WO1997005214A1 - Flüssigkristallines medium - Google Patents

Flüssigkristallines medium Download PDF

Info

Publication number
WO1997005214A1
WO1997005214A1 PCT/EP1996/003226 EP9603226W WO9705214A1 WO 1997005214 A1 WO1997005214 A1 WO 1997005214A1 EP 9603226 W EP9603226 W EP 9603226W WO 9705214 A1 WO9705214 A1 WO 9705214A1
Authority
WO
WIPO (PCT)
Prior art keywords
compounds
medium according
carbon atoms
alkenyl
formula
Prior art date
Application number
PCT/EP1996/003226
Other languages
English (en)
French (fr)
Inventor
Kazuaki Tarumi
Brigitte Schuler
Michael Schwarz
Hideo Ichinose
Yasuyoshi Namiki
Akiko Takashima
Hiroshi Numata
Original Assignee
Merck Patent Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent Gmbh filed Critical Merck Patent Gmbh
Priority to DE59608275T priority Critical patent/DE59608275D1/de
Priority to EP96927573A priority patent/EP0842238B1/de
Priority to JP50721097A priority patent/JP3981411B2/ja
Priority to US09/011,264 priority patent/US6506462B1/en
Priority to KR10-2003-7016970A priority patent/KR100462959B1/ko
Publication of WO1997005214A1 publication Critical patent/WO1997005214A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/753Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring of polycyclic acids
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/30Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing saturated or unsaturated non-aromatic rings, e.g. cyclohexane rings
    • C09K19/3001Cyclohexane rings
    • C09K19/3066Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers
    • C09K19/3068Cyclohexane rings in which the rings are linked by a chain containing carbon and oxygen atoms, e.g. esters or ethers chain containing -COO- or -OCO- groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2323/00Functional layers of liquid crystal optical display excluding electroactive liquid crystal layer characterised by chemical composition

