WO1998005696A1 - Wässrige dispersionen, ihre herstellung und verwendung als lackbindemittel - Google Patents

Wässrige dispersionen, ihre herstellung und verwendung als lackbindemittel Download PDF

Info

Publication number
WO1998005696A1
WO1998005696A1 PCT/EP1997/003908 EP9703908W WO9805696A1 WO 1998005696 A1 WO1998005696 A1 WO 1998005696A1 EP 9703908 W EP9703908 W EP 9703908W WO 9805696 A1 WO9805696 A1 WO 9805696A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
molecular weight
groups
dispersions
functionality
Prior art date
Application number
PCT/EP1997/003908
Other languages
English (en)
French (fr)
Inventor
Reinhold Hecht
Lutz Hoppe
Erhard Lühmann
Wolfgang Dannhorn
Original Assignee
Wolff Walsrode Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wolff Walsrode Ag filed Critical Wolff Walsrode Ag
Priority to AU39404/97A priority Critical patent/AU3940497A/en
Publication of WO1998005696A1 publication Critical patent/WO1998005696A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/02Polyureas
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/0804Manufacture of polymers containing ionic or ionogenic groups
    • C08G18/0819Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups
    • C08G18/0823Manufacture of polymers containing ionic or ionogenic groups containing anionic or anionogenic groups containing carboxylate salt groups or groups forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • C08G18/12Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6633Compounds of group C08G18/42
    • C08G18/6659Compounds of group C08G18/42 with compounds of group C08G18/34

