WO1999015602A1 - Heat transfer medium, process for the production of the same, and air conditioning system - Google Patents

Heat transfer medium, process for the production of the same, and air conditioning system Download PDF

Info

Publication number
WO1999015602A1
WO1999015602A1 PCT/JP1998/003907 JP9803907W WO9915602A1 WO 1999015602 A1 WO1999015602 A1 WO 1999015602A1 JP 9803907 W JP9803907 W JP 9803907W WO 9915602 A1 WO9915602 A1 WO 9915602A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat transfer
oily substance
monomer
transfer medium
heat storage
Prior art date
Application number
PCT/JP1998/003907
Other languages
French (fr)
Japanese (ja)
Inventor
Tomoki Gomi
Yoshio Irie
Tadao Shimomura
Masaaki Yoshikawa
Akira Kishimoto
Original Assignee
Nippon Shokubai Co., Ltd.
Osaka Gas Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co., Ltd., Osaka Gas Company Limited filed Critical Nippon Shokubai Co., Ltd.
Publication of WO1999015602A1 publication Critical patent/WO1999015602A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa

Definitions

  • the present invention relates to a heat transfer medium for storing or cooling heat using latent heat when an oily substance undergoes a phase change, a method for manufacturing the same, and an air conditioning system.
  • No. 0 discloses a heat transfer medium obtained by simply dispersing a lipophilic organic compound, which is an oily substance, into an oil-absorbing resin and dispersing the lipophilic organic compound in a hydrophilic liquid such as water.
  • the lipophilic organic compound is simply absorbed by the oil-absorbing resin. For this reason, an (excess) lipophilic organic compound that cannot be completely absorbed by the oil-absorbing resin adheres to the surface of the oil-absorbing resin. When an external force acts on the oil-absorbing resin, the oil-absorbing resin The lipophilic organic compound exudes from the fat.
  • the lipophilic organic compound oozing out of the oil-absorbing resin is dispersed in the hydrophilic liquid in the form of fine particles, and the hydrophilic liquid, That is, since the heat transfer medium is thickened, there is a problem that the heat transfer efficiency of the heat transfer medium is significantly reduced. Further, when the lipophilic organic compound dispersed in the lipophilic liquid solidifies, the fluidity of the heat transfer medium is reduced, and the fluid becomes difficult to flow. For this reason, there arises a problem that the transport power required to transport the heat transport medium increases or that the heat transport medium cannot be transported.
  • the inventors of the present application have intensively studied to provide a heat transfer medium, a method for manufacturing the same, and an air conditioning system.
  • a monomer component comprising a monomer (A) having a solubility parameter of a certain value or less and a monomer (B) having a hydrophilic group in the molecule, and a heat storage property are obtained. Liquefies due to phase change It has been found that a heat transfer medium can be obtained by suspension polymerization of an oily substance in an aqueous solvent.
  • a heat storage agent in which the oily substance is maintained in a state where the fluidity has substantially lost fluidity is dispersed in an aqueous solvent to be an aqueous medium.
  • the heat transfer medium power can be obtained by a simple manufacturing process. Then, they have found that the above-mentioned conventional problems can be solved by the heat transfer medium, and have completed the present invention.
  • an oily substance that has a heat storage property and that reversibly changes phase from solid to liquid or from liquid to solid in response to a change in temperature has a temperature stability and a volume change accompanying the phase change of the oily substance.
  • the composite particles, which are held inside the lipophilic polymer particles having absorbable elasticity and in which the hydrophilic groups are oriented and irregularities are formed on the surface of the particles, are dispersed in an aqueous medium. It has been found that the above-mentioned conventional problems can be solved by using a heat transfer medium.
  • the composite particles for a heat transfer medium according to the present invention have a heat storage property and a reversible phase change from a solid to a liquid or from a liquid to a solid according to a temperature change in order to solve the above-mentioned problems.
  • Oleophilic polymer particles are held inside lipophilic polymer particles having temperature stability and elasticity capable of absorbing a volume change accompanying a phase change of the oleaginous material, and have a hydrophilic surface on the particles. It is characterized in that the groups are oriented.
  • the composite particles for a heat transfer medium according to the present invention are characterized in that the lipophilic polymer particles further include an elastomer.
  • the heat transfer medium according to the present invention has a heat storage property to solve the above problems.
  • An oily substance that reversibly changes phase from a solid to a liquid or from a liquid to a solid in response to a temperature change has temperature stability and elasticity capable of absorbing a volume change accompanying the phase change of the oily substance.
  • the composite particles, which are held inside the provided lipophilic polymer particles and have a hydrophilic group oriented on the surface of the particles and have irregularities, are dispersed in an aqueous medium. .
  • the heat transfer medium according to the present invention has a heat storage property.
  • lipophilic polymer particles having elasticity and elasticity capable of absorbing a volume change caused by a phase change of an oily substance, and a hydrophilic group is oriented on the surface of the particles while the particle size is increased.
  • the composite particles are formed by dispersing the composite particles having a particle size of 1 ⁇ m to 300 m in an aqueous medium.
  • the heat transfer medium according to the present invention has a viscosity of 5 mPa at a temperature of 5 ° C. when the concentration of the composite particles is 20% by weight. ⁇ S or less.
  • An air conditioning system is characterized by performing heat transfer between a refrigerator and an air conditioner by using the above heat transfer medium in order to solve the above-mentioned problems.
  • the lipophilic polymer particles constituting the composite particles have temperature stability and elasticity capable of absorbing a volume change accompanying a phase change of the oily substance. This sufficiently prevents the lipophilic polymer particles from oozing out of the lipophilic polymer particles during use, and the lipophilic weight during the phase change of the oleaginous substance from solid to liquid or from liquid to solid. The oozing of the oily substance from the coalesced particles is sufficiently prevented.
  • the surface of the lipophilic polymer particles Since the hydrophilic group is oriented in the polymer, the aggregation of the composite particles and the thickening effect of the composite particles are sufficiently prevented.
  • the composite particles in which the lipophilic polymer particles further include an elastomer are more excellent in mechanical strength and flexibility, so that the mechanical stability during transportation is improved (the shape is maintained). ). Therefore, the flow resistance of the heat transfer medium can be reduced.
  • the heat transfer medium according to the present invention is obtained by polymerizing a monomer component in the presence of an oily substance having heat storage properties and liquefied by phase change, It is characterized in that, in a polymer obtained by polymerizing a body component, a heat storage agent holding the above-mentioned oily substance so as to decrease the fluidity is dispersed in an aqueous medium.
  • the heat transfer medium according to the present invention has a monomer (A) having a solubility parameter of 9 (ca 1 Z cm 3 ) 1/2 or less and a hydrophilic group in the molecule.
  • a polymer obtained by polymerizing a monomer component containing the monomer (B) in the presence of an oily substance having heat storage properties and liquefied by phase change, and polymerizing the monomer component It is characterized in that a heat storage agent in which the oily substance is maintained in a state of substantially losing fluidity is dispersed in an aqueous medium.
  • the heat storage agent contained in the heat transfer medium is used to reduce the fluidity of the oily substance in a polymer obtained by polymerizing a monomer component having a specific composition, It is kept in a state in which sex has been substantially lost. This sufficiently prevents oozing of oily substances from the polymer during use At the same time, the oozing of the oleaginous substance from the polymer when the oleaginous substance undergoes a phase change, that is, when it is melted and solidified, is sufficiently prevented. It is possible to provide a heat transfer medium that can maintain good heat transfer efficiency.
  • the heat transport medium according to the present invention may be configured such that the monomer component has a crosslinkable monomer (C) having at least two polymerizable unsaturated groups in a molecule. ) In the range of 20% by weight or less.
  • the heat transfer medium according to the present invention is characterized in that in the heat transfer medium, the weight ratio of the heat storage agent to the aqueous medium (heat storage agent / aqueous medium) is 50/50 to 5 / 95. According to the above configuration, it is possible to provide a heat transfer medium that does not cause a decrease in fluidity and that is more excellent in heat transfer efficiency.
  • the method for producing a heat transfer medium comprises: a monomer (A) having a solubility parameter of 9 (ca 1 / cm 3 ) 1/2 or less; A monomer component comprising a monomer having a hydrophilic group (B) and an oily substance having a heat storage property and liquefied by phase change in an aqueous solvent by suspension polymerization.
  • a monomer component comprising a monomer having a hydrophilic group (B) and an oily substance having a heat storage property and liquefied by phase change in an aqueous solvent by suspension polymerization.
  • the heat transfer medium can be manufactured in substantially one step of the polymerization step, that is, in a simple manufacturing step. That is, it is possible to provide a method for manufacturing a heat transfer medium that can exhibit the above various effects.
  • the method for producing a heat transfer medium according to the present invention is characterized in that an elastomer is mixed with the monomer component and / or the oily substance.
  • the monomer component When the monomer component is suspended in an aqueous solvent together with an oily substance, the monomer component is compatible with the oily substance and the monomer (B) is oriented to the aqueous solvent side (outside). Oil droplets.
  • the orientation of the monomer (B) during suspension polymerization can be arbitrarily controlled, so that the flowability at low temperature is not reduced, and It is possible to provide a heat transfer medium that can sufficiently prevent oozing of oily substances during use.
  • the heat storage agent contained in the heat transfer medium according to the present invention is obtained by polymerizing a monomer component in the presence of an oily substance that has heat storage properties and liquefies by phase change, and polymerizes the monomer component. The oily substance is retained in the resulting polymer such that the fluidity is reduced.
  • the heat storage agent contained in the heat transfer medium according to the present invention includes a monomer (A) having a solubility parameter of 9 (ca ca / cm 3 ) 1/2 or less, and a carboxyl group or the like in the molecule.
  • the body component is polymerized in the presence of the oily substance, and the oily substance is held in a state where the fluidity has been substantially lost in a polymer obtained by polymerizing the monomer component.
  • the above-mentioned heat transport medium can be produced, for example, by subjecting a monomer component and an oily substance to suspension polymerization in, for example, an aqueous solvent to be an aqueous medium.
  • the above-mentioned oily substance has a heat storage property due to latent heat at the time of a phase change between a liquid phase and a solid phase in a specific temperature range, and is a substance substantially insoluble or hardly soluble in water.
  • oily substance examples include n-paraffins such as tetradecane, pendudecane, and hexadecane; paraffins such as noraffin wax, isoparaffin, and polyethylene wax; stearic acid, palmitic acid And the like; fatty acids such as butyl stearate; alcohols such as decyl alcohol and dodecyl alcohol; These oily substances may be used only one type, also good c and be used in combination of two or more, the oily material, and more preferably has excellent compatibility with the monomer component.
  • paraffins are particularly preferable because they have a high latent heat of fusion and have a clear freezing point; their freezing points can be freely set; they are easily available;
  • an inclusion compound may be added to the above oily substance, if necessary, in order to adjust the heat storage property of the oily substance due to latent heat.
  • Is a ⁇ contact compound specifically, for example, C 4 Eta 8 ⁇ ⁇ 17H 2 0, (CH 3 ) 3 N ⁇ 10.25H 2 0, (C 4 H 9) 4 NCH 0 2 - 32H 2 0, (C 4 H 9 ) 4 NC H 3 C 0 2 - include 32H 2 0 and the like.
  • the amount of the clathrate compound added to the oily substance is not particularly limited.
  • the above-mentioned monomer component contains, for example, a monomer having one polymerizable unsaturated group in the molecule as a main component, and optionally contains a polymerizable unsaturated group in the molecule. It contains at least two crosslinkable monomers. More preferably, the above monomer component has a solubility parameter 9 (ca 1 / cm 3 ) 1/2 or less of the monomer (A), the monomer having a hydrophilic group in the molecule (B) and, if necessary, a polymerizable unsaturated group And at least two crosslinkable monomers (C) in the molecule.
  • the solubility parameter (SP value) is a parameter generally used as a scale indicating the polarity of a compound.
  • the solubility parameter is, for example, a value obtained by substituting the aggregation energy constant of Hoy into the calculation formula of Small, and this value is employed in the present invention.
  • the monomer (A) has an solubility parameter of 9 (ca 1 cm 3 ) 1/2 or less, and is, for example, an unsaturated monomer having one polymerizable unsaturated group in the molecule.
  • Specific examples of the monomer (A) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl.
  • (Meth) acrylate isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate (Meth) acrylate, dodecisole (meta) acrylate, stearyl (meta) acrylate, phenyl (meta) acrylate, octylphenyl (meta) acrylate, noni Ruphenyl (meth) acrylate, dinonylphenyl (meth) acrylate, cyclohexyl (meth) acrylate, menthyl (meth) acrylate, isobornyl (meth) acrylate Relay Unsaturated carboxylic acid esters such as dibutyl (meth) acrylate, dibutyl maleate, didodecyl maleate, dodecyl crotonate, dododecyl
  • An alicyclic vinyl compound such as a vinylcyclohexane
  • Allyl ethers having a hydrocarbon group such as dodecyl aryl ether; vinyl esters having a hydrocarbon group such as vinyl caproate, vinyl laurate, vinyl palmitate and vinyl stearate [fatty acid vinyl ester];
  • Vinyl ethers having a hydrocarbon group such as butyl vinyl ether and dodecyl vinyl ether;
  • Aromatic vinyl compounds such as styrene, t-butylstyrene, octylstyrene [alkylstyrene];
  • 1 ⁇ -olefin such as 1-hexene, 1-octene, isooctene, 1-nonene, 1-decene;
  • hydroxyl-containing unsaturated carbonates such as hydroxypropyl (meth) acrylate [so-called interface-oriented monomers]; and the like, but are not particularly limited thereto.
  • hydroxypropyl (meth) acrylate such as hydroxypropyl (meth) acrylate [so-called interface-oriented monomers]; and the like, but are not particularly limited thereto.
  • One of these monomers (II) may be used alone, or two or more thereof may be used in combination.
  • the monomer ( ⁇ ) is composed mainly of a relatively long-chain unsaturated monomer, that is,
  • the content is 50% by weight or more.
  • alkyl (meth) acrylate, alkylaryl (meth) acrylate, alkyl (meth) acrylyl amide, alkylaryl (meth) acrylyl Mid, fatty acid vinyl ester, alkyl styrene At least one kind of unsaturated monomer selected from the group consisting of ren and one-year-old olefin as a main component, that is, 50% by weight or more, and the unsaturated monomer has a carbon number of at least 50% by weight.
  • Monomers (A) having 3 to 30 aliphatic hydrocarbon groups are more preferred.
  • the aliphatic hydrocarbon group preferably has 4 to 24 carbon atoms, and more preferably has 8 to 18 carbon atoms.
  • the monomer (A) is more excellent in compatibility with the oily substance. Therefore, a polymer obtained by polymerizing a monomer component containing the monomer (A) is particularly excellent in the ability to retain an oily substance. Therefore, it is possible to further suppress the liquefaction of the oily substance, and to obtain a heat transfer medium containing a heat storage agent in which the oozing of the oily substance from the polymer is more sufficiently prevented.
  • the monomer (A) may have a solubility parameter of 9 (ca 1 Z cm 3 ) 1/2 or less. Therefore, the unsaturated monomer having one polymerizable unsaturated group in the molecule as exemplified above can be used.
  • a monomer having one polymerizable group in a molecule which is polymerized by a polymerization reaction such as radical polymerization, radiation polymerization, addition polymerization, polycondensation, or ring-opening polymerization may be used.
  • a polymerization reaction such as radical polymerization or ring-opening polymerization include a norbornene-based monomer.
  • the monomer component containing the monomer is used.
  • a polymer obtained by polymerizing the compound cannot retain the oily substance in a state of substantially losing fluidity or cannot retain the oily substance in a large amount. Therefore, it is not possible to obtain a heat transfer medium containing a heat storage agent having excellent heat storage properties.
  • the monomer (B) is an unsaturated monomer having a hydrophilic group such as a carboxyl group in the molecule. It is a sum monomer.
  • Specific examples of the monomer (B) include, for example, acrylic acid, methacrylic acid, methyl acrylic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, maleic acid, Fumaric acid, monoacrylic acid, monocyanoacrylic acid, crotonic acid, isocrotonic acid, hypophenylacrylic acid, S-acryloyloxypropionic acid, sorbic acid, monochloric acid Sorbic acid, angelic acid, gay cinnamate, p-chloro-3 gay cinnamate, 3—styrylacrylic acid, 2—methacryloyloxetyl succinic acid, 2—methacryloyloxicetyl phthalic acid, etc.
  • Amino group-containing monomers such as aminoethyl (meth) acrylate and vinylethylamine;
  • Epoxy group-containing monomers such as glycidyl (meth) acrylate
  • Acid anhydrides such as maleic anhydride
  • Sulfonate group-containing monomers such as styrene sulfonic acid; and the like. There is no particular limitation. These monomers (B) may be used alone or in combination of two or more.
  • the monomers (B) exemplified above at least one unsaturated monomer selected from the group consisting of acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, and fumaric acid
  • the body is particularly preferred.
  • the pH of the heat transfer medium can be appropriately adjusted using a hydroxide such as sodium hydroxide or calcium hydroxide, ammonia, or an alkylamine.
  • a hydroxide such as sodium hydroxide or calcium hydroxide, ammonia, or an alkylamine.
  • the weight ratio of the monomer (A) to the monomer (B) (monomer (A) Z monomer (B)) in the monomer component is not particularly limited. / 1 to 40/60 is particularly preferable. As a result, the liquefaction of the oily substance can be further suppressed, so that it is possible to obtain a heat transfer medium containing a heat storage agent in which the oozing of the oily substance from the polymer is more sufficiently prevented. If the proportion of the monomer (A) is larger than the above range, it may be difficult to sufficiently harden the surface layer of the heat storage agent. If the proportion of the monomer (A) is less than the above range, the production of the heat storage agent may cause oozing of the oily substance from the polymer. If an external force acts on the heat storage agent while the oily substance is being melted, the oily substance may have fluidity (liquefy).
  • the crosslinkable monomer (C) optionally contained in the monomer component is an unsaturated monomer having at least two polymerizable unsaturated groups in the molecule.
  • Specific examples of the crosslinkable monomer (C) include, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate. Crylate, polyethylene glycol / polypropylene glycol (meta) acrylate, propylene glycol (meta) acrylate, polypropylene glycol
  • the proportion of the crosslinkable monomer (C) in the monomer component is preferably within the range of 20% by weight or less. This makes it possible to obtain a heat transfer medium containing a heat storage agent having a higher mechanical strength against shear stress. If the proportion of the crosslinkable monomer (C) exceeds 20% by weight, there is a possibility that oily substances may ooze out of the polymer when producing the heat storage agent. When an external force acts on the heat storage agent while the oily substance is molten, the oily substance has fluidity (liquefaction). ) May be.
  • the weight ratio between the oily substance and the monomer component is not particularly limited, but is preferably in the range of 95 to 5/40/60. preferable. This makes it possible to obtain a heat transfer medium containing a heat storage agent that is more excellent than the heat storage amount per unit amount. If the ratio of the oily substance is larger than the above range, it may be difficult to suppress the fluidity (liquefaction) of the oily substance when the oily substance is molten. If the ratio of the oily substance is smaller than the above range, a heat transfer medium containing a heat storage agent having an excellent heat storage amount per unit amount may not be obtained.
  • the heat transport medium according to the present invention can be easily produced, for example, by subjecting the above monomer component and oily substance to suspension polymerization in an aqueous solvent such as water.
  • an aqueous solvent also functions as an aqueous medium.
  • the monomer component and the oily substance can be suspended in an aqueous solvent in the presence of a protective colloid agent and a surfactant, if necessary.
  • the suspension polymerization also includes -suspension polycondensation.
  • the amount of the monomer component and the oily substance added to the aqueous solvent that is, the concentration of the monomer component and the oily substance is not particularly limited, but the weight ratio of the obtained heat storage agent to the aqueous medium (heat storage Aqueous medium), but 50 Z 50 ⁇
  • the above-mentioned protective colloid agent examples include polyvinyl alcohol, hydroxyethyl cellulose, gelatin and the like.
  • the above-mentioned surfactant specifically, for example, examples thereof include sodium, sodium alkylbenzenesulfonate, polyoxyethylene alkyl ether, and fatty acid stone.
  • the amount of the protective colloid agent and surfactant used is not particularly limited.
  • polymerization initiator suitably used in the suspension polymerization
  • examples of the polymerization initiator suitably used in the suspension polymerization include, for example, organic peroxides such as benzoyl peroxide, lauroyl peroxide, cumene peroxide, and the like; Oil-soluble radical polymerization initiators such as azo compounds such as 2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile); are not particularly limited.
