JPH0617043A - Water-base cold insulator - Google Patents

Water-base cold insulator

Info

Publication number
JPH0617043A
JPH0617043A JP3253030A JP25303091A JPH0617043A JP H0617043 A JPH0617043 A JP H0617043A JP 3253030 A JP3253030 A JP 3253030A JP 25303091 A JP25303091 A JP 25303091A JP H0617043 A JPH0617043 A JP H0617043A
Authority
JP
Japan
Prior art keywords
water
yeast
microcapsules
resin
cold insulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3253030A
Other languages
Japanese (ja)
Inventor
Mamoru Ishiguro
守 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP3253030A priority Critical patent/JPH0617043A/en
Publication of JPH0617043A publication Critical patent/JPH0617043A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Micro-Capsules (AREA)

Abstract

PURPOSE:To provide a water-base cold insulator for use to cool materials which exhibits a good fluidity at low temperatures and is capable of storing high- density latent heat. CONSTITUTION:A water-base cold insulator composed primarily of microcapsules containing a water-soluble liquid, wherein the microcapsules are prepared by coating the surfaces of yeast particles with an aminoplast resin, preferably a melamine resin.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は物質を冷やすために用い
られる保冷材に関するものであり、さらに詳しくは、低
温でも良好な流動性を示し、高密度の潜熱を保持し得る
水性保冷材に関する。本発明における蓄冷材マイクロカ
プセルは水分散系で得られるため、エチレングリコール
やプロピレングリコール、各種無機塩類とそのまま混合
可能であるため、水性不燃性の防火安全上好ましい保冷
材となり、各種包材や容器に封入することにより携帯用
保冷材や生鮮食料品等の鮮度保持材として利用できる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cold insulating material used for cooling a substance, and more particularly to an aqueous cold insulating material which exhibits good fluidity even at low temperature and can retain latent heat of high density. Since the cold storage material microcapsules in the present invention are obtained in a water dispersion system, they can be mixed as they are with ethylene glycol, propylene glycol, and various inorganic salts, and thus become a water-incombustible fireproof safety-preferred cold insulation material, and various packaging materials and containers. It can be used as a freshness-keeping material for portable cold storage materials, fresh foods, etc.

【0002】[0002]

【従来の技術】日常、最も一般に用いられている蓄冷材
は水であり、水は液体から固体に相変化する際に約80
cal/g の潜熱を貯えることが可能であり、普段の生活の
中で食品類の冷却、氷枕への利用等多方面に用いられ、
生活に不可欠な蓄冷材として使用されている。一般に、
物質の相変化に伴う潜熱を利用して蓄熱を行なう方法
は、相変化を伴わない顕熱のみを利用した方法に比べ相
転移温度を含む狭い温度範囲に大量の熱エネルギーを高
密度に貯蔵できるため、容器の縮小化が為されるだけで
なく、蓄熱量が大きい割りには大きな温度差が生じない
ため熱損失を少量に抑えられる利点も有する。
2. Description of the Related Art The most commonly used regenerator material on a daily basis is water, and when water undergoes a phase change from liquid to solid, it is about 80
It is possible to store cal / g of latent heat, and is used in various fields in everyday life such as cooling foods and using it for ice pillows.
It is used as a cool storage material that is essential to our daily lives. In general,
The method of storing heat by utilizing latent heat associated with the phase change of a substance can store a large amount of thermal energy in a narrow temperature range including the phase transition temperature in a high density, as compared with the method of using only sensible heat without phase change. Therefore, not only is the size of the container reduced, but there is an advantage that a large temperature difference does not occur even if the amount of heat storage is large, so that heat loss can be suppressed to a small amount.