Definitions

  • Aqueous dispersions their production and use as paint binders
  • the present invention relates to new aqueous dispersions of polyurethane polyureas for the production of ethanol-resistant coatings.
  • Polyurethane polyureas which were applied by organic solvent systems, are characterized by outstanding properties, such as. B chemical resistance, abrasion resistance, toughness, tensile strength and elasticity. They are therefore used in a variety of commercial applications, such as. B. as adhesives or coating agents for various substrates such as textiles, plastics, wood. Glass fibers, leather and metals. When drying the coatings, however, problems arise which are caused by the emission of the organic solvents.
  • An improvement could, for. B. can be achieved by incorporating groups with an emulsifier function into the polymer chain.
  • These so-called internal emulsifiers are either ionic and / or nonionic in nature. Examples of ionic internal emulsifiers are described in US 3,479,310 and examples of nonionic emulsifiers and the like. a. in the patents US 3 905 929 and US 4 190 566. The use of internal emulsifiers leads to dispersions with improved stabilities and a reduced content of hydrophilic structural components. The resulting
  • Coatings are characterized by improved water resistance and less loss of mechanical stability in the swollen state. But also these dispersions in no way meet the requirement for a chemical-resistant coating and in particular a coating with good ethanol strength
  • Coatings with high chemical resistance based on aqueous polyurethane dispersions are obtained if the polymers dispersed in water still have functional groups. As described in EP 0 669 352, these can then be used for crosslinking reactions by adding a suitable co-resin. In practice, such two-component systems can only be formulated with considerable effort and have a limited pot life.
  • polyurethane-polyurea dispersions which already provide films with improved chemical resistance after physical drying, are based on polycarbonate diols.
  • polycarbonate diols are very expensive starting materials, and the coatings are changed or destroyed by ethanol in a test according to DIN 68861, so that they are used alone
  • Comparable polyurethane polyurea dispersions based on cheaper starting materials e.g. Polyester polyols could be produced by incorporating special dimeric fatty acids. Such dispersions are e.g. described in EP 0 643 734. The chemical resistance could only be improved slightly compared to the dispersions based on polycarbonate diol. Another problem is that the dimeric fatty acids can cause embrittlement of the coatings.
  • the aim of the present invention was therefore to produce polyurethane-polyurea dispersions which, after physical drying without the addition of crosslinking agents and as the sole binder, provide films with a significantly improved chemical and in particular an improved resistance to ethanol.
  • the object was surprisingly achieved by providing the dispersions according to the invention described in more detail below, the Particularly outstanding ethanol resistance of the resulting coatings can be attributed to the use of substances known per se in a preferred combination of quantities.
  • the invention relates to polyurethane-polyurea dispersions, built up by polyaddition of:
  • (E) 30 to 70% by weight, preferably 40 to 60% by weight, of one or more polyisocyanates, at least 70% by weight of the polyisocyanate component consisting of one or more cycloaliphatic diisocyanates,
  • component (F) 0.5 to 10% by weight of a mixture of one or more diamines with a polyamine of functionality> 2, where at least 20% by weight of component (F) consists of the polyamine of functionality> 2.
  • the percentages of components (A) to (F) add up to 100%.
  • the present invention furthermore relates to the use of the new polyurethane-polyurea dispersions as paint binders for the coating of any substrates
  • Linear and / or weakly branched polyester polyols with a molecular weight of 500 to 6000 and in a particularly preferred embodiment from 750 to 3000 are used as component A. These are reaction products of low molecular weight polyols with low molecular weight polycarboxylic acids
  • Suitable polyols or polyol mixtures for the construction of polyesters containing hydroxyl groups are, for example, ethylene glycol, propylene glycol, 1,4-butanediol, 1,6-hexanediol, diethylene glycol, tylenethylene glycol, neopentyl glycol, 1,4-bis (hydroxymethyl) cyclohexane or dipropylene glycol
  • Polyols which can be used in part to introduce the branches into the polyester molecule are, for example, glycene, tmethylolpropane or pentaerythritol suitable. 1, 6-Hexanediol, neopentylglycol and tmethylolpropane are particularly preferred
  • polycarboxylic acids can be aliphatic, cycloaliphatic, aromatic and / or heterocratic in nature.
  • corresponding polycarboxylic acid anhydrides or polycarboxylic acid esters with lower alcohols can also be used. Examples include succinic acid, adipic acid,
  • Sebacic acid, azelaic acid, phthalic acid, isophthalic acid, phthalic anhydride, tetrahydrophthalic anhydride, glutaric anhydride, maleic acid, maleic anhydride, fumaric acid or dimethyl terephthalate is particularly preferred
  • Component (A) generally has an average hydroxyl functionality of 2.0, ie 2 OH groups per molecule, through the use or the proportionate When using weakly branched polyester polyols, the average hydroxyl functionality can be increased to a maximum value of 2.5
  • the low molecular weight polyols mentioned under point (B) with a molecular weight of ⁇ 500 are ahphatic, cycloaliphatic, aromatic and / or heterocyclic compounds, as have already been mentioned under point (A) for the construction of the polyester polyols.
  • Particularly preferred polyol le are neopentyl glycol and trimethylol propane
  • the starting component (C) is usually at least one
  • Hydroxycarboxylic acid and / or aminocarboxylic acid and / or aminosulfonic acid and / or hydroxysulfonic acid are incorporated into the prepolymer via the amino and / or hydroxyl groups which are reactive towards isocyanates by neutralizing the carboxyl groups and / or the sulfonic acid groups with organic and / or inorganic bases these compounds have dispersing properties
  • component (C) malic acid, glycolic acid, glycine, taurine, aminocaproic acid and 2-amino-ethylammosulfonic acid.
  • the preferred components (C) include 2,2-bis (hydroxymethyl) alkane monocarboxylic acids with a total of 5 to 8 carbon atoms, ie compounds of the general formula
  • R represents an alkyl radical having 1 to 4 carbon atoms.
  • a particularly preferred structural component (C) is 2,2-dimethylolpropionic acid
  • the starting component (D) is nonionic, hydrophilic polyethylene glycols which have one or two hydroxyl groups it is mono- or dihydric polyether alcohols in the molecular weight range from 600 to 3000, as are obtained in a manner known per se by alkoxylation of mono- or dihydric alcohols as starter molecules, ethylene oxide or mixtures of ethylene oxide with up to 40% by weight as alkylene oxides (based on the total weight of the alkylene oxides) of propylene oxide.
  • the corresponding amino-functional derivatives known as Jeffamin M or Jeffamin D series (commercial products from Huntsman), are also suitable components (D)
  • components (C) and / or components (D) must be adjusted so that the dispersibility of the polyurethane polyureas in water is ensured.
  • the use of component (D) is completely dispensed with and the hydrophilicity required for the dispersion ensured solely by the use of component (C)
  • the amount of anionic groups incorporated is dimensioned such that a maximum of 100 milliequivalents per 100 g of solid ionic groups are present in the polyurethane polyurea ultimately obtained
  • the compounds (E) required for the polyaddition reaction are aphatic, cycloahphatic and / or aromatic polyisocyanates
  • the polyisocyanate component (E) consists of cycloaliphatic dnsocyanates.
  • cycloaliphatic diisocyanates such as isophorone diisocyanate (IPDI), 4,4'-dicyclohexylmethane diisocyanate and / or 1 , 4- or 1, 3-cyclohexane diisocyanate used
  • polyisocyanates examples include 1,6-hexamethylene diisocyanate (HDI), tetramethyl endiisocyanate, 2,3,3-T ⁇ -methylhexamethylene di-isocyanate, 1,4-phenylenedinsocyanate, 2,6- and 2.4 -Toluene d ⁇ socyanat, 1,5 naphthylene diisocyanate, 2,4'- and 4,4'-diphenylmethane diisocyanate It is of course also possible to use those known per se in polyurethane chemistry higher-proportionate polyisocyanates or modified polyisocyanates known per se, for example carbodiimide groups, allophanate groups, isocyanurate groups, urethane groups and / or polyisocyanates having biuret groups.
  • HDI 1,6-hexamethylene diisocyanate
  • tetramethyl endiisocyanate 2,3,3-T ⁇ -methylhexamethylene di-isocyanate
  • Components (A) to (E) are placed in a reactor and converted to an NCO-containing prepolymer under anhydrous conditions in a temperature range from 30 to 30 ° C.
  • the ratio of equivalents of isocyanate groups to compounds reactive towards isocyanate groups is 1.1: 1 to 3: 1, preferably 1.5: 1 to 2: 1.
  • Carboxy groups which are introduced into the prepolymer are not taken into account.
  • the isocyanate polyaddition reaction can take place in the presence of catalysts known in polyurethane chemistry, such as, for example, organo-tin compounds.
  • an organic one can be used before, during or after the prepolymer production
  • Solvents are used to control viscosity.
  • Suitable solvents are e.g. As acetone, 2-butanone, tetrahydrofuran, dioxane, dimethylformamide, N-methyl-2-pyrrolidone (NMP), ethyl acetate, alkyl ethers of ethylene and propylene glycol and aromatic hydrocarbons.
  • NMP N-methyl-2-pyrrolidone
  • ethyl acetate alkyl ethers of ethylene and propylene glycol and aromatic hydrocarbons.
  • the use of water-miscible solvents is preferred.
  • Low-boiling solvents such as. B. acetone used, they can be removed from the resulting polyurethane-polyurea dispersions by distillation, and completely solvent-free dispersions are obtained.
  • solvents with higher boiling points than water, such as. B. NMP used these solvents remain in the polyurethane-polyurea dispersions and accelerate the film formation of the dispersed particles as a coalescence aid
  • the potential ionic groups present in the prepolymer must be converted into ionic groups by neutralization.
  • neutralization especially when using carboxyl group-containing structural components (C), preferably tertiary amines.
  • tertiary amines are, for example, triethylamine, tri-n-butylamine,
  • N-methylmorpholine N, N-dimethylethanolamine, N-methylpiperidine, N-methylpiperazine and triethanolamine.
  • inorganic bases such as sodium hydroxide or potassium hydroxide as a neutralizing agent is also possible, although less preferred. Mention should also be made of the possibility of using component (C) in neutralized form in the preparation of the prepolymer.
  • Neutralization of the potential ionic groups ensures that the formation of stable aqueous dispersions is ensured.
  • at least 80%, but preferably 100%, of the potential ionic groups are converted into ionic groups by neutralization.
  • the neutralization reaction usually takes place at
  • the neutralized NCO-containing prepolymers are converted into aqueous dispersions by the methods known in polyurethane chemistry.
  • One possibility is to add the dispersing water, which contains component (F), to the prepolymer.
  • the organic prepolymer first forms the continuous phase.
  • the phase reverses and the water becomes a continuous phase.
  • the neutralized prepolymer is added to the dispersing water.
  • Component (F) can be initially introduced into the dispersing water or, alternatively, can only be added after the prepolymer has been dispersed.
  • the dispersing step is preferably carried out in a temperature range from 20 to 40 ° C.
  • the dispersibility of the prepolymers in water can be improved by the additional use of external emulsifiers.
  • Component (F) consists of a mixture of one or more diamines with a polyamine with functionality> 2.
  • the diamines lead to a chain extension of the prepolymers, while the polyamine with the functionality> 2 additionally incorporates crosslinking points in the molecule. Since the reaction of the prepolymer with the components of component (F) takes place in an aqueous medium, the compounds of component (F) are characterized by a far higher reactivity towards isocyanate groups than water.
  • the amount of component (F) to be used depends on the unreacted isocyanate groups of the prepolymer which are still present.
  • Suitable diamines are, for example, 1,2-diaminoethane, 1,6-diaminohexane, piperazine, 2,5-dimethylpiperazine, l-amino-3-aminomethyl-3,5,5-trimethy! Cyclohexane, 4,4'-diaminodicylo-hexylmethane , 1, 4-diaminocyclohexane and / or 1, 2-propylenediamine. Hydrazine, amino acid hydrazides, bishydrazides and bis-semicarbazides are also suitable as chain extenders.
  • polyamines with a functionality of> 2 are diethylene triamine, triethylene tetramine, tetraethylene pentamine, pentaethylene hexamine, polyethyleneimines and melamine.
  • Polyurethane-polyurea dispersions which have the composition according to the invention and were produced by the processes described are very finely divided, stable in storage and have pH values in the range from 6 to 9.
  • the solids contents are between 20 and 60% by weight, in particular between 25 and 45% by weight.
  • the organic solvent content is at most 15% by weight.
  • the polyurethane polyurea dispersions according to the invention provide coatings with very good chemical and in particular very good ethanol resistance.
  • the new polyurethane polyurea dispersions can be used as paint binders for coating any substrates. These include organic and inorganic materials such as glass, wood, metals, plastics, leather and paper.
  • the polyurethane polyurea dispersions according to the invention can be used as the sole binder. However, there is the possibility of blending with other dispersions, such as polyvinyl acetate, polyethylene, polystyrene, polybutadiene, polyvinyl chloride, polyacrylate and copolymer plastic dispersions.
  • auxiliaries and additives customary in coating technology such as pigments, fillers, plasticizers, matting agents, coalescing agents, waxes, defoamers and wetting agents, can be incorporated into the dispersions according to the invention.
  • lacquers are applied using the usual methods of lacquer technology, for example by spraying, pouring, dipping or rolling.
  • NMP N-methylpyrrolidone
  • the batch is then cooled to room temperature, 3.7 g of triethylamine being added at about 45 ° C. to neutralize the dimethylolpropionic acid.
  • the prepolymer solution obtained is stirred vigorously at about 25 ° C dispersed in 250 g of water Finally, a mixture of 3.6 g of ethylenediamine and 4.1 g of diethylenetriamine dissolved in 25 g of water is added to the dispersion formed.
  • the dispersion obtained has a solids content of 34.7% by weight. and an NMP content of 14.5% by weight.
  • the pH is 7.6 and the run-out time (measured in the DIM-4 beaker) is 18 s
  • 9.7 g neopenyl glycol, 3.0 g t ⁇ methylolpropane, 11.5 g dimethylol propionic acid and 123.4 g 4.4 '-Diisocyanatd ⁇ cyclohexylmethan ( Desmodur W) weighed at room temperature and dissolved in 98.4 g of N-methylpyrrohdon (NMP). Then 0.23 g of dibutylzmndilaurate are added and the mixture is heated to 75 ° C.
  • NMP N-methylpyrrohdon
  • NMP N-methylpyrrolidone
  • dibutylzmndilaurate N-methylpyrrolidone dissolved 0.18 g of dibutylzmndilaurate are then added and the batch is heated to 65 ° C. and stirred at this temperature for 5 hours. The batch is then cooled to room temperature, 7.5 g of triethylamine being added at about 45 ° C. Neutralization of the dimethylolpropionic acid are added. The prepolymer solution obtained is stirred vigorously at about 25 ° C. in 290 g
  • Dispersed water Finally, a mixture of 3.6 g of ethylenediamine and 4.1 g of diethylenetriamine dissolved in 25 g of water egg is added to the dispersion formed.
  • the dispersion obtained has a solids content of 35% by weight and an NMP content of 14.5% by weight.
  • the pH is 7.2 and the run-out time (measured in a DIN 4 cup) is 20 s
  • NeoRez R-961 and NeoRez R-974 commercial products from Zeneca
  • U 710 and U 910 commercial products from Alberdingk Boley
  • NeoRez R-985 (commercial product from Zeneca), a polyurethane dispersion based on a polycarbonate diol, was included in the tests Checking the chemical resistance of the dispersions according to the invention and the comparative examples
  • the chemical resistance was checked on wood (ash).
  • the wooden surface was lightly pre-sanded with sandpaper and the sanding dust wiped off.
  • lifts with a wet film thickness of 120 ⁇ m were then drawn onto the wood test surface from the dispersions to be tested.
  • the wet films were then dried at 50 ° C. for 24 hours.
  • the lacquer surfaces were then sanded and the grinding dust removed.
  • a second lift with a thickness of 120 ⁇ m was then carried out. It was dried again at 50 ° C for 24 hours.
  • test areas were assessed after storage for 24 hours on the following grading scale
  • Dispersions have significantly better chemical resistance than the commercially available polyester-based polyurethane dispersions.
  • the resistance of the dispersion based on the polycarbonate diol is also exceeded

