WO1997033924A1 - PROCEDE DE PRODUCTION D'OLIGOMERS D'α-OLEFINES - Google Patents

PROCEDE DE PRODUCTION D'OLIGOMERS D'α-OLEFINES Download PDF

Info

Publication number
WO1997033924A1
WO1997033924A1 PCT/JP1997/000766 JP9700766W WO9733924A1 WO 1997033924 A1 WO1997033924 A1 WO 1997033924A1 JP 9700766 W JP9700766 W JP 9700766W WO 9733924 A1 WO9733924 A1 WO 9733924A1
Authority
WO
WIPO (PCT)
Prior art keywords
chromium
compound
olefin
halogen
low
Prior art date
Application number
PCT/JP1997/000766
Other languages
English (en)
French (fr)
Inventor
Hisao Urata
Takayuki Aoshima
Sugio Nishimura
Original Assignee
Mitsubishi Chemical Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corporation filed Critical Mitsubishi Chemical Corporation
Priority to US08/952,746 priority Critical patent/US6133495A/en
Publication of WO1997033924A1 publication Critical patent/WO1997033924A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/30Catalytic processes with hydrides or organic compounds containing metal-to-carbon bond; Metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/26Catalytic processes with hydrides or organic compounds
    • C07C2/32Catalytic processes with hydrides or organic compounds as complexes, e.g. acetyl-acetonates
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • C07C2531/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • C07C2531/14Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides of aluminium or boron
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes

Definitions

  • the present invention relates to a method for producing an ⁇ -olefin low polymer.
  • the present invention relates to an industrially advantageous ⁇ -olefin low polymer capable of producing an ⁇ -olefin low polymer mainly composed of 11-hexene from ethylene with high yield and high selectivity.
  • an industrially advantageous ⁇ -olefin low polymer capable of producing an ⁇ -olefin low polymer mainly composed of 11-hexene from ethylene with high yield and high selectivity.
  • a method using a chromium-based catalyst comprising a combination of a specific chromium compound and a specific organic aluminum compound is known.
  • Japanese Patent Publication No. 437-18707 discloses that a chromium-based catalyst system comprising a Group VI transition metal compound containing chromium and polyhydrocarbyl aluminum oxide converts ethylene into ethylene. Methods for obtaining xen and polyethylene are described.
  • Japanese Patent Application Laid-Open No. 3-128904 discloses a chromium-based catalyst obtained by previously reacting a chromium-containing compound having a chromium-pyrrolyl bond with a metal alkyl or Lewis acid.
  • c Metal of trimerizing olefins is described.
  • South African patent ZA933Z0350 describes a chromium-based catalyst obtained by mixing a chromium salt, a pyrrole-containing compound, a metal alkyl and a halide source in a common solvent. A method of using it to trimerize ethylene is described.
  • the present inventors disclosed in Japanese Patent Application Laid-Open No. 6-145241 a chromium-based catalyst comprising a combination of a chromium-containing compound having a chromium-pyrrolyl bond and alkylaluminum, We proposed a low-polymerization reaction of ct-olefin which adopted a mode in which the chromium-containing compound did not come into contact with the metal alkyl compound before coming into contact with ⁇ -olefin. According to this method, it is possible to obtain 11-hexene with high activity, particularly by a low polymerization reaction of ethylene.
  • the present inventors prepared a chromium-containing compound by mixing a chromium salt and a pyrrole ring-containing compound in a hydrocarbon solvent in JP-A-6-157655.
  • a low polymerization reaction of ⁇ -olefin was proposed in which a chromium-containing compound and an alkylaluminum compound were brought into contact in the same manner as described above.
  • the ethylene trimerization reaction can be performed with high activity to produce highly pure 11-hexene.
  • the present invention has been made in view of the above circumstances, and has as its object an industrially advantageous ⁇ -olefin capable of producing an ⁇ -olefin low polymer such as 11-hexene with extremely high yield and high selectivity. It is an object of the present invention to provide a method for producing an oligoolefin low polymer. Disclosure of the invention
  • the present inventors have conducted intensive studies to achieve the above object, and as a result, if a specific chromium-based catalyst prepared by a specific method is used, a low polymerization reaction of ⁇ -olefins, particularly, ethylene The inventors have found that the low polymerization reaction mainly involving the quantification progresses with high activity to produce high-purity 1 ⁇ > xene, thereby completing the present invention.
  • the first gist of the present invention is that at least the components of the chromium compound (a), the compound containing a pyrrolyl ring (b), the alkylaluminum compound (c;), and the compound containing a halogen (d) are contacted.
  • a low-polymerization reaction of ⁇ -olefin in a reaction solution containing a chromium-based catalyst prepared by reacting the chromium-based catalyst to produce a ct-olefin-lower polymer.
  • a pyrrole ring-containing compound (b), an alkylaluminum compound (c) and a halogen-containing compound (d) are brought into contact with each other.
  • the second gist of the present invention is that at least the components of the chromium compound (a), the pyrrole ring-containing compound (b), the alkylaluminum compound (c), and the halogen-containing compound (d) are brought into contact with each other.
  • a method of manufacturing the body consists in.
  • At least a chromium compound (a), a pyrrole ring-containing compound (b), a halogen-containing compound (c) and an alkylaluminum compound (d) are prepared by contacting each component. Use a catalyst.
  • the chromium compound (a) used for preparing the chromium-based catalyst is: It is represented by the following general formula (1). .
  • chromium has a valence of 0 to 6, and X represents the same or different organic or inorganic group or a negative atom, n represents an integer of 1 to 6. n is preferably 2 or more.
  • Examples of the organic group include various groups having usually 1 to 30 carbon atoms. Specific examples include a hydrocarbon group, a carbonyl group, an alkoxy group, a carboxyl group, a diketonate group, a —ketocarboxyl group, a J3-ketoester group, and an amide group.
  • Examples of the hydrocarbon group include an alkyl group, a cycloalkyl group, an aryl group, an alkylaryl group, an aralkyl group, and a cyclopentagenyl group.
  • Examples of the inorganic group include a chromium salt-forming group such as a nitric acid group and a sulfate group, and examples of the anionic atom include oxygen and halogen.
  • a complex comprising the above chromium compound and an electron donor can also be suitably used.
  • the electron donor is selected from compounds containing nitrogen, oxygen, phosphorus or sulfur.
  • nitrogen-containing compound examples include nitrile, amine, and amide. Specific examples include acetonitrile, pyridine, dimethyl pyridine, dimethylformamide, N-methylformamide, aniline, nitrobenzene, Examples include tetramethylethylenediamine, getylamine, isopropylamine, hexamethyldisilazane, and pyrrolidone.
  • oxygen-containing compound examples include esters, ethers, ketones, alcohols, aldehydes, and the like.Specifically, ethyl acetate, methyl acetate, tetrahydrofuran, dioxane, dimethyl ether, dimethoxetane, Diglyme, triglyme, acetone, methyl ethyl ketone, methanol, ethanol, acetoaldehyde and the like.
  • Examples of the phosphorus-containing compound include hexamethylphosphoramide, hexamethylphosphorous triamide, triethyl phosphite, tributyl phosphine oxide, and triethyl phosphine.
  • the above compounds containing sulfur include carbon disulfide, dimethyl sulfoxide, tetramethylene sulfone, and And dimethyl sulfide.
  • examples of complexes composed of a chromium compound and an electron donor include chromium halide ether complexes, ester complexes, ketone complexes, aldehyde complexes, alcohol complexes, amine complexes, nitrile complexes, phosphine complexes, and thioether complexes. are listed.
  • chromium compound (a) a compound soluble in a hydrocarbon solvent or a halogenated hydrocarbon solvent described later is preferable.
  • examples of such a compound include chromium diketonate salts, carboxylate salts, and j3-ketoester anions.
  • chromium (III) acetyl acetatetonate chromium (III) triple chloroacetyl acetate, chromium (III) hexafluoroacetyl acetonate, chromium (III) (2, 2) , 6, 6-tetramethyl-1,3,5-heptanedionate), Cr (P hCOC HCOP h) 3 (where Ph represents a phenyl group;
  • particularly preferred chromium compounds are 3-diketonate salts, 3) -ketoester salts with anion, carboxylates, and] 3-ketocarboxylates.
  • the chromium compound only needs to contain a chromium atom, and may contain another metal.
  • the pyrrole ring-containing compound (b) used in the preparation of the chromium-based catalyst is pyrrole or substituted pyrrole or a metal salt corresponding thereto, ie, metal pyrrolide.
  • substituted pyrroles examples include 2,4-dimethylbilol and 3,4-dimethyl Also
  • Lolopyrrole, 2,3,4,5-tetrachloropyrrole, 2-honoleminolepyrroquinone, 2-acetylpyrrol, 2,3,4-trimethylpyrroyl, 3,4-Jetylvirol, tetrahydroindole, 3, 3 f, 4, 4 'over-tetramethyl-2, 2' Jipirorometan like are ⁇ up.
  • metal pyrrolide As the gold pyrrolide of the metal pyrrolide, a metal selected from Group 1, Group 2, Group 13 and Group 14 is used.
  • Preferred metal pyrrolides are lithium pyrrolide, sodium pyrrolide, potassium pyrrolide, cesium pyrrolide, magnesium dipyrrolide, getyl aluminum pyrrolide, ethyl aluminum dipyrrolide, aluminum-dimethypyrrolide, lithium monopyrrolide, 5-dimethylpyrrolide, sodium-1,2,5-dimethylpyrrolide, potassium-1,2,5-dimethylbilide, cesium-1,2,5-dimethylpyrrolide, getylaluminum 1,2,5-dimethylpyrrolide, Butylaluminum-bis (2,5-dimethylpyrrolide); trichloride germanium pyrrolide;
  • the alkylaluminum compound (c) suitable for preparing the chromium-based catalyst includes an alkylaluminum compound represented by the following general formula (2).
  • R 1 and R 2 are each a hydrocarbon group having usually 1 to 15, preferably 1 to 8 carbon atoms, which may be the same or different, and X is a halogen.
  • X is a halogen.
  • alkylaluminum compound examples include a trialkylaluminum compound represented by the general formula (3), an alkylaluminum halide compound represented by the general formula (4), and an alkoxyalkylaluminum compound represented by the general formula (5).
  • - ⁇ And aluminoxane compounds represented by the general formula (7) The meanings of R 1 , X and R 2 in each formula are the same as described above.
  • alkylaluminum compound (c) examples include trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, dimethyl aluminum monochloride, dimethyl ethyl methoxide, and dimethyl ethyl hydride. And methylaluminoxane, isobutylaluminoxane and the like.
  • the above alkylaluminum compound (c) can be used as a mixture of two or more kinds. Further, from the viewpoint that the amount of by-products of the polymer is small, a trialkyl aluminum compound, particularly, triethyl aluminum is preferably used. Further, a mixture of a trialkylaluminum compound and a halogenated alkylaluminum compound (such as alkylaluminum monochloride and alkylaluminum dichloride) is also preferably used.
  • the halogen-containing compound (d) used for preparing the chromium-based catalyst may be any compound containing a halogen atom.
  • a halogen-containing compound containing an element selected from the group consisting of Groups 3, 4 and 6 (excluding chromium), 13 and 14 and 15 of the periodic table is preferable.
  • the halogen chlorine and bromine are preferred, and chlorine is particularly preferred.
  • halogen-containing compound (d) examples include scandium chloride, yttrium chloride, lanthanum chloride, titanium tetrachloride, zirconium tetrachloride, hafnium tetrachloride, Boron trichloride, aluminium chloride, getyl aluminum chloride, ethyl aluminum sesquichloride, ethyl aluminum dichloride, gallium chloride, carbon tetrachloride, carbon form, dichloromethane, dichloroethane, tetrachloroethane, arinolek Mouth lid, trichloroacetone, hexacloacetone, hexachlorocyclohexane, 1,3,5-trichloroacetate benzene, hexaclozebenzene, trityl chloride, silane tetrachloride, trimethylchlorosilane, germanium tetrachloride, Tin tetet
  • halogen-containing compounds (d) those having a large number of halogen atoms are preferable, and compounds that are soluble in a hydrocarbon solvent or a halogenated hydrocarbon solvent described later are preferable.
  • examples of such a halogen-containing compound include carbon tetrachloride, chloroform, dichloroethane, tetrachloroethane, trichloroacetone, hexachloroacetone, titanium tetrachloride, germanium tetrachloride, and tetrachloroditin.
  • the nitrogen-containing compound can also be used as a mixture of two or more.
  • a hydrocarbon solvent or a halogenated hydrocarbon solvent which is a reaction medium when preparing a chromium-based catalyst usually a hydrocarbon or a halogenated hydrocarbon having 30 or less carbon atoms is used.
  • a hydrocarbon or a halogenated hydrocarbon having 30 or less carbon atoms is used.
  • Specific examples of such a solvent include aliphatic and alicyclic saturated hydrocarbons such as n-hexane, cyclohexane, n-heptane and n-octane, and fats such as 2-hexene, cyclohexene and cyclooctene.
  • Aromatic and alicyclic unsaturated hydrocarbons aromatic hydrocarbons such as toluene, benzene, and xylene; carbon tetrachloride; halogenated hydrocarbons such as chloroform, methylene chloride, cyclobenzene, and dichlorobenzene. .
  • ⁇ -olefin such as 11-hexene can also be used as a solvent.
  • aliphatic and alicyclic saturated hydrocarbons include cyclohexane, n-heptane, benzene, toluene and a mixture of two or more of these.
  • the chromium-based catalyst can be used by being supported on a carrier such as an inorganic oxide, but it is preferable to use the chromium-based catalyst without being supported by the carrier. That is, in the present invention, high catalytic activity can be obtained without carrying a chromium-based catalyst on a carrier.
  • a chromium-based catalyst without being supported on a carrier it is possible to omit loading on a carrier that involves complicated operations, and the force is also reduced by the total amount of catalyst used (the total amount of the carrier and the catalyst components). ) Can be avoided.
  • a chromium-based catalyst used in the low polymerization reaction of ⁇ -olefin is used which is prepared by one of the following two methods.
  • the first method for preparing the chromium-based catalyst used in the method of the present invention comprises the steps of: preparing a compound containing a pyrroyl ring (b), an alkylaluminum compound (c) and a compound containing a halogen (d) in a hydrocarbon and / or halogenated hydrocarbon solvent. ) Is brought into contact with the resulting mixed solution, and a chromium-based catalyst is prepared by bringing the mixed compound (a) into contact with the resulting mixed solution.
  • the use of the above-mentioned catalyst preparation method has the advantages that the catalytic activity is improved, the selectivity of trimer is very high, and the purity of the obtained ⁇ -olefin low polymer is extremely high.
  • the reason why the low polymerization activity of ⁇ -olefin becomes high when a chromium-based catalyst obtained by such a catalyst preparation method is used is not yet clear, but is presumed as follows.
  • a highly active catalyst which gives an ⁇ - one-year-old olefin trimer with high selectivity by reacting a pyrrole ring-containing compound (b), a halogen-containing compound (d) and an alkylaluminum compound (c) in advance. Substrates required for active species generation are generated efficiently.
  • the reaction of only the chromium compound (a) and the alkyl aluminum compound (c), etc. The side reaction easily proceeds, and an extremely unstable alkyl-chromium compound is generated by this reaction.
  • the alkyl-chromium compound generated by such a reaction further undergoes a decomposition-reduction reaction, and as a result, (As a result, inappropriate demetalation is induced in the low polymerization reaction of ⁇ -olefin. Therefore, in order to efficiently generate catalytically active species, the pyrrole ring-containing compound (b) and the halogen-containing compound must be prepared in advance. (D) must be reacted with the alkylaluminum compound (c).
  • the reaction method (contact method) of the pyrrole ring-containing compound (b), the alkylaluminum compound (c) and the halogen-containing compound (d) is not particularly limited, and two of these compounds are reacted first. After that, the remaining components may be reacted, or the three components may be reacted together.
  • the above chromium-based catalyst can be prepared in the presence of ⁇ -olefin, but when it is carried out in the absence of c-olefin, the selectivity of ⁇ -olefin for low polymerization reaction is low. It is preferable because it further improves.
  • the low polymerization activity of the ⁇ -olefin of the obtained chromium-based catalyst is determined by a mixture of a pyrrole ring-containing compound (b), an alkylaluminum compound (c) and a halogen-containing compound (d) with a chromium compound (a).
  • concentration of chromium compound (a) during the reaction is, it is generally preferable that the chromium concentration in the reaction between the above-mentioned mixed solution and the chromium compound (a) be low, since a highly active chromium catalyst can be obtained.
  • Mixture and chromium compounds of the preferred concentration of the chromium compound (a) in the reaction with (a) the concentration is 1 X 10- 7 to 1 mole Z liters of chromium compounds in the mixture (a), more preferably in the range of 1 X 10 _s ⁇ 3 X 10- 2 mole Z l.
  • the amount of the pyrrole ring-containing compound (b) is usually 0.001 mol or more, preferably 0.005 to 1000 mol, more preferably 0.01 to 100 mol per mol of chromium atom.
  • the amount of the alkylaluminum compound (c) is usually at least 50 mmol per mole of chromium atom. From the viewpoint of improving the selectivity of the catalytic activity and trimer more, but 0.1 mol or more is preferable, from the viewpoint of economy, the upper limit is 10 4 moles or less.
  • the amount of the halogen-containing compound (d) is usually at least 1 mmol, preferably at least 50 mmol, per mole of chromium atom. Use of halogen-containing compounds (d) //
  • the catalyst can be prepared by adding a chromium compound (a), a pyrrole ring-containing compound (b) and an alkylaluminum compound (c) to a halogenated hydrocarbon solvent. .
  • a chromium-based catalyst in addition to supplying the chromium-based catalyst prepared in advance to the low polymerization reaction zone, can be prepared in the low polymerization reaction zone. That is, in the reaction zone, the pyrrole ring-containing compound (b), the halogen-containing compound (d), and the alkylaluminum compound (c) are reacted in advance, and then the chromium compound is reacted.
  • a low polymerization reaction can be performed in situ.
  • a second method for preparing a chromium-based catalyst used in the method of the present invention is to prepare a chromium compound in a hydrocarbon and ⁇ or a halogenated hydrocarbon solvent in the absence of ⁇ -olefin.
  • the use of the above-mentioned catalyst preparation method has the advantages that the catalytic activity is improved, the selectivity of trimer is very high, and the purity of the obtained ⁇ -olefin low polymer is extremely high.
  • a chromium-based catalyst is prepared in the presence of ⁇ -olefin, the selectivity of a low polymerization reaction of ⁇ -olefin becomes low.
  • the abundances of the pyrrolidine-containing compound (b), the alkylaluminum compound (c) and the halogen-containing compound (d) are the same as the ranges of the abundances in the first preparation method described above.
  • the reaction solution obtained by contacting the chromium compound (a), the pyrrole ring-containing compound (b), and the halogen-containing compound (particularly the inorganic halogen-containing compound) (d) is added to the reaction solution.
  • the chromium-based catalyst is prepared by adding the alkylaluminum compound (C)-
  • the reaction between the pyrrole ring-containing compound (b) and the halogen-containing compound (d) must be performed before the addition of the alkylaluminum compound (C).
  • the product is formed as a precipitate exhibiting the characteristic infrared absorption described below.
  • the chromium compound (a) may be present in the reaction system from the beginning as described above, or may be added after the formation of the precipitate and before the addition of the alkyl aluminum compound (c). .
  • the time required to form the above precipitate depends on the reaction temperature and the degree of concentration of each component. However, when maintaining the above-mentioned reaction temperature and concentration of each component, it is usually about several minutes. Therefore, when the alkylaluminum compound (c) is added to the mixture of the chromium compound (a), the pyrrole ring-containing compound (b) and the halogen-containing compound (d), the reaction time as a whole is preferably 3 minutes or more. More preferably, it is 7 minutes or more.
  • the method of using an inorganic halogen-containing compound as the halogen-containing compound (d) is economical because the reaction between the pyrrole ring-containing compound (b) and the halogen-containing compound (d) proceeds rapidly at about room temperature. It is preferred in that respect.
  • the second method for preparing the chromium-based catalyst described above includes various preparation methods according to the order of adding each catalyst component to the solvent.
  • An example is as follows.
  • it is optional to add any of them.
  • a mixture of a chromium compound (a) and a compound containing a pyrroyl ring (d) is mixed with a mixture of an alkylaluminum compound (c) and a compound containing a halogen (d). It may be added.
  • the main component of the precipitate is a novel pyrrole derivative represented by the following general formula (I).
  • R 1 to R 4 represent a hydrogen atom or a linear or branched hydrocarbon group having 1 to 20 carbon atoms, and R 3 and R 4 are united. It may form a ring.
  • X represents a halogen atom
  • M represents an element selected from the group consisting of groups 3, 4, and 6 (excluding chromium), groups 13, 14 and 15 of the periodic table.
  • m and n are numbers that satisfy l ⁇ m ⁇ 6, 0 ⁇ n ⁇ 5, 2 ⁇ m + n ⁇ 6, and the value of m + n matches the valence of M.
  • n Rs each represent a hydrogen atom or a linear or branched hydrocarbon group having 1 to 20 carbon atoms, and when n is 2 or more, Rs may be the same or different from each other Good.
  • hydrocarbon group examples include a methyl group, an ethyl group, a propyl group, and a butyl group.
  • halogen atom examples include F, Cl, and Br. c, Y, Ti, Zr, Hf, Mo, W, B, Al, Ga, In, Tl, Si, Ge, Sn, Pb, P, As, Sb And the like.
  • FIG. 1 is an infrared absorption spectrum diagram of the pyrrole derivative of the present invention obtained in Example 6. As shown in FIG. 1, the above-mentioned pyrrole derivative has a hydrogen-bonded NH stretching vibration. It is characterized by having a broad characteristic absorption at 3100 to 3300 cm- 1 .
  • the chromium-based catalyst prepared by a method of forming a reaction product of the pyrrole ring-containing compound (b) and the halogen-containing compound (d) as a precipitate is an ⁇ -olefin. Has low polymerization activity. The reason is although it is not clear, it is observed as follows.
  • the reaction must be carried out in advance before the chromium compound (a ) Is contacted with the alkyl aluminum compound (c), the chromium compound (a) reacts simultaneously with the unreacted pyrrole ring-containing compound (b) and the alkyl aluminum compound (c). A monochromium compound is formed.