  • One of these polymerization initiators may be used alone, or two or more thereof may be used in combination.
  • the amount of the polymerization initiator to be used based on the monomer component depends on the composition of the monomer component and the like, but is preferably in the range of 0.1% by weight to 5% by weight.
  • the reaction temperature may be set according to the composition of the monomer component, the composition and melting point of the oily substance, the type of the polymerization initiator, the type of the aqueous solvent, etc., and is not particularly limited. It is desirable that the temperature be higher than the temperature at which the liquid can be maintained. Specifically, the reaction temperature is preferably in the range of 0 ° C. to 150 ° C., and most preferably in the range of 0 ° C. to 80 ° C.
  • the reaction time is not particularly limited, and may be determined depending on the composition of the monomer component, the composition of the oily substance, the melting point, the type of the polymerization initiator, the type of the aqueous solvent, the reaction temperature, and the like. What is necessary is just to set suitably so that polymerization may be completed. Further, the suspension polymerization is more preferably performed in an atmosphere of an inert gas such as a nitrogen gas.
  • the aqueous solvent is stirred to remove the monomer component and the oily substance. Suspend.
  • the stirring method is to make a uniform suspension The method is not particularly limited as long as it can be obtained.
  • the monomer component is suspended in an aqueous solvent together with an oily substance, the monomer component is compatible with the oily substance and has a monomer having a hydrophilic group such as a carboxyl group.
  • (B) is an oil droplet oriented in the aqueous solvent side (outside).
  • the monomer component contains a crosslinkable monomer (C) having a hydrophilic group in the molecule
  • the crosslinkable monomer (C) is added together with the monomer (B). It will be in the state of being directed to the aqueous solvent side. Then, suspension polymerization of the monomer component proceeds in this state.
  • the solution may be suspended in an aqueous solvent.
  • the heat transfer medium can be produced in substantially only one polymerization step, that is, in a simple production step.
  • the aqueous solvent also functions as an aqueous medium.
  • the average particle size of the heat storage agent is not particularly limited, but is preferably 5 mm or less, more preferably 3 mm or less, and particularly preferably 1 mm or less.
  • the monomer (B) Since the monomer (B) is suspended and polymerized in the surface layer of the heat storage agent in a state where the monomer (B) is oriented toward the aqueous solvent, a hard material composed of a polymer containing more monomer (B) as a constituent component thereof A gel has formed.
  • the monomer component contains a crosslinkable monomer (C)
  • the hardness of the hard gel is further increased because the hard gel has a crosslinked structure, and thus the mechanical strength against shear stress is increased. It will be even higher.
  • a soft gel composed of a polymer containing a large amount of the monomer (A) as a constituent component and an oily substance is formed. Therefore, the oily substance is in a state where it has substantially lost fluidity. In a soft gel, that is, in a polymer.
  • the hard gel and the soft gel are distinguished for convenience, but the interface between the two gels is not clearly present.
  • the composition does not change discontinuously from the hard gel to the soft gel, but the composition changes continuously with a certain thickness. I have.
  • the heat storage agent and the aqueous solvent are separated, and then the heat storage agent is dispersed in the aqueous medium, so that heat transfer is performed.
  • the method of separating the c heat storage agent from which the medium can be produced and the aqueous solvent is not particularly limited, and a known method such as filtration, washing, and drying can be used in appropriate combination.
  • the method for dispersing the heat storage agent in the aqueous medium may be any method capable of obtaining a heat-carrying medium which is a uniform dispersion, as c aqueous medium is not particularly limited, specifically, Examples include water, an aqueous solution containing ethylene glycol, and an aqueous solution containing propylene glycol. Of these, water is more preferred.
  • the weight ratio between the heat storage agent and the aqueous medium is not particularly limited, but is particularly preferably set to be in the range of 50/50 to 5995. .
  • heat storage agent Z aqueous medium is not particularly limited, but is particularly preferably set to be in the range of 50/50 to 5995. .
  • the ratio of the heat storage agent is larger than the above range, the viscosity of the heat transfer medium increases. Therefore, the transport power required to transport the heat transport medium increases, or the heat transport medium cannot be transported, and the heat transfer efficiency decreases. May be affected.
  • the proportion of the heat storage agent is smaller than the above range, the heat storage density of the heat transfer medium becomes small, and the heat transfer efficiency may be reduced.
  • the heat storage agent Since the heat storage agent has a hard gel formed on its surface layer, the oozing of the oleaginous substance from the polymer during use is sufficiently prevented, and when the oleaginous substance undergoes a phase change, that is, melting. In the case of coagulation, oozing of oily substances from the polymer can be sufficiently prevented. Also, even if the oily substance is repeatedly melted and solidified, the oozing can be sufficiently prevented. Further, the heat storage agent has a hard gel formed on its surface layer, so that the heat storage agent can be made into a dry particle form, and has high mechanical strength against shear stress, so that it is excellent in handleability. Therefore, by separating the heat storage agent and the aqueous solvent and the like, and then dispersing the heat storage agent in the aqueous medium, the heat transfer medium can be manufactured.
  • the method for producing the heat storage agent is not limited to the above-described method (suspension polymerization).
  • a monomer component can be polymerized in the oily substance.
  • a lump containing a heat storage agent and an oily substance as a solvent is adjusted to have an appropriate particle size by pulverization or the like, and then the heat storage agent is dispersed in an aqueous medium to thereby provide a heat transfer medium.
  • Additives for improving heat transfer such as metal powders such as iron and copper, metal fibers, metal oxides, carbon, carbon fibers, etc., as necessary; sand, clay, Additives for adjusting specific gravity, such as stone, metal powders such as lead and iron, iron oxide, alumina, etc .; metal powders, inorganic compounds such as calcium carbonate, bromine-based, chlorine-based, and phosphorus-based flame retardants, etc. Additives for imparting flame retardancy; Additives for preventing supercooling; Phenyl-based sulfur-based, phosphorus-based, etc. Various additives, such as antioxidants for preventing oxidation and deterioration with time, can be added.
  • a coloring agent such as a pigment or a dye, an antistatic agent, a bactericide, or the like can be added to the heat storage agent, if necessary.
  • the amount and method of addition of these additives, coloring agents, antistatic agents, and antibacterial agents to the heat storage agent are not particularly limited.
  • Additives, coloring agents, antistatic agents, and antibacterial agents can be dry-mixed with the heat storage agent at room temperature. Alternatively, it can be added to the reaction system when producing a heat transfer medium, that is, during suspension polymerization.
  • the above-mentioned flame retardancy refers to various properties such as reduction of flammability, prevention of spread of fire, extinction of a flash point by steam, and reduction of combustion heat.
  • the heat transfer medium according to the present invention performs heat storage or cold storage using latent heat when an oily substance undergoes a phase change.
  • the heat transfer medium can store heat only by heating (heating), and can store cold only by cooling.
  • the composite particles for a heat transfer medium according to the present invention include, for example, the oily substance that has heat storage properties and that reversibly changes phase from solid to liquid or from liquid to solid in response to a temperature change, During the coalescence, that is, the lipophilic polymer particles having temperature stability and elasticity capable of absorbing a volume change accompanying a phase change of the oleaginous substance are held inside the polymer particles, and have a hydrophilic property on the surface of the particles. In this configuration, the groups are oriented. Further, the heat transfer medium according to the present invention is obtained by dispersing the composite particles having irregularities or the composite particles having a particle diameter of 1 zm to 300 m in the aqueous medium. Configuration.
  • the heat transfer medium according to the present invention has a viscosity of 5 mPas or less at a temperature of 5 ° C when the concentration of the composite particles is 20% by weight.
  • the air conditioning system according to the present invention is configured to carry out heat transfer between the refrigerator and the air conditioner using these heat transfer media.
  • the lipophilic polymer particles constituting the composite particles have temperature stability and elasticity capable of absorbing a volume change accompanying a phase change of the oily substance. This sufficiently prevents the lipophilic polymer particles from oozing out of the lipophilic polymer particles during use, and the lipophilic weight during the phase change of the oleaginous substance from solid to liquid or from liquid to solid.
  • the oozing of the oily substance from the coalesced particles is sufficiently prevented.
  • the hydrophilic groups are oriented on the surface of the lipophilic polymer particles, aggregation of the composite particles and a thickening effect by the composite particles are sufficiently prevented. Therefore, it is possible to provide a heat transfer medium which does not cause a decrease in fluidity and can maintain a good heat transfer efficiency, and an air conditioning system using the heat transfer medium.
  • the heat transfer medium according to the present invention may include an elastomer as necessary.
  • the method of including the elastomer in the heat transfer medium is not particularly limited, but prior to the above-mentioned suspension polymerization, the oily substance and the Z or monomer component, more specifically, the oily substance And / or a method in which the elastomer is dissolved in the monomer (B) is preferable.
  • the orientation of the monomer (B) at the time of the above suspension polymerization can be arbitrarily controlled by the oily substance and the Z or monomer components containing the elastomer.
  • the elastomer examples include a styrene-based elastomer such as a block copolymer of polystyrene and polyolefin such as polybutadiene polyisoprene or a hydrogenated product of the polyolefin; A mixture of polyolefin (homopolymer) and polyolefin (copolymer), and graft polymerization of polyolefin on polyolefin (copolymer)
  • Various compounds such as copolymer-based elastomers, urethane-based elastomers, ester-based elastomers, etc., ie, have rubber elasticity at room temperature or higher in the fields of rubber and plastics.
  • thermoplastic elastomers Compounds known as so-called thermoplastic elastomers; and natural rubber, styrene-butadiene copolymer rubber, butyl rubber, butadiene rubber, polybutylene, polyisobutylene, isoprene rubber, ethylene-propylene copolymer Hydrocarbon rubbers such as rubber, ethylene-propylene-propylene terpolymer rubber, styrene-ethylenebutylene terpolymer rubber, ethylene-vinyl acetate copolymer rubber, ethylene-ethyl acrylate copolymer rubber And the like, but are not particularly limited c
  • One type of these elastomers may be used alone, or two or more types may be used in combination.
  • the solubility parameter of the elastomer can be arbitrarily set by appropriately adjusting the molecular weight, the copolymerization ratio and the like of the elastomer. Therefore, the type of the elastomer used may be appropriately selected according to the type of the oily substance, the type of the monomer (B), the combination of the two, and the like.
  • the amount of the elastomer added to the oily substance is not particularly limited, but is preferably in the range of 0.1% by weight to 10% by weight, and more preferably in the range of 0.5% by weight to 5% by weight. Inside is more preferred. If the amount of the elastomer is more than 10% by weight, the viscosity of the oily substance increases, and it may be difficult to control the particle diameter of the composite particles. In addition, the amount of heat stored by the latent heat of the composite particles may decrease, or the temperature at which the oily substance changes phase may change. On the other hand, when the added amount of the elastomer is less than 0.1% by weight, the effect obtained by adding the elastomer becomes poor. In some cases, the orientation of the monomer (B) cannot be sufficiently controlled during suspension polymerization.
  • Oil-based substances and Z or monomer components during suspension polymerization contain an elastomer with a solubility parameter of 9 (cal Zcm 3 ) 12 or less, further promoting the orientation of monomer (B). Can be done. Therefore, even when the proportion of the monomer (B) in the monomer component is small, the dispersibility of the composite particles is excellent, the flowability at low temperatures is not reduced, and the oily substance during use is low. It is possible to provide a heat transfer medium capable of sufficiently preventing bleeding of the heat. Further, since the ratio of the monomer (B) in the monomer component can be further reduced, fine composite particles are generated, and the water-soluble polymer is formed by homopolymerization of the monomer (B). It is possible to suppress formation of coalescence and extremely deformed composite particles. Furthermore, since the viscosity increase and foaming of the heat transfer medium can be reduced, a heat transfer medium having excellent heat transfer characteristics can be provided.
  • elastomers those having a solubility parameter of 9 (ca 1 / cm 3 ) 1/2 or less, which are compatible with the oily substance and not compatible with the monomer (B).
  • solubility parameter 9 (ca 1 / cm 3 ) 1/2 or less, which are compatible with the oily substance and not compatible with the monomer (B).
  • examples of the elastomer include polybutylene, polyisobutylene, and styrene-ethylene-butylene terpolymer rubber.
  • the oily substance and the Z or monomer component during suspension polymerization contain an elastomer whose solubility parameter exceeds 9 (cal / cm 3 ) 1/2 , so that the degree of distribution to water is large.
  • the transfer of the monomer (B) to the aqueous solvent can be prevented, resulting in the generation of fine composite particles and the formation of a water-soluble polymer by homopolymerization of the monomer (B). You , Can be suppressed.
  • FIG. 1 is a diagram (one copy) showing the structure of the heat storage agent (composite particles) obtained in Example 1.
  • FIG. 2 is a diagram (color copy) showing the structure of the heat storage agent (composite particles) obtained in Example 4.
  • a 3 L flask equipped with a thermometer, a nitrogen gas inlet tube, a reflux condenser, and a stirrer was used as a reactor.
  • 15 g of polyoxyethylene alkyl ether surfactant, manufactured by Nippon Shokubai Co., Ltd .; trade name: Softanol 150
  • the aqueous solution was heated to 80 ° C. while stirring under a nitrogen gas atmosphere.
  • the above mixed solution was added to the aqueous solution at a time, and the suspension polymerization was carried out at 80 ° C. for 2 hours under a nitrogen gas atmosphere while mixing and stirring under the condition of a rotation speed of 400 rpm. Was.
  • the temperature of the suspension was raised to 90 ° C., and stirring was continued at the same temperature for 2 hours to complete the suspension polymerization.
  • a heat transfer medium according to the present invention was obtained.
  • the average particle size of the heat storage agent as a polymer was 40 m. As is clear from FIG. 1, it was found that no irregularities were formed on the surface of the heat storage agent (composite particles).
  • the obtained heat transfer medium was subjected to differential scanning calorimetry (DSC) under predetermined conditions to obtain a solidification temperature and a melting temperature.
  • DSC differential scanning calorimetry
  • the fluidity of the heat transfer medium at 3 ° C was evaluated. That is, 150 m 1 of the heat transfer medium was placed in a flask having a capacity of 200 m 1 and immersed in a water bath at 3 for 1 hour while stirring with a magnetic stirrer. The evaluation was made by visually checking the rotation state of the stirrer.
  • the solidification temperature was 8.0 ° C and the melting was The temperature was 7.8 ° C and the fluidity at 3 ° C was “good”.
  • the viscosity of the heat transfer medium when the concentration of the heat storage agent was set to 20% by weight was measured at a temperature of 5 ° C by a predetermined method. As a result, the viscosity was 4.8 mPa ⁇ s. C The results are summarized in Table 1.
  • Example 1 95 g of 2-ethylhexyl acrylate as the monomer (A) was used in place of 95 g of dodecyl acrylate, and 5 g of ethylene glycol dimethacrylate was used in place of crosslinkability. Use 1,6-hexanediol diacrylate 5 g as the monomer (C), and adjust the number of revolutions for mixing and stirring the suspension from 400 rpm to 300 rpm. The suspension polymerization was carried out in the same manner as in Example 1 except that the polymerization was changed to.
  • a heat transfer medium according to the present invention was obtained.
  • the average particle size of the heat storage agent as a polymer was 70 m.
  • the solidification temperature and the melting temperature were determined in the same manner as in Example 1, and the fluidity at 3 was evaluated.
  • the solidification temperature was 8.0 ° C
  • the melting temperature was 7.9
  • the fluidity at 3 ° C was “good”.
  • the viscosity of the heat transfer medium was 4.6 mPa ⁇ s at a temperature of 5 ° C.
  • Example 1 instead of 95 g of dodecyl acrylate, 83 g of 2-ethylhexyl acrylate and 7 g of hydroxypropyl methacrylate as the monomer (A) were used, and ethylene glycol dimethacrylate was used.
  • the amount of the solution used was changed from 5 g to 10 g, and the number of revolutions for mixing and stirring the suspension was changed from 400 rpm to 350 rpm.
  • the suspension polymerization was performed in the same manner as in 1.
  • the average particle size of the heat storage agent as a polymer was 50 / m.
  • the solidification temperature and the melting temperature were determined in the same manner as in Example 1, and the fluidity at 3 ° C was evaluated.
  • the solidification temperature was 8.2 ° C and the melting temperature was 8.0, and the fluidity at 3 ° C was “very good”.
  • the viscosity of the heat transfer medium was 3.5 mPa-s at a temperature of 5.
  • Example 1 instead of 95 g of dodecyl acrylate, 83 g of 2-ethylhexyl acrylate as monomer (A) and ⁇ g of methacrylic acid as monomer (B) were used instead of 95 g of dodecyl acrylate. And the amount of ethylene glycol dimethacrylate used was changed from 5 to 10 g, and the number of revolutions for mixing and stirring the suspension was changed from 400 rpm to 350 rpm. The suspension polymerization was carried out in the same manner as in Example 1.
  • a heat transfer medium according to the present invention was obtained.
  • the average particle size of the polymer heat storage agent is 50 am.
  • the solidification temperature and the melting temperature were determined in the same manner as in Example 1, and the fluidity at 3 ° C was evaluated.
  • the solidification temperature was 8.3 ° C and the melting temperature was 8.0, and the fluidity at 3 ° C was “very good”.
  • the viscosity of the heat transfer medium was 3.4 mPa ⁇ s at a temperature of 5 ° C. Table 1 summarizes these results. Further, as is apparent from FIG. 2, it was found that irregularities were formed on the surface of the heat storage agent (composite particles) in this example.
  • Example 1 95 g of dodecyl acrylate was replaced with a monomer ( Using 85 g of 2-ethylhexyl acrylate as A) and 5 g of methacrylic acid as the monomer (B), the amount of ethylene glycol dimethacrylate used was reduced from 5 g to 10 g. Then, 8 g of styrene-ethylene-butylene terpolymer rubber (manufactured by Seal Japan Co., Ltd .; trade name: Clayton 16550) as an elastomer is added and mixed. The suspension polymerization was carried out in the same manner as in Example 1 except that the number of revolutions for mixing and stirring was changed from 400 rpm to 350 rpm.
  • a heat transfer medium according to the present invention was obtained.
  • the average particle size of the polymer heat storage agent was 45 m.
  • the solidification temperature and the melting temperature were determined in the same manner as in Example 1, and the fluidity at 3 ° C was evaluated.
  • the solidification temperature was 8.2 ° C
  • the melting temperature was 8.0 ° C
  • the fluidity at 3 ° C was “very good”.
  • the viscosity of the heat transfer medium at a temperature of 5 was 3.3 mPa ⁇ s.
  • the average particle size of the oil-absorbent resin that absorbed Pencil Decane was 50 zm.
  • the solidification temperature and the melting temperature were determined in the same manner as in Example 1, and the fluidity at ⁇ 3 ° C. was evaluated.
  • the solidification temperature was 8.2 ° C and the melting temperature was 8.0, but at 3 ° C, the comparative heat transfer medium gradually began to solidify, and after several tens of minutes, completely solidified and flowed Lost sex. In other words, the liquidity in 3 was “poor”.
  • the viscosity of the heat transfer medium for comparison was 30 mPa ⁇ s or more at a temperature of 5. Table 1 summarizes the results.
  • the solidification temperature and melting temperature of the heat transfer media of Examples 1 to 5 and the solidification temperature and melting temperature of the comparative heat transfer medium of Comparative Example 1 are the melting points of pentadecane. (10 ° C). Therefore, these heat transfer media can repeatedly perform melting and solidification of pen pen decane in a temperature range of 5 ° C. to 13 ° C. suitable for use as a heat transfer medium for cooling. When evaluating the fluidity, these heat transfer media were immersed in a 3 ° C water bath for 1 hour, so that they were absorbed by pentadecane held in the heat storage agent and by the oil-absorbing resin. Penyu Decane is solidified.
  • the comparative heat transfer medium of Comparative Example 1 was completely solidified and lost its fluidity. This indicates that there is a large amount of penjudecane dispersed in water as an aqueous medium, that is, free pengudecane. In other words, pen-decane is not completely absorbed by the oil-absorbing resin, and therefore, the heat transfer medium for comparison changes its fluidity with the melting and solidification of pentadecane, and shows a good condition. Indicates that it cannot be maintained. This indicates that the comparative heat transfer medium of Comparative Example 1 cannot maintain good heat transfer efficiency.
  • the heat transfer medium according to the present invention has a reduced fluidity. It can be seen that the heat transfer efficiency can be maintained in a good state without inducing.
  • the heat transfer medium according to the present invention stores or cools heat using the latent heat when the oily substance undergoes a phase change
  • it is suitably used, for example, as a heat transfer medium for a district cooling / heating system or an absorption air conditioning system. be able to.