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

Die vorliegende Erfindung betrifft Polyurethanharnstoff-Dispersionen, erhältlich durch Umsetzung von (A) 15 bis 50 Gew.-%, bevorzugt 20 bis 40 Gew.-%, eines linearen und/oder schwach verzweigten Polyesterpolyols mit einem Molekulargewicht von 500 bis 6000, (B) 2 bis 10 Gew.-%, bevorzugt 3 bis 7 Gew.-%, eines oder mehrerer Polyole mit einem Molekulargewicht < 500, (C) 1 bis 10 Gew.-% mindestens einer im Sinne der Isocyanatreaktion mono- und/oder difunktionellen Verbindung, die zusätzlich anionische Gruppen bzw. in anionische Gruppen umwandelbare funktionelle Gruppen enthält, (D) 0 bis 15 Gew.-% eines hydrophilen, Ethylenoxideinheiten aufweisenden ein- oder zweiwertigen Alkohols des Molekulargewichtsbereiches 600 bis 3000, (E) 30 bis 70 Gew.-%, bevorzugt 40 bis 60 Gew.-%, eines oder mehrerer Polyisocyanate, wobei mindestens 70 Gew.-% der Polyisocyanatkomponente aus einem oder mehreren cycloaliphatischen Diisocyanaten besteht, sowie anschließender Kettenverlängerung bzw. Vernetzung des resultierenden Produktes aus (A) bis (E) mit (F) 0,5 bis 10 Gew.-% eines Gemisches eines oder mehrerer Diamine mit einem Polyamin der Funktionalität > 2, wobei mindestens 20 Gew.-% der Komponente (F) aus dem Polyamin der Funktionalität > 2 bestehen, wobei die Komponenten (A)-(F) in Summe stets 100 % ergeben.