Definitions

  • the present invention relates to a liquid-crystalline medium, its use for electro-optical purposes and displays containing this medium.
  • Liquid crystals are mainly used as dielectrics in display devices, since the optical properties of such substances can be influenced by an applied voltage.
  • Electro-optical devices based on liquid crystals are well known to the person skilled in the art and can be based on various effects. Such devices are, for example, cells with dynamic scattering, DAP cells (deformation of aligned phases), guest / host cells, TN cells with a twisted nematic ("twisted nematic") structure, STN cells (“super-twisted nematic”), SBE cells (“superbirefhngence effect”) and OMI cells ("optical mode interference").
  • the most common display devices are based on the Schadt-Helfrich effect and have a twisted nematic structure.
  • the liquid crystal materials must have good chemical and thermal stability and good stability against electric fields and electromagnetic radiation. Furthermore, the liquid crystal materials should have a low viscosity and result in short response times, low threshold voltages and a high contrast in the cells.
  • nematic or cholesteric mesophase for the above-mentioned cells.
  • liquid crystals are generally used as mixtures of several components, it is important that the components are readily miscible with one another.
  • media with large positive dielectric anisotropy, broad nematic phases, relatively low birefringence, very high specific resistance, good UV and temperature stability and low vapor pressure are desired for matrix liquid crystal displays with integrated non-linear elements for switching individual pixels (MLC displays) .
  • Such matrix liquid crystal displays are known.
  • active elements i.e. transistors
  • non-linear elements for the individual switching of the individual pixels.
  • active matrix whereby one can distinguish two types:
  • MOS Metal Oxide Semiconductor
  • TFT Thin film transistors
  • the TN effect is usually used as the electro-optical effect.
  • TFTs made from compound semiconductors such as CdSe or TFTs based on polycrystalline or amorphous silicon. The latter technology is being worked on with great intensity worldwide.
  • the TFT matrix is applied to the inside of one glass plate of the display, while the other glass plate carries the transparent counter electrode on the inside. Compared to the size of the pixel electrode, the TFT is very small and practically does not disturb the image.
  • This technology can also be expanded for fully color-compatible image representations, a mosaic of red, green and blue filters being arranged in such a way that a filter element is located opposite a switchable image element.
  • the TFT displays usually work as TN cells with crossed polarizers in transmission and are illuminated from behind.
  • MLC displays of this type are particularly suitable for TV applications (e.g. pocket TVs) or for high-information displays for computer applications (laptops) and in automobile or aircraft construction.
  • TV applications e.g. pocket TVs
  • high-information displays for computer applications (laptops) and in automobile or aircraft construction.
  • the invention has for its object to provide media in particular for such MFK, TN or STN displays, which do not have the disadvantages indicated above or only to a lesser extent, and preferably at the same time have very high resistivities and low threshold voltages. It has now been found that this object can be achieved if media according to the invention are used in advertisements.
  • the invention thus relates to a liquid-crystalline medium based on a mixture of polar compounds with positive dielectric anisotropy, characterized in that it contains one or more compounds of the general formula I.
  • RH an unsubstituted, an alkyl or alkenyl radical with 1 to 15 carbon atoms which is monosubstituted by CN or CF 3 or at least monosubstituted by halogen, one or more CH 2 groups in each of these radicals independently of one another by -O-, -S-, .
  • -CO-, -CO-O-, -O-CO- or -O-CO-O- can be replaced so that O atoms are not directly linked, YF, Cl, halogenated alkyl, alkenyl or alkoxy with 1 to
  • L 1 denotes H or F.
  • the compounds of formula I have a wide range of applications. Depending on the choice of the substituents, these compounds can serve as base materials from which liquid-crystalline media are predominantly composed; However, it is also possible to add compounds of the formula I to liquid-crystalline base materials from other classes of compounds in order, for example, to influence the dielectric and / or optical anisotropy of such a dielectric and / or to optimize its threshold voltage and / or its viscosity.
  • the compounds of the formula I are colorless in the pure state and form liquid-crystalline mesophases in a temperature range which is favorable for electro-optical use. They are stable chemically, thermally and against light.
  • Y is preferably F, Cl, OCF 3 , OCHF 2 , CF 3 , CHFCF 3 , CF 2 CHF 2 ,
  • R is an alkyl radical and / or an alkoxy radical
  • this can be straight-chain or branched. It is preferably straight-chain, has 2, 3, 4, 5, 6 or 7 carbon atoms and accordingly preferably means ethyl, propyl, butyl, pentyl, hexyl, heptyl, ethoxy, propoxy, butoxy, pentoxy, hexoxy or heptoxy, furthermore methyl , Octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, methoxy, octoxy, nonoxy, decoxy, undecoxy, dodecoxy, tridecoxy or tetradecoxy.
  • R is an alkyl radical in which one CH 2 group has been replaced by -O- and one has been replaced by -CO-, these are preferably adjacent. Thus, they include an acyloxy group -CO-O- or an oxycarbonyl group -O-CO-. These are preferably straight-chain and have 2 to 6 carbon atoms.
  • R a is monosubstituted by CN or CF 3 or alkyl
  • Alkenyl radical this radical is preferably straight-chain.
  • the substitution by CN or CF 3 is in any position.
  • R is an alkyl or alkenyl radical which is at least monosubstituted by halogen
  • this radical is preferably straight-chain and Halogen is preferably F or Cl. With multiple substitution, halogen is preferably F.
  • the resulting residues also include perfluorinated residues. In the case of single substitution, the fluorine or chlorine substituent can be in any position, but preferably in the ⁇ position.
  • Compounds of the formula I which have wing groups R which are suitable for polymerization reactions are suitable for the preparation of liquid-crystalline polymers.
  • Compounds of the formula I with branched wing groups R can occasionally be of importance because of their better solubility in the customary liquid-crystalline base materials, but in particular as chiral dopants if they are optically active.
  • Smectic compounds of this type are suitable as components for ferroelectric materials.
  • Branched groups of this type usually contain no more than one chain branch.
  • R represents an alkyl radical in which two or more CH 2 groups have been replaced by -O- and / or -CO-O-, this can be straight-chain or branched. It is preferably branched and has 3 to 12 carbon atoms. Accordingly, it means especially bis-carboxy-methyl, 2,2-bis-carboxyethyl, 3,3-bis-carboxy-propyl, 4,4-bis-carboxy-butyl, 5,5-bis-carboxypentyl, 6,6- Bis-carboxy-hexyl, 7,7-bis-carboxy-heptyl, 8,8-bis-carboxyoctyl, 9,9-bis-carboxy-nonyl, 10,10-bis-carboxy-decyl, bis (methoxycarbonyl) methyl , 2,2-bis (methoxycarbonyl) ethyl,
  • the compounds of the formula I are prepared by methods known per se, as described in the literature (e.g. in the standard works such as
  • the invention also relates to electro-optical displays (in particular STN or MFK displays with two plane-parallel carrier plates) form a cell with a border, integrated non-linear elements for switching individual pixels on the carrier plates and a nematic liquid crystal mixture in the cell with positive dielectric anisotropy and high resistivity), which contain such media and the use of these media for electro-optical purposes.
  • electro-optical displays in particular STN or MFK displays with two plane-parallel carrier plates
  • liquid crystal mixtures according to the invention allow a significant expansion of the available parameter space.
  • liquid crystal mixtures according to the invention while maintaining the nematic phase down to -20 ° C and preferably up to -30 ° C, particularly preferably up to -40 ° C, clear points above 80 °, preferably above 90 °, particularly preferably above 100 ° C, at the same time dielectric
  • ⁇ 6, preferably ⁇ 8 and a high value for the specific resistance as a result of which excellent STN and MKF displays can be achieved.
  • the mixtures are characterized by small operating voltages.
  • the TN thresholds are below 2.0 V, preferably below 1.5 V, particularly preferably ⁇ 1.3 V It goes without saying that, by a suitable choice of the components of the mixtures according to the invention, higher clearing points (eg above 110 °) at higher threshold voltages or lower clearing points at lower threshold voltages can be achieved while maintaining the other advantageous properties. Likewise, with correspondingly little increased viscosities, mixtures with a larger ⁇ and thus lower thresholds can be obtained.
  • the MFK displays according to the invention preferably operate in the first transmission minimum according to Gooch and Tarry [CH Gooch and HA Tarry, Electron. Lett. 10, 2-4, 1974; CH Gooch and HA Tarry, Appl. Phys., Vol.
  • the viscosity at 20 ° C. is preferably ⁇ 60 mPa.s, particularly preferably ⁇ 50 mPa.s.
  • the nematic phase range is preferably at least 90 °, in particular at least 100 °. This range preferably extends at least from -20 ° to + 80 °.
  • the UV stability of the mixtures according to the invention is also considerably better. H. they show a significantly smaller decrease in HR under UV exposure.
  • the media according to the invention are preferably based on several (preferably two or more) compounds of the formula I, i.e. the proportion of these compounds is 5-95%, preferably 10-60% and particularly preferably in the range of 20-50%.
  • Medium additionally contains one or more compounds selected from the group consisting of the general formulas II to VI:
  • R 0 n-alkyl, oxaalkyl, fluoroalkyl or alkenyl, each with up to
  • X 0 F, Cl, halogenated alkyl, alkenyl or alkoxy with 1 to 6
  • Y 1 and Y 2 each independently of one another H or F r: 0 or 1,
  • the compound of formula IV is preferred
  • - Medium additionally contains one or more compounds selected from the group consisting of the general formulas VII to XII:
  • R 0 , X 0 , Y 1 and Y 2 each independently have one of the meanings given in claim 2, preferably F, Cl, CF 3 , OCF 3 , OCHF 2 , alkyl, oxaalkyl, fluoroalkyl or alkenyl, each with up to 6 C atoms means.
  • the proportion of compounds of the formulas I to VI together in the mixture as a whole is at least 50% by weight;
  • the proportion of compounds of formula I in the total mixture is 10 to 50 wt .-%;
  • the proportion of compounds of the formulas II to VI in the mixture as a whole is 20 to 80% by weight
  • the medium contains compounds of the formulas II, III, IV, V and / or VI - Medium additionally contains one or more compounds of the formulas
  • R 0 is straight-chain alkyl or alkenyl with 2 to 7 carbon atoms - the medium consists essentially of compounds of the formulas I to VI -
  • the medium additionally contains one or more compounds of the formula XVII where R a and R b each independently represent straight-chain alkyl or alkoxy having 1 to 5 carbon atoms - the medium essentially consists of compounds of the formulas I to VI and XVII - the medium contains further compounds, preferably selected from the following group from the general formulas XIII to XVI:
  • R 0 and X 0 have the meaning given above and the 1, 4-phenylene rings can be substituted by CN, chlorine or fluorine.
  • the 1,4-phenylene rings are preferably substituted one or more times by fluorine atoms.
  • the weight ratio I: (II + III + IV + V + VI) is preferably 1:10 to 10: 1.
  • the medium essentially consists of compounds selected from the group consisting of the general formulas I to XII.
  • alkyl encompasses straight-chain and branched alkyl groups having 1-7 carbon atoms, in particular the straight-chain groups methyl, ethyl, propyl, butyl, pentyl, hexyl and heptyl. Groups with 2-5 carbon atoms are generally preferred.
  • alkenyl encompasses straight-chain and branched alkenyl groups with 2-7 carbon atoms, in particular the straight-chain groups.
  • Alkenyl groups in particular are C 2 .C 7 -1 E-alkenyl, C 4 -C 7 -3E-alkenyl, C 5 -C 7 -4-alkenyl, C 6 -C 7 -5-alkenyl and C 7 -6-alkenyl , in particular
  • fluoroalkyl preferably encompasses straight-chain groups with terminal fluorine, ie fluoromethyl, 2-fluoroethyl, 3-fluoropropyl, 4-fluorobutyl, 5-fluoropentyl, 6-fluorohexyl and 7-fluoroheptyl. However, other positions of the fluorine are not excluded.
  • the response times, the threshold voltage, the steepness of the transmission characteristics, etc. can be modified as desired by suitable choice of the meanings of R 0 and X 0 .
  • 1 E-alkenyl residues, 3E-alkenyl residues, 2E-alkenyloxy residues and the like generally lead to shorter response times, improved nematic tendencies and a higher ratio of the elastic constants k 33 (bend) and k 11 (splay) in comparison to alkyl or Alkoxy residues.
  • 4-alkenyl groups, 3-alkenyl groups and the like generally give lower threshold voltages and lower values of Wkn compared to alkyl and alkoxy groups.
  • a -CH 2 CH 2 group generally leads to higher values of k ⁇ / kn compared to a simple covalent bond.
  • Higher values of k 33 / k 1 1 enable, for example, flatter transmission characteristics in TN cells with 90 ° twist (to achieve gray tones) and steeper transmission characteristics in STN, SBE and OMI cells (higher multiplexability) and vice versa.
  • Range can be easily identified from case to case.
  • the total amount of compounds of the formulas I to XII in the mixtures according to the invention is not critical.
  • the mixtures can therefore contain one or more further components in order to optimize various properties.
  • the observed effect on the response times and the threshold voltage is generally greater the higher the total concentration of compounds of the formulas I to XII.
  • a favorable synergistic effect with the compounds of formula I leads to particularly advantageous properties.
  • Mixtures containing compounds of formula I and formula IVa in particular are notable for their low threshold voltages.
  • the construction of the MFK display according to the invention from polarizers, electrode base plates and electrodes with surface treatment corresponds to the design customary for such displays.
  • the term conventional construction is broadly encompassed here and also includes all modifications and modifications of the MLC display, in particular also matrix display elements based on poly-Si TFT or MIM.
  • the liquid crystal mixtures which can be used according to the invention are prepared in a manner which is customary per se.
  • the desired amount of the components used in smaller amounts is dissolved in the components which make up the main constituent, advantageously at elevated temperature.
  • the dielectrics can also contain further additives known to the person skilled in the art and described in the literature. For example, 0-15% pleochroic dyes or chiral dopants can be added.
  • C means a crystalline, S a smectic, S c a smectic C, N a nematic and I the isotropic phase.
  • V 10 denotes the voltage for 10% transmission (viewing direction perpendicular to the plate surface)
  • ton denotes the switch-on time and t off the switch-off time at an operating voltage corresponding to 2.5 times the value of V 10 .
  • ⁇ n denotes the optical anisotropy and n 0 the refractive index.
  • Custom work-up means: water is optionally added, extracted with dichloromethane, diethyl ether, methyl tert-butyl ether or toluene, separated, the organic phase is dried, evaporated and the product is purified by distillation under reduced pressure or crystallization and / or Chromatography.
  • dichloromethane diethyl ether, methyl tert-butyl ether or toluene
  • the organic phase is dried, evaporated and the product is purified by distillation under reduced pressure or crystallization and / or Chromatography.
  • the following abbreviations are used:

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Liquid Crystal Substances (AREA)

Abstract

Die Erfindung betrifft ein flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen mit positiver dielektrischer Anisotropie, dadurch gekennzeichnet, daß es eine oder mehrere Verbindungen der allgemeinen Formel (I) enthält, worin R: H, einen unsubstituierten, einen einfach durch CN oder CF3 oder einen mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -O-, -S-, (a), -CO-, -CO-O-, -O-CO- oder -O-CO-O- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, Y: F, Cl, halogeniertes Alkyl, Alkenyl oder Alkoxy mit 1 bis 6 C-Atomen, und L1: H oder F bedeuten.