【0003】また、フロンやアンモニア等の蒸発による
気化熱を利用した冷却手段があるが、フロンガスについ
ては環境破壊問題によりこれに替わる冷却素材の開発が
急務課題となっている。相変化を伴う潜熱利用型の蓄熱
材として従来より知られているものとして、水以外には
次のようなものが知られている。 1.塩化カルシウム・6水塩、硫酸ナトリウム・10水塩、
リン酸水素ナトリウム・12水塩 チオ硫酸ナトリウム・
5水塩、硝酸ニッケル・6水塩、等の多量結晶水を含む
無機水和物 2.石油パラフィン、カプリル酸、ラウリン酸、ステアリ
ン酸等のパラフィン、ワックス、脂肪酸等の有機化合物
Further, there is a cooling means utilizing the heat of vaporization due to the evaporation of CFCs, ammonia, etc. However, the development of a cooling material to replace CFCs is an urgent task due to the environmental destruction problem. In addition to water, the following are known as conventionally known latent heat utilization type heat storage materials with phase change. 1. Calcium chloride hexahydrate, sodium sulfate decahydrate,
Sodium hydrogen phosphate dodecahydrate sodium thiosulfate
Inorganic hydrate containing large amount of water of crystallization such as pentahydrate, nickel nitrate hexahydrate, etc. 2. Organic compounds such as petroleum paraffin, caprylic acid, lauric acid, paraffin such as stearic acid, wax and fatty acid

【0004】これら各種蓄熱材の熱交換効率を高めるた
めに蓄熱材をマイクロカプセル化する手段が提案されて
いる(例えば特開昭62−1452号公報、同62−4
5680号公報、同62−149334号公報、同62
−225241号公報、同63−115718号公報、
同63−217196号公報、特開平2−258052
号公報)。とりわけ潜熱量の高い水や1.の無機水和物を
マイクロカプセル化して蓄熱材に用いる方法として、例
えば特開昭61−192785号公報(界面重合法)、
特開平2−277543号公報(液中乾燥法)が提案さ
れている。
In order to improve the heat exchange efficiency of these various heat storage materials, a means for microencapsulating the heat storage material has been proposed (for example, JP-A-62-1452 and JP-A-62-4).
No. 5680, No. 62-149334, No. 62
-225241, 63-115718,
63-217196, JP-A-2-258052.
Issue). In particular, as a method of microencapsulating water having a high latent heat amount or the inorganic hydrate of 1. to be used as a heat storage material, for example, JP-A-61-192785 (interfacial polymerization method),
JP-A-2-277543 (in-liquid drying method) is proposed.

【0005】前者の界面重合法によるマイクロカプセル
は製法も容易であり比較的緻密な膜が得られるが、マイ
クロカプセルの分散媒が水に非混和性の有機溶媒(例え
ば、シクロヘキサン、トルエン、四塩化炭素、クロロホ
ルム、フタル酸ブチル等の各種可塑材等)が用いられる
ため、そのままでは水分散系の蓄熱材には成り得ず、防
火安全上の問題も有し、コスト的にも有利な手法とは言
えない。
The former microcapsules by the interfacial polymerization method are easy to produce and can form a relatively dense film, but the dispersion medium of the microcapsules is a water-immiscible organic solvent (for example, cyclohexane, toluene, tetrachloride). Since various plastic materials such as carbon, chloroform, butyl phthalate, etc.) are used, they cannot be used as they are as heat storage materials of water dispersion system, and they also have a fire safety problem, which is a cost effective method. I can't say.

【0006】後者の液中乾燥法では、水を含むマイクロ
カプセルが水分散系で直接得られる利点を有するが、膜
材の溶媒となる低沸点の有機溶剤(例えば、ベンゼン、
エーテル、クロロホルム等)が必要であり、しかもその
溶剤の除去工程が必要となり工業的に改良を要する点が
多い。
The latter in-liquid drying method has an advantage that microcapsules containing water can be directly obtained in an aqueous dispersion system, but a low-boiling organic solvent (eg, benzene, which is a solvent for the membrane material).
(Ether, chloroform, etc.) is required, and a solvent removing step is required, and industrial improvement is required in many points.

【発明が解決しようとする課題】本発明が解決しようと
する課題は、従来の保冷材における上記問題点を解決
し、次の様な性質を有する保冷材を得ることにある。
The problem to be solved by the present invention is to solve the above-mentioned problems in the conventional cold insulating material and obtain a cold insulating material having the following properties.

