WO2000023671A1 - Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung - Google Patents

Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung Download PDF

Info

Publication number
WO2000023671A1
WO2000023671A1 PCT/EP1999/006821 EP9906821W WO0023671A1 WO 2000023671 A1 WO2000023671 A1 WO 2000023671A1 EP 9906821 W EP9906821 W EP 9906821W WO 0023671 A1 WO0023671 A1 WO 0023671A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel wool
component according
component
fine cement
fine
Prior art date
Application number
PCT/EP1999/006821
Other languages
English (en)
French (fr)
Inventor
Christian Bechtoldt
Rolf-Rainer Schulz
Original Assignee
Dyckerhoff Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dyckerhoff Ag filed Critical Dyckerhoff Ag
Priority to DE59904888T priority Critical patent/DE59904888D1/de
Priority to BR9914712A priority patent/BR9914712A/pt
Priority to US09/807,871 priority patent/US6797370B1/en
Priority to EP99970707A priority patent/EP1141497B1/de
Priority to SK534-2001A priority patent/SK5342001A3/sk
Priority to HU0103879A priority patent/HUP0103879A3/hu
Priority to AT99970707T priority patent/ATE236313T1/de
Publication of WO2000023671A1 publication Critical patent/WO2000023671A1/de
Priority to NO20011621A priority patent/NO20011621L/no
Priority to HK02100317.4A priority patent/HK1038777A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B1/00Producing shaped prefabricated articles from the material
    • B28B1/24Producing shaped prefabricated articles from the material by injection moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28BSHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28B23/00Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects
    • B28B23/0006Arrangements specially adapted for the production of shaped articles with elements wholly or partly embedded in the moulding material; Production of reinforced objects the reinforcement consisting of aligned, non-metal reinforcing elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/02Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
    • E04C2/04Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
    • E04C2/06Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/012Discrete reinforcing elements, e.g. fibres
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C5/00Reinforcing elements, e.g. for concrete; Auxiliary elements therefor
    • E04C5/01Reinforcing elements of metal, e.g. with non-structural coatings
    • E04C5/02Reinforcing elements of metal, e.g. with non-structural coatings of low bending resistance
    • E04C5/04Mats
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0203Arrangements for filling cracks or cavities in building constructions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S264/00Plastic and nonmetallic article shaping or treating: processes
    • Y10S264/90Direct application of fluid pressure differential to shape, reshape, i.e. distort, or sustain an article or preform and heat-setting, i.e. crystallizing of stretched or molecularly oriented portion thereof
    • Y10S264/904Maintaining article in fixed shape during heat-setting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24074Strand or strand-portions
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24058Structurally defined web or sheet [e.g., overall dimension, etc.] including grain, strips, or filamentary elements in respective layers or components in angular relation
    • Y10T428/24124Fibers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24149Honeycomb-like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/24562Interlaminar spaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24628Nonplanar uniform thickness material
    • Y10T428/24636Embodying mechanically interengaged strand[s], strand-portion[s] or strand-like strip[s] [e.g., weave, knit, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/24992Density or compression of components
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249924Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
    • Y10T428/249932Fiber embedded in a layer derived from a water-settable material [e.g., cement, gypsum, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2913Rod, strand, filament or fiber
    • Y10T428/298Physical dimension

Definitions

  • Thin-walled component made of hydraulically hardened cement stone material and process for its production.
  • the invention relates to a thin-walled, flat component of high strength made of hydraulically hardened cement stone material and a method for its production.
  • SIMCON Stimy infiltrated mat concrete
  • These mortars are produced by first producing a flowable fresh mortar from Portland cement, water, sand, microsilica and super plasticizer, which e.g. is poured into a mold in which a steel fiber mat is positioned, the steel fiber mat being soaked in mortar. After hardening, a steel-fiber-reinforced solid mortar was created, which, compared to an unreinforced solid mortar, has a significantly higher ductility and a more favorable crack distribution in the event of overload, which results in greater strength.
  • SIMCON mortars are e.g.
  • SIMCON mortars can only be used to build relatively thick and flat components, e.g. 15 to 20 mm can be produced because the steel fiber mats are relatively thick and the complete pouring of the mats with flowable fresh mortar is relatively difficult.
  • the object of the invention is to provide thin-walled components of high elasticity, in particular with regard to elastic deflection and high working capacity on the basis of hardened cement stone material reinforced with steel fiber mats, and a method for the same To create production with which not only thin-walled, flat, but also any curved or angled shapes of thin components can be produced.
  • the invention provides for the use of commercially available compressed mats made of steel wool.
  • Stainless steel wool mats are preferably used, which have a higher strength and a very low oxidation rate and are therefore suitable for e.g. The effects of water and / or moisture are long-term corrosion-resistant.
  • the stainless steel wool is e.g. made of material no. DIN 1.4113 or 1.4793 or alloyed stainless steel.
  • Different mats have fibers of different fineness; For example, a mat is selected for components ⁇ 5 mm thick, which has an average fiber diameter of 0.08 mm; Coarser, average fiber diameters of e.g. 0.12 mm.
  • the fiber lengths are between about 20 mm and several meters; on average, they are several decimeters.
  • This long-fiber stainless steel wool is elastic and tough.
  • the fibers "have length / diameter ratios (L / D ratios) of more than 1000. Accordingly, this ratio is far above the critical value, at which an increase in the fiber length has a property-improving effect.
  • the mats are very flexible or pliable, have a width of up to Im and are available rolled up on rolls with basis weights of, for example, 800 g / m 2 to 2000 g / m 2 .
  • the mats can be cut with scissors.
  • the stainless steel wool is preferably with Basis weights from 900 to 1000 g / m 2 and with average fiber diameters from 0.08 to 0.12 mm are used.
  • Fine cements are very fine-grained hydraulic binders, which are characterized by their chemical-mineralogical composition and constant and graded grain distribution. They generally consist of the usual cement raw materials, e.g. ground Portland cement clinker and / or ground slag sand and setting regulators; They are manufactured in separate production facilities in cement plants. The individual grinding of the mineral raw materials, the separation of their very fine constituents and their targeted composition, also with respect to the grain sizes and grain distribution, are particularly advantageous.
  • Fine cements based on blastfurnace slag or Portland cement with a steady and graded particle size distribution with a maximum particle size d 95 of ⁇ 24 ⁇ m, preferably ⁇ 16 ⁇ m and an average particle size d 50 of ⁇ 7 ⁇ m, preferably ⁇ 5 ⁇ m are used. These are processed into suspensions by mixing them with water and with at least one so-called super-plasticizer (these are highly effective plasticizers or plasticizers), and in particular also with microsilica and / or pigments and / or inert minerals, e.g. limestone powder and / or quartz powder and / or fly ash mixed according to the same or less fineness as the fine cement.
  • super-plasticizer these are highly effective plasticizers or plasticizers
  • microsilica and / or pigments and / or inert minerals e.g. limestone powder and / or quartz powder and / or fly ash mixed according to the same or less fineness as the fine cement.
  • Microsilica are products that are produced in the manufacture
  • Microsilica have very small grain diameters. It is in the range of approximately 0.1 ⁇ m. Due to this property, they are able to fill the spaces between the cement grains. This significantly increases the packing density in the cement block matrix. Although the grain diameter of the cement used is already in the order of magnitude of ⁇ 9.5 ⁇ m, it is far exceeded by the microsilica particles, which results in the filler effect.
  • microsilica The pozzolanic properties of microsilica are mainly determined by two properties. On the one hand, they have a certain proportion of reactive amorphous silicate components that react with the calcium hydroxide formed during the cement hydration. Secondly, they have a large specific surface area on which these reactions can take place.
  • the action of the microsilica for improving the contact zone between the aggregate and the cement stone matrix does not come into play because the suspensions according to the invention have no silicate aggregate.
  • microsilica is added, for example, in amounts of 10 to 15% by weight, based on the solids content of the suspension, in the form of a dispersion which essentially consists of 50% by weight.
  • Fine cements based on blastfurnace slag are particularly advantageous for the suspensions used according to the invention because, due to their lower reactivity to fine cements based on Portland cement, the fine cements require lower water contents and lower contents of plasticizers and / or flow agents to achieve low-viscosity properties.
  • Particularly suitable liquefiers or flow agents are e.g. the so-called superplasticizers such as lignin sulfonate, naphthali sulfonate, melamine sulfonate, polycarboxylate, which are known as highly effective dispersing agents for the production of fine cement suspensions.
  • superplasticizers such as lignin sulfonate, naphthali sulfonate, melamine sulfonate, polycarboxylate, which are known as highly effective dispersing agents for the production of fine cement suspensions.
  • Plasticizer or flow agent (powder) 0.1 to 2.5, in particular 0.5 to 1.5% by mass;
  • Microsilica (slurry) 0 to 30, in particular 5 to 15% by mass;
  • the low-viscosity suspensions expediently have a water / solids value between 0.4 and 0.6.
  • Their consistency, measured as the Marsh flow time, is from 35 to 75 seconds.
  • a suspension e.g. the required amount of water is placed in a mixing vessel. Then the mixer is started and liquefier or superplasticizer added. The previously weighed dry substances are then added. The mixture is then mixed further and homogenized in the process.
  • the components according to the invention are produced by means of formwork.
  • the steel wool mats which are several millimeters thick, are expediently cut to a desired thickness, e.g. arranged with the formwork elements pressed between the formwork.
  • the compression is possible due to the cotton-like structure and has the effect that a high degree of steel wool filling can be achieved.
  • any thickness, e.g. cross reinforcement can also be realized.
  • the mats are pliable and pliable, they can be adapted and pressed onto surface topographies almost indefinitely. Components or shapes can also be wrapped with it.
  • the mats are inserted into a mold with a fiber orientation in accordance with the expected stress curve or, if necessary, fixed in place on the existing component and pressed to the desired thickness by applying a formwork or the second formwork half with a corresponding contact pressure. This procedure is shown in FIG. 1.
  • the wool 1 is introduced into a first formwork part 2 (process sequence a) and pressed together with a second formwork part 3 (arrow P, process sequence b).
  • the degree of reinforcement volume fraction of the steel wool fibers
  • the degree of reinforcement volume fraction of the steel wool fibers
  • the formworks are sealed at the edges and the suspension is introduced under pressure into the formwork having the pressed steel wool mat, air outlet holes being provided so that the air displaced by the suspension in the formwork can escape.
  • Suspension 5 is pressed or injected from below against gravity into the edge-sealed formwork 2, 3 via an inlet 4 until the formwork is filled. The air can escape upwards through the outlet 6.
  • the thin-walled component consists essentially of cement stone and at least one compressed steel wool mat. It has unusually high strength, plastic deformation, work capacity, energy absorption until it reaches the fracture state and elasticity, which means that such thin components can be used as a self-supporting building material. For example, components with a thickness of less than 10 mm can be produced that have the following properties:
  • thin-walled components can be produced with the process according to the invention with suspensions which normally do not have high bending tensile strengths because of the high water / cement ratio. It is surprising that, according to the method according to the invention, the abovementioned properties are achieved with suspensions which, owing to their comparatively high water / cement ratio, normally do not allow such high bending tensile strengths to be expected. With a steel fiber content of approx. 6% by volume and a very low water cement value of ⁇ 0.4, SIMCON only achieves about half of the bending tensile strength mentioned above. Because of this surprisingly high strength, it is possible to manufacture thin-walled self-supporting components.
  • the thin-walled components essentially consist of cement stone on their surface, while the steel wool fibers only affect the surface to a fraction of the extent despite the contact pressure of the formwork on the finished component.
  • cement-bound molded parts can be produced by the process according to the invention, which are very thin-walled and highly reinforced and which, moreover, can be shaped almost arbitrarily and optionally structured on the surface as desired.
  • Application examples are:
  • components to be protected or concealed as roof and facade cladding as well as for covering or cladding can be used.
  • Such casings can be filled with mineral insulation materials (e.g. foam concrete) and serve as highly effective fire protection clothing. Appropriate shaping allows such plate, shell and molded parts to be stiffened if necessary.
  • mineral insulation materials e.g. foam concrete
  • Appropriate shaping allows such plate, shell and molded parts to be stiffened if necessary.
  • half-shells manufactured in the precast plant can be put over the pipes or steel, wood and plastic components to be sheathed in a manner similar to plastic cable ducts and then joined together.
  • the butt joints can be sealed with commercially available materials and the cavities filled with insulating material via filler necks.
  • the material according to the invention is also suitable as a covering layer, for example for sandwich components. Fire protection doors are an example of such novel sandwich components.
  • the new building material can also be used as an outer skin for reinforced concrete components, this outer skin being used as lost formwork. Due to the factory production of the thin-walled fiber material, a high degree of prefabrication can also be achieved, for example with column and beam formwork, whereby spacers for normal reinforcement can already be integrated.
  • a particular advantage is that such lost formwork makes the post-treatment of the filled reinforced concrete unnecessary, increases the tightness, thereby reducing the rate of carbonation and thus improving the corrosion protection for the reinforcing steel.
  • formwork elements manufactured in the factory the quality of the surface can be controlled much more evenly and better than with in-situ concrete components. Coloring with expensive pigments that are complicated to use is limited to the few millimeter-thick outer skin. A good mechanical connection between the outer skin and filled reinforced concrete could be achieved by knobs or suitable structuring on the inside.
  • the construction material according to the invention can also be considered as a repair material. Complete top coatings or local repairs can be carried out on damaged reinforced concrete surfaces. To do this, the imperfections and cavities are stuffed with steel wool mats, molded, sealed and then injected. Cover layers can also be applied according to the principle of lost formwork and backfilled by injection. Due to the low viscosity of the suspension and the fineness of the binder and due to the filling of the formwork under pressure, even the most complex surface structures can be molded. The invention can therefore also be used for the production of reliefs and sculptures, which is of particular advantage if the objects to be produced are exposed to special mechanical stress.
  • the method according to the invention can be used regardless of the orientation of the component; therefore, in contrast to the SIMCON process, e.g. also overhead applications e.g. possible on the underside of the component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Panels For Use In Building Construction (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Press-Shaping Or Shaping Using Conveyers (AREA)

Abstract

Die Erfindung betrifft ein dünnwandiges Bauteil mit einer Feinstzementsteinmatrix und mindestens einer in der Feinstzementsteinmatrix eingebetteten zusammengepreßten Stahlwollmatte und ferner ein Verfahren zur Herstellung eines dünnwandigen Bauteils, wobei mindestens eine Stahlwollmatte senkrecht zu ihrer Haupterstreckung zusammengepreßt und mit einer Suspension auf Feinstzementbasis injiziert und umgeben wird und wobei die Suspension zum Aushärten gebracht wird.

Description

Dünnwandiges Bauteil aus hydraulisch erhärtetem Zementsteinmaterial sowie Verfahren zu seiner Herstellung.
Die Erfindung betrifft ein dünnwandiges, flächiges Bauteil hoher Festigkeit aus hydraulisch erhärtetem Zementsteinmaterial sowie ein Verfahren zu seiner Herstellung.
Bekannt sind stahlfasermattenbewehrte erhärtete Mörtel unter der englischen Bezeichnung "Slury infiltrated mat concrete" (SIMCON) im folgenden auch SIMCON-Mörtel genannt. Diese Mörtel werden hergestellt, indem zunächst ein fließfähiger Frischmörtel aus Portlandzement, Wasser, Sand, Mikrosilica und Superverflüssiger hergestellt wird, der z.B. in eine Form gegossen wird, in der eine Stahlfasermatte positioniert ist, wobei die Stahlfasermatte mit Mörtel getränkt wird. Nach der Erhärtung ist ein stahlfaser- bewehrter Festmörtel entstanden, der gegenüber einem unbewehrten Festmörtel eine erheblich höhere Duktilität und eine höhere Festigkeit bewirkende günstigere Rißverteilung bei Überbelastung aufweist. Aus SIMCON-Mörteln werden z.B. Deckschichten auf Bauteilen oder verlorene Schalungen erzeugt (ACI Structural Journal/September-Oktober 1997, S. 502-512) . Aus SIMCON-Mörteln können aber lediglich relativ dicke und ebenflächige Bauteile von minimal z.B. 15 bis 20 mm hergestellt werden, weil die Stahlfasermatten relativ dick sind und das vollständige Vergießen der Matten mit fließfähigem Frischmörtel relativ schwierig ist .
Aufgabe der Erfindung ist, dünnwandige Bauteile hoher Elastizität, insbesondere bezüglich elastischer Durchbiegung und hohem Arbeitsvermögen auf der Basis von Stahlfasermatten bewehrtem erhärteten Zementsteinmaterial sowie ein Verfahren zu deren Herstellung zu schaffen, mit dem nicht nur dünnwandige, ebenflächige sondern auch beliebig gekrümmte oder gewinkelte Formen dünner Bauteile herstellbar sind.
Diese Aufgaben werden durch die Merkmale der Ansprüche 1 und 24 gelöst. Vorteilhafte Weiterbildungen der Erfindung werden in den von diesen Ansprüchen abhängigen Unteransprüchen gekennzeichnet .
Die Erfindung sieht vor, handelsübliche zusammengepreßte Matten aus Stahlwolle zu verwenden. Vorzugsweise werden Edelstahlwollmatten verwendet, die eine höhere Festigkeit und eine sehr geringe Oxidationsrate aufweisen und mithin bei z.B. Wasser- und/ oder Feuchtigkeitseinwirkungen langzeitig korrosionsbeständig sind.
Die Edelstahlwolle wird z.B. hergestellt aus dem Werkstoff Nr. DIN 1.4113 oder 1.4793 oder legierten Edelstahlen. Unterschiedliche Matten weisen Fasern unterschiedlicher Feinheit auf; beispielsweise wird für Bauteile ≤ 5 mm Dicke eine Matte gewählt, die einen mittleren Faserdurchmesser von 0,08 mm aufweist; für Bauteile mit größerer Dicke eignen sich gröbere, mittlere Faserdurchmesser von z.B. 0,12 mm. Dabei liegen die Faserlängen zwischen etwa 20 mm und mehreren Metern; im Durchschnitt betragen sie mehrere Dezimeter.
Diese langfaserige Edelstahlwolle ist elastisch und zäh. Die Fasern" haben Längen/Durchmesser-Verhältnisse (L/D-Verhältnisse) von über 1000. Demgemäß liegt dieses Verhältnis weit über dem kritischen Wert, bei dem sich eine Zunahme der Faserlänge noch eigenschaftsverbessernd auswirkt .
Die Matten sind sehr flexibel bzw. biegsam, weisen eine Breite bis zu Im auf und stehen mit Flächengewichten von z.B. 800 g/m2 bis 2000 g/m2 auf Rollen aufgerollt zur Verfügung. Die Matten sind mit einer Schere schneidbar.
Im Rahmen der Erfindung wird die Edelstahlwolle vorzugsweise mit Flächengewichten von 900 bis 1000 g/m2 und mit mittleren Faserdurchmessern von 0,08 bis 0,12 mm verwendet.
In Kombination mit dem ausgewählten und zusammengepreßten Stahl- wollmattenerzeugnis in Form von Stahlwollefasern, insbesondere Edelstahlwolle, wird eine Suspension auf Basis von Feinstzement verwendet .
Feinstzemente sind sehr feinkörnige hydraulische Bindemittel, die durch ihre chemisch-mineralogische Zusammensetzung sowie stetige und abgestufte Kornverteilung charakterisiert sind. Sie bestehen im allgemeinen aus den üblichen Zementrohstoffen, wie z.B. gemahlenem Portlandzementklinker und/oder gemahlenem Hüttensand und Abbindereglern; ihre Herstellung erfolgt in gesonderten Produktionsanlagen in Zementwerken. Besonders vorteilhaft ist die Einzelvermahlung der mineralischen Ausgangsstoffe, die Separation ihrer Feinstbestandteile und deren gezielte Zusammensetzung auch bezüglich der Korngrößen und Kornverteilung.
Das wesentliche Merkmal von Feinstzementen zur Abgrenzung gegenüber konventionellen Normzementen, z.B. nach DIN 1164, ist die vergleichsweise hohe Feinheit dieser Bindemittel bei gleichzeitiger Begrenzung ihres Grδßtkorns, das üblicherweise durch die Angabe des Korndurchmessers bei 95 Masse-% der Mischung d95 angegeben wird.
Vorzügsweise werden Feinstzemente auf Hüttensand- oder Portlandzementbasis mit einer stetigen und abgestuften Kornverteilung mit einem Größtkorn d95 von ≤ 24 μm, vorzugsweise ≤ 16 μm, und einer mittleren Korngröße d50 von ≤ 7 μm, vorzugsweise ≤ 5 μm eingesetzt. Diese werden zu Suspensionen verarbeitet, indem sie mit Wasser und mit mindestens einem sogenannten Superverflüssi- ger (das sind hochwirksame Verflüssiger oder Fließmittel) , sowie insbesondere auch mit Mikrosilica und/oder Pigmenten und/oder inerten Mineralstoffen, z.B. Kalksteinmehl und/oder Quarzmehl und/oder Flugasche entsprechend gleicher oder geringerer Feinheit wie der Feinstzement gemischt werden. Mikrosilica sind Produkte, die bei der Herstellung von Ferro- Silizium anfallen. Sie werden im allgemeinen in Form wäßriger Dispersionen als Zusatzstoff bei Hochleistungsbetonen eingesetzt. Diese Art der Mikrosilica ist bekannt unter dem Namen "Slurry" . Im wesentlichen sind drei von einander unabhängige Wirkungen im Beton mit SilikatZusätzen zu unterscheiden:
Füllereffekt;
Puzzolanische Reaktionen;
Verbesserung der Kontaktzone zwischen Zuschlag und Zement- stein;
Mikrosilica haben sehr kleine Korndurchmesser . Er liegt im Bereich von etwa 0,1 μm. Aufgrund dieser Eigenschaft sind sie in der Lage die Zwischenräume zwischen den Zementkörnern auszufüllen. Dadurch wird die Packungsdichte in der Zementsteinmatrix wesentlich erhöht. Obwohl sich der Korndurchmesser des verwendeten Zements schon in Größenordnungen von < 9,5 μm bewegt, wird er von den Mikrosilicapartikeln noch weit übertroffen, woraus der Füllereffekt resultiert.
Die puzzolanischen Eigenschaften der Mikrosilica werden in der Hauptsache von zwei Eigenschaften bestimmt. Zum einem besitzen sie einen gewissen Anteil an reaktiven amorphen silikatischen Bestandteilen, die mit dem entstehenden Calziumhydroxyd während der Zementhydratation reagieren. Zum anderen weisen sie eine große spezifische Oberfläche auf, an der diese Reaktionen stattfinden können.
Im Rahmen der vorliegenden Erfindung kommt die Wirkung der Mikrosilica zur Verbesserung der Kontaktzone zwischen Zuschlag und Zementsteinmatrix nicht zum Tragen, weil die erfindungsgemäßen Suspensionen keinen silikatischen Zuschlag aufweisen.
Erfindungsgemäß wird Mikrosilica z.B. in Mengen von 10 bis 15 Gew.-% bezogen auf den Feststoffanteil der Suspension in Form einer Dispersion zugegeben, die im wesentlichen aus 50 Gew.-% Mikrosilica und 50 Gew.% Wasser besteht (Slurry) .
Besonders vorteilhaft sind Feinstzemente auf Hüttensandbasis für die erfindungsgemäß verwendeten Suspensionen, weil die Feinstzemente aufgrund ihrer geringeren Reaktivität gegenüber Feinst- zementen auf Portlandzementbasis zur Erzielung niedrigviskoser Eigenschaften geringere Wassergehalte und geringere Gehalte an Verflüssigern und/oder Fließmitteln erfordern.
Besonders geeignete Verflüssiger bzw. Fließmittel sind z.B. die sogenannten Superverflüssiger wie Ligninsulfonat , Naphtali-nsul- fonat, Melaminsulfonat , Polycarboxylat, die als hochwirksame Dispergierhilfsmittel bekannt sind zur Herstellung von Feinst- zementsuspensionen .
Für die Herstellung der erfindungsgemäß verwendeten Suspensionen werden insbesondere folgende Mischungen verwendet:
Feinstzement 30 bis 100, insbesondere 50 bis 80 Masse-%;
Verflüssiger bzw. Fließmittel (flüssig) 0,1 bis 5, insbesondere 0,5 bis 4, 0 Masse-%;
Verflüssiger bzw. Fließmittel (pulverförmig) 0,1 bis 2,5, insbesondere 0,5 bis 1,5 Masse-%;
Mikrosilica (Slurry) 0 bis 30, insbesondere 5 bis 15 Masse-%;
Pigmente
(pulverförmig) 0 bis 5, insbesondere 1 bis 3
Masse- %; inerte Mineralstoffe 0 bis 70, insbesondere 10 bis 30
Masse-%;
Feinstflugasche 0 bis 50, insbesondere 10 bis 30
Masse-%; jeweils bezogen auf den Feststoffanteil der Suspension.
Die niedrigviskosen Suspensionen weisen zweckmäßigerweise einen Wasser/Feststoffwert zwischen 0,4 und 0,6 auf. Ihre Konsistenz, gemessen als Auslaufzeit nach Marsh, beträgt von 35 bis 75 Sekunden.
