WO1999001648A1 - Wabenförmiger katalysator und verfahren zur reinigung eines abgases aus einem mit luftüberschuss betriebenen verbrennungsmotor - Google Patents

Wabenförmiger katalysator und verfahren zur reinigung eines abgases aus einem mit luftüberschuss betriebenen verbrennungsmotor Download PDF

Info

Publication number
WO1999001648A1
WO1999001648A1 PCT/EP1998/004086 EP9804086W WO9901648A1 WO 1999001648 A1 WO1999001648 A1 WO 1999001648A1 EP 9804086 W EP9804086 W EP 9804086W WO 9901648 A1 WO9901648 A1 WO 9901648A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
exhaust gas
combustion engine
internal combustion
flow channels
Prior art date
Application number
PCT/EP1998/004086
Other languages
English (en)
French (fr)
Inventor
Ronald Neufert
Lothar Hofmann
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP98940113A priority Critical patent/EP0993545A1/de
Publication of WO1999001648A1 publication Critical patent/WO1999001648A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2260/00Exhaust treating devices having provisions not otherwise provided for
    • F01N2260/06Exhaust treating devices having provisions not otherwise provided for for improving exhaust evacuation or circulation, or reducing back-pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a honeycomb-shaped catalyst and a method for the catalytic removal of pollutants from an exhaust gas of an internal combustion engine operated with excess air, for example a diesel engine or a gasoline engine with mixed engines.
  • pollutants are e.g. Nitrogen oxides, sulfur oxides, carbon monoxide and hydrocarbons, but also dioxins, furans and other organic compounds.
  • the pollutants mentioned can arise to a not inconsiderable extent, which are released into the environment via the exhaust gas and can cause damage there.
  • An internal combustion engine that works with excess air for example a diesel engine or a lean-mix petrol engine, releases such pollutants into the environment when a fuel is burned.
  • a large number of catalysts have been developed in the past in order to reduce the pollutants released into the environment by an internal combustion engine operating with excess air.
  • a so-called DeNOx catalytic converter which uses the selective catalytic reduction (SCR) process to convert the nitrogen oxides into environmentally friendly nitrogen and water using a suitable reducing agent, usually ammonia implements.
  • SCR selective catalytic reduction
  • the specified catalyst is only suitable for use in the exhaust gas of a diesel engine, in which primary engine measures are already taken on the engine side to reduce particle emissions, e.g. in the form of soot particles. Furthermore, the specified catalyst causes an increased exhaust gas back pressure, which leads to a reduction in engine performance and to an increase in fuel consumption.
  • the invention has for its object to remove the pollutants contained therein by means of a versatile, honeycomb-shaped catalyst from the exhaust gas of an internal combustion engine operated with excess air. Effective catalytic degradation of the pollutants is also to take place in the exhaust gas of a conventional diesel engine, but clogging of the catalytic converter and exhaust gas back pressure, which would greatly reduce the engine output, should be practically avoided.
  • the object is achieved by a honeycomb
  • Catalyst with a number of parallel flow channels for cleaning an exhaust gas of an internal combustion engine working with excess air with a predetermined displacement the ratio of the volume of the catalyst to the displacement of the internal combustion engine between 0.5 and 8.0, the hydraulic diameter of the flow channels between 1 and 4 mm and the percentage of the open frontal area at the inlet of the catalyst is between 45 and 95%.
  • the exhaust gas of an internal combustion engine working with excess air and having a predetermined displacement with a temperature between 100 and 700 ° C. is passed through a honeycomb-shaped catalyst with a number of parallel flow channels, the open, frontal area at the inlet of the catalyst being at most 95% and is at least 45%, the flow channels have a hydraulic diameter between 1 and 4 mm and the ratio of the catalyst volume to the cubic capacity of the internal combustion engine is between 0.5 and 8.0.
  • the inflow area is understood to mean the total area of the inflow side of the catalytic converter lying perpendicular to the flow direction of the exhaust gas, and the percentage of the open frontal area means the ratio of the inflow area and the total cross-sectional area of the flow channels in percent.
  • the hydraulic diameter is defined as four times the cross-sectional area of a flow channel divided by its circumference.
  • the invention is based on the consideration that a catalyst of this type, the volume of which is specifically adapted to the displacement of the internal combustion engine, achieves a high pollutant conversion rate with a low exhaust gas back pressure and a low tendency to clog. Because of the low exhaust back pressure does not reduce the engine output of the internal combustion engine and the use of such a catalyst does not result in additional fuel consumption.