【0007】第1に、水性の不凍液や各種無機塩類とも
自由に混合可能であり、尚且つ長期に使用しても壊れる
ことのない丈夫な水溶性液体を含むマイクロカプセルを
主成分とする水性の保冷材を得ることである。これは前
記界面重合法による水性物質のカプセルや液中乾燥法で
は得ることが困難であった。第2に、保冷材の温度がマ
イクロカプセル内の水溶性液体の凝固点以下に冷却され
ても良好な流動性を示し、細い配管中等でも熱が搬送可
能な保冷材を得ることである。これは、前記無機系、有
機系蓄熱材単独では得られない特性であった。
[0007] First, it is possible to freely mix with an aqueous antifreeze solution and various inorganic salts, and to use an aqueous solution mainly containing microcapsules containing a durable water-soluble liquid that does not break even if used for a long period of time. To get a cool material. This is difficult to obtain by the capsule of an aqueous substance by the interfacial polymerization method or the in-liquid drying method. Secondly, it is possible to obtain a cold insulating material which exhibits good fluidity even when the temperature of the cold insulating material is cooled below the freezing point of the water-soluble liquid in the microcapsules, and which can transfer heat even in a thin pipe or the like. This was a characteristic that could not be obtained by the inorganic or organic heat storage material alone.

【0008】[0008]

【課題を解決するための手段】本発明者は、上記課題を
達成すべく検討を行なった結果、水溶性液体を含むマイ
クロカプセルを主成分として成る水性保冷材において、
酵母菌粒子の表面にアミノプラスト樹脂を被覆して得ら
れるマイクロカプセルを用いることにより達成されるこ
とを見出だした。次にその詳細について説明する。本発
明で用いられる酵母菌とは、出芽もしくは***により増
殖する微生物の総称であり、その生体は次の成分に大別
される。 1.グルカン、マンナン、キチン層から構成される細胞壁 2.細胞壁の下層に位置する、リン脂質分子層から成る細
胞膜 3.各種蛋白質、アミノ酸、糖類、無機塩類の水溶液から
成る細胞質
Means for Solving the Problems As a result of studies to achieve the above object, the present inventor has found that in an aqueous cold insulating material containing microcapsules containing a water-soluble liquid as a main component,
It has been found that this is achieved by using microcapsules obtained by coating the surface of yeast particles with aminoplast resin. Next, the details will be described. The yeast used in the present invention is a general term for microorganisms that proliferate by budding or division, and the living body thereof is roughly classified into the following components. 1. Cell wall composed of glucan, mannan, and chitin layers 2. Cell membrane composed of phospholipid molecular layer located below cell wall 3. Cytoplasm composed of aqueous solutions of various proteins, amino acids, saccharides, and inorganic salts

【0009】本発明者は、上記成分より成る酵母菌の構
造に注目し、3.の水溶性液体成分(以降内部水と称
す。)が1.および2.の皮膜成分で被覆されたマイク
ロカプセルに類似した形態であることに着目し、酵母菌
を水溶性液体を含むマイクロカプセルとして利用するこ
とを発案した。しかしながら、皮膜部分となる酵母菌の
細胞壁には菌が生命を維持していく上で必要な、栄養成
分の取込み、及び代謝老廃物の排出に要する無数の細孔
が存在しているため、内部水を常に安定に保持すること
は困難である。
The present inventor has paid attention to the structure of yeast comprising the above components, and 3. 1. The water-soluble liquid component (hereinafter referred to as internal water) of 1. And 2. Focusing on the fact that the form is similar to the microcapsules coated with the film component of, the inventors have proposed the use of yeast as microcapsules containing an aqueous liquid. However, the cell wall of the yeast, which is the film part, has numerous pores required for the intake of nutrients and the discharge of metabolic wastes necessary for the bacteria to maintain life. It is difficult to keep water stable at all times.

【0010】そこで本発明者は酵母菌体内の内部水を安
定に保持させる手法として、酵母菌表面を水不溶性樹
脂、とりわけアミノプラスト樹脂で被覆して細孔を封じ
ることが有効であることを見出した。酵母菌の表面にア
ミノプラスト樹脂を形成させる手段は次の過程より成
る。 1.酵母菌を水媒体中に分散させる工程 2.アミノプラスト樹脂初期縮合物(以降初期縮合物と
称す。)の調製工程 3.2.の初期縮合物を酵母菌分散液中に添加し、加熱、
攪拌を施して初期縮合物を酵母菌表面に重合させる工程
Therefore, the present inventor has found that as a method for stably retaining the internal water in the yeast cells, it is effective to coat the surface of the yeast with a water-insoluble resin, especially an aminoplast resin to seal the pores. It was Means for forming aminoplast resin on the surface of yeast comprises the following steps. 1. 1. A step of dispersing yeast in an aqueous medium. Preparation step of aminoplast resin precondensate (hereinafter referred to as precondensate) 3.2. Add the precondensate to the yeast dispersion liquid, heat,
A step of stirring to polymerize the initial condensate on the yeast surface

