WO1998057386A1 - Cellule secondaire a electrolyte non aqueux - Google Patents

Cellule secondaire a electrolyte non aqueux Download PDF

Info

Publication number
WO1998057386A1
WO1998057386A1 PCT/JP1998/002541 JP9802541W WO9857386A1 WO 1998057386 A1 WO1998057386 A1 WO 1998057386A1 JP 9802541 W JP9802541 W JP 9802541W WO 9857386 A1 WO9857386 A1 WO 9857386A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbonate
aqueous electrolyte
secondary battery
electrolyte secondary
solvent
Prior art date
Application number
PCT/JP1998/002541
Other languages
English (en)
French (fr)
Inventor
Yoshinori Kida
Ryuki Ohshita
Seiji Yoshimura
Toshijuki Nohma
Koji Nishio
Original Assignee
Sanyo Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co., Ltd. filed Critical Sanyo Electric Co., Ltd.
Priority to KR10-1999-7008137A priority Critical patent/KR100491180B1/ko
Priority to CA002283393A priority patent/CA2283393C/en
Priority to US09/380,215 priority patent/US6436577B1/en
Priority to EP98923182A priority patent/EP0989622B1/en
Priority to DE69802282T priority patent/DE69802282T2/de
Priority to JP50208999A priority patent/JP3685500B2/ja
Publication of WO1998057386A1 publication Critical patent/WO1998057386A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and more particularly to a lithium-containing titanium oxide used as a negative electrode material in the negative electrode.
  • the present invention relates to a non-aqueous electrolyte secondary battery having improved cell characteristics.
  • Non-aqueous electrolyte secondary batteries with a high electromotive force using a non-aqueous electrolyte as the electrolyte and utilizing oxidation and reduction of lithium have come to be used.
  • the need for batteries with an operating voltage of about 2.5 V has increased with the reduction in the voltage of IC circuits, and the development of batteries with such operating voltages of about 2.5 V has been developed. Is being done.
  • lithium cobaltate is used as a positive electrode material in the positive electrode, while L is used as a negative electrode material in the negative electrode.
  • a proposal has been made to improve the cycle characteristics of this non-aqueous electrolyte secondary battery by using i ⁇ ⁇ 0 and adjusting the ratio of the positive electrode material and the negative electrode material to an appropriate range. .
  • lithium cobaltate used as the cathode material has the disadvantage that it is very expensive, and when charged / discharged, it tends to overdischarge, and its cycle characteristics are poor. The problem of getting worse was.
  • the present inventors used a lithium-containing titanium oxide as a negative electrode material and a lithium-containing cobalt oxide as a positive electrode material in a non-ice electrolyte secondary battery having an operating voltage of about 2.5 V.
  • the use of inexpensive lithium-containing nickel oxide was studied.
  • lithium-containing nickel oxide is used for the positive electrode material
  • the charge / discharge efficiency is reduced
  • lithium-containing titanium oxide is used for the negative electrode material, as in the case of the above-mentioned lithium-containing cobalt oxide.
  • An object of the present invention is to solve the above-described problems in a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode, and a non-aqueous electrolyte, and a negative electrode material in the negative electrode It is an object of the present invention to suppress the occurrence of overdischarge when a lithium-containing titanium oxide is used for a nonaqueous electrolyte battery having excellent cycle characteristics. Disclosure of the invention
  • a first nonaqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolyte, and uses a lithium-containing nickel composite oxide as a main component of the positive electrode material in the positive electrode.
  • a lithium-containing titanium oxide is used as a main component of the negative electrode material in the negative electrode, and the solvent in the non-aqueous electrolytic solution contains a cyclic carbonate and a chain carbonate.
  • Each of the solvents was contained at 10% by volume or more of the entire solvent, and the combined solvent of the cyclic carbonate and the chain carbonate was contained at 60% by volume or more of the entire solvent.
  • the solvent in the non-aqueous electrolyte contains cyclic carbonate and chain carbonate in an amount of 10% by volume or more based on the entire solvent.
  • the solvent in the non-aqueous electrolyte and the above-described positive electrode material and negative electrode material are used. In the meantime, the occurrence of a side reaction that reduces the capacity is suppressed, and the cycle characteristics of the nonaqueous electrolyte secondary battery are improved.
  • the reason why the solvent in the non-aqueous electrolyte solution contains the cyclic carbonate and the chain carbonate each in an amount of 10% by volume or more of the whole solvent is as follows. If the amount of cyclic carbonate is less than this, the ionic conductivity of the non-aqueous electrolyte decreases and the cycle characteristics deteriorate, and if the amount of chain carbonate is less than this, non-aqueous This is because the higher the viscosity of the electrolyte, the lower the ion conductivity and the worse the cycle characteristics.
  • the lithium-containing nickel composite oxide used as a positive electrode material in the positive electrode suppresses overdischarge in the nonaqueous electrolyte secondary battery and reduces the size.
  • the lithium-containing nickel composite oxide used as a positive electrode material in the positive electrode suppresses overdischarge in the nonaqueous electrolyte secondary battery and reduces the size.
  • M is a transition metal or at least one element selected from B, A 1, S i, P, and 0 ⁇ x ⁇ 0.5 It satisfies the relationship.
  • M is a transition metal or at least one element selected from B, A 1, S i, P, and 0 ⁇ x ⁇ 0.5 It satisfies the relationship.
  • M is selected from Co, Ti, V, ⁇ , Fe, S ⁇ , ⁇ , A1, Si, ⁇ It is preferable to use one composed of at least one element.
  • lithium-containing nickel composite oxide used in the cathode material for example, L i N i ⁇ 2, L i N i 8 C o. . 2 0 2, L i N i 0. A 1 o. 0, L i N io. T ic. 0, L i N i 8 V 0, L i N i C r.. 0, L i N i 8 N n, 0, L i N i 8 Fe. . 0, L i N i C u 0 L i N i Z n 0 2, L i N i N bo 0 L i N io. M oo. 2 0 2, L i N io. S S no. 2 0 2 L iNiW0, LiNiCoTi. . 2 0 2, L i N i M n! A 1 0 , and the like.
  • lithium-containing titanium oxide used in the negative electrode material e.g., L i 4 T i 0 L i T i ⁇ 8, and the like.
  • ethylene carbonate, propylene carbonate, butylene carbonate and the like can be used, and particularly, ethylene carbonate, Preference is given to using propylene carbonate.
  • chain carbonate dimethyl carbonate, methyl ethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, getyl carbonate, ethyl propyl carbonate, ethyl isopropyl
  • one carbonate can be used, it is particularly preferable to use dimethyl carbonate, methylethyl carbonate, methylpropyl carbonate, and getyl carbonate.
  • a solvent other than the above-mentioned cyclic carbonate and chain carbonate can be added to the solvent in the non-aqueous electrolyte.
  • a solvent include 1,2-diethoxytan, 1,2-Dimethoxetane, ethoxymetixetane, and other solvents generally used in conventional non-aqueous electrolyte secondary batteries can be used.
  • the solvent including the above-mentioned cyclic carbonate and chain carbonate is adjusted to be 80% by volume or more with respect to the entire solvent, the non-aqueous electrolyte and the positive electrode material or the negative electrode material may be mixed. In this case, the occurrence of a side reaction that decreases the capacity is further suppressed, and the cycle characteristics are further improved.
  • the solute to be dissolved in the above-mentioned solvent a known one that has been conventionally used in a non-aqueous electrolyte secondary battery is used.
  • the separator for separating the positive electrode and the negative electrode is made of polypropylene, polyethylene, or the like which has been generally used conventionally.
  • a microporous membrane / nonwoven fabric or the like can be used, or a solid electrolyte using polyethylene oxide / polyvinylidene fluoride or the like can be used by impregnating the above non-aqueous electrolyte.
  • a second non-aqueous electrolyte secondary battery includes a positive electrode, a negative electrode, and a non-aqueous electrolyte
  • the lithium-containing nickel composite oxide represented by Lithium-containing titanium oxide was used as a component, and the solvent in the above nonaqueous electrolyte contained 10% by volume or more of cyclic carbonate.
  • the lithium-containing nickel composite oxide contains a predetermined amount of Mn, and the solvent in the non-aqueous electrolyte contains 10% by volume or more of cyclic carbonate.
  • the cycle characteristics are improved as in the case of the first nonaqueous electrolyte secondary battery described above, and the cost of the cathode material is improved. Can be cheaper than in the case of the first nonaqueous electrolyte secondary battery.
  • the cyclic carbonate used as the solvent in the nonaqueous electrolyte includes ethylene carbonate, propylene carbonate, butylene carbonate, and the like. Can be used. Especially, ethylene carbonate and propylene carbonate are used. Is preferred.
  • the cyclic carbonate when used as the solvent in the non-aqueous electrolyte, the cyclic carbonate is contained in the solvent in the non-aqueous electrolyte in a range of 30 to 70% by volume.
  • the occurrence of a side reaction that reduces the capacity between the nonaqueous electrolyte and the positive electrode material or the negative electrode material is further suppressed, and the cycle characteristics are further improved.
  • FIG. 1 is an explanatory cross-sectional view showing an internal structure of a nonaqueous electrolyte secondary battery produced in an example of the present invention and a comparative example.
  • nonaqueous electrolyte secondary battery according to the present invention will be specifically described with reference to examples, and a comparative example will be described in which the cycle characteristics of the nonaqueous electrolyte secondary battery in this example are improved. I will clarify it.
  • the non-aqueous electrolyte secondary battery according to the present invention is not particularly limited to those shown in the following examples, but can be implemented by appropriately changing the scope of the invention without changing its gist.
  • Examples A1 to A4 and Comparative Examples Q1 to Q3 a positive electrode and a negative electrode were prepared as described below, and a non-aqueous electrolyte was prepared as described below.
  • a cylindrical non-aqueous electrolyte secondary battery of A A size as shown in Fig. 1 was fabricated.
  • Li N i is used as the positive electrode material. . 8 Co 20 , this Li N i. . 8 C o, 0, and artificial graphite as conductive agent, binding
  • the mixture is mixed with polyvinylidene fluoride at a weight ratio of 90: 5: 5, and N-methyl-2-pyrrolidone (NMP) is added thereto to form a slurry.