  • the honeycomb-shaped catalyst can be designed as an oxidation catalyst with a known composition for the oxidation of unburned hydrocarbons, carbon monoxide or of dioxins or furans.
  • the honeycomb-shaped catalyst can also be designed as a reduction catalyst of known composition for removing nitrogen oxides.
  • the ratio of the catalytic converter volume to the cubic capacity of the internal combustion engine is between 0.5 and 8.0.
  • the ratio is preferably between 1.0 and 5.0. If the ratio is less than 0.5, a relatively large amount of exhaust gas must flow through a small volume of the catalytic converter, so that the exhaust gas back pressure on the catalytic converter increases. In addition, the degree of separation for the pollutants contained in the exhaust gas deteriorates. With a ratio of over 8.0, the honeycomb-shaped catalyst becomes too large to be used in particular in the case of non-stationary applications in the passenger car sector.
  • the parallel flow channels have a hydraulic diameter between 1 and 4 mm. With a hydraulic diameter of less than 1 mm, the flow channels tend to clog with soot particles contained in the exhaust gas and thus reduce the catalytic activity of the catalytic converter. With a hydraulic diameter of the flow channels of more than 4 mm, the catalytic conversion of pollutants in the catalytic converter also decreases, since the frequency of contact of the pollutants carried in the exhaust gas decreases with the catalytic converter surface.
  • the honeycomb-shaped catalyst is designed as a DeNOx catalyst, on which, among other things, Nitrogen oxides contained in the exhaust gas can be catalytically converted to nitrogen and water using a reducing agent, for example ammonia, previously introduced into the exhaust gas by the selective catalytic reduction (SCR) method.
  • a reducing agent for example ammonia
  • Substances which release the actual reducing agent only after being introduced into the exhaust gas can of course also be used as the reducing agent.
  • a substance is, for example, urea, from which ammonia is released.
  • a metering device for metering the reducing agent into the exhaust gas stream.
  • the reducing agent can be injected, injected or blown in.
  • an appropriately designed, controllable or controllable nozzle can be provided.
  • the honeycomb-shaped catalytic converter can be connected to conventional internal combustion engines operated with excess air, in particular to diesel engines or to lean-mix petrol engines.
  • the invention has the advantage that no impairment of the engine performance is to be expected due to the low exhaust back pressure. The installation of the honeycomb-shaped catalyst therefore leads to negligible additional fuel consumption by the internal combustion engine, while the additional fuel consumption in systems according to the prior art is still between 5 and 20%.
  • a diesel engine which is connected via an exhaust pipe 2 to a honeycomb-shaped catalytic converter 7, which has a number of flow channels 9, which are aligned parallel to the flow direction 6 of an exhaust gas.
  • the catalyst 7 is designed as a DeNOx catalyst based on Ti0 2 , which comprises one or more of the substances V 2 0 5 , Wo0 3 and Mo0 3 as catalytically active material.
  • a DeNOx catalytic converter reduces the nitrogen oxides contained in the exhaust gas according to the SCR process of selective catalytic reduction with the aid of a reducing agent, for example ammonia, to nitrogen and water.
  • the exhaust gas generated in the diesel engine flows through the exhaust pipe 2 into the catalytic converter 7 at a temperature of 100 to 700 ° C.
  • a metering device 4 is installed in the exhaust pipe 2 in front of the catalytic converter 7.
  • the metering device 4 comprises a reducing agent tank 4A and a controllable nozzle 4B connected to it, through which the reducing agent located in the reducing agent tank is injected into the exhaust gas flowing through the exhaust pipe 2.
  • the reducing agent is intimately mixed with the exhaust gas.
  • Urea is used as the reducing agent, which partially converts to ammonia under the conditions prevailing in the exhaust gas.
  • a hydrolysis catalytic converter (not shown in more detail) can be arranged between the metering device 4 and the DeNOx catalytic converter 7.
  • the exhaust pipe 2 opens into the catalytic converter 7, which has an inflow surface 11 on its inlet side.
  • the ratio of the volume of the catalyst 7 to the cubic capacity 3 of the diesel engine is 4.0.
  • the exhaust gas flowing from the diesel engine 1 passes through the inflow surface 11 of the catalyst 7, which is perpendicular to the flow direction 6, the size of which results from the volume ratio.
  • the percentage of the inflow surface 11 through which exhaust gas and reducing agent can flow is 80%.
  • the parallel flow channels 9 through which the exhaust gas and the reducing agent can flow have a hydraulic diameter of 2 mm.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