【0011】1.の酵母菌の分散工程では、一般に酵母菌
表面は非常に親水性であるため水には比較的容易に分散
するが、次工程で初期縮合物を効果的に酵母菌表面に樹
脂皮膜化させるために適当な分散剤を用いることが好ま
しい。本発明で用いられる好ましい分散剤の具体例とし
ては、アクリル酸共重合体、エチレン−無水マレイン酸
共重合体、メチルビニルエーテル−無水マレイン酸共重
合体、スチレン−無水マレイン酸共重合体、ブタジエン
−無水マレイン酸共重合体、酢酸ビニル−無水マレイン
酸共重合体、及びこれらのナトリウム塩が挙げられる。
これら分散剤を1.0〜20.0%の濃度範囲で水に溶
解することにより分散剤水溶液が調製され、さらに初期
縮合物の重合反応が最も効率的に進行するpHに設定さ
れる。
In the yeast dispersal step (1), since the yeast surface is generally very hydrophilic, it is relatively easy to disperse in water, but in the next step, the initial condensate is effectively dispersed on the yeast surface. It is preferable to use a suitable dispersant for forming a resin film. Specific examples of preferred dispersants used in the present invention include acrylic acid copolymers, ethylene-maleic anhydride copolymers, methyl vinyl ether-maleic anhydride copolymers, styrene-maleic anhydride copolymers, butadiene- Examples thereof include maleic anhydride copolymers, vinyl acetate-maleic anhydride copolymers, and sodium salts thereof.
The dispersant aqueous solution is prepared by dissolving these dispersants in water in a concentration range of 1.0 to 20.0%, and is set to a pH at which the polymerization reaction of the initial condensate proceeds most efficiently.

【0012】本発明で用いられるアミノプラスト樹脂と
して、尿素−ホルマリン樹脂、メラミン−ホルマリン樹
脂、ベンゾグアナミン−ホルマリン樹脂、等が挙げられ
るが、メラミン−ホルマリン樹脂が最も好ましいものと
して挙げられる。これらアミノプラスト樹脂の初期縮合
物は内部水を含む酵母菌重量に対し約1〜30%の範囲
で添加される。これ以下の添加量であると酵母菌表面の
被覆効果が不十分であり、逆にこの範囲以上であると酵
母菌表面に重合しきらない樹脂が多量に発生してきて好
ましくない。
Examples of the aminoplast resin used in the present invention include urea-formalin resin, melamine-formalin resin and benzoguanamine-formalin resin, with melamine-formalin resin being most preferred. The initial condensate of these aminoplast resins is added in the range of about 1 to 30% based on the weight of yeast containing internal water. If the amount added is less than this range, the effect of covering the yeast surface will be insufficient, and if it is more than this range, a large amount of unpolymerized resin will be generated on the yeast surface, which is not preferable.

【0013】初期縮合物の製法としては、メラミン樹脂
で例えれば、メラミン粉末とホルマリンをモル比で1:
1〜1:4の比率で混合し、弱アルカリ性で約70℃に加
熱することによりメラミン樹脂の初期縮合物が得られる
ので、これを先に調製した酵母分散液中に添加すればよ
い。その後加熱、攪拌を施して初期縮合物を酵母菌表面
に樹脂皮膜化させ水不溶性樹脂が形成される。加熱は、
40〜100℃、好ましくは 60〜80℃の範囲の温
度で30分から4時間の範囲で攪拌しながら施される。
As a method for producing the initial condensate, for example, in the case of a melamine resin, melamine powder and formalin are in a molar ratio of 1:
An initial condensate of a melamine resin can be obtained by mixing at a ratio of 1 to 1: 4 and heating at about 70 ° C. with weak alkalinity, and this may be added to the yeast dispersion liquid prepared above. Thereafter, heating and stirring are performed to form a resin film on the surface of the yeast to form the water-insoluble resin. Heating
It is applied at a temperature of 40 to 100 ° C., preferably 60 to 80 ° C. for 30 minutes to 4 hours with stirring.