  • the decomposition reaction proceeds in the absence of ⁇ -refined olefin, and as a result, Inappropriate demetalation is induced in the low polymerization reaction of ⁇ -olefin. Therefore, when an alkylaluminum compound (c) is added to a mixture of a chromium compound (a), a pyrrole ring-containing compound (b) and a halogen-containing compound (d), an alkyl is used to efficiently generate catalytically active species. Before adding the aluminum compound (c), it is necessary to form a reaction product of the pyrrole ring-containing compound (b) and the halogen-containing compound (d) as a precipitate.
  • the most preferable preparation method of the above-mentioned preparation methods (1) to (3) is a mixed liquid of (2) a pyrrole ring-containing compound (b), an alkylaluminum compound (c) and a halogen-containing compound (d).
  • a chromium compound (a) is added.
  • This method has the following advantages. That is, it is possible to obtain a chromium-based catalyst having a low polymerization activity of ⁇ -olefin and a reaction between the pyrrolyl ring-containing compound (b) and the halogen-containing compound (d), regardless of the type of the halogen-containing compound. It is promoted by the coexistence of the aluminum compound (c).
  • the catalyst is preferably prepared in the absence of oxygen molecules and / or water in any of the first and second preparation methods described above.
  • the temperature during catalyst preparation can be arbitrarily selected, but is preferably in the range of 0 to 150 ⁇ .
  • the preparation time (mixing time) is not particularly limited, but is usually in the range of 0.1 minute to 48 hours, preferably 5 minutes to 3 hours. /
  • the chromium-based catalyst can be isolated by distilling off the solvent from the reaction mixture.
  • a known method such as a method in which the reaction solvent is kept at a temperature higher than the boiling point or at a room temperature under reduced pressure, or a method in which an inert gas flows, can be employed.
  • the obtained catalyst solution or suspension may be used as it is without isolating the chromium-based catalyst from the solvent.
  • the catalyst prepared by the above-described method when the catalyst prepared by the above-described method is stored for a long time before being used for the low polymerization reaction of ⁇ -olefin, the catalyst can be stored in a commonly used organic solvent. It is preferable to include an unsaturated hydrocarbon therein, since the catalyst can be stored in a more stable state. Storage should be performed in the absence of oxygen and water.
  • an unsaturated hydrocarbon having 30 or less carbon atoms is used.
  • unsaturated hydrocarbons such as ethylene, propylene, butene, pentene, hexene, heptene, octene, decene, cyclohexene, and cyclopentene, benzene, toluene, cumene, xylene, mesitylene, etc. Is used.
  • ethylene butene, hexene, octene, decene, cyclohexene, benzene, toluene, xylene or a mixture of two or more thereof.
  • the reason that the catalyst can be stably preserved in the presence of unsaturated hydrocarbons is that these unsaturated hydrocarbons coordinate to the catalyst, which is a coordinatively unsaturated and unstable complex, to stabilize the catalyst. Conceivable.
  • the catalyst is preferably stored at a temperature of 150 ° C. or lower, and is generally stored at a temperature of 178 to 150 °.
  • storage at lower temperatures withstands long-term storage, but the specific storage temperature is determined according to the storage period and the type of unsaturated hydrocarbon to be coexisted.
  • coexistence of aromatic hydrocarbons withstands higher temperature storage than aliphatic unsaturated hydrocarbons.
  • Unsaturated hydrocarbons that coordinate with and stabilize the catalyst are easily dissociated, so it is preferable to increase the amount and concentration of the unsaturated hydrocarbons in the surroundings to prevent dissociation.
  • the concentration of the unsaturated hydrocarbon in the solvent for storing the catalyst is preferably 5% by weight or more, and more preferably 50 moles or more of the unsaturated hydrocarbon per 1 mole of chromium atom.
  • the preferred ratio of unsaturated hydrocarbon to 1 mole of chromium atoms is 100 moles or more, especially 100 moles or more.
  • a chromium compound, a pyrrole compound, an alkylaluminum compound and a halogen-containing compound to a solvent containing an unsaturated hydrocarbon to prepare a solution in which the catalyst is dissolved, and as it is. It is to save. Since the formation of the catalyst occurs quickly, it can be assumed that the catalyst has been formed when all components have been mixed.
  • a catalyst can be prepared in a solvent such as cyclohexane, and an unsaturated hydrocarbon can be added to a solution containing the obtained catalyst and stored.
  • the solvent can be distilled off to concentrate or isolate the catalyst, and this can be dissolved in a solvent containing unsaturated hydrocarbon and stored. Since the catalyst isolated from the solution is deactivated, it is preferable that the isolated catalyst be immediately redissolved in the solvent.
  • the catalyst stored in a solvent containing an unsaturated hydrocarbon by the above method can be used as it is for a low polymerization reaction of ⁇ -olefin.
  • the solvent can be distilled off, and the catalyst can be reduced or isolated and used for the low polymerization reaction.
  • the low polymerization reaction of ⁇ -refining can be carried out according to a conventional method.
  • a raw material ⁇ -olefin a linear or branched ⁇ -olefin having 2 to 30 carbon atoms is used.
  • Specific examples include ethylene, propylene, 1-butene, 1-hexene, 1-octene, 3-methyl-11-butene, 4-methyl-11-pentene, and the like.
  • Ethylene is particularly preferred, and it is possible to obtain 1-hexene, a trimer thereof, from ethylene with high yield and high selectivity.
  • Examples of the solvent for the low polymerization reaction include linear or alicyclic saturated hydrocarbons having 4 to 20 carbon atoms such as butane, pentane, hexane, heptane, cyclohexane, octane, methylcyclohexane, and decalin, benzene, Aromatic hydrocarbons such as toluene, xylene, mesitylene, and tetralin, chloroform, carbon tetrachloride, dichloromethane, ( ⁇
  • Chain halogenated hydrocarbons such as chloroethane, and halogenated aromatic hydrocarbons such as benzene and dichlorobenzene are used. These can be used alone or as a mixed solvent.
  • ⁇ -olefin itself as a reaction raw material or ⁇ -olefin other than the main raw material can be used.
  • ⁇ -olefin having 4 to 30 carbon atoms, but ⁇ -olefin which is liquid at normal temperature is particularly preferable.
  • a chain saturated hydrocarbon or an alicyclic saturated hydrocarbon having 4 to 7 carbon atoms such as butane, pentane, hexane, heptane and cyclohexane, is particularly preferable.
  • the use of these solvents has the advantage that high catalytic activity and selectivity can be obtained.
  • the amount of the chromium-based catalyst used in the low-polymerization reaction of ⁇ -olefin in the present invention is usually 1 ⁇ 10 7 to 0.5 mol, preferably 1 ⁇ 10 6 to 5 mol, as chromium atoms in 1 liter of the solvent. 0.2 mol, further preferably 1 X 10- 5 ⁇ 0. 05 mols.
  • the reaction temperature of the low polymerization reaction is usually in the range of 0 to 250, preferably in the range of 0 to 200.
  • the reaction pressure is that obtained by selecting from a range of normal pressure to 250 k gZcmS, usually is sufficient pressure of l OO k gZc m 2.
  • the reaction time is generally in the range of 1 minute to 20 hours, preferably 0.5 to 6 hours.
  • low polymerization of ⁇ -olefin is carried out as a semi-batch reaction or a continuous reaction using a chromium-based catalyst prepared according to the above-mentioned catalyst preparation method.
  • ⁇ -olefin is continuously supplied into a reactor to react at a constant pressure.
  • a single pipe reactor or a multi-stage mixing tank is used.
  • a pipe reactor is basically a reactor in which a reaction component is introduced from one end of a straight pipe or a coiled or U-shaped curved pipe, and a reaction product is discharged from the other end.
  • the reaction components are introduced into the first tank of a plurality of mixing tanks arranged in series, sequentially moved to the subsequent tank, and the reaction product is discharged from the final tank.
  • the halogen-containing compound (d) can be additionally supplied to the reaction zone during the low polymerization reaction. It is also preferable to additionally supply a pyrrole ring-containing compound (b) or an alkylaluminum compound (c) in addition to the halogen-containing compound. Particularly preferred are halogen-containing compounds (d) and alkylaluminum compounds
  • the halogen-containing compound (d) is to additionally supply
  • the halogen-containing compound can be additionally supplied together with the prepared chromium-based catalyst.
  • a chromium-based catalyst is prepared in a halogenated hydrocarbon solvent, and a catalyst solution containing a large amount of the generated free halogenated hydrocarbon can be additionally supplied to the reaction zone.
  • the additionally supplied halogen-containing compound (d), pyrrole ring-containing compound (b) and alkylaluminum compound (c) the same compounds as those used in the preparation of the catalyst are usually used, but if desired, other compounds may be used. Those can also be used.
  • halogen-containing compound (d) Preferred as the halogen-containing compound (d) to be additionally supplied are carbon tetrachloride, hexachloroethane, and other halogenated hydrocarbons such as ethyl ethyl chloride, getyl aluminum chloride, and tin tetrachloride.
  • the catalyst in the reaction zone is activated, and the catalyst efficiency is reduced.
  • the activity of the catalyst subjected to the reaction decreases with time, but when the halogen-containing compound (d) is supplied thereto, the catalyst is activated and the activity is improved.
  • the activation of the catalyst by the halogen-containing compound (d) is not limited to one time, but can be repeated every time the catalyst activity decreases.
  • the additional supply of the halogen-containing compound (d) to the reaction zone is preferably performed when the catalytic activity starts to decrease or when the catalytic activity is decreasing. It can be added to a catalyst whose activity has been reduced to activate it, but this is not a desirable method from the viewpoint of productivity.
  • the activity of the chromium-based catalyst used in the method of the present invention starts to decrease about 5 minutes at the earliest after being subjected to the reaction, generally about 15 minutes, and thereafter, the activity starts from 70 to 80 minutes. In many cases, the activity declines. Therefore, additional supply of halogen-containing compound (d) is usually Is performed on the zone where the catalyst is present for more than 5 minutes, especially more than 15 minutes after the reaction.
  • the additional supply may be performed once or may be performed several times each time the activity decreases.
  • the supply amount of the halogen-containing compound (d) per one time is preferably from 0.1 to 200 mol, particularly preferably from 1 to 100 mol, per mol of chromium atoms of the catalyst to be activated.
  • the amount of the pyrrole ring-containing compound (b) is preferably from 0.1 to 100 mol, particularly preferably from 1 to 50 mol
  • the alkylaluminum compound (c) is preferably from 1 to 100 mol, particularly from 5 to 500 mol. Molar is preferred.
  • the halogen-containing compound (d) may be additionally supplied at a stage where the quenching rate of ⁇ -olefin has decreased after 5 minutes or more from the start of the reaction. By repeating this additional supply once or several times, it is possible to increase the production amount of the ⁇ -olefin low polymer per unit amount of the catalyst.
  • a solvent, a chromium-based catalyst, ⁇ -olefin, etc. are supplied from the tip of the reactor, and halogen is discharged from the place where the residence time in the reactor is 5 minutes or more. Additional supply of contained compound (d). In this case as well, the halogen-containing compound (d) may be additionally supplied at several places downstream thereof.
  • the solvent, chromium-based catalyst, and ⁇ -olefin When performing the reaction using a multi-stage mixing tank, supply the solvent, chromium-based catalyst, and ⁇ -olefin to the first tank, and add the solvent to the tank where the average residence time after the second tank is 5 minutes or more.
  • the contained compound (d) may be additionally supplied.
  • the halogen-containing compound may be additionally supplied to an arbitrary tank after the first additional supply tank.
  • the by-product polymer is first removed from the obtained reaction solution, and the solution containing the ⁇ -olefin polymer, which is the main product, is recovered. be able to.
  • FIG. 1 is an infrared absorption spectrum of the pyrrole derivative of the present invention obtained as a yellow precipitate in Example 6.
  • tin tetrachloride (108.2 mg, 0.415 mmo 1) was added to a toluene solution (2 ml) of 2,5-dimethylbilol (59.29 mg, 0.623 mmo 1) at room temperature. A suspension of a yellow precipitate was obtained. After stirring the mixture for 15 minutes, a toluene solution (3.lml) of triethylaluminum (357.9 mg, 3.12 mmol) was added to the above suspension and reacted for 15 minutes.
  • Carbon tetrachloride (3.95 mg, 0.208 mmo 1) was added to a toluene solution (5 ml) of 2,5-dimethylbilol (29.59 mg, 0.311 mmo 1) at room temperature under a nitrogen atmosphere.
  • Table 1 shows the results of the composition analysis of the products by gas chromatography.
  • the total amount of the product was 11.33 g, and the catalytic activity (g- ⁇ -olefin) g-Cr ⁇ Hr was 47,518.
  • hexene was the main product, and the purity of hexene relative to the obtained hexenes was 99.9%.
  • Example 2 The reaction was carried out in the same manner as in Example 1, except that cyclohexane (125 ml) and the catalyst solution (0.68 ml) obtained in Catalyst Production Example 2 were charged into the autoclave.
  • Table 1 shows the results of the composition analysis of the products by gas chromatography. The total product amount was 32.63 g, and the catalytic activity was 94725. In addition, 1-hexene was the main product, and the purity of 11-hexene relative to the obtained hexenes was 99.6%.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that cyclohexane (125 ml) and the catalyst solution (0.68 ml) obtained in Catalyst Production Example 3 were charged into the autoclave.
  • Table 1 shows the results of the composition analysis of the products by gas chromatography. The total product amount was 27.57 g and the catalytic activity was 80033. Also, 1-hexene is the main product, and the purity of 11-hexene relative to the obtained hexenes is 99.7%.
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that cyclohexane (125 ml) and the catalyst solution (0.68 ml) obtained in Catalyst Production Example 4 were charged into the autoclave.
  • Table 2 shows the results of product composition analysis by gas chromatography. The total product amount was 7.54 g, and the catalytic activity was 21,895. In addition, 1 ⁇ xene was the main product, and the purity of 1-hexene relative to the obtained hexenes was 99.9%. Comparative Example 2
  • Example 2 The reaction was carried out in the same manner as in Example 1 except that cyclohexane (125 ml) and the catalyst solution (0.68 ml) obtained in Catalyst Production Example 5 were charged into the autoclave.
  • Table 2 shows the results of product composition analysis by gas chromatography. The total product amount was 13.90 g, and the catalytic activity was 40,360.
  • hexene was the main product, and the purity of hexene relative to the obtained hexenes was 99.6%.
  • a method of adding a chromium compound to a mixture containing a pyrrole ring-containing compound, a halogen-containing compound and an alkylaluminum compound A method of adding a chromium compound to a mixture containing a pyrrole ring-containing compound, a halogen-containing compound and an alkylaluminum compound.
  • CHX in the solvent type of the low polymerization reaction represents cyclohexane
  • the unit of the catalytic efficiency is g- ⁇ -olefin Zg—Cr compound
  • the unit of the catalytic activity is , G— ⁇ -refin Z 1 g—C r ⁇ H r.
  • the chromium content in the reaction solution was 8 mmo 1 Z 1. After a reaction for 15 minutes, toluene was distilled off at room temperature under reduced pressure. The obtained dark brown oil was diluted with cyclohexane to obtain a catalyst solution (10.5 m 1).
  • the chromium concentration in the reaction solution was 34.3 mmo1 ⁇ 1. After a reaction for 15 minutes, toluene was distilled off under reduced pressure at room temperature. The resulting brown oil was diluted with silk hexane to give a catalyst solution (11 ml).
  • a 300 ml autoclave dried in a 150 mm dryer was assembled while hot, and then replaced with vacuum nitrogen.
  • cyclohexane (125 ml) and the catalyst solution (0.68 ml) obtained in Catalyst Production Example 7 were charged into an autoclave.
  • the autoclave was heated to 8 and ethylene was introduced into the autoclave until the total pressure reached 38 kg / cm 2 . After that, the total pressure was 38 kg // cm 2 and the reaction temperature was
  • Table 3 shows the composition analysis results of the products by gas chromatography. Total product amount is 17.67 g, and catalytic activity (g- ⁇ -olefin Zg—Cr ⁇ Hr) is 512.
  • Table 3 shows the composition analysis results of the products by gas chromatography.
  • the total amount of the product was 62.3 1 g, and the catalytic activity was 94047.
  • 1-hexene was the main product, and the purity of 11-hexene relative to the obtained hexenes was 99.2%.
  • Example 3 shows the composition analysis results of the products by gas chromatography. The total amount of the product was 7.54 g and the catalytic activity was 21895. In addition, 1-hexene was the main product, and the purity of 11-hexene relative to the obtained hexenes was 99.9%.
  • Example 4 The reaction was carried out in the same manner as in Example 4 except that the catalyst liquid (0.68 ml) obtained in Catalyst Production Example 9 was charged into the autoclave instead of the catalyst liquid obtained in Catalyst Production Example 7. .
  • Table 4 shows the results of product composition analysis by gas chromatography. The total product amount was 13.90 g, and the catalytic activity was 40,360. In addition, hexene was the main product, and the purity of hexene relative to the obtained hexenes was 99.6%.
  • Example 4 The reaction was carried out in the same manner as in Example 4 except that the catalyst solution (lm 1) obtained in Catalyst Preparation Example 10 was charged into the autoclave instead of the catalyst solution obtained in Catalyst Preparation Example 7.
  • Table 4 shows the results of product composition analysis by gas chromatography. The total product amount was 1.24 g, and the catalytic activity was 2342. 1-Hexene was the main product, and the purity of 1-hexene relative to the obtained hexenes was 99.6%. Comparative Example 7
  • Example 4 Example 4 was repeated except that the catalyst solution (0.5 ml) obtained in Catalyst Production Example 11 and cyclohexane (100 ml) were charged into an autoclave in place of the catalyst solution obtained in Catalyst Production Example 7. The reaction was carried out in the same manner as described above. Table 4 shows the results of composition analysis of products by gas chromatography. The total amount of the product was 8.77 g and the catalytic activity was 36762. In addition, hexene was the main product, and the purity of hexene relative to the obtained hexenes was 99.7%.
  • a method of adding a chromium compound to a mixture of a pyrrole ring-containing compound, an alkylaluminum compound and a halogen-containing compound A method of adding a chromium compound to a mixture of a pyrrole ring-containing compound, an alkylaluminum compound and a halogen-containing compound.
  • CHXj represents cyclohexane
  • HPT represents n-heptane
  • the unit of the catalytic efficiency is g- ⁇ - olefin /
  • the unit of g—Cr compound and catalytic activity is g— ⁇ -olefin / g—Cr ⁇ Hr.
  • Catalyst Production Example 1 a yellow precipitate obtained by sequentially adding 2,5-dimethylbilol and tin tetrachloride to a toluene solution of chromium (III) -2-ethylhexanoate and reacting at room temperature for 1 hour. It was confirmed that the compound also had the same infrared absorption spectrum as that of the above-mentioned pipal derivative.
  • the catalyst solution A was stored at room temperature under nitrogen for 5 days to obtain a catalyst solution B.
  • a low-polymerization reaction of ethylene was performed in exactly the same manner as in 2) above, except that this catalyst solution B was used.
  • this catalyst solution B was used.
  • Table 5 shows the results.
  • a 30 Oml autoclave dried in a 150 drier was assembled hot and purged with vacuum nitrogen. Under nitrogen, 125 ml of cyclohexane and 68 ml of the above-mentioned catalyst solution CO. Immediately after preparation were charged at room temperature under nitrogen. The autoclave was heated to 80 ⁇ and ethylene was introduced into the autoclave until the total pressure reached 38 kg / cm 2 G. Thereafter, the reaction was carried out while maintaining the total pressure at 38 kgZcm 2 G and the reaction temperature at 80 ° C.
  • Catalyst solution C was stored at room temperature for 5 days under nitrogen to obtain catalyst solution D.
  • a low-polymerization reaction of ethylene was carried out in exactly the same manner as above except that this catalyst solution D was used.
  • the catalyst activity was 39% of the catalyst activity of the catalyst solution C immediately after preparation. Table 6 shows the results.
  • Catalyst solution E Catalyst solution
  • Catalyst solution G Total product (g) 5.70 4.76 2.59
  • the autoclave was charged with 8 Om1 of cyclohexane and 0.44 ml of the above catalyst solution at room temperature under a nitrogen atmosphere.
  • the autoclave was heated to 80, and ethylene was introduced into the autoclave until the total pressure reached 38 kg / cin 2 G. Thereafter, the reaction was performed while maintaining the total pressure at 38 kg / cm 2 G and the reaction temperature at 80.
  • an industrially advantageous method for producing an ⁇ -olefin low polymer which can produce an ⁇ -olefin low polymer such as 11-hexene with extremely high yield and high selectivity. Is done.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