Zur Entfernung von Schadstoffen aus einem Abgas eines mit Luftüberschuß arbeitenden Verbrennungsmotors (1) mit einem vorgegebenen Hubraum (3) wird ein wabenförmiger Katalysator (7) und ein Verfahren angegeben, bei dem das Abgas durch ein Abgasrohr (2) in den Katalysator (7) geleitet wird. Durch eine Anpassung des Volumens des Katalysators (7) und des hydraulischen Durchmessers seiner Strömungskanäle (9) auf den Hubraum (3) des Verbrennungsmotors (1) kann bei hoher Schadstoffumsatzrate und geringer Verstopfungstendenz gleichzeitig ein geringer Abgasgegendruck erzielt werden, der die Motorleistung des Verbrennungsmotors (1) nicht mindert.

Description

Beschreibung
Wabenför iger Katalysator und Verfahren zur Reinigung eines Abgases aus einem mit Luftüberschuß betriebenen Verbrennungs- motor
Die Erfindung betrifft einen wabenförmigen Katalysator und ein Verfahren zur katalytischen Entfernung von Schadstoffen aus einem Abgas eines mit Luftüberschuß betriebenen Verbren- nungsmotors, beispielsweise eines Dieselmotors oder eines Ma- germix-Benzinmotors. Derartige Schadstoffe sind z.B. Stickoxide, Schwefeloxide, Kohlenmonoxid und Kohlenwasserstoffe, aber auch Dioxine, Furane und andere organische Verbindungen.
Bei dem Betrieb eines Verbrennungsmotors können in nicht unerheblichen Umfang die genannten Schadstoffe entstehen, welche über das Abgas an die Umwelt abgegeben werden und dort Schäden anrichten können. Auch ein Verbrennungsmotor, der mit Luftüberschuß arbeitet, beispielsweise ein Dieselmotor oder ein Magermix-Benzinmotor, gibt solche Schadstoffe bei der Verbrennung eines Treibstoffes an die Umwelt ab.
Um die von einem mit Luftüberschuß arbeitenden Verbrennungsmotor an die Umwelt abgegebenen Schadstoffe zu reduzieren, sind in der Vergangenheit eine Vielzahl von Katalysatoren entwickelt worden. So ist zur Verringerung von Stickoxiden im Abgas eines derartigen Verbrennungsmotors beispielsweise die - Verwendung eines sogenannten DeNOx - Katalysators bekannt, welcher nach dem Verfahren der selektiven katalytischen Re- duktion (SCR) die Stickoxide mit einem geeigneten Reduktionsmittel, meist Ammoniak, zu umweltfreundlichem Stickstoff und Wasser umsetzt.
Auch wurden bezüglich der Geometrie des jeweils verwendeten Katalysators verschiedentlich Überlegungen angestellt, um eine Verstopfung des Katalysators durch die im Abgas eines mit Luftüberschuß arbeitenden Verbrennungsmotors enthaltenen unverbrannten Partikel oder Rußteilchen zu vermeiden.
So ist speziell zur Verringerung von im Abgas eines Dieselmotors enthaltenen sogenannten SOF, d.h. von in organischen Lösungsmitteln löslichen, organischen Komponenten, in der EP 0 382 434 Bl ein Reinigungsverfahren beschrieben, bei dem das Abgas des Dieselmotors durch einen bienenwabenartigen Katalysator, der Zellen parallel zur Strömungsrichtung des Abgases besitzt, geleitet wird. Die einzelnen, durchgehenden Zellen besitzen dabei einen hydraulischen Durchmesser von 1,00 bis 2,00 mm, wobei der Querschnitt der Anströmfläche des Katalysators 10 bis 100 cm2 pro Liter Hubraum des Dieselmo- tors beträgt. Der Prozentsatz des offenen, vom Abgas durchströmbaren Bereiches der Anströmfläche beträgt 40 bis 95%.
Nachteiligerweise eignet sich jedoch auch der angegebene Katalysator nur zum Einsatz im Abgas eines Dieselmotors, bei dem bereits motorseitige Primärmaßnamen zur Verringerung des Partikelausstoßes , z.B. in Form von Rußteilchen, getroffen sind. Weiterhin bewirkt der angegebene Katalysator einen erhöhten Abgasgegendruck, der zur Minderung der Motorleistung und zu einem Kraftstoffmehrverbrauch führt.
Der Erfindung liegt die Aufgabe zugrunde, mittels eines vielseitig verwendbaren, wabenförmigen Katalysators aus dem Abgas eines mit Luftüberschuß betriebenen Verbrennungsmotors die dort enthaltenen Schadstoffe zu entfernen. Auch im Abgas eines üblichen Dieselmotors soll ein effektiver katalytischer Abbau der Schadstoffe stattfinden, wobei aber eine Verstopfung des Katalysators und ein Abgasgegendruck, der die Motorleistung stark vermindern würde, praktisch vermieden werden soll. Die Aufgabe wird erfindungsgemäß durch einen wabenförmigen