【0014】本発明で使用される酵母菌の具体例として
次のようなものが挙げられる。 サッカロマイセス属 サッカロマイセス・セレビッシェ (Saccharomyces cerevisiae) サッカロマイセス・ルーキシ (Saccharomyces rouxii) サッカロマイセス・カールスバーゲンシス (Saccharomyces carlsbergensis)
Specific examples of the yeast used in the present invention include the following. Saccharomyces cerevisiae Saccharomyces rouxii Saccharomyces carlsbergensis

【0015】キャンディダ属 キャンディダ・ウティリス (Candida utilis) キャンディダ・トロピカリス (Candida tropicalis ) キャンディダ・リポリティカ (Candida lypolytica) キャンディダ・フレーベリ (Candida flaveri )[0015] Candida utilis Candida tropicalis Candida lypolytica Candida flaveri

【0016】酵母菌の形状は種類によって種々の形があ
るが、なるべく球形に近い形態のものが好ましく、粒径
は1〜20μmの範囲が好ましい。本発明で用いられる
これら酵母菌は、生のままでも乾燥した状態でもよく、
さらに増殖能力のない死滅した状態でもよい。これらの
酵母菌中の内部水の中には酵素及びタンパク質、アミノ
酸成分、糖質分、核酸成分等の菌体内組織が存在してい
るが、本発明においては内部水が保持されておれば、こ
れら菌体内成分を種々の方法で抽出した後の酵母菌残渣
を用いることもできる。かくして得られた内部水を含む
マイクロカプセル分散液はそのままでも本発明の目的を
達成し得るものであるが、必要であればエチレングリコ
ール、プロピレングリコール、各種無機塩類、防腐剤、
各種劣化防止剤、増粘材、着色剤、分散補助剤、比重調
節材等が添加され目的とする保冷材を得る。
There are various shapes of yeast depending on the type, but it is preferable that the shape is as close to a spherical shape as possible, and the particle size is preferably in the range of 1 to 20 μm. These yeasts used in the present invention may be raw or dried,
Furthermore, it may be in a dead state without proliferative ability. In the internal water of these yeasts, enzymes and proteins, amino acid components, carbohydrates, intracellular tissues such as nucleic acid components are present, but in the present invention, if the internal water is retained, It is also possible to use yeast residue after extracting these intracellular components by various methods. The thus obtained microcapsule dispersion containing internal water can achieve the object of the present invention as it is, but if necessary, ethylene glycol, propylene glycol, various inorganic salts, preservatives,
Various anti-deterioration agents, thickeners, colorants, dispersion aids, specific gravity adjusting materials and the like are added to obtain the desired cold insulating material.

【0017】水性保冷材中のマイクロカプセルの占める
割合は高いほど潜熱量が増し好ましいが、良好な流動性
を維持するには重量で20〜80%、好ましくは40〜
60%の範囲に設定するのが好ましい。
The higher the proportion of the microcapsules in the water-based cold insulator, the higher the latent heat amount, which is preferable, but in order to maintain good fluidity, it is 20 to 80% by weight, preferably 40 to 40%.
It is preferable to set it in the range of 60%.

【実施例】以下に、本発明を実施例により詳細に説明す
る。尚、本発明は実施例に限定されるものではない。
EXAMPLES The present invention will be described in detail below with reference to examples. The present invention is not limited to the embodiments.