Description

Wäßrige Dispersionen, ihre Herstellung und Verwendung als Lackbindemittel
Die vorliegende Erfindung betrifft neue wäßrige Dispersionen von Polyurethanpoly- harnstofFen zur Herstellung von ethanolfesten Beschichtungen.
Polyurethanpolyharnstoffe, die durch organische Lösungsmittel Systeme aufgetragen wurden, zeichnen sich durch herausragende Eigenschaften, wie z. B Chemikalienbeständigkeit, Abriebfestigkeit, Zähigkeit, Zugfestigkeit und Elastizität, aus. Sie werden daher in einer Vielzahl kommerzieller Anwendungen, wie z. B. als Klebstoffe oder Beschichtungs ittel für diverse Substrate, wie Textilien, Kunststoffe, Holz. Glasfasern, Leder und Metallen, eingesetzt. Beim Trocknen der Beschichtungen treten jedoch Probleme auf, die durch die Emission der organischen Lösungsmittel verursacht werden.
Daher wurde versucht, das Polyurethanpolyharnstoff-Bindemittelsystem in Form von wäßrigen Dispersionen in lösemittelfreier Form oder mit nur niedrigem Gehalt an organischen Lösungsmitteln anzubieten.
Zur Herstellung stabiler Dispersionen der Polyurethanpolyharnstoff-Polymeren (vgl US 2 968 575) können externe Emulatoren verwendet werden. Die Verwendung von externen Emulgatoren verschlechtert jedoch die Wasser- und Ethanolfestigkeit der erhaltenen Beschichtungen dramatisch.
Eine Verbesserung konnte z. B. dadurch erreicht werden, daß in die Polymerkette Gruppen mit Emulgatorfunktion eingebaut wurden Diese sogenannten internen Emulgatoren sind entweder ionischer und/oder nichtionischer Natur. Beispiele für ionische interne Emulgatoren sind in der US 3 479 310 und Beispiele für nichtionische Emulgatoren u. a. in den Patentschriften US 3 905 929 und US 4 190 566 beschrieben. Der Einsatz von internen Emulgatoren fuhrt zu Dispersionen mit verbesserten Stabilitäten und reduziertem Gehalt an hydrophilen Aufbaukomponenten. Die resultierenden
Beschichtungen zeichnen sich durch eine verbesserte Wasserbeständigkeit und einen geringeren Verlust an mechanischer Stabilität im gequollenen Zustand aus Aber auch diese Dispersionen erfüllen die Anforderung nach einer chemikalienfesten Beschichtung und insbesondere einer Beschichtung mit guter Ethanolfestigkeit in keiner Weise
Beschichtungen mit hoher Chemikalienbeständigkeit auf Basis wäßriger Polyurethan- Dispersionen werden erhalten, wenn die in Wasser dispergierten Polymeren noch funktionelle Gruppen aufweisen. Diese können dann, wie in der EP 0 669 352 beschrieben, durch Zusatz eines geeigneten Co-Harzes für Vernetzungsreaktionen verwendet werden. Solche Zweikomponentensysteme sind in der Praxis nur mit erheblichem Aufwand zu formulieren und zeigen eine begrenzte Topfzeit.
Polyurethanpolyharnstoff-Dispersionen, die bereits nach der physikalischen Trocknung Filme mit einer verbesserten Chemikalienbeständigkeit liefern, sind laut DE-OS 3 936 794 auf Basis von Polycarbonatdiolen aufgebaut. Allerdings sind Polycarbonat- diole sehr teure Ausgangsmateriaiien, und die Beschichtungen werden durch Ethanol bei einer Prüfung gemäß DIN 68861 verändert bzw. zerstört, so daß durch alleinigen
Einsatz dieser Bindemittel ausreichende Beständigkeiten nicht erreicht werden
Vergleichbare Polyurethanpolyharnstoff-Dispersionen auf Basis preisgünstigerer Ausgangsmaterialien, wie z.B. Polyesterpolyolen, konnten durch den Einbau von speziellen dimeren Fettsäuren hergestellt werden. Solche Dispersionen werden z.B. in der EP 0 643 734 beschrieben. Die Chemikalienbeständigkeiten konnten im Vergleich zu den Dispersionen auf Polycarbonatdiolbasis jedoch nur geringfügig verbessert werden. Problematisch ist ferner, daß die dimeren Fettsäuren Versprödung der Beschichtungen verursachen können.
Ziel der vorliegenden Erfindung war es daher, Polyurethanpolyharnstoff-Dispersionen herzustellen, die nach der physikalischen Trocknung ohne den Zusatz von Vernetzungsmitteln und als Alleinbindemittel Filme mit einer deutlich verbesserten Chemikalien- und insbesondere einer verbesserten Ethanolbeständigkeit liefern.
Die gestellte Aufgabe konnte überraschenderweise durch Bereitstellung der nachstehend näher beschriebenen erfindungsgemäßen Dispersionen gelöst werden, wobei die besonders hervorstechende Ethanolbeständigkeit der resultierenden Beschichtungen auf den Einsatz an und für sich bekannter Substanzen in einer bevorzugten Mengenkombination zurückzuführen ist. Gegenstand der Erfindung sind Polyurethanpolyharnstoff-Dispersionen, aufgebaut durch Polyaddition von:
(A) 15 bis 50 Gew.-%, bevorzugt 20 bis 40 Gew.-%, eines linearen und/oder schwach verzweigten Polyesterpolyols mit einem Molekulargewicht von 500 bis 6000,
(B) 2 bis 10 Gew.-%, bevorzugt 3 bis 7 Gew.-%, eines oder mehrerer Polyole mit einem Molekulargewicht < 500,
(C) 1 bislO Gew.-% mindestens einer im Sinne der Isocyanatreaktion mono und/oder difünktionellen Verbindung, die zusätzlich anionische Gruppen bzw in anionische Gruppen umwandelbare funktionelle Gruppen enthält,
(D) 0 bis 15 Gew.-% eines hydrophilen, Ethylenoxideinheiten aufweisenden ein- oder zweiwertigen Alkohols des Molekulargewichtsbereiches 600 bis 3000,
(E) 30 bis 70 Gew.-%, bevorzugt 40 bis 60 Gew.-%, eines oder mehrerer Polyisocyanate, wobei mindestens 70 Gew.-% der Polyisocyanatkomponente aus einem oder mehreren cycloaliphatischen Diisocyanaten besteht,
sowie anschließender Kettenverlängerung bzw. Vernetzung des resultierenden Pro- duktes aus (A) bis (E) mit
(F) 0,5 bis 10 Gew.-% eines Gemisches eines oder mehrerer Diamine mit einem Polyamin der Funktionalität >2, wobei mindestens 20 Gew.-% der Komponente (F) aus dem Polyamin der Funktionalität >2 besteht.
Die Prozentangaben der Komponenten (A) bis (F) ergänzen sich zu 100 %. Gegenstand der vorliegenden Erfindung ist ferner die Verwendung der neuen Poly- urethanpolyharnstoff-Dispersionen als Lackbindemittel für die Beschichtung von beliebigen Substraten
Herstellungsverfahren für Polyurethanpolyharnstoff-Dispersionen sind an sich bekannt
(z B Angewandte Chemie , D Dieterich, 82, 53 (1970))
Als Komponente A werden lineare und/oder schwach verzweigte Polyesterpolyole mit einem Molekulargewicht von 500 bis 6000 und in einer besonders bevorzugten Ausführungsform von 750 bis 3000 verwendet Es handelt sich hierbei um Umsetzungsprodukte von niedermolekularen Polyolen mit niedermolekularen Polvcarbon- sauren
Geeignete Polyole bzw Polyolgemische zum Aufbau hydroxygruppenhaitiger Poly- ester sind beispielsweise Ethylenglykol, Propylenglykol, 1 ,4-Butandιol, 1 ,6-Hexan- diol, Diethylenglykol, Tπethylenglykol, Neopentylglykol, 1 ,4-Bιs(hydroxymethyl)- cyclohexan oder Dipropylenglykol Als hoherfünktionelle Polyole, die zum Einbringen der Verzweigungen in das Polyestermolekul anteilig mitverwendet werden können, sind zum Beispiel Glyceπn, Tπmethylolpropan oder Pentaerythπt geeignet Besonders bevorzugt sind 1 ,6-Hexandιol, Neopentylglykol und Tπmethylolpropan
Die Polycarbonsauren können aliphatischer, cycloaliphatischer, aromatischer und/oder heterocy scher Natur sein Anstelle der freien Polycarbonsauren können auch entsprechende Polycarbonsaureanhydπde oder Polycarbonsaureester mit niederen Alko- holen eingesetzt werden Beispielhaft seien genannt Bernsteinsaure, Adipinsaure,
Sebacinsaure, Azelainaure, Phthalsaure, Isophthalsaure, Phthalsaureanhydπd, Tetra- hydrophthalsaureanhydπd, Glutarsaureanhydπd, Maleinsäure, Maleinsaureanhydπd, Fumarsaure oder Terephthalsauredimethylester Besonders bevorzugt ist Adipinsaure
Die Komponente (A) weist in der Regel eine mittlere Hydroxylfünktionalitat von 2,0, d h 2 OH-Gruppen pro Molekül, auf Durch den Einsatz oder die anteilige Mitver- wendung von schwach verzweigten Polyesterpolyolen kann die mittlere Hydroxyl- fünktionalitat bis auf einen Maximalwert von 2,5 gesteigert werden
Bei den unter Punkt (B) genannten niedermolekularen Polyolen mit einem Molekulargewicht von <500 handelt es sich um ahphatische, cycloaliphatische, aromatische und/oder heterocyciische Verbindungen, wie sie im wesentlichen unter Punkt (A) zum Aufbau der Polyesterpolyole bereits genannt wurden Besonders bevorzugte Polyol le sind Neopentylglykol und Trimethylolpropan
Bei der Ausgangskomponente (C) handelt es sich in der Regel um mindestens eine
Hydroxycarbonsaure und/oder Aminocarbonsaure und/oder Aminosulfonsaure und/oder Hydroxysulfonsaure Diese Verbindungen werden über die gegenüber Iso- cyanaten reaktiven Amino- und/oder Hydroxygruppen in das Prapolymer eingebaut Durch Neutralisation der Carboxylgruppen und/oder der Sulfonsauregruppen mit organischen und/oder anorganischen Basen erhalten diese Verbindungen disper- gierend wirkende Eigenschaften
Exemplaπsch seien als Vertreter für die Komponente (C) genannt Apfelsaure, Gly- kolsaure, Glycin, Taurin, Aminocapronsaure und 2-Amιno-ethylammosulfonsaure Zu den bevorzugten Komponenten (C) gehören 2,2-Bιs(hydroxymethyl)-alkanmonocar- bonsauren mit insgesamt 5 bis 8 Kohlenstoffatomen, d h Verbindungen der allgemeinen Formel
R
HO C C — C OH
H. I H ',2
COOH
in welcher R für einen Alkylrest mit 1 bis 4 Kohlenstoffatomen steht Ganz besonders bevorzugte Aufbaukomponente (C) ist 2,2-Dimethylolpropιonsaure
Bei der Ausgangskomponente (D) handelt es sich um nichtionische, hydrophile Poly- ethylenglykole, die eine oder zwei Hydroxylgruppen aufweisen Vorzugsweise handelt es sich um ein- oder zweiwertige Polyetheralkohole des Molekulargewichtsbereiches von 600 bis 3000, wie sie in an sich bekannter Weise durch Alkoxylierung von ein- oder zweiwertigen Alkoholen als Startermolekule erhalten werden, wobei als Alkylenoxide Ethylenoxid oder Gemische aus Ethylenoxid mit bis zu 40 Gew -% (bezogen auf das Gesamtgewicht der Alkylenoxide) an Propylenoxid zum Einsatz gelangen. Auch die entsprechenden aminofünktionellen Derivate, bekannt als Jeffamin M bzw Jeffamin D-Reihe (Handelsprodukte der Firma Huntsman), sind geeignete Komponenten (D)
Der Gehalt an Komponenten (C) und/oder Komponenten (D) muß so eingestellt werden, daß die Dispergierbarkeit der Polyurethanpolyharnstoffe in Wasser gewahrleistet ist In einem bevorzugten Herstellverfahren wird auf die Mitverwendung von Komponente (D) ganz verzichtet und die für die Dispergierung erforderliche Hydrophilie ausschließlich durch die Verwendung der Komponente (C) sichergestellt Die Menge an eingebauten anionischen Gruppen ist dabei so bemessen, daß in dem letztlich erhaltenen Polyurethanpolyharnstoff maximal 100 Milliaquivalente pro 100 g Feststoff an ionischen Gruppen vorliegen
Bei den für die Polyadditionsreaktion benotigten Verbindungen (E) handelt es sich um a phatische, cycloahphatische und/oder aromatische Polyisocyanate
Essentiell für die vorliegende Erfindung ist, daß mindestens 70 Gew -% der Polyiso- cyanatkomponente (E) aus cycloaliphatischen Dnsocyanaten bestehen In einem besonders bevorzugten Herstellverfahren werden ausschließlich cycloaliphatische Diisocyanate, wie Isophorondiisocyanat (IPDI), 4,4'-Dιcyclohexylmethandusocyanat und/oder 1,4- bzw 1 ,3-Cyclohexan-diιsocyanat, verwendet
Beispiele für anteilig (bis zu 30 Gew %) mitzuverwendende weitere Polyisocyanate sind 1,6-Hexamethylendiisocyanat (HDI), Tetramethyl endiisocyanat, 2,3,3-Tπ- methylhexamethylendi-isocyanat, 1 ,4-Phenylendπsocyanat, 2,6- und 2.4-Toluol- dπsocyanat, 1,5 Naphthylendiisocyanat, 2,4'- und 4,4'-Diphenylmethandiιsocyanat Es ist selbstverständlich auch möglich, die in der Polyurethanchemie an sich bekannten höhertünktionellen Polyisocyanate oder auch an sich bekannte modifizierte, beispielsweise Carbodiimidgruppen, Allophanatgruppen, Isocyanuratgruppen, Urethangruppen und/oder biuretgruppenaufweisenden Polyisocyanate anteilig mitzuverwenden.
Die Komponenten (A) bis (E) werden in einem Reaktor vorgelegt und unter wasserfreien Bedingungen in einem Temperaturbereich von 30 bis I 30°C zu einem NCO- haltigen Präpolymeren umgesetzt. Das Äquivalentverhältnis von Isocyanatgruppen zu gegenüber Isocyanatgruppen reaktiven Verbindungen beträgt 1 , 1 : 1 bis 3 : 1, bevor- zugt 1,5 : 1 bis 2 : 1. Bei der Berechnung des Äquivalentverhältnisses werden
Carboxyigruppen, die beispielsweise durch Mitverwendung von 2,2-Dimethylol- propionsäure in das Präpolymer eingebracht werden, nicht berücksichtigt. Die Isocyanatpolyadditionsreaktion kann in Gegenwart von in der Polyurethanchemie bekannten Katalysatoren, wie beispielsweise Organo-Zinn-Verbindungen, erfolgen. Weiterhin kann vor, während oder nach der Präpolymerherstellung ein organisches
Lösungsmittel verwendet werden, um die Viskosität zu kontrollieren.
Geeignete Lösungsmittel sind z. B. Aceton, 2-Butanon, Tetrahydrofüran, Dioxan, Dimethylformamid, N-Methyl-2-pyrrolidon (NMP), Ethylacetat, Alkylether von Ethylen- und Propylenglykol und aromatische Kohlenwasserstoffe. Der Einsatz von mit Wasser mischbaren Lösungsmitteln ist bevorzugt Werden niedrigsiedende Lösungsmittel, wie z. B. Aceton, verwendet, so können diese aus den resultierenden Polyurethanpolyharnstoff-Dispersionen durch Destillation entfernt werden, und man erhält vollständig lösemittelfreie Dispersionen. Werden Lösungsmittel mit höheren Siedepunkten als Wasser, wie z. B. NMP, eingesetzt, so verbleiben diese Lösungsmittel in den Polyurethanpolyharnstoff-Dispersionen und beschleunigen als Koales- zenzhilfsmittel die Filmbildung der dispergierten Teilchen.
Vor der Dispergierung des Präpolymeren in Wasser und der Kettenverlängerung bzw. Vernetzung mit der Komponente (F) müssen die im Präpolymeren vorliegenden potentiellen ionischen Gruppen durch Neutralisation in ionische Gruppen umgewandelt werden. Zur Neutralisation werden, insbesondere bei der Verwendung von carboxylgruppenaufweisenden Aufbaukomponenten (C), bevorzugt tertiäre Amine eingesetzt. Derartige tertiäre Amine sind beispielsweise Triethylamin, Tri-n-butylamin,
N-Methylmorpholin, N,N-Dimethylethanolamin, N-Methylpi-peridin, N-Methyl- piperazin und Triethanolamin. Auch die Verwendung von anorganischen Basen, wie Natriumhydroxid oder Kaliumhydroxid als Neutralisationsmittel ist, wenn auch weniger bevorzugt, möglich. Erwähnt sei auch die Möglichkeit, die Komponente (C) bereits in neutralisierter Form bei der Präpolymerherstellung einzusetzen. Durch die
Neutralisation der potentiellen ionischen Gruppen wird, eventuell mit zusätzlichen nichtionischen Aufbaukomponenten (D), dafür gesorgt, daß die Bildung stabiler wäßriger Dispersionen gewährleistet ist. Im allgemeinen werden mindestens 80 %, bevorzugt jedoch 100 %, der potentiellen ionischen Gruppen durch Neutralisation in ionische Gruppen überführt. Die Neutralisationsreaktion erfolgt dabei in der Regel bei
Temperaturen von unter 100°C und bevorzugt im Temperaturbereich von 30 bis
80°C.
Die Überführung der neutralisierten NCO-haltigen Präpolymeren in wäßrige Dispersionen erfolgt nach den in der Polyurethanchemie bekannten Methoden. Eine Möglichkeit besteht in der Zugabe des Dispergierwassers, welches die Komponente (F) enthält, zum Präpolymeren. Bei diesem Verfahren bildet das organische Prä- polymer zunächst die kontinuierliche Phase. Bei weiterer Zugabe von Wasser findet eine Phasenumkehr statt, und das Wasser wird zur kontinuierlichen Phase.
Bei der zweiten Möglichkeit der Dispergierung wird das neutralisierte Präpolymer zum Dispergierwasser gegeben. Die Komponente (F) kann dabei im Dispergierwasser vorgelegt sein oder alternativ erst nach der Dispergierung des Präpolymeren zugesetzt werden.
Der Dispergierschritt erfolgt bevorzugt in einem Temperaturbereich von 20 bis 40°C Dabei kann die Dispergierbarkeit der Präpolymeren in Wasser durch den zusätzlichen Einsatz von externen Emulgatoren verbessert werden. Die Komponente (F) besteht aus einem Gemisch eines oder mehrerer Diamine mit einem Polyamin der Funktionalität >2. Die Diamine führen zu einer Kettenverlängerung der Präpolymeren, während durch das Polyamin mit der Funktionalität >2 zusätzlich Vernetzungsstellen in das Molekül eingebaut werden. Da die Umsetzung des Präpolymeren mit den Bestandteilen der Komponente (F) im wäßrigen Medium stattfindet, zeichnen sich die Verbindungen der Komponente (F) durch eine weitaus höhere Reaktivität gegenüber Isocyanatgruppen aus als Wasser. Die Menge an zu verwendender Komponente (F) hängt von den noch vorhandenen, nicht umgesetzten Isocyanatgruppen des Präpolymeren ab.
Geeignete Diamine sind beispielsweise 1 ,2-Diaminoethan, 1,6-Diaminohexan, Piperazin, 2,5-Dimethylpiperazin, l-Amino-3-aminomethyl-3,5,5-trimethy!cyclohexan, 4,4'-Diaminodicylo-hexylmethan, 1 ,4-Diaminocyclohexan und/oder 1 ,2-Propylen- diamin. Als Kettenverlängerer geeignet sind auch Hydrazin, Aminosäurehydrazide, Bishydrazide und Bis-semicarbazide.
Beispiele für Polyamine mit einer Funktionalität von >2 sind Diethylentriamin, Tri- ethylentetramin, Tetraethylenpentamin, Pentaethylen-hexamin, Polyethylenimine und Melamin.
Polyurethanpolyharnstoff-Dispersionen, die die erfindungsgemäße Zusammensetzung aufweisen und nach den beschriebenen Verfahren hergestellt wurden, sind sehr feinteilig, lagerstabil und weisen pH-Werte im Bereich von 6 bis 9 auf. Die Festkörpergehalte liegen zwischen 20 und 60 Gew.-%, insbesondere zwischen 25 und 45 Gew.-%. Der Gehalt an organischen Lösungsmitteln beträgt maximal 15 Gew .-%.
Die erfindungsgemäßen Polyurethanpolyharnstoff-Dispersionen liefern nach der physikalischen Trocknung Überzüge mit sehr guter Chemikalien- und insbesondere einer sehr guten Ethanolbeständigkeit.
Die neuen Polyurethanpolyharnstoff-Dispersionen lassen sich als Lackbindemittel für die Beschichtung von beliebigen Substraten einsetzen. Hierzu zählen organische und anorganische Materialien, wie Glas, Holz , Metalle, Kunststoffe, Leder und Papier. Die erfindungsgemäßen Polyurethanpolyharnstoff-Dispersionen können als alleiniges Bindemittel eingesetzt werden. Es besteht aber die Möglichkeit, mit anderen Dispersionen, wie Polyvinylacetat-, Polyethylen-, Polystyrol-, Polybutadien-, Polyvinylchlorid-, Polyacrylat- und Copolymerisat-Kunststoffdispersionen zu verschneiden. Ferner können die in der Lacktechnologie üblichen Hilfsstoffe und Additive, wie Pigmente, Füllstoffe, Weichmacher, Mattierungs ittel, Koaleszenzmittel, Wachse, Entschäumer und Netzmittel, in die erfindungsgemäßen Dispersionen eingearbeitet werden.
Die Applikation der Lacke erfolgt nach den üblichen Methoden der Lacktechnologie, beispielsweise durch Spritzen, Gießen, Tauchen oder Walzen.
Die nachfolgenden Beispiele sollen die Erfindung erläutern, ohne sie zu beschränken.
Beispiele
Beispiel 1
In einem 1 -I-Reaktionsgefaß mit Ruhr-, Kühl- und Heizvorrichtung werden 56,0 g
Desmophen 1200 (schwach verzweigtes Polyesterpolyol der Firma Bayer, OH-Gehalt = ca 5 Gew -%), 8,3 g Neopentylglykol, 2,0 g Tπmethylolpropan, 15,0 g Poly- ethylenglykolmonomethylether mit einem Molekulargewicht von 750, 5,0 g Di- methylolpropionsaure und 95,9 g 4,4'-Diιso-cyanatdιcyclohexylmethan (= Desmo- dur W) bei Raumtemperatur eingewogen und in 78,7 g N-Methylpyrrolidon (NMP) gelost Anschließend werden 0, 18 g Dibutylzmndilaurat zugegeben und der Ansatz auf 65°C erwärmt und 5 Stunden bei dieser Temperatur gerührt Dann wird der Ansatz auf Raumtemperatur abgekühlt, wobei bei ca 45°C 3,7 g Triethylamin zur Neutralisation der Dimethylolpropionsaure zugesetzt werden Die erhaltene Prapoly- merlosung wird unter kraftigem Ruhren bei ca 25°C in 250 g Wasser dispergiert Zur gebildeten Dispersion wird abschließend ein in 25 g Wasser gelöstes Gemisch von 3,6 g Ethylendiamin und 4, 1 g Diethylentriamin gegeben Die erhaltene Dispersion besitzt einen Festkorpergehalt von 34,7 Gew -% und einen NMP-Gehalt von 14,5 Gew -% Der pH- Wert liegt bei 7,6, und die Auslaufzeit (gemessen im DIM-4- Becher) betragt 18 s
Beispiel 2
In einem 1-1-Reaktιonsgefaß mit Ruhr-, Kühl- und Heizvorrichtung werden 81 ,5 g
Desmophen 1695 (lineares Polyesterpolyol der Firma Bayer, OH-Gehalt = ca 3,4 Gew -%), 9,7 g Neopen-tylglykol, 3,0 g Tπmethylolpropan, 1 1 ,5 g Dimethylolpropionsaure und 123,4 g 4,4'-Diisocyanatdιcyclohexylmethan (= Desmodur W) bei Raumtemperatur eingewogen und in 98,4 g N-Methylpyrrohdon (NMP) gelost Anschließend werden 0,23 g Dibutylzmndilaurat zugegeben und der Ansatz auf 75°C erwärmt und 3 Stunden bei dieser Temperatur gerührt Dann wird der Ansatz auf Raumtemperatur abgekühlt, wobei bei ca 45°C 8,6 g Triethylamin zur Neutralisation der Dimethylolpropionsäure zugesetzt werden. Die erhaltene Prapolymerlόsung wird unter kräfigem Rühren bei ca. 25°C in 315 g Wasser dispergiert Zur gebildeten Dispersion wird abschließend ein in 30 g Wasser gelöstes Gemisch von 4,6 o Ethylendiamin und 5,3 g Diethylentriamin gegeben. Die erhaltene Dispersion besitzt einen Festkörpergehalt von 34,6 Gew -% und einen NMP-Gehalt von 14,2 Gew -% Der pH-Wert liegt bei 7,7, und die Auslaufzeit (gemessen im DIN-4-Becher) beträgt 20 s.
Beispiel 3
In einem 1 -1-Reaktionsgefäß mit Ruhr-, Kühl- und Heizvorrichtung werden 85,4 g Oxyester T 1 136 (lineares Polyesterpolyol der Firma Hüls; OH-Zahl = 107 mg KOH / g Polyester), 13,2 g Neopentylglykol, 1 1,5 g Dimethylolpropionsäure und 123,4 g 4,4'-Diisocyanatdicyclohexylmethan (= Desmodur W) bei Raumtemperatur eingewogen und in 84,5 g N-Methylpyrrolidon (NMP) gelöst Anschließend werden 0,23 g Dibutylzmndilaurat zugegeben und der Ansatz auf 75°C erwärmt und 3 Stunden bei dieser Temperatur gerührt. Dann wird der Ansatz auf Raumtemperatur abgekühlt, wobei bei ca 45°C 8,6 g Triethylamin zur Neutralisation der Dimethylol- propionsaure zugesetzt werden. Die erhaltene Prapolymerlosung wird unter kräftigem
Ruhren bei ca. 25°C in 335 g Wasser dispergiert. Zur gebildeten Dispersion wird abschließend ein in 30 g Wasser gelöstes Gemisch von 4,6 g Ethylendiamin und 5,3 g Diethylentriamin gegeben. Die erhaltene Dispersion besitzt einen Festkorpergehalt von 34,7 Gew -% und einen NMP-Gehalt von 12 Gew -% Der pH-Wert liegt bei 7,7, und die Auslaufzeit (gemessen im DIN-4-Becher) betragt 17 s
Beispiel 4 (= Vergleichsbeispiel)
Bei diesem Vergleichsbeispiel wird auf die Mitverwendung der Komponente (B) verzichtet In einem 1 -1-Reaktιonsgefaß mit Ruhr-, Kühl- und Heizvorπchtung werden 100 g Desmophen 1200 (schwach verzweigtes Polyesterpolyol der Firma Bayer, OH-Gehalt = ca 5 Gew -%), 10,0 g Polyethylenglykolmonomethylether mit einem Molekulargewicht von 750, 10,0 g Dimethylolpropionsäure und 95,9 g 4,4'-Dnsocyanat- dicyclohexyl ethan (= Desmodur W) bei Raumtemperatur eingewogen und in 92,5 g
N-Methylpyrrolidon (NMP) gelost Anschließend werden 0, 18 g Dibutylzmndilaurat zugegeben und der Ansatz auf 65°C erwärmt und 5 Stunden bei dieser Temperatur gerührt Dann wird der Ansatz auf Raumtemperatur abgekühlt, wobei bei ca 45°C 7,5 g Triethylamin zur Neutralisation der Dimethylolpropionsäure zugesetzt werden Die erhaltene Prapolymerlosung wird unter kraftigem Ruhren bei ca 25°C in 290 g
Wasser dispergiert Zur gebildeten Dispersion wird abschließend ein in 25 g Wassei gelöstes Gemisch von 3,6 g Ethylendiamin und 4, 1 g Diethylentriamin gegeben Die erhaltene Dispersion besitzt einen Festkorpergehalt von 35 Gew -% und einen NMP- Gehalt von 14,5 Gew -% Der pH-Wert liegt bei 7,2, und die Auslaufzeit (gemessen im DIN-4-Becher) betragt 20 s
Beispiel 5 (= Vergleichsbeispiel)
Es handelt sich hier um kommerziell erhältliche Polyurethan-Dispersionen, die nach
Angaben der Hersteller auf der Basis von Polyesterpolyolen hergestellt wurden Im einzelnen wurden folgende Produkte mit den erfindungsgemaßen Dispersionen verglichen
NeoRez R-961 und NeoRez R-974 (Handelsprodukte der Firma Zeneca) sowie U 710 und U 910 (Handelsprodukte der Firma Alberdingk Boley)
Zusatzlich wurde noch mit NeoRez R-985 (Handelsprodukt der Firma Zeneca) eine Polyurethan-Dispersion auf Basis eines Poiycarbonatdiols in die Untersuchungen miteinbezogen Überprüfung der Chemikalienbestandigkeiten der erfindungsgemäßen Dispersionen und der Vergleichsbeispiele
Die Chemikalienbestandigkeiten wurden auf Holz (Esche) ausgeprüft Zu diesem Zweck wurde die Holzoberfläche mit einem Schleifpapier leicht vorgeschliffen und der Schleifstaub abgewischt. Mittels eines Kastenrakels wurden dann von den abzu- prüfenden Dispersionen Aufzüge mit 120 μm Naßfilmdicke auf die Holzprüffläche aufgezogen. Anschließend wurden die Naßfilme 24 Stunden bei 50°C getrocknet Die Lackoberflächen wurden dann geschliffen und der Schleifstaub entfernt Dann erfolgte ein zweiter Aufzug mit 120 μm Naßfilmdicke. Es wurde erneut 24 Stunden bei 50°C getrocknet.
Nach Abkühlen auf Raumtemperatur wurden für die Überprüfung der Chemikalienbestandigkeiten auf die erhaltenen Prufflächen ca 1 x 1 x 1 cm große, mit dem Prufmittel getränkte Filzstucke gelegt und mit einem Schraubdeckel abgedeckt Nach einer definierten Belastungszeit wurde das Filzstuck entfernt und die Prufflache mit einem Papiertuch gereinigt Folgende Chemikalien wurden gemäß DIN 68861 aus- gepruft
- Ethanol (48 Vol %ig in entionisiertem Wasser, Belastungsdauer 1 Stunde)
- Wasser (entionisiertes Wasser, Belastungsdauer 16 Stunden)
- Ammoniak ( 10 gew %ige Losung in Wasser, Belastungsdauer 1 Stunde)
- Dibutylphthalat (Belastungsdauer 16 Stunden)
- Aceton (Belastungsdauer 10 s) - Kaffee (gelöster Pulverkaffee; Belastungsdauer 1 Stunde) Die Prufflachen wurden nach Lagerung von 24 Stunden nach folgender Notenskala beurteilt
Note 0 Keine sichtbaren Veränderungen
Notel Eben erkennbare Änderungen in Glanz oder Farbe
Note 2 Leichte Veränderungen in Glanz oder Farbe, die Struktur der Pruf- flache ist nicht verändert Note 3 Starke Markierungen sichtbar, die Struktur der Prufflache ist jedoch weitgehend unbeschädigt Note 4 Starke Markierungen sichtbar, die Struktur der Prufflache ist verändert Note 5 Prufflache stark verändert bzw zerstört
Die Ergebnisse der Untersuchungen sind in der nachfolgenden Tabelle zusammen- gestellt Es wird ersichtlich, daß die erfindungsgemaßen Polyurethanpolyharnstoff-
Dispersionen deutlich bessere Chemikalienbestandigkeiten aufweisen als die kommerziell erhältlichen Polyurethan-Dispersionen auf Polyesterbasis Auch die Beständigkeiten der Dispersion auf Basis des Polycarbonatdiols werden ubertroffen
Tabelle: Ergebnisse der Chemikalienbeständigkeiten
Ethanol Wasser Ammoniak Dibutyl- Aceton Kaffee phthalat
Bsp. l 2 0 1 0 0 0
Bsp.2 0 0 1 0 0 0
Bsp.3 0 0 0 0 0 0
Bsp.4 4 1 1 1 l 0
NeoRez 3 0 0 2 0 1 R-961
NeoRez 4 1 4 3 1 2
R-974
NeoRez 3 0 3 0 0 0 R-985
U 710 3 0 0 3 0 2
U 910 5 0 2 0 0
Figure imgf000018_0001
1

Claims

Patentansprüche
1 Polyurethanharnstoff-Dispersionen erhaltlich durch Umsetzung von
(A) 15 bis 50 Gew -%, bevorzugt 20 bis 40 Gew -%, eines linearen und/oder schwach verzweigten Polyesterpolyols mit einem Molekulargewicht von 500 bis 6000,
(B) 2 bis 10 Gew -%, bevorzugt 3 bis 7 Gew -% eines oder mehrerer Polyole mit einem Molekulargewicht < 500,
(C) 1 bis 10 Gew -% mindestens einer im Sinne der Isocyanatreaktion mono und/oder difünktionellen Verbindung, die zusatzlich anionische Gruppen bzw in anionische Gruppen umwandelbare funktionelle Gruppen enthalt,
(D) 0 bis 15 Gew -% eines hydrophilen, Ethylenoxidemheiten aufweisenden ein- oder zweiwertigen Alkohols des Molekulargewichtsbereicl.es 600
Figure imgf000019_0001
(E) 30 bis 70 Gew -%, bevorzugt 40 bis 60 Gew -%, eines oder mehrerer Polyisocyanate, wobei mindestens 70 Gew -% der Polyisocyanat- komponente aus einem oder mehreren cycloaliphatischen Duso- cyanaten besteht,
sowie anschließender Kettenverlangerung bzw Vernetzung des resultierenden Produktes aus (A) bis (E) mit
(F) 0,5 bis 10 Gew -% eines Gemisches eines oder mehrerer Diamine mit einem Polyamin der Funktionalitat >2, wobei mindestens 20 Gew -% der Komponente (F) aus dem Polyamin der Funktionalität >2 bestehen, wobei die Komponenten (A) - (F) in Summe stets 100 % ergeben
2. Verwendung von Polyurethanharnstoff-Dispersionen gemäß Anspruch I als Lackbindemittel.
3. Beschichtungen, hergestellt mit Polyurethanharnstoff-Dispersionen gemäß Anspruch 1.
PCT/EP1997/003908 1996-08-01 1997-07-21 Wässrige dispersionen, ihre herstellung und verwendung als lackbindemittel WO1998005696A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AU39404/97A AU3940497A (en) 1996-08-01 1997-07-21 Aqueous dispersions, their preparation and use as paint binders

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE1996130905 DE19630905A1 (de) 1996-08-01 1996-08-01 Wäßrige Dispersionen, ihre Herstellung und Verwendung als Lackbindemittel
DE19630905.0 1996-08-01

Publications (1)

Publication Number Publication Date
WO1998005696A1 true WO1998005696A1 (de) 1998-02-12

Family

ID=7801385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1997/003908 WO1998005696A1 (de) 1996-08-01 1997-07-21 Wässrige dispersionen, ihre herstellung und verwendung als lackbindemittel

Country Status (3)

Country Link
AU (1) AU3940497A (de)
DE (1) DE19630905A1 (de)
WO (1) WO1998005696A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177509B1 (en) 1998-09-23 2001-01-23 Bayer Ag Aqueous polymer dispersions neutralized with N,N-diisopropyl-N-ethylamine
EP1736246A1 (de) * 2005-06-20 2006-12-27 E.I.Du pont de nemours and company Verfahren zum Aufbringen eines mehrschichtigen Überzuges auf eine Unterlage
US20120160437A1 (en) * 2010-12-22 2012-06-28 Bayer Materialscience Ag Process for the production of sized and/or wet-strength papers, paperboards and cardboards
CN106497018A (zh) * 2016-11-08 2017-03-15 株洲时代新材料科技股份有限公司 一种多组分聚氨酯填缝剂及其制备方法
CN115322530A (zh) * 2022-08-10 2022-11-11 江阴市龙山合成材料有限公司 一种无卤阻燃的增强型pbt及其加工工艺

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0982331B1 (de) * 1998-08-28 2005-10-26 Council of Scientific and Industrial Research Ein verbessertes Verfahren zur Herstellung von stabilen wässrigen Urethandispersionen
DE19904624C2 (de) * 1999-02-05 2002-02-07 Basf Coatings Ag Polyurethan und seine Verwendung in der wäßrigen Kunststofflackierung
DE10004723A1 (de) * 2000-02-03 2001-08-09 Bayer Ag Wässrige Sperrschicht auf Basis von Polyurethan-Disperionen
KR100625141B1 (ko) 1999-02-25 2006-09-20 바이엘 악티엔게젤샤프트 폴리우레탄 분산액 기재 수성 배리어층
DE10152294A1 (de) * 2001-10-26 2003-05-08 Solutia Austria Gmbh Werndorf Hochmolekulare Polyurethan-Dispersionen
AT411998B (de) * 2002-01-02 2004-08-26 Surface Specialties Austria Oberflächenschutz für lackierte flächen

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242731A2 (de) * 1986-04-22 1987-10-28 Bayer Ag Verfahren zur Herstellung von wässrigen Dispersionen von Polyurethan-Polyharnstoffen und ihre Verwendung als oder zur Herstellung von Beschichtungsmitteln
DE4016713A1 (de) * 1990-05-24 1991-11-28 Bayer Ag Waessrige polymerdispersionen und deren verwendung als beschichtungsmittel fuer textile substrate und leder
EP0507173A2 (de) * 1991-04-05 1992-10-07 Bayer Corporation Auf Bis-(4-isocyanatocyclohexyl)-Methan, das mit Trans, Trans-Isomer angereichert ist, basierende wässrige Polyurethanharnstoffdispersionen und die daraus hergestellte Beschichtungen oder Filme
EP0735069A1 (de) * 1995-03-22 1996-10-02 Mitsubishi Chemical Corporation Verfahren zur Herstellung einer wässrigen Polyurethanbeschichtung sowie daraus hergestellte Schicht

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0242731A2 (de) * 1986-04-22 1987-10-28 Bayer Ag Verfahren zur Herstellung von wässrigen Dispersionen von Polyurethan-Polyharnstoffen und ihre Verwendung als oder zur Herstellung von Beschichtungsmitteln
DE4016713A1 (de) * 1990-05-24 1991-11-28 Bayer Ag Waessrige polymerdispersionen und deren verwendung als beschichtungsmittel fuer textile substrate und leder
EP0507173A2 (de) * 1991-04-05 1992-10-07 Bayer Corporation Auf Bis-(4-isocyanatocyclohexyl)-Methan, das mit Trans, Trans-Isomer angereichert ist, basierende wässrige Polyurethanharnstoffdispersionen und die daraus hergestellte Beschichtungen oder Filme
EP0735069A1 (de) * 1995-03-22 1996-10-02 Mitsubishi Chemical Corporation Verfahren zur Herstellung einer wässrigen Polyurethanbeschichtung sowie daraus hergestellte Schicht

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177509B1 (en) 1998-09-23 2001-01-23 Bayer Ag Aqueous polymer dispersions neutralized with N,N-diisopropyl-N-ethylamine
EP1736246A1 (de) * 2005-06-20 2006-12-27 E.I.Du pont de nemours and company Verfahren zum Aufbringen eines mehrschichtigen Überzuges auf eine Unterlage
US20120160437A1 (en) * 2010-12-22 2012-06-28 Bayer Materialscience Ag Process for the production of sized and/or wet-strength papers, paperboards and cardboards
US8647471B2 (en) * 2010-12-22 2014-02-11 Bayer Materialscience Llc Process for the production of sized and/or wet-strength papers, paperboards and cardboards
CN106497018A (zh) * 2016-11-08 2017-03-15 株洲时代新材料科技股份有限公司 一种多组分聚氨酯填缝剂及其制备方法
CN106497018B (zh) * 2016-11-08 2019-05-03 株洲时代新材料科技股份有限公司 一种多组分聚氨酯填缝剂及其制备方法
CN115322530A (zh) * 2022-08-10 2022-11-11 江阴市龙山合成材料有限公司 一种无卤阻燃的增强型pbt及其加工工艺

Also Published As

Publication number Publication date
DE19630905A1 (de) 1998-02-05
AU3940497A (en) 1998-02-25

Similar Documents

Publication Publication Date Title
EP0355682B1 (de) Verwendung von Polyurethanharzen für wässrige Füllerzusammensetzungen
EP1736490B1 (de) Polymermischung auf Basis von Polycarbonatpolyolen
EP0962476B1 (de) Festkörperreiche Polyurethandispersionen mit hoher Applikationssicherheit
EP1438344B1 (de) Wässriges hochvernetztes zweikomponenten-polyurethanbeschichtungssystem, verfahren zu seiner herstellung sowie seine verwendung
EP1237970B1 (de) Verfahren zur herstellung von selbstemulgierbaren wässrigen polyurethan-harzen mit verbesserten eigenschaften
KR101277440B1 (ko) 개선된 필름-형성 특성을 갖는 폴리우레탄 분산액
DE19914882A1 (de) Selbstvernetzende Polyurethan-, Polyurethan-Polyharnstoff- bzw. Polyharnstoff-Dispersionen für Schlichten
WO2009127365A1 (de) Wässrige polyurethanlösungen für polyurethan-systeme
EP0269972A2 (de) Verfahren zur Herstellung von in Wasser löslichen oder dispergierbaren Polyurethanen und ihre Verwendung zur Beschichtung beliebiger Substrate
DE102005036654A1 (de) Selbstvernetzende PUR-Dispersionen mit Uretdionstruktur
CA2584487C (en) Aqueous polyurethane dispersions with improved storage stability
AT410213B (de) Wasserverdünnbare bindemittel für &#39;&#39;soft-feel&#39;&#39;-lacke
WO2000050482A1 (de) Wässrige sperrschicht auf basis von polyurethan-dispersionen
EP1790674B1 (de) Wässrige, Urethangruppen enthaltende, hydroxyfunktionelle Polyester-Dispersionen
WO1998005696A1 (de) Wässrige dispersionen, ihre herstellung und verwendung als lackbindemittel
WO2000059979A1 (de) Dimethylpyrazol blockierte polyurethan-dispersionen und polyisocyanate für glasfaserschlichten
EP1636288B1 (de) Selbstvernetzende wässrige polyurethandispersionen
EP0562436B1 (de) Wasserverdünnbare Zweikomponenten-Überzugsmasse, ein Verfahren zu deren Herstellung und deren Verwendung
AT410096B (de) Wasserverdünnbare bindemittel für &#39;&#39;soft-feel&#39;&#39;-lacke
WO2000059975A1 (de) Polyurethan-dispersionen mit alkoxysilan-endgruppen für glasfaserschlichten
WO2010115529A1 (de) Wässrige bindemittel-dispersion für zweikomponenten-lacke
CA2282909C (en) Aqueous polymer dispersions neutralized with n,n-diisopropyl-n-ethylamine
WO2005033165A1 (de) Selbstvernetzende pur-dispersionen
DE4101527A1 (de) Waessrige bindemittelkombination und ihre verwendung
WO2014067873A1 (de) Beschichtungsmittel für mattierbare beschichtungen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AL AM AT AU AZ BA BB BG BR BY CA CH CN CU CZ DE DK EE ES FI GB GE GH HU IL IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MD MG MK MN MW MX NO NZ PL PT RO RU SD SE SG SI SK TJ TM TR TT UA UG US UZ VN YU AM AZ BY KG KZ MD RU TJ TM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GH KE LS MW SD SZ UG ZW AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: CA

NENP Non-entry into the national phase

Ref country code: JP

Ref document number: 1998507529

Format of ref document f/p: F

REG Reference to national code

Ref country code: DE

Ref legal event code: 8642

122 Ep: pct application non-entry in european phase