Katalysator mit einer Anzahl paralleler Strömungskanäle zur Reinigung eines Abgases eines mit Luftüberschuß arbeitenden Verbrennungsmotors mit vorgegebenen Hubraum gelöst, wobei das Verhältnis des Volumens des Katalysators zum Hubraum des Verbrennungsmotors zwischen 0,5 und 8,0, der hydraulische Durchmesser der Strömungskanäle zwischen 1 und 4 mm und der Prozentsatz des offenen, frontalen Bereiches am Einlaß des Katalysators zwischen 45 und 95% beträgt.
Bei dem entsprechenden Verfahren wird das Abgas eines mit Luftüberschuß arbeitenden Verbrennungsmotors mit vorgegebenen Hubraum mit einer Temperatur zwischen 100 und 700°C durch einen wabenförmigen Katalysator mit einer Anzahl paralleler Strömungskanäle geleitet wird, wobei der offene, frontale Bereich am Einlaß des Katalysators höchstens 95% und mindestens 45% beträgt, die Strömungskanäle einen hydraulischen Durchmesser zwischen 1 und 4 mm besitzen und das Verhältnis des Katalysatorvolumens zum Hubraum des Verbrennungsmotors zwi- sehen 0,5 und 8,0 beträgt.
Dabei wird prinzipiell unter der Anströmfläche die senkrecht zur Strömungsrichtung des Abgases liegende Gesamtfläche der Anströmseite des Katalysators und unter dem Prozentsatz des offenen, frontalen Bereiches das Verhältnis aus Anströmfläche und Gesamtquerschnittsfläche der Strömungskanäle in Prozent verstanden. Der hydraulische Durchmesser ist definiert als die vierfache Querschnittsfläche eines Strömungskanals, dividiert durch seinen Umfang.
Die Erfindung geht von der Überlegung aus, daß durch einen derartigen Katalysator, dessen Volumen spezifisch auf den Hubraum des Verbrennungsmotors angepaßt ist, eine hohe Schad- stoffumsatzrate bei gleichzeitig niedrigem Abgasgegendruck und niedriger Verstopfungstendenz erzielt wird. Aufgrund des niedrigen Abgasgegendrucks wird die Motorleistung des Verbrennungsmotors nicht gemindert und der Einsatz eines derartigen Katalysators zieht keinen Kraftstoffmehrverbrauch nach sich.
Der wabenförmige Katalysator kann dabei als ein Oxidations- Katalysator mit an sich bekannter Zusammensetzung zur Oxida- tion unverbrannter Kohlenwasserstoffe, Kohlenmonoxid oder von Dioxinen oder Furanen ausgebildet sein. Auch kann der waben- förmige Katalysator als ein Reduktionskatalysator bekannter Zusammensetzung zur Entfernung von Stickoxiden ausgebildet sein.
Um den Abgasgegendruck am Katalysator zu minimieren und so die Minderung der Motorleistung zu verringern, liegt das Verhältnis des Katalysatorsvolumens zum Hubraum des Verbrennungsmotors zwischen 0,5 und 8,0. Vorzugsweise liegt das Verhältnis zwischen 1,0 und 5,0. Bei einem Verhältnis kleiner als 0,5 muß eine relativ große Abgasmenge ein kleines Volumen des Katalysators durchströmen, so daß der Abgasgegendruck am Katalysator steigt. Darüberhinaus verschlechtert sich der Abscheidegrad für die im Abgas enthaltenen Schadstoffe. Bei einem Verhältnis von über 8,0 wird der wabenförmige Katalysator zu großvolumig, um insbesondere bei nichtstationären Anwen- düngen im PKW-Bereich eingesetzt zu werden.
Liegt der Prozentsatz des offenen, frontalen Bereiches der Einlaßseite des Katalysators unterhalb von 45%, so steigt der Abgasgegendruck, bedingt durch die dann verkleinerte offene Querschnittsfläche der Strömungskanäle an, während die mechanische Stabilität des Katalysators bei einem Prozentsatz oberhalb von 95% aufgrund der dünnen Wandstärke der einzelnen Strömungskanäle stark eingeschränkt ist. Vorteilhaft wird der Prozentsatz des offenen, frontalen Bereiches der Einlaßseite des Katalysators zwischen 60 und 85% gewählt. Um weiterhin den Druckabfall am Katalysator zu vermindern, weisen die parallelen Strömungskanäle einen hydraulischen Durchmesser zwischen 1 und 4 mm auf. Bei einem hydraulischen Durchmesser von unter 1 mm steigt die Tendenz der Strömungs- kanäle, sich mit im Abgas enthaltenen Rußteilchen zuzusetzen und so die katalytische Aktivität des Katalysator zu verringern. Bei einem hydraulischen Durchmesser der Strömungskanäle von mehr als 4 mm sinkt die katalytische Umsetzung von Schadstoffen im Katalysator ebenfalls, da die Kontakthäufigkeit der im Abgas mitgeführten Schadstoffe mit der Katalysatoroberfläche abnimmt.