Abstract

Subjecting a mixture of a monomer component comprising a monomer (A) having a solubility parameter of 9 (cal/cm3)1/2 or below and a monomer (B) having a hydrophilic group in the molecule with an oily substance exhibiting heat reserving properties and being liquefiable through phase transition to suspension polymerization in an aqueous solvent to serve as an aqueous medium enables the oily substance to be held in the formed polymer in a substantially nonfluid state, thus forming a heat reserving agent. This agent is satisfactorily protected from the bleeding of the oily substance from the polymer not only in service but also in the phase transition (such as fusion or solidification) of the oily substance, which makes it possible to provide a heat transfer medium not suffering from lowering in the fluidity and being capable of keeping a high heat transfer coefficient.

Description

明 細 書 熱搬送媒体およびその製造方法並びに空調システム 技術分野  TECHNICAL FIELD Heat transfer medium, method for producing the same, and air conditioning system
本発明は、 油性物質が相変化する際の潜熱を利用して蓄熱或いは蓄冷 を行う熱搬送媒体、 およびその製造方法、 並びに空調システムに関する ものである。 背景技術  TECHNICAL FIELD The present invention relates to a heat transfer medium for storing or cooling heat using latent heat when an oily substance undergoes a phase change, a method for manufacturing the same, and an air conditioning system. Background art
従来より、 地域冷暖房システム用や吸収式空調システム用の熱搬送媒 体としては水が用いられているが、 近年、 搬送動力の低減によるラン二 ングコス トの削減、 並びに、 配管や装置の小型化によるイニシャルコス トの削減を目的として、 水に代わる熱搬送媒体、 即ち、 水よりも蓄熱密 度が大きい熱搬送媒体の開発が進められている。  Conventionally, water has been used as a heat transfer medium for district heating and cooling systems and absorption air conditioning systems.In recent years, however, running costs have been reduced by reducing transfer power, and pipes and equipment have been downsized. For the purpose of reducing the initial cost due to this, the development of a heat transfer medium that replaces water, that is, a heat transfer medium that has a higher heat storage density than water, is underway.
このような熱搬送媒体として、 従来より、 油性物質が相変化する際の 潜熱を利用して蓄熱或いは蓄冷を行う熱搬送媒体が種々提案されている < 例えば、 特開平 6 — 1 1 6 5 5 0号公報には、 吸油性樹脂に油性物質で ある親油性有機化合物を単に吸収させたものを、 水等の親水性液体に分 散してなる熱搬送媒体が開示されている。  As such a heat transfer medium, various heat transfer media which store or cool heat using latent heat when an oily substance undergoes a phase change have been conventionally proposed. No. 0 discloses a heat transfer medium obtained by simply dispersing a lipophilic organic compound, which is an oily substance, into an oil-absorbing resin and dispersing the lipophilic organic compound in a hydrophilic liquid such as water.
しかしながら、 上記従来の熱搬送媒体においては、 吸油性樹脂に親油 性有機化合物を単に吸収させているだけである。 このため、 吸油性樹脂 の表面には、 該吸油性樹脂が吸収しきれない (余剰の) 親油性有機化合 物が付着している。 また、 吸油性樹脂に外力が作用すると、 該吸油性樹 脂から親油性有機化合物が滲み出してしまう。 従って、 熱搬送媒体を使 用する際に例えば搬送動力等によって負荷がかかると、 吸油性樹脂から 滲み出す等した親油性有機化合物が微粒子の状態で親水性液体に分散し、 該親水性液体、 即ち、 熱搬送媒体を増粘させてしまうので、 熱搬送媒体 の熱伝達効率が著しく低下するという問題点を有している。 さらに、 親 水性液体に分散した親油性有機化合物が凝固すると、 熱搬送媒体の流動 性が低下し、 流動し難くなる。 このため、 熱搬送媒体を搬送するのに要 する搬送動力が増加するか、 或いは、 熱搬送媒体を搬送することができ なくなるという問題点も招来する。 However, in the above-described conventional heat transfer medium, the lipophilic organic compound is simply absorbed by the oil-absorbing resin. For this reason, an (excess) lipophilic organic compound that cannot be completely absorbed by the oil-absorbing resin adheres to the surface of the oil-absorbing resin. When an external force acts on the oil-absorbing resin, the oil-absorbing resin The lipophilic organic compound exudes from the fat. Therefore, when a load is applied, for example, by a transfer power or the like when using the heat transfer medium, the lipophilic organic compound oozing out of the oil-absorbing resin is dispersed in the hydrophilic liquid in the form of fine particles, and the hydrophilic liquid, That is, since the heat transfer medium is thickened, there is a problem that the heat transfer efficiency of the heat transfer medium is significantly reduced. Further, when the lipophilic organic compound dispersed in the lipophilic liquid solidifies, the fluidity of the heat transfer medium is reduced, and the fluid becomes difficult to flow. For this reason, there arises a problem that the transport power required to transport the heat transport medium increases or that the heat transport medium cannot be transported.
それゆえ、 使用時における重合体からの油性物質の滲み出しが充分に 防止されることにより、 流動性の低下を招来せず、 しかも熱伝達効率を 良好な状態に維持することができる熱搬送媒体およびその製造方法が嘱 望されている。  Therefore, since the oozing of the oily substance from the polymer at the time of use is sufficiently prevented, the heat transfer medium which does not cause a decrease in fluidity and can maintain a good heat transfer efficiency can be maintained. There is a demand for a method for producing the same.
本発明は、 上記従来の問題点に鑑みなされたものであり、 その目的は、 使用時における重合体からの油性物質の滲み出しが充分に防止されるこ とにより、 流動性の低下を招来せず、 しかも熱伝達効率を良好な状態に 維持することができる熱搬送媒体およびその製造方法並びに空調システ ムを提供することにある。 発明の開示  The present invention has been made in view of the above-mentioned conventional problems, and an object of the present invention is to sufficiently prevent oozing of an oily substance from a polymer during use, thereby causing a decrease in fluidity. Another object of the present invention is to provide a heat transfer medium, a method of manufacturing the same, and an air conditioning system capable of maintaining a good heat transfer efficiency. Disclosure of the invention
本願発明者等は、 熱搬送媒体およびその製造方法並びに空調システム を提供すべく鋭意検討した。 その結果、 例えば、 溶解度パラメータが或 る値以下の単量体 (A ) と、 分子内に親水性基を有する単量体 (B ) と を含んでなる単量体成分、 並びに、 蓄熱性を有し相変化により液化する 油性物質を、 水系溶媒中で懸濁重合することにより、 熱搬送媒体を得る ことができることを見い出した。 即ち、 上記単量体成分を重合してなる 重合体中に、 上記油性物質が流動性を実質的に失った状態で保持されて なる蓄熱剤を、 水性媒体となるべき水系溶媒に分散してなる熱搬送媒体 力 簡便な製造工程で得ることができることを見い出した。 そして、 該 熱搬送媒体によって、 上記従来の問題点を解決することができることを 見い出して、 本発明を完成させるに至った。 The inventors of the present application have intensively studied to provide a heat transfer medium, a method for manufacturing the same, and an air conditioning system. As a result, for example, a monomer component comprising a monomer (A) having a solubility parameter of a certain value or less and a monomer (B) having a hydrophilic group in the molecule, and a heat storage property are obtained. Liquefies due to phase change It has been found that a heat transfer medium can be obtained by suspension polymerization of an oily substance in an aqueous solvent. That is, in a polymer obtained by polymerizing the monomer components, a heat storage agent in which the oily substance is maintained in a state where the fluidity has substantially lost fluidity is dispersed in an aqueous solvent to be an aqueous medium. The heat transfer medium power can be obtained by a simple manufacturing process. Then, they have found that the above-mentioned conventional problems can be solved by the heat transfer medium, and have completed the present invention.
さらにまた、 例えば、 蓄熱性を有し、 温度変化に応じて固体から液体 へまたは液体から固体へ可逆的に相変化する油性物質が、 温度安定性と、 油性物質の相変化に伴う体積変化を吸収し得る伸縮性とを備えた親油性 重合体粒子の内部に保持され、 かつ、 該粒子の表面に親水性基が配向さ れると共に凹凸が形成されている複合粒子を、 水性媒体に分散してなる 熱搬送媒体によって、 上記従来の問題点を解決することができることを 見い出した。  Furthermore, for example, an oily substance that has a heat storage property and that reversibly changes phase from solid to liquid or from liquid to solid in response to a change in temperature has a temperature stability and a volume change accompanying the phase change of the oily substance. The composite particles, which are held inside the lipophilic polymer particles having absorbable elasticity and in which the hydrophilic groups are oriented and irregularities are formed on the surface of the particles, are dispersed in an aqueous medium. It has been found that the above-mentioned conventional problems can be solved by using a heat transfer medium.
即ち、 本発明にかかる熱搬送媒体用の複合粒子は、 上記の課題を解決 するために、 蓄熱性を有し、 温度変化に応じて固体から液体へまたは液 体から固体へ可逆的に相変化する油性物質が、 温度安定性と、 油性物質 の相変化に伴う体積変化を吸収し得る伸縮性とを備えた親油性重合体粒 子の内部に保持され、 かつ、 該粒子の表面に親水性基が配向されている ことを特徴としている。  That is, the composite particles for a heat transfer medium according to the present invention have a heat storage property and a reversible phase change from a solid to a liquid or from a liquid to a solid according to a temperature change in order to solve the above-mentioned problems. Oleophilic polymer particles are held inside lipophilic polymer particles having temperature stability and elasticity capable of absorbing a volume change accompanying a phase change of the oleaginous material, and have a hydrophilic surface on the particles. It is characterized in that the groups are oriented.
また、 本発明にかかる熱搬送媒体用の複合粒子は、 上記の課題を解決 するために、 上記親油性重合体粒子がエラストマ一をさらに含むことを 特徴としている。  Further, in order to solve the above problems, the composite particles for a heat transfer medium according to the present invention are characterized in that the lipophilic polymer particles further include an elastomer.
本発明にかかる熱搬送媒体は、 上記の課題を解決するために、 蓄熱性 を有し、 温度変化に応じて固体から液体へまたは液体から固体へ可逆的 に相変化する油性物質が、 温度安定性と、 油性物質の相変化に伴う体積 変化を吸収し得る伸縮性とを備えた親油性重合体粒子の内部に保持され、 かつ、 該粒子の表面に親水性基が配向されると共に凹凸が形成されてい る複合粒子を、 水性媒体に分散してなることを特徴としている。 The heat transfer medium according to the present invention has a heat storage property to solve the above problems. An oily substance that reversibly changes phase from a solid to a liquid or from a liquid to a solid in response to a temperature change has temperature stability and elasticity capable of absorbing a volume change accompanying the phase change of the oily substance. The composite particles, which are held inside the provided lipophilic polymer particles and have a hydrophilic group oriented on the surface of the particles and have irregularities, are dispersed in an aqueous medium. .
本発明にかかる熱搬送媒体は、 上記の課題を解決するために、 蓄熱性 を有し、 温度変化に応じて固体から液体へまたは液体から固体へ可逆的 に相変化する油性物質が、 温度安定性と、 油性物質の相変化に伴う体積 変化を吸収し得る伸縮性とを備えた親油性重合体粒子の内部に保持され、 かつ、 該粒子の表面に親水性基が配向されると共に粒子径が 1 u m〜 3 0 0 mに形成されている複合粒子を、 水性媒体に分散してなることを 特徴としている。  In order to solve the above-mentioned problems, the heat transfer medium according to the present invention has a heat storage property. And lipophilic polymer particles having elasticity and elasticity capable of absorbing a volume change caused by a phase change of an oily substance, and a hydrophilic group is oriented on the surface of the particles while the particle size is increased. The composite particles are formed by dispersing the composite particles having a particle size of 1 μm to 300 m in an aqueous medium.
本発明にかかる熱搬送媒体は、 上記の課題を解決するために、 上記の 熱搬送媒体において、 複合粒子の濃度を 2 0重量%としたときの粘度が、 温度 5 °Cで 5 m P a · s以下であることを特徴としている。  In order to solve the above-mentioned problems, the heat transfer medium according to the present invention has a viscosity of 5 mPa at a temperature of 5 ° C. when the concentration of the composite particles is 20% by weight. · S or less.
本発明にかかる空調システムは、 上記の課題を解決するために、 上記 の熱搬送媒体を用いて、 冷凍機および空調機器間の熱搬送を行うことを 特徴としている。  An air conditioning system according to the present invention is characterized by performing heat transfer between a refrigerator and an air conditioner by using the above heat transfer medium in order to solve the above-mentioned problems.
上記の構成によれば、 複合粒子を構成する親油性重合体粒子は、 温度 安定性と、 油性物質の相変化に伴う体積変化を吸収し得る伸縮性とを備 えている。 これにより、 使用時における親油性重合体粒子からの油性物 質の滲み出しが充分に防止されると共に、 油性物質が固体から液体へま たは液体から固体へ相変化する際における、 親油性重合体粒子からの油 性物質の滲み出しも充分に防止される。 また、 親油性重合体粒子の表面 に親水性基が配向されているので、 複合粒子同士の凝集や、 複合粒子に よる増粘作用が充分に防止される。 従って、 流動性の低下を招来せず、 しかも熱伝達効率を良好な状態に維持することができる熱搬送媒体、 並 ぴに該熱搬送媒体を用いた空調システムを提供することができる。 そし て、 親油性重合体粒子がエラストマ一をさらに含んでいる複合粒子は、 機械的強度や柔軟性により一層優れているので、 搬送時における機械的 安定性が向上される (形状が保持される) 。 従って、 熱搬送媒体の流動 抵抗を低減することができる。 According to the above configuration, the lipophilic polymer particles constituting the composite particles have temperature stability and elasticity capable of absorbing a volume change accompanying a phase change of the oily substance. This sufficiently prevents the lipophilic polymer particles from oozing out of the lipophilic polymer particles during use, and the lipophilic weight during the phase change of the oleaginous substance from solid to liquid or from liquid to solid. The oozing of the oily substance from the coalesced particles is sufficiently prevented. In addition, the surface of the lipophilic polymer particles Since the hydrophilic group is oriented in the polymer, the aggregation of the composite particles and the thickening effect of the composite particles are sufficiently prevented. Therefore, it is possible to provide a heat transfer medium that does not cause a decrease in fluidity and can maintain a good heat transfer efficiency, and an air conditioning system using the heat transfer medium. Further, the composite particles in which the lipophilic polymer particles further include an elastomer are more excellent in mechanical strength and flexibility, so that the mechanical stability during transportation is improved (the shape is maintained). ). Therefore, the flow resistance of the heat transfer medium can be reduced.
また、 本発明にかかる熱搬送媒体は、 上記の課題を解決するために、 単量体成分を、 蓄熱性を有し相変化により液化する油性物質の存在下で 重合してなり、 上記単量体成分を重合してなる重合体中に、 流動性が低 下するようにして上記油性物質を保持してなる蓄熱剤を、 水性媒体に分 散してなることを特徴としている。  Further, in order to solve the above problems, the heat transfer medium according to the present invention is obtained by polymerizing a monomer component in the presence of an oily substance having heat storage properties and liquefied by phase change, It is characterized in that, in a polymer obtained by polymerizing a body component, a heat storage agent holding the above-mentioned oily substance so as to decrease the fluidity is dispersed in an aqueous medium.
本発明にかかる熱搬送媒体は、 上記の課題を解決するために、 溶解度 パラメータが 9 ( c a 1 Z c m 3 ) 1 / 2 以下の単量体 (A ) と、 分子内 に親水性基を有する単量体 (B ) とを含んでなる単量体成分を、 蓄熱性 を有し相変化により液化する油性物質の存在下で重合してなり、 上記単 量体成分を重合してなる重合体中に、 上記油性物質が流動性を実質的に 失った状態で保持されてなる蓄熱剤を、 水性媒体に分散してなることを 特徴としている。 In order to solve the above problems, the heat transfer medium according to the present invention has a monomer (A) having a solubility parameter of 9 (ca 1 Z cm 3 ) 1/2 or less and a hydrophilic group in the molecule. A polymer obtained by polymerizing a monomer component containing the monomer (B) in the presence of an oily substance having heat storage properties and liquefied by phase change, and polymerizing the monomer component It is characterized in that a heat storage agent in which the oily substance is maintained in a state of substantially losing fluidity is dispersed in an aqueous medium.
上記の構成によれば、 熱搬送媒体に含まれる蓄熱剤は、 或る特定組成 の単量体成分を重合してなる重合体中に、 油性物質を流動性が低下する ようにして、 または流動性を実質的に失った状態で保持している。 これ により、 使用時における重合体からの油性物質の滲み出しが充分に防止 されると共に、 油性物質が相変化する際における、 つまり、 融解 · 凝固 する際における、 重合体からの油性物質の滲み出しも充分に防止される c 従って、 流動性の低下を招来せず、 しかも熱伝達効率を良好な状態に維 持することができる熱搬送媒体を提供することができる。 According to the above configuration, the heat storage agent contained in the heat transfer medium is used to reduce the fluidity of the oily substance in a polymer obtained by polymerizing a monomer component having a specific composition, It is kept in a state in which sex has been substantially lost. This sufficiently prevents oozing of oily substances from the polymer during use At the same time, the oozing of the oleaginous substance from the polymer when the oleaginous substance undergoes a phase change, that is, when it is melted and solidified, is sufficiently prevented. It is possible to provide a heat transfer medium that can maintain good heat transfer efficiency.
さらに、 本発明にかかる熱搬送媒体は、 上記の課題を解決するために、 上記単量体成分が、 重合性を有する不飽和基を分子内に少なく とも 2つ 有する架橋性単量体 (C ) を、 2 0重量%以下の範囲内で含んでいるこ とを特徴としている。  Furthermore, in order to solve the above-mentioned problems, the heat transport medium according to the present invention may be configured such that the monomer component has a crosslinkable monomer (C) having at least two polymerizable unsaturated groups in a molecule. ) In the range of 20% by weight or less.
上記の構成によれば、 剪断応力に対する機械的強度がより一層高い蓄 熱剤を含む熱搬送媒体を提供することができる。  According to the above configuration, it is possible to provide a heat transfer medium including a heat storage agent having a higher mechanical strength against shear stress.
本発明にかかる熱搬送媒体は、 上記の課題を解決するために、 上記の 熱搬送媒体において、 蓄熱剤と水性媒体との重量比 (蓄熱剤/水性媒体 ) が、 5 0 / 5 0〜5 / 9 5 の範囲内であることを特徴としている。 上記の構成によれば、 流動性の低下を招来せず、 しかも熱伝達効率に より一層優れた熱搬送媒体を提供することができる。  In order to solve the above-mentioned problems, the heat transfer medium according to the present invention is characterized in that in the heat transfer medium, the weight ratio of the heat storage agent to the aqueous medium (heat storage agent / aqueous medium) is 50/50 to 5 / 95. According to the above configuration, it is possible to provide a heat transfer medium that does not cause a decrease in fluidity and that is more excellent in heat transfer efficiency.