【0018】実施例 [初期縮合物の調製]メラミン粉末2gに37%ホルム
アルデヒド水溶液3.5gと水10gを加え、さらに少
量の水酸化ナトリウム水溶液を加え、約70℃に加熱し
てメラミンとホルムアルデヒドの初期縮合物を得た。 [酵母菌の分散工程]酵母菌として、市販のパン酵母
(鐘淵化学工業(株)製パン製造用生酵母、学名サッカロ
マイセス・セレビッシェ)50g(内部水として約35
gを含む。)を、スチレン−無水マレイン酸ソーダ共重
合体2gを含みpHを4.5に設定した分散剤水溶液5
0g中に分散した。
Example [Preparation of initial condensate] To 2 g of melamine powder, 3.5 g of 37% aqueous formaldehyde solution and 10 g of water were added, and a small amount of aqueous sodium hydroxide solution was added, and the mixture was heated to about 70 ° C. to remove melamine and formaldehyde. An initial condensate was obtained. [Yeast Dispersing Step] As yeast, commercially available baker's yeast (live yeast for producing bread manufactured by Kanegafuchi Chemical Co., Ltd., scientific name Saccharomyces cerevisiae) 50 g (about 35 as internal water)
Including g. ) Is a dispersant aqueous solution 5 containing 2 g of styrene-sodium maleic anhydride copolymer and having a pH of 4.5.
Dispersed in 0 g.

【0019】[カプセル化工程]上記酵母菌分散液中に
上記メラミンとホルムアルデヒドの初期縮合物を添加
し、70℃で2時間攪拌を施した後、pHを9に調整して
カプセル化工程を終了した。 [水性保冷材の調整]得られたマイクロカプセル分散液
100部にエチレングリコール30部を添加したものを
硬質ポリエチレンの袋に充填し、携帯用の保冷材を得
た。
[Encapsulation Step] The initial condensation product of melamine and formaldehyde was added to the above yeast dispersion liquid, and the mixture was stirred at 70 ° C. for 2 hours, and then the pH was adjusted to 9 to complete the encapsulation step. did. [Preparation of Aqueous Cooling Material] A hard polyethylene bag was filled with 100 parts of the obtained microcapsule dispersion to which 30 parts of ethylene glycol was added to obtain a portable cooling material.

【0020】比較例1 実施例において得た酵母分散液100部に、アミノプラ
スト樹脂皮膜を形成する事無くエチレングリコール30
部を混合して水性保冷材を得た。 比較例2 水100部とエチレングリコール30部を混合して水性
保冷材を得た。 比較試験 実施例及び比較例1,2で得られた保冷材を家庭用冷蔵
庫の冷凍庫に保存し、−10℃まで冷却した後、25℃
の室温に放置した際の保冷材内部の経時的な温度上昇に
ついて調べたところ、図1に示す結果が得られた。
Comparative Example 1 100 parts of the yeast dispersion liquid obtained in Example was treated with ethylene glycol 30 without forming an aminoplast resin film.
The parts were mixed to obtain an aqueous cold insulating material. Comparative Example 2 100 parts of water and 30 parts of ethylene glycol were mixed to obtain an aqueous cold insulating material. Comparative test The cold insulating materials obtained in Examples and Comparative Examples 1 and 2 were stored in a freezer of a domestic refrigerator, cooled to -10 ° C, and then 25 ° C.
When the temperature rise of the inside of the cold insulating material when examined at room temperature was examined, the results shown in FIG. 1 were obtained.

【0021】[0021]