Für einen effektiven Abbau von im Abgas enthaltenen Stickoxiden ist es vorteilhaft, wenn der wabenförmige Katalysator als ein DeNOx-Katalysator ausgeführt ist, an dem u.a. im Abgas enthaltene Stickoxide mit einem zuvor in das Abgas eingebrachten Reduktionsmittel, beispielsweise Ammoniak, nach dem Verfahren der selektiven katalytischen Reduktion (SCR) Kata- lytisch zu Stickstoff und Wasser umgesetzt werden.
Als Reduktionsmittel können dabei selbstverständlich auch Substanzen verwendet werden, welche erst nach dem Einbringen in das Abgas das eigentliche Reduktionsmittel freisetzen. Eine derartige Substanz ist beispielsweise Harnstoff, aus wel- ehern Ammoniak freigesetzt wird.
In Strömungsrichtung des Abgases vor dem DeNOx-Katalysator befindet sich vorteilhafterweise eine Dosiereinrichtung zur Zudosierung des Reduktionsmittels in den Abgasstrom. Dabei kann das Reduktionsmittel eingedüst, eingespritzt oder eingeblasen werden. Hierfür kann beispielsweise eine entsprechend ausgelegte, Steuer- oder regelbare Düse vorgesehen sein. Der wabenförmige Katalysator kann an übliche, mit Luftüberschuß betriebene Verbrennungsmotoren, insbesondere an Diesel- otoren oder an Magermix-Benzinmotoren, angeschlossen werden. Die Erfindung hat den Vorteil, daß aufgrund des geringen Abgasgegendrucks keine Beeinträchtigung der Motorleistung zu erwarten ist. Der Einbau des wabenförmigen Katalysators führt daher zu einem vernachlässigbaren Kraftstoffmehrverbrauch des Verbrennungsmotors, während der KraftStoffmehrverbrauch bei Systemen gemäß dem Stand der Technik noch zwischen 5 und 20% liegt.
Nachfolgend wird ein Ausführungsbeispiel der Erfindung anhand einer Figur näher erläutert, welche eine schematische Darstellung eines Dieselmotors mit einem zugeordneten wabenförmigen Katalysator zeigt.
In der Figur ist als ein mit Luftüberschuß arbeitender Ver- brennungsmotor 1 ein Dieselmotor gezeigt, welcher über ein Abgasrohr 2 mit einem wabenförmigen Katalysator 7 verbunden ist, der eine Anzahl von Strömungskanälen 9 aufweist, die zur Strömungsrichtung 6 eines Abgases parallel ausgerichtet i sind.
Der Katalysator 7 ist dabei als ein DeNOx-Katalysator auf Ti02-Basis ausgeführt, der als katalytisch aktives Material eine oder mehrere der Substanzen V205, Wo03 und Mo03 umfaßt. Ein derartiger DeNOx-Katalysator reduziert die im Abgas enthaltenen Stickoxide nach dem SCR-Verfahren der selektiven ka- talytischen Reduktion mit Hilfe eines Reduktionsmittels, beispielsweise Ammoniak, zu Stickstoff und Wasser.
Das im Dieselmotor erzeugte Abgas strömt je nach Betriebszustand des Motors mit einer Temperatur von 100 bis 700 °C durch das Abgasrohr 2 in den Katalysator 7. Bezogen auf die Strömungsrichtung des Abgases ist vor dem Katalysator 7 im Abgasrohr 2 eine Dosiereinrichtung 4 angebracht. Die Dosier- einrichtung 4 umfaßt dabei einen Reduktionsmitteltank 4A und eine daran angeschlossene, steuerbare Düse 4B, durch welche das sich im Reduktionsmitteltank befindliche Reduktionsmittel in das durch das Abgasrohr 2 strömende Abgas eingedüst wird.
Dies kann beispielsweise mit Hilfe von Druckluft geschehen. Dabei wird das Reduktionsmittel mit dem Abgas innig vermischt .
Als Reduktionsmittel wird Harnstoff verwendet, welcher sich unter den im Abgas herrschenden Bedingungen teilweise zu Ammoniak umwandelt. Zur Unterstützung der Umwandlung kann ein nicht näher gezeigter Hydrolysekatalysator zwischen der Do- siereinrichtung 4 und dem DeNOx-Katalysator 7 angeordnet sein.
Hinter der Dosiereinrichtung 4 mündet das Abgasrohr 2 in den Katalysator 7, der auf seiner Einlaßseite eine Anströmfläche 11 aufweist. Das Verhältnis des Volumens des Katalysators 7 zum Hubraum 3 des Dieselmotors beträgt 4.0.
Das aus dem Dieselmotor 1 strömende Abgas passiert die senkrecht zur Strömungsrichtung 6 stehende Anströmfläche 11 des Katalysators 7, deren Größe sich aus dem Volumenverhältnis ergibt. Der Prozentsatz der Anströmfläche 11, der von Abgas und Reduktionsmittel durchströmt werden kann, beträgt 80%.
Die vom Abgas und dem Reduktionsmittel durchströmbaren, pa- rallelen Strömungskanäle 9 haben einen hydraulischen Durchmesser von 2 mm.