また、 本発明にかかる熱搬送媒体の製造方法は、 上記の課題を解決す るために、 溶解度パラメータが 9 ( c a 1 / c m 3 ) 1 / 2 以下の単量体 ( A ) と、 分子内に親水性基を有する単量体 (B ) とを含んでなる単量 体成分、 並びに、 蓄熱性を有し相変化により液化する油性物質を、 水系 溶媒中で懸濁重合することを特徴としている。 In order to solve the above-mentioned problems, the method for producing a heat transfer medium according to the present invention comprises: a monomer (A) having a solubility parameter of 9 (ca 1 / cm 3 ) 1/2 or less; A monomer component comprising a monomer having a hydrophilic group (B) and an oily substance having a heat storage property and liquefied by phase change in an aqueous solvent by suspension polymerization. I have.
上記の方法によれば、 実質的に重合工程だけの一工程で、 つまり、 簡 便な製造工程で熱搬送媒体を製造することができる。 即ち、 上記種々の 効果を奏することができる熱搬送媒体の製造方法を提供することができ 0 本発明にかかる熱搬送媒体の製造方法は、 上記の課題を解決するため に、 上記単量体成分および または油性物質に、 エラス トマ一が混合さ れていることを特徴としている。 According to the above method, the heat transfer medium can be manufactured in substantially one step of the polymerization step, that is, in a simple manufacturing step. That is, it is possible to provide a method for manufacturing a heat transfer medium that can exhibit the above various effects. In order to solve the above-mentioned problems, the method for producing a heat transfer medium according to the present invention is characterized in that an elastomer is mixed with the monomer component and / or the oily substance.
単量体成分を油性物質と共に水系溶媒に懸濁させると、 該単量体成分 は、 油性物質と相溶し、 かつ、 単量体 (B ) が水系溶媒側 (外側) に配 向した状態の油滴となる。 この際、 上記の方法によれば、 懸濁重合時に おける、 単量体 (B ) の配向性を任意に制御することができるので、 低 温時における流動性の低下を招来せず、 しかも、 使用時における油性物 質の滲み出しを充分に防止することができる熱搬送媒体を提供すること ができる。  When the monomer component is suspended in an aqueous solvent together with an oily substance, the monomer component is compatible with the oily substance and the monomer (B) is oriented to the aqueous solvent side (outside). Oil droplets. At this time, according to the above method, the orientation of the monomer (B) during suspension polymerization can be arbitrarily controlled, so that the flowability at low temperature is not reduced, and It is possible to provide a heat transfer medium that can sufficiently prevent oozing of oily substances during use.
以下に本発明を詳しく説明する。  Hereinafter, the present invention will be described in detail.
本発明にかかる熱搬送媒体に含まれる蓄熱剤は、 単量体成分を、 蓄熱 性を有し相変化により液化する油性物質の存在下で重合してなっており、 上記単量体成分を重合してなる重合体中に、 流動性が低下するようにし て上記油性物質を保持している。 また、 本発明にかかる熱搬送媒体に含 まれる蓄熱剤は、 溶解度パラメ一夕が 9 ( c a 〗 / c m 3 ) 1 / 2 以下の 単量体 (A ) と、 分子内にカルボキシル基等の親水性基を有する単量体 ( B ) と、 必要に応じて、 重合性を有する不飽和基を分子内に少なく と も 2つ有する架橋性単量体 (C ) とを含んでなる単量体成分を、 上記油 性物質の存在下で重合してなっており、 上記単量体成分を重合してなる 重合体中に、 上記油性物質を流動性を実質的に失った状態で保持してい る。 上記の熱搬送媒体は、 例えば、 単量体成分並びに油性物質を、 例え ば水性媒体となるべき水系溶媒中で懸濁重合することによって製造する ことができる。 上記の油性物質は、 特定の温度領域において、 液相と固相との間の相 変化の際の潜熱による蓄熱性を有し、 実質的に水に不溶或いは難溶性の 物質で、 かつ、 単量体成分の重合反応並びに重合体の架橋反応に対して 不活性であればよく、 特に限定されるものではない。 該油性物質として は、 具体的には、 例えば、 テトラデカン、 ペン夕デカン、 へキサデカン 等の n—パラフィ ン、 ノ ラフィ ンワックス、 イソパラフィ ン、 ポリェチ レンワックス等のパラフィ ン類 ; ステアリ ン酸、 パルミチン酸等の脂肪 酸類 ; ステアリ ン酸ブチル等の脂肪酸エステル類 ; デシルアルコール、 ドデシルアルコール等のアルコール類 ; 等が挙げられる。 これら油性物 質は、 一種類のみを用いてもよく、 また、 二種類以上を併用してもよい c そして、 油性物質は、 単量体成分との相溶性に優れていることがより 好ましい。 上記例示の油性物質のうち、 融解潜熱が高く、 明確な凝固点 を有すること ; 凝固点を自由に設定することができること ; 入手が容易 であること ; 等の理由から、 パラフィ ン類が特に好ましい。 The heat storage agent contained in the heat transfer medium according to the present invention is obtained by polymerizing a monomer component in the presence of an oily substance that has heat storage properties and liquefies by phase change, and polymerizes the monomer component. The oily substance is retained in the resulting polymer such that the fluidity is reduced. Further, the heat storage agent contained in the heat transfer medium according to the present invention includes a monomer (A) having a solubility parameter of 9 (ca ca / cm 3 ) 1/2 or less, and a carboxyl group or the like in the molecule. A monomer comprising a monomer (B) having a hydrophilic group and, if necessary, a crosslinkable monomer (C) having at least two polymerizable unsaturated groups in the molecule. The body component is polymerized in the presence of the oily substance, and the oily substance is held in a state where the fluidity has been substantially lost in a polymer obtained by polymerizing the monomer component. ing. The above-mentioned heat transport medium can be produced, for example, by subjecting a monomer component and an oily substance to suspension polymerization in, for example, an aqueous solvent to be an aqueous medium. The above-mentioned oily substance has a heat storage property due to latent heat at the time of a phase change between a liquid phase and a solid phase in a specific temperature range, and is a substance substantially insoluble or hardly soluble in water. It is not particularly limited as long as it is inert to the polymerization reaction of the monomer component and the crosslinking reaction of the polymer. Specific examples of the oily substance include n-paraffins such as tetradecane, pendudecane, and hexadecane; paraffins such as noraffin wax, isoparaffin, and polyethylene wax; stearic acid, palmitic acid And the like; fatty acids such as butyl stearate; alcohols such as decyl alcohol and dodecyl alcohol; These oily substances may be used only one type, also good c and be used in combination of two or more, the oily material, and more preferably has excellent compatibility with the monomer component. Among the oily substances exemplified above, paraffins are particularly preferable because they have a high latent heat of fusion and have a clear freezing point; their freezing points can be freely set; they are easily available;
尚、 上記の油性物質には、 必要に応じて、 該油性物質の潜熱による蓄 熱性を調整するために、 包接化合物を添加してもよい。 該包接化合物と しては、 具体的には、 例えば、 C 4 Η8 〇 · 17H2 0、 (C H3)3 N · 10.25H2 0、 (C 4 H9)4 N C H 02 - 32H2 0、 (C 4 H9)4 NC H3 C 02 - 32H2 0等が挙げられる。 油性物質に対する包接化合物の 添加量は、 特に限定されるものではない。 In addition, an inclusion compound may be added to the above oily substance, if necessary, in order to adjust the heat storage property of the oily substance due to latent heat. Is a該包contact compound, specifically, for example, C 4 Eta 8 · 17H 2 0, (CH 3 ) 3 N · 10.25H 2 0, (C 4 H 9) 4 NCH 0 2 - 32H 2 0, (C 4 H 9 ) 4 NC H 3 C 0 2 - include 32H 2 0 and the like. The amount of the clathrate compound added to the oily substance is not particularly limited.
上記の単量体成分は、 例えば、 重合性を有する不飽和基を分子内に 1 つ有する単量体を主成分として含むと共に、 必要に応じて、 重合性を有 する不飽和基を分子内に少なく とも 2つ有する架橋性単量体を含んでな つている。 より好ましくは、 上記の単量体成分は、 溶解度パラメータが 9 ( c a 1 /cm3 ) 1/2 以下の単量体 (A) と、 分子内に親水性基を 有する単量体 (B) と、 必要に応じて、 重合性を有する不飽和基を分子 内に少なく とも 2つ有する架橋性単量体 (C) とを含んでなっている。 上記溶解度パラメータ (S P値) は、 化合物の極性を表す尺度として一 般的に用いられているパラメータである。 該溶解度パラメータは、 例え ば、 Sma l lの計算式に H o yの凝集エネルギー定数を代入するこ と により得られる値であり、 本発明においてはこの値を採用している。 単量体 (A) は、 溶解度パラメータが 9 ( c a 1 c m3 ) 1/2 以下 であり、 例えば重合性を有する不飽和基を分子内に 1つ有する不飽和単 量体である。 上記単量体 (A) としては、 具体的には、 例えば、 メチル (メタ) ァク リ レー ト、 ェチル (メタ) ァク リ レー ト、 プロピル (メタ ) ァク リ レー ト、 n—ブチル (メタ) ァク リ レー ト、 イソブチル (メタ ) ァク リ レー ト、 t—ブチル (メタ) ァク リ レー ト、 2—ェチルへキシ ル (メタ) ァク リ レー ト、 n—ォクチル (メタ) ァク リ レー ト、 ドデシ ソレ (メタ) ァク リ レー ト、 ステアリル (メタ) ァク リ レー ト、 フエニル (メタ) ァク リ レー ト、 ォクチルフヱニル (メタ) ァク リ レー ト、 ノニ ルフエニル (メタ) ァク リ レー ト、 ジノニルフエニル (メタ) ァク リ レ ー ト、 シクロへキシル (メタ) ァク リ レー ト、 メ ンチル (メタ) ァク リ レー ト、 イソボルニル (メタ) ァク リ レー ト、 ジブチル (メタ) ァク リ レー ト、 ジブチルマレエ一 ト、 ジ ドデシルマレエー ト、 ドデシルクロ ト ネー ト、 ジ ドデシルイ夕コネー ト等の不飽和カルボン酸エステル 〔アル キル (メタ) ァク リ レー ト、 アルキルァリール (メタ) ァク リ レー ト〕 (ジ) ブチル (メタ) アク リルア ミ ド、 (ジ) ドデシル (メタ) ァク リ ルア ミ ド、 (ジ) ステアリル (メタ) アク リルア ミ ド、 (ジ) プチルフ ェニル (メタ) アク リルア ミ ド、 (ジ) ォクチルフエ二ル (メタ) ァク リルァ ミ ド等の、 炭化水素基を有する (メタ) アク リルア ミ ド類 〔アル キル (メタ) アク リルア ミ ド、 アルキルァリール (メタ) アク リルア ミ ド、〕 ; The above-mentioned monomer component contains, for example, a monomer having one polymerizable unsaturated group in the molecule as a main component, and optionally contains a polymerizable unsaturated group in the molecule. It contains at least two crosslinkable monomers. More preferably, the above monomer component has a solubility parameter 9 (ca 1 / cm 3 ) 1/2 or less of the monomer (A), the monomer having a hydrophilic group in the molecule (B) and, if necessary, a polymerizable unsaturated group And at least two crosslinkable monomers (C) in the molecule. The solubility parameter (SP value) is a parameter generally used as a scale indicating the polarity of a compound. The solubility parameter is, for example, a value obtained by substituting the aggregation energy constant of Hoy into the calculation formula of Small, and this value is employed in the present invention. The monomer (A) has an solubility parameter of 9 (ca 1 cm 3 ) 1/2 or less, and is, for example, an unsaturated monomer having one polymerizable unsaturated group in the molecule. Specific examples of the monomer (A) include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, and n-butyl. (Meth) acrylate, isobutyl (meth) acrylate, t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, n-octyl (meth) acrylate (Meth) acrylate, dodecisole (meta) acrylate, stearyl (meta) acrylate, phenyl (meta) acrylate, octylphenyl (meta) acrylate, noni Ruphenyl (meth) acrylate, dinonylphenyl (meth) acrylate, cyclohexyl (meth) acrylate, menthyl (meth) acrylate, isobornyl (meth) acrylate Relay Unsaturated carboxylic acid esters such as dibutyl (meth) acrylate, dibutyl maleate, didodecyl maleate, dodecyl crotonate, dododecyl nitrate conjugate [alkyl (meth) acrylate, Alkylaryl (meth) acrylate] (di) butyl (meth) acrylamide, (di) dodecyl (meth) acrylamide, (di) stearyl (meth) acrylamide, (Di) Petilf (Meth) acrylyl amides having a hydrocarbon group such as phenyl (meth) acrylyl amide and (di) octylphenyl (meth) acrylamide [alkyl (meth) acrylyl amide; Alkylaryl (meth) acrylamide,
ビニルシク口へキサン等の脂環式ビニル化合物 ; An alicyclic vinyl compound such as a vinylcyclohexane;
ドデシルァリルエーテル等の、 炭化水素基を有するァリルエーテル類 ; 力プロン酸ビニル、 ラウリ ン酸ビニル、 パルミチン酸ビニル、 ステアリ ン酸ビニル等の、 炭化水素基を有するビニルエステル 〔脂肪酸ビニルェ ステル〕 ;  Allyl ethers having a hydrocarbon group such as dodecyl aryl ether; vinyl esters having a hydrocarbon group such as vinyl caproate, vinyl laurate, vinyl palmitate and vinyl stearate [fatty acid vinyl ester];
プチルビニルエーテル、 ドデシルビ二ルェ一テル等の、 炭化水素基を有 するビニルエーテル類 ; Vinyl ethers having a hydrocarbon group, such as butyl vinyl ether and dodecyl vinyl ether;
スチレン、 t 一プチルスチレン、 ォクチルスチレン等の芳香族ビニル化 合物 〔アルキルスチレン〕 ; Aromatic vinyl compounds such as styrene, t-butylstyrene, octylstyrene [alkylstyrene];
1 一へキセン、 1 ーォクテン、 イソォクテン、 1 —ノネン、 1 ーデセン 等の α —ォレフィ ン ;  1 α-olefin, such as 1-hexene, 1-octene, isooctene, 1-nonene, 1-decene;
ヒ ドロキシプロピル (メタ) ァク リ レー ト等の水酸基含有不飽和カルボ ン酸エステル 〔いわゆる界面配向性単量体〕 ; 等が挙げられるが、 特に 限定されるものではない。 これら単量体 (Α ) は、 一種類のみを用いて もよく、 また、 二種類以上を併用してもよい。 And hydroxyl-containing unsaturated carbonates such as hydroxypropyl (meth) acrylate [so-called interface-oriented monomers]; and the like, but are not particularly limited thereto. One of these monomers (II) may be used alone, or two or more thereof may be used in combination.
単量体 (Α ) は、 比較的長鎖の不飽和単量体を主成分として、 つまり、 The monomer (Α) is composed mainly of a relatively long-chain unsaturated monomer, that is,
5 0重量%以上含んでいることがより好ま しい。 そして、 上記例示の不 飽和単量体のうち、 アルキル (メタ) ァク リ レー ト、 アルキルァリール (メタ) アタ リ レー ト、 アルキル (メタ) アク リルア ミ ド、 アルキルァ リール (メタ) アク リルア ミ ド、 脂肪酸ビニルエステル、 アルキルスチ レ ン、 および、 ひ一才レフイ ンからなる群より選ばれる少なく とも一種 の不飽和単量体を主成分として、 つまり、 5 0重量%以上含み、 かつ、 該不飽和単量体が炭素数 3〜 3 0の脂肪族炭化水素基を有している単量 体 (A) がさらに好ましい。 また、 該脂肪族炭化水素基の炭素数は、 4 〜 2 4がより好ましく、 8〜 1 8がさらに好ましい。 該単量体 ( A) は、 油性物質との相溶性により一層優れている。 従って、 該単量体 (A) を 含む単量体成分を重合してなる重合体は、 油性物質を保持する能力に特 に優れている。 それゆえ、 油性物質の液状化を一層抑制することができ、 重合体からの油性物質の滲み出しがさらに充分に防止された蓄熱剤を含 む熱搬送媒体を得ることができる。 More preferably, the content is 50% by weight or more. And, among the unsaturated monomers exemplified above, alkyl (meth) acrylate, alkylaryl (meth) acrylate, alkyl (meth) acrylyl amide, alkylaryl (meth) acrylyl Mid, fatty acid vinyl ester, alkyl styrene At least one kind of unsaturated monomer selected from the group consisting of ren and one-year-old olefin as a main component, that is, 50% by weight or more, and the unsaturated monomer has a carbon number of at least 50% by weight. Monomers (A) having 3 to 30 aliphatic hydrocarbon groups are more preferred. The aliphatic hydrocarbon group preferably has 4 to 24 carbon atoms, and more preferably has 8 to 18 carbon atoms. The monomer (A) is more excellent in compatibility with the oily substance. Therefore, a polymer obtained by polymerizing a monomer component containing the monomer (A) is particularly excellent in the ability to retain an oily substance. Therefore, it is possible to further suppress the liquefaction of the oily substance, and to obtain a heat transfer medium containing a heat storage agent in which the oozing of the oily substance from the polymer is more sufficiently prevented.
単量体 (A) は、 溶解度パラメータが 9 ( c a 1 Z c m3 ) 1/2 以下 であればよく、 従って上記例示の、 重合性を有する不飽和基を分子内に 1つ有する不飽和単量体の他に、 例えば、 ラジカル重合、 放射線重合、 付加重合、 重縮合、 開環重合等の重合反応によって重合する重合性基を 分子内に 1つ有する単量体であってもよい。 ラジカル重合若しくは開環 重合等の重合反応によって重合する該単量体としては、 例えば、 ノルボ ルネン系単量体が挙げられる。 The monomer (A) may have a solubility parameter of 9 (ca 1 Z cm 3 ) 1/2 or less. Therefore, the unsaturated monomer having one polymerizable unsaturated group in the molecule as exemplified above can be used. In addition to the monomer, for example, a monomer having one polymerizable group in a molecule which is polymerized by a polymerization reaction such as radical polymerization, radiation polymerization, addition polymerization, polycondensation, or ring-opening polymerization may be used. Examples of the monomer polymerized by a polymerization reaction such as radical polymerization or ring-opening polymerization include a norbornene-based monomer.
尚、 単量体 (A) の代わりに、 溶解度パラメータが 9 ( c a 1 / c m3 ) 1/2 を越える単量体を用いた場合には、 該単量体を含んでなる単量体 成分を重合してなる重合体は、 油性物質を流動性を実質的に失った状態 で保持することができないか、 若しく は油性物質を多量に保持すること ができない。 従って、 蓄熱性に優れた蓄熱剤を含む熱搬送媒体を得るこ とができない。 When a monomer having a solubility parameter exceeding 9 (ca 1 / cm 3 ) 1/2 is used instead of the monomer (A), the monomer component containing the monomer is used. A polymer obtained by polymerizing the compound cannot retain the oily substance in a state of substantially losing fluidity or cannot retain the oily substance in a large amount. Therefore, it is not possible to obtain a heat transfer medium containing a heat storage agent having excellent heat storage properties.
単量体 ( B) は、 分子内にカルボキシル基等の親水性基を有する不飽 和単量体である。 上記単量体 ( B ) としては、 具体的には、 例えば、 ァ ク リル酸、 メタク リル酸、 ひ 一ェチルアク リル酸、 ィタコン酸、 シ トラ コン酸、 メサコン酸、 グルタコン酸、 マレイ ン酸、 フマル酸、 ひ 一クロ 口アク リル酸、 ひ 一シァノアク リル酸、 クロ トン酸、 イソクロ ト ン酸、 ひーフヱニルアク リル酸、 S—ァク リ ロイルォキシプロピオン酸、 ソル ビン酸、 ひ 一クロ口ソルビン酸、 アンゲリカ酸、 ゲイ皮酸、 p —クロ Π3 ゲイ皮酸、 3 —スチリルアク リル酸、 2 —メ夕ク リ ロイルォキシェチル コハク酸、 2 —メタク リ ロイルォキシェチルフタル酸等のカルボキシル 基含有単量体 ; The monomer (B) is an unsaturated monomer having a hydrophilic group such as a carboxyl group in the molecule. It is a sum monomer. Specific examples of the monomer (B) include, for example, acrylic acid, methacrylic acid, methyl acrylic acid, itaconic acid, citraconic acid, mesaconic acid, glutaconic acid, maleic acid, Fumaric acid, monoacrylic acid, monocyanoacrylic acid, crotonic acid, isocrotonic acid, hypophenylacrylic acid, S-acryloyloxypropionic acid, sorbic acid, monochloric acid Sorbic acid, angelic acid, gay cinnamate, p-chloro-3 gay cinnamate, 3—styrylacrylic acid, 2—methacryloyloxetyl succinic acid, 2—methacryloyloxicetyl phthalic acid, etc. A carboxyl group-containing monomer of
ヒ ドロキシェチル (メタ) ァク リ レー ト、 ヒ ドロキシプロピル (メタ) ァク リ レー ト、 ヒ ドロキシブチル (メタ) ァク リ レー ト、 ポリエチレン グリ コールモノ (メタ) ァク リ レー ト、 プロピレングリ コールモノ (メ 夕) ァク リ レー ト、 ポリプロピレングリ コールモノ (メタ) ァク リ レー ト、 グリセリ ンモノ (メタ) ァク リ レー ト、 ヒ ドロキシスチレン等のヒ ドロキシル基含有単量体 ; Hydroxyshetyl (meth) acrylate, hydroxypropyl (meth) acrylate, hydroxybutyl (meth) acrylate, polyethylene glycol mono (meth) acrylate, propylene glycol Hydroxyl group-containing monomers such as coal mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, glycerin mono (meth) acrylate, and hydroxystyrene;
ビニルメルカブタン、 メルカプトェチル (メタ) ァク リ レー ト等のメル カプト基含有単量体 ;  Mercapto group-containing monomers such as vinyl mercaptan and mercaptoethyl (meth) acrylate;
(メタ) アク リ ロニト リル等の二 ト リル基含有単量体 ;  (Meth) Monomers containing a ditolyl group such as acrylonitrile;
ア ミ ノエチル (メタ) ァク リ レー ト、 ビニルェチルァ ミ ン等のア ミ ノ基 含有単量体 ; Amino group-containing monomers such as aminoethyl (meth) acrylate and vinylethylamine;
(メタ) アク リルア ミ ド等のァ ミ ド基含有単量体 ;  (Meth) Amide group-containing monomers such as acrylamide;
グリ シジル (メタ) ァク リ レー ト等のエポキシ基含有単量体 ;  Epoxy group-containing monomers such as glycidyl (meth) acrylate;
無水マレィ ン酸等の酸無水物 ; Acid anhydrides such as maleic anhydride;
スチレンスルホン酸等のスルホネー ト基含有単量体 ; 等が挙げられるが. 特に限定されるものではない。 これら単量体 (B ) は、 一種類のみを用 いてもよく、 また、 二種類以上を併用してもよい。 Sulfonate group-containing monomers such as styrene sulfonic acid; and the like. There is no particular limitation. These monomers (B) may be used alone or in combination of two or more.