Description

Flüssigkristallines Medium
Die vorliegende Erfindung betrifft ein flüssigkristallines Medium, sowie dessen Verwendung für elektrooptische Zwecke und dieses Medium enthaltende Anzeigen.
Flüssige Kristalle werden vor allem als Dielektrika in Anzeigevorrichtungen verwendet, da die optischen Eigenschaften solcher Substanzen durch eine angelegte Spannung beeinflußt werden können. Elektrooptische Vorrich- tungen auf der Basis von Flüssigkristallen sind dem Fachmann bestens bekannt und können auf verschiedenen Effekten beruhen. Derartige Vorrichtungen sind beispielsweise Zellen mit dynamischer Streuung, DAP-Zellen (Deformation aufgerichteter Phasen), Gast/Wirt-Zellen, TN-Zellen mit verdrillt nematischer ("twisted nematic") Struktur, STN-Zellen ("super-twisted nematic"), SBE-Zellen ("superbirefhngence effect") und OMI-Zellen ("optical mode interference"). Die gebräuchlichsten Anzeigevorrichtungen beruhen auf dem Schadt-Helfrich-Effekt und besitzen eine verdrillt nematische Struktur. Die Flüssigkristallmaterialien müssen eine gute chemische und thermische Stabilität und eine gute Stabilität gegenüber elektrischen Feldern und elektromagnetischer Strahlung besitzen. Ferner sollten die Flüssigkristallmaterialien niedere Viskosität aufweisen und in den Zellen kurze Ansprechzeiten, tiefe Schwellenspannungen und einen hohen Kontrast ergeben.
Weiterhin sollten sie bei üblichen Betriebstemperaturen, d.h. in einem möglichst breiten Bereich unterhalb und oberhalb Raumtemperatur eine geeignete Mesophase besitzen, beispielsweise für die oben genannten Zellen eine nematische oder cholesterische Mesophase. Da Flüssigkristalle in der Regel als Mischungen mehrerer Komponenten zur Anwendung gelangen, ist es wichtig, daß die Komponenten untereinander gut mischbar sind. Weitere Eigenschaften, wie die elektrische Leitfähigkeit, die dielektrische Anisotropie und die optische Anisotropie, müssen je nach Zellentyp und Anwendungsgebiet unterschiedlichen Anforderungen genügen. Beispielsweise sollten Materialien für Zellen mit verdrillt nematischer Struktur eine positive dielektrische Anisotropie und eine geringe elektrische Leitfähigkeit aufweisen.
Beispielsweise sind für Matrix-Flüssigkristallanzeigen mit integrierten nicht-linearen Elementen zur Schaltung einzelner Bildpunkte (MFK-Anzeigen) Medien mit großer positiver dielektrischer Anisotropie, breiten nematischen Phasen, relativ niedriger Doppelbrechung, sehr hohem spezifisehen Widerstand, guter UV- und Temperaturstabilität und geringem Dampfdruck erwünscht.
Derartige Matrix-Flüssigkristallanzeigen sind bekannt. Als nichtlineare Elemente zur individuellen Schaltung der einzelnen Bildpunkte können beispielsweise aktive Elemente (d.h. Transistoren) verwendet werden. Man spricht dann von einer "aktiven Matrix", wobei man zwei Typen unterscheiden kann:
1. MOS (Metal Oxide Semiconductor) oder andere Dioden auf Silizium- Wafer als Substrat.
2. Dünnfilm-Transistoren (TFT) auf einer Glasplatte als Substrat.
Die Verwendung von einkristallinem Silizium als Substratmaterial beschränkt die Displaygröße, da auch die modulartige Zusammensetzung verschiedener Teildisplays an den Stößen zu Problemen führt.
Bei dem aussichtsreicheren Typ 2, welcher bevorzugt ist, wird als elektrooptischer Effekt üblicherweise der TN-Effekt verwendet. Man unterscheidet zwei Technologien: TFT's aus Verbindungshalbleitern wie z.B. CdSe oder TFT's auf der Basis von polykristallinem oder amorphem Silizium. An letzterer Technologie wird weltweit mit großer Intensität gearbeitet. Die TFT-Matrix ist auf der Innenseite der einen Glasplatte der Anzeige aufgebracht, während die andere Glasplatte auf der Innenseite die transparente Gegenelektrode trägt. Im Vergleich zu der Größe der Bildpunkt¬Elektrode ist der TFT sehr klein und stört das Bild praktisch nicht. Diese Technologie kann auch für voll farbtaugliche Bilddarstellungen erweitert werden, wobei ein Mosaik von roten, grünen und blauen Filtern derart angeordnet ist, daß je ein Filterelement einem schaltbaren Bildelement gegenüber liegt. Die TFT-Anzeigen arbeiten üblicherweise als TN-Zellen mit gekreuzten Polarisatoren in Transmission und sind von hinten beleuchtet.
Der Begriff MFK-Anzeigen umfaßt hier jedes Matrix-Display mit integrierten nichtlinearen Elementen, d.h. neben der aktiven Matrix auch Anzeigen mit passiven Elementen wie Varistoren oder Dioden (MIM = Metall-Isolator-Metall).
Derartige MFK-Anzeigen eignen sich insbesondere für TV-Anwendungen (z.B. Taschenfernseher) oder für hochinformative Displays für Rechneranwendungen (Laptop) und im Automobil- oder Flugzeugbau. Neben Problemen hinsichtlich der Winkelabhängigkeit des Kontrastes und der Schaltzeiten resultieren bei MFK-Anzeigen Schwierigkeiten bedingt durch nicht ausreichend hohen spezifischen Widerstand der Flüssigkristallmischungen [TOGASHI, S., SEKIGUCHI, K., TANABE, H., YAMAMOTO, E., SORIMACHI, K., TAJIMA, E., WATANABE, H., SHIMIZU, H., Proc.
Eurodisplay 84, Sept. 1984: A 210-288 Matrix LCD Controlled by Double Stage Diode Rings, p. 141 ff, Paris; STROMER, M., Proc. Eurodisplay 84, Sept. 1984: Design of Thin Film Transistors for Matrix Adressing of Television Liquid Crystal Displays, p. 145 ff, Paris]. Mit abnehmendem Widerstand verschlechtert sich der Kontrast einer MFK-Anzeige und es kann das Problem der "after image elimination" auftreten. Da der spezifische Widerstand der Flüssigkristallmischung durch Wechselwirkung mit den inneren Oberflächen der Anzeige im allgemeinen über die Lebenszeit einer MFK-Anzeige abnimmt, ist ein hoher (Anfangs)-Widerstand sehr wichtig, um akzeptable Standzeiten zu erhalten. Insbesondere bei low-volt-Mischungen war es bisher nicht möglich, sehr hohe spezifische Widerstände zu realisieren. Weiterhin ist es wichtig, daß der spezifische Widerstand eine möglichst geringe Zunahme bei steigender Temperatur sowie nach Temperatur- und/oder UV-Belastung zeigt. Besonders nachteilig sind auch die Tieftemperatureigenschaften der Mischungen aus dem Stand der Technik. Gefordert wird, daß auch bei tiefen Temperaturen keine Kristallisation und/oder smektische Phasen auftreten und die Temperaturabhängigkeit der Viskosität möglichst gering ist. Die MFK-Anzeigen aus dem Stand der Technik genügen somit nicht den heutigen Anforderungen.
Es besteht somit immer noch ein großer Bedarf nach MFK-Anzeigen mit sehr hohem spezifischen Widerstand bei gleichzeitig großem Arbeitstemperaturbereich, kurzen Schaltzeiten auch bei tiefen Temperaturen und niedriger Schwellenspannung, die diese Nachteile nicht oder nur in geringerem Maße zeigen.
Bei TN-(Schadt-Helfrich)-Zellen sind Medien erwünscht, die folgende Vorteile in den Zellen ermöglichen: - erweiterter nematischer Phasenbereich (insbesondere zu tiefen
Temperaturen) - Schaltbarkeit bei extrem tiefen Temperaturen (out-door-use,
Automobil, Avionik) - erhöhte Beständigkeit gegenüber UV-Strahlung (längere Lebensdauer)
Mit den aus dem Stand der Technik zur Verfügung stehenden Medien ist es nicht möglich, diese Vorteile unter gleichzeitigem Erhalt der übrigen Parameter zu realisieren. Bei höher verdrillten Zellen (STN) sind Medien erwünscht, die eine höhere Multiplexierbarkeit und/oder kleinere Schwellenspannungen und/oder breitere nematische Phasenbereiche (insbesondere bei tiefen Temperaturen) ermöglichen. Hierzu ist eine weitere Ausdehnung des zur Verfügung stehenden Parameterraumes (Klärpunkt, Übergang smektisch-nematisch bzw. Schmelzpunkt, Viskosität, dielektrische Größen, elastische Größen) dringend erwünscht.
Der Erfindung liegt die Aufgabe zugrunde, Medien insbesondere für derartige MFK-, TN- oder STN-Anzeigen bereitzustellen, die die oben angegebenen Nachteile nicht oder nur in geringerem Maße, und vorzugsweise gleichzeitig sehr hohe spezifische Widerstände und niedrige Schwellenspannungen aufweisen. Es wurde nun gefunden, daß diese Aufgabe gelöst werden kann, wenn man in Anzeigen erfindungsgemäße Medien verwendet.