Zur Herstellung einer Suspension wird z.B. die benötigte Wassermenge in einem Mischgefäß vorgelegt. Dann wird der Mischer in Gang gesetzt und Verflüssiger oder Fließmittel zugegeben. Anschließend erfolgt die Zugabe der zuvor abgewogenen Trockenstoffe. Danach wird die Mischung weitergemischt und dabei homogenisiert .
Die erfindungsgemäßen Bauteile werden nach einer besonderen Aus- führungsform der Erfindung mittels Schalungen hergestellt. Dabei werden die Stahlwollmatten, die mehrere Millimeter dick sind, zweckmäßigerweise auf eine gewünschte Dicke z.B. mit den Schalungselementen zusammengepreßt zwischen den Schalungen angeordnet. Das Zusammenpressen ist aufgrund der watteartigen Struktur möglich und bewirkt, daß ein hoher Stahlwollefüllungs- grad erzielt werden kann. Durch mehrere, übereinander gelegte Matten kann eine beliebig dicke z.B. auch kreuzweise Bewehrung realisiert werden.
Da die Matten biegsam und schmiegsam sind, sind sie nahezu unbegrenzt an Oberflächentopographien anpaßbar und andrückbar. Bauteile oder Formen können damit auch umwickelt werden. Die Matten werden mit einer Faserorientierung entsprechend dem erwarteten Spannungsverlauf in eine Form eingelegt oder gegebenenfalls auf dem vorhandenen Bauteil punktuell fixiert und durch Anbringen einer Schalung bzw. der zweiten Schalungshälfte mit einem entsprechenden Anpreßdruck auf die gewünschte Dicke zusammengepreßt. Diese Verfahrensweise ergibt sich aus Fig. 1. Die Wolle 1 wird in ein erstes Schalungsformteil 2 eingebracht (Verfahrensablauf a) und mit einem zweiten Schalungsformteil 3 zusammengedrückt (Pfeil P, Verfahrensablauf b) . Durch den Grad des Zusammenpressens der Stahlwolle wird der Bewehrungsgrad (Volumenanteil der Stahlwollfasern) gesteuert. Da Stahlwollfasern auch an der Oberfläche des Bauteils vorhanden sind, wird insbesondere in den Fällen, in denen das Bauteil aggressiven Medien ausgesetzt ist, Edelstahlwolle verwendet. Es ist überraschend, daß sich sogar die auf 10 bis 20 % ihres Lieferzustandes zusammengedrückten Stahlwollmatten vollständig und sicher mit Feinstbindemittelsuspensionen verfüllen lassen. Dies ist besonders erstaunlich, weil bei Fasergehalten ab etwa 6 Vol.-% die Matten so stark zusammengepreßt werden müssen, daß sich ein scheinbar undurchdringlicher Filz ergibt.
Zur möglichst vollständigen und kontrollierten Ausfüllung der Hohlräume zwischen den Schalungsteilen werden die Schalungen randlich abgedichtet und die Suspension unter Druck in die die gepreßte Stahlwollmatte aufweisende Schalung eingebracht, wobei Luftaustrittslöcher vorgesehen sind, so daß die durch die Suspension in der Schalung verdrängte Luft entweichen kann.
Dieses Verfahren wird beispielsweise und prinzipiell in Fig. 2 dargestellt. In die randlich abgedichtete Schalung 2,3 wird über einen Einlaß 4 von unten entgegen der Schwerkraft Suspension 5 eingedrückt bzw. injiziert, bis die Schalung ausgefüllt ist. Die Luft kann nach oben durch den Auslaß 6 entweichen. Nach dem Erhärten der Suspension zu Zementstein wird entschalt . Das dünnwandige Bauteil besteht im wesentlichen aus Zementstein und mindestens einer zusammengepreßen Matte aus Stahlwolle. Es weist ungewöhnlich hohe Festigkeiten, plastisches Verformungsvermögen, Arbeitsvermögen, Energieaufnahme bis zum Erreichen des Bruchzustandes und Elastizität auf, woraus resultiert, daß derartige dünne Bauteile als selbsttragendes Baumaterial verwendbar ist. Beispielsweise lassen sich Bauteile unter 10 mm Dicke herstellen, die die folgenden Eigenschaften aufweisen:
Dicke 4 bis 8 mm
Biegezugfestigkeit bis 80 N/mm2
Druckfestigkeit bis 70 N/mm2 Arbeitsvermögen : sehr hoch
Dichtigkeit auch gegen Wasser : sehr hoch
Es ist überraschend, daß nach dem erfindungsgemäßen Verfahren dünnwandige Bauteile herstellbar sind mit Suspensionen, die normalerweise keine hohen Biegezugfestigkeiten wegen des hohen Wasser/Zement-Verhältnisses erbringen. Es ist überraschend, daß nach dem erfindungsgemäßen Verfahren die vorgenannten Eigenschaften mit Suspensionen erzielt werden, die aufgrund ihres verleichsweise hohen Wasser/Zement-Verhältnisses normalerweise keine derartig hohen Biegezugfestigkeiten erwarten lassen. Mit SIMCON wird bei einem Stahlfasergehalt von ca. 6 Vol.-% und einem sehr geringen Wasserzementwert von < 0,4 nur etwa die Hälfte der oben genannten Biegezugfestigkeit erreicht. Aufgrund dieser überraschend hohen Festigkeit ist es möglich, dünnwandige selbsttragende Bauteile herzustellen.
Zudem ist überraschend, daß aufgrund des Injektionsverfahrens die dünnwandigen Bauteile an ihrer Oberfläche im wesentlichen aus Zementstein bestehen, während die Stahlwollfasern trotz des Anpreßdrucks der Schalung am fertigen Bauteil nur zu einem Bruchteil die Oberfläche tangieren.
Nach dem erfindungsgemäßen Verfahren lassen sich verschiedenartige zementgebundene Formteile herstellen, die sehr dünnwandig sowie hochbewehrt sind und die darüberhinaus nahezu beliebig geformt und gegebenenfalls an der Oberfläche beliebig strukturiert werden können. Anwendungsbeispiele sind:
Platten;
Schalen;
Rohre und
Formteile mit nahezu beliebigen Querschnitten;
die als Dach- und Fassadenbekleidungen sowie zur Ummantelung oder Bekleidung zu schützender oder zu verdeckender Bauteile eingesetzt werden können.
Derartige Ummantelungen können gegebenenfalls mit mineralischen Dämmmaterialien (z.B. Schaumbeton) gefüllt werden und als hoch- wirksame Brandschutzbekleidung dienen. Durch entsprechende Formgebung lassen sich solche Platten-, Schalen- und Formteile erforderlichenfalls aussteifen. Um ein hohes Maß an Vorfertigung und einen hohen Rationalisierungsgrad auf der Baustelle zu erreichen, können im Fertigteilwerk hergestellte Halbschalen in ähnlicher Weise wie Kabelkanäle aus Kunststoff über die zu ummantelnden Rohre oder Stahl-, Holz- und Kunststoffbauteile -gestülpt und anschließend zusammengefügt werden. Die Stoßfugen lassen sich mit handelsüblichen Materialien abdichten und die Hohlräume über Einfüllstutzen mit Isoliermaterial füllen.
Wegen der nahezu beliebigen Färb- und Formgebung sowie Oberflächenstrukturierung, insbesondere wegen der hohen Wasserdichtigkeit und der hervorragenden mechanischen Eigenschaften bietet sich der Werkstoff gemäß der Erfindung auch als Deckschicht z.B. für Sandwich-Bauteile -an. Ein Beispiel für solche neuartigen Sandwich-Bauteile sind Feuerschutztüren. Aus den gleichen Gründen kommt das neue Baumaterial auch als Außenhaut für Stahlbetonbauteile in Betracht, wobei diese Außenhaut als verlorene Schalung verwendet wird. Aufgrund der werksmäßigen Herstellung des dünnwandigen Faserwerkstoffs ist auch z.B. bei Stützen- und Balkenschalungen ein hoher Grad der Vorfertigung erreichbar, wobei bereits Abstandhalter für die normale Bewehrung integriert sein können. Ein besonderer Vorteil ist, daß eine solche verlorene Schalung die Nachbehandlung des eingefüllten Stahlbetons entbehrlich macht, die Dichtigkeit erhöht, dadurch die Carbona- tisierungsgeschwindigkeit herabsetzt und somit den Korrosionsschutz für den Bewehrungsstahl verbessert. Bei werksmäßig herstellten Schalelementen läßt sich die Qualität der Oberfläche weit gleichmäßiger und besser steuern als bei Ortbetonbauteilen. Das Einfärben mit teueren und in der Anwendung komplizierten Pigmenten beschränkt sich allein auf die wenige millimeterdicke Außenhaut. Eine gute mechanische Verbindung zwischen Außenhaut und eingefülltem Stahlbeton könnte durch Noppen oder geeignete Strukturierung auf der Innenseite erreicht werden.
Das erfindungsgemäße Baumaterial kommt auch als Instandsset- zungsmaterial in Betracht. Es können an geschädigten Stahlbetonoberflächen komplette Deckbeschichtungen oder örtliche Ausbesserungen ausgeführt werden. Dazu werden die Fehlstellen und Hohlräume mit Stahlwollmatten ausgestopft, geschalt, abgedichtet und anschließend injiziert. Deckschichten können auch nach dem Prinzip verlorener Schalung aufgebracht und durch Injektion hinterfüllt werden. Aufgrund der niedrigen Viskosität der Suspension und der Feinheit des Bindemittels und aufgrund der Füllung der Schalung unter Druck lassen sich auch komplizierteste Oberflächenstrukturen abformen. Daher kann die Erfindung auch für die Herstellung von Reliefs und Skulpturen benutzt werden, was von besonderem Vorteil ist, wenn die herzustellenden Objekte besonderer mechanischer Beanspruchung ausgesetzt sind.
Das erfindungsgemäße Verfahren ist unabhängig von der Orienti- rung des Bauteils anwendbar; daher sind im Gegensatz zum SIMCON- Verfahren z.B. auch Anwendungen über Kopf z.B. an Bauteilunterseiten möglich.
Durch das Zusammendrücken der Stahlwollematten wird offensichtlich ein neues Produkt geschaffen, das für die Zwecke der Erfindung erst dadurch verwendbar wird. In Kombination mit den Suspensionen auf Feinstzementbasis kann die zusammengepreßte Struktur der Stahlwolle derart in Wirkverbindung mit dem erhärteten Suspensionsmaterial treten, daß ein neues Bauteil mit unerwarteten Eigenschaften entsteht.

Claims

Ansprüche
1. Dünnwandiges Bauteil mit einer Feinstzementsteinmatrix und mindestens einer in der Feinstzementsteinmatrix eingebetteten zusammengepreßten Stahlwollmatte .
2. Bauteil nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t , daß die Hauptflächen des Bauteils nahezu stahlwollfaserfrei sind.
3. Bauteil nach Anspruch 1 und/oder 2, d a d u r c h g e k e n n z e i c h n e t , daß die Hauptflächen des Bauteils glatt sind und an den Oberflächen im wesentlichen Feinstzement- steinmaterial vorhanden ist.
4. Bauteil nach einem oder mehreren der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t , daß es mehrere zusammengepreßte Stahlwollmatten übereinander angeordnet aufweist.
5. Bauteil nach Anspruch 4, d a d u r c h g e k e n n z e i c h n e t , daß die Stahlwollmatten derart angeordnet sind, daß die Hauptrichtungen der Stahlwollfasern der Stahlwoll- matten sich kreuzen.
6. Bauteil nach einem oder mehreren der Ansprüche 1 bis 5, g e k e n n z e i c h n e t durch einen Stahlwollmattenanteil von 2 bis 10 Volumen-%, insbesondere von 4 bis 8 Volumen-%.
7. Bauteil nach einem oder mehreren der Ansprüche 1 bis 6, g e k e n n z e i c h n e t durch eine Dicke von 3 bis 10 mm, insbesondere von 4 bis 8 mm.
8. Bauteil nach einem oder mehreren der Ansprüche 1 bis 7, g e k e n n z e i c h n e t durch eine Biegezugfestigkeit von 25 bis 80, insbesondere von 50 bis 75 N/mm2.
9. Bauteil nach einem oder mehreren der Ansprüche 1 bis 8, g e k e n n z e i c h n e t durch eine Druckfestigkeit von 30 bis 75, insbesondere von 45 bis 60 N/mm2.
10. Bauteil nach einem oder mehreren der Ansprüche 1 bis 9, d a d u r c h g e k e n n z e i c h n e t , daß das Bauteil mit Pigmenten gefärbt ist.
11. Bauteil nach einem oder mehreren der Ansprüche 1 bis 10, d a d u r c h g e k e n n z e i c h n e t , daß das Bauteil gekrümmt ausgeformt ist.
12. Bauteil nach einem oder mehreren der Ansprüche 1 bis 11, d a d u r c h g e k e n n z e i c h n e t , daß das Bauteil an seinen Hauptoberflächen eine Schalungsstruktur aufweist.
13. Bauteil nach einem oder mehreren der Ansprüche 1 bis 12, d a d u r c h g e k e n n z e i c h n e t , daß die Stahlwollfasern der Stahlwollmatten einen mittleren Faserdurchmesser von 0,05 bis 0,20, insbesondere von 0,08 bis 0,12 mm aufweisen.
14. Bauteil nach einem oder mehreren der Ansprüche 1 bis 13, d a d u r c h g e k e n n z e i c h n e t , daß die Stahlwollmatten ein Flächengewicht von 600 bis 2000, insbesondere von 700 bis 1100 g/m2 aufweisen.
15. Bauteil nach einem oder mehreren der Ansprüche 1 bis 14, d a d u r c h g e k e n n z e i c h n e t , daß die Stahlwollfasern ein Längen/Durchmesser-Verhältnis von über 1000 aufweisen.
16. Bauteil nach einem oder mehreren der Ansprüche 1 bis 15, d a d u r c h g e k e n n z e i c h n e t , daß die Feinstze- mentsteinmatrix Microsilica in Mengen von 0 bis 30, insbesondere von 5 bis 15 Masse-% aufweist.
17. Bauteil nach einem oder mehreren de_. Ansprüche 1 bis 16, d a d u r c h g e k e n n z e i c h n e t , daß die Feinstzementsteinmatrix Pigmente in Mengen von 0 bis 5, insbesondere von 1 bis 3 Masse-% aufweist.
18. Bauteil nach einem oder mehreren der Ansprüche 1 bis 17, d a d u r c h g e k e n n z e i c h n e t , daß die Feinstzementsteinmatrix inerte Mineralstoffe in Mengen von 0 bis 70, insbesondere von 10 bis 30 Masse-% aufweist.
19. Bauteil nach einem oder mehreren der Ansprüche 1 bis 18, d a d u r c h g e k e n n z e i c h n e t , daß die Feinstzementsteinmatrix Quarzmehl in Mengen von 0 bis 70, insbesondere von 10 bis 30 Masse-% aufweist.
20. Bauteil nach einem oder mehreren der Ansprüche 1 bis 19, d a d u r c h g e k e n n z e i c h n e t , daß die Feinstzementsteinmatrix Feinstflugasche in Mengen von 0 bis 50, insbesondere von 0 bis 30 aufweist.
21. Bauteil nach einem oder mehreren der Ansprüche 1 bis 20, d a d u r c h g e k e n n z e i c h n e t , daß die Feinstzementsteinmatrix eine Portlandzementsteinmatrix ist.
22. Bauteil nach einem oder mehreren der Ansprüche 1 bis 21, d a d u r c h g e k e n n z e i c h n e t , daß die Feinstzementsteinmatrix eine Hüttensandzementstein atrix ist.
23. Bauteil nach einem oder mehreren der Ansprüche 1 bis 22, d a d u r c h g e k e n n z e i c h n e t , daß die zusammengepreßten Stahlwollmatten von 3 bis 10, insbesondere von 4 bis 8 mm dick sind.
24. Verfahren zur Herstellung eines dünnwandigen Bauteils, ins- besondere eines Bauteils nach einem oder mehreren der Ansprüche 1 bis 23, d a d u r c h g e k e n n z e i c h n e t , daß mindestens eine Stahlwollmatte senkrecht zu ihrer Haupterstrek- kung zusammengepreßt und mit einer Suspension auf Feinstzementbasis injiziert und umgeben wird und daß die Suspension zum Aushärten gebracht wird.
25. Verfahren nach Anspruch 24, d a d u r c h g e k e n n z e i c h n e t , daß eine Edelstahlwollmatte verwendet wird.
26. Verfahren nach Anspruch 24 und/oder 25, d a d u r c h- g e k e n n z e i c h n e t , daß eine Stahlwollmatte verwendet wird, die Stahlwollfasern mit mittleren Faserdurchmessern von 0,05 bis 0,20, insbesondere von 0,08 bis 0,12 mm aufweist.
27. Verfahren nach einem oder mehreren der Ansprüche 24 bis 26, d a d u r c h g e k e n n z e i c h n e t , daß eine Stahl- wollmatte verwendet wird, die Faserlängen zwischen 20 mm und mehreren Metern im Durchschnitt von mehreren Dezimetern aufweist .
28. Verfahren nach einem oder mehreren der Ansprüche 24 bis 27, d a d u r c h g e k e n n z e i c h n e t , daß eine Stahlwollmatte verwendet wird, deren Fasern ein Längen/ Durchmesser-Verhältnis von über 1000 aufweisen.
29. Verfahren nach einem oder mehreren der Ansprüche 24 bis 28, d a d u r c h g e k e n n z e i c h n e t , daß Stahlwollmatten verwendet werden, die ein Flächengewicht von 600 bis 2000, insbesondere von 700 bis 1100 g/m2 aufweisen.
30. Verfahren nach einem oder mehreren der Ansprüche 24 bis 29, d a d u r c h g e k e n n z e i c h n e t , daß die Stahlwollmatte bzw. die Stahlwollmatten um 10 bis 20 % ihrer Dicke zusammengepreßt werden.
31. Verfahren nach einem oder mehreren der Ansprüche 24 bis 30, d a d u r c h g e k e n n z e i c h n e t , daß mindestens zwei Stahlwollmatten verwendet werden, wobei die Hauptrichtung der Fasern der einen Stahlwollmatte gewinkelt zur Hauptrichtung der Fasern der anderen Stahlwollmatte angeordnet wird.
32. Verfahren nach einem oder mehreren der /Ansprüche 24 bis 31, d a d u r c h g e k e n n z e i c h n e t , daß eine Feinst- zementsuspension auf Basis von Hüttensand + Anreger verwendet wird.
33. Verfahren nach einem oder mehreren der Ansprüche 24 bis 32, d a d u r c h g e k e n n z e i c h n e t , daß eine Suspension auf Feinstzementbasis auf Basis von Portlandzement verwendet wird.
34. Verfahren nach einem oder mehreren der Ansprüche 24 bis 33, d a d u r c h g e k e n n z e i c h n e t , daß zur Herstellung der Feinstzementsuspension ein Feinstzement mit einer abgestuften Kornverteilung und einem Größtkorn von d95 ≤ 24 μm, vorzugsweise von d95 ≤ 16 μm verwendet wird.
35. Verfahren nach Anspruch 34, d a d u r c h g e k e n n z e i c hn e t , daß ein Feinstzement mit einer mittleren Korngröße von d50 ≤ 7 μm, insbesondere von ≤ 5 μm verwendet wird.
36. Verfahren nach einem oder mehreren der Ansprüche 24 bis 35, d a d u r c h g e k e n n z e i c h n e t , daß Feinstzement mit Wasser und einem hochwirksamen Verflüssiger oder Fließmittel gemischt wird.
37. Verfahren nach Anspruch 36, d a d u r c h g e k e n n z e i c h n e t , daß Microsilica, insbesondere in Form einer Dispersion zugemischt wird.
38. Verfahren nach Anspruch 36 und/oder 37, d a d u r c h g e k e n n z e i c h n e t , daß ein Pigment zugemischt wird.
39. Verfahren nach einem oder mehreren der Ansprüche 36 bis 38, d a d u r c h g e k e n n z e i c h n e t , daß ein Mineral - Stoff mit gleicher oder größerer Feinheit der Feinstzemente zugemischt wird.
40. Verfahren nach einem oder mehreren der Ansprüche 36 bis 39, d a d u r c h g e k e n n z e i c h n e t , daß als hochwirksamer Verlüssiger Naphtalinsulfonat verwendet wird.
41. Verfahren nach einem oder mehereren der Ansprüche 36 bis 40, d a d u r c h g e k e n n z e i c h n e t , daß als Super- verlüssiger ein Polycarboxylat verwendet wird.
42. Verfahren nach einem oder mehreren der Ansprüche 24 bis 41, d a d u r c h g e k e n n z e i c h n e t , daß zur Herstellung der Suspension auf Feinstzementbasis die folgenden Zusammensetzungen verwendet werden:
Feinstzement 30 bis 100, insbesondere 50 bis 80 Masse-%;
Verflüssiger bzw. Fließmittel (flüssig) 0,1 bis 5, insbesondere 0,5 bis 4,0 Masse-%;
Verflüssiger bzw. Fließmittel (pulverförmig) 0,1 bis 2,5, insbesondere 0,5 bis 1,5 Masse-%;
Mikrosilica (Slurry) 0 bis 30, insbesondere 5 bis 15 Masse-%;
Pigmente (pulverförmig) 0 bis 5, insbesondere 1 bis 3
Masse-%; inerte Mineralstoffe 0 bis 70, insbesondere 10 bis 30
Masse-%;
Feinstflugasche 0 bis 50, insbesondere 10 bis 30
Masse-%; bezogen auf den Feststoffgehalt der Suspension.
43. Verfahren nach einem oder mehreren der Ansprüche 24 bis 42, d a d u r c h g e k e n n z e i c h n e t , daß Suspensionen verwendet werden, die einen Wasser/Feststoff-Wert von 0,4 bis 0 , 6 aufweisen .
44. Verfahren nach einem oder mehreren der Ansprüche 24 bis 43, d a d u r c h g e k e n n z e i c h n e t , daß Suspensionen verwendet werden, die eine Konsistenz, gemessen als Auslaufzeit nach Marsh von 35 bis 75 Sekunden aufweisen.
45. Verfahren nach einem oder mehreren der Ansprüche 24 bis 44, d a d u r c h g e k e n n z e i c h n e t , daß zur Herstellung der Suspensionen die benötigte Wassermenge in einem Mischgefäß vorgelegt und unter Mischen der Verflüssiger oder Fließmittel zugegeben wird, wonach anschließend die Zugabe der zuvor abgewogenen Trockenstoffe erfolgt und die Mischung weitergemischt und dabei homogenisiert wird.
46. Verfahren nach einem oder mehreren der Ansprüche 24 bis 45, d a d u r c h g e k e n n z e i c h n e t , daß die Stahlwoll- matten zwischen einer abgedichteten Schalung zusammengepreßt werden und die Feinstzementsuspension unter Druck in die Schalung injiziert wird, wobei ein Luftauslaß vorgesehen ist, so daß die Luft aus dem Schalungsraum während der Injektion entweichen kann.
47. Verfahren nach Anspruch 46, d a d u r c h g e k e n n z e i c h n e t , daß entgegen der Schwerkraft injiziert wird.
48. Verfahren nach einem oder mehreren der Anspüche 24 bis 47, insbesondere nach Anspruch 44 und/oder 45, d a d u r c h g e k e n n z e i c h n e t , daß Bauteile einer Dicke ≤ 10 mm hergestellt werden.
49. Verwendung eines Bauteils nach einem oder mehreren der An- sprüche 1 bis 23, hergestellt nach einem oder mehreren der Ansprüche 24 bis 46 als Dach- und/oder Fassaden- und/oder Wandbekleidung.
50. Verwendung eines Bauteils nach einem oder mehreren der Ansprüche 1 bis 23, hergestellt nach einem oder mehreren der Ansprüche 24 bis 46 als Ummantelung oder Bekleidung zu schützender oder zu verdeckender Bauteile .
51. Verwendung eines Bauteils nach einem oder mehreren der Ansprüche 1 bis 23, hergestellt nach einem oder mehreren der Ansprüche 24 bis 46 in Form von Halbschalen zur Herstellung und Ummantelung von Kanälen, Rohren oder dergleichen.
52. Verwendung eines Bauteils nach einem oder mehreren der Ansprüche 1 bis 23, hergestellt nach einem oder mehreren der Ansprüche 24 bis 46 als Sandwich-Elemente zur Herstellung von Feuerschutztüren.
53. Verwendung eines Bauteils nach einem oder mehreren der Ansprüche 1 bis 23, hergestellt nach einem oder mehreren der Ansprüche 24 bis 46 als Außenhaut für Stahlbetonbauteile.
54. Verwendung nach Anspruch 53, d a d u r c h g e k e n n z e i c hn e t , daß die Außenhaut eine verlorene Schalung ist.
55. Verwendung eines Bauteils nach einem oder mehreren der Ansprüche 1 bis 23, hergestellt nach einem oder mehreren der Ansprüche 24 bis 46 als verlorene Schalung.
56. Verwendung eines Bauteils nach einem oder mehreren der Ansprüche 1 bis 23, hergestellt nach einem oder mehreren der Ansprüche 24 bis 46 als Instandsetzungsmaterial, wobei Fehlstellen und/oder Hohlräume in geschädigten Betonoberflächenbereichen mit mindestens einer Stahlwollmatte ausgestopft wird, wobei die Matte gepreßt wird und anschließend geschalt, abgedichtet und die Suspension injiziert wird.
57. Verwendung eines Bauteils nach einem oder mehreren der Ansprüche 1 bis 23, hergestellt nach einem oder mehreren der Ansprüche 24 bis 46 zum Abformen komplizierter Oberflächenstrukturen .
PCT/EP1999/006821 1998-10-20 1999-09-15 Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung WO2000023671A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
DE59904888T DE59904888D1 (de) 1998-10-20 1999-09-15 Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung
BR9914712A BR9914712A (pt) 1998-10-20 1999-09-15 Componente de parede fina de material de pasta de cimento fino endurecido hidraulicamente, bem como processo para produção do mesmo
US09/807,871 US6797370B1 (en) 1998-10-20 1999-09-15 Thin-walled component made from hydraulically hardened cement paste material and method for the production thereof
EP99970707A EP1141497B1 (de) 1998-10-20 1999-09-15 Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung
SK534-2001A SK5342001A3 (en) 1998-10-20 1999-09-15 Thin-walled component made from hydraulically hardened cement paste material and method for the production thereof
HU0103879A HUP0103879A3 (en) 1998-10-20 1999-09-15 Thin-walled component made from hydraulically hardened cement paste material and method for the production thereof
AT99970707T ATE236313T1 (de) 1998-10-20 1999-09-15 Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung
NO20011621A NO20011621L (no) 1998-10-20 2001-03-30 Tynnvegget element av hydraulisk herdet sementsteinmateriale samt fremgangsmåte til fremstilling av slikt element
HK02100317.4A HK1038777A1 (zh) 1998-10-20 2002-01-16 水硬混凝土薄壁件及其生產方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19848248.5 1998-10-20
DE19848248A DE19848248C2 (de) 1998-10-20 1998-10-20 Dünnwandiges Bauteil aus hydraulisch erhärtetem Zementsteinmaterial sowie Verfahren zu seiner Herstellung

Publications (1)

Publication Number Publication Date
WO2000023671A1 true WO2000023671A1 (de) 2000-04-27

Family

ID=7885015

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1999/006821 WO2000023671A1 (de) 1998-10-20 1999-09-15 Dünnwandiges bauteil aus hydraulisch erhärtetem zementsteinmaterial sowie verfahren zu seiner herstellung

Country Status (16)

Country Link
US (1) US6797370B1 (de)
EP (1) EP1141497B1 (de)
CN (1) CN1324426A (de)
AT (1) ATE236313T1 (de)
BR (1) BR9914712A (de)
CZ (1) CZ20011415A3 (de)
DE (2) DE19848248C2 (de)
ES (1) ES2193785T3 (de)
HK (1) HK1038777A1 (de)
HU (1) HUP0103879A3 (de)
NO (1) NO20011621L (de)
PL (1) PL347332A1 (de)
SK (1) SK5342001A3 (de)
TR (1) TR200101110T2 (de)
WO (1) WO2000023671A1 (de)
ZA (1) ZA200103041B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883577B2 (en) 2003-04-25 2011-02-08 Construction Research And Technology Gmbh Rheology stabilizer for cementitious compositions

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19838948A1 (de) 1998-08-27 2000-03-02 Bosch Gmbh Robert Verfahren und Vorrichtung zur Ansteuerung einer Pumpe eines Bremssystems
DE20203291U1 (de) * 2002-03-03 2003-07-24 P V P Polymer Verarbeitung Und Matte oder Stahlarmierung
DE102004062656A1 (de) * 2004-12-24 2006-07-06 Metten Stein + Design Gmbh & Co. Kg Verfahren zum Herstellen von Betonsteinen oder Betonplatten
FR2921358B1 (fr) * 2007-09-25 2010-10-01 Lafarge Sa Beton a faible teneur en clinker
DE102008028030A1 (de) 2008-06-12 2009-12-24 BSH Bosch und Siemens Hausgeräte GmbH Verfahren und Einrichtung zum Bestimmen von Schaum in einer Waschmaschine
AT513819B1 (de) * 2012-12-28 2015-07-15 Austrotherm Gmbh Bauplatte
WO2016158008A1 (ja) * 2015-04-01 2016-10-06 住友電工スチールワイヤー株式会社 コンクリート補強用成形体、その製造方法、コンクリート補強用成形体の包装構造及び繊維補強コンクリートの混練方法
DE202019100581U1 (de) * 2019-01-31 2020-05-04 Hartmann Hauke Gebäude mit einer Wand und einer auf dieser Wand aufliegenden Decke, Gebäude mit einer Wand, Bewehrungselement, Bewehrungsbauteil und Bewehrungsbaugruppe

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217963A1 (de) * 1972-04-14 1973-10-31 Koch Karl Heinz Bewehrtes leimgefuege
DE2409231A1 (de) * 1974-02-27 1975-09-04 Heidelberg Portland Zement Verfahren zur herstellung von durch anorganische bindemittel verfestigten und durch mineralfasern verstaerkten raumformkoerpern
JPS61215239A (ja) * 1985-03-22 1986-09-25 電気化学工業株式会社 超高強度モルタル・コンクリ−ト組成物
US5571628A (en) * 1993-07-23 1996-11-05 Ribbon Technology Corporation Metal fiber preforms and method for making the same
JPH09227191A (ja) * 1996-02-19 1997-09-02 Shimizu Corp 鋼繊維補強高流動高強度コンクリート

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3637457A (en) * 1970-06-08 1972-01-25 Monsanto Co Nylon spun bonded fabric-concrete composite
DE2455634C2 (de) * 1973-11-24 1983-08-18 Yasuro Ito Verfahren und Vorrichtung zum Herstellen von Betonkörpern
SE7907637L (sv) * 1979-10-29 1981-04-30 Scanovator Handel Matta av metallisk kort fiber
DE3142598C1 (de) * 1981-10-27 1983-06-09 Fa. Carl Freudenberg, 6940 Weinheim Formkoerper aus einem abbindenden,mineralischen Werkstoff und darin eingebetteten Verstaerkungsfasern
US4617219A (en) * 1984-12-24 1986-10-14 Morris Schupack Three dimensionally reinforced fabric concrete
DE4218710C1 (de) * 1992-06-06 1993-11-18 Hochtief Ag Hoch Tiefbauten Anlage zum Herstellen von Tübbingen für eine Tunnelauskleidung
US6174595B1 (en) * 1998-02-13 2001-01-16 James F. Sanders Composites under self-compression

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2217963A1 (de) * 1972-04-14 1973-10-31 Koch Karl Heinz Bewehrtes leimgefuege
DE2409231A1 (de) * 1974-02-27 1975-09-04 Heidelberg Portland Zement Verfahren zur herstellung von durch anorganische bindemittel verfestigten und durch mineralfasern verstaerkten raumformkoerpern
JPS61215239A (ja) * 1985-03-22 1986-09-25 電気化学工業株式会社 超高強度モルタル・コンクリ−ト組成物
US5571628A (en) * 1993-07-23 1996-11-05 Ribbon Technology Corporation Metal fiber preforms and method for making the same
JPH09227191A (ja) * 1996-02-19 1997-09-02 Shimizu Corp 鋼繊維補強高流動高強度コンクリート

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Section Ch Week 198645, Derwent World Patents Index; Class A93, AN 1986-294401, XP002131304 *
DATABASE WPI Section Ch Week 199745, Derwent World Patents Index; Class L02, AN 1997-486245, XP002131305 *
NEVEN KRSTULOVIC-OPARA ET AL: "Flexural Behavior of Composite R.C.-Slurry Infiltrated Mat Concrete (SIMCON) Members", ACI STRUCTURAL JOURNAL, September 1997 (1997-09-01), pages 502 - 512, XP002900799 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7883577B2 (en) 2003-04-25 2011-02-08 Construction Research And Technology Gmbh Rheology stabilizer for cementitious compositions

Also Published As

Publication number Publication date
EP1141497B1 (de) 2003-04-02
ATE236313T1 (de) 2003-04-15
HK1038777A1 (zh) 2002-03-28
PL347332A1 (en) 2002-03-25
DE59904888D1 (de) 2003-05-08
DE19848248C2 (de) 2001-08-30
CN1324426A (zh) 2001-11-28
HUP0103879A2 (hu) 2002-01-28
NO20011621D0 (no) 2001-03-30
NO20011621L (no) 2001-06-18
ES2193785T3 (es) 2003-11-01
BR9914712A (pt) 2001-07-31
EP1141497A1 (de) 2001-10-10
TR200101110T2 (tr) 2001-12-21
ZA200103041B (en) 2002-01-23
CZ20011415A3 (cs) 2002-02-13
HUP0103879A3 (en) 2002-02-28
SK5342001A3 (en) 2001-12-03
DE19848248A1 (de) 2000-05-18
US6797370B1 (en) 2004-09-28

Similar Documents

Publication Publication Date Title
DE60128930T2 (de) Hochfester ,hochduktiler faserbeton
DE102006045091B4 (de) Verfahren zur Herstellung eines Porenbetons sowie verfahrensgemäß hergestellter Porenbeton
WO2000063132A1 (de) Leichtbeton
EP0990628B1 (de) Leichtmauermörtel
EP3997048B1 (de) Trockenputzmischung für eine spritzbare dämmung
DE19848248C2 (de) Dünnwandiges Bauteil aus hydraulisch erhärtetem Zementsteinmaterial sowie Verfahren zu seiner Herstellung
EP2028170B1 (de) Verfahren zur Herstellung von Leichtbeton
DE102006033061A1 (de) Lärmschutzwerkstoff
EP3696153A1 (de) Zementmischung zur bildung eines ultrahochfesten leichtbetons
DE69124091T2 (de) Zusammensetzung zur beschichtung eines substrats
DE102010011713B4 (de) Selbstverdichtender Beton, Verfahren zu dessen Herstellung und dessen Verwendung
AT355976B (de) Baustoffmischung
AT394184B (de) Verfahren zur herstellung von leichtbeton
EP0781733B1 (de) Leichtmauermörtel und Verfahren zu seiner Herstellung
AT389101B (de) Schaumbeton
WO2011113694A1 (de) Selbstverdichtender beton, verfahren zu dessen herstellung und verwendung des selbstverdichtenden betons zur herstellung einer betonschicht
EP4223721B1 (de) Betonmischung sowie verfahren zu deren herstellung, verwendung der betonmischung und verfahren zur herstellung eines betonbauteils und betonbauteil
DE10107822B4 (de) Fliessestrichmischung und Verfahren zur Herstellung von Fliessestrich
DE19741349C2 (de) Ausgleichsmörtel und Verfahren zur Herstellung desselben
DE602005005172T2 (de) Verwendung von neuen schnell aushärtenden mörteln zur herstellung von produkten durch giessen in giessereierdeformen
DE3436215A1 (de) Verfahren zum verfestigen von betonbauwerken, insbesondere von waenden, pfeilern o.dgl. aus ziegelsplittbeton und ein verfestigungsmittel hierfuer sowie auch zum herstellen von filigranen betonwerkteilen in 2-phasen-mischung
EP0799167B1 (de) Bauwerkstoff mit geringeren schwindmassen
DE102020001205A1 (de) Ultrahochfester Hanftauwerkbeton
EP4305002A1 (de) Leichtbetonmischung
EP1452503A1 (de) Zementgebundene Fliessestriche

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 99812384.6

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): AL BA BR BY CN CZ EE HR HU JP LT LV MK MX NO PL RO RU SI SK TR UA US ZA

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1999970707

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2001/03041

Country of ref document: ZA

Ref document number: 200103041

Country of ref document: ZA

WWE Wipo information: entry into national phase

Ref document number: P20010284A

Country of ref document: HR

Ref document number: 5342001

Country of ref document: SK

Ref document number: 2001/01110

Country of ref document: TR

Ref document number: PA/A/2001/003940

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2000 577376

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2001-1415

Country of ref document: CZ

WWE Wipo information: entry into national phase

Ref document number: 09807871

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1999970707

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV2001-1415

Country of ref document: CZ

WWR Wipo information: refused in national office

Ref document number: PV2001-1415

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1999970707

Country of ref document: EP