上記例示の単量体 (B ) のうち、 ァク リル酸、 メタク リル酸、 クロ ト ン酸、 ィタコン酸、 マレイン酸、 および、 フマル酸からなる群より選ば れる少なく とも一種の不飽和単量体が特に好ましい。 該単量体 (B ) を 含んでなる単量体成分を、 例えば、 水系溶媒中で懸濁重合させることに より、 その表層部がより一層硬質化された蓄熱剤を含む熱搬送媒体を得 ることができる。  Among the monomers (B) exemplified above, at least one unsaturated monomer selected from the group consisting of acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, and fumaric acid The body is particularly preferred. By subjecting the monomer component containing the monomer (B) to, for example, suspension polymerization in an aqueous solvent, a heat transfer medium containing a heat storage agent whose surface layer is hardened is obtained. Can be
さらに、 必要に応じて、 熱搬送媒体の p Hを、 水酸化ナト リウム、 水 酸化カルシウム等の水酸化物や、 アンモニア、 アルキルアミ ン等を用い て、 適宜調節することもできる。  Further, if necessary, the pH of the heat transfer medium can be appropriately adjusted using a hydroxide such as sodium hydroxide or calcium hydroxide, ammonia, or an alkylamine.
単量体成分における単量体 (A ) と単量体 (B ) との重量比 (単量体 ( A ) Z単量体 (B ) ) は、 特に限定されるものではないが、 9 9 / 1 〜 4 0 / 6 0の範囲内であることが特に好ましい。 これにより、 油性物 質の液状化を一層抑制することができるので、 重合体からの油性物質の 滲み出しがさらに充分に防止された蓄熱剤を含む熱搬送媒体を得ること ができる。 単量体 (A ) の割合が上記の範囲よりも多い場合には、 蓄熱 剤の表層部を充分に硬質化させることが困難となるおそれがある。 単量 体 (A ) の割合が上記の範囲よりも少ない場合には、 蓄熱剤を製造する 際に、 重合体からの油性物質の滲み出しが生じるおそれがある。 また、 油性物質が融解しているときに蓄熱剤に外力が作用すると、 該油性物質 が流動性を有する (液状化する) おそれがある。  The weight ratio of the monomer (A) to the monomer (B) (monomer (A) Z monomer (B)) in the monomer component is not particularly limited. / 1 to 40/60 is particularly preferable. As a result, the liquefaction of the oily substance can be further suppressed, so that it is possible to obtain a heat transfer medium containing a heat storage agent in which the oozing of the oily substance from the polymer is more sufficiently prevented. If the proportion of the monomer (A) is larger than the above range, it may be difficult to sufficiently harden the surface layer of the heat storage agent. If the proportion of the monomer (A) is less than the above range, the production of the heat storage agent may cause oozing of the oily substance from the polymer. If an external force acts on the heat storage agent while the oily substance is being melted, the oily substance may have fluidity (liquefy).
単量体成分に必要に応じて含まれる架橋性単量体 (C ) は、 重合性を 有する不飽和基を分子内に少なく とも 2つ有する不飽和単量体である。 上記架橋性単量体 ( C ) としては、 具体的には、 例えば、 エチレングリ コールジ (メタ) ァク リ レー ト、 ジエチレングリ コールジ (メタ) ァク リ レー ト、 ポリエチレングリ コールジ (メタ) ァク リ レー ト、 ポリェチ レングリ コール · ポリプロピレングリ コールジ (メタ) ァク リ レー ト、 プロピレングリ コールジ (メタ) ァク リ レー ト、 ポリプロピレングリ コThe crosslinkable monomer (C) optionally contained in the monomer component is an unsaturated monomer having at least two polymerizable unsaturated groups in the molecule. Specific examples of the crosslinkable monomer (C) include, for example, ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate. Crylate, polyethylene glycol / polypropylene glycol (meta) acrylate, propylene glycol (meta) acrylate, polypropylene glycol
—ルジ (メタ) ァク リ レー ト、 1, 3 —ブチレングリ コールジ (メタ) ァク リ レー ト、 ネオペンチルグリ コールジ (メタ) ァク リ レー ト、 1, 6 —へキサンジオールジ (メタ) ァク リ レー ト、 N, N ' —メチレンビ スアク リルア ミ ド、 N , N ' 一プロピレンビスアク リルア ミ ド、 グリセ リ ン ト リ (メタ) ァク リ レー ト、 ト リ メチロールプロパン ト リ (メタ) ァク リ レー ト、 テ トラメチロ一ルメタンテ トラ (メタ) ァク リ レー ト、 多価アルコール (例えばグリセリ ン、 ト リ メチロールプロパン、 テ トラ メチロールメタン等) のアルキレンォキシ ド付加物と (メタ) アク リル 酸とのエステル化によって得られる多官能 (メタ) ァク リ レー ト、 ジビ ニルベンゼン等が挙げられるが、 特に限定されるものではない。 これら 架橋性単量体 ( C ) は、 必要に応じて一種類のみを用いてもよく、 また- 二種類以上を併用してもよい。 —Luji (meth) acrylate, 1,3 —Butylene glycol (meth) acrylate, neopentyl glycol (meth) acrylate, 1,6 —Hexanediol di (meta) Acrylate, N, N'-methylene bisacrylamide, N, N'-propylene bisacrylamide, glycerin tri (meth) acrylate, trimethylolpropane tri ( (Meth) acrylate, tetramethylolmethane tetra (meth) acrylate, alkylene oxide adducts of polyhydric alcohols (for example, glycerin, trimethylolpropane, tetramethylolmethane, etc.) (Meth) Polyfunctional (meth) acrylates obtained by esterification with acrylic acid, divinyl benzene, etc., but are not particularly limited. Not shall. These crosslinkable monomers (C) may be used alone or in combination of two or more as necessary.
単量体成分が架橋性単量体 (C ) を含む場合において、 該単量体成分 における架橋性単量体 (C ) の割合は、 2 0重量%以下の範囲内が好ま しい。 これにより、 剪断応力に対する機械的強度がより一層高い蓄熱剤 を含む熱搬送媒体を得ることができる。 架橋性単量体 (C ) の割合が 2 0重量%を越えると、 蓄熱剤を製造する際に、 重合体からの油性物質の 滲み出しが生じるおそれがある。 また、 油性物質が融解しているときに 蓄熱剤に外力が作用すると、 該油性物質が流動性を有する (液状化する ) おそれがある。 When the monomer component contains a crosslinkable monomer (C), the proportion of the crosslinkable monomer (C) in the monomer component is preferably within the range of 20% by weight or less. This makes it possible to obtain a heat transfer medium containing a heat storage agent having a higher mechanical strength against shear stress. If the proportion of the crosslinkable monomer (C) exceeds 20% by weight, there is a possibility that oily substances may ooze out of the polymer when producing the heat storage agent. When an external force acts on the heat storage agent while the oily substance is molten, the oily substance has fluidity (liquefaction). ) May be.
上記油性物質と単量体成分との重量比 (油性物質 Z単量体成分) は、 特に限定されるものではないが、 9 5ノ 5〜 4 0 / 6 0の範囲内である ことが特に好ましい。 これにより、 単位量当たりの蓄熱量により一層優 れた蓄熱剤を含む熱搬送媒体を得ることができる。 油性物質の割合が上 記の範囲よりも多い場合には、 油性物質が融解しているときに、 該油性 物質の流動性 (液状化) を抑制することが困難となるおそれがある。 油 性物質の割合が上記の範囲よりも少ない場合には、 単位量当たりの蓄熱 量に優れた蓄熱剤を含む熱搬送媒体を得ることができなくなるおそれが ある。  The weight ratio between the oily substance and the monomer component (oily substance Z monomer component) is not particularly limited, but is preferably in the range of 95 to 5/40/60. preferable. This makes it possible to obtain a heat transfer medium containing a heat storage agent that is more excellent than the heat storage amount per unit amount. If the ratio of the oily substance is larger than the above range, it may be difficult to suppress the fluidity (liquefaction) of the oily substance when the oily substance is molten. If the ratio of the oily substance is smaller than the above range, a heat transfer medium containing a heat storage agent having an excellent heat storage amount per unit amount may not be obtained.
本発明にかかる熱搬送媒体は、 例えば、 上記の単量体成分並びに油性 物質を水等の水系溶媒中で懸濁重合することによって容易に製造するこ とができる。 懸濁重合することによって熱搬送媒体を製造する場合には- 水系溶媒が水性媒体としての機能を兼ねることになる。 単量体成分並び に油性物質は、 必要に応じて、 保護コロイ ド剤ゃ界面活性剤の存在下で 水系溶媒に懸濁させることができる。 尚、 本発明において懸濁重合には- 懸濁重縮合も含まれることとする。  The heat transport medium according to the present invention can be easily produced, for example, by subjecting the above monomer component and oily substance to suspension polymerization in an aqueous solvent such as water. When a heat transfer medium is produced by suspension polymerization, an aqueous solvent also functions as an aqueous medium. The monomer component and the oily substance can be suspended in an aqueous solvent in the presence of a protective colloid agent and a surfactant, if necessary. In the present invention, the suspension polymerization also includes -suspension polycondensation.
水系溶媒に対する単量体成分並びに油性物質の添加量、 即ち、 単量体 成分並びに油性物質の濃度は、 特に限定されるものではないが、 得られ る蓄熱剤と水性媒体との重量比 (蓄熱剤ノ水性媒体) が、 5 0 Z 5 0〜 The amount of the monomer component and the oily substance added to the aqueous solvent, that is, the concentration of the monomer component and the oily substance is not particularly limited, but the weight ratio of the obtained heat storage agent to the aqueous medium (heat storage Aqueous medium), but 50 Z 50 ~
5 / 9 5の範囲内となるように設定することがより好ましい。 It is more preferable to set the value to fall within the range of 5/95.
上記の保護コロイ ド剤としては、 具体的には、 例えば、 ポリ ビニルァ ルコール、 ヒ ドロキシェチルセルロース、 ゼラチン等が挙げられる。 上 記の界面活性剤としては、 具体的には、 例えば、 アルキルスルホン酸ナ ト リ ゥム、 アルキルベンゼンスルホン酸ナ ト リ ゥム、 ポリオキシェチレ ンアルキルエーテル、 脂肪酸石鹼等が挙げられる。 保護コロイ ド剤ゃ界 面活性剤の使用量は、 特に限定されるものではない。 Specific examples of the above-mentioned protective colloid agent include polyvinyl alcohol, hydroxyethyl cellulose, gelatin and the like. As the above-mentioned surfactant, specifically, for example, Examples thereof include sodium, sodium alkylbenzenesulfonate, polyoxyethylene alkyl ether, and fatty acid stone. The amount of the protective colloid agent and surfactant used is not particularly limited.
懸濁重合する際に好適に用いられる重合開始剤としては、 具体的には、 例えば、 ベンゾィルパーオキサイ ド、 ラウロイルパ一オキサイ ド、 クメ ンハイ ド口パーオキサイ ド等の有機過酸化物 ; 2, 2 ' ーァゾビスイソ プチロニト リル、 2 , 2 ' ーァゾビス ( 2 , 4 —ジメチルバレロニ ト リ ル) 等のァゾ化合物 ; 等の油溶性ラジカル重合開始剤が挙げられるが、 特に限定されるものではない。 これら重合開始剤は、 一種類のみを用い てもよく、 また、 二種類以上を併用してもよい。 単量体成分に対する重 合開始剤の使用量は、 単量体成分の組成等にもよるが、 0 . 1重量%〜 5重量%の範囲内が好適である。  Examples of the polymerization initiator suitably used in the suspension polymerization include, for example, organic peroxides such as benzoyl peroxide, lauroyl peroxide, cumene peroxide, and the like; Oil-soluble radical polymerization initiators such as azo compounds such as 2′-azobisisobutyronitrile and 2,2′-azobis (2,4-dimethylvaleronitrile); are not particularly limited. One of these polymerization initiators may be used alone, or two or more thereof may be used in combination. The amount of the polymerization initiator to be used based on the monomer component depends on the composition of the monomer component and the like, but is preferably in the range of 0.1% by weight to 5% by weight.
反応温度は、 単量体成分の組成、 油性物質の組成や融点、 重合開始剤 の種類、 水系溶媒の種類等に応じて設定すればよく、 特に限定されるも のではないが、 油性物質が液状を維持することができる温度以上である ことが望ましい。 反応温度は、 具体的には、 0 °C〜 1 5 0 °Cの範囲内が 好適であり、 0 °C〜 8 0 °Cの範囲内が最適である。 また、 反応時間は、 特に限定されるものではなく、 単量体成分の組成、 油性物質の組成ゃ融 点、 重合開始剤の種類、 水系溶媒の種類、 反応温度等に応じて、 該懸濁 重合が完了するように、 適宜設定すればよい。 さらに、 懸濁重合は、 窒 素ガス等の不活性ガスの雰囲気下で行うことがより好ましい。  The reaction temperature may be set according to the composition of the monomer component, the composition and melting point of the oily substance, the type of the polymerization initiator, the type of the aqueous solvent, etc., and is not particularly limited. It is desirable that the temperature be higher than the temperature at which the liquid can be maintained. Specifically, the reaction temperature is preferably in the range of 0 ° C. to 150 ° C., and most preferably in the range of 0 ° C. to 80 ° C. The reaction time is not particularly limited, and may be determined depending on the composition of the monomer component, the composition of the oily substance, the melting point, the type of the polymerization initiator, the type of the aqueous solvent, the reaction temperature, and the like. What is necessary is just to set suitably so that polymerization may be completed. Further, the suspension polymerization is more preferably performed in an atmosphere of an inert gas such as a nitrogen gas.
水系溶媒に単量体成分並びに油性物質と、 重合開始剤と、 必要に応じ て、 保護コロイ ド剤ゃ界面活性剤とを混合した後、 水系溶媒を攪拌して 単量体成分並びに油性物質を懸濁させる。 攪拌方法は、 均一な懸濁液を 得ることができる方法であればよく、 特に限定されるものではない。 単 量体成分を油性物質と共に水系溶媒に懸濁させると、 該単量体成分は、 油性物質と相溶し、 かつ、 カルボキシル基等の親水性基を有する単量体After mixing the monomer component and the oily substance, the polymerization initiator and, if necessary, the protective colloid agent and the surfactant in the aqueous solvent, the aqueous solvent is stirred to remove the monomer component and the oily substance. Suspend. The stirring method is to make a uniform suspension The method is not particularly limited as long as it can be obtained. When the monomer component is suspended in an aqueous solvent together with an oily substance, the monomer component is compatible with the oily substance and has a monomer having a hydrophilic group such as a carboxyl group.
( B ) が水系溶媒側 (外側) に配向した状態の油滴となる。 また、 単量 体成分が分子内に親水性基を有する架橋性単量体 (C ) を含んでいる場 合には、 該架橋性単量体 (C ) は、 単量体 (B ) と共に水系溶媒側に配 向した状態となる。 そして、 この状態で単量体成分の懸濁重合が進行す る。 尚、 水不溶性の有機溶媒に単量体成分並びに油性物質を予め溶解さ せた後、 該溶液を水系溶媒に懸濁させてもよい。 (B) is an oil droplet oriented in the aqueous solvent side (outside). When the monomer component contains a crosslinkable monomer (C) having a hydrophilic group in the molecule, the crosslinkable monomer (C) is added together with the monomer (B). It will be in the state of being directed to the aqueous solvent side. Then, suspension polymerization of the monomer component proceeds in this state. After the monomer component and the oily substance are dissolved in a water-insoluble organic solvent in advance, the solution may be suspended in an aqueous solvent.
上記の懸濁重合を行うことにより、 粒状の重合体、 つまり、 本発明に かかる蓄熱剤が得られる。 本発明にかかる製造方法においては、 実質的 に重合工程だけの一工程で、 つまり、 簡便な製造工程で熱搬送媒体を製 造することができる。 この場合、 水系溶媒が水性媒体としての機能を兼 ねることになる。 蓄熱剤の平均粒子径は、 特に限定されるものではない が、 5 m m以下がより好ましく、 3 m m以下がさらに好ましく、 1 m m 以下が特に好ましい。  By performing the above suspension polymerization, a granular polymer, that is, a heat storage agent according to the present invention is obtained. In the production method according to the present invention, the heat transfer medium can be produced in substantially only one polymerization step, that is, in a simple production step. In this case, the aqueous solvent also functions as an aqueous medium. The average particle size of the heat storage agent is not particularly limited, but is preferably 5 mm or less, more preferably 3 mm or less, and particularly preferably 1 mm or less.
蓄熱剤の表層部には、 単量体 (B ) が水系溶媒側に配向した状態で懸 濁重合するので、 その構成成分として単量体 (B ) がより多く含まれた 重合体からなる硬質ゲルが形成されている。 そして、 単量体成分が架橋 性単量体 (C ) を含んでいる場合には、 該硬質ゲルが架橋構造を有する ので、 その硬度がより一層高くなり、 従って剪断応力に対する機械的強 度がより一層高くなる。 一方、 蓄熱剤の内部には、 その構成成分として 単量体 (A ) がより多く含まれた重合体と、 油性物質とからなる軟質ゲ ルが形成されている。 従って、 油性物質は、 流動性を実質的に失った状 態で軟質ゲル中に、 即ち、 重合体中に保持されている。 Since the monomer (B) is suspended and polymerized in the surface layer of the heat storage agent in a state where the monomer (B) is oriented toward the aqueous solvent, a hard material composed of a polymer containing more monomer (B) as a constituent component thereof A gel has formed. When the monomer component contains a crosslinkable monomer (C), the hardness of the hard gel is further increased because the hard gel has a crosslinked structure, and thus the mechanical strength against shear stress is increased. It will be even higher. On the other hand, inside the heat storage agent, a soft gel composed of a polymer containing a large amount of the monomer (A) as a constituent component and an oily substance is formed. Therefore, the oily substance is in a state where it has substantially lost fluidity. In a soft gel, that is, in a polymer.
尚、 上記の説明においては、 便宜上、 硬質ゲルと軟質ゲルとを区別し ているが、 両ゲルの界面は明確に存在するものではない。 つまり、 本発 明にかかる蓄熱剤においては、 硬質ゲルから軟質ゲルにその組成が不連 続に変化しているのではなく、 或る程度の厚さを以て、 その組成が連続 的に変化している。  In the above description, the hard gel and the soft gel are distinguished for convenience, but the interface between the two gels is not clearly present. In other words, in the heat storage agent according to the present invention, the composition does not change discontinuously from the hard gel to the soft gel, but the composition changes continuously with a certain thickness. I have.
ところで、 懸濁重合時に用いた水系溶媒を水性媒体として用いない場 合には、 反応終了後に蓄熱剤と水系溶媒等とを分離した後、 該蓄熱剤を 水性媒体に分散させることにより、 熱搬送媒体を製造することができる c 蓄熱剤と水系溶媒等とを分離する方法は、 特に限定されるものではなく、 濾過, 洗浄, 乾燥等の公知の方法を適宜組み合わせて採用することがで きる。 By the way, when the aqueous solvent used during the suspension polymerization is not used as the aqueous medium, after the reaction is completed, the heat storage agent and the aqueous solvent are separated, and then the heat storage agent is dispersed in the aqueous medium, so that heat transfer is performed. The method of separating the c heat storage agent from which the medium can be produced and the aqueous solvent is not particularly limited, and a known method such as filtration, washing, and drying can be used in appropriate combination.
水性媒体に蓄熱剤を分散させる方法は、 均一な分散液である熱搬送媒 体を得ることができる方法であればよく、 特に限定されるものではない c 水性媒体としては、 具体的には、 例えば、 水、 エチレングリ コールを含 む水溶液、 プロピレングリ コールを含む水溶液等が挙げられる。 このう ち、 水がより好ましい。 The method for dispersing the heat storage agent in the aqueous medium may be any method capable of obtaining a heat-carrying medium which is a uniform dispersion, as c aqueous medium is not particularly limited, specifically, Examples include water, an aqueous solution containing ethylene glycol, and an aqueous solution containing propylene glycol. Of these, water is more preferred.
蓄熱剤と水性媒体との重量比 (蓄熱剤 Z水性媒体) は、 特に限定され るものではないが、 5 0 / 5 0〜5 9 5の範囲内となるように設定す ることが特に好ましい。 これにより、 流動性の低下を招来せず、 しかも 熱伝達効率により一層優れた熱搬送媒体を得ることができる。 蓄熱剤の 割合が上記の範囲よりも多い場合には、 熱搬送媒体の粘度が高くなる。 このため、 熱搬送媒体を搬送するのに要する搬送動力が増加するか、 或 いは、 熱搬送媒体を搬送することができなくなり、 熱伝達効率が低下す るおそれがある。 蓄熱剤の割合が上記の範囲より も少ない場合には、 熱 搬送媒体の蓄熱密度が小さ くなり、 熱伝達効率が低下するおそれがある。 蓄熱剤は、 その表層部に硬質ゲルが形成されているので、 使用時にお ける重合体からの油性物質の滲み出しが充分に防止されると共に、 油性 物質が相変化する際における、 つまり、 融解,凝固する際における、 重 合体からの油性物質の滲み出しも充分に防止することができる。 また、 油性物質の融解 ·凝固を繰り返しても、 該滲み出しを充分に防止するこ とができる。 さらに、 蓄熱剤は、 その表層部に硬質ゲルが形成されてい るため、 乾燥した粒子状にすることができ、 剪断応力に対する機械的強 度が高いので、 取り扱い性に優れている。 このため、 蓄熱剤と水系溶媒 等とを分離した後、 該蓄熱剤を水性媒体に分散させることにより、 熱搬 送媒体を製造することができる。 The weight ratio between the heat storage agent and the aqueous medium (heat storage agent Z aqueous medium) is not particularly limited, but is particularly preferably set to be in the range of 50/50 to 5995. . As a result, it is possible to obtain a heat transfer medium that does not cause a decrease in fluidity and that is more excellent in heat transfer efficiency. When the ratio of the heat storage agent is larger than the above range, the viscosity of the heat transfer medium increases. Therefore, the transport power required to transport the heat transport medium increases, or the heat transport medium cannot be transported, and the heat transfer efficiency decreases. May be affected. When the proportion of the heat storage agent is smaller than the above range, the heat storage density of the heat transfer medium becomes small, and the heat transfer efficiency may be reduced. Since the heat storage agent has a hard gel formed on its surface layer, the oozing of the oleaginous substance from the polymer during use is sufficiently prevented, and when the oleaginous substance undergoes a phase change, that is, melting. In the case of coagulation, oozing of oily substances from the polymer can be sufficiently prevented. Also, even if the oily substance is repeatedly melted and solidified, the oozing can be sufficiently prevented. Further, the heat storage agent has a hard gel formed on its surface layer, so that the heat storage agent can be made into a dry particle form, and has high mechanical strength against shear stress, so that it is excellent in handleability. Therefore, by separating the heat storage agent and the aqueous solvent and the like, and then dispersing the heat storage agent in the aqueous medium, the heat transfer medium can be manufactured.