【発明の効果】図1に示されるように、酵母菌粒子の表
面に水不溶性樹脂を形成して得られる蓄冷材粒子を用い
た水性保冷材は、それを用いないものに比べ長時間保冷
効果が持続し得るものである。また、水溶性のエチレン
グリコール、プロピレングリコールの如き水性の熱媒体
液と自由な割合で混合可能であるため、0℃以下の低温
でも流動性に富む水性保冷材を得ることが可能となっ
た。以上の如く、本発明は保冷材として工業的に有益な
ものである。
As shown in FIG. 1, the water-based cold insulating material using the cold storage material particles obtained by forming the water-insoluble resin on the surface of the yeast particles has a long-term cold insulating effect as compared with the one without the cold storage material particles. Can be sustained. Further, since it can be mixed with an aqueous heat medium liquid such as water-soluble ethylene glycol or propylene glycol in a free ratio, it is possible to obtain an aqueous cold insulating material having a high fluidity even at a low temperature of 0 ° C or lower. As described above, the present invention is industrially useful as a cold insulating material.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例及び比較例1,2における保冷
剤を−10℃まで冷却した後、25℃の室温に放置した
際の経時時間と保冷材内部の温度変化を表した図。
FIG. 1 is a diagram showing a time change and a temperature change inside a cold insulating material when the cold insulating agents in Examples of the present invention and Comparative Examples 1 and 2 were cooled to −10 ° C. and then left at room temperature of 25 ° C.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 水溶性液体を含むマイクロカプセルを主
成分として成る水性保冷材において、マイクロカプセル
が、酵母菌粒子の表面にアミノプラスト樹脂を被覆して
得られたものであることを特徴とする水性保冷材。
1. A water-based cold insulator comprising microcapsules containing a water-soluble liquid as a main component, wherein the microcapsules are obtained by coating the surface of yeast particles with an aminoplast resin. Water-based cold insulator.
【請求項2】 アミノプラスト樹脂がメラミン樹脂であ
ることを特徴とする請求項1記載の水性保冷材。
2. The water-based cold insulating material according to claim 1, wherein the aminoplast resin is a melamine resin.
JP3253030A 1991-09-03 1991-09-03 Water-base cold insulator Pending JPH0617043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3253030A JPH0617043A (en) 1991-09-03 1991-09-03 Water-base cold insulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3253030A JPH0617043A (en) 1991-09-03 1991-09-03 Water-base cold insulator

Publications (1)

Publication Number Publication Date
JPH0617043A true JPH0617043A (en) 1994-01-25

Family

ID=17245505

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3253030A Pending JPH0617043A (en) 1991-09-03 1991-09-03 Water-base cold insulator

Country Status (1)

Country Link
JP (1) JPH0617043A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015602A1 (en) * 1997-09-19 1999-04-01 Nippon Shokubai Co., Ltd. Heat transfer medium, process for the production of the same, and air conditioning system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999015602A1 (en) * 1997-09-19 1999-04-01 Nippon Shokubai Co., Ltd. Heat transfer medium, process for the production of the same, and air conditioning system

Similar Documents

Publication Publication Date Title
CN109536137B (en) Phase-change microcapsule with magnetic and photo-thermal conversion characteristics and preparation method thereof
CN109925985A (en) A kind of methods and applications of phase-change material micro-capsule cladding
US7923112B2 (en) Latent heat storage material and process for manufacture of the latent heat storage material
US5456852A (en) Microcapsule for heat-storing material
CN105219352B (en) A kind of phase-change accumulation energy composite micro-capsule and preparation method
US3823089A (en) Heat storage composition
CN105038720B (en) It is a kind of efficiently to utilize stable phase change composite material of solar energy and preparation method thereof
CN106701032A (en) Composite phase change thermal storage material, microcapsule and preparation method thereof
JP2988765B2 (en) Cool storage material
CN107722944B (en) Jelly-like gel type composite low-temperature phase change cold storage material and preparation method thereof
CN101139472B (en) Phase-change energy-storage composite coating material and method for making same
CN103468216B (en) A kind of Phosphate inorganic nano phase change energy storage material and preparation method thereof
JPH0617043A (en) Water-base cold insulator
CN103484075B (en) A kind of Room-temperature inorganic nano phase-change energy storage material and preparation method thereof
CN109810613A (en) A kind of novel phase-variable energy-storage economical composite coating and preparation method thereof
CN108220726B (en) Mg-Zn-Ni low corrosion high-temperature phase-change heat storage material and preparation method thereof
CN103482910A (en) Inorganic nano phase-change energy storage cement paste and preparation method thereof
CN103468218B (en) A kind of Inorganic nano phase change energy storage material and preparation method thereof
Xia et al. Research on microcapsules of phase change materials
Papangkorn et al. Controlled-release material for urea fertilizer from polylactic acid
Yuan et al. Synthesis and characteristics of microencapsulated decanol with TiO2 shell as composites for cold energy storage
Patil et al. Microencapsulation of polymeric phase change materials (MPCM) for thermal energy storage in industrial coating applications
CN102604598B (en) Phase change energy storage material of microscale polyvinyl chloride coated sodium sulfate decahydrate and preparation method of phase change energy storage material
CN103468221B (en) A kind of Composite inorganic nano phase change energy storage material and preparation method thereof
CN103468217B (en) A kind of High-temperature inorganic nano phase change energy storage material and preparation method thereof