  • NMP N-methyl-2-pyrrolidone
  • Li 4 Ti 0 12 was used as the negative electrode material, and Li Ti 0, artificial graphite as a conductive agent, and polyvinylidene fluoride as a binder were used.
  • the mixture was mixed at a weight ratio of 0: 5: 5, and the above-mentioned ⁇ was added thereto to form a slurry. This was vacuum dried at 150 ° C. for 2 hours to produce a negative electrode.
  • the solvents used are ethylene carbonate (EC), which is a cyclic ester carbonate, and dimethyl carbonate (DMC), which is a chain carbonate, and other solvents.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • 1,2-Dimethoxetane (DME) which is a solvent of the formula (1), was mixed at a volume ratio shown in Table 1 below, and xafluorophosphoric acid was added to each of these mixed solvents.
  • lithium ⁇ beam L i PF 6 was prepared each of the non-aqueous electrolyte solution was dissolved in a proportion of i mol / 1.
  • a porous film made of polypropylene was interposed as a separator 3 between the positive electrode 1 and the negative electrode 2 produced as described above. Is wound in a spiral shape and accommodated in each battery can 4, each non-aqueous electrolyte solution prepared as described above is poured into each battery can 4, and the battery is sealed.
  • the negative electrode 2 is connected to the battery can 4 via the negative electrode lead 7 while the negative electrode 2 is connected to the positive external terminal 6 via the lead 5.
  • the terminal 6 and the battery can 4 were electrically separated by the insulating packing 8 to produce each nonaqueous electrolyte secondary battery.
  • each of the non-aqueous electrolyte secondary batteries of Examples A1 to A4 and Comparative Examples Q1 to Q3 produced as described above was charged at a charging current of 500 mA and a charge ending voltage of 2.7.
  • the battery is discharged to a discharge end voltage of 1.2 V with a discharge current of 500 mA, and this cycle is defined as one cycle.
  • the solvent in the non-aqueous electrolyte contains ethylene carbonate as a cyclic carbonate and dimethyl carbonate as a chain carbonate in an amount of 10% by volume or more, respectively.
  • Each of the non-aqueous electrolyte secondary batteries of Examples A1 to A4 using a mixed solvent in which the ratio of the solvent obtained by combining the ethylene carbonate and dimethyl carbonate was 60% by volume or more was a non-aqueous electrolyte.
  • the solvent obtained by combining ethylene carbonate which is a cyclic carbonate and dimethyl carbonate which is a chain carbonate was a solvent.
  • the cycle deterioration rate was further reduced, and the cycle characteristics were further improved.
  • Each non-aqueous electrolyte secondary battery was manufactured using a mixed solvent in which 1,2-dimethoxetane (DME) was mixed at a volume ratio of 40:40:20.
  • DME 1,2-dimethoxetane
  • Example B 1 L 1 N i ⁇ 40: 40: 20 0. 0 7
  • Example ⁇ 10 L ⁇ N i A 1 o. ⁇ 4 0 4 0 2 0 0. 0 6
  • R 1 L i C o 0 4 0 4 0 2 0 0 .2
  • each of the nonaqueous electrolyte secondary batteries of Examples 1 to 13 in which a lithium-containing nickel composite oxide was used as the positive electrode material had a Li Co0 not containing nickel in the positive electrode material.
  • the cycle deterioration rate was significantly lower, and the cycle characteristics were significantly improved.
  • the positive electrode material As the positive electrode material, the above-mentioned LiNi—M0 (where M is Co, T It is at least one element selected from i, V, Mn, Fe, Sn, B, A1, Si, and P, and satisfies the relationship 0 ⁇ x ⁇ 0.5.
  • the positive electrode material in which the above X value was 0.6 was used.
  • the cycle deterioration rate was higher than the non-aqueous electrolyte secondary battery of Example B3 and the non-aqueous electrolyte secondary battery of Example B13 in which Cu was added in addition to Li and Ni. And the cycle characteristics were further improved.
  • Examples C1 to C8 in the preparation of the non-aqueous electrolyte solution in Examples A1 to A4 and Comparative Examples Q1 to Q3, the cyclic carbonate and chain carbonate used in the solvent were used. The types were changed as shown in Table 3 below.Otherwise, non-aqueous electrolyte secondary batteries were fabricated in the same manner as in Examples A1 to A4 and Comparative Examples Q1 to Q3. did.
  • Example C1 the solvent including the cyclic carbonate and the chain carbonate in the solvent of the nonaqueous electrolytic solution was adjusted to have a volume ratio of 80% by volume.
  • the cyclic carbonate was replaced by propylene carbonate (PC)
  • the cyclic carbonate was replaced by EC and PC
  • the cyclic ester carbonate was removed.
  • the chain carbonate is methylpropyl carbonate (MPrC)
  • the chain carbonate is getylcaprate.
  • Example C6 the chain carbonate is DMC and DEC
  • Example C6 the cyclic carbonate is butylene carbonate (BC) in Example C7, and in Example C8. Is Ethyl propyl carbonate for chain carbonate
  • the cyclic carbonate in the solvent of the non-aqueous electrolyte described above was found to have ethylene carbonate (EC) and propylene.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • MEC methyl ethyl carbonate
  • MPrC methyl propyl carbonate
  • the nonaqueous electrolyte batteries of Examples C1 to C6 using carbonate (DEC) are the same as the nonaqueous electrolyte secondary battery of Example C7 using butylene carbonate (BC) as the cyclic carbonate, or a chain. Cycle deterioration rate is lower than that of the non-aqueous electrolyte secondary battery of Example C8 using ethyl propyl carbonate (EPrC) as the carbonic acid ester. Was even better.
  • Examples D1 to D5 and Comparative Examples S1 and S2 in the production of the positive electrodes in Examples A1 to A4 and Comparative Examples Q1 to Q3, the type of the positive electrode material used was changed.
  • Mn y M z 0, where M is at least selected from C o, T i, V, F e, S n, B, A 1, S i, P Is also a kind of element, and satisfies the relations x y + z, X ⁇ 0.6, 0.05 ⁇ y ⁇ 0.3.) 4 M n C o. .
  • Example D 5 100: 0 0.08 Comparative Example S 10: 100 0 0.34
  • Example E 1 and E 2 as in the cases of Examples D 1 to D 5 described above, the cathode material was Li Ni. While using 4 MnCo0, in the non-aqueous electrolyte, instead of ethylene carbonate (EC) as the cyclic carbonate in the solvent, as shown in Table 5 below, In Example E1, propylene carbonate (PC) was used, and in Example E2, propylene carbonate was used.
  • EC ethylene carbonate
  • PC propylene carbonate
  • Li N i was used as the cathode material.
  • the non-aqueous electrolyte secondary batteries of Example E 1 E 2 in which 4 MnCo0 was used and the cyclic carbonate was contained in the solvent in the non-aqueous electrolyte at 10% by volume or more The cycle characteristics were remarkably improved due to the extremely low cycle deterioration rate.
  • Other positive electrode materials such as L i N i 5 M n C o . . 20 , and Similar results were obtained when L i N i M n CO 0 was used.
  • Example F 1 and F 2 and Comparative Examples T 1 and T 2 as shown in Table 6 below, L used as the positive electrode material in Examples D 1 to D 5 was used as the positive electrode material.
  • N i in the 2 While the same proportion of N i in the 2, with those obtained by changing the proportions of M n and C o, otherwise, as with previous SL of Example D 3 of a non-aqueous electrolyte
  • Each non-aqueous electrolyte secondary battery is manufactured using a solvent in which ethylene solvent (EC) and 1,2-dimethoxetane (DME) are mixed at a volume ratio of 50:50 to the solvent in the liquid. did.
  • EC ethylene solvent
  • DME 1,2-dimethoxetane
  • Each of the nonaqueous electrolyte secondary batteries of Examples F 1 and 2 and Comparative Examples D 1 and T 2 manufactured in this way also has the same structure as that of Examples D 1 to D 5 described above. 0 Deterioration rate of discharge capacity per cycle up to 0 cycles
  • Example D 3 L i N i M n o. A C o o. 3 0 2 0. 0 5
  • Example F 1 L i N i o. M n o. 05 C oo 0. 0 6
  • Example F 2 L i N i M n C o. 0 0 .05 Comparative Example T1LiNiMnC0.s00.24 Comparative Example T2LiNiMno.asC ⁇ . ⁇ ⁇ 0. 2 2
  • the nonaqueous electrolyte secondary batteries of Examples D3, F1, and F2 using the material were the nonaqueous electrolytes of Comparative Example T1 using the positive electrode material having the above y value of 0.03. Comparative example using electrolyte secondary battery or positive electrode material with y value of 0.35
  • the non-aqueous electrolyte secondary battery of T2 has a significantly lower cycle deterioration rate and cycle characteristics. It was significantly improved.
  • the solvent in the non-aqueous electrolyte was ethylene carbonate and 1,2-dimethoxetane in a volume ratio of 50:50.
  • the same effect can be obtained as long as the solvent contains at least 10% by volume of cyclic carbonate.
  • propylene carbonate and 1,2-dimethoxetane can be used in combination.
  • a solvent mixed at a volume ratio of 0:60 or a solvent obtained by mixing ethylene carbonate, propylene carbonate, and 1,2 dimethoxetane at a volume ratio of 30:30:40 is used. The same result was obtained in the case where there was.
  • Example Gl and G2 and Comparative Examples U1 to U4 as shown in Table 7 below, as the positive electrode material, L used for the positive electrode material in Examples D1 to D5 was used. i N i. 4 M n C o. . 3 0 N i in the 2, with those obtained by changing the proportions of Mn and C o, otherwise, as in Example D 3 above, the solvent in the nonaqueous electrolytic solution ethylene Nkabone bets ( Each non-aqueous electrolyte secondary battery was fabricated using a solvent in which EC) and 1,2-dimethoxetane (DME) were mixed at a volume ratio of 50:50.
  • DME 1,2-dimethoxetane
  • the solvent in the nonaqueous electrolyte was ethylene carbonate and 1,2-dimethoxethane.
  • the lithium-containing nickel composite oxide is used as the main component of the positive electrode in the positive electrode, and the main component of the negative electrode material in the negative electrode is used.
  • the solvent in the non-aqueous electrolyte contains at least 10% by volume of the cyclic carbonate and the chain carbonate with respect to the entire solvent, respectively. Since the solvent containing 60% by volume or more of the solvent combined with the chain carbonate was used, the ion conductivity in this non-aqueous electrolyte was not reduced, and this non-aqueous electrolyte was not used.
  • a non-aqueous electrolyte having excellent cycle characteristics is suppressed between the solvent in the electrolytic solution and the above-described positive electrode material or negative electrode material, by suppressing the occurrence of a side reaction that reduces the capacity. Degraded secondary batteries can be obtained.
  • non-aqueous electrolyte secondary battery having excellent cycle characteristics can be obtained, and the amount of Ni in the lithium-containing nickel composite oxide is reduced to reduce the cost of the cathode material as the first non-aqueous electrolyte. It can be cheaper than secondary batteries.