W 9
- 明細書 α—ォレフィン低重合体の製造方法 技術分野
本発明は α—ォレフイン低重合体の製造方法に関する。 本発明は、 特に、 ェチ レンから 1一へキセンを主体とした α—ォレフィン低重合体を高収率かつ高選択 率で製造することが出来る工業的に有利な α—ォレフィン低重合体の製造方法に 関する。 背景技術
従来、 エチレン等の α—ォレフインの低重合方法として、 特定のクロム化合物 と特定の有機アルミニゥム化合物との組み合わせから成るクロム系触媒を使用す る方法が知られている。 例えば、 特公昭 4 3— 1 8 7 0 7号公報には、 クロムを 含む V I Β族の遷移金属化合物とポリ ヒ ドロカルビルアルミニウムォキシドとか ら成るクロム系触媒系により、 エチレンから 1一へキセン及びポリエチレンを得 る方法が記載されている。
また、 特開平 3— 1 2 8 9 0 4号公報には、 クロム一ピロリル結合を有するク 口ム含有化合物と金属アルキル又はルイス酸とを予め反応させて得られたクロム 系触媒を使用して c —ォレフィンを三量化する方法が記載されている。 更に、 南 アフリカ特許 Z A 9 3 Z 0 3 5 0号明細書には、 クロム塩、 ピロール含有化合物, 金属アルキル及びハラィ ド源を共通の溶媒中で混合することにより得られたクロ ム系触媒を使用して、 エチレンを三量化する方法が記載されている。
—方、 先に、 本発明者らは、 特開平 6— 1 4 5 2 4 1号公報において、 クロム —ピロリル結合を持つクロム含有化合物およびアルキルアルミニウムの組合せか ら成るクロム系触媒を使用し、 α—ォレフインと接触する前にはクロム含有化合 物と金属アルキル化合物とが接触しない態様を採用した ct—ォレフィンの低重合 反応を提案した。 この方法に従えば、 特に、 エチレンの低重合反応により、 1一 へキセンを高活性で得ることが出来る。 z 更に、 本発明者らは、 特開平 6— 1 5 7 6 5 5号公報において、 炭化水素溶媒 中、 クロム塩とピロ一ル環含有化合物とを混合させてクロム含有化合物を調製し、 当該クロム含有化合物とアルキルアルミニゥム化合物とを上記と同様の方法で接 触させる α—ォレフインの低重合反応を提案した。 この方法に従えば、 特に、 ェ チレンの三量化反応を高活性で行い、 純度の高い 1 一へキセンを製造することが 出来る。
また、 最近、 本発明者らは、 特開平 8— 3 2 1 6号公報において、 クロム含有 化合物、 ピロール環含有化合物、 金属アルキル化合物およびハラィ ド源の組合せ から成るクロム触媒を使用し、 α—ォレフインと接触する前にはクロム含有化合 物と金属アルキル化合物とが接触しない態様を採用した α—ォレフィンの低重合 反応を提案した。 この方法に従えば、 特に、 エチレンの低重合反'応により、 1— へキセンをより高活性で得ることが出来る。
しかしながら、 特公昭 4 3— 1 8 7 0 7号公報に記載された方法では、 1 一へ キセンと同時に生成するポリエチレンの量が多く、 他方、 ポリエチレンの副生量 を少なくした条件では、 触媒活性が低下するという問題がある。 また、 特開平 3 - 1 2 8 9 0 4号公報に記載された方法では、 高分子量重合体の生成量は少ない が、 触媒活性が十分でないという問題がある。
また、 南アフリカ特許 Z A 9 3 Ζ 0 3 5 0号明細害に記載された方法では、 1 —へキセンの選択率は高いが、 工業的な α—ォレフィン低重合体の製造方法とい う観点からは、 触媒活性が未だ不十分である。 更に、 特開平 6— 1 4 5 2 4 1号 公報および特開平 6— 1 5 7 6 5 5号公報に記載された方法でも、 工業的な α— ォレフィン低重合体の製造方法という観点からは、 触媒性能が未だ不十分である。 —方、 特開平 8— 3 2 1 6号公報に記載された方法では、 工業的な α—ォレフィ ン低重合体の製造方法という観点からは、 十分に高い活性が達成されているが、 1—へキセンの選択率が不十分であるという欠点を有する。
本発明は上記実情に鑑みなされたものであり、 その目的は、 1 一へキセン等の αーォレフイン低重合体を極めて高収率かつ高選択率で製造することが出来るェ 業的有利な α—ォレフィン低重合体の製造方法を提供することにある。 発明の開示
本発明者らは、 上記の目的を達成すべく鋭意検討を重ねた結果、 特定の方法で 調製した特定のクロム系触媒を使用するならば、 α—ォレフィンの低重合反応、 特に、 エチレンの三量化を主体とする低重合反応が高活性に進行して高純度の 1 一^ >キセンが生成することを見出して本発明を完成した。
即ち本発明の第 1の要旨は、 少なくとも、 クロム化合物 (a) 、 ピロ一ル環含 有化合物 (b) 、 アルキルアルミニウム化合物 (c;) 、 およびハロゲン含有化合 物 (d) の各成分を接触させることにより調製されたクロム系触媒を含有する反 応液中で、 α—ォレフインを低重合反応させて ctーォレフイン低重合体を製造す る方法において、 該クロム系触媒として、 炭化水素およびノまたはハロゲン化炭 化水素溶媒中、 ピロール環含有化合物 (b) 、 アルキルアルミニウム化合物 (c) およびハロゲン含有化合物 (d) を接触させ、 得られた混合液にクロム化合物
(a) を接触させることにより調製されたクロム系触媒を使用することを特徴と する α—才レフイン低重合体の製造方法、 に存する。
また、 本発明の第 2の要旨は、 少なくとも、 クロム化合物 (a) 、 ピロール環 含有化合物 (b) 、 アルキルアルミニウム化合物 (c) 、 およびハロゲン含有化 合物 (d) の各成分を接触させることにより調製されたクロム系触媒を含有する 反応液中で、 α—ォレフインを低重合反応させてひ一ォレフィン低重合体を製造 する方法において、 クロム系触媒として、 α—ォレフィンの不存在下、 炭化水素 および Ζまたはハロゲン化炭化水素溶媒中、 クロム化合物 (a) 、 ピロール環含 有化合物 (b) 、 アルキルアルミニウム化合物 (c) およびハロゲン含有化合物 (d) を、 混合液中のクロム化合物 (a) の濃度を 8 X 1 0-3モル Zリ ッ トル以 下として接触させることにより調製されたクロム系触媒を使用することを特徴と する α—ォレフィン低重合体の製造方法、 に存する。
以下、 本発明を詳細に説明する。
本発明方法においては、 少なくとも、 クロム化合物 (a) 、 ピロール環含有化 合物 (b) 、 ハロゲン含有化合物 (c) およびアルキルアルミニウム化合物 (d) の各成分を接触させることにより調製されたクロム系触媒を使用する。
本発明方法において、 クロム系触媒の調製に使用するクロム化合物 (a) は、 次の一般式 (1 ) で表される。 .
C r X n - . . ( 1 ) 上記式 (1 ) 中、 クロムの価数は 0〜 6価であり、 Xは同一または相互に異な る任意の有機基もしくは無機基又は陰性原子を表し、 nは 1〜 6の整数を表す。 nは 2以上であるのが好ましい。
上記有機基としては、 炭素数が通常 1〜3 0の各種の基が挙げられる。 具体的 には、 炭化水素基、 カルボニル基、 アルコキシ基、 カルボキシル基、 一ジケト ナ一ト基、 —ケトカルボキシル基、 J3—ケトエステル基およびアミ ド基などが 例示される。 炭化水素基としては、 アルキル基、 シクロアルキル基、 ァリール基、 アルキルァリール基、 ァラルキル基、 シクロペンタジェニル基などが挙げられる。 上記無機基としては、 硝酸基、 硫酸基などのクロム塩形成基が挙げられ、 上記陰 性原子としては酸素、 ハロゲン等が挙げられる。
また、 上記のクロム化合物と電子供与体とから成る錯体も好適に使用すること が出来る。 該電子供与体は、 窒素、 酸素、 リン又は硫黄を含有する化合物の中か ら選択される。
上記窒素を含有する化合物としては、 二トリル、 ァミン、 アミ ド等が挙げられ、 具体的には、 ァセトニトリル、 ピリジン、 ジメチルビリジン、 ジメチルホルムァ ミ ド、 N—メチルホルムアミ ド、 ァニリン、 ニトロベンゼン、 テトラメチルェチ レンジァミン、 ジェチルァミン、 イソプロピルァミン、 へキサメチルジシラザン、 ピロリ ドン等が挙げられる。
上記酸素を含有する化合物としては、 エステル、 エーテル、 ケトン、 アルコー ル、 アルデヒ ド等が挙げられ、 具体的には、 ェチルアセテート、 メチルァセテ一 ト、 テトラヒ ドロフラン、 ジォキサン、 ジェチルエーテル、 ジメ トキシェタン、 ジグライム、 トリグライム、 アセトン、 メチルェチルケトン、 メタノール、 エタ ノール、 ァセトアルデヒ ド等が挙げられる。
上記リンを含有する化合物としては、 へキサメチルホスホルアミ ド、 へキサメ チルホスホラストリアミ ド、 トリェチルホスファイ ト、 トリブチルホスフィンォ キシド、 トリェチルホスフィン等が挙げられる。 一方、 上記硫黄を含有する化合 物としては、 二硫化炭素、 ジメチルスルホキシド、 テトラメチレンスルホン、 チ ォフェン、 ジメチルスルフィ ド等が挙げられる。
従って、 クロム化合物と電子供与体から成る錯体の例としては、 ハロゲン化ク ロムのエーテル錯体、 エステル錯体、 ケトン錯体、 アルデヒ ド錯体、 アルコール 錯体、 アミン錯体、 二トリル錯体、 ホスフィン錯体、 チォエーテル錯体などが挙 げられる。
クロム化合物 (a) としては、 後述する炭化水素溶媒またはハロゲン化炭化水 素溶媒に可溶な化合物が好ましく、 かかる化合物としては、 例えばクロムの — ジケトナート塩、 カルボン酸塩、 j3—ケトエステルのァニオンとの塩、 0—ケト カルボン酸塩、 アミ ド錯体、 カルボニル錯体、 カルべン錯体、 各種のシクロペン タジェニル錯体、 アルキル錯体、 フエニル錯体などが挙げられる。 具体的には、 クロム (III)ァセチルァセトナート、 クロム (III) トリプルォロアセチルァセト ナート、 クロム (III)へキサフルォロアセチルァセトナ一ト、 クロム (III) (2, 2, 6, 6—テトラメチル一 3, 5—ヘプタンジオナート) 、 C r (P hCOC HCOP h) 3 (但し、 Phはフエ二ル基を示す。 ;) 、 クロム (Π) アセテート、 クロム (III)アセテート、 クロム (III)一 2—ェチルへキサノエート、 クロム
(III)ベンゾェ一ト、 クロム (III)ナフテネート、 C r (CHsCOCHCOOC H3) 3、 クロム (II) ビス (トリメチルシリル) アミ ド、 C r (CO) 6、 (Ce H6) C r (CO) 3、 (CO) SC r (=CCHa (OCH3) ) 、 (CO) 5C r (=C CeHs (OCH3) ) 、 C p C r C 12 (但し C pはシクロペンタジェニル 基を示す。 ) 、 (C p *C r C l CH3) 2 (但し C p *はペンタメチルシクロべ ンタジェニル基を示す。 ) 、 (CH3) 2C r C 1等が例示される。 これらの中で、 特に好ましいクロム化合物は、 3—ジケトナート塩、 )3—ケトエステルのァニォ ンとの塩、 カルボン酸塩、 ]3—ケトカルボン酸塩などである。 なお、 本発明にお いて、 クロム化合物は、 クロム原子が含まれていればよく、 他の金厲を含んでい てもよい。
本発明方法において、 クロム系触媒の調製に使用するピロ一ル環含有化合物 (b) は、 ピロ一ル若しくは置換ピロ一ル又はこれらに対応する金属塩すなわち 金属ピロリ ドである。
上記置換ピロ一ルとしては、 2, 5—ジメチルビロールの他に、 3, 4—ジク も
ロロピロール、 2, 3, 4, 5—テトラクロロピロール、 2—ホノレミノレピロ一ノレ、 2—ァセチルピロ—ル、 2, 3, 4—トリメチルピロ一ル、 3, 4一ジェチルビ ロール、 テトラヒ ドロインドール、 3, 3f , 4, 4' ーテトラメチルー 2, 2 ' ージピロロメタン等が举げられる。
上記金属ピロリ ドの金覊としては、 1族、 2族、 1 3族及び 14族から選択さ れた金属が使用される。 好ましい金属ピロリ ドとしては、 リチウムピロリ ド、 ナ トリゥムピロリ ド、 カリゥムピロリ ド、 セシウムピロリ ド、 マグネシウムジピロ リ ド、 ジェチルアルミニウムピロリ ド、 ェチルアルミニウムジピロリ ド、 アルミ -ゥムトリピロリ ド、 リチウム一 2, 5—ジメチルピロリ ド、 ナトリウム一 2, 5—ジメチルピロリ ド、 カリウム一 2, 5—ジメチルビ口リ ド、 セシウム一 2, 5—ジメチルピロリ ド、 ジェチルアルミニウム一 2 , 5—ジメチルピロリ ド、 ェ チルアルミニウム一ビス (2, 5—ジメチルピロリ ド) 、 トリクロ口ゲルマニウ ムピロリ ド等が挙げられる。
更に、 リチウム一 3, 4—ジクロ口ピロリ ド、 ナトリウム一 2, 3, 4, 5— テトラクロ口ピロリ ド、 リチウム一 2, 3, 4—トリメチルピロリ ド、 ジェチル アルミニウム一 2, 3, 4—トリメチルピロリ ド、 ナトリウム一 3, 4一ジェチ ルビ口リ ド、 ジェチルアルミニウム一 3, 4—ジェチルピロリ ド等が挙げられる。 本発明方法において、 クロム系触媒の調製に使用する好適なアルキルアルミ二 ゥム化合物 (c) としては、 下記一般式 (2) で示されるアルキルアルミニウム 化合物が挙げられる。
Rl mA 1 (OR2) nHpX, · · · (2)
上記式 (2) 中、 R1 及び R2 は、 炭素数が通常 1〜1 5、 好ましくは 1〜8 の炭化水素基であって互いに同一であっても異なっていてもよく、 Xはハロゲン 原子を表し、 m、 n、 p及び qはそれぞれ、 0<m≤ 3、 0≤ n < 3 , 0≤ ρ < 3、 及び 0 q< 3、 の関係式を満たし、 しかも、 m+n + p + q = 3である数 を表す。
上記のアルキルアルミニウム化合物としては、 例えば、 一般式 (3) で示され るトリアルキルアルミニウム化合物、 一般式 (4) で示されるハロゲン化アルキ ルアルミニウム化合物、 一般式 (5) で示されるアルコキシアルキルアルミ-ゥ ム化合物、 一般式 (6) で示される水素化アルキルアルミニウム化合物、 一般式 (7) で示されるアルミノキサン等が挙げられる。 なお、 各式中の R1 、 Xおよ び R 2の意義は前記と同じである。
R A 1 · · · (3 )
Figure imgf000009_0001
R^A 1 (OR2 ) 3—» · · · (5)
(0 <m< 3、 好ましくは 1. 5≤mく 3)
R'»A 1 H3-« · · · (6)
(0く m< 3、 好ましくは 1. 5 mく 3)
R'2 (A 1 O) (R'A 1 O) »A 1 Rl 2 · · . (7)
(0≤m≤ 30、 好ましくは 1≤m) '
上記のアルキルアルミニウム化合物 (c) の具体例としては、 トリメチルアル ミニゥム、 トリェチルアルミニウム、 トリイソブチルアルミニウム、 ジェチルァ ルミニゥムモノクロリ ド、 ジェチルァノレミニゥムェトキシド、 ジェチルアルミ二 ゥムヒ ドリ ド、 メチルアルミノキサン、 イソブチルアルミノキサン等が挙げられ る。
上記のアルキルアルミニウム化合物 (c) は 2種以上の混合物として使用する ことも出来る。 また、 ポリマーの副生が少ないと言う観点から、 トリアルキルァ ルミニゥム化合物、 特にトリェチルアルミニウムが好適に使用される。 更に、 ト リアルキルアルミニゥム化合物とハロゲン化アルキルアルミニゥム化合物 (アル キルアルミニウムモノクロリ ドゃアルキルアルミニウムジクロリ ド等) との混合 物も好適に使用される。
本発明方法において、 クロム系触媒の調製に使用するハロゲン含有化合物 (d) は、 ハロゲン原子が含まれる化合物であればよい。 その中でも、 周期表の 3族、 4族、 6族 (クロムを除く) 、 13族、 14族及び 1 5族の群から選ばれる元素 を含むハロゲン含有化合物が好ましい。 ハロゲンとしては、 塩素、 臭素が好まし いが、 特に塩素が好ましい。
ハロゲン含有化合物 (d) の具体例としては、 塩化スカンジウム、 塩化イット リウム、 塩化ランタン、 四塩化チタン、 四塩化ジルコニウム、 四塩化ハフニウム、 三塩化ホウ素、 塩化アルミニゥ 、 ジェチルアルミニウムクロリ ド、 ェチルアル ミニゥムセスキクロリ ド、 ェチルアルミニウムジクロリ ド、 塩化ガリウム、 四塩 化炭素、 クロ口ホルム、 ジクロロメタン、 ジクロロェタン、 テトラクロロェタン、 ァリノレク口リ ド、 トリクロロアセトン、 へキサク口ロアセ卜ン、 へキサクロロシ クロへキサン、 1 , 3 , 5—トリクロ口ベンゼン、 へキサクロ口ベンゼン、 トリ チルクロリ ド、 四塩化シラン、 トリメチルクロロシラン、 四塩化ゲルマニウム、 四塩化スズ、 トリプチルスズク口リ ド、 ジブチルスズジク口リ ド、 三塩化リン、 三塩化アンチモン、 トリチルへキサクロ口アンチモネート、 五塩化アンチモン、 三塩化ビスマス、 三臭化ホウ素、 三臭化アルミニウム、 四臭化炭素、 ブロモホル ム、 ブロモベンゼン、 四臭化ケィ素、 ョードメタン、 ジョードメタン、 へキサフ ルォロベンゼン、 フッ化アルミニウム、 五塩化モリブデン、 六塩化タングステン 等が挙げられる。
上記のハロゲン含有化合物 (d ) の中では、 ハロゲン原子の数が多いものが好 ましく、 更に、 後述する炭化水素溶媒またはハロゲン化炭化水素溶媒に可溶な化 合物が好ましい。 かかるハロゲン含有化合物としては、 四塩化炭素、 クロ口ホル ム、 ジクロロェタン、 テトラクロロェタン、 トリクロ口アセトン、 へキサクロ口 アセトン、 四塩化チタン、 四塩化ゲルマニウム、 四塩ィ匕スズ等が挙げられる。 ノヽ ロゲン含有化合物は、 2種以上の混合物として使用することも出来る。
本発明において、 クロム系触媒を調製する際の反応媒体である炭化水素溶媒ま たはハロゲン化炭化水素溶媒としては、 通常、 炭素数が 3 0以下の炭化水素また はハロゲン化炭化水素が使用される。 かかる溶媒の具体例としては、 n—へキサ ン、 シクロへキサン、 n—ヘプタン、 n—オクタン等の脂肪族および脂環式飽和 炭化水素、 2—へキセン、 シクロへキセン、 シクロォクテン等の脂肪族および脂 環式不飽和炭化水素、 トルエン、 ベンゼン、 キシレン等の芳香族炭化水素、 四塩 化炭素、 クロ口ホルム、 塩化メチレン、 クロ口ベンゼン、 ジクロロベンゼン等の ハロゲン化炭化水素などが挙げられる。 また、 後述する本願発明方法において用 いるクロム系触媒の第 1の調製方法では、 1一へキセンなどの α—ォレフィンも 溶媒として使用することが出来る。
上記の溶媒の中では、 脂肪族および脂環式飽和炭化水素、 芳香族炭化水素およ びこれらの混合物が好ましく、 具体的には、 シクロへキサン、 n—ヘプタン、 ベ ンゼン、 トルエン及びこれらの 2種以上の混合物が挙げられる。
また本発明においては、 クロム系触媒を無機酸化物などの担体に担持して使用 することも出来るが、 担体に担持させずに使用する方が好ましい。 すなわち、 本 発明においては、 クロム系触媒の担体への担持を行わなくとも高い触媒活性が得 られる。 そして、 クロム系触媒を担体に担持させずに使用することにより、 複雑 な操作を伴う担体への担持を省略でき、 し力 も、 担体の使用による総触媒使用量 (担体と触媒成分の合計量) の増大という問題をも回避することが出来る。 本発明方法においては、 α—才レフインの低重合反応に用いるクロム系触媒と して、 以下に説明する 2方法のうちのいずれかの方法により調製されたものを使 用する。
本発明方法において用いるクロム系触媒の第 1の調製方法は、 炭化水素および /またはハロゲン化炭化水素溶媒中、 ピロ一ル環含有化合物 (b ) 、 アルキルァ ルミニゥム化合物 (c ) およびハロゲン含有化合物 (d ) を接触させ、 得られた 混合液にク口ム化合物 (a ) を接触させることによりクロム系触媒を調製する方 法である。
上記の触媒調製法を採用することにより、 触媒活性が向上し、 且つ、 三量化物 の選択率が非常に高く、 また、 得られる α—ォレフイン低重合体の純度も極めて 高いという利点がある。 かかる触媒調製法で得られたクロム系触媒を使用した場 合に α—ォレフィンの低重合活性が高くなる理由は、 未だ詳らかではないが、 次 の様に推察される。
すなわち、 予め、 ピロール環含有化合物 (b ) とハロゲン含有化合物 (d ) と アルキルアルミニウム化合物 (c ) とを反応させることにより、 高い選択率で α 一才レフインの三量体を与える高活性な触媒活性種生成に必要な基質が効率的に 生成する。 これに対し、 後述する本発明のクロム系触媒の第 2の調製方法を除く 他の接触方法では、 上記の反応以外に、 同時に、 クロム化合物 (a ) とアルキル アルミニウム化合物 (c ) のみの反応などの副反応が進行し易く、 この反応によ つて極めて不安定なアルキル一クロム化合物が生成する。 そして、 かかる反応に よって生成するアルキル一クロム化合物は、 分解還元反応が更に進行し、 その結 (0 果、 α—ォレフインの低重合反応に不適当な脱メタル化が惹起される。 従って、 効率的に触媒活性種を生成させるためには、 予めピロール環含有化合物 (b) と ハロゲン含有化合物 (d) とアルキルアルミニウム化合物 (c ) とを反応させて おく必要がある。
ピロール環含有化合物 (b) 、 アルキルアルミニウム化合物 (c ) およびハロ ゲン含有化合物 (d) の反応方法 (接触方法) には、 特に制限はなく、 これらの 化合物の中の 2種を先に反応させてから残る成分を反応させてもよいし、 3成分 を一緒に反応させてもよい。
なお上記のクロム系触媒の調製は、 α—ォレフインの存在下で行うこともでき るが、 c —ォレフィンの不存在下で行った場合には、 α—ォレフインの低重合反 応の選択性がさらに向上するので好ましい。
上記方法において、 得られるクロム系触媒の α—ォレフィンの低重合活性は、 ピロール環含有化合物 (b) 、 アルキルアルミニウム化合物 (c ) およびハロゲ ン含有化合物 (d) の混合液とクロム化合物 (a) との反応時におけるクロム化 合物 (a ) の濃度の影響を受ける。 すなわち、 一般に上記の混合液とクロム化合 物 (a) との反応時のクロム濃度が低い方が高活性なクロム系触媒が得られるの で好ましい。
上記の混合液とクロム化合物 (a ) との反応時におけるクロム化合物 (a) の 好適な濃度は、 混合液中のクロム化合物 (a) の濃度が 1 X 10— 7〜1モル Zリ ットル、 より好ましくは 1 X 10_s〜3 X 10— 2モル Zリットルの範囲である。 そして、 ピロール環含有化合物 (b) の存在量は、 クロム原子 1モル当たり、 通常 0. 001モル以上、 好ましくは 0. 005〜 1000モル、 更に好ましく は 0. 01〜: 100モルである。
アルキルアルミニウム化合物 (c ) の存在量は、 クロム原子 1モル当たり、 通 常 50ミリモル以上である。 触媒活性および三量体の選択率を一層向上させる観 点から、 0. 1モル以上が好ましいが、 経済性の観点からは、 その上限は 104 モル以下とされる。
ハロゲン含有化合物 (d) の存在量は、 クロム原子 1モル当たり、 通常 1ミリ モル以上、 好ましくは 50ミリモル以上である。 ハロゲン含有化合物 (d) の使 //
用量の上限は特に制限されず、 例えば、 ハロゲン化炭化水素溶媒中にクロム化合 物 (a) 、 ピロール環含有化合物 (b) およびアルキルアルミニウム化合物 (c) を添加して触媒調製を行なうことが出来る。
なお、 本発明においては、 予め調製したクロム系胜媒を低重合反応帯域に供給 する以外に、 低重合反応带域内でクロム系触媒を調製することも出来る。 すなわ ち、 反応帯域において、 予め、 ピロール環含有化合物 (b) とハロゲン含有化合 物 (d) とアルキルアルミニウム化合物 (c) とを反応させた後にクロム化合物
(a) を反応させる方法を採用して触媒調製を行った後、 その場で低重合反応を 行なわせることが出来る。
本発明方法において用いるクロム系触媒の第 2の調製方法は、 α—ォレフィン の不存在下、 炭化水素および Ζまたはハロゲン化炭化水素溶媒中、 クロム化合物
(a) 、 ピロ一ル環含有化合物 (b) 、 アルキルアルミニウム化合物 (c) およ びハロゲン含有化合物 (d) を、 混合液中のクロム化合物 (a) の漉度を 8 X 1 0一3モル Zリ ットル以下として接触させることにより、 クロム系触媒を調製する 方法である。
上記の触媒調製法を採用することにより、 触媒活性が向上し、 且つ、 三量化物 の選択率が非常に高く、 また、 得られる α—ォレフイン低重合体の純度も極めて 高いという利点がある。 α—ォレフインの存在下にクロム系触媒を調製した場合 は、 α—ォレフィンの低重合反応の選択性が低くなる。 かかる触媒調製法で得ら れたク口ム系触媒を使用した場合に α—ォレフィンの低重合活性が高くなる理由 は未だ明らかではないが、 炭化水素および/またはハロゲン化炭化水素溶媒中の クロム化合物の澳度を 8 X 10— 3モル リ ッ トル以下、 好ましくは、 1 X 10一3 〜8 Χ 1 0-3モルノリットルとすることにより、 有効な触媒活性種が効率よく形 成されて維持されるためと推察される。
そして、 ピロ一ル漯含有化合物 (b) 、 アルキルアルミニウム化合物 (c) お よびハロゲン含有化合物 (d) の存在量は、 前述した第 1の調製方法における存 在量の範囲と同じである。
ところで、 クロム化合物 (a) 、 ピロール環含有化合物 (b) 、 及びハロゲン 含有化合物 (特に無機ハロゲン含有化合物) (d) を接触させて得た反応液にァ / ルキルアルミニウム化合物 (C)-を添加してクロム系触媒を調製する場合は、 ァ ルキルアルミニウム化合物 (C) を添加する前にピロール環含有化合物 (b) と ハロゲン含有化合物 (d) との反応生成物を後述する特徴的な赤外吸収を示す沈 澱物として生成させるのが好ましい。 この場合、 クロム化合物 (a) は、 上記の 様に反応系に初めから共存していてもよく、 沈殿物の生成後、 アルキルアルミ二 ゥム化合物 (c) の添加前に添加してもよい。
上記の沈澱物を生成させるのに必要な時間は、 反応温度、 各成分の溏度に依る が、 前述した反応温度および各成分濃度を維持する場合、 通常数分程度である。 従って、 クロム化合物 (a) 、 ピロール環含有化合物 (b) およびハロゲン含有 化合物 (d) の混合液にアルキルアルミニウム化合物 (c) を添加する場合の全 体としての反応時問は好ましくは 3分間以上、 更に好ましくは 7分間以上である。 特に、 ハロゲン含有化合物 (d) として、 無機ハロゲン含有化合物を使用する方 法は、 室温程度でピロール環含有化合物 (b) とハロゲン含有化合物 (d) の反 応が速やかに進行するため経済性の点で好ましい。
上記のクロム系触媒の第 2の調製法には、 溶媒中に各触媒成分を添加する順序 に従って各種の調製法が含まれる。 その一例は次の通りである。
(1) クロム化合物 (a) 、 ピロール環含有化合物 (b) およびハロゲン含有化 合物 (d) の混合液に、 アルキルアルミニウム化合物 (c) を添加する方法。
(2) ピロール環含有化合物 (b) 、 アルキルアルミニウム化合物 (c) および ハロゲン含有化合物 (d) の混合液にクロム化合物 (a) を添加する方法。
(3) クロム化合物 (a) とピロール瑭含有化合物 (b) の混合液にアルキルァ ルミニゥム化合物 (c) とハロゲン含有化合物 (d) の混合液を添加する方法。 上記の各調製法において、 何れを何れに添加するかは任意である。 例えば、 上 記の調製法 (3) においては、 アルキルアルミニウム化合物 (c) とハロゲン含 有化合物 (d) の混合液にクロム化合物 (a) とピロ一ル環含有化合物 (d) の 混合液を添加してもよい。
上記の調製法 (1) において、 ハロゲン含有化合物 (d) として無機ハロゲン 含有化合物を使用する場合は、 前述の通り、 クロム化合物 (a) 、 ピロール環含 有化合物 (b) およびハロゲン含有化合物 (d) の混合液にアルキルアルミニゥ ム化合物 (c) を添加する前にピ ール環含有化合物 (b) とハロゲン含有化合 物 (d) との反応生成物を沈濺物として生成させることが重要である。
上記の沈殿物の主成分は、 下記一般式 ( I ) で表される新規なピロール誘導体 である。
Figure imgf000015_0001
一般式 (I ) 中、 R1 〜: 4 は、 水素原子または炭素数が 1〜2 0の直鎖状も しくは分岐鎖状の炭化水素基を表し、 R3 と R4 とは一体となって環を形成して いてもよレ、。 Xはハロゲン原子、 Mは、 周期表の 3族、 4族、 6族 (クロムを除 く) 、 1 3族、 1 4族及び 1 5族からなる群から選ばれた元素を表す。 m及び n は、 l ^m≤ 6、 0≤n≤ 5, 2≤m+ n≤ 6を満足する数であって、 m+ nの 値は Mの価数と一致する。 n個の Rは、 それぞれ、 水素原子または炭素数が 1〜 20の直鎖状もしくは分岐鎖状の炭化水素基を表し、 nが 2以上の場合、 Rは互 いに同一でも異なっていてもよい。
上記の炭化水素基としては、 メチル基、 ェチル基、 プロピル基、 ブチル基など が挙げられ、 上記のハロゲン原子としては、 F、 C l、 B r等が挙げられ、 上記 の元素としては、 S c、 Y、 T i、 Z r、 H f 、 Mo、 W、 B、 A l、 G a、 I n、 T l、 S i、 G e、 S n、 P b、 P、 A s、 S b等が挙げられる。
図 1は、 実施例 6で得られた本発明のピロ一ル誘導体の赤外吸収スぺクトル図 であるが、 上記のピロール誘導体は、 図 1に示す様に、 水素結合した NH伸縮振 動に帰属する幅広い特徴的な吸収を 3 1 00〜 3 3 0 0 c m— 1に有することによ つて特徴付けられる。
アルキルアルミニウム化合物 (c) を添加する前にピロール環含有化合物 (b) とハロゲン含有化合物 (d) との反応生成物を沈澱物として生成させる方法で調 製されるクロム系触媒は、 α—ォレフインの低重合活性が高い。 その理由は、 未 だ詳らかではないが、 次の様に撺察される。
すなわち、 ピロール環含有化合物 (b) とハロゲン含有化合物 (d) を+分に 反応させると、 a—ォレフインの三量体を高選択的に与える高活性な触媒活性種 生成に必須の基質が生成する。 クロム化合物 (a) 、 ピロール環含有化合物 (b) およびハロゲン含有化合物 (d) の混合液にアルキルアルミニウム化合物 (c) を添加する場合には、 予めこの反応を十分行わないと、 クロム化合物 (a) とァ ルキルアルミニウム化合物 (c) が接触する際、 クロム化合物 (a) と、 未反応 のピロール環含有化合物 (b) およびアルキルアルミニウム化合物 (c) の反応 が同時に起こるため、 極めて不安定なアルキル一クロム化合物が生成する。
そして、 上記の反応によって生成するアルキル一クロム化合物においては、 特 開平 6— 14524 1号公報に記載した様に、 α—才レフイン不存在下、 更に、 分解速元反応が進行し、 その結果、 α—ォレフインの低重合反応に不適当な脱メ タル化が惹起される。 従って、 クロム化合物 (a) 、 ピロール環含有化合物 (b) およびハロゲン含有化合物 (d) の混合液にアルキルアルミニウム化合物 (c) を添加する場合は、 効率的に触媒活性種を生成させるため、 アルキルアルミニゥ ム化合物 (c) を添加する前にピロール環含有化合物 (b) とハロゲン含有化合 物 (d) との反応生成物を沈澱物として生成させることが必要である。
上記の (1) から (3) の調製法の中で最も好ましい調製方法は、 (2) のピ ロール環含有化合物 (b) 、 アルキルアルミニウム化合物 (c) およびハロゲン 含有化合物 (d) の混合液にクロム化合物 (a) を添加する方法である。 この調 製法によれば主に次の様な利点がある。 すなわち、 α—才レフインの低重合活性 の高いクロム系触媒が得られること、 ピロ一ル環含有化合物 (b) とハロゲン含 有化合物 (d) の反応がハロゲン含有化合物の種類によらずにアルキルアルミ二 ゥム化合物 (c) の共存により促進されること、 である。
本発明において、 触媒調製は、 前述した第 1及び第 2の調製方法のいずれの場 合にも、 酸素分子および/または水の不存在下で行うのが好ましい。 触媒調製時 の温度は、 任意に選択することが出来るが、 0〜1 50 ^の範囲が好ましい。 調 製時間 (混合時間) は、 特に限定されないが、 通常は 0. 1分から 48時間、 好 ましくは 5分から 3時間の範囲である。 /
そして、 触媒調製反応終了後、.反応混合物から溶媒を留去することにより、 ク ロム系触媒を単離することが出来る。 反応溶媒の留去には、 その沸点より高温ま たは常温下に減圧で保持したり、 不活性ガスを流通させる方法などの公知の方法 を採用することが出来る。 しかしながら、 溶媒からクロム系触媒を単離すること なく、 得られた触媒溶液ないしは懸濁液をそのままクロム系触媒として使用して もよい。
本発明において、 前述した方法で調製された触媒を α—ォレフィンの低重合反 応に使用する前に長時間保存する際は、 一般に用いられる有機溶媒中で保存する ことが出来るが、 該有機溶媒中に不飽和炭化水素を含有させることにより、 触媒 をより安定な状態で保存することができるので好ましい。 保存は酸素及び水の不 存在下に行うのがよい。
有機溶媒中に存在させる不飽和炭化水素としては、 通常、 炭素数が 3 0以下の 不飽和炭化水素が使用される。 例えばエチレン、 プロピレン、 ブテン、 ペンテン、 へキセン、 ヘプテン、 才クテン、 デセン、 シクロへキセン、 シク口才クテン等の 脂肪族又は脂環式の不飽和炭化水素、 ベンゼン、 トルエン、 クメン、 キシレン、 メシチレン等の芳香族炭化水素が用いられる。 特にエチレン、 ブテン、 へキセン、 ォクテン、 デセン、 シクロへキセン、 ベンゼン、 トルエン、 キシレン又はこれら の 2種以上の混合物を用いるのが好ましい。
不飽和炭化水素が共存すると触媒が安定に保存できるのは、 配位不飽和で不安 定な錯体である触媒にこれらの不飽和炭化水素が配位して、 触媒を安定化させる ことによるものと考えられる。
本発明では触媒の保存温度は 1 5 0 ¾以下が好ましく、 一般的には一 7 8で〜 1 5 0でで保存する。 一般に低温で保存する方が長期間の保存に耐えるが、 具体 的な保存温度は保存期間及び共存させる不飽和炭化水素の種類に応じて決定され る。 一般に脂肪族の不飽和炭化水素よりも芳香族炭化水素を共存させた方がより 高温での保存に耐える。 この意味で C s 〜C 1 2の芳香族炭化水素を共存させるの は、 好ましい態様の一つである。
本発明によれば少なくとも 2 4時問、 通常は 3 6時間保存した後においても、 α一才レフインの低重合反応の触媒として十分な活性を有している。 (h
なお、 触媒に配位してこれを安定化させている不飽和炭化水素は、 解離し易い ので、 周囲の不飽和炭化水素の量及び濃度を高めて、 解離を阻止するようにする のが好ましい。 かかる観点から、 触媒を保存する溶媒中の不飽和炭化水素の濃度 は 5重量%以上であるのが好ましく、 またクロム原子 1モル当たり不飽和炭化水 素を 5 0モル以上存在させるのが好ましい。 クロム原子 1モルに対する不飽和炭 化水素の好ましい比率は 1 0 0モル以上、 特に 1 0 0 0モル以上である。
本発明方法により触媒を保存するには、 最も好ましくは不飽和炭化水素を含む 溶媒にクロム化合物、 ピロール化合物、 アルキルアルミニウム化合物及びハロゲ ン含有化合物を添加して触媒が溶解した溶液を調製し、 そのまま保存することで ある。 触媒の生成は迅速に行われるので、 全成分の混合が完了した時点で触媒が 生成したものと見做して差支えない。 また、 シクロへキサン等の溶媒中で触媒を 調製し、 得られた触媒を含む溶液に不飽和炭化水素を加えて保存することもでき る。 さらには適宜の溶媒中で触媒を調製したのち、 溶媒を留去して触媒を濃縮な いしは単離し、 これを不飽和炭化水素を含む溶媒中に溶解して保存することもで きる。 なお、 溶液中から単離された触媒は失活しゃすいので、 単離した触媒はす みやかに溶媒に再溶解するのが好ましい。
上記方法により不飽和炭化水素を含む溶媒中で保存した触媒は、 そのまま α - ォレフィンの低重合反応に用いることができる。 また溶媒を留去して触媒を澳縮 ないしは単離して低重合反応に用いることもできる。
本発明における α—才レフィンの低重合反応は常法に従って行うことができる。 原料の α—ォレフィンとしては、 炭素数 2〜 3 0の直鎖又は分岐鎖の α—ォレフ インが使用される。 具体例としては、 エチレン、 プロピレン、 1ーブテン、 1— へキセン、 1—ォクテン、 3—メチル一1ーブテン, 4一メチル一1一ペンテン 等が挙げられる。 特にエチレンが好適であり、 エチレンからその三量体である 1 一へキセンを高収率かつ高選択率で得ることが出来る。
低重合反応の溶媒としては、 ブタン、 ペンタン、 へキサン、 ヘプタン、 シクロ へキサン、 オクタン、 メチルシクロへキサン、 デカリン等の炭素数 4〜 2 0の鎖 状又は脂環式の飽和炭化水素、 ベンゼン、 トルエン、 キシレン、 メシチレン、 テ トラリン等の芳香族炭化水素、 クロ口ホルム、 四塩化炭素、 ジクロロメタン、 ジ (Ί
クロロェタン等の鎖状ハロゲン化炭化水素、 クロ口ベンゼン、 ジクロロベンゼン 等のハロゲン化芳香族炭化水素等が使用される。 これらは、 単独で使用するほか、 混合溶媒として使用することも出来る。
また、 低重合反応の溶媒として、 反応原料の α—ォレフインそれ自体又は主原 料以外の α—才レフインを使用することも出来る。 溶媒用としては、 炭素数が 4 〜 30の α—ォレフインを使用するのが好ましいが、 常温で液状の α—ォレフィ ンが特に好ましい。
上記の溶媒の中では、 特に、 ブタン、 ペンタン、 へキサン、 ヘプタン、 シクロ へキサン等の炭素数が 4〜 7の鎖状飽和炭化水素又は脂環式飽和炭化水素が好ま しい。 これらの溶媒を使用した場合は、 高い触媒活性及び選択性が得られるとい う利点がある。
本発明における α—ォレフイン低重合反応時のクロム系触媒の使用量は、 溶媒 1 リッ トル中のクロム原子として、 通常 1 X 1 0_7〜0. 5モル、 好ましくは 1 X 1 0— 6〜0. 2モル、 更に好ましくは 1 X 10— 5〜0. 05モルの範囲とする。 低重合反応の反応温度は、 通常 0〜250で、 好ましくは 0〜 200での範囲 とする。 一方、 反応圧力は、 常圧ないし 250 k gZcmS の範囲から選択し得 るが、 通常は、 l O O k gZc m2 の圧力で十分である。 反応時間は、 通常 1分 から 20時間、 好ましくは 0. 5〜6時間の範囲とされる。
なお、 低重合反応の反応系に水素を共存させるならば、 副生するポリマーの性 状が改善されるので好ましい。 共存させる水素の量は、 水素分圧として、 通常 0. 1〜: L 00 k g/ c m2 、 好ましくは 1. 0〜80 k g/cm2 の範囲とする。 本発明方法では、 前記の触媒調製法に従って調製したクロム系触媒を用いて、 αーォレフインの低重合を半回分式反応又は連続式反応として行う。
半回分式反応では、 通常、 反応器中に α—ォレフインを連続的に供給して定圧 で反応させる。 連統式反応では、 パイプリアクタ一又は多段混合槽が使用される。 パイプリアクターは、 基本的には、 直管又はコイル状若しくは U字状の曲管の一 端から反応成分を導入し、 他端から反応生成物を流出させる形式の反応装置であ る。 多段混合槽は、 基本的には、 直列に配置された複数の混合槽の第 1槽に反応 成分を導入し、 順次、 後続の槽に移動させ、 最終槽から反応生成物を流出させる W
(
形式の反応装置である。
本発明方法では、 低重合反応中にハロゲン含有化合物 (d ) を反応襍域に追加 供給することができる。 また、 ハロゲン含有化合物に加えて、 ピロール環含有化 合物 (b ) やアルキルアルミニウム化合物 (c ) を追加供給するのも好ましい。 特に好ましいのは、 ハロゲン含有化合物 (d ) とアルキルアルミニウム化合物
( c ) とを追加供給することである。 ハロゲン含有化合物 (d ) を追加供給する 態様の一つとして、 調製されたクロム系触媒と共にハロゲン含有化合物を追加供 給することもできる。 例えばハロゲン化炭化水素溶媒中でクロム系触媒を調製し、 生成した遊離のハロゲン化炭化水素を多量に含む触媒液を、 反応帯域に追加供給 することができる。 追加供給するハロゲン含有化合物 (d ) 、 ピロール環含有化 合物 (b ) 及びアルキルアルミニウム化合物 (c ) としては、 通常は触媒調製に 用いたものと同じものが用いられるが、 所望ならば他のものを用いることもでき る。 追加供給するハロゲン含有化合物 (d ) として好ましいのは、 四塩化炭素、 へキサクロロエタンその他のハロゲン化炭化水素ゃェチルァノレミニゥムジク口リ ド、 ジェチルアルミニウムクロリ ド、 四塩化スズ等、 周期律表の第 1 3族又は 1 4族の元素に結合したハロゲン、 特に塩素を含有する化合物である。
本発明方法において、 低重合反応^域にハロゲン含有化合物 (d ) 、 特にハロ ゲン含有化合物 (d ) とアルキルアルミニウム化合物 (c ) とを追加供給すると、 反応帯域の触媒が賦活され、 触媒効率が著しく向上する。 すなわち反応に供され た触媒は、 経時的にその活性が低下して行くが、 これにハロゲン含有化合物 (d ) を供給すると、 触媒が賦活されて活性が向上する。 しかも、 このハロゲン含有化 合物 (d ) による触媒の賦活は、 1回限りではなく、 触媒活性が低下する毎に反 復することができる。 従って反応帯域へのハロゲン含有化合物 (d ) の追加供給 は、 触媒活性が低下し始める時点、 ないしは触媒活性の低下が進行している段階 で行うのが好ましい。 活性が低下してしまつた触媒に添加してこれを賦活するこ ともできるが、 生産性の観点からは望ましい方法ではない。 本発明方法で用いる クロム系触媒は、 反応に供されてから早いもので 5分間程度、 一般には 1 5分問 程度経過した時点から活性が低下し始め、 以後、 7 0〜8 0分間に亘つて活性低 下が進行することが多い。 従ってハロゲン含有化合物 (d ) の追加供給は、 通常 は、 反応に供されてから 5分間以上、 特に 1 5分問以上経過した触媒の存在する 帯域に対して行う。 追加供給は 1回でもよく、 また活性低下する毎に数回に亘っ て行ってもよい。 1回当たりのハロゲン含有化合物 (d ) の供給惫は、 賦活しょ うとする触媒のクロム原子 1モル当たり、 0 . 1〜 2 0 0モル、 特に 1〜 1 0 0 モルが好ましい。 同様にピロール環含有化合物 (b ) は 0 . 1〜 1 0 0モル、 特 に 1〜 5 0モルが好ましく、 アルキルアルミニウム化合物 (c ) は 1〜 1 0 0 0 モル、 特に 5〜 5 0 0モルが好ましい。
従って、 本発明を半回分式反応で行う場合には、 反応開始後 5分間以上経過し て α—ォレフィンの消费速度が低下してきた段階で、 ハロゲン含有化合物 (d ) を追加供給すればよい。 この追加供給を 1回ないし数回反復して行うことにより、 ク口ム系触媒の単位量当たりの α—ォレフィン低重合体の生産量を増加させるこ とができる。
またパイプリアクターを用いる連統式反応で行う場合には、 リアクターの先端 から溶媒、 クロム系触媒、 α—ォレフィン等を供給し、 リアクターの途中の滞留 時間が 5分間以上となっている箇所からハロゲン含有化合物 (d ) を追加供給す る。 この場合にも更にその下流の数力所でハロゲン含有化合物 (d ) を追加供給 してもよい。
多段混合槽を用いて反応を行う場合には、 第 1槽に溶媒、 クロム系触媒、 α— ォレフィンを供給し、 第 2槽以降の平均滞留時間が 5分間以上となる槽にハ口ゲ ン含有化合物 (d ) を追加供給すればよい。 この場合も最初の追加供給をする槽 以降の任意の槽にハロゲン含有化合物を更に追加供給してもよい。
上述した方法により、 α—ォレフィンの低重合反応を終了した後は、 得られた 反応液から先ず副生ポリマーを除去して、 主生成物である α—ォレフィン低重合 体を含む溶液を回収することができる。
反応液中の副生ポリマーの分離除去は、 公知の固液分離装置を適宜使用して行 われ、 回収されたひーォレフイン低重合体は、 必要に応じて精製される。 精製に は、 通常、 蒸留精製が採用され、 目的とする成分を高純度で回収することが出来 る。 本発明においては、 特に、 エチレンから高純度の 1一へキセンを工業的に有 利に製造することが出来る。 2D 図面の簡単な説明
図 1は実施例 6で黄色沈殿物として得られた本発明のピロール誘導体の赤外吸 収スぺク トル図である。 発明を実施するための最良の形態
次に、 実施例および比較例により本発明を更に詳細に説明するが、 本発明は、 その要旨を超えない限り、 以下の実施例によって限定されるものではない。
触媒製造例 1
窒素雰囲気下、 室温で 2, 5—ジメチルビロール (59. 29mg, 0. 62 3mmo 1 ) の トルエン溶液 (2m l ) に四塩化スズ (108. 2mg, 0. 4 1 5mmo 1 ) を加え、 黄色沈澱物の懸濁液を得た。 1 5分閒攬拌後、 上記の懸 涵液にトリェチルアルミニウム (357. 9m g, 3. 12mmo l) のトルェ ン溶液 (3. lm l ) を加えて 1 5分間反応させた。 得られた溶液にクロム (I I I) 一 2—ェチノレへキサノエ一ト (100mg, 0. 204 mm o 1 ) の トノレ ェン溶液 (2m l ) を加えて 1 5分間反応させた。 その後、 トルエンを減圧下室 温で留去した。 得られた褐色オイルをシクロへキサン (10m l ) で希釈し、 触 媒液 (10. 5m l ) とした。
触媒製造例 2 '
2 , 5—ジメチルピロール (59. 29 m g , 0. 623 mm o 1 ) の トルェ ン溶液 (2m l ) の代わりに、 2, 5—ジメチルビロール (59. 29mg, 0. 623mm o 1 ) のトルエン溶液 (10m l ) を使用した以外は、 触媒製造例 1 と同様に操作して触媒液を得た。
触媒製造例 3
窒素雰囲気下、 室温で 2, 5—ジメチルビロール (29. 59mg, 0. 31 1 mmo 1 ) の トルエン溶液 (5m l ) に四塩化炭素 (3 1. 95mg, 0. 2 08mmo 1 ) を加えた。 得られた溶液にトリエチルアルミニウム (1 77. 8 mg, 1. 55 mmo 1 ) のトルエン溶液 (1. 55 m 1 ) を加えて 30分問反 応させた。 得られた溶液にクロム ( I I I ) — 2—ェチルへキサノエート (50 I
g, 0. 1 0 2mmo 1 ) のトルエン溶液 (1 m l ) を加えて 1 5分間反応さ せた。 その後、 トルエンを滅圧下室温で留去した。 得られた褐色オイルをシクロ へキサン (5m l ) で希釈し、 触媒液 (5. 2m l ) とした。
触媒製造例 4
窒素雰囲気下、 室温でクロム (I I I) 一 2—ェチルへキサノエ一ト (1 00 mg, 0. 20 4mmo 1 ) のトルエン溶液 (4m 1 ) に 2, 5—ジメチルピロ ール (5 9. 2 9 m g , 0. 6 2 3 mmo 1 ) 、 四塩化スズ (1 0 8. 2 m g , 0. 4 1 5mmo 1 ) を順次加えて室温で 1時間反応させた。 得られた緑色の懸 滴液にトリェチルアルミニウム (3 5 7. 9mg, 3. 1 2 mmo 1 ) のトルェ ン溶液 (3. l m l ) を徐々に滴下して 1 5分間反応させた。 その後、 トルエン を減圧下室温で留去した。 得られた濃褐色オイルをシクロへキサン (1 0m l ) で希釈して触媒液 (1 0. 5m l ) とした。
触媒製造例 5
クロム ( I I I ) — 2—ェチルへキサノエ一ト (1 0 0mg, 0. 2 04mm o 1 ) のトルエン溶液 (4m l ) の代わりに、 クロム ( I I I ) 一 2-ェチルへ キサノエート (1 00mg, 0. 2 04mmo 1 ) のトルェン溶液 (1 2m l ) を使用した以外は、 触媒製造例 4と同様に操作して触媒液を得た。
触媒製造例 6
窒素雰囲気下、 室温でクロム ( I I I ) 一 2—ェチルへキサノエート (1 00 mg, 0. 20 4 mm o 1 ) のトルエン溶液 (1 2m l ) に 2, 5ージメチルピ 口ール (5 9. 2 9m g, 0. 6 2 3 mm o 1 ) 、 四塩化炭素 (6 3. 8 9 m g , 0. 4 1 5mm o 1 ) を順次加えて室温で 1時間撹拌した。 得られた緑色の溶液 にトリェチルアルミニウム (3 5 7. 9 m g, 3. 1 2 mm o 1 ) のトルエン溶 液 (3. l m l ) を徐々に滴下して 1 5分間反応させた。 その後、 トルエンを減 圧下室温で留去した。 得られた褐色オイルをシクロへキサン (1 0m l ) で希釈 して触媒液 (1 0. 5 m l ) とした。
実施例 1
1 50 の乾燥器中で乾燥した 3 00m lのオートクレープを熱時に組み立て た後、 真空窒素 換した。 窒素雰囲気下、 室温でシクロへキサン (1 0 0m l ) と触媒製造例 1で得られた触媒液 (0. 47m l) をオートクレーブに仕込んだ。 ォ一トクレーブを 80¾:に加熱し、 エチレンをォートクレーブに全圧が 38 k g /cm2 となるまで導入した。 その後、 全圧を 38 k g/cm2 に、 反応温度を 80 に維持した。 30分後、 オートクレープ中にエタノールを圧入して反応を 停止した。
ガスクロマトグラフによる生成物の組成分析の結果などを表 1に示した。 全生 成物量は 1 1. 33 g、 触媒活性 (g— α—ォレフインノ g— C r · Hr) は 4 7518であった。 また、 1一へキセンが主生成物であり、 得られたへキセン類 に対する 1一へキセンの純度は 99. 9%であった。
実施例 2
オートクレープにシクロへキサン (125m l ) と触媒製造例 2で得られた触 媒液 (0. 68m l ) を仕込んだ以外は、 実施例 1と同様に反応を行った。 ガス クロマトグラフによる生成物の組成分析の結果などを表 1に示した。 全生成物量 は 32. 63 g、 触媒活性は 94725であった。 また、 1—へキセンが主生成 物であり、 得られたへキセン類に対する 1一へキセンの純度は 99. 6%であつ た。
実施例 3
オートクレープにシクロへキサン (125m l ) と触媒製造例 3で得られた触 媒液 (0. 68m l ) を仕込んだ以外は、 実施例 1と同様に反応を行った。 ガス クロマトグラフによる生成物の組成分析の結果などを表 1に示した。 全生成物量 は、 27. 57 g、 触媒活性は 80033であった。 また、 1—へキセンが主生 成物であり、 得られたへキセン類に対する 1一へキセンの純度は 99. 7%であ つ ΤΖο
比較例 1
オートクレーブにシクロへキサン (125m l) と触媒製造例 4で得られた触 媒液 (0. 68m l ) を仕込んだ以外は、 実施例 1と同様に反応を行った。 ガス クロマトグラフによる生成物の組成分析の結果などを表 2に示した。 全生成物量 は 7. 54 g、 触媒活性は 21895であった。 また、 1一^ ^キセンが主生成物 であり、 得られたへキセン類に対する 1一へキセンの純度は 99. 9%であった c 比較例 2
オートクレーブにシクロへキサン (125m l ) と触媒製造例 5で得られた触 媒液 (0. 68m l ) を仕込んだ以外は、 実施例 1と同様に反応を行った。 ガス クロマトグラフによる生成物の組成分析の結果などを表 2に示した。 全生成物量 は 13. 90 g、 触媒活性は 40360であった。 また、 1一へキセンが主生成 物であり、 得られたへキセン類に対する 1一へキセンの純度は 99. 6%であつ た。
比較例 3
オートクレーブにシクロへキサン (.125m l ) と触媒製造例 6で得られた触 媒液 (0. 68m l ) を仕込んだ以外は、 実施例 1と同様に反応を行った。 ガス クロマトグラフによる生成物の組成分析の結果などを表 2に示した。 全生成物量 は 9. 48 g、 触媒活性は 27525であった。 また、 1一へキセンが主生成物 であり、 得られたへキセン類に対する 1一へキセンの純度は 99. 7%であった。 表 1及び表 2中、 C r系触媒調製条件において符合 A及び Bで示された成分接 触方法は次の通りである。
A: ピロール環含有化合物、 ハロゲン含有化合物およびアルキルアルミニウム 化合物を含有する混合液にクロム化合物を添加する方法。
B :溶媒にクロム化合物、 ピロール環含有化合物、 ハロゲン含有化合物および アルキルアルミニウム化合物を順次に添加する方法。
また、 表 1及び表 2中、 低重合反応の溶媒の種類の 「CHX」 はシクロへキサ ンを表し、 触媒効率の単位は、 g— α—ォレフイン Zg— C r化合物、 触媒活性 の単位は、 g— α—ォレフイン Z 1 g— C r · H rである。
実 施 例
2 3
<C r系触媒調製条件 >
調製時 C r濃度 (mmol/L) 29 13 13 調製時の成分接触方法 A A A ぐ低重合反応条件 >
C r系触媒製造例 2 3 溶媒の種類 (量: ml) CHX(IOO) CHX(125) CHX(125) 仕込み C r原子量 (mg) 0.48 0.69 0.71 反応温度 ( ) 80 80 80 エチレン圧(kg/cm2) 38 38 38 反応時間(Hr) 0.5 0.5 0.5 <全生成物量 (g) > 11.33 32.63 27.57 <組成分布(wt%) >
C4 0 0.05 0.07
C6 全体 98.2 96.8 97.3
C6 中の 1-へキセン含量 (wt%) 99.9 99.6 99.7 C8 0.6 0.5 0.6
C 10-20 1.1 2.6 2.0 C 22-30 0 0 0 ワックス 0 0 0 副生 PE 0.04 0.02 0.02 <触媒効率〉 2518 5020 4242 <触媒活性 > 47518 94725 80033 2S~
表 2 比 較 例
2 3 く C r系触媒調製条件 >
調製時 C r濃度 (mmol/L) 29 13 13 調製時の成分接触方法 B B B く低重合反応条件 >
C r系触媒製造例 4 5 6 溶媒の種類 (量: ml) CHX(125) CHX(125) CHX(125) 仕込み C r原子量 (mg) 0.69 0.69 0.70 反応温度 ( ) 80 80 80 エチレン圧(kg/cm2) 38 38 38 反応時間(Hr) 0.5 0.5 0.5 <全生成物量 (g) > 7.54 13.90 9.48 く組成分布(wt%) >
C4 0.2 0.1 0.11
C6 全体 98.1 97.6 97.9
C6 中のトへキセン 含量 (wt%) 99.9 99.6 99.7 C8 0.9 0.6 0.7
C 10 - 20 0.8 1.6 1.2 C 22-30 0 0 0 ワックス 0 0 0 副生 PE 0.05 0.09 0.05 く触媒効率〉 1160 2139 1459 <触媒活性 > 21895 40360 27525 触媒製造例 7
窒素雰囲気下、 室温でクロム ( I I I ) 一 2—ェチルへキサノエ一ト ( 100 m g, 0. 204mmo i ) のトルエン溶液 (22m l ) に 2, 5—ジメチルビ 口一ル (59. 29mg, 0. 623 mm o 1 ) 、 四塩化スズ ( 108. 2 m g , 0. 415mmo 1 ) を順次に加え、 室温で 1時間反応させて黄色沈濺物の懸濁 液を得た。 得られた懸獨液にトリェチルアルミニウム (449. 27mg, 3. 12mmo 1 ) のトルエン溶液 (3. lm l) を徐々に滴下した。 反応液中のク ロム澳度は 8mmo 1 Z 1であった。 15分問反応後、 トルエンを滅圧下室温で 留去した。 得られた濃褐色オイルをシクロへキサンで希釈し、 触媒液 (10. 5 m 1 ) とした。
触媒製造例 8
クロム (I I I) — 2—ェチルへキサノエート (l O Omg, 0. 204mm o 1 ) のトルエン溶液 (22m l ) の代わりに、 クロム ( I I I ) — 2—ェチル へキサノエ一ト (l O Omg, 0. 204 mm o 1 ) のトルエン溶液 (4m l ) を使用した以外は、 触媒製造例 7と同様に操作して触媒液を得た。 なお、 反応液 中のクロム濃度は 29 mmo 1 / 1であった。
触媒製造例 9
クロム ( I I I ) — 2—ェチルへキサノエ一ト (l O Omg, 0. 204 mm o 1 ) のトルエン溶液 (22m l ) の代わりに、 クロム ( I I I ) 一 2—ェチル へキサノエ一ト (l O Omg, 0. 204 mmo 1 ) の トルエン溶液 (12m l ) を使用した以外は、 触媒製造例 7と同様に操作して触媒液を得た。 なお、 反応液 中のクロム濃度は 1 3 mmo 1 / 1であった。
触媒製造例 10
窒素雰囲気下、 室温でクロム (I I I) 一 2—ェチルへキサノエート (200 m g, 0. 408 mm o 1 ) の トルエン溶液 ( 9 m 1 ) に 2, 5—ジメチルピロ 一ノレ (1 18. 57 m g , 1. 246 mm o 1 ) 、 四塩ィ匕スズ ( 215. 9 m g,
0. 829mmo 1 ) を順次に加え、 沈澱物が生成する前に直ちにトリェチルァ ルミニゥム (898. 54 m g , 6 - 24 mm o 1 ) のトノレェン溶液 ( 6. 2 m
1 ) を徐々に滴下した。 反応液中のクロム濃度は 27mmo 1 / 1であった。 1 5分問反応後、 トルエンを減圧下室温で留去した。 得られた瀵褐色オイルをシク 口へキサンで希釈し、 触媒液 (20m l) とした。
触媒製造例 1 1
窒素雰囲気下、 室温でクロム ( I I I) 一 2—ェチルへキサノエ一ト (100 m g, 0. 204mmo 1 ) 及び 2, 5—ジメチルピロール ( 59. 29 m g , 0. 623mmo 1 ) のトルエン混合溶液 ( 2 m 1 ) にェチルアルミニウムジク ロリ ド (107. 91 m g , 0. 85 mm o 1 ) 及びトリェチルアルミニウム (449. 27mg, 3. 12mmo 1) のトルエン混合溶液 (3. 95m l ) を徐々に滴下した。 反応液中のクロム溏度は 34. 3 mmo 1ノ 1であった。 1 5分問反応後、 トルエンを減圧下室温で留去した。 得られた漉褐色オイルをシク 口へキサンで希釈し、 触媒液 (1 1m l ) とした。
実施例 4
150¾の乾燥器中で乾燥した 300m lのオートクレーブを熱時に組み立て た後、 真空窒素置換した。 窒素雰囲気下、 室温でシクロへキサン (125m l) 、 触媒製造例 7で得られた触媒液 (0. 68m l ) をオートクレープに仕込んだ。 オートクレーブを 8 に加熱し、 全圧が 38 k g/ cm2 となるまでオートク レーブにエチレンを導入した。 その後、 全圧を 38 k g//cm2 に、 反応温度を
80 に維持した。 30分後、 ォ一トクレーブ中にエタノールを圧入して反応を 停止した。
ガスクロマトグラフによる生成物の組成分析結果などを表 3に示す。 全生成物 量は 17. 67 g、 触媒活性 (g— α—ォレフィン Zg— C r · Hr) は 512
95であった。 また、 1—へキセンが主生成物であり、 得られたへキセン類に対 する 1一へキセンの純度は 99. 7%であった。
実施例 5
実施例 4と同様に調整したオートクレープにシクロへキサン (120m l ) 、 2, 5—ジメチルピロール (7. 41mg、 0. 078 mm o 1 ) のヘプタン溶 液、 四塩化ゲルマニウム (1 1. 1 3mg、 0. 052mmo 1 ) のヘプタン溶 液、 トリェチルァノレ'ミニゥム (44. 7mg、 0. 39mmo 1 ) のヘプタン溶 液、 クロム ( I I I) 一 2—ェチルへキサノエート (12. 5mg、 0. 025 mmo 1 ) のヘプタン溶液をこの順で仕込んだ。 オートクレーブを 80 に加熱 し、 全圧が 38 k g/cm2 となるまでォ一トクレーブにエチレンを導入した。 反応液中のクロム濃度は 0. 2mmo 1 / 1であった。 その後、 反応中のェチレ ン圧を 35 k g/ cm2 に変更した以外は、 実施例 4と同様にエチレンを導入し て反応を行った。
ガスクロマトグラフによる生成物の組成分析結果などを表 3に示す。 全生成物 量は 62. 3 1 g、 触媒活性は 94047であった。 また、 1—へキセンが主生 成物であり、 得られたへキセン類に対する 1一へキセンの純度は 99. 2%であ つた。
比較例 4
触媒製造例 7で得られた触媒液の代わりに、 触媒製造例 8で得ちれた触媒液 (0. 68m l ) をオートクレープに仕込んだ以外は、 実施例 4と同様に反応を 行った。 ガスクロマトグラフによる生成物の組成分析結果などを表 3に示す。 全 生成物量は 7. 54 g、 触媒活性は 2 1895であった。 また、 1一へキセンが 主生成物であり、 得られたへキセン類に対する 1一へキセンの純度は 9 9. 9% であった。
比較例 5
触媒製造例 7で得られた触媒液の代わりに、 触媒製造例 9で得られた触媒液 (0. 6 8m l ) をオートクレープに仕込んだ以外は、 実施例 4と同様に反応を 行った。 ガスクロマトグラフによる生成物の組成分析結果などを表 4に示す。 全 生成物量は 1 3. 90 g、 触媒活性は 40360であった。 また、 1一へキセン が主生成物であり、 得られたへキセン類に対する 1一へキセンの純度は 99. 6 %であった。
比較例 6
触媒製造例 7で得られた触媒液の代わりに、 触媒製造例 1 0で得られた触媒液 (lm l ) をォ一トクレーブに仕込んだ以外は、 実施例 4と同様に反応を行った。 ガスクロマトグラフによる生成物の組成分析結果などを表 4に示す。 全生成物量 は 1. 24 g、 触媒活性は 2342であった。 また、 1—へキセンが主生成物で あり、 得られたへキセン類に対する 1—へキセンの純度は 99. 6%であった。 比較例 7
触媒製造例 7で得られた触媒液の代わりに、 触媒製造例 1 1で得られた触媒液 (0. 5m l ) 及びシクロへキサン (100m l) をオートクレーブに仕込んだ 以外は、 実施例 4と同様に反応を行った。 ガスクロマトグラフによる生成物の組 成分析結果などを表 4に示す。 全生成物量は 8. 77 g、 触媒活性は 36762 であった。 また、 1一へキセンが主生成物であり、 得られたへキセン類に対す る 1一へキセンの純度は 99. 7%であった。
表 3及び表 4中、 C r系触媒調製条件において符合 A、 B及び Cで示された成 分接触方法は次の通りである。
A:クロム化合物、 ピロール瑭含有化合物およびハロゲン含有化合物の混合液 にアルキルアルミニウム化合物を添加する方法。
B : ピロール環含有化合物、 アルキルアルミニウム化合物おょぴハロゲン含有 化合物の混合液にクロム化合物を添加する方法。
C :クロム化合物およびピロール環含有化合物の混合液にアルキルアルミニゥ ム化合物およびハロゲン含有化合物の混合液を添加する方法。
また、 以下の表 3及び表 4中、 低重合反応の溶媒の種類の 「CHXj はシクロ へキサン、 「HPT」 は n—ヘプタンを表し、 触媒効率の単位は、 g— α—ォレ フィン/ g— C r化合物、 触媒活性の単位は、 g— α—ォレフイン/ g— C r · H rである。
表 3 実 施 例 比較例
4 5 4
<C r系触媒調製条件〉
調製時 C r濃度(mmol/L) 8 0.2 29 調製時の成分接触方法 A B A <低重合反応条件〉
C r系触媒製造例 7 8 溶媒の種類 (量: ml) CHX(125) CHX(120)/HPT(5) CHX(125) 仕込み C r原子量 (rag) 0.69 0.69 0.69 反応温度 (で) 80 80 80 エチレン圧(kg/cm2) 38 35 38 反応時間(Hr) 0.5 0.5 0.5 <全生成物量 (g) > 17.67 62.31 7.54 <組成分布 (wt ) >
C4 0.08 0.02 0.2
C6 全体 97.5 92.5 98.1
C6 中の 1-へキセン含量(wt%) 99.7 99.2 99.9 C8 0.6 0.4 0.9
C 10-20 1.8 7.1 0.8 C 22-30 0 0 0 ワックス 0 0 0 副生 PE 0.05 0.03 0.05 <触媒効率 > 2719 4984 1160 <触媒活性 > 51295 94047 21895 表 4 比
5 6 7
<C r系触媒調製条件 >
調製時 C r濃度(mmol/L) 13 27 34.3 調製時の成分接触方法 A A C ぐ低重合反応条件 >
C r系触媒製造例 9 1 0 1 1 溶媒の種類 (量: ml) CHXC125) CHX(125) CHX(IOO) 仕込み C r原子量 (mg) 0.69 1.08 0.48 反応温度 (^) 80 80 90 エチレン圧(kg/cm2) 38 38 48 反応時間 (Hr) 0.5 0.5 0.5
<全生成物量 (g) > 13.90 1.24 8.77
<組成分布 (wt%) >
C4 0.1 0.02 0.08
C6全体 97.6 98.9 98.1
C6 中の 1-へキャン 含量(wt%) 99.6 99.6 99.7
C8 0.6 0.5 0.6
C 10-20 1.6 0 2 1 2
C 22-30 0 0 0
Wa x 0 0 0 副生 PE 0.09 0.04 0.05 く触媒効率 > 2139 124 1948
<触媒活性〉 40360 2342 36762 実施例 6 (ピロール誘導体の合成)
窒素雰囲気下、 室温で n—へブタン (5m l) 中において、 2, 5—ジメチル ピ口ール (59. 29mg, 0. 623mmo 1 ) と四塩化スズ ( 108. 2 m g, 0. 41 5mmo 1 ) を 15分間反応させて黄色沈殿物の懸獨液を得た。 濂 過後、 上記の黄色沈殿物を乾燥した。 収量は 13 lmgであった。 黄色沈殿物は、 構造分析の結果、 下記構造式で表されるピロール锈導体であった。 そして、 その 赤外吸収スぺク トル (図 1) は、 水素結合した NH伸縮振動に帰覊する幅広い特 徴的な吸収を 3100〜 3300 cm— 1に有していた。
Figure imgf000034_0001
なお、 触媒製造例 1において、 クロム ( I I I) —2—ェチルへキサノエート のトルエン溶液に 2, 5—ジメチルビロール、 四塩化スズを順次に加え、 室温で 1時間反応させて得た黄色沈澱物も上記のピ口ール誘導体と同一の赤外吸収スぺ ク トルを有することを確認した。
実施例 7
1) 触媒の製造
窒素雰囲気下、 室温で、 2, 5—ジメチルビロール 29. 65mg (0. 31 2mmo 1 ) を含む 13. 5 m 1のトルエン溶液に、 四塩ィ匕スズ 54. lmg (0. 208mmo 1) を加え、 黄色沈波物の懸涵液を得た。 15分間»拌後、 この懸濁液にトリェチルアルミニウム 178. 9mg (1. 56mmo 1 ) を含 む 1. 6m 1のトルエン溶液を加えて 15分間情拌した。 得られた溶液に、 クロ ム(III) — 2—ェチルへキサノエート 5 Omg (0. 104mmo 1 ) を含む 1. m 1のトルエン溶液を加え、 15分間携拌し、 触媒液 Aを得た。
2) 調製直後の触媒を用いた反応
15 O の乾燥器中で乾燥した 300m lのォ一トクレーブを熟時に組み立て i3 た後、 真空窒素置換した。 窒素 囲気下、 これに室温で、 シクロへキサン 69m 1、 及び調製直後の上記触媒液 A 1. Om lを仕込んだ。 オートクレーブを 14 0 ^に加熟し、 全圧が 48 k gZ cm2 Gとなるまでオートクレーブにエチレン を導入した。 その後、 全圧を 48 k gZcm2 Gに、 反応温度を 140でに維持 して反応を行った。
30分間反応後、 オートクレープ中にエタノールを圧入して反応を停止した。 結果を表 5に示す。
3) トルエン中で保存した触媒を用いた反応
触媒液 Aを窒素下、 室温で 5日間保存し、 触媒液 Bとした。 この触媒液 Bを用 いた以外は、 上記 2) と全く同様にしてエチレンの低重合反応を行った。 この結 果、 調製直後の触媒液 Aの触媒活性の 84%の触媒活性を維持することが出来た。 結果を表 5に示す。
実施例 8
1) 触媒製造
窒素下、 室温で 2, 5—ジメチルビロール 59. 29mg (0. 623mmo
1 ) を含む 1 Om 1の トルエン溶液に、 四塩化スズ 108. 2mg (0. 415 mmo 1) を加え、 黄色沈澱物の懸濁液を得た。 15分間 ft拌後、 この懸獨液に トリェチルアルミニウム 357. 9mg (3. 12mm o 1 ) を含む 3. 1 m l のトルエン溶液を加え、 15分間操拌した。 得られた溶液に、 クロム一 (111) 2 一ェチルへキサノエ一ト l O Omg (0. 204 mmo 1 ) を含む 2 m 1の トル ェン溶液を加えた。 更に 15分閒操拌後、 トルエンを滅圧下室温で留去した。 得 られた裉色油状物にシクロへキサン 1 Om 1を加え、 触媒液 CIO. 5m lを得た c
2) 調製直後の触媒を用いた反応
150 の乾燥器中で乾燥した 30 Om lのォードクレーブを熱時に組み立て、 真空窒素置換した。 窒素下、 これに室温でシクロへキサン 125m l及び調製直 後の上記触媒液 C O. 68m lを仕込んだ。 オートクレープを 80^に加熱し、 エチレンを全圧が 38 k g/cm2 Gとなるまでオートクレープに導入した。 以 後、 全圧を 38 k gZ cm2 Gに、 反応温度を 80 °Cに維持して反応を行った。
30分後、 エタノール圧入により反応を停止した。 結果を表 6に示す。 3) シクロへキサン中で保存した触媒を用いた反応
触媒液 Cを窒素下、 室温で 5日問保存し、 触媒液 Dとした。 この触媒液 Dを用 いた以外は、 上記と全く同様にしてエチレンの低重合反応を行った。 この結果、 不飽和炭化水素の存在下で保存した触媒を用いた場合には、 調製直後の触媒液 C の触媒活性に対し 39%の触媒活性であった。 結果を表 6に示す。
参考例 1
1) 触媒の製造
窒素下、 室温で、 クロム(III) 一 2—ェチルへキサノエート 10 Omg (0. 204mmo 1 ) 及び 2, 5—ジメチルピロール 59. 29mg (0. 623m mo 1 ) を含む 2 m 1のトルエン溶液に、 ェチルァノレミニゥムジクロリ ド 107. 91 m g (0. 85 mmo 1 ) 及びトリェチルアルミニウム 449. 27 m g (3. 12mmo l ) を含む 3. 95 m 1のトルエン溶液をゆっくり滴下した。
15分間撹拌後、 トルエンを減圧下、 留去した。 得られた裉色の油状物をシクロ へキサンで希釈し、 触媒液 Ell. Om lを得た。
2) 調製直後の触媒を用いた反応
150での乾燥器中で乾燥した 30 Om lのオートクレーブを熱時に組み立て た後、 真空窒素置換した。 窒素雰囲気下、 これに室温で、 シクロへキサン 100 m l、 トルエン 1. 46m 1、 及び調製直後の上記触媒液 EO. 5mlを仕込ん だ。 オートクレーブを 140 に加熱し、 全圧が 48 k g/cm2 Gとなるまで オートクレーブにエチレンを導入した。 その後、 全圧を 48 k gZcm2 Gに、 反応温度を 140 に維持して反応を行った。
30分間反応後、 オートクレープ中にエタノールを圧入して反応を停止した。 結果を表 7に示す。
3) トルエン共存下に保存した触媒を用いた反応
調製直後の触媒液 E 5m 1にトルエン 14. 7m lを加えて触媒液 Fとし、 窒 素下、 室温で 5日間保存した。
上記 2) と同じく熱時に組み立て且つ真空窒素置換したオートクレープに、 シ ク口へキサン 10 Om 1及び 5日間保存した触媒液 Fl. 96m lを仕込んだのち、 上記 2) と全く同様にして、 48 k gZcm2 G、 140 *Cでエチレンの低重合 ;
反応を行った。 この結果、 調製直後の触媒液 Eの触媒活性の 84%の触媒活性を 維持することが出来た。 結果を表 7に示す。
4) シクロへキサン中で保存した触媒を用いた反応
調製直後の触媒液 E 5 m 1にシク口へキサン 14. 7mlを加えて触媒液 Gと し、 窒素下、 室温で 5日間保存した。
上記 2) と同じく熱時に組み立て且つ真空窒素置換したオートクレープに、 シ クロへキサン 98. 5m 1、 トルエン 1. 46m 1及び 5日間保存した触媒液 G 1. 96mlを仕込んだのち、 上記 2) と全く同様にして、 A S k gZcm2 G、 140 でエチレンの低重合反応を行った。 この結果、 トルエン存在下で保存し た触媒液 Fの触媒活性に対し、 54%の触媒活性であった。 結果を表 7に示す。
表 5 触媒液 A 触媒液 B 全生成物量 (g) 1 1. 01 9. 29
C4 0. 01 0. 01
C6 96. 9 97. 3 生
成 C6 ' 99. 6 99. 6 物
の C8 0. 2 0. 2 組
成 C 10-20 2. 8 2. 4 分
布 C 22-30 0 0
(wt%)
ワックス 0 0 副生ポリエチレン 0. 06 0. 09 触媒活性 67038 56555
^7
表 6 触媒液 C 触媒液 D 全生成物 S (g) 32. 63 12. 76
C4 0. 05 0. 06
C6 96. 8 97. 3 生
成 C6 ' 99. 6 99. 6 の C8 0. 5 0. 5 組
成 C 10-20 2. 6 2. 0 分
布 C 22-30 0 0
(wt%)
ワックス 0 0 副生ポリエチレン 0. 02 0. 05 触媒活性 94725 37042
触媒液 E 触媒液 F 触媒液 G 全生成物量 (g) 5. 70 4. 76 2. 59
0. 02 0. 02 0
Cfi 98. 1 98. 3 98. 5 生
C6 ' 本 1 99. 6 99. 6 99. 8 物
の C8 0. 4 0. 4 0. 9 組
成 C 10-20 1. 4 1. 2 0. 6 分
布 C 22-30 0 0 0
(wt¾)
ワックス 0 0 0 副生ポリエチレン 0. 05 0. 06 0. 06 触媒活性 *2 23912 19968 10865
* 1 C6 中に占める 1一へキセンの割合 (%) * 2 g— α—ォレフィン Z g— C r · H r 実施例 9
1) 触媒の製造
窒素雰囲気下、 室温で 2, 5—ジメチルビロール 29. 65mg (0. 312 mm o 1 ) を含む 5 m 1のトノレェン溶液に、 四塩化スズ 54. 1 m g (0. 20 8mmo 1) を加え、 黄色沈澱物の懸濁液を得た。 15分間操拌後、 上記の懸濁 液にトリェチルアルミニウム 1 78. 9m g (1. 56mmo 1 ) を含む 1. 6 m 1のトルエン溶液を加えて 15分間攪拌した。 得られた溶液にクロム(III) 一 2—ェチルへキサノエート 50m g (0. 104 mm o 1 ) を含むトルエン溶液 lm lを加えた。 更に 1 5分間擾拌後、 トルエンを減圧下、 室温で留去した。 得 られた褐色オイルを 5m 1のシクロへキサンで希釈し、 触媒液 5. 2m lを得た。
2) エチレンの低重合
150での乾燥器中で乾燥した 300m lのオートクレープを熱時に組み立て た後、 真空窒素置換した。 窒素雰囲気下、 室温でこのオートクレーブに、 シクロ へキサン 8 Om 1及び上記の触媒液 0. 44 m lを仕込んだ。 オートクレープを 80 に加熱し、 全圧が 38 k g/cin2 Gとなるまでオートクレープにェチレ ンを導入した。 その後、 全圧を 38 k g/cm2 Gに、 反応温度を 80でに維持 して反応を行った。
30分後に反応液をサンプリングした。 次いで四塩化炭素 2. 6 lmg (0. 017mmo 1 ) と ト リェチルアルミニウム 14. 91 m g (0. 1 3mmo 1 ) を含む 5m 1の n—ヘプタン溶液をォートクレーブに導入し、 上記と同一条件で 更に 30分問反応を統行した。 その後、 オートクレーブ中にエタノールを圧入し て反応を停止した。 結果を表 8に示す。
実施例 10 '
上記の実施例 9において調製した触媒を用い、 且つ反応途中で追加のハロゲン 含有化合物及びアルキルアルミニウム化合物の添加を行わない以外は、 実施例 9 と同様にしてエチレンの低重合を行った。 結果を表 8に示す。 4。
表 8
Figure imgf000042_0001
* 1 C 6 中に占める 1 キセンの割合 (%) * 2 g— α—ォレフイン/ g— C r · H r 産業上の利用可能性
本発明方法によれば、 1一へキセン等の α—ォレフイン低重合体を極めて高収 率かつ高選択率で製造することが出来る工業的に有利な α—ォレフイン低重合体 の製造方法が提供される。

Claims

請求の範囲
1. 少なくとも、 クロム化合物 (a) 、 ピロール環含有化合物 (b) 、 アルキル アルミニウム化合物 (c) 、 およびハロゲン含有化合物 (d) の各成分を接触さ せることにより調製されたク口ム系触媒を含有する反応液中で、 α—ォレフィン を低重合反応させて ctーォレフィン低重合体を製造する方法において、 該クロム 系触媒として、 炭化水素およびノまたはハロゲン化炭化水素溶媒中、 ピロール環 含有化合物 (b) 、 アルキルアルミニウム化合物 (c) およびハロゲン含有化合 物 (d) を接触させ、 得られた混合液にクロム化合物 (a) を接触させることに より諷製されたクロム系触媒を使用することを特徴とする α—ォレフイン低重合 体の製造方法。
2. クロム系触媒として、 α—ォレフィンの不存在下、 炭化水素および Ζまたは ハロゲン化炭化水素溶媒中、 ピロール環含有化合物 (b) 、 アルキルアルミニゥ ム化合物 (c) およびハロゲン含有化合物 (d) を接触させ、 得られた混合液に クロム化合物 (a) を接触させることにより調製されたクロム系触媒を使用する 請求項 1に記載の α—ォレフィン低重合体の製造方法。
3. 混合液中のクロム化合物 (a) の溏度が 1 X 1 0— 7〜3 X 1 0_2モル/リ ツ トルの範囲となる量のクロム化合物 (a) を使用する請求項 1に記載の α—ォレ フィン低重合体の製造方法。
4. 少なくとも、 クロム化合物 (a) 、 ピロール環含有化合物 (b) 、 アルキル アルミニウム化合物 (c) 、 およびハロゲン含有化合物 (d) の各成分を接触さ せることにより調製されたク口ム系触媒を含有する反応液中で、 α—ォレフィン を低重合反応させて α—ォレフィン低重合体を製造する方法において、 該クロム 系触媒として、 α—ォレフィンの不存在下、 炭化水素および またはハロゲン化 炭化水素溶媒中、 クロム化合物 (a) 、 ピロール環含有化合物 (b) 、 アルキル アルミニウム化合物 (c) およびハロゲン含有化合物 (d) を、 混合液中のクロ ム化合物 (a) の濃度を 8 X 1 0一3モル/リ ッ トル以下として、 接触させること により調製されたクロム系触媒を使用することを特徴とする α—ォレフィン低重 合体の製造方法。
5. 混合液中のクロム化合物 ( ) の溏度を 1 X 10-3〜8 X 1 0-3モルノリ ツ トルの範囲とする請求項 4に記載の α—ォレフィンの製造方法。
6. クロム系触媒が、 ピロール環含有化合物 (b) 、 アルキルアルミニウム化合 物 (c) およびハロゲン含有化合物 (d) を接触させ、 得られた混合液にクロム 化合物 (a) を接触させることにより調製されたものである請求項 4に記截の α ーォレフィン低重合体の製造方法。
7. クロム系触媒が、 溶媒中、 先ず、 クロム化合物 (a) 、 ピロ一ル環含有化合 物 (b) およびハロゲン含有化合物 (d) を接触させてピロール環含有化合物と ハロゲン含有化合物との反応生成物を沈殿物として生成させ、 次いで、 アルキル アルミニウム化合物 (c) を添加することにより調製されたものである請求項 4 に記載の α—ォレフィン低重合体の製造方法。
8. クロム系触媒が、 溶媒中、 先ず、 ピロ一ル環含有化合物 (b) およびハロゲ ン含有化合物 (d) を接触させてピロール環含有化合物とハロゲン含有化合物と の反応生成物を沈殿物として生成させ、 次いで、 クロム化合物 (a) とアルキル アルミニウム化合物 (c) を順次添加することにより調製されたものである請求 項 4に記載の α—ォレフィン低重合体の製造方法。
9. 沈殿物の主成分が、 下記一般式 (I) で表されるピロ一ル锈導体である請求 項 7に記載の α—ォレフィン低重合体の製造方法。
Figure imgf000045_0001
(一般式 ( I ) 中、 R'〜R4は水素原子または炭素数が 1〜20の直鎖状もしく は分岐鎖状の炭化水素基を表し、 R 3と R 4は一体となって環を形成していてもよ い。 Xはハロゲン原子、 Mは、 周期表の 3族、 4族、 6族 (クロムを除く) 、 1 3族、 14族及び 1 5族からなる群から選ばれた元素を表す。 m及び nは、 1≤ m≤ 6、 0≤ n≤ 5 , 2 m + n≤ 6を満足する数であって、 m + nの値は Mの 価数と一致する。 n個の Rは、 それぞれ、 水素原子または炭素数が 1〜20の直 鎖状もしくは分岐鎖状の炭化水素基を表し、 nが 2以上の場合、 Rは互いに同一 でも異なっていてもよい。 )
10. 沈殿物の主成分が、 下記一般式 ( I ) で表されるピロール誘導体である請 求項 8に記載の α—ォレフイン低重合体の製造方法。
Figure imgf000046_0001
(一般式 ( I ) 中、 R '〜: R4は水素原子または炭素数が 1〜20の直鎖状もしく は分岐鎖状の炭化水素基を表し、 R 3と R 4は一体となつて漯を形成していてもよ い。 Xはハロゲン原子、 Mは、 周期表の 3族、 4族、 6族 (クロムを除く) 、 1 3族、 14族及び 15族からなる群から選ばれた元素を表す。 m及び nは、 1≤ πι≤6、 0≤ η≤ 5 , 2≤m+ η≤ 6を満足する数であって、 111+ 11の値は1^の 価数と一致する。 η個の Rは、 それぞれ、 水素原子または炭素数が 1〜20の直 鎖状もしくは分岐鎖状の炭化水素基を表し、 ηが 2以上の場合、 Rは互いに同一 でも異なっていてもよい。 )
1 1. クロム系触媒が、 クロム化合物 (a) とピロール環含有化合物 (b) とを 予め混合したものと、 アルキルアルミニウム化合物 (c) とハロゲン含有化合物
(d) とを予め混合したものとを接触させることにより調製されたものである請 求項 4に記載の c ーォレフィン低重合体の製造方法。
12. 下記一般式 ( I) で表されるピロール誘導体。
R1
(I) (—般式 ( I ) 中、 1〜!^は水素原子または炭素数が 1〜2 0の直鎖状もしく は分岐鎖状の炭化水素基を表し、 R 3と R 4は一体となって環を形成していてもよ い。 Xはハロゲン原子、 Mは、 周期表の 3族、 4族、 6族 (クロムを除く) 、 1 3族、 1 4族及び 1 5族からなる群から選ばれた元素を表す。 m及び nは、 1≤ m≤ 6 N 0≤n≤ 5、 2≤m + n≤ 6を満足する数であって、 111 + 11の値は1^の 価数と一致する。 n個の Rは、 それぞれ、 水素原子または炭素数が 1〜 2 0の直 鎖状もしくは分岐鎖状の炭化水素基を表し、 nが 2以上の場合、 Rは互いに同一 でも異なっていてもよい。 )
1 3 . 調製されたクロム系触媒を α—ォレフインの低重合反応に用いる前に長時 間保存するに際し、 該クロム系触媒を不飽和炭化水素を含む有機溶媒中で保存す る請求項 1に記載の c ーォレフイン低重合体の製造方法。
1 4 . 調製されたクロム系触媒を α—ォレフインの低重合反応に用いる前に長時 間保存するに際し、 該クロム系触媒を不飽和炭化水素を含む有機溶媒中で保存す る請求項 4に記載の α—ォレフィン低重合体の製造方法。
1 5 . クロム系触媒を、 該触媒中のクロム原子 1モル当たり 5 0モル以上の不飽 和炭化水素を含む有機溶媒中で保存する請求項 1 3に記載の α—ォレフィン低重 合体の製造方法。
1 6 . クロム系触媒を、 5重量。 /0以上の不飽和炭化水素を含む有機溶媒中で保存 する請求項 1 3に記載の α—ォレフイン低重合体の製造方法。
1 7 . 不飽和炭化水素が炭素数 6〜 1 2の芳香族炭化水素である請求項 1 3に記 載の α—ォレフィン低重合体の製造方法。
1 8 . 触媒調製に用いる炭化水素および Ζまたはハロゲン化炭化水素溶媒が不飽 和炭化水素を含有しており、 かつ調製されたクロム系触媒をそのまま該溶媒中で 保存する請求項 1 3に記載の α—ォレフイン低重合体の製造方法。
1 9 . α—ォレフインの低重合反応を、 連続式ないしは半回分式反応により行い、 かつ反応中にハロゲン含有化合物 (d ) を追加供給する請求項 1に記載の α—ォ レフィン低重合体の製造方法。
2 0 . α—ォレフインの低重合反応を、 連続式ないしは半回分式反応により行い、 かつ反応中にハロゲン含有化合物 (d) を追加供給する請求項 4に記載の α—才 レフイン低重合体の製造方法。
2 1. クロム系触媒が、 クロム化合物 (a ) とアルキルアルミニウム化合物 (c ) とを接触させる前に、 クロム化合物 (a) 又はアルキルアルミニウム化合物 (c ) にピロール環含有化合物 (b) 及びハロゲン含有化合物 (d) の少なくとも一方 を接触させる過程を経て調製されたものである請求項 1 9に記載のひ一ォレフィ ン低重合体の製造方法。
2 2. c —ォレフィンの低重合反応を連続式反応により行い、 かつ反応器内での 滞留時間が 5分以上経過した時点でハロゲン含有化合物 (d) を追加供給する請 求項 1 9に記載の α—ォレフィン低重合体の製造方法。
2 3. α—ォレフィンの低重合反応を半回分式反応により行い、 'かつ反応器內で の滞留時間が 5分以上経過した時点でハロゲン含有化合物 (d) を追加供給する 請求項 1 9に記載の α—ォレフイン低重合体の製造方法。
2 4. ハロゲン含有化合物 (d) に加えてアルキルアルミニウム化合物 (c ) を 追加供給する請求項 1 9に記載の α—才レフィン低重合体の製造方法。
2 5. 追加供給されるハロゲン含有化合物 (d) が、 周期表の 1 3族又は 1 4族 の元素に結合したハロゲンを含むものである請求項 1 9に記載の α—ォレフィン 低重合体の製造方法。
2 6. クロム化合物 (a) 力 i3—ジケトン、 3—ケトカルボン酸又は他のカル ボン酸とクロムとの塩である請求項 1に記載の α—ォレフィン低重合体の製造方 法。
2 7. クロム化合物 (a) が、 ]3—ジケトン、 ]3—ケトカルボン酸又は他のカル ボン酸とクロムとの塩である請求項 4に記載の α—ォレフィン低重合体の製造方 法。
2 8. ハロゲン含有化合物 (d) 力;、 周期表の 3族、 4族、 6族 (クロムを除く) 、 1 3族、 1 4族及び 1 5族から成る群から選ばれた元素を含むものである請求項 1に記載の α—才レフイン低重合体の製造方法。
2 9. ハロゲン含有化合物 (d) 周期表の 3族、 4族、 6族 (クロムを除く) 、 1 3族、 1 4族及び 1 5族から成る群から選ばれた元素を含むものである請求項 4に記載の ctーォレフィン低重合体の製造方法。
3 0 . 低重合反応に供する α—ォレフインがエチレンであり、 α—ォレフイン低 重合体が主に 1一へキセンである請求項 1に記載の α—ォレフィン低重合体の製 造方法。
3 1 . 低重合反応に供する α—ォレフインがエチレンであり、 α—ォレフィン低 重合体が主に 1一へキセンである請求項 4に記載の α—ォレフィン低重' 造方法。
PCT/JP1997/000766 1996-03-14 1997-03-12 PROCEDE DE PRODUCTION D'OLIGOMERS D'α-OLEFINES WO1997033924A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/952,746 US6133495A (en) 1996-03-14 1997-03-12 Process for producing α-olefin oligomer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP8593196 1996-03-14
JP8/85931 1996-03-14
JP8/87360 1996-03-15
JP8736096 1996-03-15

Publications (1)

Publication Number Publication Date
WO1997033924A1 true WO1997033924A1 (fr) 1997-09-18

Family

ID=26426943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1997/000766 WO1997033924A1 (fr) 1996-03-14 1997-03-12 PROCEDE DE PRODUCTION D'OLIGOMERS D'α-OLEFINES

Country Status (2)

Country Link
US (1) US6133495A (ja)
WO (1) WO1997033924A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000037175A1 (en) * 1998-12-18 2000-06-29 Phillips Petroleum Company Catalyst and processes for olefin trimerization
EP1268570A1 (en) * 1999-12-29 2003-01-02 Phillips Petroleum Company Olefin production
US7157612B2 (en) * 1997-10-14 2007-01-02 Phillips Petroleum Company Olefin production process
US10882926B2 (en) 2011-02-16 2021-01-05 Sabic Global Technologies B.V. Method for preparing a catalyst composition for oligomerization of ethylene and respective catalyst composition pre-formation unit

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809057B2 (en) 2003-02-10 2004-10-26 Exxonmobil Chemical Patents Inc. Chromium compounds and olefin polymerization processes utilizing them
TW200502038A (en) * 2003-03-14 2005-01-16 Chevron Phillips Chemical Co Process to decrease or eliminate corrosion from the decomposition of halide containing olefin catalysts
US20050187418A1 (en) * 2004-02-19 2005-08-25 Small Brooke L. Olefin oligomerization
US9550841B2 (en) 2004-02-20 2017-01-24 Chevron Phillips Chemical Company Lp Methods of preparation of an olefin oligomerization catalyst
US20070043181A1 (en) * 2005-08-19 2007-02-22 Knudsen Ronald D Methods of preparation of an olefin oligomerization catalyst
US20050187098A1 (en) * 2004-02-20 2005-08-25 Knudsen Ronald D. Methods of preparation of an olefin oligomerization catalyst
US7384886B2 (en) * 2004-02-20 2008-06-10 Chevron Phillips Chemical Company Lp Methods of preparation of an olefin oligomerization catalyst
AU2005217601B2 (en) 2004-02-20 2012-02-16 Chevron Phillips Chemical Company Lp Methods of preparation of an olefin oligomerization catalyst
EP1856010B1 (en) * 2005-03-09 2010-07-28 ExxonMobil Chemical Patents Inc. Methods for oligomerizing olefins
US7414006B2 (en) * 2005-03-09 2008-08-19 Exxonmobil Chemical Patents Inc. Methods for oligomerizing olefins
US8076524B2 (en) * 2006-02-03 2011-12-13 Exxonmobil Chemical Patents Inc. Process for generating alpha olefin comonomers
US8003839B2 (en) * 2006-02-03 2011-08-23 Exxonmobil Chemical Patents Inc. Process for generating linear apha olefin comonomers
US7982085B2 (en) * 2006-02-03 2011-07-19 Exxonmobil Chemical Patents Inc. In-line process for generating comonomer
US8404915B2 (en) * 2006-08-30 2013-03-26 Exxonmobil Chemical Patents Inc. Phosphine ligand-metal compositions, complexes, and catalysts for ethylene trimerizations
EA016590B1 (ru) * 2006-12-27 2012-06-29 Мицубиси Кемикал Корпорейшн Способ получения полиолефина и продукт для получения линейного полиэтилена низкой плотности
EA028656B1 (ru) * 2006-12-28 2017-12-29 Мицубиси Кемикал Корпорейшн СПОСОБ ПОЛУЧЕНИЯ ОЛИГОМЕРА α-ОЛЕФИНА
WO2008085658A1 (en) * 2007-01-08 2008-07-17 Exxonmobil Chemical Patents Inc. Methods for oligomerizing olefins with chromium pyridine thioether catalysts
US8629280B2 (en) * 2007-01-08 2014-01-14 Exxonmobil Chemical Patents Inc. Methods for oligomerizing olefins with chromium pyridine ether catalysts
EP2121183A1 (en) * 2007-01-08 2009-11-25 ExxonMobil Chemical Patents Inc. Chromium complexes of pyridine bis (oxazoline)-ligands for ethylene dimerization
EP2104679A1 (en) * 2007-01-08 2009-09-30 ExxonMobil Chemical Patents Inc. Methods for oligomerizing olefins with chromium pyridine mono-oxazoline catalysts
US7902415B2 (en) * 2007-12-21 2011-03-08 Chevron Phillips Chemical Company Lp Processes for dimerizing or isomerizing olefins
US8471085B2 (en) 2008-10-31 2013-06-25 Chevron Phillips Chemical Company Lp Oligomerization catalyst system and process for oligomerizing olefins
SG194380A1 (en) * 2008-10-31 2013-11-29 Chevron Phillips Chemical Co Compositions and catalyst systems of metal precursors and olefinic diluents
ES2371218T3 (es) * 2009-04-09 2011-12-28 Saudi Basic Industries Corporation Composición de catalizador y procedimiento para la oligomerización de etileno.
US9956548B2 (en) 2011-12-12 2018-05-01 Chevron Phillips Chemical Company Lp Preparation of an olefin oligomerization catalyst
US8957235B2 (en) 2011-12-12 2015-02-17 Chevron Phillips Chemical Company Lp Preparation of transition metal carboxylates
WO2013095720A1 (en) 2011-12-22 2013-06-27 Exxonmobil Chemical Patents Inc. Methods and apparatus for deactivating a catalyst composition
US9586872B2 (en) 2011-12-30 2017-03-07 Chevron Phillips Chemical Company Lp Olefin oligomerization methods
US9175109B1 (en) 2014-05-20 2015-11-03 Chevron Phillips Chemical Company Lp Oligomerization processes and polymer compositions produced therefrom
EP3237363B1 (en) * 2014-12-23 2019-05-01 Public Joint Stock Company "Sibur Holding" Methods of preparing oligomers of an olefin
US9505675B2 (en) * 2015-02-09 2016-11-29 Chevron Phillips Chemical Company Lp Deactivation of a process by-product
WO2017010998A1 (en) 2015-07-14 2017-01-19 Chevron Phillips Chemical Company Lp Olefin compositions
US9732300B2 (en) 2015-07-23 2017-08-15 Chevron Phillipa Chemical Company LP Liquid propylene oligomers and methods of making same
US10519077B2 (en) 2015-09-18 2019-12-31 Chevron Phillips Chemical Company Lp Ethylene oligomerization/trimerization/tetramerization reactor
US10513473B2 (en) 2015-09-18 2019-12-24 Chevron Phillips Chemical Company Lp Ethylene oligomerization/trimerization/tetramerization reactor
KR102472153B1 (ko) * 2016-12-30 2022-11-28 사빅 글로벌 테크놀러지스 비.브이. 선택적인 1-헥센 제조용 균질 촉매의 제조 방법
RU2749592C2 (ru) 2016-12-30 2021-06-15 Сабик Глобал Текнолоджис Б.В. Способ получения раствора катализатора для селективного производства 1-гексена
CN114450316A (zh) * 2019-09-24 2022-05-06 Sabic环球技术有限责任公司 烯烃聚合方法
US11878952B1 (en) 2022-11-14 2024-01-23 Chevron Phillips Chemical Company Lp Oligomerization catalyst system deactivation and related ethylene oligomerization processes

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151409A (ja) * 1994-11-29 1996-06-11 Mitsubishi Chem Corp α−オレフィン低重合体の製造方法
JPH08239328A (ja) * 1995-03-02 1996-09-17 Mitsubishi Chem Corp α−オレフイン低重合体の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5451645A (en) * 1989-08-10 1995-09-19 Phillips Petroleum Company Process for olefin polymerization
US5376612A (en) * 1989-08-10 1994-12-27 Phillips Petroleum Company Chromium catalysts and process for making chromium catalysts
US5543375A (en) * 1994-02-18 1996-08-06 Phillips Petroleum Company Olefin production
US5910619A (en) * 1994-06-21 1999-06-08 Mitsubishi Chemical Corporation Process for producing α-olefin oligomers
JP3613642B2 (ja) * 1994-09-05 2005-01-26 住友化学株式会社 1−ヘキセンの製造方法
EP0780333A1 (en) * 1995-12-18 1997-06-25 N.V. Bekaert S.A. Winding of multiple filaments

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08151409A (ja) * 1994-11-29 1996-06-11 Mitsubishi Chem Corp α−オレフィン低重合体の製造方法
JPH08239328A (ja) * 1995-03-02 1996-09-17 Mitsubishi Chem Corp α−オレフイン低重合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZEITSCHRIFT FUER CHEMIE, 18(1), (1978), p. 34-36, "A Pyrrole Derivative Derived from Pyrrole and Diethyl Aluminum Chloride is Described". *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7157612B2 (en) * 1997-10-14 2007-01-02 Phillips Petroleum Company Olefin production process
US7718838B2 (en) 1997-10-14 2010-05-18 Chevron Phillips Chemical Company Lp Olefin production process
WO2000037175A1 (en) * 1998-12-18 2000-06-29 Phillips Petroleum Company Catalyst and processes for olefin trimerization
EP1268570A1 (en) * 1999-12-29 2003-01-02 Phillips Petroleum Company Olefin production
EP1268570A4 (en) * 1999-12-29 2004-06-16 Conocophillips Co OLEFIN PRODUCTION
US10882926B2 (en) 2011-02-16 2021-01-05 Sabic Global Technologies B.V. Method for preparing a catalyst composition for oligomerization of ethylene and respective catalyst composition pre-formation unit

Also Published As

Publication number Publication date
US6133495A (en) 2000-10-17

Similar Documents

Publication Publication Date Title
WO1997033924A1 (fr) PROCEDE DE PRODUCTION D&#39;OLIGOMERS D&#39;α-OLEFINES
JP4189703B2 (ja) 触媒組成物、並びにエチレンの特に1−ブテンおよび/または1−ヘキセンへのオリゴマー化方法
JPH06239920A (ja) 触媒系の製造法及びオレフィンを三量体化、オリゴマー化及び/又は重合する方法
JP2011506069A (ja) エチレンのオリゴマー化のための触媒組成物、オリゴマー化プロセスおよびその調製方法
WO2012051698A1 (en) Ethylene oligomerization
EP0221206B1 (en) Process for making butene-1 from ethylene
CN107207383B (zh) 制备烯烃的低聚物的方法
US9050587B2 (en) Catalyst composition and process for preparing linear alpha-olefins
JP3766170B2 (ja) α−オレフィン低重合体の製造方法
KR20210091748A (ko) 크롬 보조된 1-헥센의 생성을 위한 리간드 및 이를 이용한 에틸렌 올리고머화 방법
JP3396911B2 (ja) α−オレフィンの低重合方法
US4737480A (en) Process for the oligomerization of olefins and a catalyst thereof
JP3351068B2 (ja) α−オレフィン低重合体の製造方法
JPH1036435A (ja) α−オレフィン低重合体の製造方法
JP3540828B2 (ja) 1−ヘキセンの製造方法
JP3533835B2 (ja) α−オレフィン低重合触媒の保存方法
JP3881418B2 (ja) α−オレフィン低重合体の製造方法
JP3385653B2 (ja) α−オレフィンの低重合方法
JP3419085B2 (ja) α−オレフィン低重合体の製造方法
JP3743062B2 (ja) α−オレフィン低重合体の製造方法
JP3289372B2 (ja) α−オレフィンの低重合方法
JP3858294B2 (ja) α−オレフィン低重合体の製造方法
JP3627990B2 (ja) α−オレフイン低重合体の製造方法
JP3482756B2 (ja) α−オレフィン低重合体の製造方法
JP2000313714A (ja) 触媒系の製造法及びオレフィンを三量体化、オリゴマー化及び/又は重合する方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CN KR SG US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 08952746

Country of ref document: US

122 Ep: pct application non-entry in european phase