Claims

Patentansprüche
1. Wabenförmiger Katalysator (7) , mit einer Anzahl von parallelen Strömungskanälen (9), zur Reinigung eines Abgases eines mit Luftüberschuß arbeitenden Verbrennungsmotors (1) mit einem vorgebbaren Hubraum (3), d a d u r c h g e k e n n z e i c h n e t, daß das Verhältnis des Volumens des Katalysators (7) zum Hubraum (3) des Verbrennungsmotors (1) zwischen 0,5 und 8,0, der hydraulische Durchmesser der Strömungskanäle (9) zwischen 1 und 4 mm und der Prozentsatz des offenen frontalen Bereichs am Einlaß des Katalysators zwischen 45 und 95% beträgt.
2. Katalysator nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß das Verhältnis des Volumens des Katalysators (7) zum Hubraum (3) des Verbrennungsmotors (1) zwischen 1,0 und 5,0 beträgt.
3. Katalysator nach Anspruch 1 oder 2, d a d u r c h g e k e n n z e i c h n e t, daß der hydraulische Durchmesser der Strömungskanäle (9) zwischen 1,2 und 2, 5 mm beträgt.
4. Katalysator nach einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß der Prozentsatz des offenen frontalen Bereichs zwischen 60 und 85% beträgt.
5. Katalysator nach einem Ansprüche 1 bis 4, d a d u r c h g e k e n n z e i c h n e t, daß der Katalysator (7) ein DeNOx-Katalysator ist.
6. Verfahren zur Reinigung eines Abgases aus einem mit Luftüberschuß arbeitenden Verbrennungsmotor (1) mit einem vorge- gebenen Hubraum (3), umfassend das Durchleiten des Abgases durch einen wabenförmigen Katalysator (7) mit einer Anzahl paralleler Strömungskanäle (9) , wobei der Prozentsatz des offenen frontalen Bereichs am Einlaß des Katalysators (7) höchstens 95% beträgt, d a d u r c h g e k e n n z e i c h n e t, daß das Abgas bei einer Temperatur zwischen 100 und 700°C durch den Katalysator (7) geleitet wird, wobei das Verhältnis des Volumens des Katalysators (7) zum Hubraum (3) des Verbrennungsmotors (1) zwischen 0,5 und 8,0, der hydraulische Durchmesser der Strö- mungskanäle (9) zwischen 1 und 4 mm und der Prozentsatz des offenen frontalen Bereichs mindestens 45% beträgt.
7. Verfahren nach Anspruch 6, d a d u r c h g e k e n n z e i c h n e t, daß das Verhält- nis des Volumens des Katalysators (7) zum Hubraum (3) des Verbrennungsmotors (1) zwischen 1,0 und 5,0 beträgt.
8. Verfahren nach Anspruch 6 oder 7, ; d a d u r c h g e k e n n z e i c h n e t, daß der hydrauli- sehe Durchmesser der Strömungskanäle (9) zwischen 1,2 und 2,5 mm beträgt.
9. Verfahren nach einem der Ansprüche 6 bis 8, d a d u r c h g e k e n n z e i c h n e t, daß der Prozent- satz des offenen frontalen Bereichs zwischen 60 und 85% beträgt.
10. Verfahren nach einem Ansprüche 6 bis 9, d a d u r c h g e k e n n z e i c h n e t, daß das Abgas durch einen DeNOx-Katalysator geleitet wird.
11. Verfahren nach Anspruch 10, d a d u r c h g e k e n n z e i c h n e t, daß dem Abgas vor Durchleitung durch den DeNOx-Katalysator ein Reduktionsmit- tels zudosiert wird.