Description

明 細 書 非水電解質二次電池 技術分野
この発明は、 正極と、 負極と、 非水電解液とを備えた非水電解質二次電 池に係 り、 特に、 その負極における負極材料に リチウム含有チタン酸化物 を用いた場合において、 そのサイ クル特性を向上させるよう にした非水電 解質二次電池に関するものである。 背景技術
近年、 高出力, 高エネルギー密度の新型二次電池と して、 電解質に非水 電解液を用い、 リチウムの酸化, 還元を利用した高起電力の非水電解質二 次電池が開発され、 その正極における正極材料に リチウム含有コバル ト複 合酸化物を用いる一方、 負極における負極材料に炭素を用いて、 作動電圧 が 4 V程度になった非水電解質二次電池が利用されるようになった。 一方、 近年においては、 I C回路の低電圧化に伴って、 作動電圧が 2 . 5 V程度の電池の必要性が高ま り、 このような 2 . 5 V程度の作動電圧を もつ電池の開発が行なわれている。
そして、 このような電池と して、 特開平 7— 3 3 5 2 6 1 号公報に示さ れるように、 その正極における正極材料にコバル ト酸リチウムを用いる一 方、 その負極における負極材料に L i Τ ί 0 を用い、 この正極 材料と負極材料の比率を適当な範囲にするこ とによ り、 この非水電解質二 次電池のサイ クル特性を向上させるように したものが提案されている。
しかし、 この同公報において、 その正極材料と して使用されるコバル ト 酸リチウムは非常に高価である という欠点があり、 また充放電を行なった 場合に、 過放電に陥りやすく、 サイ クル特性が悪く なる という問題があつ た。
そこで、 本発明者らは作動電圧が 2 . 5 V程度の非氷電解質二次電池に おいて、 その負極材料に リチウム含有チタン酸化物を用いる と共に、 その 正極材料にリチウム含有コバル ト酸化物よ り も安価なリチウム含有ニッケ ル酸化物を用いるこ とを検討した。
しかし、 このように正極材料に リチウム含有ニッケル酸化物を使用 した 場合、 充放電効率が低下すると共に、 上記のリチウム含有コバル ト酸化物 の場合と同様に、 負極材料に リチウム含有チタン酸化物を使用して充放電 を行なった場合に、 過放電に陥りやすく、 サイ クル特性が悪く なる という 問題を見い出した。
この発明は、 正極と、 負極と、 非水電解液とを備えた非水電解質二次電 池における上記のような問題を解決するこ とを課題とするものであり、 そ の負極における負極材料にリチウム含有チタン酸化物を用いた場合におい て、 過放電が生じるのを抑制し、 サイ クル特性に優れた非水電解質電池が 得られるようにするこ とを目的とするものである。 発明の開示
この発明における第 1 の非水電解質二次電池においては、 正極と、 負極 と、 非水電解液とを備え、 上記の正極における正極材料の主成分にリチウ ム含有ニッケル複合酸化物を用いる一方、 上記の負極における負極材料の 主成分にリチウム含有チタン酸化物を用い、 上記の非水電解液における溶 媒が環状炭酸エステルと鎖状炭酸エステルとを含み、 環状炭酸エステルと 鎖状炭酸エステルとがそれぞれ溶媒全体の 1 0体積%以上含まれる と共に、 環状炭酸エステルと鎖状炭酸エステルとを合わせた溶媒が溶媒全体の 6 0 体積%以上含まれるよう にした。
そして、 この第 1 の非水電解質二次電池のように、 正極における正極の 主成分と して リチウム含有ニッケル複合酸化物を用いる と共に、 負極にお ける負極材料の主成分に リチウム含有チタ ン酸化物を用いた場合において、 その非水電解液における溶媒に、 環状炭酸エステルと鎖状炭酸エステルと がそれそれ溶媒全体に対して 1 0体積%以上含まれる と共に、 環状炭酸ェ ステルと鎖状炭酸エステルとを合わせた溶媒が溶媒全体の 6 0体積%以上 含まれたものを用いる と、 この非水電解液における溶媒と上記の正極材料 や負極材料との間において、 容量を低下させる副反応が生じるのが抑制さ れ、 この非水電解質二次電池におけるサイ クル特性が向上する。
ここで、 この第 1 の非水電解質二次電池において、 非水電解液における 溶媒に環状炭酸エステルと鎖状炭酸エステルとがそれそれ溶媒全体の 1 0 体積%以上含まれるようにしたのは、 環状炭酸エステルの量がこれよ り少 ないと、 非水電解液におけるイオン伝導性が低下して、 サイ クル特性が悪 くなり、 また鎖状炭酸エステルの量がこれよ り少ないと、 非水電解液の粘 度が高くなつてィオン伝導性が低下し、 サイ クル特性が悪く なるためであ る。
また、 この第 1 の非水電解質二次電池において、 その正極における正極 材料と して使用する リチウム含有ニッケル複合酸化物と しては、 この非水 電解質二次電池における過放電を抑制してサイ クル特性を向上させるため、
L i N i ! -x M x 0 (式中、 Mは遷移金属又は B , A 1 , S i , Pから 選択される少な く とも 1種の元素であり、 0≤x≤ 0 . 5の関係を満たす。) で示されるものを使用するこ とが好ま しい。 特に、 過放電をよ り一層抑制 するためには、 上記の Mが、 C o , T i , V , Μ η , F e , S η , Β , A 1 , S i , Ρから選択される少な く とも 1種の元素で構成されたものを用 いるこ とが好ま しい。
そして、 正極材料に使用する リチウム含有ニッケル複合酸化物の具体例 と しては、 例えば、 L i N i 〇 2 , L i N i 8 C o。. 2 0 2 , L i N i 0. A 1 o . 0 , L i N i o . T i c . 0 , L i N i 8 V 0 , L i N i C r . . 0 , L i N i 8 N n , 0 , L i N i 8 F e。. 0 , L i N i C u 0 L i N i Z n 0 2 , L i N i N b o 0 L i N i o . M o o . 2 0 2 , L i N i o . s S n o . 2 0 2 L i N i W 0 , L i N i C o T i 。. 2 0 2 , L i N i M n ! A 1 0 等が挙げられる。
一方、 負極材料に使用する リチウム含有チタン酸化物の具体例と しては、 例えば、 L i 4 T i 0 L i T i 〇 8 等が挙げられる。
また、 非水電解液における溶媒に使用する環状炭酸エステルと しては、 エチレンカーボネー ト、 プロピレンカーボネー ト、 ブチレンカーボネー ト 等を使用するこ とができるが、 特に、 エチレンカーボネー ト、 プロピレン カーボネー トを使用するこ とが好ま しい。 また、 鎖状炭酸エステルと して は、 ジメチルカーボネー ト、 メチルェチルカーボネー ト、 メチルプロピル カーボネー ト、 メチルイ ソプロピルカーボネー ト、 ジェチルカ—ボネー ト、 ェチルプロピルカーボネー ト、 ェチルイ ソプロピル力一ボネ一 ト等を使用 するこ とができるが、 特に、 ジメチルカーボネー ト、 メチルェチルカ一ボ ネー ト、 メチルプロピルカーボネー ト、 ジェチルカ一ボネー トを用いるこ とが好ま しい。
また、 この非水電解液における溶媒には、 上記の環状炭酸エステルや鎖 状炭酸エステル以外の溶媒を加えるこ とができ、 このような溶媒と しては、 例えば、 1 , 2 —ジエ トキシェタン、 1 , 2 —ジメ トキシェタ ン、 ェ トキ シメ トキシェタン等の従来よ り非水電解質二次電池に一般に使用されてい る溶媒を用いるこ とができる。
また、 上記のような環状炭酸エステルと鎖状炭酸エステルとを合わせた 溶媒が溶媒全体に対して 8 0体積%以上になるようにすると、 この非水電 解液と正極材料や負極材料との間において、 容量を低下させる副反応が生 じるのがさ らに抑制され、 サイ クル特性が一層よ り向上するようになる。 また、 上記の非水電解液において、 上記の溶媒に溶解させる溶質と して は、 従来よ り非水電解質二次電池において使用されている公知のものを用 いるこ とができ、 例えば、 L i P F 6 , L i C 1 0 , L i B F 4 , L i C F S 0 等のリチウム化合物が用いられ、 これらの溶質を上記の溶媒 中に 0. 5 ~ 1 . 5 m o 1 / 1の範囲で溶解させたものが一般に使用され る。
また、 この第 1の非水電解質二次電池において、 上記の正極と負極とを 分離させるセパレ一タ一と しても、 従来よ り一般に使用されているポリ プ ロピレン、 ポリエチレン等で構成された微多孔膜ゃ不織布等を使用するこ とができ、 またポリエチレンォキシ ドゃポリ フ ッ化ビニリデン等を用いた 固体電解質に上記の非水電解液を含浸させて使用するこ ともできる。
次に、 この発明における第 2の非水電解質二次電池においては、 正極と、 負極と、 非水電解液とを備え、 上記の正極における正極材料の主成分に、 L i N i い x M ny Mz 02 (式中、 Mは C o , T i, V, F e, S n , B , A 1 , S i, Pから選択される少なく とも 1種の元素であり、 x = y + z、 x≤ 0. 6、 0. 0 5≤ y≤ 0. 3の関係を満たす。) で表される リ チウム含有ニッケル複合酸化物を用いる一方、 上記の負極における負極材 料の主成分にリチウム含有チタン酸化物を用い、 上記の非水電解液におけ る溶媒中に環状炭酸エステルが 1 0体積%以上含まれるようにした。
そして、 この第 2の非水電解質二次電池のように、 リチウム含有ニッケ ル複合酸化物に Mnを所定量含有させる と共に、 非水電解液における溶媒 中に環状炭酸エステルを 1 0体積%以上含ませると、 リチウム含有ニッケ ル複合酸化物における N iの量を少な く した場合においても、 上記の第 1 の非水電解質二次電池と同様にサイ クル特性が向上し、 また正極材料のコ ス トを第 1の非水電解質二次電池の場合よ り も安く するこ とができる。 ここで、 この第 2の非水電解質二次電池においても、 非水電解液におけ る溶媒に使用する環状炭酸エステルと しては、 エチレンカーボネー ト、 プ ロピレ ンカーボネー ト、 ブチレンカーボネー ト等を使用するこ とができる が、 特に、 エチレ ンカーボネー ト、 プロピレンカーボネー トを使用するこ とが好ま しい。
また、 非水電解液における溶媒に環状炭酸エステルを使用するにあた り、 この環状炭酸エステルが非水電解液における溶媒中に 3 0〜 7 0体積%の 範囲で含まれるようにすると、 この非水電解液と正極材料や負極材料との 間において、 容量を低下させる副反応が生じるのがさ らに抑制されて、 サ ィクル特性がよ り向上される。 図面の簡単な説明
第 1図はこの発明の実施例と比較例において作製した非水電解質二次電 池の内部構造を示した断面説明図である。 発明を実施するための最良の形態
以下、 この発明に係る非水電解質二次電池について実施例を挙げて具体 的に説明すると共に、 この実施例における非水電解質二次電池においては、 サイクル特性が向上されるこ とを比較例を挙げて明らかにする。 なお、 こ の発明に係る非水電解質二次電池は、 特に、 下記の実施例に示したものに 限定されるものではなく、 その要旨を変更しない範囲において適宜変更し て実施できるものである。
(実施例 A 1〜A 4及び比較例 Q 1〜Q 3 )
実施例 A 1〜A 4及び比較例 Q 1〜Q 3においては、 正極と負極を下記 のようにして作製すると共に、 非水電解液を下記のように して調製し、 図
1 に示すような円筒型になった A Aサイズの非水電解質二次電池を作製し た。
<正極の作製 >
正極を作製するにあたっては、 正極材料に L i N i。.8 C o 2 0 , を 用い、 この L i N i。.8 C o , 0 , と、 導電剤である人造黒鉛と、 結着 剤であるポリ フ ッ化ビニリデンとを 9 0 : 5 : 5の重量比で混合させる と 共に、 これに N—メチルー 2—ピロ リ ドン ( N M P ) を加えてスラ リー化 させ、 このスラ リ一を正極集電体であるアルミニウム箔の両面に ドク夕一 ブレー ド法によ り塗布し、 これを 1 5 0 °Cで 2時間真空乾燥させて正極を 作製した。
<負極の作製 >
負極を作製するにあたっては、 負極材料に L i 4 T i 012 を用い、 こ の L i T i 0 と、 導電剤である人造黒鉛と、 結着剤であるポリ フ ッ 化ビニリデンとを 9 0 : 5 : 5の重量比で混合させる と共に、 これに上記 の ΝΜΡを加えてスラ リー化させ、 このスラ リ一を負極集電体である銅箔 の両面に ドク夕一ブレー ド法によって塗布し、 これを 1 5 0 °Cで 2時間真 空乾燥させて負極を作製した。
<非水電解液の調製 >
非水電解液を調製するにあたっては、 その溶媒と して、 環状炭酸エステ ルであるエチレンカーボネー ト (E C) と、 鎖状炭酸エステルであるジメ チルカ一ボネー ト (DM C) と、 それ以外の溶媒である 1 , 2—ジメ トキ シェタ ン (DME ) とを下記の表 1 に示す体積比で混合させた各混合溶媒 を用い、 これらの各混合溶媒に対してそれそれへキサフルォロ リ ン酸リチ ゥム L i P F 6 を l m o l / 1の割合で溶解させて各非水電解液を調製し た。
<電池の作製 >
電池を作製するにあたっては、 図 1に示すように、 上記のようにして作 製した正極 1 と負極 2 との間に、 セパレ一タ 3 と してポリ プロピレン製の 多孔膜を介在させ、 これらをスパイラル状に巻いて各電池缶 4内に収容さ せた後、 この各電池缶 4内にそれそれ上記のように調製した各非水電解液 を注液して封口 し、 正極 1 を正極リー ド 5を介して正極外部端子 6に接続 させる と共に負極 2を負極リー ド 7を介して電池缶 4に接続させ、 正極外 部端子 6 と電池缶 4 とを絶縁パッキン 8 によ り電気的に分離させて、 各非 水電解質二次電池を作製した。
次に、 上記のように して作製した実施例 A 1 〜 A 4及び比較例 Q 1 ~ Q 3の各非水電解質二次電池を、 充電電流 5 0 0 m Aで充電終止電圧 2 . 7 Vまで充電させた後、 放電電流 5 0 0 m Aで放電終止電圧 1 . 2 Vまで放 電させ、 これを 1 サイクルと して、 2 0 0サイクルの充放電を繰り返して 行ない、 2 0 0サイ クル迄の 1サイ クルあた り における放電容量の劣化率
(サイ クル劣化率) を調べ、 その結果を下記の表 1 に合わせて示した。
(表 1 )
Figure imgf000010_0001
この結果から明らかなように、 非水電解液における溶媒中に、 環状炭酸 エステルであるエチレンカーボネート と、 鎖状炭酸エステルであるジメチ ルカ一ボネート とがそれそれ 1 0体積%以上含有される と共に、 このェチ レンカーボネー ト とジメチルカ一ボネー ト とを合わせた溶媒の割合が 6 0 体積%以上になった混合溶媒を使用 した実施例 A 1 〜 A 4の各非水電解質 二次電池は、 非水電解液の混合溶媒中におけるエチレンカーボネー トやジ メチルカ一ボネー トの割合がこの発明の条件を満たしていない比較例 Q 1 〜 Q 3の各非水電解質二次電池に比べて、 サイ クル劣化率が低く、 サイ ク ル特性が向上していた。
また、 実施例 A 1〜A 4の各非水電解質二次電池を比較した場合、 環状 炭酸エステルであるエチレンカーボネー ト と、 鎖状炭酸エステルであるジ メチルカ一ボネート とを合わせた溶媒が溶媒全体の 8 0体積%以上になつ た実施例 A 3 , A 4の各非水電解質二次電池においては、 さ らにサイ クル 劣化率が低く な り、 サイ クル特性が一層向上していた。
(実施例 B 1〜 B 1 3及び比較例 R 1 )
実施例 B 1〜B 1 3及び比較例 R 1においては、 上記の実施例 A 1〜A
4及び比較例 Q 1〜 Q 3における正極の作製において、 使用する正極材料 の種類を変更させ、 下記の表 2に示す各正極材料を使用し、 それ以外につ いては、 上記の実施例 A 3の場合と同様に、 非水電解液における溶媒に、 エチレンカーボネー ト (E C) と、 ジメチルカ一ボネー ト (DM C) と、
1 , 2 —ジメ トキシェタン (D ME ) とを 4 0 : 4 0 : 2 0の体積比で混 合させた混合溶媒を用いて、 各非水電解質二次電池を作製した。
そして、 このように作製した実施例 B 1〜 B 1 3及び比較例 R 1の各非 水電解質二次電池についても、 上記の場合と同様にして、 2 0 0サイクル の充放電を繰り返して行ない、 2 0 0サイ クル迄の 1サイ クルあたり にお ける放電容量の劣化率 (サイ クル劣化率) を調べ、 その結果を下記の表 2 に合わせて示した。 (表 2 ) 混合溶媒の体積比 サイクル劣化率 正極材料
EC : DMC : DME (% /サイクル)
実施例 B 1 L 1 N i 〇 4 0 : 4 0 : 2 0 0. 0 7 実施例 R 2 L 1 N i C O o 0 4 0 : 4 0 : 2 0 0. 0 7 旆例 β 3 L i N i C O o 0 4 0 : 4 0 : 2 0 0. 1 3
; 旆例 β A L 1 N i T i o 0 4 0 : 4 0 : 2 0 0. 0 7 室施例 B 5 L 1 N i V 〇 4 0 4 0 2 0 0. 0 8 旆例ノ B 6リ L 1 N i M n o. 0 4 0 4 0 2 0 0. 0 7 実施例 R 7 1 i 1 U π u U 9 U U .
実施例 Β 8 L i N i S n o. 0 4 0 4 0 2 0 0. 0 7 実施例 Β 9 L i N i B 0 4 0 4 0 2 0 0. 0 6 実施例 Β 10 L ΐ N i A 1 o. 〇 4 0 4 0 2 0 0. 0 6 実施例 Β 11 L i N i S i c. 02 4 0 4 0 2 0 0. 0 8 実施例 Β 12 L i N i P 0 4 0 4 0 2 0 0. 0 7 実施例 Β 13 L i N i C U o. 0 4 0 4 0 2 0 0. 1 2 比較例 R 1 L i C o 0 4 0 4 0 2 0 0. 2 4
この結果から明らかなように、 正極材料にリチウム含有ニッケル複合酸 化物を使用 した実施例 Β 1〜Β 1 3の各非水電解質二次電池は、 正極材料 にニッケルを含まない L i C o 0 を使用 した比較例 R 1の非水電解質二 次電池に比べて、 サイ クル劣化率が著しく低くなつて、 サイ クル特性が著 しく 向上した。
また、 上記の実施例 B 1〜 B 1 3の非水電解質二次電池を比較した場合、 その正極材料と して、 前記の L i N i — M 0 (式中、 Mは C o , T i , V, M n , F e , S n , B , A 1 , S i, Pから選択される少なく と も 1種の元素であり、 0 ≤x≤ 0. 5の関係を満たす。) で示される正極材 料を使用 した実施例 B 1 , B 2 , B 4 ~ B 1 2の各非水電解質二次電池は、 上記の Xの値が 0. 6になった正極材料を用いた実施例 B 3の非水電解質 二次電池や、 L i と N iの他に C uを加えた実施例 B 1 3の非水電解質二 次電池よ り も、 サイ クル劣化率がさ らに低く な り、 サイ クル特性が一層向 上していた。
(実施例 C 1〜 C 8 )
実施例 C 1〜 C 8においては、 上記の実施例 A 1〜 A 4及び比較例 Q 1 〜 Q 3における非水電解液の調製において、 その溶媒に使用する環状炭酸 エステルと鎖状炭酸エステルの種類を下記の表 3に示すように変更させ、 それ以外については、 ¾施例 A 1 ~A 4及び比較例 Q 1〜Q 3の場合と同 様にして各非水電解質二次電池を作製した。
ここで、 実施例 C 1〜 C 8においては、 表 3に示すように、 非水電解液 の溶媒中において環状炭酸エステルと鎖状炭酸エステルとを合わせた溶媒 が 8 0体積%になるようにする と共に、 実施例 C 1 においては、 環状炭酸 エステルをプロピレンカーボネー ト (P C ) に、 実施例 C 2においては、 環状炭酸エステルを E Cと P Cとに、 実施例 C 3においては鎖状炭酸エス テルをメチルェチルカ一ボネー ト (ME C ) に、 実施例 C 4においては、 鎖状炭酸エステルをメチルプロピルカーボネー ト (MP r C ) に、 実施例 C 5においては、 鎖状炭酸エステルをジェチルカ一ボネー ト (D E C) に、 実施例 C 6においては、 鎖状炭酸エステルを D M Cと D E Cとに、 実施例 C 7においては、 環状炭酸エステルをブチレンカーボネー ト (B C) に、 実施例 C 8においては、 鎖状炭酸エステルをェチルプロピルカーボネート
(E P r C) に変更させるように した。
そして、 このように作製した実施例 C 1〜 C 8の各非水電解質二次電池 についても、 上記の場合と同様に して、 2 0 0サイ クルの充放電を繰り返 して行ない、 2 0 0サイ クル迄の 1サイ クルあた り における放電容量の劣 化率 (サイ クル劣化率) を調べ、 その結果を下記の表 3に合わせて示した。 (表 3 ) 正極材料 : L i N i。.8 C o。.2 〇 サイクル劣化率 実施例 混合溶媒の種類及び体積比
/サイクル)
C 1 P C : D M C : D M E = 40:40:20 0 0 7
C 2 E C • P C : DM C : D M E = 20 0 0 6
C 3 E C M E C : D M E = 40:40:20 0 0 7
C 4 E C M P r C : D M E = 40:40: 0 0 8
C 5 E C D E C : D M E = 40:40:20 0 0 7
C 6 E C D M C : D E C : D M E = 0 0 6
C 7 B C D M C : D M E = 40:40:20 0 1 0
C 8 E C E P r C : D M E = 40:40: 0 1 0
この結果、 非水電解液の溶媒に使用する環状炭酸エステルと鎖状炭酸ェ ステルの種類を変更させた実施例 C 1〜 C 8の各非水電解質二次電池にお いても、 サイ クル劣化率が前記の比較例 Q 1〜 Q 3の各非水電解質二次電 池に比べて著し く低く なつて、 サイ クル特性に優れた非水電解質二次電池 が得られた。
また、 上記の実施例 C 1〜 C 8の各非水電解質電池を比較した場合、 上 記の非水電解液の溶媒中における環状炭酸エステルに、 エチレン力一ボネ — ト ( E C) やプロ ピレ ンカーボネー ト ( P C) を使用する と共に、 鎖状 炭酸エステルに、 ジメチルカ一ボネー ト ( D M C )、 メチルェチルカ一ボネ — ト (ME C )、 メチルプロピルカーボネー ト (MP r C:)、 ジェチルカ一 ボネー ト (D E C) を使用 した実施例 C 1〜 C 6の各非水電解質電池は、 環状炭酸エステルにブチレ ンカーボネー ト (B C) を使用 した実施例 C 7 の非水電解質二次電池や、 鎖状炭酸エステルにェチルプロピルカーボネ一 ト (E P r C) を使用 した実施例 C 8の非水電解質二次電池に比べて、 サ ィ クル劣化率がさ らに低く な り、 サイ クル特性が一層向上していた。
(実施例 D 1〜 D 5及び比較例 S 1, S 2 )
実施例 D 1〜D 5及び比較例 S 1 , S 2においては、 前記の実施例 A 1 〜 A 4及び比較例 Q 1〜 Q 3における正極の作製において、 使用する正極 材料の種類を変更し、 前記の L i N i ! M n y M z 0 , (式中、 Mは C o , T i , V, F e , S n , B , A 1 , S i , Pから選択される少なく と も 1種の元素であり、 x = y + z、 X≤ 0. 6、 0. 0 5≤ y≤ 0. 3の関 係を満たす。) で表される L i N i。.4 M n C o。.3 02 を用いると共 に、 非水電解液における溶媒に、 エチレンカーボネー ト (E C) と 1 , 2 —ジメ トキシェ夕ン (D ME ) とを下記表 4に示す体積比で混合させた溶 媒を用い、 それ以外については、 前記の実施例 A 1〜 A 4及び比較例 Q 1 〜Q 3の場合と同様に して各非水電解質二次電池を作製した。
そして、 このよう に作製した実施例 D 1〜 D 5及び比較例 S 1 , S 2の 各非水電解質二次電池について、 充電電流 5 0 0 mAで充電終止電圧 2. 7 Vまで充電させた後、 放電電流 5 0 0 mAで放電終止電圧 1 . 2 Vまで 放電させ、 これを 1サイ クルと して、 1 0 0サイ クルの充放電を繰り返し て行ない、 1 0 0サイ クル迄における 1サイ クルあた りの放電容量の劣化 率 (サイクル劣化率) を調べ、 その結果を下記の表 4に合わせて示した。 (表 4 ) 正極材料 : L i N i M n C o リ 混合溶媒の体積比 1 0 0サイ クル迄のサイ クル劣化率
E C : D M E ( % /サィ クル) 実施例 D 1 1 0 : 9 0 0 . 0 7
実施例 D 2 3 0 : 7 0 0 . 0 5
実施例 D 3 5 0 : 5 0 0 . 0 5
実施例 D 4 7 0 : 3 0 0 . 0 5
実施例 D 5 1 0 0 : 0 0 . 0 8 比較例 S 1 0 : 1 0 0 0 . 3 4
比較例 S 2 7 : 9 3 0 . 2 9
この結果から明らかなように、 正極材料に L i N i 。. 4 M n 3 C o。. 3 0 を用いる と共に、 非水電解液における溶媒中に環状炭酸エステルであ るエチレンカーボネー ト を 1 0体積%以上含有させた実施例 D 1 〜D 5の 各非水電解質二次電池は、 環状炭酸エステルであるエチレンカーボネー ト の量が 1 0体積%未満になった比較例 S 1 , S 2の各非水電解質二次電池 に比べて、 サイクル劣化率が著し く低く なつて、 サイ クル特性が著しく 向 上していた。
また、 実施例 D 1 〜D 5の各非水電解質二次電池を比較した場合、 環状 炭酸エステルであるエチレンカーボネー トが溶媒中に 3 0〜 7 0体積%の 範囲で含有された実施例 D 2〜D 4の各非水電解質二次電池においては、 さ らにサイ クル劣化率が低く なつて、 サイ クル特性が一層向上していた。 さ らに、 この実施例 D 1 〜D 5の各非水電解質二次電池においては、 上 記のように正極材料中における N i の割合を少な く したにも拘らず、 前記 の各実施例における非水電解質二次電池の場合と同様の効果が得られた。 また、 上記の実施例 D 1〜 D 5及び比較例 S 1 , S 2においては、 正極 材料に L i N i。.4 M n 0. 3 C o o . 3 02 を用いるようにしたが、 前記の L i N i i -x M n y M z 0 (式中、 Mは C o , T i , V, F e , S n , B , A 1 , S i , Pから選択される少なく とも 1種の元素であ り、 x = y + z、 x≤ 0. 6、 0. 0 5 ≤ y≤ 0. 3の関係を満たす。) で表される他 の正極材料、 例えば、 L i N i o . s M n C o。.2 0 や L i N i。.4 M n C o 0 を用いた場合においても同様の効果が得られた。 さ らに、 非水電解液の溶媒中における環状炭酸エステルをエチレンカーボネ — トに代えて、 プロピレ ンカーボネー トゃブチレンカーボネー トを用いた 場合においても同様の効果が得られた。
(実施例 E 1 , E 2 )
実施例 E 1 , E 2においては、 上記の実施例 D 1 ~D 5の場合と同様に、 正極材料に L i N i。.4 M n C o 0 を用いる一方、 非水電解液 においては、 その溶媒中における環状炭酸エステルと して、 エチレン力一 ボネー ト ( E C) に代えて、 下記の表 5に示すように、 実施例 E 1ではブ ロピレン力一ボネー ト ( P C) を、 実施例 E 2ではプチレンカーボネー ト
(B C) を用いようにした。 そ して、 上記の実施例 D 3の場合と同様に、 これらの環状炭酸エステルと 1 , 2—ジメ トキシェタン (D ME ) とをそ れそれ 5 0 : 5 0の体積比で混合させ、 それ以外については、 上記の実施 例 D 1〜D 5の場合と同様に して各非水電解質二次電池を作製した。
そ して、 このように作製した実施例 E 1 , E 2の各非水電解質二次電池 についても、 上記の実施例 D 1〜!) 5の場合と同様にして、 1 0 0サイ ク ル迄における 1サイ クルあた りの放電容量の劣化率 (サイ クル劣化率) を 調べ、 その結果を上記の実施例 D 3のものと合わせて下記の表 5に示した。 (表 5 ) 正極材料 : L i N i M n C O 0
100サイクル迄のサイクル劣化率 実施例 混合溶媒の種類及び体積比
( % /サイ クル)
D 3 E C : DME = 5 0 : 5 0 0. 0 5
E 1 P C : D ME = 5 0 : 5 0 0. 0 5
E 2 B C : DME = 5 0 : 5 0 0. 0 7
この結果から明らかなように、 正極材料に L i N i。.4 M n C o 0 を用いると共に、 非水電解液における溶媒中に環状炭酸エステルを 1 0体積%以上含有させた実施例 E 1 E 2の各非水電解質二次電池におい ても、 サイ クル劣化率が著しく低く なつて、 サイ クル特性が著し く 向上し ていた。
また、 実施例 D 3 , E 1 , E 2の各非水電解質二次電池を比較した場合、 非水電解液における溶媒中における環状炭酸エステルにエチレン力一ボネ — トゃプロ ピレ ンカーボネー トを用いた実施例 D 3 , E 1の各非水電解質 二次電池は、 ブチレ ンカーボネー トを用いた実施例 E 2の非水電解質二次 電池に比べて、 さ らにサイ クル劣化率が低く なり、 サイ クル特性が一層向 上していた。
また、 上記の実施例 E l , E 2においても、 正極材料に L i N i M n C o 0 を用いるように したが、 前記の実施例 D 1 D 5の場 合と同様に、 前記の L i N i 卜 M n y M z 02 (式中、 Mは C o , T i , V F e , S n , B , A 1 , S i , Pから選択される少な く とも 1種の元 素であ り、 x = y + z ≤ 0. 6 0. 0 5≤ y≤ 0. 3の関係を満たす。) で表される他の正極材料、 例えば、 L i N i 5 M n C o。.2 0 , や L i N i M n C O 0 を用いた場合においても同様の結果が 得られた
(実施例 F 1 , F 2及び比較例 T 1 , T 2 )
実施例 F 1 , F 2及び比較例 T 1 , T 2 においては、 正極材料と して、 下記の表 6 に示すように、 前記の実施例 D 1 ~ D 5 において正極材料に使 用 した L i N i。.4 M n C o。 3 02 中における N iの割合を同じに する一方、 M n及び C oの割合を変更させたものを用い、 それ以外は、 前 記の実施例 D 3の場合と同様に、 非水電解液における溶媒にエチレン力一 ボネー ト ( E C ) と 1 , 2 —ジメ トキシェタ ン (D M E ) とを 5 0 : 5 0 の体積比で混合させた溶媒を用いて各非水電解質二次電池を作製した。 そして、 このように作製した実施例 F 1 , 2及び比較例丁 1 , T 2の 各非水電解質二次電池についても、 上記の実施例 D 1〜D 5の場合と同様 に して、 1 0 0サイ クル迄における 1サイ クルあた りの放電容量の劣化率
(サイ クル劣化率) を調べ、 その結果を前記の実施例 D 3のものと合わせ て下記の表 6 に示した。
(表 6 ) 混合溶媒 E C : D M E = 5 0 : 5 0
100サイクル迄のサイクル劣化率 正極材料
( % /サイ クル) 実施例 D 3 L i N i M n o. a C o o. 3 02 0 . 0 5 実施例 F 1 L i N i o. M n o. 05 C o o 0 . 0 6 実施例 F 2 L i N i M n C o。 0 0 . 0 5 比較例 T 1 L i N i M n C 0 . s 0 0 . 2 4 比較例 T 2 L i N i M n o. a s C ο。. Ο ϋ 0 . 2 2 この結果から明らかなように、 前記の L i N i ! M n y M , 02 にお いて、 M nの割合を示す yの値が 0. 0 5〜 0. 3の範囲になった正極材 料を使用した実施例 D 3, F 1 , F 2の各非水電解質二次電池は、 上記の yの値が 0. 0 3になつた正極材料を使用 した比較例 T 1の非水電解質二 次電池や、 yの値が 0. 3 5になった正極材料を使用 した比較例 T 2の非 水電解質二次電池に比べて、 サイ クル劣化率が著しく低く なり、 サイ クル 特性が著しく 向上していた。
また、 上記の実施例 F 1 , ? 2及び比較例で 1 , T 2においては、 非水 電解液における溶媒にエチレンカーボネー ト と 1 , 2—ジメ トキシェタン とを 5 0 : 5 0の体積比で混合させた溶媒を用いたが、 環状炭酸エステル が 1 0体積%以上含まれた溶媒であれば同じょうな効果が得られ、 例えば、 プロピレンカーボネー ト と 1, 2—ジメ トキシェタンとを 4 0 : 6 0の体 積比で混合させた溶媒や、 エチレンカーボネー ト とプロピレンカーボネー 卜 と 1, 2 ジメ トキシェタンとを 3 0 : 3 0 : 4 0の体積比で混合させ た溶媒を用いた場合においても同様の結果が得られた。
(実施例 G l , G 2及び比較例 U 1〜U 4 )
実施例 G l , G 2及び比較例 U 1〜U 4においては、 正極材料と して、 下記の表 7に示すように、 前記の実施例 D 1〜D 5において正極材料に使 用した L i N i。.4 M n C o。.3 02 中における N i, Mn及び C o の割合を変更させたものを用い、 それ以外は、 前記の実施例 D 3の場合と 同様に、 非水電解液における溶媒にエチレ ンカーボネー ト ( E C) と 1 , 2—ジメ トキシェタン (DME ) とを 5 0 : 5 0の体積比で混合させた溶 媒を用いて各非水電解質二次電池を作製した。
そ して、 このように作製した実施例 G 1 , G 2及び比較例 U 1〜 U 4の 各非水電解質二次電池についても、 上記の実施例 D 1〜D 5の場合と同様 に して、 1 0 0サイ クル迄における 1サイ クルあた りの放電容量の劣化率 (サイ クル劣化率) を調べ、 その結果を前記の実施例 D 3, F 1 , F 2の ものと合わせて下記の表 7に示した。
(表 7 ) 混合溶媒 E C : D M E: = 5 0 : 5 0
100サイクル迄のサイクル劣化率 正極材料
( % /サイ クル) 実施例 D 3 L i N i M n C O 0 0. 0 5 実施例 F 1 L 1 N i M n C O S O 0. 0 6 実施例 F 2 L i N i M n C O 0 0. 0 5 実施例 G 1 L 1 N i M n C O 0 0. 0 5 実施例 G 2 L i N i M n C O 〇 0. 0 5 比較例 U 1 L 1 N i M Π C O 〇 0. 2 6 比較例 U 2 L i N i M n C O 〇 0. 2 8 比較例 U 3 L i N i M n C O 0 0. 3 1 比較例 U 4 L i N i M n C O 0 0. 3 2
この結果から明らかなように、 前記の L i N i ! M n y M z 02 にお いて、 N iの割合を示す ( 1 — X ) の値が 0. 4以上になって、 Xの値が 0. 6以下になった正極材料を使用 した実施例 D 3, F 1 , F 2 , G 1 , G 2の各非水電解質二次電池は、 N iの割合を示す ( l — x ) の値が 0. 3 5 となって、 Xの値が 0. 6よ り大き く なつた正極材料を使用 した比較 例 U 1〜 U 4の各非水電解質二次電池に比べて、 サイ クル劣化率が著しく 低くな り、 サイ クル特性が著しく 向上していた。
また、 上記の実施例 G l , G 2及び比較例 U 1〜U 4においては、 非水 電解液における溶媒にエチレンカーボネー ト と 1 , 2—ジメ トキシェタ ン とを 5 0 : 5 0の体積比で混合させた溶媒を用いたが、 環状炭酸エステル が 1 0体積%以上含まれた溶媒であれば同じような効果が得られ、 例えば、 プロピレンカーボネー ト と 1 , 2 ジメ トキシェタンとを 4 0 : 6 0の体 積比で混合させた溶媒や、 エチレンカーボネー ト とプロピレンカーボネー ト と 1 , 2 —ジメ トキシェタンとを 3 0 : 3 0 : 4 0の体積比で混合させ た溶媒を用いた場合においても同様の結果が得られた。 産業上の利用可能性
以上詳述したように、 この発明の第 1 の非水電解質二次電池においては、 正極における正極の主成分と して リチウム含有ニッケル複合酸化物を用い ると共に、 負極における負極材料の主成分に リチウム含有チタン酸化物を 用いた場合において、 その非水電解液における溶媒に、 環状炭酸エステル と鎖状炭酸エステルとがそれぞれ溶媒全体に対して 1 0体積%以上含まれ ると共に、 環状炭酸エステルと鎖状炭酸エステルとを合わせた溶媒が溶媒 全体の 6 0体積%以上含まれたものを用いるように したため、 この非水電 解液におけるィオン伝導性が低下するという こ とがな く、 この非水電解液 における溶媒と上記の正極材料や負極材料との間において、 容量を低下さ せる副反応が生じるのが抑制され、 サイ クル特性に優れた非水電解質二次 電池が得られるよう になる。
また、 この発明における第 2の非水電解質二次電池においては、 負極に おける負極材料の主成分に リチウム含有チタン酸化物を用いた場合におい て、 正極における正極材料の主成分に、 L i N i , M n y M z 0 2 (式 中、 Mは C o , T i , V , F e , S n , B , A 1 , S i , Pから選択され る少な く とも 1種の元素であり、 x = y + z、 ≤ 0 . 6、 0 . 0 5 ≤ y≤ 0 . 3の関係を満たす。) で表される リチウム含有ニッケル複合酸化物を用 いる と共に、 非水電解液における溶媒中に環状炭酸エステルが 1 0体積% 以上含まれるように したため、 上記の第 1 の非水電解質二次電池の場合と 同様に、 サイ クル特性に優れた非水電解質二次電池が得られると共に、 リ チウム含有ニッケル複合酸化物における N iの量を少な く して、 正極材料 のコス トを第 1 の非水電解質二次電池よ り も安く できるよう になる。

Claims

請求の範囲
1 . 正極と、 負極と、 非水電解液とを備えた非水電解質二次電池において、 上記の正極における正極材料の主成分にリチウム含有ニッケル複合酸化物 が用いられる一方、 上記の負極における負極材料の主成分に リチウム含有 チタン酸化物が用いられ、 上記の非水電解液における溶媒が環状炭酸エス テルと鎖状炭酸エステルとを含み、 環状炭酸エステルと鎖状炭酸エステル とがそれそれ溶媒全体の 1 0体積%以上含まれる と共に、 環状炭酸エステ ルと鎖状炭酸エステルとを合わせた溶媒が溶媒全体の 6 0体積%以上含ま れるこ とを特徴とする非水電解質二次電池。
2. 請求の範囲第 1項に記載した非水電解質二次電池において、 上記の環 状炭酸エステルと鎖状炭酸エステルとを合わせた溶媒が溶媒全体の 8 0体 積%以上であるこ とを特徴とする非水電解質二次電池。
3. 請求の範囲第 1項に記載した非水電解質二次電池において、 上記の正 極における正極材料の主成分に、 L i N i い M 0 (式中、 Mは C o , T i, V, M n , F e , S n, B , A 1 , S i , Pから選択される少な く とも 1種の元素であ り、 0≤x≤ 0. 5の関係を満たす。) で表される リチ ゥム含有ニッケル複合酸化物を用いたこ とを特徴とする非水電解質二次電 池。
4. 請求の範囲第 2項に記載した非水電解質二次電池において、 上記の正 極における正極材料の主成分に、 L i N i n M 0 (式中、 Mは C o , T i, V, M n , F e , S n , B , A 1 , S i , Pから選択される少な く とも 1種の元素であ り、 0≤x≤ 0. 5の関係を満たす。) で表される リチ ゥム含有ニッケル複合酸化物を用いたことを特徴とする非水電解質二次電 池。
5 . 請求の範囲第 1項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の環状炭酸エステルと して、 エチレ ンカーボネー ト とプロピレンカーボネー トの少な く とも 1種が含まれているこ とを特徴 とする非水電解質二次電池。
6 . 請求の範囲第 2項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の環状炭酸エステルと して、 エチレン力一ボネ一 ト とプロピレンカーボネー トの少な く とも 1種が含まれていることを特徴 とする非水電解質二次電池。
7 . 請求の範囲第 3項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の環状炭酸エステルと して、 エチレンカーボネー ト とプロピレンカーボネー トの少な く とも 1種が含まれているこ とを特徴 とする非水電解質二次電池。
8 . 請求の範囲第 1項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の鎖状炭酸エステルと して、 ジメチルカ一ボネー ト、 メチルェチルカ一ボネー ト、 メチルプロピルカーボネー ト、 ジェチル カーボネー トの少なく とも 1種が含まれているこ とを特徴とする非水電解 質二次電池。
9 . 請求の範囲第 2項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の鎖状炭酸エステルと して、 ジメチルカ一ボネー ト、 メチルェチルカ一ボネー ト、 メチルプロピルカーボネー ト、 ジェチル カーボネー トの少な く とも 1種が含まれているこ とを特徴とする非水電解 質二次電池。
10. 請求の範囲第 3項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の鎖状炭酸エステルと して、 ジメチルカ一ボネ一 ト、 メチルェチルカーボネー ト、 メチルプロピルカーボネー ト、 ジェチル カーボネー トの少な く とも 1種が含まれていることを特徴とする非水電解 質二次電池。
1 1 . 請求の範囲第 4項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の鎖状炭酸エステルと して、 ジメチルカーボネー ト、 メチルェチルカ一ボネート、 メチルプロピルカーボネー ト、 ジェチル カーボネー トの少な く とも 1種が含まれているこ とを特徴とする非水電解 質二次電池。
12. 請求の範囲第 5項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の鎖状炭酸エステルと して、 ジメチルカ一ボネ一 ト、 メチルェチルカ一ボネー ト、 メチルプロピルカーボネー ト、 ジェチル カーボネー トの少な く とも 1種が含まれているこ とを特徴とする非水電解 質二次電池。
13. 請求の範囲第 6項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の鎖状炭酸エステルと して、 ジメチルカ一ボネ一 ト、 メチルェチルカーボネー ト、 メチルプロピルカーボネー ト、 ジェチル カーボネー トの少な く とも 1種が含まれているこ とを特徴とする非水電解 質二次電池。
14. 請求の範囲第 7項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の鎖状炭酸エステルと して、 ジメチルカ一ボネー ト、 メチルェチルカ一ボネー ト、 メチルプロピルカーボネー ト、 ジェチル カーポネートの少な く とも 1種が含まれているこ とを特徴とする非水電解 質二次電池。
15. 正極と、 負極と、 非水電解液とを備えた非水電解質二次電池において、 上記の正極における正極材料の主成分に、 L i N i x Mny Mz 02 (式 中、 Mは C o , T i , V, F e , S n , B , A 1 , S i , Pから選択され る少な く とも 1種の元素であ り、 x = y + z ≤ 0. 6 0. 0 5 ≤ y ≤ 0. 3の関係を満たす。) で表される リチウム含有ニッケル複合酸化物が用 いられる一方、 上記の負極における負極材料の主成分に リチウム含有チタ ン酸化物が用いられ、 上記の非水電解液における溶媒中に環状炭酸エステ ルが 1 0体積%以上含まれるこ とを特徴とする非水電解質二次電池。
16. 請求の範囲第 15項に記載した非水電解質二次電池において、 上記の非 水電解液における溶媒中に環状炭酸エステルが 3 0 - 7 0体積%の範囲で 含まれるこ とを特徴とする非水電解質二次電池。
17. 請求の範囲第 15項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の環状炭酸エステルと して、 エチレン力一ボネ一 ト とプロピレンカーボネー トの少なく とも 1種が含まれていることを特徴 とする非水電解質二次電池。
18. 請求の範囲第 16項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の環状炭酸エステルと して、 エチレンカーボネ一 ト とプロピレンカーボネー トの少なく とも 1種が含まれていることを特徴 とする非水電解質二次電池。
補正書の請求の範囲
[1998年 10月 23日 (23. 10. 98 ) 国際事務局受理:出願当初の請求の範囲 9-14は取り下げられた;出願当初の請求の範囲 1, 5— 8及び 15は補正された;他 の請求の範囲は変更なし。 (3頁) ]
1 . (補正後) 正極と、 負極と、 非水電解液とを備えた非水電解質二次電池 において、 上記の正極における正極材料の主成分に リチウム含有ニッケル 複合酸化物が用いられる一方、 上記の負極における負極材料の主成分に L
1 , T i 5 012 が用いられ、 上記の非水電解液における溶媒が環状炭酸ェ ステルと鎖状炭酸エステルとを含み、 環状炭酸エステルと鎖状炭酸エステ ルとがそれぞれ溶媒全体の 1 0体積%以上含まれる と共に、 環状炭酸エス テルと鎖状炭酸エステルとを合わせた溶媒が溶媒全体の 6 0体積%以上含 まれ、 上記の環状炭酸エステルと して、 エチレ ンカーボネー ト、 プロ ピレ ンカーボネー ト、 ブチレ ンカーボネー トの少な く とも 1種が含まれ、 上記 の鎖状炭酸エステルと して、 ジメチルカ一ボネー ト、 メチルェチルカーボ ネー ト、 メチルプロ ピルカーボネー ト、 ジェチルカ一ボネー ト、 ェチルプ 口ピルカーボネー トの少な く とも 1種が含まれているこ とを特徴とする非 水電解質二次電池。
2. 請求の範囲第 1項に記載した非水電解質二次電池において、 上記の環 状炭酸エステルと鎖状炭酸エステルとを合わせた溶媒が溶媒全体の 8 0体 積%以上であるこ とを特徴とする非水電解質二次電池。
3. 請求の範囲第 1項に記載した非水電解質二次電池において、 上記の正 極における正極材料の主成分に、 L i N i ,-χ Μ χ 0 , (式中、 Μは C o , T i, V , M n , F e, S n , B , A 1 , S i, Pから選択される少な く とも 1種の元素であり、 Ο ^χ ^ Ο . 5の関係を満たす。) で表される リチ ゥム含有ニッケル複合酸化物を用いたこ とを特徴とする非水電解質二次電 池。
4. 請求の範囲第 2項に記載した非水電解質二次電池において、 上記の正 極における正極材料の主成分に、 L i N i ! x M X 0 , (式中、 Mは C o , T i, V , M n, F e , S n, B , A 1 , S i, Pから選択される少な く 補正された ¾紙 (条約第 19条) とも 1種の元素であ り、 0≤x≤ 0 . 5の関係を満たす。) で表される リチ ゥム含有ニッケル複合酸化物を用いたこ とを特徴とする非水電解質二次電 池。
5 . (補正後) 請求の範囲第 1項に記載した非水電解質二次電池において、 非水電解液の溶媒に含まれる上記の環状炭酸エステルが、 エチレンカーボ ネー ト又はプロ ピレ ンカーボネー トであり、 上記の鎖状炭酸エステルと し て、 ジメチルカ一ボネー ト、 メチルェチルカ一ボネー ト、 メチルプロピル カーボネー ト、 ジェチルカーボネー トの少な く とも 1種が含まれているこ とを特徴とする非水電解質二次電池。
6 . (補正後) 請求の範囲第 2項に記載した非水電解質二次電池において、 非水電解液の溶媒に含まれる上記の環状炭酸エステルが、 エチレンカーボ ネート又はプロピレンカーボネー トであり、 上記の鎖状炭酸エステルと し て、 ジメチルカ一ボネー ト、 メチルェチルカーボネー ト、 メチルプロピル カーボネー ト、 ジェチルカーボネー トの少な く とも 1種が含まれているこ とを特徴とする非水電解質二次電池。
7 . (補正後) 請求の範囲第 3項に記載した非水電解質二次電池において、 非水電解液の溶媒に含まれる上記の環状炭酸エステルが、 エチレンカーボ ネー ト又はプロ ピレ ンカーボネー トであり、 上記の鎖状炭酸エステルと し て、 ジメチルカーボネー ト、 メチルェチルカ一ボネー ト、 メチルプロピル カーボネー ト、 ジェチルカ一ボネー トの少なく とも 1種が含まれているこ とを特徴とする非水電解質二次電池。
8 . (補正後) 請求の範囲第 4項に記載した非水電解質二次電池において、 非水電解液の溶媒に含まれる上記の環状炭酸エステルが、 エチレンカーボ ネー ト又はプロ ピレ ンカーボネー トであり、 上記の鎖状炭酸エステルと し て、 ジメチルカ一ボネー ト、 メチルェチルカ一ボネー ト、 メチルプロピル カーボネー ト、 ジェチルカーボネー トの少な く とも 1種が含まれているこ とを特徴とする非水電解質二次電池。 補正された用紙 (条約第 19条)
9 . (削除)
10. (削除)
1 1 . (削除)
12. (削除)
13 . (削除)
14. (削除)
15. (補正後) 正極と、 負極と、 非水電解液とを備えた非水電解質二次電池 において、 上記の正極における正極材料の主成分に、 L i N i M n y M z 0 (式中、 Mは C o , T i , V, F e , S n, B , A 1 , S i , P から選択される少な く とも 1種の元素であ り、 x = y + z、 X ≤ 0 . 6、 0 . 0 5≤ y≤ 0 . 3の関係を満たす。) で表される リチウム含有ニッケル 複合酸化物が用いられる一方、 上記の負極における負極材料の主成分に L i T i 5 0 1 2 が用いられ、 上記の非水電解液における溶媒中に環状炭酸 エステルが 1 0体積%以上含まれることを特徴とする非水電解質二次電池。
16 . 請求の範囲第 15項に記載した非水電解質二次電池において、 上記の非 水電解液における溶媒中に環状炭酸エステルが 3 0〜 7 0体積%の範囲で 含まれることを特徴とする非水電解質二次電池。
17. 請求の範囲第 15項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の環状炭酸エステルと して、 エチレン力一ボネ一 ト とプロピレンカーボネー トの少なく とも 1種が含まれていることを特徴 とする非水電解質二次電池。
18. 請求の範囲第 16項に記載した非水電解質二次電池において、 非水電解 液の溶媒に使用する上記の環状炭酸エステルと して、 エチレ ンカーボネー ト とプロピレンカーボネー トの少なく とも 1種が含まれていることを特徴 とする非水電解質二次電池。
補正された用紙 (条約第 19条)
PCT/JP1998/002541 1997-06-12 1998-06-08 Cellule secondaire a electrolyte non aqueux WO1998057386A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR10-1999-7008137A KR100491180B1 (ko) 1997-06-12 1998-06-08 비수 전해질 2차전지
CA002283393A CA2283393C (en) 1997-06-12 1998-06-08 Non-aqueous electrolyte secondary battery
US09/380,215 US6436577B1 (en) 1997-06-12 1998-06-08 Non-aqueous electrolytic secondary cell
EP98923182A EP0989622B1 (en) 1997-06-12 1998-06-08 Non-aqueous electrolytic secondary cell
DE69802282T DE69802282T2 (de) 1997-06-12 1998-06-08 Nichtwässrige elektrolytische sekundärzelle
JP50208999A JP3685500B2 (ja) 1997-06-12 1998-06-08 非水電解質二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP15543697 1997-06-12
JP9/155436 1997-06-12

Publications (1)

Publication Number Publication Date
WO1998057386A1 true WO1998057386A1 (fr) 1998-12-17

Family

ID=15605998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1998/002541 WO1998057386A1 (fr) 1997-06-12 1998-06-08 Cellule secondaire a electrolyte non aqueux

Country Status (7)

Country Link
US (1) US6436577B1 (ja)
EP (1) EP0989622B1 (ja)
JP (1) JP3685500B2 (ja)
KR (1) KR100491180B1 (ja)
CA (1) CA2283393C (ja)
DE (1) DE69802282T2 (ja)
WO (1) WO1998057386A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0973217A2 (en) * 1998-07-13 2000-01-19 Ngk Insulators, Ltd. Lithium transition metal compound for lithium secondary battery
JP2002110253A (ja) * 2000-09-29 2002-04-12 Sanyo Electric Co Ltd 非水電解質二次電池
US6492064B1 (en) * 1998-06-04 2002-12-10 California Institute Of Technology Organic solvents, electrolytes, and lithium ion cells with good low temperature performance
JP2003515911A (ja) * 1999-12-03 2003-05-07 フェッロ ゲーエムベーハー 再充電可能なリチウム電池のプラス電極のための電極材料
US7217475B2 (en) 2002-10-10 2007-05-15 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US7670723B2 (en) * 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
JP2012084552A (ja) * 2012-02-01 2012-04-26 Gs Yuasa Corp 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
WO2015146098A1 (ja) * 2014-03-26 2015-10-01 株式会社デンソー 正極材料,非水電解質二次電池用正極及び非水電解質二次電池
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
WO2018043436A1 (ja) * 2016-08-30 2018-03-08 国立研究開発法人産業技術総合研究所 異種金属含有リチウムニッケル複合酸化物及びその製造方法

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2416855C (en) * 2000-07-24 2014-04-29 Shell Canada Limited Electrochemical element and process for its production
US6660432B2 (en) * 2000-09-14 2003-12-09 Ilion Technology Corporation Lithiated oxide materials and methods of manufacture
US6827921B1 (en) * 2001-02-01 2004-12-07 Nanopowder Enterprises Inc. Nanostructured Li4Ti5O12 powders and method of making the same
EP1246277A3 (en) * 2001-03-27 2004-01-14 Wilson Greatbatch Ltd. Trace fuse
US6964828B2 (en) 2001-04-27 2005-11-15 3M Innovative Properties Company Cathode compositions for lithium-ion batteries
US7482097B2 (en) 2002-04-03 2009-01-27 Valence Technology, Inc. Alkali-transition metal phosphates having a +3 valence non-transition element and related electrode active materials
US8241790B2 (en) * 2002-08-05 2012-08-14 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
JP2004139743A (ja) * 2002-08-21 2004-05-13 Sanyo Electric Co Ltd 非水電解質二次電池
DE10261286A1 (de) * 2002-12-27 2004-07-15 Sustech Gmbh & Co. Kg Verwendung eines teilchenförmigen Titan(IV)oxid-Materials als Elektrodenmaterial in Batterien
CN100341197C (zh) 2003-01-09 2007-10-03 三星Sdi株式会社 可再充电锂电池用的电解质和含该电解质的可再充电锂电池
US7462425B2 (en) * 2003-09-26 2008-12-09 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery and battery module
JP4667071B2 (ja) * 2004-03-30 2011-04-06 三洋電機株式会社 非水電解質二次電池
US7381496B2 (en) * 2004-05-21 2008-06-03 Tiax Llc Lithium metal oxide materials and methods of synthesis and use
US20060008706A1 (en) * 2004-07-09 2006-01-12 Takitaro Yamaguchi Rechargeable lithium battery
US7811705B2 (en) 2004-10-29 2010-10-12 Medtronic, Inc. Lithium-ion battery
US7883801B2 (en) 2005-11-15 2011-02-08 Samsung Sdi Co., Ltd. Electrolyte for rechargeable lithium battery, and rechargeable lithium battery including the same
US7914931B2 (en) 2005-12-21 2011-03-29 Samsung Sdi Co., Ltd. Separator for rechargeable lithium battery, rechargeable lithium battery including the same, and method for preparing rechargeable lithium battery
KR101082468B1 (ko) 2009-02-13 2011-11-11 주식회사 엘지화학 에너지 밀도가 향상된 리튬이차전지
KR101154880B1 (ko) 2009-03-03 2012-06-18 주식회사 엘지화학 고에너지밀도의 양극 재료 및 이를 포함하는 리튬 이차전지
US20100273055A1 (en) * 2009-04-28 2010-10-28 3M Innovative Properties Company Lithium-ion electrochemical cell
US9093702B2 (en) * 2009-09-03 2015-07-28 Samsung Sdi Co., Ltd. Electrolytic solution for lithium battery, lithium battery employing the same and method for operating the lithium battery
BR112012012518B1 (pt) * 2009-11-25 2019-07-16 Lg Chem, Ltd. Catodo baseado em dois tipos de compostos e bateria secundária de lítio compreendendo o mesmo
KR101312271B1 (ko) * 2011-03-25 2013-09-25 삼성에스디아이 주식회사 티탄산리튬, 티탄산리튬을 포함하는 음극 및 이를 포함하는 리튬 이차 전지
US9947960B2 (en) 2014-02-05 2018-04-17 Johnson Controls Technology Company Electrolytes for low impedance, wide operating temperature range lithium-ion battery module
JP6586969B2 (ja) * 2016-12-20 2019-10-09 株式会社豊田自動織機 蓄電モジュール

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275263A (ja) * 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd リチウム二次電池およびその負極の製造法
JPH06275265A (ja) * 1993-03-19 1994-09-30 Seiko Instr Inc 非水電解質二次電池
JPH07122298A (ja) * 1993-10-21 1995-05-12 Fuji Photo Film Co Ltd 非水二次電池の充放電方法
JPH07235291A (ja) * 1993-12-27 1995-09-05 Haibaru:Kk 二次電池
JPH07335261A (ja) * 1994-06-09 1995-12-22 Matsushita Electric Ind Co Ltd リチウム二次電池
JPH0864237A (ja) * 1994-08-25 1996-03-08 Sanyo Electric Co Ltd 非水電解液電池
JPH08171937A (ja) * 1994-12-16 1996-07-02 Aichi Steel Works Ltd リチウム二次電池
JPH1027626A (ja) * 1996-07-09 1998-01-27 Matsushita Electric Ind Co Ltd リチウム二次電池

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3187929B2 (ja) * 1992-04-09 2001-07-16 三洋電機株式会社 リチウム二次電池
IL105341A (en) * 1993-04-08 1996-12-05 Univ Ramot Composite solid electrolyte and alkali metal batteries using this electrolyte
US5478675A (en) 1993-12-27 1995-12-26 Hival Ltd. Secondary battery
FR2715508B1 (fr) * 1994-01-21 1996-03-29 Renata Ag Générateur électrochimique primaire ou secondaire à électrode nanoparticulaire.
JPH07320784A (ja) 1994-05-23 1995-12-08 Matsushita Electric Ind Co Ltd 非水電解液リチウム二次電池
JPH08213052A (ja) * 1994-08-04 1996-08-20 Seiko Instr Inc 非水電解質二次電池
CA2175856C (en) * 1995-05-18 2000-01-18 Hajime Arai A method for producing positive electrode material and lithium batteries incorporating this material
CA2158242C (en) * 1995-09-13 2000-08-15 Qiming Zhong High voltage insertion compounds for lithium batteries
US5753387A (en) * 1995-11-24 1998-05-19 Kabushiki Kaisha Toshiba Lithium secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06275263A (ja) * 1993-03-17 1994-09-30 Matsushita Electric Ind Co Ltd リチウム二次電池およびその負極の製造法
JPH06275265A (ja) * 1993-03-19 1994-09-30 Seiko Instr Inc 非水電解質二次電池
JPH07122298A (ja) * 1993-10-21 1995-05-12 Fuji Photo Film Co Ltd 非水二次電池の充放電方法
JPH07235291A (ja) * 1993-12-27 1995-09-05 Haibaru:Kk 二次電池
JPH07335261A (ja) * 1994-06-09 1995-12-22 Matsushita Electric Ind Co Ltd リチウム二次電池
JPH0864237A (ja) * 1994-08-25 1996-03-08 Sanyo Electric Co Ltd 非水電解液電池
JPH08171937A (ja) * 1994-12-16 1996-07-02 Aichi Steel Works Ltd リチウム二次電池
JPH1027626A (ja) * 1996-07-09 1998-01-27 Matsushita Electric Ind Co Ltd リチウム二次電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0989622A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6492064B1 (en) * 1998-06-04 2002-12-10 California Institute Of Technology Organic solvents, electrolytes, and lithium ion cells with good low temperature performance
EP0973217A2 (en) * 1998-07-13 2000-01-19 Ngk Insulators, Ltd. Lithium transition metal compound for lithium secondary battery
EP0973217A3 (en) * 1998-07-13 2000-06-28 Ngk Insulators, Ltd. Lithium transition metal compound for lithium secondary battery
US6368750B1 (en) 1998-07-13 2002-04-09 Ngk Insulators, Ltd. Lithium secondary battery
JP2003515911A (ja) * 1999-12-03 2003-05-07 フェッロ ゲーエムベーハー 再充電可能なリチウム電池のプラス電極のための電極材料
JP2002110253A (ja) * 2000-09-29 2002-04-12 Sanyo Electric Co Ltd 非水電解質二次電池
US7718318B2 (en) 2001-03-22 2010-05-18 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7682747B2 (en) 2001-03-22 2010-03-23 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US7935443B2 (en) 2001-06-27 2011-05-03 Panasonic Corporation Lithium nickel-manganese-cobalt oxide positive electrode active material
US7670723B2 (en) * 2001-09-13 2010-03-02 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7816036B2 (en) 2001-09-13 2010-10-19 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary cell comprising the same
US8349287B2 (en) 2001-10-25 2013-01-08 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US8658125B2 (en) 2001-10-25 2014-02-25 Panasonic Corporation Positive electrode active material and non-aqueous electrolyte secondary battery containing the same
US9391325B2 (en) 2002-03-01 2016-07-12 Panasonic Corporation Positive electrode active material, production method thereof and non-aqueous electrolyte secondary battery
US7541114B2 (en) 2002-03-01 2009-06-02 Panasonic Corporation Anode active material, manufacturing method thereof, and non-aqueous electrolyte secondary battery
US7217475B2 (en) 2002-10-10 2007-05-15 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
US7722989B2 (en) 2003-11-07 2010-05-25 Panasonic Corporation Non-aqueous electrolyte secondary battery with a positive active material comprising primary particles and secondary particles made of the primary particles
US7939200B2 (en) 2003-11-07 2011-05-10 Panasonic Corporation Non-aqueous electrolyte secondary battery
JP2012084552A (ja) * 2012-02-01 2012-04-26 Gs Yuasa Corp 非水電解質二次電池用正極活物質およびそれを用いた非水電解質二次電池
JP2015195182A (ja) * 2014-03-26 2015-11-05 株式会社デンソー 正極材料,非水電解質二次電池用正極及び非水電解質二次電池
WO2015146098A1 (ja) * 2014-03-26 2015-10-01 株式会社デンソー 正極材料,非水電解質二次電池用正極及び非水電解質二次電池
WO2018043436A1 (ja) * 2016-08-30 2018-03-08 国立研究開発法人産業技術総合研究所 異種金属含有リチウムニッケル複合酸化物及びその製造方法
JPWO2018043436A1 (ja) * 2016-08-30 2019-06-24 国立研究開発法人産業技術総合研究所 異種金属含有リチウムニッケル複合酸化物及びその製造方法

Also Published As

Publication number Publication date
DE69802282D1 (de) 2001-12-06
DE69802282T2 (de) 2002-07-18
KR20000076049A (ko) 2000-12-26
EP0989622B1 (en) 2001-10-31
EP0989622A4 (en) 2000-08-23
CA2283393A1 (en) 1998-12-17
JP3685500B2 (ja) 2005-08-17
EP0989622A1 (en) 2000-03-29
CA2283393C (en) 2004-05-11
US6436577B1 (en) 2002-08-20
KR100491180B1 (ko) 2005-05-24

Similar Documents

Publication Publication Date Title
WO1998057386A1 (fr) Cellule secondaire a electrolyte non aqueux
JP5152246B2 (ja) リチウムイオン二次電池用正極活物質およびリチウムイオン二次電池
JP3439085B2 (ja) 非水系電解液二次電池
EP2141759B1 (en) Secondary battery
JP2006196250A (ja) リチウム二次電池
JP2002198050A (ja) 正極活物質および非水電解質二次電池
JP2003282055A (ja) 非水電解液二次電池
JP3609612B2 (ja) リチウム二次電池用負極及びそれを用いたリチウム二次電池
JP2007250440A (ja) 非水電解質二次電池
JPH09147913A (ja) 非水電解質電池
JPH10289731A (ja) 非水電解液電池
JP3768046B2 (ja) リチウム二次電池
JP4245219B2 (ja) リチウム二次電池
US6482546B1 (en) Rechargeable lithium battery
JP4780361B2 (ja) リチウム二次電池
US6620552B2 (en) Lithium secondary battery
JP2002313416A (ja) 非水電解質二次電池
JP2000285910A (ja) リチウム電池
JP2002025626A (ja) リチウム二次電池のエージング処理方法
JP3426900B2 (ja) 非水電解質電池
JPH08171934A (ja) リチウム二次電池
JP3691714B2 (ja) リチウム二次電池
JP2003132949A (ja) 非水二次電池とその製造方法
JPH09237624A (ja) リチウム電池
JP3615416B2 (ja) リチウム二次電池

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 09380215

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2283393

Country of ref document: CA

Ref country code: CA

Ref document number: 2283393

Kind code of ref document: A

Format of ref document f/p: F

WWE Wipo information: entry into national phase

Ref document number: 1019997008137

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 1998923182

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1998923182

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997008137

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1998923182

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019997008137

Country of ref document: KR