Gegenstand der Erfindung ist somit ein flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen mit positiver dielektrischer Anisotropie, dadurch gekennzeichnet, daß es eine oder mehrere Verbindungen der allgemeinen Formel I
Figure imgf000007_0001
enthält, worin
R H, einen unsubstituierten, einen einfach durch CN oder CF3 oder einen mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere CH2-Gruppen jeweils unabhängig voneinander durch -O-, -S-,
Figure imgf000008_0002
,
-CO-, -CO-O-, -O-CO- oder -O-CO-O- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind, Y F, Cl, halogeniertes Alkyl, Alkenyl oder Alkoxy mit 1 bis
6 C-Atomen, und
L1 H oder F bedeuten.
Die Verbindungen der Formel I besitzen einen breiten Anwendungs- bereich. In Abhängigkeit von der Auswahl der Substituenten können diese Verbindungen als Basismaterialien dienen, aus denen flüssigkristalline Medien zum überwiegenden Teil zusammengesetzt sind; es können aber auch Verbindungen der Formel I flüssigkristallinen Basismaterialien aus anderen Verbindungsklassen zugesetzt werden, um beispielsweise die dielektrische und/oder optische Anisotropie eines solchen Dielektrikums zu beeinflussen und/oder um dessen Schwellenspannung und/oder dessen Viskosität zu optimieren.
Die Verbindungen der Formel I sind in reinem Zustand farblos und bilden flüssigkristalline Mesophasen in einem für die elektrooptische Verwendung günstig gelegenen Temperaturbereich. Chemisch, thermisch und gegen Licht sind sie stabil.
Verbindungen der Formel
Figure imgf000008_0001
sind bereits aus der EP 0 387 032 bekannt. ln den erfindungsgemäßen Medien enthaltend Verbindungen der Formel I ist Y vorzugsweise F, Cl, OCF3, OCHF2, CF3, CHFCF3, CF2CHF2,
C2H4CHF2, CF2CH2CF3,CHF2, OCH2CF3, OCH2CHF2, OCF2CHF2,
O(CH2)3CF3, OCH2C2F5, OCH2CF2CHF2, OCH2C3F7, OCHFCF3, OC2F5, OCF2CHFCF3, OCH=CF2, OCF=CF2, OCF=CFCF3, OCF=CF-C2F5,
CH=CHF, CH=CF2, CF=CF2, CF2OCF3, insbesondere F, OCHFCF3, OCF3, OCHF2, OC2F5, OC3F7, OCH=CF2, und CF2OCF3.
Insbesondere bevorzugt sind Medien enthaltend Verbindungen der Formel I, worin Y = L1 = F bedeuten.
Falls R einen Alkylrest und/oder einen Alkoxyrest bedeutet, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig, hat 2, 3, 4, 5, 6 oder 7 C-Atome und bedeutet demnach bevorzugt Ethyl, Propyl, Butyl, Pentyl, Hexyl, Heptyl, Ethoxy, Propoxy, Butoxy, Pentoxy, Hexoxy oder Heptoxy, ferner Methyl, Octyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Methoxy, Octoxy, Nonoxy, Decoxy, Undecoxy, Dodecoxy, Tridecoxy oder Tetradecoxy. Oxaalkyl bedeutet vorzugsweise geradkettiges 2-Oxapropyl (= Methoxy- methyl), 2- (= Ethoxymethyl) oder 3-Oxabutyl (= 2-Methoxyethyl), 2-, 3- oder 4-Oxapentyl, 2-, 3-, 4- oder 5-Oxahexyl, 2-, 3-, 4-, 5- oder 6-Oxa- heptyl, 2-, 3-, 4-, 5-, 6- oder 7-Oxaoctyl, 2-, 3-, 4-, 5-, 6-, 7- oder 8-Oxa- nonyl, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder 9-Oxadecyl.
Falls R einen Alkylrest bedeutet, in dem eine CH2-Gruppe durch -CH=CH- ersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 2 bis 10 C-Atome. Er bedeutet demnach besonders Vinyl, Prop-1 -, oder Prop-2-enyl, But-1 -, 2- oder But-3-enyl, Pent-1-, 2-, 3- oder Pent-4-enyl, Hex-1 -, 2-, 3-, 4- oder Hex-5-enyl, Hept-1-, 2-, 3-, 4-, 5- oder Hept-6-enyl, Oct-1 -, 2-, 3-, 4-, 5-, 6- oder Oct-7-enyl, Non-1-, 2-, 3-, 4-, 5-, 6-, 7- oder Non-8-enyl, Dec-1 -, 2-, 3-, 4-, 5-, 6-, 7-, 8- oder Dec-9-enyl. Falls R einen Alkylrest bedeutet, in dem eine CH2-Gruppe durch -O- und eine durch -CO- ersetzt ist, so sind diese bevorzugt benachbart. Somit beinhalten diese eine Acyloxygruppe -CO-O- oder eine Oxycarbonylgruppe -O-CO-. Vorzugsweise sind diese geradkettig und haben 2 bis 6 C-Atome.
Sie bedeuten demnach besonders Acetyloxy, Propionyloxy, Butyryloxy, Pentanoyloxy, Hexanoyloxy, Acetyloxymethyl, Propionyloxymethyl, Butyryloxymethyl, Pentanoyloxymethyl, 2-Acetyloxyethyl, 2-Propionyloxyethyl, 2-Butyryloxyethyl, 3-Acetyloxypropyl, 3-Propionyloxypropyl,
4-Acetyloxybutyl, Methoxycarbonyl, Ethoxycarbonyl, Propoxycarbonyl, Butoxycarbonyl, Pentoxycarbonyl, Methoxycarbonylmethyl, Ethoxycarbonyimethyl, Propoxycarbonylmethyl, Butoxycarbonylmethyl,
2-(Methoxycarbonyl)ethyl, 2-(Ethoxycarbonyl)ethyl, 2-(Propoxycarbonyl)ethyl, 3-(Methoxycarbonyl)propyl, 3-(Ethoxycarbonyl)propyl, 4-(Methoxycarbonyl)-butyl.
Falls R einen Alkylrest bedeutet, in dem eine CH2-Gruppe durch unsubstituiertes oder substituiertes -CH=CH- und eine benachbarte CH2-Gruppe durch CO oder CO-O oder O-CO ersetzt ist, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er geradkettig und hat 4 bis
13 C-Atome. Er bedeutet demnach besonders Acryloyloxymethyl, 2-Acryloyloxyethyl, 3-Acryloyloxypropyl, 4-Acryloyloxybutyl, 5-Acryloyloxypentyl, 6-Acryloyloxyhexyl, 7-Acryloyloxyheptyl, 8-Acryloyloxyoctyl, 9-Acryloyloxynonyl, 10-Acryloyloxydecyl, Methacryloyloxymethyl, 2-Methacryloyloxyethyl, 3-Methacryloyloxypropyl, 4-Methacryloyloxybutyl, 5-Methacryloyloxypentyl, 6-Methacryloyloxyhexyl, 7-Methacryloyloxyheptyl, 8-Methacryloyloxyoctyl, 9-Methacryloyloxynonyl. Falls R einen einfach durch CN oder CF3 substituierten Alkyl- oder
Alkenylrest bedeutet, so ist dieser Rest vorzugsweise geradkettig. Die Substitution durch CN oder CF3 ist in beliebiger Position.
Falls R einen mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest bedeutet, so ist dieser Rest vorzugsweise geradkettig und Halogen ist vorzugsweise F oder Cl, Bei Mehrfachsubstitution ist Halogen vorzugsweise F. Die resultierenden Reste schließen auch perfluorierte Reste ein. Bei Einfachsubstitution kann der Fluor- oder Chlorsubstituent in beliebiger Position sein, vorzugsweise jedoch in ω-Position.
Verbindungen der Formel I, die über für Polymerisationsreaktionen geeignete Flügelgruppen R verfügen, eignen sich zur Darstellung flüssigkristalliner Polymerer. Verbindungen der Formel I mit verzweigten Flügelgruppen R können gelegentlich wegen einer besseren Löslichkeit in den üblichen flüssigkristallinen Basismaterialien von Bedeutung sein, insbesondere aber als chirale Dotierstoffe, wenn sie optisch aktiv sind. Smektische Verbindungen dieser Art eignen sich als Komponenten für ferroelektrische Materialien.
Verbindungen der Formel I mit SA-Phasen eignen sich beispielsweise für thermisch adressierte Displays.
Verzweigte Gruppen dieser Art enthalten in der Regel nicht mehr als eine Kettenverzweigung. Bevorzugte verzweigte Reste R sind Isopropyl, 2-Butyl (= 1 -Methylpropyl), Isobutyl (= 2-Methylpropyl), 2-Methylbutyl, Isopentyl (= 3-Methylbutyl), 2-Methylpentyl, 3-Methylpentyl, 2-Ethylhexyl, 2-Propylpentyl, Isopropoxy, 2-Methylpropoxy, 2-Methylbutoxy, 3-Methylbutoxy, 2-Methylpentoxy, 3-Methylpentoxy, 2-Ethylhexoxy, 1 -Methylhexoxy, 1 -Methylheptoxy.
Falls R einen Alkylrest darstellt, in dem zwei oder mehr CH2-Gruppen durch -O- und/oder -CO-O- ersetzt sind, so kann dieser geradkettig oder verzweigt sein. Vorzugsweise ist er verzweigt und hat 3 bis 12 C-Atome. Er bedeutet demnach besonders Bis-carboxy-methyl, 2,2-Bis-carboxyethyl, 3,3-Bis-carboxy-propyl, 4,4-Bis-carboxy-butyl, 5,5-Bis-carboxypentyl, 6,6-Bis-carboxy-hexyl, 7,7-Bis-carboxy-heptyl, 8,8-Bis-carboxyoctyl, 9,9-Bis-carboxy-nonyl, 10,10-Bis-carboxy-decyl, Bis(methoxycarbonyl)-methyl, 2,2-Bis-(methoxycarbonyl)-ethyl,
3,3-Bis-(methoxycarbonyl)-propyl, 4,4-Bis-(methoxycarbonyl)-butyl, 5,5-Bis-(methoxycarbonyl)-pentyl, 6,6-Bis-(methoxycarbonyl)-hexyl, 7,7-Bis-(methoxycarbonyl)-heptyl, 8,8-Bis-(methoxycarbonyl)-octyl, Bis-(ethoxycarbonyl)-methyl, 2,2-Bis-(ethoxycarbonyl)-ethyl,
3,3-Bis-(ethoxycarbonyl)-propyl, 4,4-Bis-(ethoxycarbonyl)-butyl,
5,5-Bis-(ethoxycarbonyl)-hexyl.
Die Verbindungen der Formel I werden nach an sich bekannten Methoden dargestellt, wie sie in der Literatur (z.B. in den Standardwerken wie
Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen. Die Verbindungen der Formel I können z.B. wie folgt hergestellt werden:
Figure imgf000012_0001
Gegenstand der Erfindung sind auch elektrooptische Anzeigen (insbesondere STN- oder MFK-Anzeigen mit zwei planparallelen Trägerplatten, die mit einer Umrandung eine Zelle bilden, integrierten nicht-linearen Elementen zur Schaltung einzelner Bildpunkte auf den Trägerplatten und einer in der Zelle befindlichen nematischen Flüssigkristallmischung mit positiver dielektrischer Anisotropie und hohem spezifischem Widerstand), die derartige Medien enthalten sowie die Verwendung dieser Medien für elektrooptische Zwecke.
Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen eine bedeutende Erweiterung des zur Verfügung stehenden Parameterraumes.
Die erzielbaren Kombinationen aus Klärpunkt, Viskosität bei tiefer Temperatur, thermischer und UV-Stabilität und dielektrischer Anisotropie übertreffen bei weitem bisherige Materialien aus dem Stand der Technik. Die Forderung nach hohem Klärpunkt, nematischer Phase bei tiefer
Temperatur sowie einem hohen Δε konnte bislang nur unzureichend erfüllt werden. Systeme wie z.B. ZLI-3119 weisen zwar vergleichbaren Klärpunkt und vergleichbar günstige Viskositäten auf, besitzen jedoch ein Δε von nur +3.
Andere Mischungs-Systeme besitzen vergleichbare Viskositäten und Werte von Δε, weisen jedoch nur Klärpunkte in der Gegend von 60 °C auf.
Die erfindungsgemäßen Flüssigkristallmischungen ermöglichen es bei Beibehaltung der nematischen Phase bis -20 °C und bevorzugt bis -30 °C, besonders bevorzugt bis -40 °C, Klärpunkte oberhalb 80°, vorzugsweise oberhalb 90°, besonders bevorzugt oberhalb 100 °C, gleichzeitig dielektrische Anisotropiewerte Δε≥ 6, vorzugsweise≥ 8 und einen hohen Wert für den spezifischen Widerstand zu erreichen, wodurch hervorragende STN- und MKF-Anzeigen erzielt werden können. Insbesondere sind die Mischungen durch kleine Operationsspannungen gekennzeichnet. Die TN-Schwellen liegen unterhalb 2,0 V, vorzugsweise unterhalb 1 ,5 V, besonders bevorzugt < 1 ,3 V. Es versteht sich, daß durch geeignete Wahl der Komponenten der erfindungsgemäßen Mischungen auch höhere Klärpunkte (z.B. oberhalb 110°) bei höheren Schwellenspannung oder niedrigere Klärpunkte bei niedrigeren Schwellenspannungen unter Erhalt der anderen vorteilhaften Eigenschatten realisiert werden können. Ebenso können bei entsprechend wenig erhöhten Viskositäten Mischungen mit größerem Δε und somit geringeren Schwellen erhalten werden. Die erfindungsgemäßen MFKAnzeigen arbeiten vorzugsweise im ersten Transmissionsminimum nach Gooch und Tarry [C.H. Gooch und H.A. Tarry, Electron. Lett. 10, 2-4, 1974; C.H. Gooch und H.A. Tarry, Appl. Phys., Vol. 8, 1575-1584, 1975], wobei hier neben besonders günstigen elektrooptischen Eigenschaften wie z.B. hohe Steilheit der Kennlinie und geringe Winkelabhängigkeit des Kontrastes (DE-PS 30 22 818) bei gleicher Schwellenspannung wie in einer analogen Anzeige im zweiten Minimum eine kleinerere dielektrische Anisotropie ausreichend ist. Hierdurch lassen sich unter Verwendung der erfindungsgemäßen Mischungen im ersten Minimum deutlich höhere spezifische Widerstände verwirklichen als bei Mischungen mit Cyanverbindungen. Der Fachmann kann durch geeignete Wahl der einzelnen Komponenten und deren Gewichtsanteilen mit einfachen Routinemethoden die für eine vorgegebene Schichtdicke der MFK-Anzeige erforderliche Doppelbrechung einstellen.
Die Viskosität bei 20 °C ist vorzugsweise < 60 mPa.s, besonders bevorzugt < 50 mPa.s. Der nematische Phasenbereich ist vorzugsweise mindestens 90°, insbesondere mindestens 100°. Vorzugsweise erstreckt sich dieser Bereich mindestens von -20° bis +80°.
Messungen des "Capacity Holding-ratio" (HR) [S. Matsumoto et al., Liquid Crystals 5, 1320 (1989); K. Niwa et al., Proc. SID Conference, San Francisco, June 1984, p. 304 (1984); G. Weber et al., Liquid Crystals 5, 1381 (1989)] haben ergeben, daß erfindungsgemäße Mischungen enthaltend Verbindungen der Formel I eine deutlich kleinere Abnahme des HR mit steigender Temperatur aufweisen als analoge Mischungen enthaltend anstelle den Verbindungen der Formel I Cyanophenylcyclohexane der oder Ester der
Figure imgf000015_0002
Formel Formel
Figure imgf000015_0003
Auch die UV-Stabilität der erfindungsgemäßen Mischungen ist erheblich besser, d. h. sie zeigen eine deutlich kleinere Abnahme des HR unter UV-Belastung.
Vorzugsweise basieren die erfindungsgemäßen Medien auf mehreren (vorzugsweise zwei oder mehr) Verbindungen der Formel I, d.h. der Anteil dieser Verbindungen ist 5-95 %, vorzugsweise 10-60 % und besonders bevorzugt im Bereich von 20-50 %.
Die einzelnen Verbindungen der Formeln I bis XII und deren Unterformeln, die in den erfindungsgemäßen Medien verwendet werden können, sind entweder bekannt, oder sie können analog zu den bekannten Verbindun- gen hergestellt werden.
Bevorzugte Ausführungsformen sind im folgenden angegeben: - Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln II bis VI:
Figure imgf000015_0001
Figure imgf000016_0001
worin die einzelnen Reste die folgenden Bedeutungen haben:
R0: n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu
9 C-Atomen
X0: F, Cl, halogeniertes Alkyl, Alkenyl oder Alkoxy mit 1 bis 6
C-Atomen,
Y1 und Y2: jeweils unabhängig voneinander H oder F r: 0 oder 1 , Die Verbindung der Formel IV ist vorzugsweise
Figure imgf000017_0001
- Medium enthält zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln VII bis XII:
Figure imgf000017_0002
Figure imgf000018_0001
worin R0, X0, Y1 und Y2 jeweils unabhängig voneinander eine der in Anspruch 2 angegebene Bedeutung haben, vorzugsweise F, Cl, CF3, OCF3, OCHF2, Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 6 C-Atomen bedeutet. - der Anteil an Verbindungen der Formeln I bis VI zusammen beträgt im Gesamtgemisch mindestens 50 Gew.-%; - der Anteil an Verbindungen der Formel I beträgt im Gesamtgemisch 10 bis 50 Gew.-%; - der Anteil an Verbindungen der Formeln II bis VI im Gesamtgemisch beträgt 20 bis 80 Gew.-%
Figure imgf000019_0001
- das Medium enthält Verbindungen der Formeln II, III, IV, V und/ oder VI - Medium enthält zusätzlich ein oder mehrere Verbindungen der Formeln
Figure imgf000019_0002
Figure imgf000019_0003
- R0 ist geradkettiges Alkyl oder Alkenyl mit 2 bis 7 C-Atomen - das Medium besteht im wesentlichen aus Verbindungen der Formeln I bis VI - das Medium enthält zusätzlich ein oder mehrere Verbindungen der Formel XVII
Figure imgf000020_0001
worin Ra und Rb jeweils unabhängig voneinander geradkettiges Alkyl oder Alkoxy mit 1 bis 5 C-Atomen bedeuten - das Medium besteht im wesentlichen aus Verbindungen der Formeln I bis VI und XVII - das Medium enthält weitere Verbindungen, vorzugsweise ausgewählt aus der folgenden Gruppe bestehend aus den allgemeinen Formeln XIII bis XVI:
Figure imgf000020_0002
worin R0 und X0 die oben angegebene Bedeutung haben und die 1 ,4-Phenylenringe durch CN, Chlor oder Fluor substituiert sein können. Vorzugsweise sind die 1 ,4-Phenylenringe ein- oder mehrfach durch Fluoratome substituiert. - Das Gewichtsverhältnis I: (II + III + IV + V + VI) ist vorzugsweise 1 : 10 bis 10 : 1. - Medium besteht im wesentlichen aus Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln I bis XII.
Es wurde gefunden, daß bereits ein relativ geringer Anteil an Verbindungen der Formel I im Gemisch mit üblichen Flüssigkristallmaterialien, insbesondere jedoch mit einer oder mehreren Verbindungen der Formel II, III, IV, V und/oder VI zu einer beträchtlichen Erniedrigung der Schwellenspannung und zu niedrigen Werten für die Doppelbrechung führt, wobei gleichzeitig breite nematische Phasen mit tiefen Übergangstemperaturen smektisch-nematisch beobachtet werden, wodurch die Lagerstabilität verbessert wird. Bevorzugt sind insbesondere Mischungen, die neben ein oder mehrerer Verbindungen der Formel I ein oder mehrere Verbindungen der Formel IV enthalten, insbesondere Verbindungen der Formel IVa, worin X° F oder OCF3 bedeutet. Die Verbindungen der Formeln I bis VI sind farblos, stabil und untereinander und mit anderen Flüssigkristallmaterialien gut mischbar.
Der Ausdruck "Alkyl" umfaßt geradkettige und verzweigte Alkylgruppen mit 1-7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen Methyl, Ethyl, Propyl, Butyl, Pentyl, Hexyl und Heptyl. Gruppen mit 2-5 Kohlenstoffatomen sind im allgemeinen bevorzugt.
Der Ausdruck "Alkenyl" umfaßt geradkettige und verzweigte Alkenylgrup- pen mit 2-7 Kohlenstoffatomen, insbesondere die geradkettigen Gruppen. Besonders Alkenylgruppen sind C2.C7-1 E-Alkenyl, C4-C7-3E-Alkenyl, C5-C7-4-Alkenyl, C6-C7-5-Alkenyl und C7-6-Alkenyl, insbesondere
C2-C7-1 E-Alkenyl, C4-C7-3E-Alkenyl und C5-C7-4-Alkenyl. Beispiele bevorzugter Alkenylgruppen sind Vinyl, 1 E-Propenyl, 1 E-Butenyl,
1 E-Pentenyl, 1 E-Hexenyl, 1 E-Heptenyl, 3-Butenyl, 3E-Pentenyl,
3E-Hexenyl, 3E-Heptenyl, 4-Pentenyl, 4Z-Hexenyl, 4E-Hexenyl,
4Z-Heptenyl, 5-Hexenyl, 6-Heptenyl und dergleichen. Gruppen mit bis zu 5 Kohle nstoffatomen sind im allgemeinen bevorzugt. Der Ausdruck "Fluoralkyl" umfaßt vorzugsweise geradkettige Gruppen mit endständigen Fluor, d.h. Fluormethyl, 2-Fluorethyl, 3-Fluorpropyl, 4-Fluorbutyl, 5-Fluorpentyl, 6-Fluorhexyl und 7-Fluorheptyl. Andere Positionen des Fluors sind jedoch nicht ausgeschlossen.
Der Ausdruck "Oxaalkyl" umfaßt vorzugsweise geradkettige Reste der Formel CnH2n+1-O-(CH2)m, worin n und m jeweils unabhängig voneinander 1 bis 6 bedeuten. Vorzugsweise ist n = 1 und m 1 bis 6. Durch geeignete Wahl der Bedeutungen von R0 und X0 können die Ansprechzeiten, die Schwellenspannung, die Steilheit der Transmissionskennlinien etc. in gewünschter weise modifiziert werden. Beispielsweise führen 1 E-Alkenylreste, 3E-Alkenylreste, 2E-Alkenyloxyreste und dergleichen in der Regel zu kürzeren Ansprechzeiten, verbesserten nematisehen Tendenzen und einem höheren Verhältnis der elastischen Konstanten k33 (bend) und k11 (splay) im Vergleich zu Alkyl- bzw. Alkoxyresten. 4-Alkenylreste, 3-Alkenylreste und dergleichen ergeben im allgemeinen tiefere Schwellenspannungen und kleinere Werte von Wkn im Vergleich zu Alkyl- und Alkoxyresten.
Eine -CH2CH2-Gruppe führt im allgemeinen zu höheren Werten von k^/kn im Vergleich zu einer einfachen Kovalenzbindung. Höhere Werte von k33/k1 1 ermöglichen z.B. flachere Transmissionskennlinien in TN-Zellen mit 90° Verdrillung (zur Erzielung von Grautönen) und steilere Transmissionskennlinien in STN-, SBE- und OMI-Zellen (höhere Multiplexierbarkeit) und umgekehrt.
Das optimale Mengenverhältnis der Verbindungen der Formeln I und II + III + IV + V + VI hängt weitgehend von den gewünschten Eigenschaften, von der Wahl der Komponenten der Formeln I, II, III, IV, V und/oder VI und von der Wahl weiterer gegebenenfalls vorhandener Komponenten ab. Geeignete Mengenverhältnisse innerhalb des oben angegebenen
Bereichs können von Fall zu Fall leicht ermittelt werden. Die Gesamtmenge an Verbindungen der Formeln I bis XII in den erfindungsgemäßen Gemischen ist nicht kritisch. Die Gemische können daher eine oder mehrere weitere Komponenten enthalten zwecks Optimierung verschiedener Eigenschaften. Der beobachtete Effekt auf die Ansprechzeiten und die Schwellenspannung ist jedoch in der Regel umso größer je höher die Gesamtkonzentration an Verbindungen der Formeln I bis XII ist.
In einer besonders bevorzugten Ausführungsform enthalten die erfindungsgemäßen Medien Verbindungen der Formel II bis VI (vorzugsweise II, III und/oder IV, insbesondere IVa), worin Xo F, OCF3, OCHF2, F, OCH=CF2, OCF=CF2 oder OCF2-CF2H bedeutet. Eine günstige synergistische Wirkung mit den Verbindungen der Formel I führt zu besonders vorteilhaften Eigenschaften. Insbesondere Mischungen enthaltend Verbindungen der Formel I und der Formel IVa zeichnen sich durch ihre niedrigen Schwellenspannungen aus.
Der Aufbau der erfindungsgemäßen MFK-Anzeige aus Polarisatoren, Elektrodengrundplatten und Elektroden mit Oberflächenbehandlung entspricht der für derartige Anzeigen üblichen Bauweise. Dabei ist der Begriff der üblichen Bauweise hier weit gefaßt und umfaßt auch alle Abwandlungen und Modifikationen der MFK-Anzeige, insbesondere auch Matrix-Anzeigeelemente auf Basis poly-Si TFT oder MIM.
Ein wesentlicher Unterschied der erfindungsgemäßen Anzeigen zu den bisher üblichen auf der Basis der verdrillten nematischen Zelle besteht jedoch in der Wahl der Flüssigkristallparameter der Flüssigkristallschicht.
Die Herstellung der erfindungsgemäß verwendbaren Flüssigkristallmischungen erfolgt in an sich üblicher weise. In der Regel wird die gewünschte Menge der in geringerer Menge verwendeten Komponenten in der den Hauptbestandteil ausmachenden Komponenten gelöst, zweckmäßig bei erhöhter Temperatur. Es ist auch möglich, Lösungen der Komponenten in einem organischen Lösungsmittel, z.B. in Aceton, Chloroform oder Methanol, zu mischen und das Lösungsmittel nach Durchmischung wieder zu entfernen, beispielsweise durch Destillation. Die Dielektrika können auch weitere, dem Fachmann bekannte und in der Literatur beschriebene Zusätze enthalten. Beispielsweise können 0-15 % pleochroitische Farbstoffe oder chirale Dotierstoffe zugesetzt werden. C bedeutet eine kristalline, S eine smektische, Sc eine smektisch C, N eine nematische und I die isotrope Phase.
V10 bezeichnet die Spannung für 10 % Transmission (Blickrichtung senkrecht zur Plattenoberfläche), ton bezeichnet die Einschaltzeit und toff die Ausschaltzeit bei einer Betriebsspannung entsprechend dem 2,5fachen Wert von V10. Δn bezeichnet die optische Anisotropie und n0 den Brechungsindex. Δε bezeichnet die dielektrische Anisotropie (Δε = ε|| - ε, wobei ε|| die Dielektrizitätskonstante parallel zu den Moleküllängsachsen und ε die Dielektrizitätskonstante senkrecht dazu bedeutet). Die elektro- optischen Daten wurden in einer TN-Zelle im 1. Minimum (d.h. bei einem d · Δn-Wert von 0,5) bei 20 °C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird. Die optischen Daten wurden bei 20 °C gemessen, sofern nicht ausdrücklich etwas anderes angegeben wird. In der vorliegenden Anmeldung und in den folgenden Beispielen sind die Strukturen der Flüssigkristallverbindungen durch Acronyme angegeben, wobei die Transformation in chemische Formeln gemäß folgender Tabellen A und B erfolgt. Alle Reste CnH2n+1 und CmH2m+1 sind geradkettige Alkylreste mit n bzw. m C-Atomen. Die Codierung gemäß Tabelle B versteht sich von selbst. In Tabelle A ist nur das Acronym für den Grundkörper angegeben. Im Einzelfall folgt getrennt vom Acronym für den Grundkörper mit einem Strich ein Code für die Substituenten R1, R2, L1 und L2:
Figure imgf000024_0001
Figure imgf000025_0001
Figure imgf000025_0002
Figure imgf000026_0001
Figure imgf000027_0001
Figure imgf000028_0001
Die folgenden Beispiele sollen die Erfindung erläutern, ohne sie zu begrenzen. Vor- und nachstehend bedeuten Prozentangaben Gewichtsprozent. Alle Temperaturen sind in Grad Celsius angegeben. Fp. bedeutet Schmelzpunkt, Kp. Klärpunkt. Ferner bedeuten K = kristalliner Zustand, N = nematische Phase, S = smektische Phase und I = isotrope Phase. Die Angaben zwischen diesen Symbolen stellen die Übergangstemperaturen dar. Δn bedeutet optische Anisotropie (589 nm, 20 °C) und die Viskosität (mm2/sec) wurde bei 20 °C bestimmt.
"Übliche Aufarbeitung" bedeutet: man gibt gegebenenfalls Wasser hinzu, extrahiert mit Dichlormethan, Diethylether, Methyl-tert.Butylether oder Toluol, trennt ab, trocknet die organische Phase, dampft ein und reinigt das Produkt durch Destillation unter reduziertem Druck oder Kristallisation und/oder Chromatographie. Folgende Abkürzungen werden verwendet:
Figure imgf000029_0003
Beispiel 1
Figure imgf000029_0001
80 mmol trans-4-(4-Propylcyclohexyl)cyclohexansäure, 0,1 mol 3,4,5-Trifluorphenol und 8,8 mmol DMAP werden in 460 g Dichlormethan gelöst und mit 88 mmol DCC versetzt. Die Mischung wird über Nacht bei Raumtemperatur gerührt. Der ausgefallene Dicyclohexylhamstoff wird abgesaugt und das Filtrat zum Rückstand einrotiert. Das Rohprodukt wird mit Toluol über eine Kieselgelsäule Chromatographien. Das Filtrat wird eingeengt und der Rückstand wird aus n-Hexan umkristallisiert.
K 56 N 117,2 I; Δn = 0,070; Δε = 11 ,33
Analog werden die folgenden Verbindungen der Formel
Figure imgf000029_0002
hergestellt:
Figure imgf000030_0001
Figure imgf000031_0001
Figure imgf000032_0001
Figure imgf000033_0001
Figure imgf000034_0001
Figure imgf000035_0001
Figure imgf000036_0001
Figure imgf000037_0001

Claims

Patentansprüche
1. Flüssigkristallines Medium auf der Basis eines Gemisches von polaren Verbindungen mit positiver dielektrischer Anisotropie, dadurch gekennzeichnet, daß es eine oder mehrere Verbindungen der allgemeinen Formel I
Figure imgf000038_0001
enthält, worin
R H, einen unsubstituierten, einen einfach durch CN oder
CF3 oder einen mindestens einfach durch Halogen substituierten Alkyl- oder Alkenylrest mit 1 bis 15 C-Atomen, wobei in diesen Resten auch eine oder mehrere
CH2-Gruppen jeweils unabhängig voneinander durch -O-, -S-,
Figure imgf000038_0002
, -CO-, -CO-O-, -O-CO- oder
-O-CO-O- so ersetzt sein können, daß O-Atome nicht direkt miteinander verknüpft sind,
Y F, Cl, halogeniertes Alkyl, Alkenyl oder Alkoxy mit 1 bis
6 C-Atomen, und
L1 H oder F bedeuten.
2. Medium nach Anspruch 1 , dadurch gekennzeichnet, daß es zusätzlich eine oder mehrere Verbindungen ausgewählt aus der Gruppe bestehend aus den allgemeinen Formeln II, III, IV, V und VI enthält:
Figure imgf000039_0001
worin die einzelnen Reste die folgenden Bedeutungen haben:
R0: n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 7 C-Atomen, X0: F, Cl, halogeniertes Alkyl, Alkenyl oder Alkoxy mit 1 bis
6 C-Atomen,
Y1 und Y2: jeweils unabhängig voneinander H oder F, r: 0 oder 1.
3. Medium nach Anspruch 2, dadurch gekennzeichnet, daß der Anteil an Verbindungen der Formeln I bis VI zusammen im Gesamtgemisch mindestens 50 Gew.-% beträgt.
4. Medium nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Anteil an Verbindungen der Formel I im Gesamtgemisch 5 bis 95 Gew.-% beträgt.
5. Medium nach mindestens einem der Ansprüche 2 bis 3, dadurch gekennzeichnet, daß der Anteil an Verbindungen der Formeln II bis VI im Gesamtgemisch 20 bis 80 Gew.-% beträgt.
6. Medium nach Anspruch 1 , dadurch gekennzeichnet, daß es
zusätzlich eine Verbindung der Formel
Figure imgf000040_0001
enthält, worin R0, X0 und Y2 die in Anspruch 2 angegebene Bedeutung haben.
7. Medium nach Anspruch 6, dadurch gekennzeichnet, daß X0 F oder OCF3 und Y2 H oder F bedeuten.
8. Medium nach Anspruch 1 , dadurch gekennzeichnet, daß es zusätzlich ein oder mehrere Verbindungen der Formel
Figure imgf000041_0002
enthält, worin
X0 F, OCHF2 oder OCF3
Y1 und Y2 jeweils unabhängig voneinander H oder F, und
R0 n-Alkyl, Oxaalkyl, Fluoralkyl oder Alkenyl mit jeweils bis zu 7 C-Atomen bedeuten.
9. Medium nach Anspruch 1 , dadurch gekennzeichnet, daß es zusätzlich ein oder mehrere Verbindungen der Formel XVII,
Figure imgf000041_0001
worin
Ra und Rb jeweils unabhängig voneinander geradkettiges Alkyl oder Alkoxy mit 1 bis 5 C-Atomen bedeuten, enthält.
10. Verwendung des flüssigkristallinen Mediums nach Anspruch 1 für elektrooptische Zwecke.
11. Elektrooptische Flüssigkristallanzeige enthaltend ein flüssigkristallines Medium nach Anspruch 1.
PCT/EP1996/003226 1995-08-01 1996-07-22 Flüssigkristallines medium WO1997005214A1 (de)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DE59608275T DE59608275D1 (de) 1995-08-01 1996-07-22 Flüssigkristallines medium
EP96927573A EP0842238B1 (de) 1995-08-01 1996-07-22 Flüssigkristallines medium
JP50721097A JP3981411B2 (ja) 1995-08-01 1996-07-22 液晶媒体
US09/011,264 US6506462B1 (en) 1995-08-01 1996-07-22 Liquid crystalline medium
KR10-2003-7016970A KR100462959B1 (ko) 1995-08-01 1996-07-22 액정 매질

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19528105 1995-08-01
DE19528105.5 1995-08-01
DE19542285 1995-11-14
DE19542285.6 1995-11-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US09/626,742 Division US6406761B1 (en) 1995-08-01 2000-07-26 Liquid-crystalline medium

Publications (1)

Publication Number Publication Date
WO1997005214A1 true WO1997005214A1 (de) 1997-02-13

Family

ID=26017316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1996/003226 WO1997005214A1 (de) 1995-08-01 1996-07-22 Flüssigkristallines medium

Country Status (7)

Country Link
US (2) US6506462B1 (de)
EP (1) EP0842238B1 (de)
JP (1) JP3981411B2 (de)
KR (2) KR100462959B1 (de)
CN (1) CN1142242C (de)
DE (2) DE59608275D1 (de)
WO (1) WO1997005214A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10259377A (ja) * 1997-03-11 1998-09-29 Merck Patent Gmbh 液晶媒体
WO2000027947A1 (fr) * 1998-11-05 2000-05-18 Chisso Corporation Composition pour cristal liquide et afficheurs a cristaux liquides
GB2310669B (en) * 1996-02-27 2000-09-27 Merck Patent Gmbh An electrooptical liquid crystal display of the IPS type containing a liquid crystalline medium having positive dielectric anisotropy and such a medium

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW588106B (en) * 2000-04-17 2004-05-21 Merck Patent Gmbh Liquid-crystalline medium having a low threshold voltage
EP1184442A1 (de) 2000-08-30 2002-03-06 Clariant International Ltd. Flüssigkristallmischung
DE10140148B4 (de) 2001-08-16 2012-07-19 Merck Patent Gmbh Fluorierte Polycyclen und ihre Verwendung in Flüssigkristallmischungen und in Flüssigkristalldisplays
DE10145780B4 (de) 2001-09-17 2012-10-04 Merck Patent Gmbh Fluorierte Cyclopenta[a]naphthaline und ihre Verwendung in Flüssigkristallmischungen und Displays
DE10145779B4 (de) 2001-09-17 2012-11-15 Merck Patent Gmbh Fluorierte Cyclopenta[b]naphthaline und ihre Verwendung in Flüssigkristallmischungen
US6824707B2 (en) 2001-10-23 2004-11-30 Clariant International Ltd. Active matrix liquid crystal device and smectic liquid crystal mixture
EP1367114A1 (de) * 2002-04-11 2003-12-03 Clariant International Ltd. Aktivmatrix-Flüssigkristallvorrichtung und smektische Flüssigkristallmischung
KR101124758B1 (ko) * 2002-11-22 2012-03-28 메르크 파텐트 게엠베하 액정 매질
CN102304364B (zh) * 2011-05-23 2014-06-11 西安彩晶光电科技股份有限公司 一种具有低阈值的宽向列相混合液晶材料
CN102994100B (zh) * 2012-10-11 2015-04-15 江苏和成显示科技股份有限公司 液晶组合物和含有该液晶组合物的液晶显示器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045549A (ja) * 1983-08-23 1985-03-12 Dainippon Ink & Chem Inc 新規ネマチツク液晶化合物
WO1991002043A1 (en) * 1989-08-10 1991-02-21 MERCK Patent Gesellschaft mit beschränkter Haftung Fluoro-chloro-benzene derivatives
WO1991002779A1 (de) * 1989-08-26 1991-03-07 MERCK Patent Gesellschaft mit beschränkter Haftung Flüssigkristallines medium
WO1992006148A1 (en) * 1990-10-02 1992-04-16 MERCK Patent Gesellschaft mit beschränkter Haftung Liquid crystalline medium
EP0728830A2 (de) * 1995-02-22 1996-08-28 Chisso Corporation Flüssigkristallzusammensetzung und Flüssigkristallanzeigevorrichtung

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3566901D1 (en) * 1984-04-07 1989-01-26 Merck Patent Gmbh Liquid crystal phase
DE3887084D1 (de) * 1987-11-06 1994-02-24 Hoffmann La Roche Halogenierte Benzolderivate.
JP2696557B2 (ja) * 1989-03-07 1998-01-14 チッソ株式会社 トリフルオロベンゼン誘導体
US5746941A (en) * 1990-04-13 1998-05-05 Merck Patent Gesellschaft Mit Beschrankter Haftung Liquid-crystalline medium
DE69125055T2 (de) * 1990-06-08 1997-09-11 Merck Patent Gmbh Supertwist Flüssigkristallanzeige
US5409637A (en) * 1991-02-20 1995-04-25 Merck Patent Gesellschaft Mit Beschrankter Haftung Nematic liquid-crystal composition
JP3674709B2 (ja) * 1993-08-11 2005-07-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング スーパーツィスト液晶ディスプレイ
JP3579727B2 (ja) * 1994-05-06 2004-10-20 チッソ株式会社 液晶組成物
JP3389697B2 (ja) * 1994-09-06 2003-03-24 チッソ株式会社 液晶組成物およびこれを用いた液晶表示素子
CN1125158C (zh) * 1995-02-03 2003-10-22 默克专利股份有限公司 电光液晶显示器
DE19528106A1 (de) * 1995-02-03 1996-08-08 Merck Patent Gmbh Elektrooptische Flüssigkristallanzeige
TW297047B (de) * 1995-02-09 1997-02-01 Chisso Corp
JPH08239665A (ja) * 1995-03-02 1996-09-17 Chisso Corp 液晶組成物および液晶表示素子
TW371312B (en) * 1995-04-12 1999-10-01 Chisso Corp Fluorine-substituted liquid-crystal compound, liquid-crystal composition and liquid-crystal display device
DE19528665A1 (de) * 1995-08-04 1997-02-06 Merck Patent Gmbh Flüssigkristallines Medium
US5827450A (en) * 1995-10-10 1998-10-27 Merck Patent Gesellschaft Mit Beschrankter Haftung Benzene derivatives, and liquid-crystalline medium
JP3216550B2 (ja) * 1996-09-25 2001-10-09 チッソ株式会社 液晶組成物および液晶表示素子
DE19750957A1 (de) * 1996-11-30 1998-06-04 Merck Patent Gmbh Supertwist-Flüssigkristallanzeige
DE19748618B4 (de) * 1996-12-05 2009-12-03 Merck Patent Gmbh Flüssigkristallmischung und ihre Verwendung in einer elektrooptischen Flüssigkristallanzeige
DE19707956A1 (de) * 1997-02-27 1998-09-03 Merck Patent Gmbh TN- und STN-Flüssigkristallanzeige
DE19707941B4 (de) * 1997-02-27 2007-04-26 Merck Patent Gmbh Flüssigkristallines Medium
DE19732502A1 (de) * 1997-07-29 1999-02-04 Merck Patent Gmbh STN-Flüssigkristallanzeige
DE19945889A1 (de) * 1998-09-29 2000-04-27 Merck Patent Gmbh Flüssigkristalline Verbindungen und Flüssigkristallines Medium
DE19959723A1 (de) * 1998-12-14 2000-06-15 Merck Patent Gmbh Flüssigkristallines Medium

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045549A (ja) * 1983-08-23 1985-03-12 Dainippon Ink & Chem Inc 新規ネマチツク液晶化合物
WO1991002043A1 (en) * 1989-08-10 1991-02-21 MERCK Patent Gesellschaft mit beschränkter Haftung Fluoro-chloro-benzene derivatives
WO1991002779A1 (de) * 1989-08-26 1991-03-07 MERCK Patent Gesellschaft mit beschränkter Haftung Flüssigkristallines medium
WO1992006148A1 (en) * 1990-10-02 1992-04-16 MERCK Patent Gesellschaft mit beschränkter Haftung Liquid crystalline medium
EP0728830A2 (de) * 1995-02-22 1996-08-28 Chisso Corporation Flüssigkristallzusammensetzung und Flüssigkristallanzeigevorrichtung

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 9, no. 175 (C - 292) 19 July 1985 (1985-07-19) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2310669B (en) * 1996-02-27 2000-09-27 Merck Patent Gmbh An electrooptical liquid crystal display of the IPS type containing a liquid crystalline medium having positive dielectric anisotropy and such a medium
JPH10259377A (ja) * 1997-03-11 1998-09-29 Merck Patent Gmbh 液晶媒体
WO2000027947A1 (fr) * 1998-11-05 2000-05-18 Chisso Corporation Composition pour cristal liquide et afficheurs a cristaux liquides
US6399163B1 (en) 1998-11-05 2002-06-04 Chisso Corporation Liquid crystal composition and liquid crystal displays

Also Published As

Publication number Publication date
CN1142242C (zh) 2004-03-17
JPH11510199A (ja) 1999-09-07
DE59608275D1 (de) 2002-01-03
EP0842238A1 (de) 1998-05-20
EP0842238B1 (de) 2001-11-21
DE19629812B4 (de) 2005-10-27
JP3981411B2 (ja) 2007-09-26
US6406761B1 (en) 2002-06-18
KR100440837B1 (ko) 2004-09-18
US6506462B1 (en) 2003-01-14
KR19990036040A (ko) 1999-05-25
DE19629812A1 (de) 1997-02-06
CN1192230A (zh) 1998-09-02
KR100462959B1 (ko) 2004-12-24
KR20040012980A (ko) 2004-02-11

Similar Documents

Publication Publication Date Title
DE19919348B4 (de) Flüssigkristallines Medium
EP0775101B1 (de) Benzolderivate und flüssigkristallines medium
DE10247986A1 (de) Photostabiles flüssigkristallines Medium
WO2005007775A1 (de) Flüssigkristallines medium mit monofluor-terphenylverbindungen
EP0847433B1 (de) Flüssigkristallines medium
DE19859421A1 (de) Flüssigkristallines Medium
DE10223061A1 (de) Flüssigkristallines Medium
DE10344474A1 (de) Flüssigkristallines Medium
DE10204790A1 (de) Flüssigkristallines Medium
DE19629812B4 (de) Flüssigkristallines Medium und seine Verwendung
DE10225048A1 (de) Fluorierte (Dihydro)phenanthrenderivate und deren Verwendung in flüssigkristallinen Medien
EP1061113B1 (de) Flüssigkristallines Medium
DE4428766B4 (de) Benzolderivate und flüssigkristallines Medium
DE102004020461A1 (de) Flüssigkristallines Medium
DE19528665A1 (de) Flüssigkristallines Medium
DE10344228A1 (de) Flüssigkristallines Medium
DE19541181A1 (de) 3,4,5-Trifluorphenyl 4-Cyclohexylbenzoesäureester
DE10002462B4 (de) Flüssigkristallines Medium und seine Verwendung
DE19529106A1 (de) Flüssigkristallines Medium
DE19961015A1 (de) Flüssigkristallines Medium
WO2001025370A1 (de) Flüssigkristalline phenolester
DE10338111A1 (de) Flüssigkristallines Medium
DE19650635B4 (de) Flüssigkristallines Medium und seine Verwendung
DE19811456B4 (de) Flüssigkristallines Medium
EP1199346A2 (de) Flüssigkristallines Medium

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 96195838.3

Country of ref document: CN

AK Designated states

Kind code of ref document: A1

Designated state(s): CN JP KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1996927573

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 1997 507210

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 09011264

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1019980700705

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 1996927573

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1019980700705

Country of ref document: KR

WWG Wipo information: grant in national office

Ref document number: 1996927573

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1019980700705

Country of ref document: KR