downsizing of the compressor.Accordingly, the bellows 108 have been downsized accordingly, and the solenoid section 111 and the bellows have been reduced. The valve body 106 is operated with a balance of a small force between the valve body 106 and the valve body 106. Therefore, the control valve is susceptible to an increase in sliding resistance between the rod 110 and the guide hole 109 due to the fluid sticking phenomenon described above. As a result, when a large bellows 108 is used, even the sliding resistance, which can be almost neglected, causes hysteresis, causing a problem that capacity controllability is greatly reduced. Disclosure of the invention
本発明は上記従来技術に存在する問題点に着目してなされたものであって、 そ の目的は、 ロッ ドとガイ ド孔との間での摺動抵抗の増大を阻止するようにした可 変容量型圧縮機用制御弁を提供することにある。  SUMMARY OF THE INVENTION The present invention has been made in view of the problems existing in the prior art described above, and its object is to prevent an increase in sliding resistance between a rod and a guide hole. An object of the present invention is to provide a control valve for a variable displacement compressor.
上記目的を達成するために本発明の態様によれば、 可変容量型圧縮機の吐出容 量を変更するよう吸入圧領域又は吐出圧領域と制御圧室とを接続する制御通路の 開度を調節するために、 前記制御通路を開閉するよう弁体が設けられ、 駆動部が 前記弁体を開閉駆動し、 前記弁体側と前記駆動部側とを区画する区画壁に貫設さ れたガイ ド孔により前記弁体側と前記駆動部側とが接続され、 前記ガイ ド孔には 前記弁体と前記駆動部とを作動連結する口ッ ドが摺動可能に挿通された可変容量 型圧縮機の制御弁において、 前記ロッ ドの外周面及び前記ガイ ド孔の内周面の少 なく とも一方に、 流体固着現象の発生を防止する手段を設けたことを特徴とする 可変容量型圧縮機用制御弁が提供される。 In order to achieve the above object, according to an aspect of the present invention, a control passage connecting a suction pressure area or a discharge pressure area to a control pressure chamber so as to change a discharge capacity of a variable displacement compressor is provided. In order to adjust the opening degree, a valve body is provided so as to open and close the control passage. The valve body side and the drive unit side are connected by the provided guide hole, and a variable capacity in which a port for operatively connecting the valve body and the drive unit is slidably inserted into the guide hole. A control valve for the compressor, wherein at least one of an outer peripheral surface of the rod and an inner peripheral surface of the guide hole is provided with means for preventing occurrence of a fluid sticking phenomenon. A control valve for a compressor is provided.
上記態様の構成の発明によれば、 ロッ ドとガイ ド孔との間での流体固着現象の 発生を防止する手段を設けたので、 制御弁のヒステリシスを小さくできて容量制 御性の低下を防止できる。  According to the invention having the configuration of the above aspect, the means for preventing the occurrence of the fluid sticking phenomenon between the rod and the guide hole is provided, so that the hysteresis of the control valve can be reduced and the capacity controllability is reduced. Can be prevented.
上記態様において、 前記手段は、 前記ロッ ドの外周面と前記ガイ ド孔の内周面 との間隙が、 前記弁体側或いは前記駆動部側の何れか高圧側に向かって広がるよ うに、 前記口ッ ドの外周面或いは前記ガイ ド孔の内周面の少なく とも一方に形成 されたテーパ面を含むようにすることができる。  In the above aspect, the means may be configured such that a gap between an outer peripheral surface of the rod and an inner peripheral surface of the guide hole is widened toward a higher pressure side of the valve body or the drive unit. The outer peripheral surface of the head or the inner peripheral surface of the guide hole may include at least one tapered surface.
このようにすれば、 何らかの理由により、 ロッ ドの軸線がガイ ド孔の軸線に対 して偏心した場合でも、 ロッ ドには偏心方向とは逆方向に横力が生じ、 ガイ ド孔 に対する軸線の偏心は自己復帰により修正される。  In this way, even if the axis of the rod is eccentric with respect to the axis of the guide hole for some reason, a lateral force is generated in the rod in the direction opposite to the eccentric direction, and the axis with respect to the guide hole is generated. Is corrected by self-return.
上記態様において、 さらに、 前記テーパ面は、 前記ロッ ドの軸線方向に複数が 形成されるようにすることもできる。  In the above aspect, a plurality of the tapered surfaces may be formed in an axial direction of the rod.
この構成においては、 ロッ ドの外周面とガイ ド孔の内周面との間の通過断面積 が軸線方向に複雑に変化され、 ラビリンスシール的な作用を奏する。 従って、 高 圧側と低圧側との間での圧力の漏れもしくは冷媒ガスの漏れが効果的に防止され る。  In this configuration, the cross-sectional area of passage between the outer peripheral surface of the rod and the inner peripheral surface of the guide hole is complicatedly changed in the axial direction, so that a labyrinth seal effect is achieved. Therefore, leakage of pressure or leakage of refrigerant gas between the high pressure side and the low pressure side is effectively prevented.
上記態様において、 さらに、 前記ロッ ドの外周面を弁体側或いは駆動部側の何 れか高圧側に向かって小径となるテーパ面とするようにすれば、 例えば、 ガイ ド 孔を区画壁に貫設し、 さらに、 狭いガイ ド孔に工具を挿入して、 その内周面をテ ーパ面に修正加工するような面倒がない。 上記態様において、 さらに、 前記手段は、 前記ロッ ドの外周面或いは前記ガイ ド孔の内周面の少なく とも一方において、 その周方向に形成された環状溝を含む ようにすることができる。 In the above aspect, if the outer peripheral surface of the rod is a tapered surface having a smaller diameter toward either the valve body side or the high pressure side on the drive unit side, for example, the guide hole penetrates the partition wall. It is not troublesome to insert a tool into a narrow guide hole and correct the inner peripheral surface to a tapered surface. In the above aspect, at least one of the outer peripheral surface of the rod and the inner peripheral surface of the guide hole may include an annular groove formed in a circumferential direction thereof.
このようにすれば、 ロッ ドの外周面とガイ ド孔の内周面との間隙においてその 周方向の圧力が、 環状溝により均一化される。 従って、 ロッ ドとガイ ド孔との間 で流体固着現象が発生することはない。  With this configuration, the circumferential pressure in the gap between the outer peripheral surface of the rod and the inner peripheral surface of the guide hole is made uniform by the annular groove. Therefore, the fluid sticking phenomenon does not occur between the rod and the guide hole.
この場合、 環状溝をロッドの外周面に形成するようにすれば、 環状溝の形成が 容易となる。  In this case, if the annular groove is formed on the outer peripheral surface of the rod, the formation of the annular groove becomes easy.
上記態様において、 前記駆動部は感圧機構を備え、 該感圧機構は前記吸入圧領 域又は前記制御圧室に検圧通路を介して接続される感圧室と、 該感圧室に配設さ れた感圧部材とを備え、 前記口ッ ドは前記感圧部材と前記弁体とを作動連結する ものであって良い。  In the above aspect, the driving unit includes a pressure-sensitive mechanism, the pressure-sensitive mechanism being connected to the suction pressure area or the control pressure chamber via a pressure detection passage, and being arranged in the pressure-sensitive chamber. And a pressure-sensitive member provided, wherein the mouth operatively connects the pressure-sensitive member and the valve element.
この構成においては、 感圧室に導入される吸入圧領域又は制御圧室の圧力によ り感圧部材が変位され、 この変位がロッ ドを介して弁体に伝達される。  In this configuration, the pressure-sensitive member is displaced by the pressure in the suction pressure area or the control pressure chamber introduced into the pressure-sensitive chamber, and this displacement is transmitted to the valve via the rod.
また、 上記態様において、 前記駆動部はソレノィ ド部を備え、 該ソレノィ ド部 は励磁 ·消磁によってプランジャ室に収容されたプランジャを動作させ、 前記口 ッ ドは前記プランジャと前記弁体とを作動連結するものであって良い。  Further, in the above aspect, the drive unit includes a solenoid unit, the solenoid unit operates a plunger housed in a plunger chamber by excitation and demagnetization, and the opening operates the plunger and the valve body. They may be connected.
この構成においては、 ソレノィ ド部の励磁 ·消磁によりプランジャが変位され、 その変位がロッドを介して弁体に伝達される。  In this configuration, the plunger is displaced by excitation and demagnetization of the solenoid, and the displacement is transmitted to the valve via the rod.
さらに、 上記態様において、 前記駆動部は感圧機構及びソレノイ ド部を備え、 前記感圧機構は前記吸入圧領域又は前記制御圧室に検圧通路を介して接続される 感圧室と、 該感圧室に配設された感圧部材とを備え、 前記ソレノイ ド部は励磁 · 消磁によってプランジャ室に収容されたプランジャを動作させ、 前記ロッ ドは、 前記感圧部材と前記弁体とを作動連結する第 1のロッ ド部と、 前記プランジャと 前記弁体とを作動連結する第 2の口ッ ド部とを含むものであって良い。  Further, in the above aspect, the driving unit includes a pressure-sensitive mechanism and a solenoid unit, and the pressure-sensitive mechanism is connected to the suction pressure area or the control pressure chamber via a pressure detection passage; A pressure-sensitive member disposed in the pressure-sensitive chamber, wherein the solenoid operates a plunger housed in the plunger chamber by excitation and demagnetization, and the rod connects the pressure-sensitive member and the valve body. It may include a first rod portion that is operatively connected, and a second mouth portion that is operatively connected between the plunger and the valve body.