PCT/EP1998/004086 1997-07-04 1998-07-02 Wabenförmiger katalysator und verfahren zur reinigung eines abgases aus einem mit luftüberschuss betriebenen verbrennungsmotor WO1999001648A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP98940113A EP0993545A1 (de) 1997-07-04 1998-07-02 Wabenförmiger katalysator und verfahren zur reinigung eines abgases aus einem mit luftüberschuss betriebenen verbrennungsmotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP97111323.8 1997-07-04
EP97111323 1997-07-04

Publications (1)

Publication Number Publication Date
WO1999001648A1 true WO1999001648A1 (de) 1999-01-14

Family

ID=8227014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/004086 WO1999001648A1 (de) 1997-07-04 1998-07-02 Wabenförmiger katalysator und verfahren zur reinigung eines abgases aus einem mit luftüberschuss betriebenen verbrennungsmotor

Country Status (2)

Country Link
EP (1) EP0993545A1 (de)
WO (1) WO1999001648A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018374A1 (en) * 1999-09-08 2001-03-15 Orbital Engine Company (Australia) Pty Limited Exhaust gas treatment method and device
CN100436767C (zh) * 2002-07-15 2008-11-26 大众汽车股份公司 采用直喷式奥托发动机和催化器***的内燃机设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143941A (ja) * 1986-12-08 1988-06-16 Nippon Shokubai Kagaku Kogyo Co Ltd 窒素酸化物除去用触媒
EP0277765A1 (de) * 1987-01-27 1988-08-10 Nippon Shokubai Co., Ltd. Verfahren zur Abtrennung von Stickstoffoxiden aus einem Dieselmotorabgas
EP0382434A2 (de) * 1989-02-06 1990-08-16 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Reinigung von Abgasen aus einem Dieselmotor
US5272871A (en) * 1991-05-24 1993-12-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Method and apparatus for reducing nitrogen oxides from internal combustion engine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63143941A (ja) * 1986-12-08 1988-06-16 Nippon Shokubai Kagaku Kogyo Co Ltd 窒素酸化物除去用触媒
EP0277765A1 (de) * 1987-01-27 1988-08-10 Nippon Shokubai Co., Ltd. Verfahren zur Abtrennung von Stickstoffoxiden aus einem Dieselmotorabgas
EP0382434A2 (de) * 1989-02-06 1990-08-16 Nippon Shokubai Kagaku Kogyo Co. Ltd. Verfahren zur Reinigung von Abgasen aus einem Dieselmotor
US5272871A (en) * 1991-05-24 1993-12-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Method and apparatus for reducing nitrogen oxides from internal combustion engine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 012, no. 405 (C - 539) 26 October 1988 (1988-10-26) *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001018374A1 (en) * 1999-09-08 2001-03-15 Orbital Engine Company (Australia) Pty Limited Exhaust gas treatment method and device
US6941747B1 (en) 1999-09-08 2005-09-13 Orbital Engine Company (Australia) Pty Limited Exhaust gas treatment method and device
CN100436767C (zh) * 2002-07-15 2008-11-26 大众汽车股份公司 采用直喷式奥托发动机和催化器***的内燃机设备

Also Published As

Publication number Publication date
EP0993545A1 (de) 2000-04-19

Similar Documents

Publication Publication Date Title
EP1728984B2 (de) Abgasanlage
EP2691618B1 (de) Kompakte abgasbehandlungseinheit mit mischbereich und verfahren zur vermischung eines abgases
EP2101049B1 (de) Kompaktes Abgasnachbehandlungssystem
EP2138681B1 (de) Verfahren und Vorrichtung zur Reinigung von Dieselabgasen
EP1379322B2 (de) Abgassystem
EP1900916A2 (de) Abgasnachbehandlungssystem
WO2004099578A1 (de) Regeneration einer partikelfalle
WO2000070202A1 (de) Vorrichtung zum reduzieren von schädlichen bestandteilen im abgas einer brennkraftmaschine, insbesondere einer diesel-brennkraftmaschine
WO2013139414A1 (de) Katalysatorbauteil einer kraftfahrzeug-abgasreinigungsanlage und verwendung eines katalysatorbauteils
DE102014207530A1 (de) Katalysatorbaugruppe, die Baugruppe enthaltende Vorrichtung zur Reinigung von Abgasen eines Verbrennungsmotors, Baukastensystem für die Baugruppe, und Verfahren zur Herstellung der Baugruppe
EP1917423B1 (de) Verfahren und vorrichtung zur aufbereitung eines abgases einer verbrennungskraftmaschine
EP1882090B1 (de) Abgasanlage mit zwei abgasbehandlungseinheiten
EP1527262B1 (de) Abgasfilter und verfahren zum reinigen eines abgases
WO1999001648A1 (de) Wabenförmiger katalysator und verfahren zur reinigung eines abgases aus einem mit luftüberschuss betriebenen verbrennungsmotor
WO2015074697A1 (de) Einrichtung zum reinigen der abgase einer brennkraftmaschine
DE102009039536A1 (de) Verbrennungsanlage sowie Verfahren zur Reinigung einer in einem Abgaskanal einer Verbrennungsanlage installierten Katalysatoreinrichtung
DE102017118214A1 (de) Abgasnachbehandlungssystem sowie Verfahren zur Abgasnachbehandlung eines Verbrennungsmotors
WO1999001646A1 (de) Abgasleitungssystem und verfahren zur reinigung eines abgases aus einem mit luftüberschuss betriebenen verbrennungsmotor
WO1999001647A1 (de) Wabenförmiger katalysator und verfahren zur reinigung eines abgases aus einem mit luftüberschuss betriebenen verbrennungsmotor
DE102015226039A1 (de) Partikelfilter für ein Abgasnachbehandlungssystem, Abgasnachbehandlungssystem und Verfahren zum Herstellen eines Partikelfilters
EP1512850A1 (de) Partikelfilter
DE10323385B4 (de) Abgasreinigungsanlage für eine Brennkraftmaschine
DE102011114097A1 (de) Anordnung zur Nachbehandlung des Abgases eines Verbrennungsmotors
DE102015226038A1 (de) Partikelfilter für ein Abgasnachbehandlungssystem, Abgasnachbehandlungssystem und Verfahren zum Herstellen eines Partikelfilters
DE102011089850A1 (de) Misch- und/oder Verdampfungseinrichtung für ein Abgassystem eines Kraftfahrzeugs

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998940113

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: KR

WWE Wipo information: entry into national phase

Ref document number: 09477442

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998940113

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998940113

Country of ref document: EP