尚、 蓄熱剤の製造方法は、 上記例示の方法 (懸濁重合) にのみ限定さ れるものではない。 例えば、 油性物質を溶媒として用いて、 該油性物質 中で単量体成分を重合させることもできる。 この場合、 蓄熱剤と溶媒で ある油性物質とを含んでなる塊状物を、 粉砕等によって適度な粒子径と なるように調整した後、 該蓄熱剤を水性媒体に分散させることにより、 熱搬送媒体を製造することができる。  The method for producing the heat storage agent is not limited to the above-described method (suspension polymerization). For example, using an oily substance as a solvent, a monomer component can be polymerized in the oily substance. In this case, a lump containing a heat storage agent and an oily substance as a solvent is adjusted to have an appropriate particle size by pulverization or the like, and then the heat storage agent is dispersed in an aqueous medium to thereby provide a heat transfer medium. Can be manufactured.
上記の蓄熱剤には、 必要に応じて、 鉄や銅等の金属粉、 金属繊維、 金 属酸化物、 カーボン、 カーボンファイバー等の、 伝熱性を向上させるた めの添加剤 ; 砂、 粘土、 石、 鉛や鉄等の金属粉、 酸化鉄、 アルミナ等の、 比重を調整するための添加剤 ; 金属粉、 炭酸カルシウム等の無機化合物、 臭素系や塩素系、 リ ン系等の難燃剤等の、 難燃性を付与するための添加 剤 ; 過冷却を防止するための添加剤 ; フエノ一ル系ゃ硫黄系、 リ ン系等 の酸化防止剤等の、 酸化や経時劣化を防止するための添加剤 ; 等の各種 添加剤を添加することができる。 また、 蓄熱剤に、 必要に応じて、 顔料 や染料等の着色剤、 帯電防止剤、 防菌剤等を添加することもできる。 蓄 熱剤に対するこれら添加剤や着色剤、 帯電防止剤、 防菌剤の添加量や添 加方法は、 特に限定されるものではない。 添加剤や着色剤、 帯電防止剤、 防菌剤は、 蓄熱剤に常温で乾式混合することができる。 或いは、 熱搬送 媒体を製造する際に、 つまり、 懸濁重合する際に、 反応系に添加するこ ともできる。 尚、 上記難燃性とは、 燃焼性の低減、 延焼防止、 水蒸気に よる引火点の消滅、 燃焼熱量低減効果等の各種性質を示す。 Additives for improving heat transfer, such as metal powders such as iron and copper, metal fibers, metal oxides, carbon, carbon fibers, etc., as necessary; sand, clay, Additives for adjusting specific gravity, such as stone, metal powders such as lead and iron, iron oxide, alumina, etc .; metal powders, inorganic compounds such as calcium carbonate, bromine-based, chlorine-based, and phosphorus-based flame retardants, etc. Additives for imparting flame retardancy; Additives for preventing supercooling; Phenyl-based sulfur-based, phosphorus-based, etc. Various additives, such as antioxidants for preventing oxidation and deterioration with time, can be added. In addition, a coloring agent such as a pigment or a dye, an antistatic agent, a bactericide, or the like can be added to the heat storage agent, if necessary. The amount and method of addition of these additives, coloring agents, antistatic agents, and antibacterial agents to the heat storage agent are not particularly limited. Additives, coloring agents, antistatic agents, and antibacterial agents can be dry-mixed with the heat storage agent at room temperature. Alternatively, it can be added to the reaction system when producing a heat transfer medium, that is, during suspension polymerization. The above-mentioned flame retardancy refers to various properties such as reduction of flammability, prevention of spread of fire, extinction of a flash point by steam, and reduction of combustion heat.
本発明にかかる熱搬送媒体は、 油性物質が相変化する際の潜熱を利用 して蓄熱或いは蓄冷を行う。 該熱搬送媒体は、 加熱 (加温) するだけで 蓄熱することができ、 また、 冷却するだけで蓄冷することができる。  The heat transfer medium according to the present invention performs heat storage or cold storage using latent heat when an oily substance undergoes a phase change. The heat transfer medium can store heat only by heating (heating), and can store cold only by cooling.
そして、 本発明にかかる熱搬送媒体用の複合粒子は、 例えば、 蓄熱性 を有し、 温度変化に応じて固体から液体へまたは液体から固体へ可逆的 に相変化する前記油性物質が、 前記重合体中に、 つまり、 温度安定性と- 油性物質の相変化に伴う体積変化を吸収し得る伸縮性とを備えた親油性 重合体粒子の内部に保持され、 かつ、 該粒子の表面に親水性基が配向さ れている構成である。 また、 本発明にかかる熱搬送媒体は、 凹凸が形成 されている上記複合粒子、 或いは、 粒子径が 1 z m〜 3 0 0 mに形成 されている上記複合粒子を、 前記水性媒体に分散してなる構成である。 その上、 本発明にかかる熱搬送媒体は、 上記複合粒子の濃度を 2 0重量 %としたときの粘度が、 温度 5 °Cで 5 m P a · s以下である構成である, さらに、 本発明にかかる空調システムは、 これら熱搬送媒体を用いて、 冷凍機および空調機器間の熱搬送を行う構成である。 上記の構成によれば、 複合粒子を構成する親油性重合体粒子は、 温度 安定性と、 油性物質の相変化に伴う体積変化を吸収し得る伸縮性とを備 えている。 これにより、 使用時における親油性重合体粒子からの油性物 質の滲み出しが充分に防止されると共に、 油性物質が固体から液体へま たは液体から固体へ相変化する際における、 親油性重合体粒子からの油 性物質の滲み出しも充分に防止される。 また、 親油性重合体粒子の表面 に親水性基が配向されているので、 複合粒子同士の凝集や、 複合粒子に よる増粘作用が充分に防止される。 従って、 流動性の低下を招来せず、 しかも熱伝達効率を良好な状態に維持することができる熱搬送媒体、 並 びに該熱搬送媒体を用いた空調システムを提供することができる。 Further, the composite particles for a heat transfer medium according to the present invention include, for example, the oily substance that has heat storage properties and that reversibly changes phase from solid to liquid or from liquid to solid in response to a temperature change, During the coalescence, that is, the lipophilic polymer particles having temperature stability and elasticity capable of absorbing a volume change accompanying a phase change of the oleaginous substance are held inside the polymer particles, and have a hydrophilic property on the surface of the particles. In this configuration, the groups are oriented. Further, the heat transfer medium according to the present invention is obtained by dispersing the composite particles having irregularities or the composite particles having a particle diameter of 1 zm to 300 m in the aqueous medium. Configuration. In addition, the heat transfer medium according to the present invention has a viscosity of 5 mPas or less at a temperature of 5 ° C when the concentration of the composite particles is 20% by weight. The air conditioning system according to the present invention is configured to carry out heat transfer between the refrigerator and the air conditioner using these heat transfer media. According to the above configuration, the lipophilic polymer particles constituting the composite particles have temperature stability and elasticity capable of absorbing a volume change accompanying a phase change of the oily substance. This sufficiently prevents the lipophilic polymer particles from oozing out of the lipophilic polymer particles during use, and the lipophilic weight during the phase change of the oleaginous substance from solid to liquid or from liquid to solid. The oozing of the oily substance from the coalesced particles is sufficiently prevented. In addition, since the hydrophilic groups are oriented on the surface of the lipophilic polymer particles, aggregation of the composite particles and a thickening effect by the composite particles are sufficiently prevented. Therefore, it is possible to provide a heat transfer medium which does not cause a decrease in fluidity and can maintain a good heat transfer efficiency, and an air conditioning system using the heat transfer medium.
さらに、 本発明にかかる熱搬送媒体、 つまり、 蓄熱剤や親油性重合体 粒子、 複合粒子 (以下、 複合粒子と総称する) は、 必要に応じて、 エラ ス トマ一を含んでいてもよい。 エラストマ一を熱搬送媒体に含ませる方 法は、 特に限定されるものではないが、 上記懸濁重合の実施に先立って、 油性物質および Zまたは単量体成分に、 より具体的には油性物質および または単量体 (B ) に、 エラストマ一を溶解させておく方法が好適で ある。 油性物質および Zまたは単量体成分がエラストマ一を含むことに より、 上記の懸濁重合時における、 単量体 (B ) の配向性を任意に制御 することができる。  Furthermore, the heat transfer medium according to the present invention, that is, the heat storage agent, the lipophilic polymer particles, and the composite particles (hereinafter, collectively referred to as composite particles) may include an elastomer as necessary. The method of including the elastomer in the heat transfer medium is not particularly limited, but prior to the above-mentioned suspension polymerization, the oily substance and the Z or monomer component, more specifically, the oily substance And / or a method in which the elastomer is dissolved in the monomer (B) is preferable. The orientation of the monomer (B) at the time of the above suspension polymerization can be arbitrarily controlled by the oily substance and the Z or monomer components containing the elastomer.
該エラストマ一としては、 具体的には、 例えば、 ポリスチレンと、 ポ リブタジェンゃポリイソプレン等のポリオレフィ ン或いは該ポリオレフ ィ ンの水素付加物とのプロック共重合体等の、 スチレ ン系エラス トマ一 ; ポリオレフイ ン (ホモポリマー) とポリオレフイ ン (コポリマー) と の混合物、 ポリオレフイ ン (コポリマー) にォレフイ ンがグラフ ト重合 してなるコポリマー等の、 ォレフィ ン系エラス トマ一 ; ウレタン系エラ ス トマ一 ; エステル系エラス トマ一 ; 等の各種化合物、 即ち、 ゴム並び にプラスチッ クの分野において、 室温以上でゴム弾性を備えている、 い わゆる熱可塑性エラス トマ一として知られている化合物 ; 並びに、 天然ゴム、 スチレン—ブタジエン共重合体ゴム、 ブチルゴム、 ブタジェ ンゴム、 ポリブチレン、 ポリイソブチレン、 イソプレンゴム、 エチレン —プロピレン共重合体ゴム、 ェチレン一プロピレン一ジェン三元共重合 体ゴム、 スチレン—エチレンーブチレン三元共重合体ゴム、 エチレン一 酢酸ビニル共重合体ゴム、 エチレンーァク リル酸ェチル共重合体ゴム等 の、 炭化水素系ゴム ; 等が挙げられるが、 特に限定されるものではない c これらエラス トマ一は、 一種類のみを用いてもよく、 また、 二種類以上 を併用してもよい。 Specific examples of the elastomer include a styrene-based elastomer such as a block copolymer of polystyrene and polyolefin such as polybutadiene polyisoprene or a hydrogenated product of the polyolefin; A mixture of polyolefin (homopolymer) and polyolefin (copolymer), and graft polymerization of polyolefin on polyolefin (copolymer) Various compounds such as copolymer-based elastomers, urethane-based elastomers, ester-based elastomers, etc., ie, have rubber elasticity at room temperature or higher in the fields of rubber and plastics. Compounds known as so-called thermoplastic elastomers; and natural rubber, styrene-butadiene copolymer rubber, butyl rubber, butadiene rubber, polybutylene, polyisobutylene, isoprene rubber, ethylene-propylene copolymer Hydrocarbon rubbers such as rubber, ethylene-propylene-propylene terpolymer rubber, styrene-ethylenebutylene terpolymer rubber, ethylene-vinyl acetate copolymer rubber, ethylene-ethyl acrylate copolymer rubber And the like, but are not particularly limited c One type of these elastomers may be used alone, or two or more types may be used in combination.
エラス トマ一の溶解度パラメータは、 該エラス トマ一の分子量や共重 合比等を適宜調節することによって、 任意に設定することができる。 従 つて、 用いるエラス トマ一の種類は、 油性物質の種類や単量体 ( B ) の 種類、 両者の組み合わせ等に応じて、 適宜選択すればよい。  The solubility parameter of the elastomer can be arbitrarily set by appropriately adjusting the molecular weight, the copolymerization ratio and the like of the elastomer. Therefore, the type of the elastomer used may be appropriately selected according to the type of the oily substance, the type of the monomer (B), the combination of the two, and the like.
油性物質に対するエラス トマ一の添加量は、 特に限定されるものでは ないが、 0 . 1 重量%〜 1 0重量%の範囲内がより好ま しく、 0 . 5重 量%〜 5重量%の範囲内がさ らに好ま しい。 エラス トマ一の添加量が 1 0重量%より も多いと、 油性物質の粘度が増加して、 複合粒子の粒子径 を制御することが困難となる場合がある。 また、 複合粒子の潜熱による 蓄熱量が低下する場合や、 油性物質が相変化する温度が変化する場合が ある。 一方、 エラス トマ一の添加量が 0 . 1重量%より も少ないと、 該 エラス トマ一を添加することによって得られる効果が乏しくなり、 上記 の懸濁重合時における、 単量体 (B) の配向性を充分に制御することが できない場合がある。 The amount of the elastomer added to the oily substance is not particularly limited, but is preferably in the range of 0.1% by weight to 10% by weight, and more preferably in the range of 0.5% by weight to 5% by weight. Inside is more preferred. If the amount of the elastomer is more than 10% by weight, the viscosity of the oily substance increases, and it may be difficult to control the particle diameter of the composite particles. In addition, the amount of heat stored by the latent heat of the composite particles may decrease, or the temperature at which the oily substance changes phase may change. On the other hand, when the added amount of the elastomer is less than 0.1% by weight, the effect obtained by adding the elastomer becomes poor. In some cases, the orientation of the monomer (B) cannot be sufficiently controlled during suspension polymerization.
懸濁重合時に油性物質および Zまたは単量体成分が、 溶解度パラメ一 夕が 9 ( c a l Zcm3 ) 1 2 以下のエラストマ一を含むことにより、 単量体 (B) の配向性をより一層促進させることができる。 従って、 単 量体成分に占める単量体 (B) の割合が少ない場合においても、 複合粒 子の分散性に優れ、 低温時における流動性の低下を招来せず、 しかも、 使用時における油性物質の滲み出しを充分に防止することができる熱搬 送媒体を提供することができる。 また、 単量体成分に占める単量体 (B ) の割合をより少なくすることができるので、 微粒子状の複合粒子が発 生すること、 単量体 (B) の単独重合等によって水溶性重合体が生成す ること、 および、 複合粒子が極端に異形化すること、 を抑制することが できる。 さらに、 熱搬送媒体の増粘や発泡を低減することができるので、 伝熱特性に優れた熱搬送媒体を提供することができる。 Oil-based substances and Z or monomer components during suspension polymerization contain an elastomer with a solubility parameter of 9 (cal Zcm 3 ) 12 or less, further promoting the orientation of monomer (B). Can be done. Therefore, even when the proportion of the monomer (B) in the monomer component is small, the dispersibility of the composite particles is excellent, the flowability at low temperatures is not reduced, and the oily substance during use is low. It is possible to provide a heat transfer medium capable of sufficiently preventing bleeding of the heat. Further, since the ratio of the monomer (B) in the monomer component can be further reduced, fine composite particles are generated, and the water-soluble polymer is formed by homopolymerization of the monomer (B). It is possible to suppress formation of coalescence and extremely deformed composite particles. Furthermore, since the viscosity increase and foaming of the heat transfer medium can be reduced, a heat transfer medium having excellent heat transfer characteristics can be provided.
そして、 上記例示のエラストマ一のうち、 油性物質に相溶し、 かつ、 単量体 (B) に相溶しない、 溶解度パラメ一夕が 9 ( c a 1 / cm3 ) 1/2 以下のエラストマ一が特に好ましい。 該エラス トマ一としては、 ポ リブチレン、 ポリイソブチレン、 スチレン一エチレン一ブチレン三元共 重合体ゴムが挙げられる。 Among the elastomers exemplified above, those having a solubility parameter of 9 (ca 1 / cm 3 ) 1/2 or less, which are compatible with the oily substance and not compatible with the monomer (B). Is particularly preferred. Examples of the elastomer include polybutylene, polyisobutylene, and styrene-ethylene-butylene terpolymer rubber.
一方、 懸濁重合時に油性物質および Zまたは単量体成分が、 溶解度パ ラメ一夕が 9 (c a l /cm3 ) 1/2 を越えるエラストマ一を含むこと により、 水に対する分配の度合いが大きい単量体 (B) の、 水系溶媒へ の移行を防止することができるので、 微粒子状の複合粒子が発生するこ と、 および、 単量体 (B) の単独重合等によって水溶性重合体が生成す ること、 を抑制することができる。 On the other hand, the oily substance and the Z or monomer component during suspension polymerization contain an elastomer whose solubility parameter exceeds 9 (cal / cm 3 ) 1/2 , so that the degree of distribution to water is large. The transfer of the monomer (B) to the aqueous solvent can be prevented, resulting in the generation of fine composite particles and the formation of a water-soluble polymer by homopolymerization of the monomer (B). You , Can be suppressed.
油性物質および または単量体成分にエラス トマ一を混合することに より、 機械的強度や柔軟性により一層優れた複合粒子を得ることができ るので、 搬送時における該複合粒子の機械的安定性を向上させることが できる (形状を保持することができる) と共に、 熱搬送媒体の流動抵抗 を低減することができる。  By mixing the elastomer with the oily substance and / or the monomer component, it is possible to obtain composite particles having more excellent mechanical strength and flexibility, so that the mechanical stability of the composite particles during transportation is improved. Can be improved (the shape can be maintained), and the flow resistance of the heat transfer medium can be reduced.
本発明のさらに他の目的、 特徴、 および優れた点は、 以下に示す記載 によって充分判るであろう。 また、 本発明の利益は、 添付図面を参照し た次の説明で明白になるであろう。 図面の簡単な説明  Further objects, features, and advantages of the present invention will be more fully understood from the following description. Further, the advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. BRIEF DESCRIPTION OF THE FIGURES
図 1 は、 実施例 1 にて得られた蓄熱剤 (複合粒子) の構造を示す図 ( カラ一コピー) である。  FIG. 1 is a diagram (one copy) showing the structure of the heat storage agent (composite particles) obtained in Example 1.
図 2は、 実施例 4にて得られた蓄熱剤 (複合粒子) の構造を示す図 ( カラーコピー) である。 発明を実施するための最良の形態  FIG. 2 is a diagram (color copy) showing the structure of the heat storage agent (composite particles) obtained in Example 4. BEST MODE FOR CARRYING OUT THE INVENTION
以下、 実施例および比較例により、 本発明をさらに具体的に説明する が、 本発明はこれらにより何ら限定されるものではない。  Hereinafter, the present invention will be described more specifically with reference to Examples and Comparative Examples, but the present invention is not limited thereto.
〔実施例 1〕  (Example 1)
