JPH1149503A - Spherical carbon material and its production - Google Patents

Spherical carbon material and its production

Info

Publication number
JPH1149503A
JPH1149503A JP10018179A JP1817998A JPH1149503A JP H1149503 A JPH1149503 A JP H1149503A JP 10018179 A JP10018179 A JP 10018179A JP 1817998 A JP1817998 A JP 1817998A JP H1149503 A JPH1149503 A JP H1149503A
Authority
JP
Japan
Prior art keywords
carbon material
spherical
pore diameter
less
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10018179A
Other languages
Japanese (ja)
Other versions
JP3390649B2 (en
Inventor
Satoshi Ibaraki
敏 茨木
Chiaki Marumo
千郷 丸茂
Mari Kondo
万里 近藤
Akira Takauchi
章 高内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP01817998A priority Critical patent/JP3390649B2/en
Publication of JPH1149503A publication Critical patent/JPH1149503A/en
Application granted granted Critical
Publication of JP3390649B2 publication Critical patent/JP3390649B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To obtain a spherical carbon material having superior adsorption and/or catalytic action to specified materials existing in liq. and vapor phase systems, having high purity, high strength, and having high packing density and a small pressure drop at the time of packing into a column, etc. SOLUTION: The spherical carbon material has 700-1,600 m<2> /g specific surface area, 0.55-0.80 g/cc packing density, >=40 kg/cm<2> crushing strength, 150-2,000 μm particle diameter and 0.5% ash content. In the carbon material, the volume of pores of 0.01-10 μm pore diameter is <=0.15 cc/g, the volume of pores of <=10 nm pore diameter is 0.20-1.20 cc/g and the volume of pores of <=1 nm pore diameter accounts for >=78 vol.% of the volume of pores of <=10 nm pore diameter.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】液相系、及び気相系に於いて
存在する特定の物質に対し、吸着及びまたは触媒作用を
及ぼし、これら物質を除去または分解するのに適した、
浄水器、超純水製造装置、空気清浄機、悪臭・有機溶剤
等の分離・回収装置、特定物質の分離・精製装置、人工
臓器等に於いて、また医薬品等ファインケミカル分野に
於ける不純物除去、生体内の特定物質の除去等に於いて
好適に使用される吸着材、触媒、触媒担体として使用さ
れる炭素材及びその製造方法に関する。
BACKGROUND OF THE INVENTION The present invention is suitable for removing and decomposing certain substances present in a liquid phase system and a gas phase system by adsorbing and / or catalyzing them.
Removal of impurities in water purifiers, ultrapure water production equipment, air purifiers, equipment for separating and recovering odors and organic solvents, separation and purification equipment for specific substances, artificial organs, etc., and fine chemicals such as pharmaceuticals. The present invention relates to a carbon material used as an adsorbent, a catalyst, and a catalyst carrier suitably used for removing a specific substance in a living body and a method for producing the same.

【0002】[0002]

【従来の技術】従来から水中あるいは大気中に存在する
種々の有害物質、特に低分子化合物等を吸着または分解
除去する吸着材または触媒または触媒担体として炭素材
が注目されていた。しかし、例えば水道中の塩素化合物
は分子量が小さく、濃度が希薄である為に、充分にこれ
らを除去できる吸着性を有する炭素材を得ることができ
なかった。ところが最近になって、低賦活度で比較的比
表面積の小さい炭素材がこれら化合物に対し高い吸着性
を示すことが知られ、特開平6−106161にはヤシ
殻または木材の炭化物、及び石炭等を原料とした低賦活
度の炭素材は有機塩素化合物に対する吸着性が良好であ
ることが記載されている。
2. Description of the Related Art Carbon materials have attracted attention as an adsorbent or a catalyst or a catalyst carrier for adsorbing or decomposing and removing various harmful substances existing in water or in the air, especially low-molecular compounds. However, for example, chlorine compounds in tap water have a small molecular weight and a low concentration, so that it was not possible to obtain an adsorbing carbon material capable of sufficiently removing these compounds. Recently, however, it has been known that a carbon material having a low activation degree and a relatively small specific surface area has a high adsorptivity to these compounds. Japanese Patent Application Laid-Open No. 6-106161 discloses coconut shell or wood carbide, coal and the like. It is described that a low-activation carbon material made of styrene has good adsorptivity to organic chlorine compounds.

【0003】更に、特願平07−296251、日本吸
着学会第9回研究発表会講演要旨集p.47〜48に
は、本発明者らにより、フェノール樹脂粉末を主原料と
して開発した炭素材は、細孔直径0.6〜0.8nmの
細孔が発達し、上水中の有機塩素化合物を効率的に除去
でき、優れた吸着特性を有することが示されている。
Further, Japanese Patent Application No. 07-296251, Abstracts of the 9th Research Presentation Meeting of the Adsorption Society of Japan, p. 47-48, the carbon material developed by the present inventors using phenolic resin powder as a main raw material develops pores having a pore diameter of 0.6-0.8 nm and efficiently converts organic chlorine compounds in tap water. It has been shown to be able to be removed effectively and to have excellent adsorption properties.

【0004】[0004]

【発明が解決しようとする課題】しかしこれらヤシ殻、
石炭、フェノール樹脂等を賦活して得た従来の炭素材
は、ペレット状、または大きな固まりを破砕して得た不
定形の破砕状であり、角が存在する形状である。これら
炭素材を浄水器、超純水製造装置、空気清浄器内等に充
填し低分子化合物除去用として用いると、浄水器、超純
水製造装置、空気清浄器等の長期間断続使用時の圧力変
化、塩素化合物、窒素酸化物、酸素等による酸化分解等
の影響を受け、炭素材の機械的強度の低下が生じ、徐々
に炭素材の角部分が劣化及び粉化し、これが炭素材の特
性を司る微細孔を潰したり、後段にあるフィルターの目
を閉塞すると言った問題があった。
However, these coconut shells,
A conventional carbon material obtained by activating coal, a phenol resin, or the like is in the form of pellets or an irregular crushed shape obtained by crushing a large mass, and has a shape having corners. When these carbon materials are filled into water purifiers, ultrapure water production equipment, air purifiers, etc. and used for removing low molecular compounds, they can be used for long-term intermittent use of water purifiers, ultrapure water production equipment, air purifiers, etc. Under the influence of pressure change, oxidative decomposition by chlorine compounds, nitrogen oxides, oxygen, etc., the mechanical strength of the carbon material decreases, and the corners of the carbon material gradually deteriorate and powder, which is the characteristic of the carbon material. There is a problem that the micropores governing the filter are crushed or the eyes of the filter at the subsequent stage are closed.

【0005】前記の長期間断続使用時の圧力変化とは、
例えば、浄水器、超純水製造装置等が上水道の蛇口の後
段に設置されるため、蛇口開栓時と閉栓時に3kg/c
2以下程度の圧力変化が生じることを意味しており、
通常は炭素材使用中に数百回〜数千回この変化が生じ
る。この圧力変化が生じると、その度毎に装置内に充填
された炭素材はお互いの接触状態が変化し、僅かずつ劣
化していく。
[0005] The pressure change during long-term intermittent use is as follows.
For example, since a water purifier, an ultrapure water production device, and the like are installed after the faucet of the water supply system, 3 kg / c is used when the faucet is opened and closed.
It means that a pressure change of about m 2 or less occurs,
Usually, this change occurs hundreds to thousands of times during the use of the carbon material. Whenever this pressure change occurs, the state of contact between the carbon materials filled in the apparatus changes each time, and the carbon materials gradually deteriorate.

【0006】また、従来の炭素材には球状と称するもの
もあるが、その殆どがバインダー成分と核物質を転動造
粒法と呼ばれる方法で撹拌しつつ、核物質を団子状に2
次凝集させ賦活製造された物であり、造粒品の締まりが
弱く、破砕強度が低く、表面は滑沢ではなく凹凸を有す
るため、他の形状を有する炭素材と同様に前述の様な劣
化を受け易い。
[0006] Some conventional carbon materials are called spherical, but most of them are agitated with a binder component and a nuclear material by a method called tumbling granulation method, and the nuclear material is collected in a ball shape.
It is a product that has been activated by agglomeration, and the granulated product has weak tightening, low crushing strength, and the surface has unevenness instead of lubrication. Easy to receive.

【0007】また、従来の炭素材には、球状であり、表
面が滑沢であるものも存在するが、その粒子直径が15
0μm以下であったり、または破砕強度、耐磨耗強度が
充分大きく無いため、浄水器、超純水製造装置、空気清
浄器等に利用した場合に、その炭素材を通過する水また
は空気等媒体の圧力損失の増加、各装置への充填時の取
り扱いの不便さ、前述と同様な炭素材使用中に於ける劣
化等の問題が生じ、これら用途においては不都合であっ
た。
[0007] Some conventional carbon materials have a spherical shape and a smooth surface.
0μm or less, or the crushing strength and abrasion resistance are not sufficiently large. When used in water purifiers, ultrapure water production equipment, air purifiers, etc., water or air medium that passes through the carbon material However, problems such as an increase in pressure loss, inconvenience in handling at the time of filling each device, and deterioration during use of the carbon material similar to those described above occurred, which was inconvenient in these applications.

【0008】粒子直径が150μm以下である球状炭素
材を用いた場合に於ける、炭素材を通過する水または空
気等の媒体による圧力損失の増加とは、炭素材を浄水
器、超純水製造装置、空気清浄器等に利用する際に、炭
素材を保持する編み目構造を有する不織布、メッシュ等
との関係で生じる。これは粒子直径が150μm以下の
炭素材を保持するためには、それ以下の目開き径の不織
布、メッシュ等を用いる必要があるため、上述の用途に
於いて水、空気等を通過させると、水、空気中の僅かな
微粒子の影響で目詰まりが生じるためである。
When a spherical carbon material having a particle diameter of 150 μm or less is used, an increase in pressure loss due to a medium such as water or air passing through the carbon material means that the carbon material is purified by a water purifier, ultrapure water production. When it is used for an apparatus, an air purifier, or the like, it occurs in relation to a nonwoven fabric, a mesh, or the like having a stitch structure that holds a carbon material. This is because, in order to hold a carbon material having a particle diameter of 150 μm or less, it is necessary to use a nonwoven fabric with a mesh diameter of less than that, a mesh or the like. This is because clogging occurs due to the effect of slight particles in water and air.

【0009】粒子直径が150μm以下である球状炭素
材を用いた場合に於ける、炭素材を各装置へ充填する際
の取り扱いの不便さとは、上述の各装置製造時に、粒子
直径が150μm以下である球状炭素材を容器から取り
出し、カラム等に充填する際に、その粒子が周囲へ舞い
上がり、飛散するため、取り扱い作業者、周囲環境への
悪影響が生じ易いこと等である。
In the case where a spherical carbon material having a particle diameter of 150 μm or less is used, the inconvenience of handling when filling the carbon material into each device is as follows. When a certain spherical carbon material is taken out of a container and packed in a column or the like, the particles soar up and scatter around, which may easily affect the handling operator and the surrounding environment.

【0010】また、従来より炭素材原料とし用いられる
ヤシ殻、石炭等の天然物は、その産出地によりアルカリ
金属類、アルカリ土類金属類、重金属類等の含有量が大
きく異る。このため、これら天然物を原料として製造し
た炭素材を浄水用吸着材、超純水製造用吸着材、医薬品
等ファインケミカル分野に於ける不純物除去用吸着材、
人工臓器用吸着材、生体内の特定物質除去用吸着剤、ま
たは特定物質の分離・精製用吸着材等として使用する際
には、それらの金属類の溶出に充分注意を払わねばせね
ばならないため、その炭素材の洗浄に大きな労力を要す
るという問題があった。また石油系ピッチ、石炭系ピッ
チを原料とする炭素材もあるが、原料ピッチ中にはベン
ツピレンを始めとして数々の芳香族系発ガン物質が存在
する可能性もあり、これらの溶出に対して注意を払わね
ばならないとの問題があった。
[0010] Natural materials such as coconut shells and coal conventionally used as carbon material raw materials differ greatly in the content of alkali metals, alkaline earth metals, heavy metals and the like depending on the place of production. For this reason, carbon materials produced using these natural products as raw materials are adsorbents for water purification, adsorbents for ultrapure water production, adsorbents for impurity removal in the field of fine chemicals such as pharmaceuticals,
When used as an adsorbent for artificial organs, an adsorbent for removing specific substances in a living body, or an adsorbent for separating / purifying specific substances, it is necessary to pay sufficient attention to the elution of such metals. However, there is a problem that a large amount of labor is required for cleaning the carbon material. There are also carbon materials made from petroleum-based pitch and coal-based pitch, but there may be many aromatic carcinogens such as benzopyrene in the raw material pitch. Had to be paid.

【0011】更に、浄水器、超純水製造用、空気清浄器
用、悪臭・有機溶剤等の分離・回収装置用の吸着材とし
て用いる際には、装置をよりコンパクトにするため、充
填密度の高い炭素材が望まれていた。
Further, when used as an adsorbent for water purifiers, ultrapure water production, air purifiers, and separation / recovery devices for foul odors and organic solvents, the packing density is high to make the device more compact. Carbon materials were desired.

【0012】本発明者らは上記の課題を解決すべく鋭意
研究した結果、本発明を完成したものであって、本発明
の目的は液相系、及び気相系に於いて存在する特定成分
に対し、吸着及びまたは触媒作用を及ぼし、浄水器、超
純水製造装置、空気清浄機、悪臭・有機溶剤等の分離・
回収装置、特定物質の分離・精製装置、人工臓器等に於
いて、また医薬品等ファインケミカル分野に於ける不純
物除去、生体内の特定物質の除去等に於いて好適に使用
される吸着材、触媒、触媒担体として使用される炭素
材、及びその製造方法を提供することにある。特に浄水
器用、超純水製造装置用、医薬品等ファインケミカル分
野に於ける不純物除去用等として用いた場合に、低沸点
有機塩素化合物、残留塩素等の除去性能に優れ、炭素材
自体からの不純物溶出が少なく、カラム等に充填して使
用する際の充填操作が容易で、かつ充填密度が高く、長
期間使用しても圧力損失の上昇、粉化が生じにくい炭素
材及びその製造方法を提供することにある。
The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, have completed the present invention. An object of the present invention is to provide specific components existing in a liquid phase system and a gas phase system. Exerts adsorption and / or catalytic action on water, purifiers, ultrapure water production equipment, air purifiers,
Adsorbents, catalysts, and the like that are preferably used in recovery devices, separation / purification devices for specific substances, artificial organs, etc., and in the removal of impurities in the field of fine chemicals such as pharmaceuticals, and the removal of specific substances in living bodies. An object of the present invention is to provide a carbon material used as a catalyst carrier and a method for producing the same. Particularly when used for water purifiers, ultrapure water production equipment, and for removing impurities in the field of fine chemicals such as pharmaceuticals, it excels in the performance of removing low-boiling organic chlorine compounds, residual chlorine, etc., and elutes impurities from the carbon material itself. The present invention provides a carbon material and a method for producing the same, which can be easily packed when used in a column or the like, and have a high packing density, and are less likely to cause an increase in pressure loss and powdering even when used for a long time. It is in.

【0013】本発明の球状炭素材が吸着する特定成分、
又は触媒作用を及ぼす特定成分とは、残留塩素や、トリ
クロロメタン、ブロモジクロロメタン、ジブロモクロロ
メタン、トリブロモメタン等のトリハロメタン類、或は
トリクロロエタン、トリクロロエチレン、フロン、ジク
ロロメタン、四塩化炭素等のハロゲン化炭化水素類、或
はトルエン、ベンゼン、キシレン、n−ヘキサン、シク
ロヘキサン等の炭化水素、或はアセトン、メチルエチル
ケトン等のケトン類、或はメタノール、エタノール等の
アルコール類や各種有機溶剤、或はメチルメルカプタ
ン、硫化水素、二酸化硫黄、酢酸、アセトアルデヒド、
ホルムアルデヒド、アンモニア、クレゾール等の悪臭原
因物質、或は二酸化窒素、一酸化窒素、オゾン等の有毒
ガス、或は蛋白質、糖類等、或は金、白金、コバルト、
イットリウム、ランタン等の金属錯体、又はコロイド等
であり、或は上記物質の複合混合物である。
A specific component to which the spherical carbon material of the present invention adsorbs,
Or, the specific component having a catalytic action is residual chlorine, trihalomethanes such as trichloromethane, bromodichloromethane, dibromochloromethane, and tribromomethane, or halogenated carbon such as trichloroethane, trichloroethylene, freon, dichloromethane, and carbon tetrachloride. Hydrogens, hydrocarbons such as toluene, benzene, xylene, n-hexane, and cyclohexane; ketones such as acetone and methyl ethyl ketone; alcohols such as methanol and ethanol; and various organic solvents; and methyl mercaptan; Hydrogen sulfide, sulfur dioxide, acetic acid, acetaldehyde,
Odor-causing substances such as formaldehyde, ammonia and cresol; or toxic gases such as nitrogen dioxide, nitric oxide and ozone; or proteins and sugars; or gold, platinum and cobalt.
It is a metal complex such as yttrium or lanthanum, or a colloid, or a complex mixture of the above substances.

【0014】これら特定成分は、水道水、家庭排水、工
業排水、河川、湖沼、海水、及び生体内体液の液相や、
大気、排気ガス等の気相に存在するものでもよい。
These specific components include tap water, domestic effluent, industrial effluent, rivers, lakes and marshes, seawater, and the liquid phase of body fluids,
It may exist in the gas phase such as the atmosphere and exhaust gas.

【0015】[0015]

【課題を解決するための手段】上述の目的は、比表面積
700〜1600m2 /g、細孔直径0.01〜10μ
mの細孔容積が0.15cc/g以下、細孔直径10n
m以下の細孔容積が0.20〜1.20cc/gであ
り、かつ細孔直径10nm以下の細孔容積に占める細孔
直径1nm以下の細孔容積の割合が78vol%以上で
あり、充填密度が0.55〜0.80g/cc、破砕強
度が40Kg/cm2 以上であり、灰分量が0.5%以
下の粒子直径150〜2000μmの球状炭素材により
達成される。
The above-mentioned objects are to achieve a specific surface area of 700 to 1600 m 2 / g and a pore diameter of 0.01 to 10 μm.
m having a pore volume of 0.15 cc / g or less and a pore diameter of 10 n
m is 0.20 to 1.20 cc / g, and the ratio of the pore volume having a pore diameter of 1 nm or less to the pore volume having a pore diameter of 10 nm or less is 78 vol% or more. It is achieved by a spherical carbon material having a density of 0.55 to 0.80 g / cc, a crushing strength of 40 kg / cm 2 or more, and an ash content of 0.5% or less and a particle diameter of 150 to 2000 μm.

【0016】また前述の目的は、粒子直径150〜20
00μmの球状樹脂、またはこの樹脂を非酸化性雰囲気
下500℃以上で炭化して得た球状炭化物を、700〜
1100℃の温度範囲で、樹脂または炭化物を基準とす
る重量減少率が5〜70%となる範囲で賦活することを
特徴とする球状炭素材の製造方法により達成される。
The above-mentioned object is to achieve a particle diameter of 150 to 20.
A spherical resin obtained by carbonizing a 00 μm spherical resin or this resin at 500 ° C. or more in a non-oxidizing atmosphere,
It is achieved by a method for producing a spherical carbon material, wherein activation is performed in a temperature range of 1100 ° C. so that a weight reduction rate based on resin or carbide is 5 to 70%.

【0017】ここで球状樹脂とは、例えばアルデヒド
類、フェノール類を主成分とする化学反応により製造
し、球状となったフェノール樹脂等であり、微粉砕した
樹脂の粉をバインダーと混合後、転動造粒法により機械
的に団子状に造粒成形した球状の成形樹脂とは異なる。
Here, the spherical resin is, for example, a spherical phenol resin produced by a chemical reaction containing aldehydes and phenols as main components. It is different from a spherical molding resin mechanically granulated into a dumpling shape by the dynamic granulation method.

【0018】[0018]

【発明の実施の形態】以下に本発明を詳細に記載する。
本発明の球状炭素材を得るには、フェノール樹脂、メラ
ミン樹脂、尿素樹脂、エポキシ樹脂等の熱硬化性樹脂を
利用し得るが、例えば以下の製造方法で得たフェノール
樹脂を出発原料とし得る。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, the present invention will be described in detail.
To obtain the spherical carbon material of the present invention, a thermosetting resin such as a phenol resin, a melamine resin, a urea resin, and an epoxy resin can be used. For example, a phenol resin obtained by the following production method can be used as a starting material.

【0019】球状フェノ−ル樹脂の粒子直径が、150
〜2000μm程度の粒子直径に適するものを製造する
方法としては、特開昭63−48320号公報記載の方
法により、フェノ−ル樹脂、ガラス粒子、SiC、メソ
フェーズ、アルミナ、黒鉛、金雲母等を核物質として、
再度フェノール類、アルデヒド類を分散剤存在下で縮合
反応させ、縮合物が核物質の回りに凝集されて、粉粒体
を生成させた後脱水乾燥して得ることができる。
When the particle diameter of the spherical phenol resin is 150
As a method for producing a material suitable for a particle diameter of about 2,000 μm, phenol resin, glass particles, SiC, mesophase, alumina, graphite, phlogopite, etc. are prepared by the method described in JP-A-63-48320. As a substance,
Phenols and aldehydes are again subjected to a condensation reaction in the presence of a dispersing agent, and the condensate is aggregated around a core substance to produce a powder and a granule, followed by dehydration and drying.

【0020】本発明で使用する粒子直径150〜200
0μmの球状樹脂は、上述の様な方法で得た球状樹脂を
篩い分け、150μm以下及び2000μm以上のもの
を除去して得ることができる。本発明の炭素材製造のた
めに用いる球状フェノール樹脂の粒子直径は通常150
〜2000μmが好適であるが、製造された炭素材の用
途により適する粒子直径は異なる。この時、製造工程中
の炭化処理、賦活処理により、粒子直径は最大3割程度
収縮することを考慮する必要がある。
The particle diameter used in the present invention is 150 to 200.
The spherical resin of 0 μm can be obtained by sieving the spherical resin obtained by the above-mentioned method and removing those having a diameter of 150 μm or less and 2000 μm or more. The particle diameter of the spherical phenol resin used for producing the carbon material of the present invention is usually 150
20002000 μm is preferred, but the suitable particle diameter varies depending on the use of the produced carbon material. At this time, it is necessary to consider that the particle diameter shrinks by up to about 30% due to carbonization and activation during the manufacturing process.

【0021】本発明の炭素材製造のために用いる出発原
料は、上記の様な製法で得るため、従来の炭素材原料で
あるヤシ殻、石炭等の天然物と比較して著しく純度が高
く、かつロット内、ロット間差が少なく安定したものを
得ることができる。
Since the starting material used for producing the carbon material of the present invention is obtained by the above-mentioned production method, the purity is remarkably higher than that of the conventional carbon material raw materials such as coconut shell and coal. In addition, a stable product with little difference between lots and between lots can be obtained.

【0022】本発明の炭素材は球状樹脂、またはこの樹
脂を非酸化性雰囲気下500℃以上で熱処理した炭化物
を、700〜1100℃の温度範囲で炭化物を基準とし
た重量減少率が5〜70%となる範囲で賦活処理を行う
ことにより目的の球状炭素材を得ることができる。この
球状炭素材は微粉化された炭素をバインダーと混合後、
転動造粒法で機械的に造粒成形した従来の球状炭素材と
呼ばれたものとは異なるものである。
The carbon material of the present invention may be a spherical resin or a carbide obtained by heat-treating the resin at a temperature of 500 ° C. or more in a non-oxidizing atmosphere at a temperature range of 700 to 1100 ° C. with a weight reduction rate of 5 to 70 based on the carbide. %, The desired spherical carbon material can be obtained by performing the activation treatment. This spherical carbon material mixes finely divided carbon with a binder,
This is different from the conventional spherical carbon material mechanically granulated and formed by the tumbling granulation method.

【0023】本発明の製造方法の賦活処理を行う前の炭
化は、電気炉、外熱式ガス炉などの熱処理装置を用いて
非酸化性雰囲気下500〜900℃で行われる。この場
合の非酸化性雰囲気とは、例えば、窒素、アルゴン、ヘ
リウム等の雰囲気である。また、この炭化温度は通常5
00〜900℃であるが、好ましくは550〜850
℃、最も好ましくは600〜800℃である。炭化温度
が900℃より高いと次の賦活処理工程での賦活速度が
遅くなり、賦活を効率的に進めることができなくなるの
で好ましくない。
The carbonization before the activation treatment in the production method of the present invention is performed at 500 to 900 ° C. in a non-oxidizing atmosphere using a heat treatment apparatus such as an electric furnace or an externally heated gas furnace. The non-oxidizing atmosphere in this case is, for example, an atmosphere of nitrogen, argon, helium, or the like. The carbonization temperature is usually 5
00 to 900 ° C., preferably 550 to 850
° C, most preferably 600-800 ° C. If the carbonization temperature is higher than 900 ° C., the activation rate in the next activation treatment step becomes slow, and the activation cannot be efficiently advanced, which is not preferable.

【0024】また炭化温度が500℃以下の場合には温
度が低過ぎて炭化があまり進まず好ましくない。但し、
次の賦活時に、賦活処理する原料に対し、充分な熱容量
を有する炉に於いて、充分な雰囲気ガスの供給が可能で
あり、充分な排気ガスの処理能力を有する場合に於いて
は、この炭化行程を省略し、球状樹脂を直接賦活するこ
ともできる。
When the carbonization temperature is 500 ° C. or lower, the temperature is too low and carbonization does not proceed very much, which is not preferable. However,
At the time of the next activation, in a furnace having a sufficient heat capacity with respect to the raw material to be activated, a sufficient atmosphere gas can be supplied, and in a case where the exhaust gas processing capacity is sufficient, the carbonization is performed. The step can be omitted, and the spherical resin can be directly activated.

【0025】本発明の製造方法の賦活処理の温度領域は
700〜1100℃、好ましくは800〜1000℃、
最も好ましくは850〜950℃である。賦活処理の温
度が1100℃より高い場合には、細孔直径1nm以上
の細孔が発達し、また炭素材表面が酸化し、低沸点有機
塩素化合物等の吸着容量及び、残留塩素の酸化還元反応
による分解の活性、または触媒的分解の活性が低下する
とともに、炭素材強度が低下するため好ましくない。
The temperature range of the activation treatment in the production method of the present invention is 700 to 1100 ° C., preferably 800 to 1000 ° C.
Most preferably, it is 850-950 ° C. When the temperature of the activation treatment is higher than 1100 ° C., pores with a pore diameter of 1 nm or more develop, the surface of the carbon material is oxidized, the adsorption capacity of low-boiling organic chlorine compounds and the like, and the oxidation-reduction reaction of residual chlorine. This is not preferred because the decomposition activity or catalytic decomposition activity decreases and the carbon material strength decreases.

【0026】また700℃より低い場合には賦活が十分
に行われず、吸着能力が低く好ましくない。また、賦活
処理には、酸素、二酸化炭素、水蒸気もしくはこれらの
二種類以上の混合ガス、あるいはこれらのガスを含んだ
窒素、アルゴン、ヘリウム等の雰囲気ガス、メタン、プ
ロパン、ブタン等の燃焼排ガスなどを用いることがで
き、炭化物を基準とした重量減少率が5〜70%となる
範囲で賦活を行う。
On the other hand, when the temperature is lower than 700 ° C., the activation is not sufficiently performed, and the adsorption capacity is low, which is not preferable. In the activation treatment, oxygen, carbon dioxide, water vapor or a mixed gas of two or more of these, or an atmosphere gas containing these gases, such as nitrogen, argon, helium, or a combustion exhaust gas, such as methane, propane, butane, etc. Can be used, and the activation is performed in a range where the weight reduction rate based on the carbide is 5 to 70%.

【0027】重量減少率が5%より小さい場合には細孔
の発達が不十分であり、細孔容積が小さすぎて十分な性
能を確保できず好ましくない。また、重量減少率が70
%より大きい場合には低沸点有機塩素化合物等の吸着に
有効に働く細孔直径1nm以下の細孔の割合が小さくな
り、また粒子嵩密度が小さくなり、炭素材を充填した
際、有効に作用する吸着サイトの単位体積当たりの量が
減少し好ましくない。
If the weight reduction ratio is less than 5%, the development of the pores is insufficient, and the pore volume is too small, so that sufficient performance cannot be secured, which is not preferable. In addition, the weight loss rate is 70
%, The proportion of pores having a pore diameter of 1 nm or less that effectively works for the adsorption of low-boiling organochlorine compounds and the like is reduced, and the particle bulk density is reduced. The amount of adsorption sites per unit volume decreases, which is not preferable.

【0028】上記の如き本発明の製造方法により得られ
る、本発明の炭素材は、比表面積700〜1600m2
/g、細孔直径0.01〜10μmの細孔容積が0.1
5cc/g以下、細孔直径10nm以下の細孔容積が
0.20〜1.20cc/gであり、かつ細孔直径10
nm以下の細孔容積に占める細孔直径1nm以下の細孔
容積の割合が78vol%以上、充填密度が0.55〜
0.80g/cc、灰分量が0.5%以下、破砕強度が
40kg/cm2 以上であることを特徴とする粒子直径
150〜2000μmの球状炭素材である。
The carbon material of the present invention obtained by the production method of the present invention as described above has a specific surface area of 700 to 1600 m 2.
/ G, pore volume of pore diameter 0.01 to 10 μm is 0.1
A pore volume of 5 cc / g or less and a pore diameter of 10 nm or less is 0.20 to 1.20 cc / g, and a pore diameter of 10
The ratio of the pore volume having a pore diameter of 1 nm or less to the pore volume of not more than nm is 78 vol% or more, and the packing density is 0.55 to
A spherical carbon material having a particle diameter of 150 to 2000 μm, characterized by having a ash content of 0.80 g / cc, 0.5% or less, and a crushing strength of 40 kg / cm 2 or more.

【0029】本発明の炭素材の比表面積は700〜16
00m2 /g、好ましくは750〜1300m2 /g、
最も好ましくは800〜1200m2 /gである。比表
面積が700m2 /gより小さい場合では、低沸点有機
塩素化合物等の吸着用サイトの量が少な過ぎて吸着容量
が低く好ましくない。さらに、比表面積が1600m2
/g以上では低沸点有機塩素化合物等の吸着に有効に働
くと考えられる細孔直径1nm以下の細孔の割合が小さ
くなり好ましくない。
The specific surface area of the carbon material of the present invention is 700 to 16
00 m 2 / g, preferably 750 to 1300 m 2 / g,
Most preferably, it is 800 to 1200 m 2 / g. If the specific surface area is less than 700 m 2 / g, the amount of adsorption sites for low-boiling organochlorine compounds and the like is too small, and the adsorption capacity is undesirably low. Furthermore, the specific surface area is 1600 m 2
/ G or more is not preferred because the ratio of pores having a pore diameter of 1 nm or less, which is considered to work effectively for the adsorption of low-boiling organic chlorine compounds and the like, becomes small.

【0030】本発明の炭素材の細孔直径0.01〜10
μmの細孔容積は0.15cc/g以下、好ましくは
0.12cc/g、最も好ましくは0.1cc/g以下
である。細孔直径0.01〜10μmの細孔容積が0.
15cc/gより大きいと低沸点有機塩素化合物等以外
の、より分子量の大きい物質も吸着するため、系内に極
低濃度存在する低沸点有機塩素化合物等の吸着容量が低
下するとともに、カラム等に充填して用いる際の充填密
度及び粒子の機械的強度が小さくなり好ましくない。
The carbon material of the present invention has a pore diameter of 0.01 to 10
The micrometer pore volume is 0.15 cc / g or less, preferably 0.12 cc / g, and most preferably 0.1 cc / g or less. The volume of pores having a pore diameter of 0.01 to 10 μm is 0.
If it is more than 15 cc / g, substances having a higher molecular weight other than the low-boiling-point organochlorine compounds and the like are also adsorbed. When used after filling, the packing density and the mechanical strength of the particles are undesirably reduced.

【0031】本発明の炭素材の細孔直径10nm以下の
細孔容積は0.20〜1.20cc/g、好ましくは
0.40〜1.10cc/g、最も好ましくは0.40
〜1.00cc/gである。細孔直径10nm以下の全
細孔容積が0.20cc/g以下だと、細孔直径1nm
以下の細孔容積も小さいため低沸点有機塩素化合物等の
吸着容量が低下するため好ましくない。細孔直径10n
m以下の細孔容積が1.20cc/g以上であるとカラ
ム等に充填して用いる際の充填密度及び粒子の機械的強
度が小さくなり好ましくない。
The pore volume of the carbon material of the present invention having a pore diameter of 10 nm or less is 0.20 to 1.20 cc / g, preferably 0.40 to 1.10 cc / g, and most preferably 0.40 cc / g.
~ 1.00 cc / g. If the total pore volume of pores having a pore diameter of 10 nm or less is 0.20 cc / g or less, the pore diameter is 1 nm.
Since the following pore volumes are also small, the adsorption capacity of low-boiling organic chlorine compounds and the like decreases, which is not preferable. Pore diameter 10n
When the pore volume of m or less is 1.20 cc / g or more, the packing density and the mechanical strength of the particles when packed into a column or the like are undesirably reduced.

【0032】本発明の炭素材の細孔直径10nm以下の
細孔容積に占める細孔直径1nm以下の細孔容積の割合
は78Vol%以上、好ましくは85vol%以上、最
も好ましくは90vol%以上である。低沸点有機塩素
化合物等の低分子量物質の吸着に於いて、特に有効に作
用するのは細孔直径1nm以下の細孔と考えられるの
で、この細孔容積が細孔直径10nm以下の細孔容積の
78Vol%より小さいと低沸点有機塩素化合物等の吸
着容量が低下し、分子量のより大きい物質に対する吸着
量が増加し、これらの吸着による炭素材の破過が進行し
好ましくない。
The ratio of the pore volume having a pore diameter of 1 nm or less to the pore volume having a pore diameter of 10 nm or less in the carbon material of the present invention is 78 vol% or more, preferably 85 vol% or more, and most preferably 90 vol% or more. . In the adsorption of low-molecular-weight substances such as low-boiling-point organochlorine compounds, it is considered that pores having a pore diameter of 1 nm or less are particularly effective. If it is less than 78% by volume, the adsorption capacity of low-boiling-point organochlorine compounds and the like decreases, the amount of adsorption to substances having a higher molecular weight increases, and breakage of the carbon material due to the adsorption proceeds undesirably.

【0033】本発明の炭素材をカラム等の容器に充填し
て用いた際の充填密度は0.55〜0.80g/cc、
好ましくは0.60〜0.75g/cc、最も好ましく
は0.62〜 0.72g/ccである。充填密度が小
さすぎると、単位容積当たりの吸着容量が低下し好まし
くない。また、大きすぎると炭素材の細孔容積が低下し
吸着能力の低下を来すので好ましくない。
When the carbon material of the present invention is packed in a container such as a column and used, the packing density is 0.55 to 0.80 g / cc.
Preferably it is 0.60 to 0.75 g / cc, most preferably 0.62 to 0.72 g / cc. If the packing density is too low, the adsorption capacity per unit volume decreases, which is not preferable. On the other hand, if it is too large, the pore volume of the carbon material is reduced and the adsorption capacity is lowered, which is not preferable.

【0034】本発明の炭素材の灰分量は0.5%以下、
好ましくは0.30%、最も好しくは0.2%以下が良
い。灰分量が0.2%以下であると炭素材からの不純物
溶出量を低く抑えることができ、超純水製造装置、医薬
品等ファインケミカル分野に於ける不純物除去装置用吸
着材、人工臓器用吸着材、生体内の特定物質除去用吸着
剤等に好適に用いることができる。 灰分量が高いと、不
純物溶出濃度が高値を示すことが多く、使用前の炭素材
洗浄に要する労力が非常に大きくなってしまい好ましく
ない。
The ash content of the carbon material of the present invention is 0.5% or less,
Preferably it is 0.30%, most preferably 0.2% or less. When the ash content is 0.2% or less, the amount of impurities eluted from the carbon material can be suppressed to a low level, and the adsorbent for the impurity removing device and the adsorbent for artificial organs in the ultrapure water production device, the fine chemical field such as pharmaceuticals, etc. It can be suitably used as an adsorbent for removing a specific substance in a living body. If the ash content is high, the impurity elution concentration often shows a high value, and the labor required for cleaning the carbon material before use is undesirably increased.

【0035】核物質としてSiC、アルミナ等を用いて
製造した球状フェノール樹脂を原料として炭素材を得た
際には、炭素材中にこれら物質が残留するので、用途に
応じた核物質の選択が必要である。
When a carbon material is obtained from a spherical phenol resin produced using SiC, alumina, or the like as a core material, these materials remain in the carbon material. is necessary.

【0036】本発明の炭素材の強度は、40kg/cm
2 以上、好ましくは45kg/cm2 以上、最も好しく
は50kg/cm2 以上が良い。強度が低いと、長期間
浄水器、超純水製造器用、空気清浄器用等に用いた場
合、炭素材の粉化が生じ炭素材自身の細孔の詰まり、後
段のフィルターの詰まり等が生じ好ましくない。
The strength of the carbon material of the present invention is 40 kg / cm
2 or more, preferably 45 kg / cm 2 or more, and most preferably 50 kg / cm 2 or more. If the strength is low, when used for a long term for water purifiers, ultrapure water production equipment, air purifiers, etc., powdering of the carbon material occurs and clogging of the pores of the carbon material itself, clogging of the subsequent filter, etc. are preferable. Absent.

【0037】本発明の炭素材の粒子直径は150〜20
00μm、好ましくは、水系で使用する際には200〜
800μm、気相系で使用する際には500〜2000
μmである。粒子直径が150μm以下であると、これ
をカラム等に充填して使用する際の充填時の操作性が低
下するとともに、これを保持するために、目開きの細か
い不織布、メッシュ等を使用するため水、空気等を通過
させて用いる際に微粒子の詰まり等が生じ圧力損失の上
昇を招きやすい。
The carbon material of the present invention has a particle diameter of 150 to 20.
00 μm, preferably 200 to 200 μm when used in an aqueous system.
800 μm, 500-2000 when used in a gas phase system
μm. When the particle diameter is 150 μm or less, the operability at the time of packing when used in a column or the like is reduced, and in order to use the same, a nonwoven fabric with a fine opening, a mesh, or the like is used. When used by passing through water, air, or the like, clogging of fine particles or the like occurs, which tends to cause an increase in pressure loss.

【0038】粒子直径が2000μm以上であると、炭
素材が吸着及びまたは触媒作用を及ぼす特定成分との接
触サイトが減少するため、吸着及びまたは触媒作用の効
率が低下し好ましくない。
If the particle diameter is 2000 μm or more, the number of sites at which the carbon material comes into contact with a specific component which exerts adsorption and / or catalysis is reduced, and the efficiency of adsorption and / or catalysis is undesirably reduced.

【0039】[0039]

【発明の効果】本発明の方法で製造される、本発明の球
状炭素材は上記の如き物性上の特徴を有し、液相系及び
気相系に於いて存在する特定の物質に対し、吸着及びま
たは触媒作用を及ぼし、これら物質を効率よく除去また
は分解できると同時に、長期間浄水器、超純水製造装
置、空気清浄器、悪臭・有機溶剤等の分離・回収装置、
医薬品等ファインケミカル分野に於ける不純物除去用装
置等の吸着材または触媒または触媒担体として用いて
も、粉化による炭素材自身の細孔の詰まり、後段のフィ
ルターの詰まり等が生じにくい。さらに炭素材自身から
の不純物溶出も極めて少ないため、不純物溶出を極端に
避けねばならない超純水製造装置、人工臓器、医薬品等
ファインケミカル分野に於ける不純物除去用装置または
特定物質の分離・精製用装置、生体内の特定物質除去用
吸着剤等には好適に用いることができるものであるから
工業上極めて有用なものである。さらに、本発明の炭素
材は水中の残留塩素、オゾン、大気中の一酸化窒素等に
対し、触媒的に作用するが、白金、金、銀、チタン等の
金属及びまたは金属化合物を担時させる担体としての利
用にも適する。
The spherical carbon material of the present invention produced by the method of the present invention has the above-mentioned physical characteristics, and is suitable for a specific substance existing in a liquid phase system and a gas phase system. It exerts adsorption and / or catalysis and can remove or decompose these substances efficiently, and at the same time, has a long-term water purifier, ultrapure water production equipment, air purifier, separation and recovery equipment for odor and organic solvents, etc.
Even when used as an adsorbent, a catalyst or a catalyst carrier for an impurity removing device in the field of fine chemicals such as pharmaceuticals, clogging of pores of the carbon material itself due to pulverization, clogging of a subsequent filter, and the like hardly occur. Furthermore, since the elution of impurities from the carbon material itself is extremely small, the elution of impurities must be extremely avoided.Ultra pure water production equipment, equipment for removing impurities or equipment for separating and purifying specific substances in the field of fine chemicals such as artificial organs and pharmaceuticals Since it can be suitably used as an adsorbent for removing a specific substance in a living body, it is industrially extremely useful. Further, the carbon material of the present invention acts catalytically on residual chlorine in water, ozone, nitric oxide in the atmosphere, etc., but causes metals such as platinum, gold, silver and titanium and / or metal compounds to be supported. Also suitable for use as a carrier.

【0040】本発明の方法で製造される、本発明の球状
炭素材は前述の如き物性上の特徴を有し、例えば、水道
水中及び工場排水中の低濃度から高濃度に至るまでの低
分子量有機物除去用吸着材、残留塩素分解除去用触媒等
として用いることができる。特に、水道水中に極微量含
まれるトリハロメタン類を除去する浄水器、超純水製造
装置内に充填して用いることにより、大きな効果を発揮
することができる。
The spherical carbon material of the present invention produced by the method of the present invention has the above-mentioned physical characteristics, for example, low molecular weight from low concentration to high concentration in tap water and industrial wastewater. It can be used as an adsorbent for removing organic substances, a catalyst for removing and removing residual chlorine, and the like. In particular, a great effect can be exhibited by filling and using a water purifier that removes a trace amount of trihalomethanes contained in tap water and an ultrapure water production device.

【0041】本発明の球状炭素材が吸着する特定成分、
又は触媒作用を及ぼす特定成分は、残留塩素や、トリク
ロロメタン、ブロモジクロロメタン、ジブロモクロロメ
タン、トリブロモメタン等のトリハロメタン類、或はト
リクロロエタン、トリクロロエチレン、フロン、ジクロ
ロメタン、四塩化炭素等のハロゲン化炭化水素類、或は
トルエン、ベンゼン、キシレン、n−ヘキサン、シクロ
ヘキサン等の炭化水素、或はアセトン、メチルエチルケ
トン等のケトン類、或はメタノール、エタノール等のア
ルコール類や各種有機溶剤、或はメチルメルカプタン、
硫化水素、二酸化硫黄、酢酸、アセトアルデヒド、ホル
ムアルデヒド、アンモニア、クレゾール等の悪臭原因物
質、或は二酸化窒素、一酸化窒素、オゾン等の有毒ガ
ス、或は蛋白質、糖類等、或は金、白金、コバルト、イ
ットリウム、ランタン等の金属錯体、又はコロイド等で
あり、或は上記物質の複合混合物である。
A specific component to which the spherical carbon material of the present invention adsorbs,
Alternatively, the specific component that exerts a catalytic effect is residual chlorine, trichloromethane such as trichloromethane, bromodichloromethane, dibromochloromethane, or tribromomethane, or halogenated hydrocarbon such as trichloroethane, trichloroethylene, freon, dichloromethane, or carbon tetrachloride. Or hydrocarbons such as toluene, benzene, xylene, n-hexane, and cyclohexane; ketones such as acetone and methyl ethyl ketone; alcohols such as methanol and ethanol; and various organic solvents; and methyl mercaptan;
Odor-causing substances such as hydrogen sulfide, sulfur dioxide, acetic acid, acetaldehyde, formaldehyde, ammonia, and cresol; or toxic gases such as nitrogen dioxide, nitric oxide, and ozone; or proteins and sugars; or gold, platinum, and cobalt , Yttrium, lanthanum, or other metal complexes, or colloids, or a complex mixture of the above substances.

【0042】これら特定成分は、水道水、家庭排水、工
業排水、河川、湖沼、海水、及び生体内体液の液相や、
大気、排気ガス等の気相に存在するものでもよい。
These specific components include tap water, domestic wastewater, industrial wastewater, rivers, lakes and marshes, seawater, and the liquid phase of body fluids,
It may exist in the gas phase such as the atmosphere and exhaust gas.

【0043】(測定評価法)次に、本発明に用いた測定
評価方法について以下に示す。
(Measurement Evaluation Method) Next, the measurement evaluation method used in the present invention will be described below.

【0044】(1)炭素材の比表面積の測定法 被測定炭素材0.1g程度を正確に秤量した後、高精度
全自動ガス吸着装置BELSORP28(日本ベル株式
会社製)の専用セルに入れ、該装置を用いて窒素を吸着
させB.E.T法により求めた。
(1) Method for measuring specific surface area of carbon material After accurately measuring about 0.1 g of the carbon material to be measured, it is placed in a dedicated cell of a high-precision fully automatic gas adsorption apparatus BELSORP28 (manufactured by Nippon Bell Co., Ltd.). Nitrogen was adsorbed using the apparatus and B. E. FIG. It was determined by the T method.

【0045】(2) 細孔容積の測定法 本発明の吸着材の細孔容積の測定は、細孔直径0.01
〜10μm の範囲についてはポロシメ−タ−による水
銀圧入法(島津製作所製、ポアサイザ−9310)によ
り測定し、細孔直径10nm以下の細孔容積は全自動ガ
ス吸着測定装置(日本ベル株式会社製、ベルソ−プ2
8)で窒素吸着測定を行った。具体的には、細孔直径2
〜10nmの範囲の細孔容積は77Kに於ける窒素ガス
の吸着等温線をD−H解析することにより求め、細孔直
径2nm以下の細孔容積は77Kに於ける窒素ガスの吸
着等温線のt−plotからMP法を用いて解析するこ
とにより求めた。
(2) Method of Measuring Pore Volume The pore volume of the adsorbent of the present invention was measured using a pore diameter of 0.01.
The range of 10 μm to 10 μm is measured by a mercury intrusion method using a porosimeter (Poresizer-9310, manufactured by Shimadzu Corporation). Bell soap 2
The nitrogen adsorption measurement was performed in 8). Specifically, the pore diameter 2
The pore volume in the range of 10 nm to 10 nm was obtained by DH analysis of the adsorption isotherm of nitrogen gas at 77K, and the pore volume of pores having a diameter of 2 nm or less was determined by the adsorption isotherm of nitrogen gas at 77K. It was determined by analyzing from t-plot using the MP method.

【0046】(3)灰分量 105℃で2時間乾燥した試料約1grを白金坩堝に精
秤し、700℃、2時間灰化し、再度精秤して灰分量を
求めた。但し、金属担持触媒とするために金属及びまた
は金属化合物等を担持した場合、及び球状フェノール樹
脂を製造する際に添加した核物質のうち、前述の灰化に
より残留する成分を含む場合には、これらに由来する灰
分量を炭素材の灰分量の測定値から差し引いた値を、炭
素材の灰分量とした。
(3) Ash Content About 1 gr of a sample dried at 105 ° C. for 2 hours was precisely weighed in a platinum crucible, incinerated at 700 ° C. for 2 hours, and again accurately weighed to determine the ash content. However, in the case of supporting a metal and / or a metal compound or the like to form a metal-supported catalyst, and in the case of including a component remaining due to the above-mentioned incineration among core materials added when manufacturing a spherical phenol resin, The value obtained by subtracting the ash content derived from these from the measured value of the ash content of the carbon material was defined as the ash content of the carbon material.

【0047】(4)不純物含有濃度 105℃で2時間乾燥した試料約1grを白金坩堝に精
秤し、700℃、2時間灰化したものに、フッ化水素酸
約1〜2ml添加してホットプレート上で加熱する。乾
固する手前で硝酸を加えて超純水で7〜8倍に希釈す
る。液量が1/3程度になったら再度超純水を加え、硝
酸を約1ml加え1時間加熱後、超純水を加え50ml
に定量する。同様の操作でブランクを作製して、各試料
の測定結果を補正する。不純物の定量は、蛍光X線定性
分析で検出を確認した元素について、日立製作所(株)
製デュアルモノクロICP発光分析装置P−5200型
を用いたICP発光分析により行った。
(4) Concentration of impurity content About 1 gr of a sample dried at 105 ° C. for 2 hours was precisely weighed in a platinum crucible, and about 1 to 2 ml of hydrofluoric acid was added to the incinerated substance at 700 ° C. for 2 hours. Heat on plate. Before drying, add nitric acid and dilute 7-8 times with ultrapure water. When the liquid volume becomes about 1/3, add ultrapure water again, add about 1 ml of nitric acid, heat for 1 hour, add ultrapure water and add 50 ml
To be determined. A blank is prepared by the same operation, and the measurement result of each sample is corrected. Quantitative determination of impurities was performed for elements whose detection was confirmed by X-ray fluorescence qualitative analysis, using Hitachi, Ltd.
Was performed by ICP emission analysis using a dual monochrome ICP emission spectrometer Model P-5200 manufactured by Toshiba Corporation.

【0048】(5) 破砕強度測定法 強度測定はKATO TECH CO.LTD社製圧縮
試験器(KES−FB3)にて測定した。強度測定で評
価する破砕強度は、炭素材の破砕時の荷重値と炭素材の
直径より、次式で計算した。 引張強度:σ[kg/cm2 ]= 2P/πd2 P: 荷重[kg] d:ペレット直径[cm]
(5) Crushing strength measuring method The strength was measured by KATO TECH CO. It was measured with a compression tester (KES-FB3) manufactured by LTD. The crushing strength evaluated by the strength measurement was calculated from the load value at the time of crushing the carbon material and the diameter of the carbon material by the following formula. Tensile strength: σ [kg / cm 2 ] = 2P / πd2 P: load [kg] d: pellet diameter [cm]

【0049】(6)低沸点有機塩素化合物吸着速度測定
法 トリハロメタン類の1つであるクロロホルムの4000
ppb水溶液40mlに、100mgの炭素材を添加
し、25℃で振とうを行い、炭素材添加後1時間経過時
における溶液中のクロロホルム濃度をECDガスクロを
用いたヘッドスペース法で求め、1時間経過時のクロロ
ホルム除去量より各炭素材のクロロホルム吸着速度を求
め、炭素材1g当たりに換算し、これを低沸点有機塩素
化合物の吸着速度とした。
(6) Method for measuring adsorption rate of low-boiling organochlorine compounds Chloroform, which is one of trihalomethanes, is 4000
100 mg of a carbon material was added to 40 ml of an aqueous ppb solution, and the mixture was shaken at 25 ° C., and the concentration of chloroform in the solution at 1 hour after the addition of the carbon material was determined by a headspace method using an ECD gas chromatograph. The chloroform adsorption rate of each carbon material was determined from the amount of chloroform removed at the time, and converted to per 1 g of the carbon material, which was defined as the adsorption rate of the low boiling organic chlorine compound.