この場合には、 感圧機構からの付勢力とソレノィ ド部からの付勢力とのバラン スにより、 弁体による制御通路の開度が決定される。 上記態様において、 前記制御通路は吐出圧領域と制御圧室とを接続するもので あって良い。 In this case, the degree of opening of the control passage by the valve body is determined by the balance between the urging force from the pressure-sensitive mechanism and the urging force from the solenoid. In the above aspect, the control passage may connect a discharge pressure region and a control pressure chamber.
この構成においては、 吐出冷媒ガスの制御圧室への導入量を調節することによ り吐出容量が制御され、 制御弁内には高圧な吐出冷媒ガスが取り廻されている。 従って、 ロッ ドとガイ ド孔との間で生じる流体固着現象は、 制御圧室からの冷媒 ガスの排出量を調節して圧縮機の吐出容量を制御する構成の制御弁よりも、 ロッ ドのガイ ド孔に対する押し付けの度合いを大きくするので、 本発明を適用した場 合の効果が大きい。 図面の簡単な説明  In this configuration, the discharge capacity is controlled by adjusting the amount of the discharged refrigerant gas introduced into the control pressure chamber, and a high-pressure discharged refrigerant gas is circulated inside the control valve. Therefore, the fluid sticking phenomenon that occurs between the rod and the guide hole is more likely to occur in the rod than in the control valve that controls the discharge capacity of the compressor by adjusting the amount of refrigerant gas discharged from the control pressure chamber. Since the degree of pressing against the guide hole is increased, the effect when the present invention is applied is large. BRIEF DESCRIPTION OF THE FIGURES
図 1 Aは、 本発明の第 1実施形態による、 ロッ ドの外周面をテーパ面とした容 量制御弁を示す縦断面図である。  FIG. 1A is a longitudinal sectional view showing a capacity control valve according to a first embodiment of the present invention, in which an outer peripheral surface of a rod is a tapered surface.
図 1 Bは、 上記第 1実施形態において、 ガイ ド孔の内周面をテーパ面とした容 量制御弁を示す縦断面図である。  FIG. 1B is a longitudinal sectional view showing the capacity control valve in which the inner peripheral surface of the guide hole is a tapered surface in the first embodiment.
図 1 C及び図 1 Dは、 上記第 1実施形態において、 口ッ ドの外周面及びガイ ド 孔の内周面の双方をテーパ面とした容量制御弁の要部拡大断面図である。  FIGS. 1C and 1D are enlarged cross-sectional views of main parts of the capacity control valve in which the outer peripheral surface of the mouth and the inner peripheral surface of the guide hole are both tapered in the first embodiment.
図 2は、 クラツチレス可変容量型圧縮機を示す縦断面図である。  FIG. 2 is a longitudinal sectional view showing a clutchless variable displacement compressor.
図 3は、 圧縮機の最小吐出容量状態を示す要部拡大断面図である。  FIG. 3 is an enlarged sectional view of a main part showing a minimum discharge capacity state of the compressor.
図 4は、 作用を説明する模式図である。  FIG. 4 is a schematic diagram illustrating the operation.
図 5 Aは、 第 2実施形態による、 ロッ ドの外周面に複数のテ一パ面を有する容 量制御弁の要部拡大断面図である。  FIG. 5A is an enlarged sectional view of a main part of a capacity control valve having a plurality of taper surfaces on an outer peripheral surface of a rod according to a second embodiment.
図 5 Bは、 上記第 2実施形態において、 ガイ ド孔の内周面に複数のテーパ面を 有する容量制御弁の要部拡大断面図である。  FIG. 5B is an enlarged cross-sectional view of a main part of the capacity control valve having a plurality of tapered surfaces on the inner peripheral surface of the guide hole in the second embodiment.
図 5 Cは、 上記第 2実施形態において、 ロッ ドの外周面及びガイ ド孔の内周面 の双方に複数のテーパ面を有する容量制御弁の要部拡大断面図である。  FIG. 5C is an enlarged sectional view of a main part of the capacity control valve having a plurality of tapered surfaces on both the outer peripheral surface of the rod and the inner peripheral surface of the guide hole in the second embodiment.
図 6 Aは、 第 3実施形態による、 ロッ ドの外周面に複数の環状溝を有する容量 制御弁を示す縦断面図である。 図 6 Bは、 上記第 3実施形態において、 ガイ ド孔の内周面に複数の環状溝を有 する容量制御弁を示す縦断面図である。 FIG. 6A is a longitudinal sectional view showing a capacity control valve having a plurality of annular grooves on an outer peripheral surface of a rod according to a third embodiment. FIG. 6B is a longitudinal sectional view showing the capacity control valve having a plurality of annular grooves on the inner peripheral surface of the guide hole in the third embodiment.
図 6 Cは、 上記第 3実施形態において、 ロッ ドの外周面及びガイ ド孔の内周面 の双方に複数の環状溝を有する容量制御弁の要部拡大断面図である。  FIG. 6C is an enlarged sectional view of a main part of the capacity control valve having a plurality of annular grooves on both the outer peripheral surface of the rod and the inner peripheral surface of the guide hole in the third embodiment.
図 7は、 従来の容量制御弁を示す縦断面図である。 発明を実施するための最良の形態  FIG. 7 is a longitudinal sectional view showing a conventional capacity control valve. BEST MODE FOR CARRYING OUT THE INVENTION
以下に、 本発明をクラツチレス可変容量型圧縮機の容量制御弁に具体化した第 1及び第 2実施形態、 及び別のタイプの可変容量型圧縮機の容量制御弁に具体化 した第 3実施形態について説明する。 なお、 第 2及び第 3実施形態においては、 第 1実施形態との相違点についてのみ説明し、 同一又は相当部材には同じ番号を 付して説明を省略する。  Hereinafter, the first and second embodiments in which the present invention is embodied in a displacement control valve of a clutchless variable displacement compressor, and a third embodiment in which the present invention is embodied in a displacement control valve of another type of variable displacement compressor Will be described. In the second and third embodiments, only the differences from the first embodiment will be described, and the same or corresponding members will be denoted by the same reference numerals and description thereof will be omitted.
(第 1実施形態)  (First Embodiment)
先ず、 クラツチレス可変容量型圧縮機の構成について説明する。  First, the configuration of the clutchless variable displacement compressor will be described.
図 2に示すように、 フロントハウジング 1 1はシリンダブ口ック 1 2の前端に 固定されている。 リャハウジング 1 3は、 シリンダブロック 1 2の後端に弁形成 体 1 4を介して固定されている。 制御圧室としてのクランク室 1 5は、 フロント ハウジング 1 1 とシリンダブロック 1 2とにより区画されている。駆動軸 1 6は、 クランク室 1 5を通るようにフロントハウジング 1 1 とシリンダブロック 1 2と の間で回転可能に支持されている。 プーリ 1 7はフロントハウジング 1 1に回転 可能に支持されている。 プーリ 1 7は駆動軸 1 6に連結されており、 その外周部 に卷き掛けられたベルト 1 9を介して車両エンジン 2 0に、 電磁クラッチ等を介 することなく直結されている。  As shown in FIG. 2, the front housing 11 is fixed to the front end of the cylinder block 12. The rear housing 13 is fixed to the rear end of the cylinder block 12 via a valve forming body 14. A crankcase 15 as a control pressure chamber is partitioned by a front housing 11 and a cylinder block 12. The drive shaft 16 is rotatably supported between the front housing 11 and the cylinder block 12 so as to pass through the crank chamber 15. The pulley 17 is rotatably supported by the front housing 11. The pulley 17 is connected to a drive shaft 16, and is directly connected to a vehicle engine 20 via a belt 19 wound around the outer periphery thereof without an electromagnetic clutch or the like.
ラグプレート 2 2は、クランク室 1 5内において駆動軸 1 6に止着されている。 斜板 2 3は、 駆動軸 1 6に対してその軸線 L方向ヘスライ ド移動可能でかつ傾動 可能にラグプレート 2 2に支持されている。 ヒンジ機構 2 4はラグプレート 2 2 と斜板 2 3との間に介在されている。 斜板 2 3はヒンジ機構 2 4により、 駆動軸 1 6の軸線 L方向へ傾動可能でかつ駆動軸 1 6と一体的に回転可能となっている c 斜板 2 3の半径中心部がシリンダブ口ック 1 2側に移動すると、 斜板 2 3の傾角 が減少される。 傾角を減少するためのパネ 2 6は、 ラグプレート 2 2と斜板 2 3 との間に介在されている。 パネ 2 6は、 斜板 2 3を傾角の減少方向に付勢する。 斜板 2 3の最大傾角は、 ラグプレート 2 2 との当接により規定される。 The lug plate 22 is fixed to the drive shaft 16 in the crank chamber 15. The swash plate 23 is supported by the lug plate 22 so that the swash plate 23 can move in the direction of the axis L with respect to the drive shaft 16 and can tilt. The hinge mechanism 24 is interposed between the lug plate 22 and the swash plate 23. Swash plate 23 is driven by hinge mechanism 24 When the radius center of the c swash plate 2 3 which is 1 6 axis and L to be tilted in and drive axis 1-6 and integrally rotatable moves Shirindabu-locking 1 2 side, the swash plate 2 3 The tilt angle of is reduced. The panel 26 for reducing the inclination is interposed between the lug plate 22 and the swash plate 23. The panel 26 biases the swash plate 23 in the direction of decreasing the inclination. The maximum inclination angle of the swash plate 23 is defined by the contact with the lug plate 22.
図 3に示すように、 収容孔 2 7は、 シリンダブロック 1 2の中心部において駆 動軸 1 6の軸線 L方向に貫設されている。 遮断体 2 8は筒状をなし、 収容孔 2 7 にスライ ド可能に収容されている。 吸入通路を開放するためのバネ 2 9は、 収容 孔 2 7の端面と遮断体 2 8との間に介在され、 遮断体 2 8を斜板 2 3側へ付勢し ている。  As shown in FIG. 3, the accommodation hole 27 extends through the center of the cylinder block 12 in the direction of the axis L of the drive shaft 16. The blocking body 28 has a cylindrical shape and is slidably housed in the housing hole 27. A spring 29 for opening the suction passage is interposed between the end face of the housing hole 27 and the shutoff body 28, and urges the shutoff body 28 toward the swash plate 23.
前記駆動軸 1 6は、 その後端部を以て遮断体 2 8の内部に揷入されている。 ラ ジアルベアリング 3 0は、 駆動軸 1 6の後端部と遮断体 2 8の内周面との間に介 在され、 遮断体 2 8とともに駆動軸 1 6に対して軸線 L方向ヘスライ ド可能であ る。  The drive shaft 16 is inserted into the inside of the blocking body 28 with its rear end. The radial bearing 30 is interposed between the rear end of the drive shaft 16 and the inner peripheral surface of the breaker 28, and can slide along the breaker 28 along the axis L with respect to the drive shaft 16. It is.
吸入圧領域を構成する吸入通路 3 2は、 リャハウジング 1 3及び弁形成体 1 4 の中心部に形成されている。 吸入通路 3 2は収容孔 2 7に連通されており、 その 弁形成体 1 4の前面に表れる開口周囲には、 位置決め面 3 3が形成されている。 遮断面 3 4は遮断体 2 8の先端面に形成され、 遮断体 2 8の移動により位置決め 面 3 3に接離される。 遮断面 3 4が位置決め面 3 3に当接されることにより、 両 面 3 3, 3 4間のシール作用で吸入通路 3 2と収容孔 2 7の内空間との連通が遮 断される。  The suction passage 32 constituting the suction pressure region is formed at the center of the rear housing 13 and the valve forming body 14. The suction passage 32 communicates with the accommodation hole 27, and a positioning surface 33 is formed around the opening that appears on the front surface of the valve forming body 14. The blocking surface 34 is formed on the distal end surface of the blocking member 28, and is moved toward and away from the positioning surface 33 by the movement of the blocking member 28. Since the blocking surface 34 is in contact with the positioning surface 33, the communication between the suction passage 32 and the inner space of the housing hole 27 is blocked by the sealing action between the two surfaces 33, 34.
スラストベアリング 3 5は斜板 2 3と遮断体 2 8 との間に介在され、 駆動軸 1 6上にスライ ド可能に支持されている。 スラス トベアリング 3 5は、 バネ 2 9に 付勢されて、 通常は斜板 2 3と遮断体 2 8との間で挟持されている。 そして、 斜 板 2 3が遮断体 2 8に向かって傾動するのに伴い、 斜板 2 3の傾動がスラス トべ ァリング 3 5を介して遮断体 2 8に伝達される。 従って、 遮断体 2 8がパネ 2 9 の付勢力に抗して位置決め面 3 3に向かって移動され、 遮断体 2 8は遮断面 3 4 を以て位置決め面 3 3に当接される。 遮断面 3 4が位置決め面 3 3に当接される と、斜板 2 3のそれ以上の傾動が規制され、 この規制された状態にて斜板 2 3は、 0 ° よりも僅かに大きな最小傾角となる。 The thrust bearing 35 is interposed between the swash plate 23 and the interrupter 28 and is supported on the drive shaft 16 so as to be slidable. The thrust bearing 35 is urged by a spring 29 and is usually held between the swash plate 23 and the blocking body 28. Then, as the swash plate 23 tilts toward the interrupter 28, the tilt of the swash plate 23 is transmitted to the interrupter 28 via the thrust bearing 35. Therefore, the blocking body 28 is moved toward the positioning surface 33 against the urging force of the panel 29, and the blocking body 28 is moved to the blocking surface 34. Is brought into contact with the positioning surface 3. When the blocking surface 34 is brought into contact with the positioning surface 33, further tilting of the swash plate 23 is restricted, and in this restricted state, the swash plate 23 becomes a minimum slightly larger than 0 °. It becomes a tilt angle.
シリンダボア 1 2 aはシリンダブ口ック 1 2に貫設形成され、 片頭型のビス ト ン 3 6はシリンダボア 1 2 aに収容されている。 ピス トン 3 6は、 シユー 3 7を 介して斜板 2 3の外周部に係留されており、 斜板 2 3の回転によりシリンダボア 1 2 a内で前後に往復運動される。  The cylinder bore 12a is formed through the cylinder block 12 and the single-headed screw 36 is housed in the cylinder bore 12a. The piston 36 is moored to the outer periphery of the swash plate 23 via the shoe 37, and is reciprocated back and forth within the cylinder bore 12a by rotation of the swash plate 23.
吸入圧領域を構成する吸入室 3 8及び吐出圧領域を構成する吐出室 3 9は、 リ ャハウジング 1 3にぞれぞれ区画形成されている。 吸入ポート 4 0、 吸入ポート 4 0を開閉する吸入弁 4 1、 吐出ポート 4 2、 吐出ポート 4 2を開閉する吐出弁 4 3は、 それぞれ弁形成体 1 4に形成されている。 そして、 吸入室 3 8の冷媒ガ スは、 ピス トン 3 6の復動動作により吸入ポート 4 0及び吸入弁 4 1を介してシ リンダボア 1 2 aに吸入される。 シリンダボア 1 2 aに吸入された冷媒ガスは、 ピス トン 3 6の往動動作により所定の圧力にまで圧縮され、 吐出ポート 4 2及び 吐出弁 4 3を介して吐出室 3 9へ吐出される。  The suction chamber 38 that forms the suction pressure region and the discharge chamber 39 that forms the discharge pressure region are formed separately in the rear housing 13. The suction port 40, the suction valve 41 for opening and closing the suction port 40, the discharge port 42, and the discharge valve 43 for opening and closing the discharge port 42 are formed in the valve forming body 14, respectively. Then, the refrigerant gas in the suction chamber 38 is sucked into the cylinder bore 12a via the suction port 40 and the suction valve 41 by the reciprocating operation of the piston 36. The refrigerant gas drawn into the cylinder bore 12a is compressed to a predetermined pressure by the forward movement of the piston 36, and is discharged to the discharge chamber 39 via the discharge port 42 and the discharge valve 43.
吸入室 3 8は、 弁形成体 1 4に貫設された通口 4 5を介して収容孔 2 7に連通 されている。 そして、 遮断体 2 8がその遮断面 3 4を以て位置決め面 3 3に当接 されると、 通口 4 5は吸入通路 3 2から遮断される。 通路 4 6は駆動軸 1 6の軸 芯に形成され、 通路 4 6を介してクランク室 2 5と遮断体 2 8の内空間とが連通 されている。 放圧通口 4 7は遮断体 2 8の周面に貫設され、 放圧通口 4 7を介し て遮断体 2 8の内空間と収容孔 2 7の内空間とが連通されている。  The suction chamber 38 communicates with the accommodation hole 27 via a communication port 45 formed through the valve forming body 14. Then, when the blocking body 28 is brought into contact with the positioning surface 33 with its blocking surface 34, the opening 45 is blocked from the suction passage 32. The passage 46 is formed in the axis of the drive shaft 16, and the crank chamber 25 and the inner space of the shutoff 28 communicate with each other through the passage 46. The pressure release port 47 extends through the peripheral surface of the blocking body 28, and the internal space of the blocker 28 and the internal space of the housing hole 27 are communicated through the pressure releasing port 47.
制御通路 4 8は吐出室 3 9とクランク室 1 5とを連通する。 容量制御弁 4 9は 制御通路 4 8の途中に設けられている。 検圧通路 5 0は吸入通路 3 2と容量制御 弁 4 9との間に形成されている。  The control passage 48 communicates the discharge chamber 39 with the crank chamber 15. The capacity control valve 49 is provided in the middle of the control passage 48. The pressure detection passage 50 is formed between the suction passage 32 and the displacement control valve 49.
前記吸入室 3 8へ冷媒ガスを導入するための吸入通路 3 2と、 吐出室 3 9から 冷媒ガスを排出する吐出フランジ 5 1 とは、外部冷媒回路 5 2で接続されている。 凝縮器 5 3、膨張弁 5 4及び蒸発器 5 5は外部冷媒回路 5 2上に介在されている。 センサ 5 6は蒸発器 5 5の近傍に設置されている。 センサ 5 6は蒸発器 5 5にお ける温度を検出し、 この検出温度情報がコンピュータ 5 7に送られる。 車両の車 室内の温度を設定するための温度設定器 5 8、 車室の温度を検出するためのセン サ 5 9及びエアコンスィッチ 6 0はコンピュータ 5 7に接続されている。 An external refrigerant circuit 52 connects the suction passage 32 for introducing the refrigerant gas into the suction chamber 38 and the discharge flange 51 for discharging the refrigerant gas from the discharge chamber 39. The condenser 53, the expansion valve 54, and the evaporator 55 are interposed on the external refrigerant circuit 52. The sensor 56 is installed near the evaporator 55. The sensor 56 detects the temperature in the evaporator 55, and the detected temperature information is sent to the computer 57. A temperature setting device 58 for setting the temperature in the cabin of the vehicle, a sensor 59 for detecting the temperature in the cabin, and an air conditioner switch 60 are connected to a computer 57.
前記コンピュータ 5 7は、 例えば、 設定器 5 8によって予め指定された室温、 センサ 5 6から得られる検出温度、 センサ 5 9から得られる検出温度及びエアコ ンスィッチ 6 0からのオンあるいはオフ信号等の外部信号に基づいて、 電流値を 駆動回路 6 1に指令する。 駆動回路 6 1は、 指令された電流値を容量制御弁 4 9 に対して出力する。 その他の外部信号としては、 図示しない外気温度を検出する センサやエンジンの回転速度を検出するセンサ等からの信号があり、 これら車両 の環境に応じて電流値は決定される。  The computer 57 includes, for example, a room temperature specified in advance by a setting device 58, a detected temperature obtained from the sensor 56, a detected temperature obtained from the sensor 59, and an external signal such as an ON or OFF signal from the air switch 60. The current value is commanded to the drive circuit 61 based on the signal. The drive circuit 61 outputs the commanded current value to the capacity control valve 49. Other external signals include signals from a sensor (not shown) for detecting the outside air temperature and a sensor for detecting the rotational speed of the engine, and the current value is determined according to the environment of the vehicle.
次に、 前記容量制御弁 4 9について詳細に説明する。  Next, the capacity control valve 49 will be described in detail.
図 1 A、 図 2及び図 3に示すように、 容量制御弁 4 9は、 バルブハウジング 7 1 とソレノイ ド部 7 2とを中央付近において接合して構成されている。 弁室 7 3 は、 バルブハウジング 7 1 とソレノイ ド部 7 2との間に区画形成されている。 弁 室 7 3は、 ポート 7 7及び上流側の制御通路 4 8を介して吐出室 3 9に接続され ている。 弁体 7 4は弁室 7 3に収容されている。 弁孔 7 5は、 弁体 7 4と対向す るように弁室 7 3に開口されている。 弁孔 7 5は、 バルブハウジング 7 1の軸線 方向に延びるように形成されている。 バネ 7 6は、 弁体 7 4と弁室 7 3の内壁面 との間に介装され、 弁孔 7 5を開放する方向に弁体 7 4を付勢している。  As shown in FIG. 1A, FIG. 2 and FIG. 3, the displacement control valve 49 is configured by joining a valve housing 71 and a solenoid 72 near the center. The valve chamber 73 is formed between the valve housing 71 and the solenoid 72. The valve chamber 73 is connected to the discharge chamber 39 via a port 77 and a control passage 48 on the upstream side. The valve element 74 is housed in the valve chamber 73. The valve hole 75 is opened in the valve chamber 73 so as to face the valve element 74. The valve hole 75 is formed so as to extend in the axial direction of the valve housing 71. The spring 76 is interposed between the valve element 74 and the inner wall surface of the valve chamber 73, and biases the valve element 74 in a direction to open the valve hole 75.
感圧室 8 4は、 バルブハウジング 7 1の先端部に区画形成されている。 前記検 圧通路 5 0は感圧室 8 4に接続されている。 従って、 感圧室 8 4は、 ポート 8 6 及び検圧通路 5 0を介して吸入通路 3 2に連通されている。 感圧部材としてのベ ローズ 8 7は感圧室 8 4に収容されている。  The pressure-sensitive chamber 84 is defined at the tip of the valve housing 71. The detection passage 50 is connected to a pressure sensing chamber 84. Therefore, the pressure sensing chamber 84 communicates with the suction passage 32 via the port 86 and the pressure detection passage 50. A bellows 87 as a pressure-sensitive member is housed in a pressure-sensitive chamber 84.
ガイ ド孔 8 8は、 感圧室 8 4と弁室 7 3とを区画するバルブハウジング 7 1の 区画壁 7 1 aに貫設され、 感圧室 8 4と弁室 7 3とを接続する。 ガイ ド孔 8 8は 弁孔 7 5に連続して形成されている。 ロッ ド 8 9は、 ガイ ド孔 8 8に摺動可能に 挿通されるともに、 その先端がベローズ 8 7に嵌合されている。 ロッ ド 8 9は弁 体 7 4に一体形成され、 ベローズ 8 7と弁体 7 4とを作動連結している。 ロッ ドThe guide hole 8 8 is provided through the partition wall 7 1 a of the valve housing 71 that separates the pressure sensing chamber 84 and the valve chamber 73, and connects the pressure sensing chamber 84 and the valve chamber 73. . The guide hole 88 is formed continuously with the valve hole 75. Rod 89 can slide in guide hole 88 It is inserted and its tip is fitted to bellows 87. The rod 89 is integrally formed with the valve element 74 and operatively connects the bellows 87 and the valve element 74. Rod
8 9において弁体 7 4に連続する部分は、 弁孔 7 5における冷媒ガスの通路を確 保するために小径となっている。 The portion of 89 that is continuous with the valve element 74 has a small diameter in order to secure the passage of the refrigerant gas in the valve hole 75.
ポート 9 0は、 バルブハウジング 7 1の区画壁 7 1 aにおいて弁室 7 3と感圧 室 8 4との間に形成されている。 ポート 9 0は弁孔 7 5と直交されている。 ポー ト 9 0は、 下流側の制御通路 4 8を介してクランク室 1 5に連通されている。 つ まり、 ポート 7 7、 弁室 7 3、 弁孔 7 5及びポート 9 0は、 制御通路 4 8の一部 を構成する。  The port 90 is formed between the valve chamber 73 and the pressure-sensitive chamber 84 on the partition wall 71 a of the valve housing 71. Port 90 is orthogonal to valve hole 75. The port 90 communicates with the crank chamber 15 via a control passage 48 on the downstream side. That is, the port 77, the valve chamber 73, the valve hole 75 and the port 90 constitute a part of the control passage 48.
プランジャ室 9 1はソレノィ ド部 7 2に形成され、 その上方開口部には弁室 7 3と区画すべく固定鉄心 9 2が嵌合されている。 プランジャとしての可動鉄心 9 3は略有蓋円筒状をなし、 プランジャ室 9 1においてバルブハウジング 7 1の軸 線方向に往復動可能に収容されている。 追従バネ 9 4は可動鉄心 9 3とプランジ ャ室 9 1の底面との間に介装されている。  The plunger chamber 91 is formed in a solenoid part 72, and a fixed iron core 92 is fitted into an upper opening of the plunger chamber 91 so as to be separated from the valve chamber 73. The movable iron core 93 as a plunger has a substantially closed cylindrical shape, and is accommodated in the plunger chamber 91 so as to be able to reciprocate in the axial direction of the valve housing 71. The follower spring 94 is interposed between the movable iron core 93 and the bottom of the plunger chamber 91.
ガイ ド孔 9 5は区画壁としての固定鉄心 9 2に形成され、 プランジャ室 9 1 と 弁室 7 3とを接続する。 ロッ ド 9 6は弁体 7 4と一体形成されており、 ガイ ド孔 A guide hole 95 is formed in a fixed iron core 92 as a partition wall, and connects the plunger chamber 91 and the valve chamber 73. The rod 96 is formed integrally with the valve body 74 and has a guide hole.
9 5に摺動可能に揷通されている。 ロッ ド 9 6の可動鉄心 9 3側の端部は、 バネ 7 6及び追従バネ 9 4の付勢力によって可動鉄心 9 3に当接されている。従って、 可動鉄心 9 3と弁体 7 4は、 ロッ ド 9 6を介して作動連結されている。 It is slidably passed through 95. The end of the rod 96 on the movable iron core 93 side is in contact with the movable iron core 93 by the urging force of the spring 76 and the follower spring 94. Therefore, the movable iron core 93 and the valve element 74 are operatively connected via the rod 96.
前記プランジャ室 9 1は、 固定鉄心 9 2の側面に形成された連通溝 8 1 、 ノ ノレ ブハウジング 7 1に形成された連通孔 8 2及び容量制御弁 4 9の装着状態におい てリャハウジング 1 3の内壁面との間に形成される小室 8 3を介してポート 9 0 に連通されている。 つまり、 プランジャ室 9 1は、 ポート 9 0と同じクランク室 圧力となっている。  The plunger chamber 91 has a communication groove 81 formed in the side surface of the fixed iron core 92, a communication hole 82 formed in the non-return housing 71, and a capacity control valve 49 when the rear housing 1 is mounted. It communicates with the port 90 through a small chamber 83 formed between the inner wall of the third and the inner wall of the third. That is, the plunger chamber 91 has the same crank chamber pressure as the port 90.
円筒状のコイル 9 7は、 固定鉄心 9 2及び可動鉄心 9 3の外側において両鉄心 9 2 , 9 3を跨ぐように配置されている。 コイル 9 7には、 コンピュータ 5 7の 指令に基づいて駆動回路 6 1から所定の電流が供給されるようになつている。 さて、 図 1 A中の拡大円 A中に示すように、 ロッド 8 9の外周面において、 ガ イ ド孔 8 8の内周面 8 8 aに対向する部分は、 円筒状のシール面 8 9 a と、 シー ル面 8 9 aに対してポート 9 0側 (弁体側) で連続し、 ポート 9 0側に向かって 小径となるテーパ面 8 9 bとにより構成されている。 従って、 ロッ ド 8 9のテー パ面 8 9 bにおいてガイ ド孔 8 8の内周面 8 8 a との間隙は、 ポート 9 0側が感 圧室 8 4側 (駆動部側) より大きくなつている。 The cylindrical coil 97 is disposed outside the fixed iron core 92 and the movable iron core 93 so as to straddle both the iron cores 92 and 93. A predetermined current is supplied to the coil 97 from the drive circuit 61 based on a command from the computer 57. As shown in the enlarged circle A in FIG. 1A, the portion of the outer peripheral surface of the rod 89 facing the inner peripheral surface 88 a of the guide hole 88 has a cylindrical sealing surface 89. a and a tapered surface 89 b continuous with the sealing surface 89 a on the port 90 side (valve body side) and having a smaller diameter toward the port 90 side. Therefore, the gap between the taper surface 89b of the rod 89 and the inner peripheral surface 88a of the guide hole 88 is such that the port 90 side is larger than the pressure sensing chamber 84 side (drive unit side). I have.
同じく拡大円 B中に示すように、 ロッ ド 9 6の外周面においてガイ ド孔 9 5の 内周面 9 5 aに対向する部分は、 円筒状のシール面 9 6 a と、 シール面 9 6に対 して弁室 7 3側 (弁体側) で連続し、 弁室 7 3側に向かって小径となるテーパ面 9 6 bとにより構成されている。 従って、 ロッ ド 9 6のテーパ面 9 6 bにおいて ガイ ド孔 9 5の内周面 9 5 aとの間隙は、 弁室 7 3側がプランジャ室 9 1側 (駆 動部側) より大きくなつている。  Similarly, as shown in the enlarged circle B, the portion of the outer peripheral surface of the rod 96 facing the inner peripheral surface 95a of the guide hole 95 has a cylindrical sealing surface 96a and a sealing surface 96a. And a tapered surface 96b which is continuous on the valve chamber 73 side (valve body side) and has a smaller diameter toward the valve chamber 73 side. Therefore, the gap between the tapered surface 96 b of the rod 96 and the inner peripheral surface 95 a of the guide hole 95 is such that the valve chamber 73 side is larger than the plunger chamber 91 side (drive section side). I have.
ロッ ド 8 9及び口ッ ド 9 6のテーパ面 8 9 b, 9 6 bは、 加工誤差も含めてポ ート 9 0側及び弁室 7 3側が小径となるように加工されている。 つまり、 ロッ ド 8 9, 9 6の外周面を、 ガイ ド孔 8 8, 9 5の内周面 8 8 a , 9 5 a との間隙が 高圧側に大きくなるよう意識して加工したことが、 本実施形態の特徴点である。 なお、 拡大円 A , B中においては理解を容易とするため、 テーパ面 8 9 b, 9 6 bの傾斜を誇張して描いてあるが、 実際には大径側と小径側との径差は数^ m〜 数十 μ m程度である。  The tapered surfaces 89b and 96b of the rod 89 and the mouth 96 are machined so that the port 90 side and the valve chamber 73 side have small diameters including machining errors. In other words, the outer surfaces of the rods 89, 96 were machined so that the gaps between the inner surfaces 88a, 95a of the guide holes 88, 95 became larger on the high pressure side. This is a feature of the present embodiment. In the enlarged circles A and B, the slopes of the tapered surfaces 89 b and 96 b are exaggerated for easy understanding. However, the diameter difference between the large diameter side and the small diameter side is actually larger. Is about several m to several tens of m.
次に、 前記容量制御弁 4 9の動作について説明する。  Next, the operation of the capacity control valve 49 will be described.
エアコンスィッチ 6 0がオン状態のもと、 車室の温度を検出するためのセンサ 5 9から得られる検出温度が温度設定器 5 8の設定温度以上である場合には、 コ ンピュータ 5 7はソレノィ ド部 7 2の励磁を指令する。 すると、 駆動回路 6 1を 介してコイル 9 7に所定の電流が供給され、 両鉄心 9 2, 9 3間には電流値に応 じた吸引力が生じる。 この吸引力は、 バネ 7 6の付勢力に抗して弁体 7 4に伝達 され、 弁孔 7 5の開度が減少する方向に弁体 7 4に作用する。  If the detected temperature obtained from the sensor 59 for detecting the temperature of the passenger compartment is equal to or higher than the temperature set by the temperature setting device 58 while the air conditioner switch 60 is on, the computer 57 is connected to the solenoid. Command the excitation of the oscillating section 72. Then, a predetermined current is supplied to the coil 97 via the drive circuit 61, and an attractive force corresponding to the current value is generated between the two cores 92, 93. This suction force is transmitted to the valve element 74 against the urging force of the spring 76, and acts on the valve element 74 in a direction in which the opening of the valve hole 75 decreases.
—方、 このソレノイ ド部 7 2の励磁状態においては、 ベローズ 8 7が吸入通路 3 2から検圧通路 5 0を介して感圧室 8 4に導入される吸入圧力の変動に応じて 変位する。 そして、 このべローズ 8 7の変位がロッ ド 8 9を介して弁体 7 4に伝 えられる。 従って、 容量制御弁 4 9においては、 ソレノィ ド部 7 2からの付勢力、 ベローズ 8 7からの付勢力及びバネ 7 6の付勢力とのバランスにより、 弁孔 7 5 の開度が決定される。 On the other hand, when the solenoid 72 is energized, the bellows 87 It is displaced from 32 according to the fluctuation of the suction pressure introduced into the pressure sensing chamber 84 via the pressure detection passage 50. Then, the displacement of the bellows 87 is transmitted to the valve element 74 via the rod 89. Therefore, in the capacity control valve 49, the opening of the valve hole 75 is determined by the balance between the urging force from the solenoid 72, the urging force from the bellows 87, and the urging force of the spring 76. .
例えば、 センサ 5 9によって検出された温度と設定器 5 8の設定温度との差が 大きい場合には、 冷房負荷が大きい。 コンピュータ 5 7は、 検出温度と設定温度 とに基づいて設定吸入圧力を変更するように電流値を制御する。 すなわち、 コン ピュータ 5 7は、 駆動回路 6 1に対して、 検出温度が高いほど電流値を大きくす るように指令する。 よって、 固定鉄心 9 2と可動鉄心 9 3との間の吸引力が強く なって、弁孔 7 5の開度を小さくする方向へ弁体 7 4に対する付勢力が増大する。 そして、 より低い吸入圧力にて、 弁体 7 4による弁孔 7 5の開閉が行われる。 従 つて、 容量制御弁 4 9は、 電流値が増大されることによって、 より低い吸入圧力 を保持するように作動する。  For example, when the difference between the temperature detected by the sensor 59 and the set temperature of the setting device 58 is large, the cooling load is large. The computer 57 controls the current value so as to change the set suction pressure based on the detected temperature and the set temperature. That is, the computer 57 instructs the drive circuit 61 to increase the current value as the detected temperature increases. Therefore, the suction force between the fixed iron core 92 and the movable iron core 93 increases, and the urging force on the valve element 74 increases in a direction to decrease the opening of the valve hole 75. Then, at a lower suction pressure, the valve body 74 opens and closes the valve hole 75. Therefore, the displacement control valve 49 operates to maintain a lower suction pressure by increasing the current value.
弁孔 7 5の開度が小さくなれば、 吐出室 3 9から制御通路 4 8を経由してクラ ンク室 1 5 へ流入する冷媒ガス量が少なくなる。 この一方で、 クランク室 1 5の 冷媒ガスは、 通路 4 6、 放圧通口 4 7、 収容孔 2 7及び通口 4 5を経由して吸入 室 3 8 へ流出している。 このため、 クランク室 1 5の圧力が低下する。 また、 冷 房負荷が大きい状態では、 吸入室 3 8の圧力も高くて、 クランク室 1 5の圧力と シリンダボア 1 2 aの圧力との差が小さくなる。 このため、 斜板 2 3の傾角が大 きくなる。  If the opening degree of the valve hole 75 becomes smaller, the amount of refrigerant gas flowing from the discharge chamber 39 through the control passage 48 into the crank chamber 15 becomes smaller. On the other hand, the refrigerant gas in the crank chamber 15 flows out to the suction chamber 38 via the passage 46, the pressure release port 47, the accommodation hole 27 and the port 45. For this reason, the pressure in the crank chamber 15 decreases. In a state where the cooling load is large, the pressure in the suction chamber 38 is also high, and the difference between the pressure in the crank chamber 15 and the pressure in the cylinder bore 12a becomes small. For this reason, the inclination angle of the swash plate 23 becomes large.
制御通路 4 8における通過断面積が零、 つまり弁体 7 4が端面 7 4 aを以つて 弁室 7 3の内壁面に当接し、 弁孔 7 5を完全に閉止した状態になると、 吐出室 3 9からクランク室 1 5への高圧冷媒ガスの供給は行われなくなる。 そして、 クラ ンク室 1 5の圧力は吸入室 3 8の圧力とほぼ同一となり、 斜板 2 3の傾角が最大 となって吐出容量は最大となる。  When the passage cross-sectional area in the control passage 48 is zero, that is, when the valve element 74 comes into contact with the inner wall surface of the valve chamber 73 with the end face 74 a and the valve hole 75 is completely closed, the discharge chamber The supply of the high-pressure refrigerant gas from 39 to the crank chamber 15 is stopped. Then, the pressure in the crank chamber 15 becomes almost the same as the pressure in the suction chamber 38, the inclination angle of the swash plate 23 becomes maximum, and the discharge capacity becomes maximum.
逆に、 例えば、 センサ 5 9によって検出された温度と設定器 5 8の設定温度と の差が小さい場合には、 冷房負荷が小さい。 コンピュータ 5 7は、 駆動回路 6 1 に対して、 検出温度が低いほど電流値を小さくするように指令する。 このため、 固定鉄心 9 2と可動鉄心 9 3との間の吸引力が弱くなって、 弁孔 7 &の開度を小 さくする方向への弁体 7 4に対する付勢力が減少する。 そして、 より高い吸入圧 力にて、 弁孔 7 5の開閉が行われる。 従って、 容量制御弁 4 9は、 電流値が減少 されることによって、 より高い吸入圧力を保持するように作動する。 Conversely, for example, the temperature detected by the sensor 59 and the set temperature of the If the difference is small, the cooling load is small. The computer 57 instructs the drive circuit 61 to decrease the current value as the detected temperature is lower. For this reason, the suction force between the fixed iron core 92 and the movable iron core 93 is weakened, and the urging force on the valve element 74 in the direction of decreasing the opening of the valve hole 7 & is reduced. Then, the valve hole 75 is opened and closed with a higher suction pressure. Therefore, the capacity control valve 49 operates so as to maintain a higher suction pressure by reducing the current value.
弁孔 7 5の開度が大きくなれば、 吐出室 3 9からクランク室 1 5へ流入する冷 媒ガス量が多くなり、 クランク室 1 5の圧力が上昇する。 また、 この冷房負荷が 小さい状態では、 吸入室 3 8の圧力が低くて、 クランク室 1 5の圧力とシリンダ ボア 1 2 aの圧力との差が大きくなる。 このため、斜板 2 3の傾角が小さくなる。 冷房負荷がない状態に近づいてゆく と、 蒸発器 5 5における温度がフロスト発 生をもたらす温度に近づくように低下してゆく。 蒸発器 5 5の温度を検出するた めのセンサ 5 6の検出値が設定値以下になると、 コンピュータ 5 7は駆動回路 6 1に対してソレノイ ド部 7 2の消磁を指令する。 この設定温度とは、 蒸発器 5 5 においてフロス トを発生しそうな温度である。 そして、 コイル 9 7への電流の供 給が停止されて、 ソレノイ ド部 7 2が消磁され、 固定鉄心 9 2と可動鉄心 9 3と の吸引力が消失する。  If the degree of opening of the valve hole 75 increases, the amount of coolant gas flowing into the crank chamber 15 from the discharge chamber 39 increases, and the pressure in the crank chamber 15 increases. When the cooling load is small, the pressure in the suction chamber 38 is low, and the difference between the pressure in the crank chamber 15 and the pressure in the cylinder bore 12a increases. For this reason, the inclination angle of the swash plate 23 becomes small. As the cooling load is approached, the temperature at the evaporator 55 decreases so as to approach the temperature at which frost occurs. When the detected value of the sensor 56 for detecting the temperature of the evaporator 55 becomes equal to or less than the set value, the computer 57 instructs the drive circuit 61 to demagnetize the solenoid 72. This set temperature is a temperature at which frost is likely to occur in the evaporator 55. Then, the supply of current to the coil 97 is stopped, the solenoid 72 is demagnetized, and the attractive force between the fixed core 92 and the movable core 93 disappears.
このため、 弁体 7 4はバネ 7 6の付勢力により、 可動鉄心 9 3を介して作用す る追従パネ 9 4の付勢力に抗して下方に移動される。 そして、 弁体 7 4が弁孔 7 5を最大に開いた開度位置に移行する。 よって、 吐出室 3 9の高圧冷媒ガスが、 制御通路 4 8を介してクランク室 1 5へ多量に供給され、 クランク室 1 5の圧力 が高くなる。 このクランク室 1 5の圧力上昇によって、 図 3に示すように、 斜板 2 3の傾角は最小となる。  Therefore, the valve element 74 is moved downward by the urging force of the spring 76 against the urging force of the follower panel 94 acting via the movable iron core 93. Then, the valve element 74 shifts to the opening position where the valve hole 75 is opened to the maximum. Therefore, a large amount of the high-pressure refrigerant gas in the discharge chamber 39 is supplied to the crank chamber 15 via the control passage 48, and the pressure in the crank chamber 15 increases. Due to the pressure increase in the crank chamber 15, the inclination angle of the swash plate 23 is minimized as shown in FIG.
また、 エアコンスィッチ 6 0のオフ信号に基づいて、 コンピュータ 5 7はソレ ノィ ド部 7 2の消磁を指令し、 この消磁によっても、 斜板 2 3の傾角が最小とな る。  Also, based on the OFF signal of the air conditioner switch 60, the computer 57 instructs demagnetization of the solenoid 72, and this demagnetization also minimizes the tilt angle of the swash plate 23.
このように、 容量制御弁 4 9の開閉動作は、 ソレノイ ド部 7 2のコイル 9 7に 対する電流値の大小に応じて変わる。 すなわち、 電流値が大きくなると低い吸入 圧力にて制御通路 4 8の開閉が実行され、 電流値が小さくなると高い吸入圧力に て制御通路 4 8の開閉動作が行われる。 圧縮機は、 設定された吸入圧力を維持す るように斜板 2 3の傾角を変更して、 その吐出容量を変更する。 As described above, the opening / closing operation of the capacity control valve 49 is controlled by the coil 97 of the solenoid 72. It changes according to the magnitude of the current value. That is, when the current value increases, the control passage 48 is opened and closed at a low suction pressure, and when the current value decreases, the control passage 48 opens and closes at a high suction pressure. The compressor changes the inclination of the swash plate 23 so as to maintain the set suction pressure, and changes the discharge capacity.
つまり、容量制御弁 4 9は、電流値を変えて吸入圧力の設定値を変更する役割、 及び吸入圧力に関係なく最小容量運転を行う役割を担っている。 このような容量 制御弁 4 9を具備することにより、 圧縮機は冷凍回路の冷凍能力を変更する役割 を担っている。  That is, the capacity control valve 49 has a role of changing the set value of the suction pressure by changing the current value and a role of performing the minimum capacity operation regardless of the suction pressure. By providing such a capacity control valve 49, the compressor plays a role of changing the refrigeration capacity of the refrigeration circuit.
斜板 2 3の傾角が最小になると、 遮断体 2 8が遮断面 3 4を以つて位置決め面 3 3に当接し、 吸入通路 3 2が遮断される。 この状態では、 吸入通路 3 2におけ る通過断面積が零となり、 外部冷媒回路 5 2から吸入室 3 8への冷媒ガス流入が 阻止される。 遮断体 2 8が吸入通路 3 2と収容孔 2 7 との連通を遮断する閉位置 に配置されたときに、斜板 2 3の傾角は最小となる。 この斜板 2 3の最小傾角は、 0 ° よりも僅かに大きくなるように設定されている。 遮断体 2 8は、 吸入通路 3 2を閉鎖する位置と開放する位置との間で、 斜板 2 3の傾動に連動して配置され る。  When the inclination angle of the swash plate 23 is minimized, the blocking body 28 contacts the positioning surface 33 with the blocking surface 34, and the suction passage 32 is blocked. In this state, the passage cross-sectional area in the suction passage 32 becomes zero, and the flow of the refrigerant gas from the external refrigerant circuit 52 into the suction chamber 38 is prevented. When the blocking body 28 is disposed at the closed position that blocks communication between the suction passage 32 and the accommodation hole 27, the inclination angle of the swash plate 23 is minimized. The minimum inclination angle of the swash plate 23 is set to be slightly larger than 0 °. The blocking body 28 is arranged between the position where the suction passage 32 is closed and the position where the suction passage 32 is opened, in conjunction with the tilt of the swash plate 23.
斜板 2 3の最小傾角は 0 ° ではないため、 最小傾角においても、 シリンダボア 1 2 aから吐出室 3 8への冷媒ガスの吐出は行われている。 シリンダボア 1 2 a から吐出室 3 8へ吐出された冷媒ガスは、 制御通路 4 8を通ってクランク室 1 5 へ流入する。 クランク室 1 5の冷媒ガスは、 通路 4 6、 遮断体 2 8の内部、 放圧 通口 4 7、 収容孔 2 7及び通口 4 5を通って吸入室 3 8へ流入する。 吸入室 3 8 の冷媒ガスは、 シリンダボア 1 2 aへ吸入されて、再度吐出室 3 9へ吐出される。 すなわち、 斜板 2 3の最小傾角では、 吐出圧領域である吐出室 3 9、 制御通路 4 8、 クランク室 1 5、 通路 4 6、 遮断体 2 8の内部、 放圧通口 4 7、 収容孔 2 7、 通口 4 5、 吸入圧領域である吸入室 3 8、 シリンダボア 1 2 aを通過する循 環通路が、 圧縮機内部に形成されている。 そして、 吐出室 3 9、 クランク室 1 5 及び吸入室 3 8の間では、 圧力差が生じている。 従って、 冷媒ガスが前記循環通 路を循環し、 冷媒ガスとともに流動する潤滑油が圧縮機内の各摺動部分を潤滑す る。 Since the minimum inclination angle of the swash plate 23 is not 0 °, the refrigerant gas is discharged from the cylinder bore 12a to the discharge chamber 38 even at the minimum inclination angle. The refrigerant gas discharged from the cylinder bore 12 a into the discharge chamber 38 flows into the crank chamber 15 through the control passage 48. The refrigerant gas in the crank chamber 15 flows into the suction chamber 38 through the passage 46, the inside of the blocker 28, the pressure relief port 47, the housing hole 27, and the port 45. The refrigerant gas in the suction chamber 38 is drawn into the cylinder bore 12a, and is discharged again to the discharge chamber 39. That is, at the minimum inclination angle of the swash plate 23, the discharge chamber 39, the control passage 48, the crank chamber 15, the passage 46, the inside of the blocker 28, the discharge port 47, A circulation passage passing through the hole 27, the inlet port 45, the suction chamber 38 as a suction pressure region, and the cylinder bore 12a is formed inside the compressor. Then, a pressure difference is generated between the discharge chamber 39, the crank chamber 15 and the suction chamber 38. Therefore, the refrigerant gas is The lubricating oil that circulates along the path and flows with the refrigerant gas lubricates the sliding parts in the compressor.
上記構成の本実施形態においては、 次のような効果を奏する。  The present embodiment having the above configuration has the following effects.
( 1 ) 感圧室 8 4側において、 ロッ ド 8 9の外周面 (8 9 a, 8 9 b ) とガイ ド孔 8 8の内周面 8 8 a との間隙は、 高圧側であるポート 9 0側が低圧側である 感圧室 8 4側より大きくなつている。 従って、 流体固着現象がロッ ド 8 9とガイ ド孔 8 8との間で発生されることを防止でき、 容量制御弁 4 9のヒステリシスを 小さくできて容量制御性の低下を防止できる。 その結果、 ソレノイ ド部 7 2を小 型化でき、 圧縮機の小型化を図ることができる。  (1) On the pressure-sensitive chamber 84 side, the gap between the outer peripheral surface (89a, 89b) of the rod 89 and the inner peripheral surface 88a of the guide hole 88 is a port on the high-pressure side. The 90 side is the low pressure side. It is larger than the pressure sensitive chamber 84 side. Therefore, the fluid sticking phenomenon can be prevented from occurring between the rod 89 and the guide hole 88, and the hysteresis of the capacity control valve 49 can be reduced, thereby preventing the capacity controllability from lowering. As a result, the solenoid 72 can be downsized, and the compressor can be downsized.
つまり、 図 4に示すように、 何らかの理由により、 ロッ ド 8 9の軸線がガイ ド 孔 8 8の軸線に対してずれた場合、 ロッ ド 8 9の外周面 (8 9 a, 8 9 b ) とガ ィ ド孔 8 8の内周面 8 8 a との間隙が狭まった図面右側の圧力分布は、 テーパ面 8 9 bからシール面 8 9 a付近に至ると急激に降下される。 一方、 ロッ ド 8 9の 外周面 (8 9 a , 8 9 ) とガイ ド孔 8 8の内周面 8 8 a との間隙が広がった図 面左側の圧力分布は、 テーパ面 8 9 bからシール面 8 9 aの全体にかけて緩やか に降下される。 従って、 ロッ ド 8 9には偏心方向すなわちずれ方向とは逆方向に 横力が生じ、 ガイ ド孔 8 8の軸線に対する口ッ ド 8 9の軸線の偏心すなわちずれ は、 自己復帰により修正されることになる。  In other words, as shown in FIG. 4, when the axis of the rod 89 is displaced from the axis of the guide hole 88 for some reason, the outer peripheral surface of the rod 89 (89a, 89b) The pressure distribution on the right side of the drawing, in which the gap between the inner peripheral surface 88a of the guide hole 88 and the inner peripheral surface 88a is narrowed, drops sharply when it reaches the vicinity of the sealing surface 89a from the tapered surface 89b. On the other hand, the pressure distribution on the left side of the drawing where the gap between the outer peripheral surface (89a, 89) of the rod 89 and the inner peripheral surface 88a of the guide hole 88 is widened is from the tapered surface 89b. Slowly descends over the entire sealing surface 89a. Therefore, a lateral force is generated in the rod 89 in the eccentric direction, that is, in the direction opposite to the direction of deviation, and the eccentricity of the axis of the rod 89 with respect to the axis of the guide hole 88 is corrected by self-return. Will be.
( 2 ) ソレノイ ド部 7 2側において、 ロッ ド 9 6の外周面 ( 9 6 a, 9 6 b ) とガイ ド孔 9 6の内周面 9 6 a との間隙は、 高圧側である弁室 7 3側が低圧側で あるプランジャ室 9 1側より大きくなつている。 従って、 前記 (1 ) と同様な作 用 ·効果を奏する。  (2) On the solenoid part 72 side, the gap between the outer peripheral surface (96a, 96b) of the rod 96 and the inner peripheral surface 96a of the guide hole 96 is a valve on the high pressure side. The chamber 73 side is larger than the plunger chamber 91 side which is the low pressure side. Therefore, the same operation and effect as the above (1) can be obtained.
( 3 ) 上記圧縮機は、 吐出冷媒ガスのクランク室 1 5への導入量を調節するこ とにより吐出容量を制御する構成であり、 容量制御弁 4 9の弁室 7 3には高圧な 吐出冷媒ガスが導入されている。 従って、 ロッ ド 9 6とガイ ド孔 9 5との間で生 じる流体固着現象は、 クランク室 1 5からの冷媒ガスの排出量を調節する構成の 圧縮機よりも、 ロッ ド 9 6のガイ ド孔 9 5に対する押し付けの度合いを大きくす る。 本実施形態においては、 このような圧縮機の容量制御弁 4 9に流体固着現象 を阻止する手段を適用しているので、 その効果が特に大きい。 (3) The compressor has a configuration in which the discharge capacity is controlled by adjusting the amount of refrigerant gas discharged into the crank chamber 15, and the high pressure discharge is supplied to the valve chamber 73 of the capacity control valve 49. Refrigerant gas is introduced. Therefore, the fluid sticking phenomenon occurring between the rod 96 and the guide hole 95 is more likely to occur in the rod 96 than in the compressor configured to regulate the amount of refrigerant gas discharged from the crank chamber 15. Increase the degree of pressing against guide holes 9 5 You. In the present embodiment, since the means for preventing the fluid sticking phenomenon is applied to such a capacity control valve 49 of the compressor, the effect is particularly large.
なお、 上記第 1実施形態において、 テーパ面を口ッ ド 8 9, 9 6側でなく、 図 1 Bの拡大円 A ' 及び B ' に示すように、 ガイ ド孔 8 8, 9 5側に形成すること で、 ロッド 8 9, 9 6の外周面とガイ ド孔 8 8, 9 5の内周面との間隙を、 高圧 側が低圧側より広くなるように構成しても良い。 この場合、 テーパ面は高圧側に 向かって大径となる。  In the first embodiment, the tapered surface is not located on the side of the openings 89, 96 but on the side of the guide holes 88, 95 as shown by the enlarged circles A ′ and B ′ in FIG. 1B. By forming, the gap between the outer peripheral surfaces of the rods 89, 96 and the inner peripheral surfaces of the guide holes 88, 95 may be configured such that the high pressure side is wider than the low pressure side. In this case, the diameter of the tapered surface increases toward the high pressure side.
さらに、 図 1 C及び図 1 Dのそれぞれ拡大円 A " 及び B " に示すように、 テー パ面をロッド 8 9, 9 6側及びガイ ド孔 8 8, 9 5側の両方に形成することで、 ロッ ド 8 9, 9 6の外周面とガイ ド孔 8 8, 9 5の内周面との間隙を、 高圧側が 低圧側より広くなるように構成しても良い。  Furthermore, as shown in the enlarged circles A "and B" in Figs. 1C and 1D, the tapered surface must be formed on both the rods 89 and 96 and the guide holes 88 and 95. Thus, the gap between the outer peripheral surfaces of the rods 89 and 96 and the inner peripheral surfaces of the guide holes 88 and 95 may be configured such that the high pressure side is wider than the low pressure side.
しかしながら、 この場合、 図 1 Aにおけるように、 ロッ ド 8 9, 9 6の外周面 側をテーパ面 8 9 b, 9 6 bに加工した方が都合が良い。 その理由は、 ガイ ド孔 側にテーパ面を設ける場合は、 例えば、 ガイ ド孔 8 8, 9 5を区画壁 7 1 a , 9 2に貫設し、 さらに、 狭いガイ ド孔 8 8, 9 5に工具を挿入して、 その内周面を テーパ面に修正加工するような面倒があるからである。  However, in this case, as shown in FIG. 1A, it is more convenient to machine the outer peripheral surfaces of the rods 89, 96 into tapered surfaces 89b, 96b. The reason is that when a tapered surface is provided on the guide hole side, for example, the guide holes 88, 95 penetrate the partition walls 71a, 92, and the narrow guide holes 88, 9 This is because it is troublesome to insert a tool into 5 and modify the inner peripheral surface to a tapered surface.
(第 2実施形態)  (Second embodiment)
図 5 Aにおいては第 2実施形態を示す。 本実施形態においてロッ ド 8 9及び 9 6は、 テーパ面 8 9 b, 9 6 bを軸線方向に複数備えている。 従って、 各テーパ 面 8 9 b, 9 6 bとガイ ド孔 8 8, 9 5の内周面 8 8 a, 9 5 a との間隙は、 高 圧側 (7 3, 9 0 ) が低圧側 (8 4, 9 1 ) より大きくなつている。  FIG. 5A shows a second embodiment. In this embodiment, the rods 89 and 96 have a plurality of tapered surfaces 89b and 96b in the axial direction. Therefore, the gap between each tapered surface 89b, 96b and the inner peripheral surface 88a, 95a of the guide hole 88, 95 is such that the high pressure side (73, 90) is on the low pressure side (73, 90). 8 4, 9 1) It is larger.
本実施形態においても上記第 1実施形態と同様な作用 ·効果を奏する他、 ロッ ド 8 9, 9 6のテーパ面 8 9 b, 9 6 bとガイ ド孔 8 8, 9 5の内周面 8 8 a, 9 5 aとの間の通過断面積が軸線方向に複雑に変化され、 ラピリンスシール的な 作用を奏する。 従って、 高圧側 (7 3, 9 0 ) と低圧側 (8 4, 9 1 ) との間で の冷媒ガスの漏れを防止するのに効果的であり、 容量制御弁 4 9の容量制御性が さらに向上される。 なお、 本第 2実施形態においても、 第 1実施形態の場合と同様、 図 5 Bに示す ように、 複数のテ一パ面を口ッド 8 9 , 9 6側でなく、 ガイ ド孔 8 8 , 9 5側に 形成するようにしても良く、 さらに、 図 5 Cに示すように、 複数のテーパ面を口 ッ ド 8 9, 9 6側及びガイ ド孔 8 8, 9 5側の両方に形成するようにしても良レ、。 In this embodiment, the same operations and effects as those of the first embodiment are provided, and the tapered surfaces 89b and 96b of the rods 89 and 96 and the inner peripheral surfaces of the guide holes 88 and 95 are provided. The cross-sectional area between 8.8a and 95a is complicatedly changed in the axial direction, and acts like a lapilence seal. Therefore, it is effective to prevent the refrigerant gas from leaking between the high pressure side (73, 90) and the low pressure side (84, 91), and the capacity controllability of the capacity control valve 49 is improved. Further improved. In the second embodiment, similarly to the first embodiment, as shown in FIG. 5B, a plurality of taper surfaces are formed on guide holes 8 instead of the mouths 89 and 96 sides. 8 and 95, and a plurality of tapered surfaces may be formed on both the openings 89 and 96 and the guide holes 88 and 95 as shown in FIG. 5C. Good to be formed in,
(第 3実施形態)  (Third embodiment)
図 6 Aにおいては第 3実施形態を示す。 本実施形態の容量制御弁 9 8は、 図示 しないが、 上記第 1及び第 2実施形態の可変容量型圧縮機とは別のタイプの可変 容量型圧縮機に用いられるものである。 容量制御弁 9 8は感圧弁としての機能の みを備え、 感圧部材としてはダイヤフラム 9 9が用いられている。  FIG. 6A shows a third embodiment. Although not shown, the capacity control valve 98 of the present embodiment is used for a variable capacity compressor different from the variable capacity compressors of the first and second embodiments. The capacity control valve 98 has only a function as a pressure sensing valve, and a diaphragm 99 is used as a pressure sensing member.
さて、 拡大円 C中に示すように、 ロッ ド 1 0 0は円柱状をなし、 弁体 7 4とダ ィャフラム 9 9とを作動連結する。 環状溝 1 0 O bは、 ガイ ド孔 8 8に対向する ロッ ド 1 0 0の外周面 1 0 0 aにおいてその周方向に形成され、 複数が軸線方向 に所定間隔で配置されている。  Now, as shown in the enlarged circle C, the rod 100 has a cylindrical shape, and operatively connects the valve element 74 and the diaphragm 99. The annular groove 100 Ob is formed in the outer circumferential surface 100 a of the rod 100 facing the guide hole 88 in the circumferential direction thereof, and a plurality of annular grooves are arranged at predetermined intervals in the axial direction.
本実施形態においては、 ロッ ド 1 0 0の外周面 1 0 ◦ a とガイ ド孔 8 8の内周 面 8 8 a との間隙において、 環状溝 1 0 0 bにより周方向の圧力が均一化する。 その結果、 ロッド 1 0 0の軸線がガイ ド孔 8 8の軸線に対してずれたとしても、 ロッ ド 1 0 0とガイ ド孔 8 8との間で流体固着現象が発生することはない。 従つ て、 本実施形態においても上記第 1実施形態の効果 (1 ) と同様な効果を奏する。 なお、 上記第 3実施形態において環状溝を、 ロッ ド 1 0 0の外周面 1 0 0 aで はなく、 図 6 Bの拡大円 C ' 中に 8 8 bで示されるように、 ガイ ド孔 8 8の内周 面 8 8 aに形成してもよレ、。  In this embodiment, in the gap between the outer peripheral surface 10 0 a of the rod 100 and the inner peripheral surface 88 a of the guide hole 88, the circumferential pressure is made uniform by the annular groove 100 b. I do. As a result, even if the axis of the rod 100 is displaced from the axis of the guide hole 88, the fluid sticking phenomenon does not occur between the rod 100 and the guide hole 88. Therefore, the present embodiment also has the same effect as the effect (1) of the first embodiment. In the third embodiment, the annular groove is not formed on the outer peripheral surface 100 a of the rod 100, but on the guide hole as shown by 88 b in the enlarged circle C ′ in FIG. 6B. It may be formed on the inner peripheral surface 8 8 a of 8 8.
さらに、 図 6 Cの拡大円 C " に示すように、 環状溝を口ッ ド 1 0 0の外周面 1 0 0 a及びガイ ド孔 8 8の内周面 8 8 aの双方に形成しても良い。  Further, as shown in an enlarged circle C "in FIG. 6C, an annular groove is formed on both the outer peripheral surface 100a of the mouth 100 and the inner peripheral surface 88a of the guide hole 88. Is also good.
しかしながら、 環状溝は口ッド 1 0 0の外周面 1 0 0 a側に形成される方が都 合が良い。 その理由は、 例えば、 環状溝をガイ ド孔 8 8の内周面 8 8 a側に設け る場合は、 ガイ ド孔 8 8を区画壁 7 1 aに貫設し、 さらに、 狭いガイ ド孔 8 8に 工具を挿入して、 その内周面 8 8 aに環状溝を形成するような面倒があるからで ある。 However, the annular groove is preferably formed on the outer peripheral surface 100a side of the mouthpiece 100. The reason is that, for example, when an annular groove is provided on the inner peripheral surface 88a side of the guide hole 88, the guide hole 88 extends through the partition wall 71a, and the narrow guide hole Inserting a tool into 8 8 has the trouble of forming an annular groove on its inner peripheral surface 8 8 a. is there.
以上、 本発明を説明してきたが、 本発明の趣旨から逸脱しない範囲で種々の変 更が可能である。 例えば、 本発明は、 電磁弁機能 7 2のみを備えた制御弁におい ても具体化することができる。  The present invention has been described above, but various changes can be made without departing from the spirit of the present invention. For example, the present invention can be embodied in a control valve having only the solenoid valve function 72.

Claims

請求の範囲 The scope of the claims
1. 可変容量型圧縮機の吐出容量を変更するよう吸入圧領域 (3 8) 又は吐出 圧領域 (3 9) と制御圧室 (1 5) とを接続する制御通路 (48) の開度を調節 するために、 前記制御通路 (48) を開閉するよう弁体 (74) が設けられ、 駆 動部 (84, 7 2) が前記弁体 (74) を開閉駆動し、 前記弁体側と前記駆動部 側とを区画する区画壁 (7 1 a, 9 2) に貫設されたガイ ド孔 (88, 9 5) に より前記弁体側と前記駆動部側とが接続され、 前記ガイ ド孔には前記弁体と前記 駆動部とを作動連結するロッド (8 9, 96, 1 00) が摺動可能に挿通された 可変容量型圧縮機の制御弁 (49) において、 1. Open the control passage (48) connecting the suction pressure area (38) or discharge pressure area (39) with the control pressure chamber (15) so that the discharge capacity of the variable displacement compressor is changed. For adjustment, a valve element (74) is provided to open and close the control passage (48), and a driving portion (84, 72) drives the valve element (74) to open and close, and the valve element side and the valve element A guide hole (88, 95) penetrating through a partition wall (71a, 92) that separates the drive unit side connects the valve body side and the drive unit side, and the guide hole In the control valve (49) of the variable displacement compressor in which a rod (89, 96, 100) for operatively connecting the valve body and the drive unit is slidably inserted.
前記口ッ ドの外周面及び前記ガイ ド孔の内周面の少なく とも一方に、 流体固着 現象の発生を防止する手段 (8 9 b, 9 6 b, 88 b, 1 00 b) を設けたこと を特徴とする可変容量型圧縮機用制御弁。  Means (89b, 96b, 88b, 100b) for preventing a fluid sticking phenomenon are provided on at least one of the outer peripheral surface of the mouth and the inner peripheral surface of the guide hole. A control valve for a variable displacement compressor, characterized in that:
2. 前記手段は、 前記ロッ ドの外周面と前記ガイ ド孔の内周面との間隙が、 前 記弁体側或いは前記駆動部側の何れか高圧側に向かって広がるように、 前記口ッ ドの外周面或いは前記ガイ ド孔の内周面の少なく とも一方に形成されたテーパ面 (8 9 b, 9 6 b) を含むことを特徴とする請求項 1に記載の可変容量型圧縮機 用制御弁。 2. The means is arranged so that a gap between an outer peripheral surface of the rod and an inner peripheral surface of the guide hole is widened toward a higher pressure side of the valve body or the drive unit. 2. The variable displacement compressor according to claim 1, further comprising a tapered surface (89 b, 96 b) formed on at least one of an outer peripheral surface of the blade and an inner peripheral surface of the guide hole. Control valve.
3. 前記テーパ面は、 前記ロッ ドの軸線方向に複数が形成されていることを特 徴とする請求項 2に記載の可変容量型圧縮機用制御弁。 3. The control valve for a variable displacement compressor according to claim 2, wherein a plurality of the tapered surfaces are formed in an axial direction of the rod.
4. 前記口ッ ドの外周面を前記弁体側或いは前記駆動部側の何れか高圧側に向 かって小径となるテーパ面としたことを特徴とする請求項 2又は 3に記載の可変 容量型圧縮機用制御弁。 4. The variable displacement compression according to claim 2, wherein an outer peripheral surface of the mouth is a tapered surface having a smaller diameter toward a higher pressure side of the valve body side or the drive unit side. Control valve for machine.
5. 前記手段は、 前記ロッ ド ( 1 00) の外周面或いは前記ガイ ド孔の内周面 (8 8 a) の少なく とも一方において、 その周方向に形成された環状溝 (8 8 b,5. At least one of the outer peripheral surface of the rod (100) and the inner peripheral surface (88a) of the guide hole has an annular groove (88b,
1 00 b)を含むことを特徴とする請求項 1に記載の可変容量型圧縮機用制御弁。 2. The control valve for a variable displacement compressor according to claim 1, wherein the control valve includes 100 b).
6. 前記環状溝 (1 00 b) は前記ロッ ドの外周面に形成されていることを特 徴とする請求項 5に記載の可変容量型圧縮機用制御弁。 6. The control valve for a variable displacement compressor according to claim 5, wherein the annular groove (100b) is formed on an outer peripheral surface of the rod.
7. 前記駆動部は感圧機構を備え、 該感圧機構は前記吸入圧領域又は前記制御 圧室に検圧通路を介して接続される感圧室 (84) と、 該感圧室に配設された感 圧部材 (8 7) とを備え、 前記ロッ ド (8 9) は前記感圧部材 (8 7) と前記弁 体 (74) とを作動連結することを特徴とする請求項 1乃至 6のいずれかに記載 の可変容量型圧縮機用制御弁。 7. The drive unit includes a pressure-sensitive mechanism, the pressure-sensitive mechanism being connected to the suction pressure area or the control pressure chamber via a pressure detection passage, and a pressure-sensitive chamber (84). A pressure-sensitive member (87) provided, wherein the rod (89) operatively connects the pressure-sensitive member (87) and the valve body (74). 7. The control valve for a variable displacement compressor according to any one of claims 6 to 6.
8. 前記駆動部はソレノィ ド部 (7 2) を備え、 該ソレノィ ド部は励磁 ·消磁 によってプランジャ室 (9 1) に収容されたプランジャ (9 3) を動作させ、 前 記ロッ ド (96) は前記プランジャと前記弁体とを作動連結することを特徴とす る請求項 1乃至 6のいずれかに記載の可変容量型圧縮機用制御弁。 8. The drive section has a solenoid section (72), and the solenoid section operates the plunger (93) accommodated in the plunger chamber (91) by excitation and demagnetization. 7.) The control valve for a variable displacement compressor according to claim 1, wherein the plunger operatively connects the plunger and the valve body.
9. 前記駆動部は感圧機構及びソレノイ ド部 (7 2) を備え、 9. The drive unit includes a pressure-sensitive mechanism and a solenoid unit (72),
前記感圧機構は前記吸入圧領域又は前記制御圧室に検圧通路を介して接続され る感圧室 (84) と、 該感圧室に配設された感圧部材 (8 7) とを備え、  The pressure-sensitive mechanism includes a pressure-sensitive chamber (84) connected to the suction pressure area or the control pressure chamber via a pressure detection passage, and a pressure-sensitive member (87) disposed in the pressure-sensitive chamber. Prepare,
前記ソレノイ ド部は励磁 '消磁によってプランジャ室 (9 1 ) に収容されたプ ランジャ (9 3) を動作させ、  The solenoid unit operates the plunger (93) housed in the plunger chamber (91) by excitation and demagnetization.
前記口ッ ドは、 前記感圧部材と前記弁体とを作動連結する第 1のロッ ド部 ( 8 9) と、 前記プランジャと前記弁体とを作動連結する第 2のロッ ド部 (9 6) と を含むことを特徴とする請求項 1乃至 6のいずれかに記載の可変容量型圧縮機用 制御弁。 The mouth includes a first rod portion (89) that operatively connects the pressure-sensitive member and the valve body, and a second rod portion (9) that operatively connects the plunger and the valve body. 6) The control valve for a variable displacement compressor according to any one of claims 1 to 6, comprising:
1 0. 前記制御通路は前記吐出圧領域 (3 9) と前記制御圧室 (1 5) とを接 続することを特徴とする請求項 1乃至 9のいずれかに記載の可変容量型圧縮機。 10. The variable displacement compressor according to any one of claims 1 to 9, wherein the control passage connects the discharge pressure region (39) and the control pressure chamber (15). .
PCT/JP1999/000786 1997-08-27 1999-02-23 Control valve for variable displacement compressor WO2000050775A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP23101097A JP3591234B2 (en) 1997-08-27 1997-08-27 Control valve for variable displacement compressor
US09/600,504 US6443707B1 (en) 1997-08-27 1999-02-23 Control valve for variable displacement compressor
PCT/JP1999/000786 WO2000050775A1 (en) 1997-08-27 1999-02-23 Control valve for variable displacement compressor
EP99905271A EP1081379A4 (en) 1999-02-23 1999-02-23 Control valve for variable displacement compressor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP23101097A JP3591234B2 (en) 1997-08-27 1997-08-27 Control valve for variable displacement compressor
PCT/JP1999/000786 WO2000050775A1 (en) 1997-08-27 1999-02-23 Control valve for variable displacement compressor

Publications (1)

Publication Number Publication Date
WO2000050775A1 true WO2000050775A1 (en) 2000-08-31

Family

ID=14234988

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1999/000786 WO2000050775A1 (en) 1997-08-27 1999-02-23 Control valve for variable displacement compressor

Country Status (2)

Country Link
EP (1) EP1081379A4 (en)
WO (1) WO2000050775A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129042A (en) * 2016-01-19 2017-07-27 サンデン・オートモーティブコンポーネント株式会社 Capacity control valve of variable displacement compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4031945B2 (en) * 2002-04-09 2008-01-09 サンデン株式会社 Volume control valve for variable capacity compressor
JP4422512B2 (en) * 2003-04-09 2010-02-24 株式会社不二工機 Control valve for variable capacity compressor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145141U (en) * 1985-02-28 1986-09-08
JPH04119271A (en) 1990-09-07 1992-04-20 Saginomiya Seisakusho Inc Electromagnetic control valve
JPH0942510A (en) * 1995-07-27 1997-02-14 Daikin Ind Ltd Electric expansion valve for refrigerator and refrigerator

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56120873A (en) 1981-01-29 1981-09-22 Toyooki Kogyo Co Ltd Solenoid vavle
JP2616511B2 (en) 1991-05-27 1997-06-04 株式会社豊田自動織機製作所 Displacement control valve for variable displacement swash plate compressor
JP3186340B2 (en) 1993-06-11 2001-07-11 株式会社豊田自動織機製作所 Clutchless one-sided piston type variable displacement compressor and displacement control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61145141U (en) * 1985-02-28 1986-09-08
JPH04119271A (en) 1990-09-07 1992-04-20 Saginomiya Seisakusho Inc Electromagnetic control valve
JPH0942510A (en) * 1995-07-27 1997-02-14 Daikin Ind Ltd Electric expansion valve for refrigerator and refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1081379A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017129042A (en) * 2016-01-19 2017-07-27 サンデン・オートモーティブコンポーネント株式会社 Capacity control valve of variable displacement compressor

Also Published As

Publication number Publication date
EP1081379A1 (en) 2001-03-07
EP1081379A4 (en) 2004-07-07

Similar Documents

Publication Publication Date Title
JP3432994B2 (en) Control valve for variable displacement compressor
JP3432995B2 (en) Control valve for variable displacement compressor
JP3585148B2 (en) Control valve for variable displacement compressor
JP3728387B2 (en) Control valve
US6361283B1 (en) Displacement control valve
KR970004811B1 (en) Clutchless variable capacity single sided piston swash plate type compressor and method of controlling capacity
US6234763B1 (en) Variable displacement compressor
JP3789023B2 (en) Solenoid control valve
JPH102284A (en) Variable displacement compressor and its control method
JP3591234B2 (en) Control valve for variable displacement compressor
JP3585150B2 (en) Control valve for variable displacement compressor
JP3255008B2 (en) Variable displacement compressor and control method thereof
KR100215155B1 (en) Variable capacity type compressor
JP3254872B2 (en) Clutchless one-sided piston type variable displacement compressor
JP3152015B2 (en) Clutchless one-sided piston type variable displacement compressor and displacement control method thereof
EP1024286A2 (en) Control valve for variable displacement compressor
JPH10274162A (en) Compressor
KR0146771B1 (en) Clutchless single piston type variable displacement compressor
JPH10141221A (en) Variable displacement compressor
WO2000050775A1 (en) Control valve for variable displacement compressor
JP3214354B2 (en) Clutchless variable displacement compressor
JPH10103249A (en) Control valve
JP3255018B2 (en) Clutchless variable displacement compressor and method of assembling the same
JP3254820B2 (en) Clutchless one-sided piston type variable displacement compressor
JPH1054352A (en) Variable displacement compressor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 09600504

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1999905271

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1999905271

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1999905271

Country of ref document: EP