温度計、 窒素ガス導入管、 還流冷却器、 および攪拌機を備えた内容量 3 Lのフラスコを反応器とした。 この反応器に、 ポリオキシエチレンァ ルキルエーテル (界面活性剤、 株式会社日本触媒製 ; 商品名 ソフタノ ール 1 5 0 ) 1 5 gを水 (水系溶媒、 かつ水性媒体) 1 4 8 5 gに溶解 してなる水溶液を仕込んだ。 一方、 油性物質としてのペンタデカン (融 点 1 0 °C ) 4 0 0 g、 単量体 ( A ) としてのドデシルァク リ レー ト 9 5 g、 架橋性単量体 (C ) としてのエチレングリ コールジメタク リ レー ト 5 g、 および、 重合開始剤としてのベンゾィルパーォキサイ ド 0 . 5 g を均一となるように混合して混合溶液を調製した。 ペン夕デカンと単量 体成分との重量比 (ペンタデカン 単量体成分) は、 8 0 / 2 0であつ た。 単量体成分におけるエチレングリ コールジメタク リ レー トの割合は、 5重量%であつた。 A 3 L flask equipped with a thermometer, a nitrogen gas inlet tube, a reflux condenser, and a stirrer was used as a reactor. In this reactor, 15 g of polyoxyethylene alkyl ether (surfactant, manufactured by Nippon Shokubai Co., Ltd .; trade name: Softanol 150) was added to 148 g of water (aqueous solvent and aqueous medium). Dissolution The resulting aqueous solution was charged. On the other hand, 400 g of pentadecane (melting point: 10 ° C) as an oily substance, 95 g of dodecyl acrylate as a monomer (A), and ethylene glycol dimethacrylate as a crosslinkable monomer (C) A mixed solution was prepared by uniformly mixing 5 g of a rate and 0.5 g of benzoyl peroxide as a polymerization initiator. The weight ratio of pentadecane to the monomer component (pentadecane monomer component) was 80/20. The proportion of ethylene glycol dimethacrylate in the monomer component was 5% by weight.
次に、 反応器内を窒素ガス置換した後、 窒素ガス雰囲気下で該水溶液 を攪拌しながら、 8 0 °Cに加熱した。 次いで、 該水溶液に上記の混合溶 液を一度に添加し、 回転数 4 0 0 r p mの条件下で混合 ·攪拌しながら、 窒素ガス雰囲気下、 8 0 °Cで 2時間、 懸濁重合を行った。 その後、 懸濁 液の温度を 9 0 °Cに昇温し、 同温度でさらに 2時間攪拌することにより、 懸濁重合を完了させた。  Next, after replacing the inside of the reactor with nitrogen gas, the aqueous solution was heated to 80 ° C. while stirring under a nitrogen gas atmosphere. Next, the above mixed solution was added to the aqueous solution at a time, and the suspension polymerization was carried out at 80 ° C. for 2 hours under a nitrogen gas atmosphere while mixing and stirring under the condition of a rotation speed of 400 rpm. Was. Thereafter, the temperature of the suspension was raised to 90 ° C., and stirring was continued at the same temperature for 2 hours to complete the suspension polymerization.
これにより、 本発明にかかる熱搬送媒体を得た。 重合体である蓄熱剤 の平均粒子径は 4 0 mであった。 図 1から明らかなように、 上記蓄熱 剤 (複合粒子) の表面には、 凹凸が形成されていないことが判った。 得られた熱搬送媒体について、 所定の条件下で示差走査熱量測定 (D S C (di fferent ial scanning cal or imetry) ) を行うことにより、 凝固 温度と融解温度とを求めた。 また、 熱搬送媒体の 3 °Cにおける流動性を 評価した。 即ち、 容量 2 0 0 m 1 のフラスコに熱搬送媒体 1 5 0 m 1 を 入れ、 マグネチック · スターラで攪拌しながら 3での水浴に 1時間浸漬 した後、 同温度での流動性をマグネチック攪拌子の回転状態を目視にて 確認することによって評価した。 その結果、 凝固温度は 8 . 0 °C , 融解 温度は 7. 8 °C、 3 °Cにおける流動性は 「良好」 であった。 さらに、 蓄 熱剤の濃度を 2 0重量%としたときの熱搬送媒体の粘度を、 温度 5 °Cで 所定の方法で測定した。 その結果、 該粘度は 4. 8 m P a · sであった c これら結果を表 1 にまとめた。 Thus, a heat transfer medium according to the present invention was obtained. The average particle size of the heat storage agent as a polymer was 40 m. As is clear from FIG. 1, it was found that no irregularities were formed on the surface of the heat storage agent (composite particles). The obtained heat transfer medium was subjected to differential scanning calorimetry (DSC) under predetermined conditions to obtain a solidification temperature and a melting temperature. In addition, the fluidity of the heat transfer medium at 3 ° C was evaluated. That is, 150 m 1 of the heat transfer medium was placed in a flask having a capacity of 200 m 1 and immersed in a water bath at 3 for 1 hour while stirring with a magnetic stirrer. The evaluation was made by visually checking the rotation state of the stirrer. As a result, the solidification temperature was 8.0 ° C and the melting was The temperature was 7.8 ° C and the fluidity at 3 ° C was “good”. Further, the viscosity of the heat transfer medium when the concentration of the heat storage agent was set to 20% by weight was measured at a temperature of 5 ° C by a predetermined method. As a result, the viscosity was 4.8 mPa · s. C The results are summarized in Table 1.
〔実施例 2〕  (Example 2)
実施例 1 において、 ドデシルァク リ レー ト 9 5 gの代わりに単量体 ( A) としての 2—ェチルへキシルァク リ レー ト 9 5 gを用い、 エチレン グリ コールジメタク リ レー ト 5 gの代わりに架橋性単量体 ( C) として の 1 , 6 —へキサンジオールジァク リ レー ト 5 gを用いると共に、 懸濁 液を混合 ·攪拌する際の回転数を 4 0 0 r pmから 3 0 0 r p mに変更 した以外は、 実施例 1 と同様に懸濁重合を行った。  In Example 1, 95 g of 2-ethylhexyl acrylate as the monomer (A) was used in place of 95 g of dodecyl acrylate, and 5 g of ethylene glycol dimethacrylate was used in place of crosslinkability. Use 1,6-hexanediol diacrylate 5 g as the monomer (C), and adjust the number of revolutions for mixing and stirring the suspension from 400 rpm to 300 rpm. The suspension polymerization was carried out in the same manner as in Example 1 except that the polymerization was changed to.
これにより、 本発明にかかる熱搬送媒体を得た。 重合体である蓄熱剤 の平均粒子径は 7 0 mであった。 得られた熱搬送媒体について、 実施 例 1 と同様にして凝固温度と融解温度とを求めると共に、 3でにおける 流動性を評価した。 その結果、 凝固温度は 8. 0 °C、 融解温度は 7. 9 て、 3 °Cにおける流動性は 「良好」 であった。 また、 熱搬送媒体の粘度 は温度 5 °Cで 4. 6 m P a · sであった。 これら結果を表 1 にまとめた < 〔実施例 3〕  Thus, a heat transfer medium according to the present invention was obtained. The average particle size of the heat storage agent as a polymer was 70 m. With respect to the obtained heat transport medium, the solidification temperature and the melting temperature were determined in the same manner as in Example 1, and the fluidity at 3 was evaluated. As a result, the solidification temperature was 8.0 ° C, the melting temperature was 7.9, and the fluidity at 3 ° C was “good”. The viscosity of the heat transfer medium was 4.6 mPa · s at a temperature of 5 ° C. These results are summarized in Table 1 <[Example 3]
実施例 1 において、 ドデシルァク リ レー ト 9 5 gの代わりに単量体 ( A) としての 2—ェチルへキシルァク リ レー ト 8 3 gおよびヒ ドロキシ プロピルメタク リ レート 7 gを用い、 エチレングリ コールジメタク リ レ ー トの使用量を 5 gから 1 0 gに変更すると共に、 懸濁液を混合 ·攪拌 する際の回転数を 4 0 0 r pmから 3 5 0 r pmに変更した以外は、 実 施例 1 と同様に懸濁重合を行った。 これにより、 本発明にかかる熱搬送媒体を得た。 重合体である蓄熱剤 の平均粒子径は 5 0 /mであった。 得られた熱搬送媒体について、 実施 例 1 と同様にして凝固温度と融解温度とを求めると共に、 3 °Cにおける 流動性を評価した。 その結果、 凝固温度は 8. 2 °C、 融解温度は 8. 0 で、 3 °Cにおける流動性は 「極めて良好」 であった。 また、 熱搬送媒体 の粘度は温度 5でで 3. 5 m P a - sであつた。 これら結果を表 1 にま とめた。 , In Example 1, instead of 95 g of dodecyl acrylate, 83 g of 2-ethylhexyl acrylate and 7 g of hydroxypropyl methacrylate as the monomer (A) were used, and ethylene glycol dimethacrylate was used. In this example, the amount of the solution used was changed from 5 g to 10 g, and the number of revolutions for mixing and stirring the suspension was changed from 400 rpm to 350 rpm. The suspension polymerization was performed in the same manner as in 1. Thus, a heat transfer medium according to the present invention was obtained. The average particle size of the heat storage agent as a polymer was 50 / m. With respect to the obtained heat transfer medium, the solidification temperature and the melting temperature were determined in the same manner as in Example 1, and the fluidity at 3 ° C was evaluated. As a result, the solidification temperature was 8.2 ° C and the melting temperature was 8.0, and the fluidity at 3 ° C was “very good”. The viscosity of the heat transfer medium was 3.5 mPa-s at a temperature of 5. These results are summarized in Table 1. ,
〔実施例 4〕  (Example 4)
実施例 1 において、 ドデシルァク リ レー ト 9 5 gの代わりに単量体 ( A) としての 2 —ェチルへキシルァク リ レー ト 8 3 gと単量体 (B) と してのメタク リル酸 Ί gとを用い、 ェチレングリ コールジメタク リ レー トの使用量を 5 から 1 0 gに変更すると共に、 懸濁液を混合 ·攪拌す る際の回転数を 4 O O r p mから 3 5 0 r p mに変更した以外は、 実施 例 1 と同様に懸濁重合を行った。  In Example 1, instead of 95 g of dodecyl acrylate, 83 g of 2-ethylhexyl acrylate as monomer (A) and Ί g of methacrylic acid as monomer (B) were used instead of 95 g of dodecyl acrylate. And the amount of ethylene glycol dimethacrylate used was changed from 5 to 10 g, and the number of revolutions for mixing and stirring the suspension was changed from 400 rpm to 350 rpm. The suspension polymerization was carried out in the same manner as in Example 1.
これにより、 本発明にかかる熱搬送媒体を得た。 重合体である蓄熱剤 の平均粒子径は 5 0 amであつナこ。 得られた熱搬送媒体について、 実施 例 1 と同様にして凝固温度と融解温度とを求めると共に、 3 °Cにおける 流動性を評価した。 その結果、 凝固温度は 8. 3 °C、 融解温度は 8. 0 で、 3 °Cにおける流動性は 「極めて良好」 であった。 また、 熱搬送媒体 の粘度は温度 5 °Cで 3. 4 m P a · sであった。 これら結果を表 1 にま とめた。 また、 図 2から明らかなように、 本実施例における蓄熱剤 (複 合粒子) の表面には、 凹凸が形成されていることが判った。  Thus, a heat transfer medium according to the present invention was obtained. The average particle size of the polymer heat storage agent is 50 am. With respect to the obtained heat transfer medium, the solidification temperature and the melting temperature were determined in the same manner as in Example 1, and the fluidity at 3 ° C was evaluated. As a result, the solidification temperature was 8.3 ° C and the melting temperature was 8.0, and the fluidity at 3 ° C was “very good”. The viscosity of the heat transfer medium was 3.4 mPa · s at a temperature of 5 ° C. Table 1 summarizes these results. Further, as is apparent from FIG. 2, it was found that irregularities were formed on the surface of the heat storage agent (composite particles) in this example.
〔実施例 5〕  (Example 5)
実施例 1 において、 ドデシルァク リ レー ト 9 5 gの代わりに単量体 ( A) としての 2 —ェチルへキシルァク リ レー ト 8 5 gと単量体 ( B ) と してのメタク リル酸 5 gとを用い、 ェチレングリ コールジメタク リ レー 卜の使用量を 5 gから 1 0 gに変更し、 さらに、 エラス トマ一としての スチレン一エチレン—ブチレン三元共重合体ゴム (シヱルジャパン株式 会社製 ; 商品名 クレイ トン 1 6 5 0 ) 8 gを添加 ·混合すると共に、 懸濁液を混合 ·攪拌する際の回転数を 4 0 0 r p mから 3 5 0 r p mに 変更した以外は、 実施例 1 と同様に懸濁重合を行った。 In Example 1, 95 g of dodecyl acrylate was replaced with a monomer ( Using 85 g of 2-ethylhexyl acrylate as A) and 5 g of methacrylic acid as the monomer (B), the amount of ethylene glycol dimethacrylate used was reduced from 5 g to 10 g. Then, 8 g of styrene-ethylene-butylene terpolymer rubber (manufactured by Seal Japan Co., Ltd .; trade name: Clayton 16550) as an elastomer is added and mixed. The suspension polymerization was carried out in the same manner as in Example 1 except that the number of revolutions for mixing and stirring was changed from 400 rpm to 350 rpm.
これにより、 本発明にかかる熱搬送媒体を得た。 重合体である蓄熱剤 の平均粒子径は 4 5 mであった。 得られた熱搬送媒体について、 実施 例 1 と同様にして凝固温度と融解温度とを求めると共に、 3 °Cにおける 流動性を評価した。 その結果、 凝固温度は 8. 2 °C、 融解温度は 8. 0 °C、 3 °Cにおける流動性は 「極めて良好」 であった。 また、 熱搬送媒体 の粘度は温度 5でで 3. 3 m P a · sであった。 これら結果を表 1 にま とめた。 また、 本実施例における蓄熱剤 (複合粒子) の表面には、 凹凸 が形成されていることが判った。  Thus, a heat transfer medium according to the present invention was obtained. The average particle size of the polymer heat storage agent was 45 m. With respect to the obtained heat transfer medium, the solidification temperature and the melting temperature were determined in the same manner as in Example 1, and the fluidity at 3 ° C was evaluated. As a result, the solidification temperature was 8.2 ° C, the melting temperature was 8.0 ° C, and the fluidity at 3 ° C was “very good”. The viscosity of the heat transfer medium at a temperature of 5 was 3.3 mPa · s. These results are summarized in Table 1. In addition, it was found that irregularities were formed on the surface of the heat storage agent (composite particles) in this example.
〔比較例 1 〕  [Comparative Example 1]
攪拌機を備えた内容量 3 Lのフラスコに、 吸油性樹脂の水分散体 (株 式会社日本触媒製 ; 商品名 ォレオソープ S L— 1 3 0 ; 吸油性樹脂の 平均粒子径 3 0 m、 樹脂純分 3 0重量 3 3 3 gと、 ペン夕デカン 4 0 0 とを仕込んだ。  In a 3 L flask equipped with a stirrer, add an aqueous dispersion of an oil-absorbing resin (Nippon Shokubai Co., Ltd .; trade name Oleosorb SL-130; average particle diameter of oil-absorbing resin 30 m, resin pure fraction) 30 weight 3 33 g and Penyu Decane 400 were charged.
次に、 該溶液を室温、 回転数 3 0 0 r p mの条件下で 4時間、 混合 · 攪拌することにより、 吸油性樹脂にペン夕デカンを吸収させた。 その後、 該溶液に、 ポリオキシエチレンアルキルエーテル (同上) 1 3 gを水 1 2 5 4 に溶解してなる水溶液を添加して、 さらに 5分間、 混合 ·攪拌 した, Next, the solution was mixed and stirred for 4 hours at room temperature and at a rotation speed of 300 rpm, so that pen oil decane was absorbed by the oil-absorbing resin. Thereafter, to this solution was added an aqueous solution obtained by dissolving 13 g of polyoxyethylene alkyl ether (same as above) in water 1254, followed by mixing and stirring for another 5 minutes. did,
これにより、 比較用の熱搬送媒体を得た。 ペン夕デカンを吸収した吸 油性樹脂の平均粒子径は 5 0 zmであった。 得られた比較用熱搬送媒体 について、 実施例 1 と同様にして凝固温度と融解温度とを求めると共に- 3 °Cにおける流動性を評価した。 その結果、 凝固温度は 8. 2 °C、 融解 温度は 8. 0でであったが、 3 °Cにおいて比較用熱搬送媒体は徐々に固 化し始め、 数十分後に完全に固化し、 流動性を失った。 つまり、 3でに おける流動性は 「不良」 であった。 また、 比較用熱搬送媒体の粘度は温 度 5 で 3 0 m P a · s以上であつた。 これら結果を表 1 にまとめた。  As a result, a heat transfer medium for comparison was obtained. The average particle size of the oil-absorbent resin that absorbed Pencil Decane was 50 zm. With respect to the obtained heat transfer medium for comparison, the solidification temperature and the melting temperature were determined in the same manner as in Example 1, and the fluidity at −3 ° C. was evaluated. As a result, the solidification temperature was 8.2 ° C and the melting temperature was 8.0, but at 3 ° C, the comparative heat transfer medium gradually began to solidify, and after several tens of minutes, completely solidified and flowed Lost sex. In other words, the liquidity in 3 was “poor”. The viscosity of the heat transfer medium for comparison was 30 mPa · s or more at a temperature of 5. Table 1 summarizes the results.
表 1  table 1
Figure imgf000031_0001
Figure imgf000031_0001
表 1 の結果から明らかなように、 実施例 1〜 5の熱搬送媒体の凝固温 度および融解温度、 並びに、 比較例 1 の比較用熱搬送媒体の凝固温度お よび融解温度は、 ペンタデカンの融点 ( 1 0 °C) 付近の温度となってい る。 従って、 これら熱搬送媒体は、 冷房用熱搬送媒体として使用するの に好適な 5 °C〜 1 3 °Cの温度領域で、 該ペン夕デカンの融解 ·凝固を繰 り返し行うことができる。 そして、 流動性を評価する際に、 これら熱搬送媒体を 3 °Cの水浴に 1 時間浸漬していることから、 蓄熱剤に保持されているペンタデカン、 並 びに、 吸油性樹脂に吸収されているペン夕デカンは凝固している。 As is clear from the results in Table 1, the solidification temperature and melting temperature of the heat transfer media of Examples 1 to 5 and the solidification temperature and melting temperature of the comparative heat transfer medium of Comparative Example 1 are the melting points of pentadecane. (10 ° C). Therefore, these heat transfer media can repeatedly perform melting and solidification of pen pen decane in a temperature range of 5 ° C. to 13 ° C. suitable for use as a heat transfer medium for cooling. When evaluating the fluidity, these heat transfer media were immersed in a 3 ° C water bath for 1 hour, so that they were absorbed by pentadecane held in the heat storage agent and by the oil-absorbing resin. Penyu Decane is solidified.
ここで、 実施例 1 〜 5の熱搬送媒体は、 マグネチック攪拌子の回転状 態に変化が無く、 従って流動性の評価は 「良好」 である。 これは、 水性 媒体である水中に分散しているペン夕デカン、 即ち、 遊離のペン夕デカ ンが殆ど無いことを示している。 つまり、 ペン夕デカンは、 蓄熱剤に実 質的に全て保持されており、 それゆえ、 熱搬送媒体は、 ペン夕デカ ンの 融解 ·凝固に関わりなく、 流動性を良好な状態に維持することができる ことを示している。 これにより、 実施例 1〜 5の熱搬送媒体は、 熱伝達 効率を良好な状態に維持することができることが判る。  Here, in the heat transfer media of Examples 1 to 5, there was no change in the rotation state of the magnetic stirrer, and thus the evaluation of the fluidity was “good”. This indicates that there is almost no free pen-decane dispersed in water, which is an aqueous medium, that is, free pen-decane. In other words, Penyu Decane is practically entirely held by the heat storage agent, and therefore, the heat transfer medium must maintain good fluidity regardless of the melting and solidification of Penyu Decane. It indicates that can be done. This indicates that the heat transfer media of Examples 1 to 5 can maintain a good heat transfer efficiency.
一方、 比較例 1 の比較用熱搬送媒体は、 完全に固化して流動性を失つ た。 これは、 水性媒体である水中に分散しているペン夕デカン、 即ち、 遊離のペン夕デカンが多量に存在することを示している。 つまり、 ペン 夕デカンは、 吸油性樹脂に完全には吸収されておらず、 それゆえ、 比較 用熱搬送媒体は、 ペンタデカンの融解 ·凝固に伴って流動性に変化が生 じ、 良好な状態を維持することができないことを示している。 これによ り、 比較例 1 の比較用熱搬送媒体は、 熱伝達効率を良好な状態に維持す ることができないことが判る。  On the other hand, the comparative heat transfer medium of Comparative Example 1 was completely solidified and lost its fluidity. This indicates that there is a large amount of penjudecane dispersed in water as an aqueous medium, that is, free pengudecane. In other words, pen-decane is not completely absorbed by the oil-absorbing resin, and therefore, the heat transfer medium for comparison changes its fluidity with the melting and solidification of pentadecane, and shows a good condition. Indicates that it cannot be maintained. This indicates that the comparative heat transfer medium of Comparative Example 1 cannot maintain good heat transfer efficiency.
以上のように、 実施例 1 〜 5の熱搬送媒体と、 比較例 1 の比較用熱搬 送媒体との比較から明らかなように、 本発明にかかる熱搬送媒体は、 流 動性の低下を招来せず、 しかも熱伝達効率を良好な状態に維持すること ができることがわかる。  As described above, as is clear from the comparison between the heat transfer media of Examples 1 to 5 and the comparative heat transfer medium of Comparative Example 1, the heat transfer medium according to the present invention has a reduced fluidity. It can be seen that the heat transfer efficiency can be maintained in a good state without inducing.
尚、 発明を実施するための最良の形態の項においてなした具体的な実 施態様または実施例は、 あく までも、 本発明の技術内容を明らかにする ものであって、 そのような具体例にのみ限定して狭義に解釈されるべき ものではなく、 本発明の精神と次に記載する特許請求の範囲内で、 いろ いろと変更して実施することができるものである。 産業上の利用可能性 It should be noted that specific examples made in the section of the best mode for carrying out the invention have been made. The embodiments or examples are only for clarifying the technical contents of the present invention, and should not be construed as being limited to such specific examples in a narrow sense. The present invention can be implemented with various modifications within the scope of the claims described below. Industrial applicability
本発明にかかる熱搬送媒体は、 油性物質が相変化する際の潜熱を利用 して蓄熱或いは蓄冷を行うので、 例えば、 地域冷暖房システム用や吸収 式空調システム用の熱搬送媒体として好適に使用することができる。  Since the heat transfer medium according to the present invention stores or cools heat using the latent heat when the oily substance undergoes a phase change, it is suitably used, for example, as a heat transfer medium for a district cooling / heating system or an absorption air conditioning system. be able to.