【0050】(7)残留塩素分解速度測定法 8ppmの次亜塩素酸水溶液40mlに炭素材100m
gを添加し、25℃で振とうを行い、炭素材添加後1時
間経過時に該次亜塩素酸水溶液の一部を採水し、DPD
試薬を加え発色させ、551nmの吸光度を測定し、予
め求めた検量線より次亜塩素酸水溶液の濃度を求め、1
時間経過時の残留塩素分解量を各炭素材毎に求め、炭素
材1g当たりに換算し、これを各炭素材の残留塩素分解
速度とした。
(7) Residual chlorine decomposition rate measuring method A carbon material of 100 m was added to 40 ml of an 8 ppm aqueous solution of hypochlorous acid.
g, and shaken at 25 ° C., and one hour after the addition of the carbon material, a part of the aqueous hypochlorous acid solution was sampled.
The reagent was added to develop color, the absorbance at 551 nm was measured, and the concentration of the aqueous solution of hypochlorous acid was determined from a previously determined calibration curve.
The amount of residual chlorine decomposed over time was determined for each carbon material, converted to per gram of carbon material, and used as the residual chlorine decomposition rate of each carbon material.

【0051】(8)耐磨耗強度 予め100メッシュの篩で粉を除去した炭素材約7gを
精秤し、長さ15cmの試験管に入れ、孤動振とう器
(株式会社ヤヨイ社製YS−8D)のホルダーに試験管
を取り付け、振とう幅8cmで300rpm、1時間振
とうする。振とう後、試験管内の試料を取り出し、再び
100メッシュの篩を通し、発生した粉の量を精秤し、
炭素材の粉化率を求め耐磨耗強度とした。
(8) Abrasion resistance About 7 g of carbon material from which powder was previously removed with a 100-mesh sieve was precisely weighed, placed in a test tube having a length of 15 cm, and placed on a rocking shaker (YS manufactured by Yayoi Co., Ltd.). Attach the test tube to the holder of (−8D) and shake at 300 rpm for 1 hour with a shaking width of 8 cm. After shaking, the sample in the test tube was taken out, passed through a 100-mesh sieve again, and the amount of generated powder was precisely weighed.
The powdering rate of the carbon material was determined and defined as abrasion resistance.

【0052】(9)通水による圧力損失経時変化テスト 内径1cm、長さ5cmのアクリル製の円筒に各炭素材
を充填し、両端を炭素材が漏れ出さない限りに於いて最
大限目開きの大きいポリエステル製不織布で抑え、その
周囲をアクリル円筒にしっかり固定し、炭素材充填カラ
ムを作製した。このカラムの通水口側の直前に圧力ゲー
ジを設け、流速1(L/分)での通水時に於ける、カラ
ムに発生する通水圧力を測定し、通水開始後10時間後
の圧力を通水開始直後の圧力で除した値を100倍して
パーセント表示し、圧力損失上昇率とした。
(9) Time-dependent change test of pressure loss due to water flow An acrylic cylinder having an inner diameter of 1 cm and a length of 5 cm is filled with each carbon material, and the both ends are maximally opened as long as the carbon material does not leak. A large polyester nonwoven fabric was used, and the periphery was firmly fixed to an acrylic cylinder to produce a carbon material-filled column. A pressure gauge was provided immediately before the water flow port side of this column to measure the water flow pressure generated in the column at the time of flow at a flow rate of 1 (L / min), and the pressure 10 hours after the start of water flow was measured. The value divided by the pressure immediately after the start of water flow was multiplied by 100 and expressed as a percentage, and the resulting value was defined as the rate of increase in pressure loss.

【0053】(10)炭素材充填時の作業性評価試験 各炭素材20gを空気清浄器用の炭素材保持用ポリエス
テル不織布2枚の間隙に、サンドイッチ状に充填する作
業を繰り返し、各炭素材充填不織布20セットをそれぞ
れ準備するのに要する時間及び、作業終了後の周囲の汚
れの状態を観察し、炭素材充填時の作業性評価試験とし
た。
(10) Workability evaluation test at the time of filling the carbon material The operation of filling 20 g of each carbon material in a gap between two pieces of the polyester nonwoven fabric for holding the carbon material for the air purifier in a sandwich manner was repeated, and each carbon material nonwoven fabric was filled. The time required to prepare each of the 20 sets and the state of dirt around the work after the completion of the work were observed, and the workability evaluation test at the time of filling the carbon material was performed.

【0054】次に本発明を実施例によりさらに具体的に
説明するが、本発明は実施例により限定されるものでは
ない。
Next, the present invention will be described more specifically with reference to examples, but the present invention is not limited to the examples.

【0055】[0055]

【実施例】【Example】

実施例1 〔球状炭素材の製造方法〕40Lの反応溶液に、18重
量%の塩酸と、9重量%のホルムアルデヒドからなる混
合水溶液を30kg入れ、そのフラスコに、28℃で撹
拌しながらフェノール/水=90/10の水溶液1kg
を添加した。その後も暫く撹拌を継続すると、急激に白
濁した。白濁と同時に撹拌を停止しそのまま放置した。
Example 1 [Production Method of Spherical Carbon Material] 30 kg of a mixed aqueous solution composed of 18% by weight of hydrochloric acid and 9% by weight of formaldehyde was placed in a 40 L reaction solution, and phenol / water was stirred in the flask at 28 ° C. = 1 kg of 90/10 aqueous solution
Was added. When stirring was continued for a while after that, it became cloudy rapidly. The stirring was stopped at the same time as the cloudiness, and the mixture was left as it was.

【0056】内温が徐々に上昇し、ピンク色のスラリー
状の生成が認められた。次いで更に撹拌を続けながら8
0℃まで昇温し約20分間撹拌を継続した。さらに内容
物を水洗後、0.2重量%のアンモニア水溶液中、60
℃の温度で60分間処理し、水洗後、200℃の温度で
2時間乾燥し、0.1〜150μmの球状フェノール樹
脂を得た。
The internal temperature gradually increased, and formation of a pink slurry was observed. Then, with further stirring, 8
The temperature was raised to 0 ° C., and stirring was continued for about 20 minutes. Further, the contents were washed with water.
After treating at a temperature of 60 ° C. for 60 minutes, washing with water, and drying at a temperature of 200 ° C. for 2 hours, a spherical phenol resin of 0.1 to 150 μm was obtained.

【0057】更にこの樹脂とフェノール及びアルデヒド
等を下記の比率で混合・撹拌した。球状フェノール樹脂
/フェノール/92%ホルムアルデヒド/ヘキサメチレ
ンテトラミン/アラビアゴム/水=5/100/40/
10/1/100。撹拌を継続しながら、約60分で8
5℃まで昇温し、そのまま60分反応を行い、希釈水を
投入し、内温が下がるまで冷却後、これを濾別した後、
乾燥し、含水率が2%以下になるまで乾燥を行い更に、
篩により150μm以下及び2000μm以上の粒径の
樹脂を除去し、粒子直径150〜2000μmの真球状
フェノール樹脂を得た。
Further, the resin, phenol, aldehyde and the like were mixed and stirred at the following ratio. Spherical phenolic resin / phenol / 92% formaldehyde / hexamethylenetetramine / gum arabic / water = 5/100/40 /
10/1/100. While stirring, 8 minutes in about 60 minutes.
The temperature was raised to 5 ° C., the reaction was carried out for 60 minutes, and dilution water was added. After cooling until the internal temperature was lowered, this was separated by filtration.
Dry and dry until the water content is 2% or less.
The resin having a particle diameter of 150 μm or less and 2000 μm or more was removed by a sieve to obtain a spherical phenol resin having a particle diameter of 150 to 2000 μm.

【0058】更に、この樹脂を600℃で3時間、窒素
気流中で炭化し、その炭化物を、850℃、900℃及
び950℃で6時間、水蒸気を飽和した窒素気流中で賦
活し、賦活程度を示す重量減少率がそれぞれ23%、3
0%、44%の真球状炭素材試料1、試料2、試料3を
得た。
Further, this resin is carbonized at 600 ° C. for 3 hours in a nitrogen gas stream, and the carbide is activated at 850 ° C., 900 ° C. and 950 ° C. for 6 hours in a nitrogen gas stream saturated with water vapor. Are 23% and 3%, respectively.
0% and 44% spherical carbon material samples 1, 2, and 3 were obtained.

【0059】比較例1 比較例として、従来より行われている球状炭素材の製造
方法である転動造粒法により、球状炭素材を作製した。
その方法は、熱硬化性フェノール樹脂/熱溶融性フェノ
ール樹脂/結晶性セルロース/10%ポリビニルアルコ
ール水溶液=4/3/2/1の割合で混合した組成物1
0kgを公転15RPM、自転30RPMで10min
混練(品川式万能撹拌器(株)ダルトン社製)後、深江
工業株式会社製ハイスピードミキサーFS−GS−10
Jでアジテーター回転数300rpm、チョッパー回転
数3600rpmで10分間転動造粒して粒子直径15
0〜2000μmの球状フェノール樹脂を得た後、この
球状樹脂を600℃で3時間、窒素気流中で炭化し、そ
の炭化物を、950℃で水蒸気を飽和した窒素気流中で
6時間賦活することにより行った。賦活時の重量減少率
は54%の炭素材試料4を得、比較例とした。また、同
程度の粒子直径を有する市販浄水用ヤシ殻破砕状炭素材
を試料5、および試料6とした(表1参照)。
Comparative Example 1 As a comparative example, a spherical carbon material was produced by a rolling granulation method which is a conventional method for producing a spherical carbon material.
The method is as follows: composition 1 in which thermosetting phenolic resin / hot-melting phenolic resin / crystalline cellulose / 10% aqueous polyvinyl alcohol solution is mixed at a ratio of 4/3/2/1.
0kg 10 min at 15 RPM and 30 RPM
After kneading (Shinagawa Universal Stirrer Co., Ltd. Dalton Co., Ltd.), high speed mixer FS-GS-10 manufactured by Fukae Kogyo Co., Ltd.
Rolling granulation for 10 minutes at an agitator rotation speed of 300 rpm and a chopper rotation speed of 3600 rpm at J
After obtaining a spherical phenol resin of 0 to 2000 μm, the spherical resin is carbonized at 600 ° C. for 3 hours in a nitrogen stream, and the carbide is activated for 6 hours in a nitrogen stream saturated with steam at 950 ° C. went. A carbon material sample 4 having a weight reduction rate of 54% at the time of activation was obtained and used as a comparative example. In addition, commercially available crushed coconut shell carbonaceous materials for water purification having the same particle diameter were used as Sample 5 and Sample 6 (see Table 1).

【0060】熱硬化性フェノール樹脂は鐘紡株式会社製
ベルパールR800、熱溶融性フェノール樹脂は鐘紡株
式会社製ベルパールS890、結晶性セルロースは旭化
成社製TG−101を用いた。
The thermosetting phenolic resin used was Bellpearl R800 manufactured by Kanebo Co., Ltd., the thermofusible phenolic resin used was Bellpearl S890 manufactured by Kanebo Co., Ltd., and the crystalline cellulose was TG-101 manufactured by Asahi Kasei Corporation.

【0061】製造例で得られた炭素材の特性値と市販の
浄水用炭素材の特性値を表1に示す。試料1〜3はいず
れの特性値も本発明の規定する範囲内となっている。転
動造粒で製造した試料4の球状炭素材及び、市販の浄水
用炭素材である試料5及び6は、何れも700m2 /g
以上の比表面積を有しているが、細孔直径0.01〜1
0μmの細孔容積(cc/g)または細孔直径10nm
以下の細孔容積(cc/g)または細孔直径10nm以
下の細孔容積と細孔直径1nm以下の細孔容積の割合等
に於いて本発明に規定する範囲を満たしていない点があ
る。
Table 1 shows the characteristic values of the carbon material obtained in the production examples and the characteristic values of the commercially available carbon material for water purification. Samples 1 to 3 all have characteristic values within the range specified by the present invention. The spherical carbon material of Sample 4 manufactured by tumbling granulation and Samples 5 and 6, which are commercially available carbon materials for water purification, each had 700 m 2 / g.
Although having the above specific surface area, the pore diameter is 0.01 to 1
0 μm pore volume (cc / g) or pore diameter 10 nm
The following pore volume (cc / g) or the ratio of the pore volume with a pore diameter of 10 nm or less to the pore volume with a pore diameter of 1 nm or less does not satisfy the range specified in the present invention.

【0062】[0062]

【表1】 [Table 1]

【0063】実施例2 実施例1で使用したと同様の試料1〜6について、不純
物含有量の測定を行った。その結果を表2に示すが、試
料1〜3の灰分量は本発明の規定する範囲内であり、測
定した金属類の含有量も、バイダーを添加して製造した
試料4及びヤシ殻を原料とした市販の浄水用炭素材であ
る試料5及び6に比較して低値である。
Example 2 The same sample 1 to 6 as used in Example 1 was subjected to measurement of the impurity content. The results are shown in Table 2. The ash content of Samples 1 to 3 was within the range specified in the present invention, and the measured metal content was the same as that of Sample 4 and coconut shell produced by adding a binder. The values are lower than those of samples 5 and 6, which are commercially available carbon materials for water purification.

【0064】[0064]

【表2】 [Table 2]

【0065】[0065]

【実施例3】実施例1で使用したと同様の試料1〜6に
ついて低沸点有機塩素化合物吸着速度の評価を行った。
その結果を表3に示すが、本発明の試料1〜3はいずれ
も比較例の試料4〜6に比べ低沸点有機塩素化合物吸着
速度が高値を示すが、その中でも特に試料3は低沸点有
機塩素化合物吸着速度が特に大きくなっている。
Example 3 Samples 1 to 6 similar to those used in Example 1 were evaluated for the adsorption rate of low-boiling organochlorine compounds.
The results are shown in Table 3. Samples 1 to 3 of the present invention exhibit higher adsorption rates of low-boiling organochlorine compounds than Samples 4 to 6 of Comparative Examples. The chlorine compound adsorption rate is particularly large.

【0066】[0066]

【表3】 [Table 3]

【0067】[0067]

【実施例4】実施例1で使用したと同様の試料1〜6に
ついて、残留塩素分解速度の測定を行った。その結果を
表3に示すが、炭素材の特性が本発明に規定する範囲内
である試料1〜3は、残留塩素分解速度が、試料4〜6
に比較して高値である。
Example 4 For the same samples 1 to 6 used in Example 1, the residual chlorine decomposition rate was measured. The results are shown in Table 3. Samples 1 to 3 in which the properties of the carbon material are within the range specified in the present invention have residual chlorine decomposition rates of Samples 4 to 6
Is higher than that of.

【0068】[0068]

【表4】 [Table 4]

【0069】[0069]

【実施例5】実施例1で使用したと同様の本発明の試料
1〜3及び比較例の試料4に加え、さらに市販のピッチ
系で粒子径500〜600μmの球状炭素材である試料
7について、破砕強度及び耐磨耗性の評価を行った。そ
の結果を表5に示すが、試料1〜3の破砕強度は本発明
の規定する範囲内であり転動造粒品、ピッチ系球状品に
比較して高値を示す。更に耐磨耗性も試料1〜3は比較
例に比較して高値を示す。
Example 5 In addition to Samples 1 to 3 of the present invention similar to that used in Example 1 and Sample 4 of Comparative Example, a sample 7 which is a commercially available pitch-based spherical carbon material having a particle diameter of 500 to 600 μm was prepared. , Crushing strength and abrasion resistance were evaluated. The results are shown in Table 5, and the crushing strength of Samples 1 to 3 is within the range specified by the present invention, and shows a higher value than rolling granules and pitch-based spherical products. Further, the abrasion resistance of Samples 1 to 3 is higher than that of Comparative Example.

【0070】[0070]

【表5】 [Table 5]

【0071】[0071]

【実施例6】比較例として、実施例1で核物質として使
用するために製造した、粒子直径0.1〜150μmの
球状フェノール樹脂を600℃で3時間、窒素気流中で
炭化し、その炭化物を、950℃で水蒸気を飽和した窒
素気流中で6時間賦活することにより重量減少率50%
で、粒子直径0.1〜150μmの球状炭素材を得た。
この球状炭素材の比表面積は1550m2 /gであり、
これを試料8とした。
Example 6 As a comparative example, a spherical phenolic resin having a particle diameter of 0.1 to 150 μm produced for use as a core material in Example 1 was carbonized at 600 ° C. for 3 hours in a nitrogen stream, and the carbonized product was obtained. Is activated in a nitrogen stream saturated with steam at 950 ° C. for 6 hours to reduce the weight by 50%.
Thus, a spherical carbon material having a particle diameter of 0.1 to 150 μm was obtained.
The specific surface area of this spherical carbon material is 1550 m 2 / g,
This was designated as Sample 8.

【0072】実施例1で使用したと同様の試料1〜3及
び試料8を用いて、通水による圧力損失経時変化テスト
を行った。その結果を表6に示すが、本発明の球状炭素
材である試料1〜3は10時間経過後も圧力損失の上昇
は低値であったが、試料8は著しく圧力損失の上昇が認
められた。
Using the same samples 1 to 3 and sample 8 as used in Example 1, a time-dependent change test of pressure loss due to passing water was performed. The results are shown in Table 6. As is apparent from Table 6, the increase in pressure loss was low even after 10 hours in Samples 1 to 3, which are the spherical carbon materials of the present invention, but in Sample 8, a significant increase in pressure loss was observed. Was.

【0073】[0073]

【表6】 [Table 6]

【0074】[0074]

【実施例7】実施例6で使用したと同様の試料1〜3及
び8について、炭素材充填時の作業性評価試験を行っ
た。その結果を表7に示すが、本発明の球状炭素材であ
る試料1〜3は周囲に飛散することもなく、短時間に充
填を行えたが試料8は充填により長時間を要したにも関
わらず、その炭素材が広範囲の床面に飛散し、周囲環境
への汚染が認められた。
Example 7 Samples 1 to 3 and 8 similar to those used in Example 6 were subjected to a workability evaluation test at the time of filling a carbon material. The results are shown in Table 7. Samples 1 to 3, which are spherical carbon materials of the present invention, could be filled in a short time without being scattered around, but Sample 8 required a long time for filling. Regardless, the carbon material scattered over a wide range of floors, and contamination of the surrounding environment was observed.

【0075】[0075]

【表7】 [Table 7]

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】比表面積700〜1600m2 /g、細孔
直径0.01〜10μmの細孔容積が0.15cc/g
以下、細孔直径10nm以下の細孔容積が0.20〜
1.20cc/gであり、かつ細孔直径10nm以下の
細孔容積に占める細孔直径1nm以下の細孔容積の割合
が78vol%以上であり、充填密度が0.55〜0.
80g/cc、破砕強度が40kg/cm2 以上である
粒子直径150〜2000μmの球状炭素材。
1. A pore having a specific surface area of 700 to 1600 m 2 / g and a pore diameter of 0.01 to 10 μm having a pore volume of 0.15 cc / g.
Hereinafter, the pore volume of pore diameter 10 nm or less is 0.20 to 0.20.
1. The proportion of the pore volume having a pore diameter of 1 nm or less to the pore volume having a pore diameter of 10 nm or less is 78 vol% or more, and the packing density is 0.55 to 0.
A spherical carbon material having a particle diameter of 150 to 2000 μm and a crushing strength of 80 g / cc and a crushing strength of 40 kg / cm 2 or more.
【請求項2】灰分量が0.5%以下である特許請求の範
囲第1項記載の球状炭素材。
2. The spherical carbon material according to claim 1, wherein the ash content is 0.5% or less.
【請求項3】粒子直径150〜2000μmの球状樹
脂、またはこの樹脂を非酸化性雰囲気下500℃以上で
炭化して得た球状炭化物を、700〜1100℃の温度
範囲で、樹脂または炭化物を基準とする重量減少率が5
〜70%となる範囲で賦活することを特徴とする特許請
求の範囲第1項または第2項項記載の球状炭素材の製造
方法。
3. A spherical resin having a particle diameter of 150 to 2000 μm or a spherical carbide obtained by carbonizing the resin at a temperature of 500 ° C. or higher in a non-oxidizing atmosphere at a temperature of 700 to 1100 ° C., based on the resin or carbide. Weight loss rate is 5
3. The method for producing a spherical carbon material according to claim 1, wherein the activation is performed within a range of about 70%.
【請求項4】気相中または液相中の特定成分を吸着する
ことができる特許請求の範囲第1項または第2項記載の
球状炭素材
4. The spherical carbon material according to claim 1 or 2, which is capable of adsorbing a specific component in a gas phase or a liquid phase.
【請求項5】気相中または液相中の特定成分に対し触媒
作用を及ぼす特許請求の範囲第1項または第2項記載の
球状炭素材
5. The spherical carbon material according to claim 1, which has a catalytic action on a specific component in a gas phase or a liquid phase.
JP01817998A 1997-06-02 1998-01-12 Spherical carbon material and method for producing the same Expired - Fee Related JP3390649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01817998A JP3390649B2 (en) 1997-06-02 1998-01-12 Spherical carbon material and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP9-160566 1997-06-02
JP16056697 1997-06-02
JP01817998A JP3390649B2 (en) 1997-06-02 1998-01-12 Spherical carbon material and method for producing the same

Publications (2)

Publication Number Publication Date
JPH1149503A true JPH1149503A (en) 1999-02-23
JP3390649B2 JP3390649B2 (en) 2003-03-24

Family

ID=26354825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01817998A Expired - Fee Related JP3390649B2 (en) 1997-06-02 1998-01-12 Spherical carbon material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3390649B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006247527A (en) * 2005-03-10 2006-09-21 Kansai Coke & Chem Co Ltd Adsorbent
JP2007039289A (en) * 2005-08-04 2007-02-15 Toda Kogyo Corp Spherical porous carbon particle powder and method for producing the same
JP2007223877A (en) * 2006-02-27 2007-09-06 Showa Denko Kk Method for producing high-purity titanium tetrachloride and high-purity titanium tetrachloride obtainable thereby
JP2008100883A (en) * 2006-10-20 2008-05-01 Sumitomo Chemical Co Ltd Amorphous carbon powder and its production method
JP2008535754A (en) * 2005-03-29 2008-09-04 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Porous carbon material and smoking article and smoke filter containing the material
WO2010008072A1 (en) * 2008-07-18 2010-01-21 株式会社クレハ Treating agent for oxidizing agent-containing waste water, method for treating oxidizing agent-containing waste water, apparatus for treating oxidizing agent-containing waste water, purifying agent for organic solvent, method for purifying organic solvent, and apparatus for purifying organic solvent
US7651974B2 (en) 2002-11-01 2010-01-26 Kureha Chemical Industry Co., Ltd. Adsorbent for oral administration
JP2010195641A (en) * 2009-02-26 2010-09-09 Teijin Chem Ltd Method for producing carbonyl chloride and method for producing polycarbonate resin using the same as raw material
US20100248041A1 (en) * 2007-10-30 2010-09-30 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery, electrode and carbonaceous material
JP2010269225A (en) * 2009-05-20 2010-12-02 Kuraray Chem Corp Anion adsorbent molding and water purifier using the same
JP2011084454A (en) * 2009-10-15 2011-04-28 Chan Sieh Enterprises Co Ltd Spherical activated carbon and method for producing the same
US8357366B2 (en) 2004-04-02 2013-01-22 Kureha Corporation Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease
US8440228B2 (en) 2004-04-02 2013-05-14 Kureha Corporation Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease
WO2014175098A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
US8920796B2 (en) 2003-10-22 2014-12-30 Kureha Corporation Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
KR20180054614A (en) * 2015-09-16 2018-05-24 나노메이커스 Method for producing a polymer-based material
WO2019244905A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon
JP6683968B1 (en) * 2018-06-19 2020-04-22 株式会社アドール Activated carbon
CN111511466A (en) * 2017-12-28 2020-08-07 株式会社可乐丽 Adsorption filter

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6757705B2 (en) * 2016-09-14 2020-09-23 関西熱化学株式会社 Spherical phenolic resin activated carbon for methane storage, its production method, methane storage material using the activated carbon, and methane storage method using the activated carbon.

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7651974B2 (en) 2002-11-01 2010-01-26 Kureha Chemical Industry Co., Ltd. Adsorbent for oral administration
US8309130B2 (en) 2002-11-01 2012-11-13 Kureha Corporation Adsorbent for oral administration
US8920796B2 (en) 2003-10-22 2014-12-30 Kureha Corporation Adsorbent for oral administration, and agent for treating or preventing renal or liver disease
US8357366B2 (en) 2004-04-02 2013-01-22 Kureha Corporation Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease
US8518447B2 (en) 2004-04-02 2013-08-27 Kureha Corporation Method for treating or preventing renal or liver disease
US8865161B2 (en) 2004-04-02 2014-10-21 Kureha Corporation Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease
US8440228B2 (en) 2004-04-02 2013-05-14 Kureha Corporation Adsorbent for an oral administration, and agent for treating or preventing renal or liver disease
JP2006247527A (en) * 2005-03-10 2006-09-21 Kansai Coke & Chem Co Ltd Adsorbent
JP2008535754A (en) * 2005-03-29 2008-09-04 ブリティッシュ アメリカン タバコ (インヴェストメンツ) リミテッド Porous carbon material and smoking article and smoke filter containing the material
JP2007039289A (en) * 2005-08-04 2007-02-15 Toda Kogyo Corp Spherical porous carbon particle powder and method for producing the same
JP2007223877A (en) * 2006-02-27 2007-09-06 Showa Denko Kk Method for producing high-purity titanium tetrachloride and high-purity titanium tetrachloride obtainable thereby
JP2008100883A (en) * 2006-10-20 2008-05-01 Sumitomo Chemical Co Ltd Amorphous carbon powder and its production method
US20100248041A1 (en) * 2007-10-30 2010-09-30 Sumitomo Chemical Company, Limited Nonaqueous electrolyte secondary battery, electrode and carbonaceous material
WO2010008072A1 (en) * 2008-07-18 2010-01-21 株式会社クレハ Treating agent for oxidizing agent-containing waste water, method for treating oxidizing agent-containing waste water, apparatus for treating oxidizing agent-containing waste water, purifying agent for organic solvent, method for purifying organic solvent, and apparatus for purifying organic solvent
JP5629578B2 (en) * 2008-07-18 2014-11-19 株式会社クレハ Oxidant-containing wastewater treatment agent, oxidant-containing wastewater treatment method, oxidant-containing wastewater treatment device, organic solvent purification agent, organic solvent purification method, and organic solvent purification device
JP2010195641A (en) * 2009-02-26 2010-09-09 Teijin Chem Ltd Method for producing carbonyl chloride and method for producing polycarbonate resin using the same as raw material
JP2010269225A (en) * 2009-05-20 2010-12-02 Kuraray Chem Corp Anion adsorbent molding and water purifier using the same
JP2011084454A (en) * 2009-10-15 2011-04-28 Chan Sieh Enterprises Co Ltd Spherical activated carbon and method for producing the same
WO2014175098A1 (en) * 2013-04-25 2014-10-30 日産自動車株式会社 Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell
JPWO2014175098A1 (en) * 2013-04-25 2017-02-23 日産自動車株式会社 ELECTRODE CATALYST FOR FUEL CELL AND ELECTRODE CATALYST LAYER, MEMBRANE ELECTRODE ASSEMBLY AND FUEL CELL
KR20180054614A (en) * 2015-09-16 2018-05-24 나노메이커스 Method for producing a polymer-based material
CN111511466A (en) * 2017-12-28 2020-08-07 株式会社可乐丽 Adsorption filter
CN111511466B (en) * 2017-12-28 2022-06-24 株式会社可乐丽 Adsorption filter
WO2019244905A1 (en) * 2018-06-19 2019-12-26 株式会社アドール Activated carbon
JP6683968B1 (en) * 2018-06-19 2020-04-22 株式会社アドール Activated carbon
JPWO2019244905A1 (en) * 2018-06-19 2020-06-25 株式会社アドール Activated carbon
JP2020110801A (en) * 2018-06-19 2020-07-27 株式会社アドール Activated carbon

Also Published As

Publication number Publication date
JP3390649B2 (en) 2003-03-24

Similar Documents

Publication Publication Date Title
JP3390649B2 (en) Spherical carbon material and method for producing the same
Martini et al. Methyl orange and tartrazine yellow adsorption on activated carbon prepared from boiler residue: Kinetics, isotherms, thermodynamics studies and material characterization
Zhang et al. CuFe2O4/activated carbon composite: a novel magnetic adsorbent for the removal of acid orange II and catalytic regeneration
Alhamed Adsorption kinetics and performance of packed bed adsorber for phenol removal using activated carbon from dates’ stones
EP0794240B1 (en) Mercury adsorbent
US7241430B2 (en) Activated carbon for odor control and method for making same
Mittal et al. Batch and bulk adsorptive removal of anionic dye using metal/halide-free ordered mesoporous carbon as adsorbent
Pradhan Production and characterization of activated carbon produced from a suitable industrial sludge
JPH03213144A (en) Novel product and method for removing mercury from liquid hydrocarbon and use thereof
CN105164766A (en) Carbon bodies and ferromagnetic carbon bodies
Barman et al. Biochar from waste Sterculia foetida and its application as adsorbent for the treatment of PAH compounds: Batch and optimization
JP2015529560A (en) Filter media containing nitrogen and sulfur
Chaghaganooj et al. Ce and Mn/bio-waste-based activated carbon composite: Characterization, phenol adsorption and regeneration
Hashemian MnFe2O4/bentonite nano composite as a novel magnetic material for adsorption of acid red 138
Darweesh et al. A unique, inexpensive, and abundantly available adsorbent: Composite of synthesized silver nanoparticles (AgNPs) and banana leaves powder (BLP)
Kouotou et al. Removal of metallic trace elements (Pb 2+, Cd 2+, Cu 2+, and Ni 2+) from aqueous solution by adsorption onto cerium oxide modified activated carbon
Li et al. Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equilibrium and kinetics
Singh et al. Fly ash and TiO2 modified fly ash as adsorbing materials for removal of Cd (II) and Pb (II) from aqueous solutions
Piania et al. Trihalomethanes (THMs) removal from aqueous solutions using environmental friendly and effective adsorbent onto Mespilus germanica modified by Fe
Suresh et al. Adsorption of arsenic in aqueous solution onto iron impregnated bagasse fly ash
Inayat et al. Review of recent progress in wastewater treatment using carbon nanotubes
Chang et al. Investigations of solvent-regenerable carbon-sulfur surface compounds for phenol removal in a packed column
Khan et al. Synthesis of monolith silica anchored graphene oxide composite with enhanced adsorption capacities for carbofuran and imidacloprid
Shafiq et al. Lead and copper scavenging from aqueous solutions using Eucalyptus camaldulensis derived activated carbon: Equilibrium, kinetics and sorption mechanism
JP3578259B2 (en) Decomposition and removal of formaldehyde in air

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100117

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110117

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120117

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130117

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140117

Year of fee payment: 11

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees