WO1998034874A1 - Poudre de carbonitrure, procede permettant de la preparer et utilisation - Google Patents

Poudre de carbonitrure, procede permettant de la preparer et utilisation Download PDF

Info

Publication number
WO1998034874A1
WO1998034874A1 PCT/EP1998/000364 EP9800364W WO9834874A1 WO 1998034874 A1 WO1998034874 A1 WO 1998034874A1 EP 9800364 W EP9800364 W EP 9800364W WO 9834874 A1 WO9834874 A1 WO 9834874A1
Authority
WO
WIPO (PCT)
Prior art keywords
metals
less
oxides
weight
carbonitride
Prior art date
Application number
PCT/EP1998/000364
Other languages
German (de)
English (en)
Inventor
Gerhard Gille
Benno Gries
Monika Von Ruthendorf-Przewoski
Lutz-Michael Berger
Volkmar Richter
Original Assignee
H.C. Starck Gmbh & Co. Kg
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H.C. Starck Gmbh & Co. Kg, Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical H.C. Starck Gmbh & Co. Kg
Priority to EP98904128A priority Critical patent/EP1025042A1/fr
Priority to JP53369398A priority patent/JP2001510435A/ja
Priority to IL13092898A priority patent/IL130928A0/xx
Publication of WO1998034874A1 publication Critical patent/WO1998034874A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/082Compounds containing nitrogen and non-metals and optionally metals
    • C01B21/0828Carbonitrides or oxycarbonitrides of metals, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C29/00Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
    • C22C29/02Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
    • C22C29/04Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides based on carbonitrides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Definitions

  • Carbonitride powder process for their preparation and their use
  • the present invention relates to a process for the preparation of carbonitride powders of the metals of the fourth, fifth and sixth subgroup of the PSE by annealing mixtures of corresponding metal oxides, carbon black and optionally further C-containing compounds in a nitrogen-containing atmosphere, carbonitride powder of the metals of the fourth, fifth and sixth subgroups of the PSE with an average grain size d5 0 less than 5 ⁇ m, contents of oxygen and free carbon of less than 1% by weight, preferably 0.5% by weight, and impurities of metals of the iron group of less than 0, 15% by weight, a two-phase titanium
  • Zirconium carbonitride powder with an average grain size d5o of less than 5 ⁇ m a single-phase titanium zirconium carbonitride powder with an equimolar Zr: Ti ratio and a nitrogen content of up to 10% by weight nitrogen with an average grain size d 50 of less than 5 ⁇ m, and the use of carbonitride powder.
  • Hard material composite powders with several metal ions are of great importance for the production of technical materials such as hard metals, ceramics and sintered materials, as additional components in materials such as steels, as well as for wear-resistant layers.
  • Many processes are known for the production of carbonitrides of the elements of the 4th, 5th and 6th subgroup of the PSE.
  • Synthesis of the composite hard materials also uses oxides, but only mechanical mixtures of the individual oxides (Schwarzkopf, P., Kieffer, R., Cemented Carbides, New York, 1960). In the carbothermal reduction of single oxide mixtures, the constituents of the mixtures largely react as separate particles and phases before the formation of composite hard materials begins.
  • the process for the production of composite hard materials from individual oxide powders has the fundamental disadvantage that, in order to form homogeneous composite hard materials, annealing has to be carried out over a long period of time at higher temperatures and, if necessary, with additives which promote diffusion, such as metals of the iron group.
  • GB-A 2 063 922 and WO-A 81/02588 disclose the production of sintered bodies from such coarse composite hard materials.
  • Starting materials are composite hard materials, e.g. (TiZr) C;
  • Binding metals of the iron group sintered, hard metals with very fine grain, increased hardness and less tendency to form craters result.
  • Patent documents can be clearly seen that TiC and ZrC must always be contained in the mixed crystals, so that one during the sintering process with the binder metal
  • the aim of the present invention is to avoid this homogenization annealing of hard material mixtures at the high temperatures mentioned and to produce extremely homogeneous and, at the same time, extremely homogeneous and, at the same time, fine-grained, low-contamination, hard material composite powder with low oxygen and free carbon contents during hard material synthesis at low temperatures, which has good sintering activity exhibit.
  • This invention thus relates to a process for the preparation of carbonitride powders of the metals of the fourth, fifth and sixth subgroup of the PSE by annealing mixtures of corresponding metal oxides, carbon black and optionally further C-containing compounds in a nitrogen-containing atmosphere, the metal oxides in the form of double - And / or multiple oxides are used.
  • Starting materials for the hard material composite powder according to the invention are double oxides, ie compounds of the composition (Me a Me> j ) O z or multiple oxides (Me a Me ⁇ , Me c ) O z of the subgroup elements of the 4th, 5th and 6th group of the PSE.
  • At least 60 mol% of the metal oxides are preferably used in the form of the double and / or multiple oxides.
  • titanates e.g. ZrTiO 4 , HfTiO 4
  • vanadates e.g. ZrV 2 O 7 , CrVO 4
  • molybdates e.g.
  • V 2 MoO 8 V 2 MoO 8
  • tungstates e.g. HfW 2 O 8
  • a preferred embodiment of the method according to the invention is that metals, metal oxides and / or metal hydrides of the metals of the fourth, fifth and sixth subgroup of the PSE are also used in the starting mixture.
  • the oxidic constituents can be mixed mechanically, by mixed precipitation or using the sol-gel technique.
  • the double or multiple oxide is produced from two or more oxides of the elements of the 4th, 5th and 6th subgroup of the PSE by means of a solid-state reaction in air, oxygen or another oxygen-containing atmosphere. This results in a usually single-phase reaction process dukt.
  • the single phase can be given by the presence of stoichiometric compounds, compounds with homogeneity or the existence of solid solutions.
  • the particle size and particle size distribution of the double or multiple oxides depends on the granulometric parameters of the oxides used and on the synthesis conditions when glowing in air, oxygen or another oxygen-containing atmosphere. Double and / or multiple oxides with average grain sizes d 50 of less than 5 ⁇ m are particularly preferably used. Double and / or multiple oxides obtained in the sol-gel process can also be used advantageously
  • the double oxides, multiple oxides or solid solutions of oxides produced by the solid state reaction are advantageously ground and, depending on the desired composition, mixed with a corresponding amount of a carbon carrier and the mixture is subjected to a mixed grinding. If necessary, the mixture is dried in a spray tower after wet grinding.
  • the hard material composite powder according to the invention is produced by carbothermal reduction of the oxidic starting material in a nitriding atmosphere.
  • the activity of C, N 2 , O 2 , CO is controlled so that a homogeneous composite powder of the desired composition is formed.
  • the carbon is added in the form of carbon black and particularly advantageously optionally in the form of further C-containing compounds as an aqueous solution and / or suspension, these are mixed intensively and used as a viscous mixture.
  • the C-containing compound preferably consists only of those constituents which, after annealing, remain exclusively in the synthesis product as native elements. Particularly good results are achieved when the C-containing compound is present as carbohydrate (s).
  • the aqueous suspension preferably has a water content of 20 to
  • the amount of carbon introduced via the C-containing compound preferably 5 to 40% by weight, based on the amount of carbon black used.
  • the synthesis procedure corresponds to the known technical state of the art in carbothermal reduction with simultaneous nitridation of individual oxides or their mixtures. The influence of geometric and kinetic factors is reduced compared to the carbothermal reduction with simultaneous nitridation of
  • This invention therefore also relates to carbonitride powders of the metals of the fourth, fifth and sixth subgroup of the PSE with an average grain size d 50 of less than 5 ⁇ m, contents of oxygen and free carbon of less than 1% by weight, preferably less than 0.5 % By weight and impurities of metals of the iron groups of less than 0.15% by weight, obtainable by the process according to the invention.
  • One advantage of the hard material composite powders according to the invention is that the metal ions in the double oxide (Me a M) O z or in the multiple oxide (Me a M Me c ) O z are already present in molecular proximity in a crystal lattice.
  • the lattice transformation during the decomposition of these starting materials and the formation of the hard composite powder during the carbothermal reduction with simultaneous nitridation leads to high defect densities.
  • the diffusion paths for the metal atoms are so short that the short-range order of the metal atoms in the oxidic starting materials is largely transferred into the hard material phases.
  • the result is extremely homogeneous, easily comminuted, sinterable and low-contamination carbonitride hard material powder with regard to the metal and non-metal atoms.
  • the particle sizes are below those of powders which were produced by carbothermal reductions from mechanically mixed individual oxides or by homogenization annealing of individual hard materials.
  • a major advantage of the method according to the invention is that no cost-intensive homogenizations are required for the production of single-phase homogeneous mixed crystals. annealing of individual hard materials are necessary. The temperatures and the reaction times for the formation of hard material composites are reduced by the procedure according to the invention and thus the fine-grained nature of the hard material composite powders is greatly improved. In the synthesis from the mixture of the individual oxides, the hard material formation reactions take place incompletely at the same temperature.
  • the carbonitride hard material phases are simultaneously formed and optionally separated up to the temperature-dependent limits of the chemical equilibrium; in systems with a mixing gap, there is no inhibition of separation.
  • the single-phase or multi-phase hard material composites obtained during the carbothermal reduction are stable at customary cooling rates of about 10 K / min to room temperature.
  • a (Ti 0 5Zr 0 5XC0 7N 0 3) prepared at 1950 ° C / 60 min from a ZrTiO 4 -C mixture contains two phases (a Ti-rich and a Zr-rich isomorphic cubic phase) with lattice constants of 0 , 4374 nm (Ti-rich) and 0.4583 nm (Zr-rich).
  • a (Ti 0 _Z ⁇ Q 5XC0 7 N0 3 ) powder produced from a mixture of the individual oxides with carbon black under the same synthesis conditions contains two such phases with the lattice constants
  • This invention thus relates to a two-phase titanium-zirconium carbonitride powder with an average grain size d_ G of less than 5 ⁇ m, which contents of oxygen and free carbon each of less than 1% by weight, preferably less than 0.5% by weight , and impurities of metals of the iron group of less than 0.15% by weight, the difference in the lattice parameters of the two
  • Phases (Ti, Zr) (C, N) and (Zr, Ti) (C, N) is at most 0.029 nm.
  • the sinterability of the carbonitride powders according to the invention improves compared to hard materials made from individual oxide mixtures.
  • the hard material composite powders according to the invention have such a high sintering activity that these hard material powders binder-free or low in binder with binder volume fractions ⁇ 10% according to technically known sintering processes (for example gas pressure sintering) to form dense bodies with a porosity according to ISO 4505 of ⁇ A 02, B 00, C 00 can be sintered. A two-phase or multi-phase sintered body with a high phase dispersion is formed.
  • the hard material composite powders according to the invention can be prepared using customary technically
  • Compress sintering processes to make binder-free ceramics or low-binder carbide-like structures with particularly good properties at high temperatures.
  • This invention also relates to the use of the carbonitride powders according to the invention as hardness carriers in sintered bodies with binding metals of the iron group, the volume fractions of the binding metals being ⁇ 10%, preferably less than 5%, and as an additional component for WC-Co hard metals and / or TiCN cermets.
  • Example 1 Representation of single-phase (Ti 0) 5 Zr 0 5 ) CN mixed crystal powder
  • the double oxide ZrTiO 4 was synthesized from the individual oxides TiO 2 and ZrO 2 by solid-state reaction by means of annealing in air.
  • a wet homogenization of a stoichiometric mixture of TiO 2 with a BET value of 8.1 m 2 / g and ZrO 2 with a BET value of 4.6 m 2 / g in acetone was carried out in a stirred ball mill (3 h) with subsequent spray drying . All BET values are determined using the 5-point method with nitrogen as the measuring gas.
  • the deagglomerated oxide mixture was calcined in air in a chamber furnace at 1380 ° C./30 min. The glow product was ground for 20 minutes.
  • a BET value of 2.5 m 2 / g was measured.
  • the radiographic examinations showed single-phase ZrTiO.
  • Mass spectroscopic analysis showed the following impurity levels in ppm: 443 Al, 200 Ca, 130 Fe, 3300 Hf, 130 Ni, 770 Y, ⁇ 100: Ba, Ce, Co, Cu, K, La, Nb, Th, U, Zn / ⁇ 10: B, Bi, Cr, Ca, Mn, Pb, V.
  • this phase-pure ZrTiO was ground in acetone in a stirred ball mill (3 h) after addition of the stoichiometrically calculated amount of soot and then spray-dried.
  • the carbothermal reduction was carried out in a flowing H 2 / N 2 mixture (200 1 / h) with a ratio of the partial pressures of PN2 'P__2 of 0.2 according to the reaction equation
  • Example 2 Representation of two-phase (Ti 0 5 Zr 0 5) (C 0 7 N 3 ) powder from stoichiometric single-phase ZrTiO
  • Example 1 ground in acetone, dried and annealed in graphite crucibles. The carbu ration took place in a push-through furnace (1700 ° C / 160 min). The ratio of the partial pressures of PN 2 / P J H2 was 1.
  • the ZrTiO 4 / C product is a homogeneous, fine-grained (Ti ⁇ 5 Z ⁇ Q 5) (C Q 7N 0 3) powder with a primary grain size (SEM) of 0.2 to 0.8 ⁇ m.
  • SEM primary grain size
  • the comparison variant has a comparable chemical analysis with a primary grain size> 1 ⁇ m. It shows very clear differences in the X-ray spectra compared to the ZrTiO 4 variant. Both the reflex peaks are shifted towards each other and the shape and width of these peaks are markedly different. The shifts in the reflex positions affect the two cubic phases, the Ti and the Zr regions.
  • the lattice constants a and the crystallite sizes D of the two phases were determined from the X-ray peaks.
  • the 111 reflections of the two motor vehicle phases are examined using the single-line method.
  • the reflex is broken down into its GAUSS and CAUCHY components using a VOIGT function. These two parts can be assigned directly to the two causes of the line broadening.
  • the CAUCHY portion is related to the influence of the crystallite size and the GAUSS portion is related to the influence of the lattice distortion on the profile broadening, i.e. the influence of the crystallite size can be separated and thus determined quantitatively.
  • the comparison variant shows lattice constants that the individual hard materials Ti (C 0 7N 0; 3) and correspond.
  • the difference between the lattice constants of the two phases is larger compared to the ZrTiO variant. Only the additional long-term annealing leads to the lattice constants, which correspond to the thermodynamic equilibrium of the two phases.
  • Example 3 Sintered body made of (Tio, Zro, 5) (C 0) 7 N 0> 3 ) - and (Ti 0> 5 Zr 0? 5 ) - (C Q 5 N0 5) composite material (volume fraction of the binding metals ⁇ 0 ,8th %)
  • the two-phase structure of the hard material (Zr-rich along with Ti-rich Ti, Zr-carbonitride) can be found in the sintered body.
  • the grain size in this ceramic-like sintered body is ⁇ 1 ⁇ m and has a very narrow distribution width.
  • Example 4 Sintered body made of (Ti 0 5 Zr 0? 5 ) (C 0) 7 N 0? 3 ) - and (Ti 0? 5 Zr ⁇ 55 ) -
  • FIG. 2 shows the micrographs (magnification 1000 times) of the sintered bodies (with the same nominal composition) from the hard material according to the invention according to Example 2 (FIG. 2, top) and the mixture of commercial hard material powder (FIG. 2, bottom).
  • Example 5 Sintered body based on TiCN, in which the hard material according to the invention serves as an additive for increasing the hot hardness
  • Porosity can be classified according to ISO 4505 A 02, B00, C00.
  • a room temperature hardness of HV 10 1484 and a warm hardness of HV 10 (800 ° C) of 631 were measured.
  • the sintered body contains 5% Zr by mass.

Abstract

L'invention concerne un procédé de préparation de poudres de carbonitrure des métaux des quatrième, cinquième et sixième groupe secondaire de la classification périodique des éléments, par calcination de mélanges d'oxydes doubles ou multiples correspondants, de suie et éventuellement d'autres composés contenant du carbone dans une atmosphère contenant de l'azote. L'invention concerne une poudre de carbonitrure des métaux des quatrième, cinquième et sixième groupe secondaire de la classification périodiques des éléments ayant une grosseur moyenne de grain d50 inférieure à 5νm, des teneurs en oxygène et en carbone libre inférieures à 1 % en poids, ainsi que des impuretés de métaux du groupe fer inférieures à 0,15 % en poids. L'invention concerne en outre une poudre de titane-ziconium-carbonitrure monophasique, avec un rapport Zr:Ti équimolaire et une teneur en azote allant jusqu'à 10 % en poids d'azote, avec une grosseur moyenne de grain d50 inférieure à 5νm. L'invention concerne par ailleurs l'utilisation de la poudre de carbonitrure.
PCT/EP1998/000364 1997-02-05 1998-01-23 Poudre de carbonitrure, procede permettant de la preparer et utilisation WO1998034874A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP98904128A EP1025042A1 (fr) 1997-02-05 1998-01-23 Poudre de carbonitrure, procede permettant de la preparer et utilisation
JP53369398A JP2001510435A (ja) 1997-02-05 1998-01-23 炭窒化物粉末、その製造法および使用
IL13092898A IL130928A0 (en) 1997-02-05 1998-01-23 Carbonitride powder method for producing same and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19704242.2 1997-02-05
DE19704242A DE19704242C1 (de) 1997-02-05 1997-02-05 Carbonitrid-Pulver, Verfahren zu ihrer Herstellung sowie deren Verwendung

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/467,263 Continuation US6340328B1 (en) 1997-06-18 1999-12-20 Air current regulating nozzle arrangement for ventilating the interior of an automobile

Publications (1)

Publication Number Publication Date
WO1998034874A1 true WO1998034874A1 (fr) 1998-08-13

Family

ID=7819325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1998/000364 WO1998034874A1 (fr) 1997-02-05 1998-01-23 Poudre de carbonitrure, procede permettant de la preparer et utilisation

Country Status (7)

Country Link
EP (1) EP1025042A1 (fr)
JP (1) JP2001510435A (fr)
KR (1) KR20000070755A (fr)
CN (1) CN1246102A (fr)
DE (1) DE19704242C1 (fr)
IL (1) IL130928A0 (fr)
WO (1) WO1998034874A1 (fr)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8673435B2 (en) 2010-07-06 2014-03-18 Tungaloy Corporation Coated cBN sintered body tool
US8765272B2 (en) 2009-03-10 2014-07-01 Tungaloy Corporation Cermet and coated cermet
US8784977B2 (en) 2009-06-22 2014-07-22 Tungaloy Corporation Coated cubic boron nitride sintered body tool
US8999531B2 (en) 2010-04-16 2015-04-07 Tungaloy Corporation Coated CBN sintered body
JP2015526373A (ja) * 2012-07-27 2015-09-10 ハンワ ケミカル コーポレイション 多孔性炭素及びその製造方法
US20190092638A1 (en) * 2015-11-02 2019-03-28 Sumitomo Electric Industries, Ltd. Complex carbonitride powder and method for producing same

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003004712A1 (fr) * 2001-07-03 2003-01-16 Honda Giken Kogyo Kabushiki Kaisha Poudre ceramique a elements multiples et procede destine a sa preparation, briquette frittee et procede destine a sa preparation
WO2007037431A1 (fr) * 2005-09-29 2007-04-05 Kyocera Corporation Corps fritte et son procede de fabrication ; element coulissant, materiau filmogene et filiere pour moulage par extrusion a chaud utilisant chacun le corps fritte ; et dispositif de moulage par extrusion a chaud et procede de moulage par extrusion a chaud utilisant chacun ladite filiere pour moulage par extrusion a chaud
JP5302965B2 (ja) * 2008-07-16 2013-10-02 一般財団法人ファインセラミックスセンター 硬質粉末、硬質粉末の製造方法および焼結硬質合金
GB201405114D0 (en) * 2014-03-21 2014-05-07 Roberts Mark P Novel process and product
CN107429338B (zh) * 2015-11-02 2019-06-14 住友电气工业株式会社 硬质合金和切削工具
CN109852871B (zh) * 2019-01-31 2021-02-05 株洲华斯盛高科材料有限公司 一种利用钛的氮碳化物制作的含氮钢结硬质合金
CN109852870B (zh) * 2019-01-31 2021-02-05 株洲华斯盛高科材料有限公司 一种含氮钢结硬质合金的制备方法
CN115846624B (zh) * 2023-02-28 2023-04-28 昆明理工大学 一种陶瓷/铁基蜂窝构型复合材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2833016A1 (de) * 1977-07-27 1979-02-15 Sumitomo Electric Industries Verfahren zur herstellung einer festen loesung, insbesondere fuer die gewinnung von sinterhartmetallen
DE3100266A1 (de) * 1981-01-08 1982-08-05 Sumitomo Electric Industries, Ltd., Osaka Verfahren zur herstellung einer molybdaen enthaltenden hart-mischkristalloesung
JPS61106406A (ja) * 1984-10-29 1986-05-24 Sumitomo Electric Ind Ltd チタン・モリブデン複合炭窒化物粉末の製造法
EP0572788A1 (fr) * 1992-05-04 1993-12-08 H.C. Starck GmbH & Co. KG Poudre de carbonitrure submicronique, procédé pour sa production et application
DE4414135A1 (de) * 1993-04-22 1995-06-29 Kobe Steel Ltd Herstellung von ultrafeinem Compositpulver für Sinterhartmetalle
EP0693456A1 (fr) * 1994-07-22 1996-01-24 Treibacher Industrie Aktiengesellschaft Procédé de préparation de poudres sphériques de nitrure et/ou carbonitrure de titane

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2063922A (en) * 1979-11-20 1981-06-10 Metallurg Inc Sintered hard metals
GB2070646B (en) * 1980-03-04 1985-04-03 Metallurg Inc Sintered hardmetals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2833016A1 (de) * 1977-07-27 1979-02-15 Sumitomo Electric Industries Verfahren zur herstellung einer festen loesung, insbesondere fuer die gewinnung von sinterhartmetallen
DE3100266A1 (de) * 1981-01-08 1982-08-05 Sumitomo Electric Industries, Ltd., Osaka Verfahren zur herstellung einer molybdaen enthaltenden hart-mischkristalloesung
JPS61106406A (ja) * 1984-10-29 1986-05-24 Sumitomo Electric Ind Ltd チタン・モリブデン複合炭窒化物粉末の製造法
EP0572788A1 (fr) * 1992-05-04 1993-12-08 H.C. Starck GmbH & Co. KG Poudre de carbonitrure submicronique, procédé pour sa production et application
DE4414135A1 (de) * 1993-04-22 1995-06-29 Kobe Steel Ltd Herstellung von ultrafeinem Compositpulver für Sinterhartmetalle
EP0693456A1 (fr) * 1994-07-22 1996-01-24 Treibacher Industrie Aktiengesellschaft Procédé de préparation de poudres sphériques de nitrure et/ou carbonitrure de titane

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, vol. 105, no. 20, 17 November 1986, Columbus, Ohio, US; abstract no. 175273, SHIMIZU, YASUHIRO ET AL: "Fine complex titanium-molybdenum carbonitride as cermet precursor" XP002069423 *
ONO K ET AL: "High temperature synthesis of (Ti W) (C N) carbonitrides", JOURNAL OF THE JAPAN INSTITUTE OF METALS, DEC. 1989, JAPAN, vol. 53, no. 12, ISSN 0021-4876, pages 1242 - 1247, XP002069422 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8765272B2 (en) 2009-03-10 2014-07-01 Tungaloy Corporation Cermet and coated cermet
US8784977B2 (en) 2009-06-22 2014-07-22 Tungaloy Corporation Coated cubic boron nitride sintered body tool
US8999531B2 (en) 2010-04-16 2015-04-07 Tungaloy Corporation Coated CBN sintered body
US8673435B2 (en) 2010-07-06 2014-03-18 Tungaloy Corporation Coated cBN sintered body tool
JP2015526373A (ja) * 2012-07-27 2015-09-10 ハンワ ケミカル コーポレイション 多孔性炭素及びその製造方法
US20190092638A1 (en) * 2015-11-02 2019-03-28 Sumitomo Electric Industries, Ltd. Complex carbonitride powder and method for producing same
EP3372555A4 (fr) * 2015-11-02 2019-05-08 Sumitomo Electric Industries, Ltd. Poudre de carbonitrure composite, et procédé de fabrication de celle-ci
US10858252B2 (en) 2015-11-02 2020-12-08 Sumitomo Electric Industries, Ltd. Complex carbonitride powder and method for producing same

Also Published As

Publication number Publication date
EP1025042A1 (fr) 2000-08-09
IL130928A0 (en) 2001-01-28
KR20000070755A (ko) 2000-11-25
DE19704242C1 (de) 1998-08-27
JP2001510435A (ja) 2001-07-31
CN1246102A (zh) 2000-03-01

Similar Documents

Publication Publication Date Title
EP0326861B1 (fr) Poudre métallique composite agglomérée, son procédé de préparation et son utilisation
DE60121242T2 (de) Molybdän-Kupfer-Verbundpulver sowie dessen Herstellung und Verarbeitung zu einer Pseudolegierung
DE19704242C1 (de) Carbonitrid-Pulver, Verfahren zu ihrer Herstellung sowie deren Verwendung
EP2010687B1 (fr) Corps en métal dur et procédé de son production
DE2833015C2 (fr)
DE2528869C3 (de) Sinterkörper auf der Basis von Siliziumnitrid und ein Verfahren zu dessen Herstellung
DE4126738A1 (de) Zr0(pfeil abwaerts)2(pfeil abwaerts)-haltiger keramikformkoerper
EP3512809B1 (fr) Nouvelle poudre de carbure de tungstène et fabrication de celle-ci
WO2002020403A1 (fr) Carbure de tungstene ultragrossier monocristallin, son procede de production, et metal dur produit a partir de ce carbure de tungstene
DE102006013746A1 (de) Gesinterter verschleißbeständiger Werkstoff, sinterfähige Pulvermischung, Verfahren zur Herstellung des Werkstoffs und dessen Verwendung
DE3633030A1 (de) Aluminiumoxid-titandioxid-compositpulver und verfahren zu ihrer herstellung
DE3938879C2 (de) Sinterkörper auf Siliziumnitridbasis
DE2910059C2 (de) Verfahren zur Herstellung von feinteiligem Siliziumkarbid sowie dessen Verwendung zur Herstellung von hochdichten Sinterkörpern
EP0427938B1 (fr) Procédé de préparation de poudre de dioxyde de zirconium
DE2742303C2 (fr)
DE60223463T2 (de) Feines Wolframcarbidpulver und Verfahren zu dessen Herstellung
WO2000029325A1 (fr) Procede de preparation de carbures de tungstene par carburation en phase gazeuse
DE2560567C2 (fr)
DE3840773A1 (de) Sinterfaehiges keramikpulver, verfahren zu seiner herstellung, daraus hergestellte siliziumnitridkeramik, verfahren zu deren herstellung sowie deren verwendung
DE112013004564T5 (de) Metallkeramik-Nanoverbundstoffe mit Eisenaluminidmetallmatrix und deren Verwendung als Schutzbeschichtungen für tribologische Anwendungen
DE19519864A1 (de) Siliciumnitridsinterprodukt und Verfahren zu seiner Herstellung
EP1343735B1 (fr) Procede de production de carbure de tungstene
CH679854A5 (fr)
EP0875488B1 (fr) Procédé de préparation de carbures et/ou de carbonitrures de métaux de transition, leur utilisation et xérogels de métaux de transition
DE4236825A1 (fr)

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 130928

Country of ref document: IL

Ref document number: 98802140.4

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN IL JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1998904128

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1998 533693

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1019997007014

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 09355612

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 09467263

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 1998904128

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1998904128

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019997007014

Country of ref document: KR

WWW Wipo information: withdrawn in national office

Ref document number: 1019997007014

Country of ref document: KR