Claims

請 求 の 範 囲 The scope of the claims
1 . 蓄熱性を有し、 温度変化に応じて固体から液体へまたは液体から 固体へ可逆的に相変化する油性物質が、 温度安定性と、 油性物質の相変 化に伴う体積変化を吸収し得る伸縮性とを備えた親油性重合体粒子の内 部に保持され、 かつ、 該粒子の表面に親水性基が配向されていることを 特徴とする熱搬送媒体用の複合粒子。 1. An oily substance that has heat storage properties and reversibly changes phase from solid to liquid or from liquid to solid in response to temperature change absorbs temperature stability and volume change accompanying the phase change of oily substance. A composite particle for a heat transfer medium, wherein the composite particle is held inside a lipophilic polymer particle having the obtained elasticity and a hydrophilic group is oriented on the surface of the particle.
2 . 上記親油性重合体粒子がエラス トマ一をさらに含むことを特徴と する請求項 1記載の熱搬送媒体用の複合粒子。 2. The composite particles for a heat transfer medium according to claim 1, wherein the lipophilic polymer particles further include an elastomer.
3 . 蓄熱性を有し、 温度変化に応じて固体から液体へまたは液体から 固体へ可逆的に相変化する油性物質が、 温度安定性と、 油性物質の相変 化に伴う体積変化を吸収し得る伸縮性とを備えた親油性重合体粒子の内 部に保持され、 かつ、 該粒子の表面に親水性基が配向されると共に凹凸 が形成されている複合粒子を、 水性媒体に分散してなることを特徴とす る熱搬送媒体。 3. An oily substance that has heat storage properties and reversibly changes phase from solid to liquid or from liquid to solid in response to temperature change absorbs temperature stability and volume change accompanying the phase change of oily substance. The composite particles, which are retained inside the lipophilic polymer particles having the obtained elasticity, and in which the hydrophilic groups are oriented and the irregularities are formed on the surface of the particles, are dispersed in an aqueous medium. A heat transfer medium characterized in that:
4 . 蓄熱性を有し、 温度変化に応じて固体から液体へまたは液体から 固体へ可逆的に相変化する油性物質が、 温度安定性と、 油性物質の相変 化に伴う体積変化を吸収し得る伸縮性とを備えた親油性重合体粒子の内 部に保持され、 かつ、 該粒子の表面に親水性基が配向されると共に粒子 径が 1 m〜 3 0 0 mに形成されている複合粒子を、 水性媒体に分散 してなることを特徴とする熱搬送媒体。 4. An oily substance that has heat storage properties and reversibly changes phase from solid to liquid or from liquid to solid in response to temperature change absorbs temperature stability and volume change accompanying the phase change of oily substance. A composite which is held inside the lipophilic polymer particles having the obtained elasticity, has hydrophilic groups oriented on the surface of the particles, and has a particle diameter of 1 m to 300 m. A heat carrier medium characterized by dispersing particles in an aqueous medium.
5 . 複合粒子の濃度を 2 0重量%としたときの粘度が、 温度 5 で 5 m P a · s以下であることを特徴とする請求項 3 または 4記載の熱搬送 媒体。 5. The heat transfer medium according to claim 3, wherein the viscosity when the concentration of the composite particles is 20% by weight is 5 mPa · s or less at a temperature of 5.
6 . 請求項 3ないし 5の何れか 1項に記載の熱搬送媒体を用いて、 冷 凍機および空調機器間の熱搬送を行うことを特徴とする空調システム。 6. An air conditioning system that performs heat transfer between a refrigerator and an air conditioner using the heat transfer medium according to any one of claims 3 to 5.
7 . 単量体成分を、 蓄熱性を有し相変化により液化する油性物質の存 在下で重合してなり、  7. The monomer component is polymerized in the presence of an oily substance that has heat storage properties and liquefies due to phase change,
上記単量体成分を重合してなる重合体中に、 流動性が低下するように して上記油性物質を保持してなる蓄熱剤を、 水性媒体に分散してなるこ とを特徴とする熱搬送媒体。  A heat storage agent, comprising: dispersing, in an aqueous medium, a heat storage agent that holds the oily substance so as to reduce the fluidity thereof in a polymer obtained by polymerizing the monomer component. Transport medium.
8 . 溶解度パラメータが 9 ( c a 1 / c m 3 ) 1 2 以下の単量体 ( A ) と、 分子内に親水性基を有する単量体 (B ) とを含んでなる単量体成 分を、 蓄熱性を有し相変化により液化する油性物質の存在下で重合して なり、 8. A monomer component comprising a monomer (A) having a solubility parameter of 9 (ca 1 / cm 3 ) 12 or less and a monomer (B) having a hydrophilic group in the molecule. Polymerized in the presence of an oily substance that has heat storage properties and liquefies due to phase change,
上記単量体成分を重合してなる重合体中に、 上記油性物質が流動性を 実質的に失った状態で保持されてなる蓄熱剤を、 水性媒体に分散してな ることを特徴とする熱搬送媒体。  A heat storage agent in which the oily substance is maintained in a state where the fluidity is substantially lost in a polymer obtained by polymerizing the monomer component, is dispersed in an aqueous medium. Heat transfer medium.
9 . 上記単量体成分が、 重合性を有する不飽和基を分子内に少なく と も 2つ有する架橋性単量体 (C ) を、 2 0重量%以下の範囲内で含んで いることを特徴とする請求項 8記載の熱搬送媒体。 9. The monomer component contains a crosslinkable monomer (C) having at least two polymerizable unsaturated groups in the molecule in an amount of 20% by weight or less. 9. The heat transfer medium according to claim 8, wherein:
1 0 . 蓄熱剤と水性媒体との重量比 (蓄熱剤 水性媒体) 力 5 0 / 5 0〜 5 9 5の範囲内であることを特徴とする請求項 7または 9の何 れか 1項に記載の熱搬送媒体。 10. The weight ratio between the heat storage agent and the aqueous medium (thermal storage agent aqueous medium) Force is in the range of 50/50 to 5995. The heat transport medium according to any of the preceding claims.
1 1 . 溶解度パラメータが 9 ( c a 1 / c m 3 ) 1 2 以下の単量体 ( A ) と、 分子内に親水性基を有する単量体 (B ) とを含んでなる単量体 成分、 並びに、 蓄熱性を有し相変化により液化する油性物質を、 水系溶 媒中で懸濁重合することを特徴とする熱搬送媒体の製造方法。 11. A monomer component comprising a monomer (A) having a solubility parameter of 9 (ca 1 / cm 3 ) 12 or less and a monomer (B) having a hydrophilic group in the molecule, Also, a method for producing a heat transfer medium, wherein an oily substance having heat storage properties and liquefied by phase change is subjected to suspension polymerization in an aqueous solvent.
1 2 . 上記単量体成分および/または油性物質に、 エラストマ一が混 合されていることを特徴とする請求項 1 1記載の熱搬送媒体の製造方法, 12. The method of claim 11, wherein the monomer component and / or the oily substance is mixed with an elastomer.
PCT/JP1998/003907 1997-09-19 1998-08-31 Heat transfer medium, process for the production of the same, and air conditioning system WO1999015602A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP9/273518 1997-09-19
JP27351897 1997-09-19

Publications (1)

Publication Number Publication Date
WO1999015602A1 true WO1999015602A1 (en) 1999-04-01

Family

ID=17528983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/003907 WO1999015602A1 (en) 1997-09-19 1998-08-31 Heat transfer medium, process for the production of the same, and air conditioning system

Country Status (1)

Country Link
WO (1) WO1999015602A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077379A1 (en) * 2011-11-22 2013-05-30 Jsr株式会社 Heat storage material, heat storage device, heat storage microcapsule

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617043A (en) * 1991-09-03 1994-01-25 Mitsubishi Paper Mills Ltd Water-base cold insulator
JPH09221665A (en) * 1996-02-14 1997-08-26 Osaka Gas Co Ltd Microcapsule dispersion for thermal storage medium
JP4072871B2 (en) * 1996-07-26 2008-04-09 タイヨーエレック株式会社 Bullet ball machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0617043A (en) * 1991-09-03 1994-01-25 Mitsubishi Paper Mills Ltd Water-base cold insulator
JPH09221665A (en) * 1996-02-14 1997-08-26 Osaka Gas Co Ltd Microcapsule dispersion for thermal storage medium
JP4072871B2 (en) * 1996-07-26 2008-04-09 タイヨーエレック株式会社 Bullet ball machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013077379A1 (en) * 2011-11-22 2013-05-30 Jsr株式会社 Heat storage material, heat storage device, heat storage microcapsule

Similar Documents

Publication Publication Date Title
AU670054B2 (en) Tack-free elastomeric acrylate microspheres
US5719247A (en) Tack-free elastomeric acrylate microspheres
JPS60132642A (en) Production of polymer bead
US6083417A (en) Thermal storage agent, manufacturing method thereof, thermal storage material, manufacturing method thereof, thermal storage device and accumulating method
JP2009046638A (en) Heat storage material
JP4668541B2 (en) Thermal storage material, method for producing the same, heating or cooling system, thermal storage article, and copolymer
JPH11152465A (en) Heat-accumulator and its production
JPH10251627A (en) Composite particle, its production and heat transfer medium
JP2011094007A (en) Dust preventive and dust preventing method
WO1999015602A1 (en) Heat transfer medium, process for the production of the same, and air conditioning system
JP2004168792A (en) Heat transport medium and method for producing the same and air conditioning system using the same
JP2004277646A (en) Heat-storage microcapsule
JP2006008760A (en) Latent heat storage material composition
JP2000241090A (en) Heat storage agent filling heat storage tank, manufacture thereof and heat exchanging method employing it
JPH0680955A (en) Production of particulate oil absorbent
JP2005042040A (en) Method for producing emulsion type heat storage material
JP4163503B2 (en) Thermal storage material microcapsule
JP3805531B2 (en) Oil-absorbing agent comprising N-vinylcarboxylic acid amide-based crosslinked copolymer resin and method for producing the same
JP2550262B2 (en) Oil absorbent
JP2005200616A (en) Preparation process of heat-storing material in paste form
JP2000239483A (en) Lubricant for propulsion process having incorporated therewith granular highly water-absorbing resin
JPH01308480A (en) Chilling agent and chilling material made by using it
JPH0680889A (en) Production of granular oil absorbing agent
JP2000248273A (en) Mud-adding material for shield tunneling method
JP2007145998A (en) Method for producing hydroxy group-containing polymer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase