WO1996026540A1 - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
WO1996026540A1
WO1996026540A1 PCT/JP1996/000377 JP9600377W WO9626540A1 WO 1996026540 A1 WO1996026540 A1 WO 1996026540A1 JP 9600377 W JP9600377 W JP 9600377W WO 9626540 A1 WO9626540 A1 WO 9626540A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
semiconductor device
semiconductor
thickness
semiconductor element
Prior art date
Application number
PCT/JP1996/000377
Other languages
French (fr)
Japanese (ja)
Inventor
Shinichi Kato
Akihito Yokohata
Masamichi Ohmori
Original Assignee
Japan Energy Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corporation filed Critical Japan Energy Corporation
Priority to JP8525555A priority Critical patent/JP2918125B2/en
Publication of WO1996026540A1 publication Critical patent/WO1996026540A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/71Means for bonding not being attached to, or not being formed on, the surface to be connected
    • H01L24/72Detachable connecting means consisting of mechanical auxiliary parts connecting the device, e.g. pressure contacts using springs or clips
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/051Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body another lead being formed by a cover plate parallel to the base plate, e.g. sandwich type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • H01L2924/12033Gunn diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/161Cap
    • H01L2924/1615Shape
    • H01L2924/16195Flat cap [not enclosing an internal cavity]

Definitions

  • the present invention relates to a super-high-frequency semiconductor device such as a ganode used in the millimeter wave band, for example, and can obtain particularly excellent high-frequency characteristics. It is related to the package of this. Background art
  • the package power is indispensable for protecting and improving the reliability of semiconductor chips, and is used by more than micro wave 2
  • the package power is indispensable for protecting and improving the reliability of semiconductor chips, and is used by more than micro wave 2
  • the package power is indispensable for protecting and improving the reliability of semiconductor chips, and is used by more than micro wave 2
  • the package power is indispensable for protecting and improving the reliability of semiconductor chips, and is used by more than micro wave 2
  • As a package a building type with excellent heat dissipation is used.
  • FIG. 1 is a cross-sectional view showing an outline of the structure of a conventional gateway package.
  • the ground wire 4 is a surface Ti formed on the package body 1, that is, a wire covered with gold made of Au. It is glued on the top heat sink 2.
  • a cylindrical insulator 3 is formed so as to surround the gland, and a lid 6 made of gold-plated u is formed as an upper electrode on the insulator 3. .
  • the lid 6 made of Cu and the gan- dade 4 are electrically connected by a gold ribbon 5.
  • Diamond heat sink 2 The lower electrode serves as a lower electrode, and also serves as a radiator for the gland diode 4 together with the package body 1.
  • FIG. 2A to 2C show a method of manufacturing the conventional package of the gandode shown in FIG.
  • a diamond-coated heat sink 2 coated with gold as a pedestal at the center of the package body 1 made of Cu. Attach and heat radiator is formed by these two.
  • an insulating body 3 formed in a cylindrical shape and having a uniform force is attached on the upper part of the package body 1.
  • This insulator 3 is usually called a ceramic ring.
  • the ceramic ring 3 has a lower surface (hereinafter referred to as the lower end surface) surrounding the diamond seat sink 2 as shown in Fig. 2A. 7 is fixed to the package body 1.
  • Gundade 4 is made in a mesa type with a pre-plated heat sink (Plate Heat Sink), as shown in Figure 2B.
  • the gland diode 4 has electrodes formed on the upper and lower sides, and the pedestal portion 2, which includes the diamond heat sink force, also serves as the lower electrode.
  • the upper electrode of the gland diode 4 is connected to the metal formed on the upper end face 8 of the ceramic ring 3 via the gold ribbon. Touch the coating.
  • Au—Sn (20%) eutectic alloy is formed by a Cu lid 6 in which the upper surface 8 of the ceramic ring 3 is gold-plated. Seal with a glove, and lift it up. If the electrodes are used, the package of Gundiode 4 is completed.
  • E-band 60 to 90 GHz
  • V-band 4 ⁇ to 75 GHz
  • W-band 75 to 110 GHz
  • the inductance of the gold ribbon 5 in the package will increase.
  • the capacitance C formed by the switch L, the lid 6 and the package body greatly affects the characteristics.
  • FIG. 3A shows a thickness of 15 ⁇ m, When a gold ribbon 5 having a width of 100 m is used, the height difference ⁇ shown in FIG.
  • 3A is set to 300 ⁇ m (characteristic line a), 200 ⁇ m / m (characteristic line a).
  • the band characteristics of each sample are shown as line b) and 100 m (characteristic line c).
  • the mount and the resonator have the same conditions.
  • the oscillation frequency power was 85-90 GHz
  • the oscillation frequency was The output is 951-1100 GHz, and the output is more than 1.3 times as large as that of a sample with a diameter of 300 m.
  • the parasitic capacitance C of the package which is not sufficient to obtain high-frequency characteristics, increases as the value increases. It takes a long time to charge and discharge them, and the millimeter-wave device operates in the V-band, W-band, or higher ultra-high frequency bands. Slow down the operation of the In particular, in a conventional package structure, a ceramic ring 3 made of aluminum having a relatively large dielectric constant is used as an insulator. Therefore, the value of the capacitance C is considerably large, and it can be seen that the performance inherent in the element cannot be sufficiently brought out.
  • quartz having a dielectric constant smaller than that of aluminum Attempts have been made to improve the wave performance of a package using a ring made of steel.
  • quartz has a lower compressive strength and tensile strength than aluminum, so it is easier to attach it to a Cu-packed main body. Disclosure of inventions that have the problem of cracks
  • the present invention does not provide a semiconductor device having good high-frequency characteristics even in the millimeter-wave band of 90 GHz or more.
  • the high-frequency characteristics are improved by sufficiently reducing the parasitic capacitance C of the package, and the higher
  • the present invention provides a heat radiator 1 as shown in FIG. 3A, semiconductor elements 2 and 4 having one main surface (lower surface) fixed to the heat radiator 1, One end surface (lower end surface) 7 of the hollow portion is in contact with the heat radiating body 1 and the other end surface (upper end surface) 8 is a semiconductor element chip 2.
  • a gold foil 5 for contacting the upper surfaces of the metal foils 2 and 4, and an alloyed alloy with the gold foil 5 is attached to the other end face (upper end face) of the insulator to seal the hollow portion.
  • the gist is that the thickness of the insulator 3 is not less than 0.08 mm and not more than 0.14 mm.
  • aluminum or the like may be used as the insulator.
  • the thickness of the insulator means the radial thickness defined by (ab) 2 where a is the outside diameter of the insulator and b is the inside diameter.
  • the thickness of the insulator in the radial direction is less than 0.08 mm, cracks will occur during the soldering and welding of the insulator and the yield will be reduced. I don't like it.
  • the thickness of the insulator 3 is preferably 0.1 mm or more in consideration of the strength of the insulator material.
  • the semiconductor elements 2 and 4 are composed of a pedestal part 2 such as a diamond heat sink and a millimeter wave element chip 4 such as a compound semiconductor on the pedestal part 2. Tte As the Millimeter wave element chip 4, a gland diode is particularly preferable.
  • the inner diameter b of the insulator 3 is equal to the semiconductor element.
  • the distance be 0.5 mm or more and 0.5 mm or less.
  • the semiconductor elements 2 and 4 have electrodes (upper electrode and lower electrode) on both sides.
  • the heat radiator 1 is a force such as a metal, to which one electrode (lower electrode) of the semiconductor elements 2 and 4 is connected.
  • the gold foil 5 is made of Au and has a thickness of 5 to 20 m.
  • the lid 6 is made of an alloy of Au, such as Au—Sn, and is attached to the other end surface (upper surface) 8 of the insulator.
  • the distance (height difference) from the upper surface of the semiconductor element 4 to the upper end face of the insulator 3 is preferably not less than 3 times and not more than 10 times the thickness of the gold foil 5. Is of course o
  • the thickness of the cylindrical insulator 3 By setting the thickness of the cylindrical insulator 3 to 0.08 mm or more and 0.14 mm or less as shown in FIG. 3A, the upper and lower surfaces of the insulator 3 are formed. As a result, the area of the capacitance C formed by the lid 6 and the heat radiator 1 can be reduced. Further, by reducing the value of the capacitance C and the capacitance C, excellent high-frequency characteristics can be obtained. Further, since one main surface (lower surface) of each of the semiconductor elements 2 and 4 is fixed to the heat radiating body 1, sufficient heat radiation can be obtained. Also, the lid 6 is alloyed to form an upper end surface 8 of the insulator 3. A simple explanation of the drawing that can be obtained with high reliability because it is attached to
  • FIG. 1 is a cross-sectional view showing the structure of a conventional package of a standard.
  • FIG. 2A to 2C are diagrams showing a method for manufacturing the conventional package of the standard shown in FIG.
  • FIG. 3A is a cross-sectional view showing the structure of a conventional improved package
  • FIG. 3B is a diagram showing its characteristics together with a comparative example.
  • FIGS. 4A and 4B are longitudinal sectional views showing the structure of a package of a gland diode according to the embodiment of the present invention.
  • FIG. 5 is a diagram showing an oscillation frequency-output characteristic of the example of the present invention together with a comparative example.
  • FIGS. 4A and 4B relate to a case where an InP gun diode is used as the millimeter wave element 4.
  • an InP gun diode is used as the millimeter wave element 4.
  • a semiconductor device for a millimeter wave typified by a gun diode, it is formed by the heat radiation between the package lid and the package body. It provides new structures and conditions that allow the value of the parasitic capacitance C to be reduced.
  • FIG. 4A is an enlarged sectional view of a portion A in FIG. 4B.
  • the same or equivalent members and parts as those in FIGS. 1 and 3A described above are denoted by the same reference numerals. And omit duplicate descriptions.
  • the ground wire 4 as a millimeter wave element chip is 40 to 60 ⁇ m ⁇ , has electrodes on both upper and lower surfaces, and has a 0.3 mm0 plate-shaped head. It is manufactured in a mesa type with a tosink.
  • the lower surface of the gland diode 4 is a portion of the pre-heated heat sink, and the surface as the pedestal 2 is formed by thermocompression bonding or soldering. i, then dibonded on a diamond heat sink that is coated with a metal of Au.
  • the heat generated by the gun diode 4 should be sufficient. You can escape.
  • the distance between the upper surface of the gun diode 4 and the upper end surface 8 of the ceramic ring 3 is 50 tm to: L 50 m
  • Adjust the length of the gold foil 5 connecting the upper end face 8 of the magnetic ring 7 and the upper electrode of the gland diode 4 and adjust the inductor of the gold foil 5. This prevents the value of L from becoming too large and affecting the characteristics of the element.
  • the connection between the upper electrode of the gun diode 4 and the metal coating on the upper end face 8 of the ceramic ring 3 is generally performed by a W-band (75 to L L OGHz).
  • a gold foil with a thickness of about 10 to 15 m and a width of about 100 m, and a gold ribbon 5 are used. That is, the distance (difference in height) between the upper surface of the gun diode 4 and the upper end surface 8 of the ceramic ring is 10 times the thickness of the gold ribbon 5. It is selected to be about twice or less.
  • a gold-plated lid 6 made of Au is fixed to the upper end surface 8 of the ceramic ring 7 with an Au-Sn eutectic alloy with the gold ribbon 5 interposed therebetween. It is. The alloying ensures that the lid 6 is in close contact with the upper end surface 8 of the ceramic ring 7.
  • the thickness of the gold ribbon 5 is 10 to 15 / m and its deflection is 10 to 20 m.
  • the eutectic solder (Au—Sn) used to seal the lid 6 flows into the gold ribbon 5 side because the gap between the lid 6 and the lid 6 is reduced.
  • the reliability of the device is impaired because the quality of the rib 5 becomes hard and gives stress such as pulling and slipping to the gland diode chip. Because of the possibility, it is preferable that the distance (difference in height) be at least three times the thickness of the gold ribbon.
  • FIG. 5 shows the characteristics of the Millimeter wave package of the present invention shown in FIGS. 4A and 4B.
  • the output characteristics shown in FIG. 5 are for a case where a gun diode designed to oscillate at 94 GHz is used.
  • the best practice of the present invention is shown.
  • the figure also shows the case of a condition different from that of the above. That is, in two embodiments of the present invention, and in two comparative examples, four in total, the end faces of the ceramic ring 7 were used. This is the result of an oscillation experiment when the value of the parasitic capacitance C formed between the lid 6 and the radiator 1 of the package body was changed by changing the area. .
  • the area of the end face of the ceramic ring 7 is determined by the combination of the outer diameter a and the inner diameter b of the ceramic ring 7 (a, b ) Is the experimental result when the package is configured by changing the above.
  • a comparative example of high frequency characteristics The combination of the outer diameter a and the inner diameter b (a.b.) is (0.78 mm, 0.4 mm) and (0.77 mm, 0.46 mm).
  • the first embodiment of the present invention is (0.73 mm, 0.46 mm), and the second embodiment is (0.75 mm, 0.5 mm). 0 mm).
  • the thickness ((a ⁇ b) / 2) of the ceramic ring 7 of the comparative example is set to 0.19 mm and 0.155 mm, and By changing the thickness of the ceramic ring 7 of the first and second embodiments to 0.135 mm and 0.125 mm, respectively, the height is increased. The difference in frequency characteristics is shown.
  • the inner diameter a of the ceramic ring 7 is different from that of the semiconductor device in the ceramic ring 7. It must be at least 0.35 mm and not more than 0.5 mm so that 2 and 4 can be inserted. If the thickness exceeds 0.5 mm, the thickness of the gold-m foil 5 that contacts the upper end face 8 of the ceramic ring 7 and the upper electrode of the gland diode 4 is increased. Since the value of the inductance L becomes large and the oscillation frequency decreases, it cannot exceed 0.5 mm.
  • the thickness of the ceramic ring 7 ((ab) / 2) that is, the upper and lower surfaces of the ceramic ring 7
  • the high frequency characteristics are improved as compared with the comparative example in which the area of the end face is large. This is the strength.
  • the oscillation frequency is 89 to 99 GHz.
  • the oscillation frequency is 94 to 1 mm. It is clear that it is 0 GHz.
  • the thickness (a-b) 2 of the ceramic ring 7 is less than 0.08 mm, when the ceramic ring is to be rolled (welded).
  • the mechanical strength may be weakened due to cracks in the machine, etc., which may reduce the reliability of the equipment.
  • it must be at least 0.08 mm, preferably at least 0.1 mm o
  • the thickness of the insulator in the radial direction is better than ⁇ 08 mm or more and 0.14 mm or less. High frequency characteristics can be obtained Industrial applicability
  • the thickness (ab) / 2 of the cylindrical insulator is set to 0.08 mm or more to 0.1 mm or more.
  • the area of the end face (upper and lower faces) of the underutilized body is reduced, and it is formed between the lid and the radiator of the package body.
  • the value of the parasitic capacitance C has been reduced, and the distance between the top surface of the semiconductor chip and the top surface of the edge has been shortened.
  • Excellent fBJ frequency characteristics can be obtained even in the microwave band of 90 GHz or higher, with a small capacitance L.
  • one main surface (lower surface) of the semiconductor element chip is fixed to a heat radiator, so that sufficient heat radiation can be obtained.
  • the lid is attached to the upper end surface of the insulator by alloying, so that high reliability can be obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

A semiconductor device comprises a heat radiator forming a principal portion of a package body; a millimeter-wave semiconductor element, such as a Gunn diode, fixed on its back surface to the heat radiator; a hollow cylindrical insulator encompassing the semiconductor element and having a lower end in contact with the heat radiator and an upper end a predetermined distance away from the surface of the semiconductor element; a metallic foil for connecting the upper end of the insulator to the upper surface of the semiconductor element; and a cover alloyed with a part of the metallic foil and fitted to the upper end of the insulator to close its hollow, wherein the thickness of the insulator in the radial direction thereof is from 0.08 to 0.14 mm. According to this structure, a high output operation can be attained in a millimeter band above 90 GHz.

Description

明 钿 害 発明 の 名称 半導体装置 技術分野  Name of the invention Invention of the semiconductor device Technical field
本発明 は、 例え ば ミ リ 波帯で用 い ら れ る ガ ン ダイ ォ ー ド等の超高周波半導体装置 に関 し 、 特 に 優れた高周波特 性を得 る こ と がで き る 半導体装置の パ ッ ケ ー ジ に関す る も のであ る 。 背景技術  The present invention relates to a super-high-frequency semiconductor device such as a ganode used in the millimeter wave band, for example, and can obtain particularly excellent high-frequency characteristics. It is related to the package of this. Background art
半導体装置 に お い て、 半導体チ ッ プの保護 、 信頼性の 改善の た め に は、 パ ッ ケ ー シ 力、不可欠であ り 、 マ イ ク ロ 波蒂以上で用 い ら れ る 2 端子型の半導体装匿、 特に 、 発 熱密度の大 き い ガ ン ダイ ォ ー ドで は、 そ の ハ。 ッ ケ ー ジ と し て放熱性 に 優れた ビル型の も の が用 い ら れて い る 。  In semiconductor devices, the package power is indispensable for protecting and improving the reliability of semiconductor chips, and is used by more than micro wave 2 In the case of terminal-type semiconductor concealment, especially in the case of a gan- diode with a large heat generation density, this is the case. As a package, a building type with excellent heat dissipation is used.
図 1 は従来の ガ ン ダ イ ォ — ドの ハ' ッ ケ一 ジ の構造の概 略を示す断面図で あ る 。 図 1 に お い て ガ ン ダ ィ ォ ー ド 4 はパ ッ ケ一 ジ本体 1 の上 に形成 さ れた 表面 T i , つ い で A u よ り な る 金厲で被覆 さ れた ダ ィ ャ モ ン ド ヒ ー ト シ ン ク 2 の上 に 接着 さ れて い る 。 ガ ン ダィ ォ ー ド を囲む よ う に 円筒状の絶縁体 3 が形成 さ れ、 そ の上部 に 金 メ ツ キ し た じ u 製の蓋 6 が上部電極 と し て形成 さ れて い る 。 C u 製の蓋 6 と ガ ン ダ ィ ォ ー ド 4 と は金 リ ボ ン 5 に よ り 電 気的 に接続 さ れて い る 。 ダイ ヤ モ ン ド ヒ ー ト シ ン ク 2 は 下部電極 と な り 、 さ ら に パ ッ ケ ー ジ 本体 1 と 共 に ガ ン ダ ィ ォ ー ド 4 の 放熱体 と な っ て い る 。 FIG. 1 is a cross-sectional view showing an outline of the structure of a conventional gateway package. In FIG. 1, the ground wire 4 is a surface Ti formed on the package body 1, that is, a wire covered with gold made of Au. It is glued on the top heat sink 2. A cylindrical insulator 3 is formed so as to surround the gland, and a lid 6 made of gold-plated u is formed as an upper electrode on the insulator 3. . The lid 6 made of Cu and the gan- dade 4 are electrically connected by a gold ribbon 5. Diamond heat sink 2 The lower electrode serves as a lower electrode, and also serves as a radiator for the gland diode 4 together with the package body 1.
図 2 A 〜 2 C は 、 図 1 に 示 し た 従来 の ガ ン ダ イ ォ ー ド の パ ッ ケ ー ジ の 製造方法 を 示 し て い る 。 ま ず、 図 2 A に 示す よ う に C u 製の パ ッ ケ ー ジ 本体 1 の 中央部 に 台座部 と し て の 金厲被覆 し た ダ イ ヤ モ ン ド ヒ ー ト シ ン ク 2 を取 付 け 、 こ の 両者 1 , 2 に よ り 放熱体を 形成す る 。  2A to 2C show a method of manufacturing the conventional package of the gandode shown in FIG. First, as shown in Fig. 2A, a diamond-coated heat sink 2 coated with gold as a pedestal at the center of the package body 1 made of Cu. Attach and heat radiator is formed by these two.
パ ッ ケ ー ジ 本体 1 の 上部 に は ァ ノレ ミ ナ 等力、 ら な る 円 筒 状 に 形成 さ れ た 艳縁体 3 が接着 さ れて い る 。 こ の 絶縁体 3 は通常セ ラ ミ ッ ク リ ン グ と 称せ ら れ る 。 セ ラ ミ ッ ク リ ン グ 3 は 図 2 A に 示す よ う に ダ イ ヤ モ ン ド シ ー ト シ ン ク 2 を 囲 む よ う に 、 そ の 下面 (以下、 下端面 と い う ) 7 を ノ、 ' ッ ケ ー ジ 本体 1 に 固着 さ れて い る 。 ガ ン ダ イ ォ ー ド 4 は 、 プ レ イ テ ッ ド ヒ ー ト シ ン ク ( P l a t e d H e a t S i n k ) 付 き の メ サ 型 に 作成 さ れ、 図 2 B に 示す よ う に そ の プ レ イ テ ツ ド ヒ ー ト シ ン ク の 部分で熱圧着 も し く は半 田 付 け に よ り ダ イ ヤ モ ン ド ヒ 一 ト シ ン ク 2 に ダ ィ ボ ン デ ィ ン グす る 。 ガ ン ダ イ オ ー ド 4 は 、 上下 に 電極 が形成 さ れて お り 、 ダ イ ヤ モ ン ド ヒ ー ト シ ン ク 力、 ら な る 台座部 2 は 下部電極 を 兼ね て い る 。 次 に 、 図 2 C に 示す よ う に ガ ン ダ イ ォ 一 ド 4 の 上部電極 を 金 リ ボ ン を 介 し て セ ラ ミ ッ ク リ ン グ 3 の 上端面 8 に 形成 さ れ た 金属 被膜 部 に 接铳す る 。 最後 に 、 図 1 に 示す よ う に セ ラ ミ ッ ク リ ン グ 3 の 上端面 8 を 金 メ ツ キ し た C u 製 の 蓋 6 で A u — S n ( 2 0 % ) 共晶合金 な ど を 用 い て密閉 し 、 こ れを上 部電極 と す れば ガ ン ダ イ オ ー ド 4 の パ ッ ケ ー ジ が完成す る On the upper part of the package body 1, an insulating body 3 formed in a cylindrical shape and having a uniform force is attached. This insulator 3 is usually called a ceramic ring. As shown in Fig. 2A, the ceramic ring 3 has a lower surface (hereinafter referred to as the lower end surface) surrounding the diamond seat sink 2 as shown in Fig. 2A. 7 is fixed to the package body 1. Gundade 4 is made in a mesa type with a pre-plated heat sink (Plate Heat Sink), as shown in Figure 2B. Die bond to diamond heat sink 2 by thermocompression bonding or soldering at the portion of the pre-heated heat sink To The gland diode 4 has electrodes formed on the upper and lower sides, and the pedestal portion 2, which includes the diamond heat sink force, also serves as the lower electrode. Next, as shown in FIG. 2C, the upper electrode of the gland diode 4 is connected to the metal formed on the upper end face 8 of the ceramic ring 3 via the gold ribbon. Touch the coating. Finally, as shown in Fig. 1, Au—Sn (20%) eutectic alloy is formed by a Cu lid 6 in which the upper surface 8 of the ceramic ring 3 is gold-plated. Seal with a glove, and lift it up. If the electrodes are used, the package of Gundiode 4 is completed.
し 力、 し 、 例 え ば、 E — b a n d ( 6 0 〜 9 0 G H z ) V - b a n d ( 4 〇 〜 7 5 G H z ) 、 W - b a n d ( 7 5 〜 1 1 0 G H z ) 或 い は そ れ以上の超高周 波蒂で動 作 す る ミ リ 波帯 デバ イ ス が開発 さ れ る に つ れて 、 パ ッ ケ 一 ジ 内 の 金 リ ボ ン 5 の ィ ン ダ ク タ ン ス L 、 蓋 6 と パ ッ ケ 一 ジ 本体で形成 さ れ る キ ャ パ シ タ ン ス C が大 き く 特性 に 影 響 を及ぼす よ う に な つ て く る 。  For example, E-band (60 to 90 GHz), V-band (4〇 to 75 GHz), W-band (75 to 110 GHz) or As the Milli-Waveband device, which works with more than that high-frequency wave, is developed, the inductance of the gold ribbon 5 in the package will increase. The capacitance C formed by the switch L, the lid 6 and the package body greatly affects the characteristics.
パ ッ ケ ー ジ 内 の 金 リ ボ ン の ィ ン ダ ク 夕 ン ス L を 低減す る 方法 と し て 、 日 本特開平 5 — 1 6 7 1 2 8 号公報 に 開 示 さ れ た 図 3 A に 示す よ 'う な 改良型パ ッ ケ ー ジ が知 ら れ て い る 。 図 3 A に お い て ガ ン ダ イ オ ー ド 4 の 上部 と 絶縁 体 3 の 上端面 と の 間 の 距離 (高低差) Δ が金 リ ボ ン 5 の 厚 さ の 3 倍以上 1 0 倍以下 と す る こ と に よ り 、 金 リ ボ ン 5 の 長 さ を短 く し 、 イ ン ダ ク タ ン ス L を小 さ く し て い る 図 3 B は厚 さ 1 5 ^ m 、 幅 1 0 0 m の 金 リ ボ ン 5 を用 い た 場合 に お い て 、 図 3 A に 示 し た 高低差 Δ を 3 0 0 u m (特性線 a ) 、 2 0 0 // m (特性線 b ) 及 び 1 0 0 m (特性線 c ) と し た 各試料の 帯域特性 を 示す。 マ ウ ン ト 、 共振器 は 同一条件で あ る 。 高 低差 Δ 力《 3 0 0 の 試料で は 、 発振周 波数力 8 5 - 9 0 G H z で あ る の に 対 し 、 高 低差 1 0 0 m と し た 試料で は発振周 波数が 9 5 一 1 0 0 G H z と な り 、 ま た 出 力 は 厶 = 3 0 0 m の 試 料 に 比 し て 1 . 3 倍以上 と な る こ と がわ 力、 る 。 し 力、 し な が ら ィ ン ダ ク タ ン ス L の み を 小 さ く す る だ け で は 、 7 0 G H z 以上 の 高周 波 Tf? に お け 【 出 力 化等 の 優れ た 高周 波特性 を得 る に は 不十分で あ る す な わ ち パ ッ ケ ー ジ の 寄生 キ ャ ' シ 夕 ン ス C は 、 そ の 値が大 き く な れば な る ほ ど 、 そ れを充放電す る の に 時間が かか る こ と と な り 、 V - b a n d 、 W 一 b a n d ¾ い は そ れ以上 の 超高周 波帯で動作す る ミ リ 波帯 デバ ィ ス の 動作 を遅 く し て し ま う 。 特 に 、 従来の パ ッ ケ 一 ジ の 構造で は 、 絶縁体 と し て は比較 的大 き な 誘電率を持つ ア ル ミ ナ で形成 さ れ た セ ラ ミ ツ ク リ ン グ 3 を は さ ん で い る の で 、 キ ャ パ シ 夕 ン ス C の 値 は か な り 大 き く 、 素子本来 の 持つ 性能 を十分 に 引 き 出 し 得 な い こ と がわ か つ た o こ の た め 、 絶縁体 3 と し て一般 に 用 い ら れ る ァ ル ミ ナ製の セ フ ミ ツ ク リ ン グ に 代え て、 ァ ル ミ ナ よ り も 小 さ い 誘電率 を持つ 石英製 の リ ン グ を用 い た パ ッ ケ ー ン 问 波性能 を 向上 さ せ る こ と が試み ら れて い る 。 し か し 、 石英 は ァ ル ミ ナ と 比べ て 圧縮強度や 引 張 り 強度が小 さ く ち ろ い た め に 、 C u 製の ヽ ッ ケ ― ン 本 体 ろ う 付 け す る と 簡 単 に ク ラ ッ ク が入 つ て し ま う と い う 問題が あ る 発明 の 開示 As a method for reducing the inductance L of the gold ribbon in the package, a method disclosed in Japanese Patent Application Laid-Open No. H5-1671228 has been proposed. An improved package as shown in 3A is known. In FIG. 3A, the distance (difference in height) between the upper part of the gun diode 4 and the upper end surface of the insulator 3 is 3 times or more and 10 times or more the thickness of the gold ribbon 5. By shortening the length of the gold ribbon 5 and reducing the inductance L by the following, FIG. 3B shows a thickness of 15 ^ m, When a gold ribbon 5 having a width of 100 m is used, the height difference Δ shown in FIG. 3A is set to 300 μm (characteristic line a), 200 μm / m (characteristic line a). The band characteristics of each sample are shown as line b) and 100 m (characteristic line c). The mount and the resonator have the same conditions. In the sample with a height difference Δforce of <300, the oscillation frequency power was 85-90 GHz, whereas in the sample with a height difference of 100 m, the oscillation frequency was The output is 951-1100 GHz, and the output is more than 1.3 times as large as that of a sample with a diameter of 300 m. By simply reducing the inductance L only in the high frequency Tf? Of 70 GHz or more, it is necessary to reduce the inductance L only. The parasitic capacitance C of the package, which is not sufficient to obtain high-frequency characteristics, increases as the value increases. It takes a long time to charge and discharge them, and the millimeter-wave device operates in the V-band, W-band, or higher ultra-high frequency bands. Slow down the operation of the In particular, in a conventional package structure, a ceramic ring 3 made of aluminum having a relatively large dielectric constant is used as an insulator. Therefore, the value of the capacitance C is considerably large, and it can be seen that the performance inherent in the element cannot be sufficiently brought out. Therefore, in place of the commonly used aluminum ceramic ring as the insulator 3, quartz having a dielectric constant smaller than that of aluminum Attempts have been made to improve the wave performance of a package using a ring made of steel. However, quartz has a lower compressive strength and tensile strength than aluminum, so it is easier to attach it to a Cu-packed main body. Disclosure of inventions that have the problem of cracks
そ こ で、 本発明 は、 9 0 G H z 以上の ミ リ 波帯で も 良 好 な 高周 波特性を有す る 半導体装置 を提供せん と す る も の で あ る 。 特 に パ ッ ケ ー ジ の 寄生 キ ャ パ シ タ ン ス C を十 分 に 低減す る こ と に よ り 高周 波特性を 改善 し 、 さ ら に 高 い 信頼性 と 十分な放熱性を実現 し た半導体装置 を提供す る こ と を 目 的 と す る 。 Thus, the present invention does not provide a semiconductor device having good high-frequency characteristics even in the millimeter-wave band of 90 GHz or more. In particular, the high-frequency characteristics are improved by sufficiently reducing the parasitic capacitance C of the package, and the higher It is an object of the present invention to provide a semiconductor device having high reliability and sufficient heat dissipation.
上記課題を解決す る た め に 、 本発明 は図 3 A に 示す よ う に放熱体 1 と 、 放熱体 1 に一主面 (下面) が固着 さ れ た半導体素子 2 , 4 と 、 該半導体素子 2 , 4 を取囲む中 空部を有 し 該中空部の一方の端面 (下端面) 7 が前記放 熱体 1 に接 し 他の端面 (上端面) 8 が半導体素子チ ッ プ 2 , 4 の他の主面 (上面) よ り 所定距離前記放熱体か ら 遠 ざか つ て い る 円筒状の艳縁体 3 と 、 該絶縁体 3 の他の 端面 (上端面) 8 と 前記半導体素子 2 , 4 の上面を接铳 す る 金厲箔 5 と 、 該金厲箔 5 と 合金化 さ れて前記艳縁体 の他の端面 (上端面) に取付け ら れ前記中空部を密閉す る 蓋 6 と を含み、 前記絶縁体 3 の厚みが 0 . 0 8 m m 以 上 0 . 1 4 m m以下であ る こ と を要 旨 と す る 。 絶縁体 と し て は た と え ばア ル ミ ナ等を用 いれば よ い。 こ こ で絶縁 体の厚み と は絶縁体の外径を a 、 内径を b と し た場合の ( a - b ) 2 で定義 さ れ る 半径方向の厚み を い う 。 絶 縁体の半径方向 の厚みが 0 . 0 8 m m 未満で は、 絶縁体 の ロ ウ 付 · 溶着時に ク ラ ッ ク が入 り 歩留 り が低下す る の で、 0 . 0 8 m m 未满 にす る こ と は好 ま し く な い。 特 に 装置の信頼性を更に 向上 さ せ る た め に は、 絶縁体 3 の 厚 み は、 前記絶縁体の材質の 強度を考慮 し て、 0 . 1 m m 以上で あ る こ と が好 ま し い。 こ こ で半導体素子 2 , 4 は ダ イ ヤ モ ン ド ヒ ー 卜 シ ン ク 等の台座部 2 と こ の 台座部 2 の上の 化合物半導体等の ミ リ 波素子チ ッ プ 4 か ら 成 っ て い る o ミ リ 波素子チ ッ プ 4 と し て は、 特 に ガ ン ダ イ ォ ー ドが好 ま し い 。 In order to solve the above-mentioned problem, the present invention provides a heat radiator 1 as shown in FIG. 3A, semiconductor elements 2 and 4 having one main surface (lower surface) fixed to the heat radiator 1, One end surface (lower end surface) 7 of the hollow portion is in contact with the heat radiating body 1 and the other end surface (upper end surface) 8 is a semiconductor element chip 2. A cylindrical edge 3 which is separated from the heat dissipator by a predetermined distance from the other main surface (upper surface) 4, another end surface (upper end surface) 8 of the insulator 3, and the semiconductor element A gold foil 5 for contacting the upper surfaces of the metal foils 2 and 4, and an alloyed alloy with the gold foil 5 is attached to the other end face (upper end face) of the insulator to seal the hollow portion. The gist is that the thickness of the insulator 3 is not less than 0.08 mm and not more than 0.14 mm. For example, aluminum or the like may be used as the insulator. Here, the thickness of the insulator means the radial thickness defined by (ab) 2 where a is the outside diameter of the insulator and b is the inside diameter. If the thickness of the insulator in the radial direction is less than 0.08 mm, cracks will occur during the soldering and welding of the insulator and the yield will be reduced. I don't like it. In particular, in order to further improve the reliability of the device, the thickness of the insulator 3 is preferably 0.1 mm or more in consideration of the strength of the insulator material. Yes. Here, the semiconductor elements 2 and 4 are composed of a pedestal part 2 such as a diamond heat sink and a millimeter wave element chip 4 such as a compound semiconductor on the pedestal part 2. Tte As the Millimeter wave element chip 4, a gland diode is particularly preferable.
ま た 、 嫁体 3 は、 半導体系子 2 , 4 を囲ん で い る 構 造 と な つ て い る ので、 絶縁体 3 の 内径 b は、 半導体素子 Also, since the body 3 has a structure surrounding the semiconductor elements 2 and 4, the inner diameter b of the insulator 3 is equal to the semiconductor element.
2 の 大 さ さ ( 0 . m Φ ) を考慮 し て、 0 . 5 m m 以上 0 . 5 m m 以下であ る こ と が好 ま し い o In consideration of the magnitude of 2 (0.5 mφ), it is preferable that the distance be 0.5 mm or more and 0.5 mm or less.
半導体素子 2 , 4 は、 両土 ¾に電極 (上部電極お よ び 下部電極) を有 し て い る 。 放熱体 1 は、 金属 な ど力、 ら な り 、 半導体素子 2 , 4 の一方の電極 (下部電極 ) が接続 さ れ る 。 金厲箔 5 は A u か ら な り 、 厚みが 5 〜 2 0 m で あ る 。 蓋 6 は金厲カ、 ら な り 、 A u — S n 等 A u の共晶 合金で合金化 さ れて、 絶縁体の他の端面 (上端面) 8 に 取 り 付 け ら れ る 。 半導体素子 4 の上面か ら 艳縁体 3 の上 端面 ま で の距離 (高低差 ) 厶 は金厲箔 5 の厚み の 3 倍以 上 1 0 倍以下で あ る こ と が好 ま し い こ と は も ち ろ ん で あ る o  The semiconductor elements 2 and 4 have electrodes (upper electrode and lower electrode) on both sides. The heat radiator 1 is a force such as a metal, to which one electrode (lower electrode) of the semiconductor elements 2 and 4 is connected. The gold foil 5 is made of Au and has a thickness of 5 to 20 m. The lid 6 is made of an alloy of Au, such as Au—Sn, and is attached to the other end surface (upper surface) 8 of the insulator. The distance (height difference) from the upper surface of the semiconductor element 4 to the upper end face of the insulator 3 is preferably not less than 3 times and not more than 10 times the thickness of the gold foil 5. Is of course o
図 3 A に示す よ う に 円筒状の铯縁体 3 の厚み を 0 . 0 8 m m以上 0 . 1 4 m m以下 と す る こ と に よ り 、 絶縁体 3 の上端面お よ び下端面の面積が小 さ く な り 、 そ の結果 蓋 6 と 放熱体 1 で形成 さ れ る キ ャ パ シ タ ン ス C の面積を 小 さ く す る こ と 力《で き る 。 さ ら に 、 キ ヤ ノ、 · シ タ ン ス C の 値を小 さ く す る こ と で、 優れた高周波特性を得 る こ と が で き る 。 ま た 、 半導体素子 2 , 4 の 一主面 (下面) を放 熱体 1 に 固着 さ せてい る ので十分な放熱性を得 る こ と が で き る 。 ま た 、 蓋 6 を合金化に よ り 絶縁体 3 の上端面 8 に取 り 付 け て い る の で 、 高 い信頼性を得 る こ と がで き る 図面の 簡単な 説明 By setting the thickness of the cylindrical insulator 3 to 0.08 mm or more and 0.14 mm or less as shown in FIG. 3A, the upper and lower surfaces of the insulator 3 are formed. As a result, the area of the capacitance C formed by the lid 6 and the heat radiator 1 can be reduced. Further, by reducing the value of the capacitance C and the capacitance C, excellent high-frequency characteristics can be obtained. Further, since one main surface (lower surface) of each of the semiconductor elements 2 and 4 is fixed to the heat radiating body 1, sufficient heat radiation can be obtained. Also, the lid 6 is alloyed to form an upper end surface 8 of the insulator 3. A simple explanation of the drawing that can be obtained with high reliability because it is attached to
図 1 は従来の ガ ン ダ イ ォ ー ドの パ ッ ケ ー ジ の 構造を示 す断面図で あ る 。  FIG. 1 is a cross-sectional view showing the structure of a conventional package of a standard.
図 2 A〜 2 C は図 1 に示 し た従来の ガ ン ダ イ ォ ー ドの パ ッ ケ ー ジ の製造方法を示す図で あ る 。  2A to 2C are diagrams showing a method for manufacturing the conventional package of the standard shown in FIG.
図 3 A は従来の改良型パ ッ ケ ー ジ の構造を示す断面図 で、 図 3 B は そ の特性を比較例 と と も に 示す図で あ る 。  FIG. 3A is a cross-sectional view showing the structure of a conventional improved package, and FIG. 3B is a diagram showing its characteristics together with a comparative example.
図 4 A お よ び 4 B は本発明 の実施例 に 係 る ガ ン ダ イ ォ 一 ド の パ ッ ケ ー ジ の構造を示す縱断面図で あ る 。  FIGS. 4A and 4B are longitudinal sectional views showing the structure of a package of a gland diode according to the embodiment of the present invention.
図 5 は本発明の実施例の発振周波数 - 出力特性を比較 例 と と も に示す図であ る。  FIG. 5 is a diagram showing an oscillation frequency-output characteristic of the example of the present invention together with a comparative example.
発明 を実施す る た めの最良の形態 BEST MODE FOR CARRYING OUT THE INVENTION
図 4 A お よ び 4 B に 示す本発明 の実施例 は、 ミ リ 波素 子 4 と し て I n P ガ ン ダイ オ ー ドを用 い た場合 に 係 る 。 即 ち 、 ガ ン ダ イ オ ー ド に代表 さ れ る ミ リ 波用 の半導体装 置 に お い て、 パ ッ ケ ー ジ の蓋 と パ ッ ケ ー ジ 本体の放熱休 間で形成 さ れ る 寄生キ ャ パ シ タ ン ス C の値を小 さ く す る こ と を可能にす る 新規な 構造、 条件を提供す る も の で あ る o  The embodiment of the present invention shown in FIGS. 4A and 4B relates to a case where an InP gun diode is used as the millimeter wave element 4. Immediately, in a semiconductor device for a millimeter wave typified by a gun diode, it is formed by the heat radiation between the package lid and the package body. It provides new structures and conditions that allow the value of the parasitic capacitance C to be reduced.
図 4 A は、 図 4 B の A 部分の拡大断面図で あ る 。 な お 図 4 A 、 お よ び 4 B に お い て前述 し た 図 1 、 図 3 A 等 に お け る 部材及び部位 と 同一な い し 均等の も の は、 同一符 号を以 つ て示 し 、 重複 し た 説明 を省略す る 。 P /JP FIG. 4A is an enlarged sectional view of a portion A in FIG. 4B. In FIGS. 4A and 4B, the same or equivalent members and parts as those in FIGS. 1 and 3A described above are denoted by the same reference numerals. And omit duplicate descriptions. P / JP
図 4 A に お い て 、 円 筒状 に 形成 さ れ た 絶縁体で あ る ァ ル ミ ナ 製 の セ ラ ミ ッ ク リ ン グ 3 の 一方 の 端面 7 (下端面 ) がパ ッ ケ ー ジ 本体 の 放熱体 1 に 固定 さ れて い る 。 ミ リ 波 素子 チ ッ プ と し て の ガ ン ダ イ ォ 一 ド 4 は 4 0 〜 6 0 u m ø で上下両面 に 電極 を 有 し 、 0 . 3 m m 0 の プ レ イ テ ツ ド ヒ ー ト シ ン ク 付 き の メ サ型 に 作製 さ れて い る 。 ガ ン ダ ィ オ ー ド 4 の 下面 は 、 プ レ イ テ ッ ド ヒ ー ト シ ン ク の 部分 で熱圧着 も し く は 半 田 付 け に よ り 台座部 2 と し て の 表面 を T i , つ い で A u よ り な る 金属で被覆 さ れ た ダ イ ヤ モ ン ド ヒ ー ト シ ン ク 上 に ダ イ ボ ン デ ィ ン グ さ れて い る 。 ダ ィ ャ モ ン ド ヒ 一 ト シ ン ク 2 上 に ガ ン ダ イ ォ ー ド 4 を 直接 固着 さ れて い る の で、 ガ ン ダ イ ォ ー ド 4 が発生す る 熱を 十分 に 逃がす こ と がで き る 。 一方、 ガ ン ダ イ オ ー ド 4 の 上面 と 、 セ ラ ミ ッ ク リ ン グ 3 の 上端面 8 と の 間 の 距離を 5 0 t m 〜 : L 5 0 m と す る こ と で 、 セ ラ ミ ッ ク リ ン グ 7 の 上端面 8 と ガ ン ダ イ ォ ー ド 4 の 上部電極 と を接続す る 金厲箔 5 の長 さ を調節 し 、 金厲箔 5 の イ ン ダ ク タ ン ス L の 値が大 き く な り 過 ぎて 、 素子 の 特性 に 影響が 出 な い よ う に し て い る 。 ガ ン ダ イ オ ー ド 4 の 上部電極 と セ ラ ミ ッ ク リ ン グ 3 の上端面 8 の 金属被膜部 と の 接続 は 、 W - b a n d ( 7 5 〜 : L l O G H z ) で一般的 な 厚 さ 1 0 〜 1 5 m . 幅 1 0 0 m 程度 の 金厲箔 力、 ら な る 金 リ ボ ン 5 が用 い ら れて い る 。 す な わ ち ガ ン ダ イ ォ 一 ド 4 の 上面 と 、 セ ラ ミ ッ ク リ ン グ の 上端面 8 と の 間 の 距離 (高 低差) は 金 リ ボ ン 5 の 厚 さ の 1 0 倍以下程度 に 選ばれて い る 。 セ ラ ミ ッ ク リ ン グ 7 の 上端面 8 に は 、 金 メ ッ キ し た C u 製 の 蓋 6 が金 リ ボ ン 5 を挟ん で A u - S n 系 の 共 晶合金 で 固着 さ れて い る 。 合金 化す る こ と で 、 確実 に 蓋 6 を セ ラ ミ ッ ク リ ン グ 7 の 上端面 8 に 密着 さ せ て い る 。 但 し 、 こ の 距離 (高低差 ) を あ ま り 短 く す る と 、 金 リ ボ ン 5 の 厚 み 1 0 ~ 1 5 / m と そ の た わ み 1 0 〜 2 0 m に よ つ て蓋 6 と の 隙 間が小 さ く な る た め 、 蓋 6 の 封 じ に 用 い る 共晶 ハ ン ダ ( A u — S n ) が金 リ ボ ン 5 側 に 流れ込 み 、 金 リ ボ ン 5 の 質が硬 く な っ て ガ ン ダ イ ォ ー ド チ ッ プへ 引 張 り やずれ等 の ス ト レ ス を 与え る た め に 、 装置 の 信頼性 が損わ れ る お そ れが あ る の で 、 金 リ ボ ン の 厚 さ に 対 し 3 倍以上の 距離 (高低差) と す る こ と が好 ま し い 。 In FIG. 4A, one end face 7 (lower end face) of a ceramic ring 3 made of aluminum, which is an insulator formed in a cylindrical shape, is a package. It is fixed to the radiator 1 of the main body. The ground wire 4 as a millimeter wave element chip is 40 to 60 μm ø, has electrodes on both upper and lower surfaces, and has a 0.3 mm0 plate-shaped head. It is manufactured in a mesa type with a tosink. The lower surface of the gland diode 4 is a portion of the pre-heated heat sink, and the surface as the pedestal 2 is formed by thermocompression bonding or soldering. i, then dibonded on a diamond heat sink that is coated with a metal of Au. Since the gun diode 4 is directly fixed on the diamond heat sink 2, the heat generated by the gun diode 4 should be sufficient. You can escape. On the other hand, by setting the distance between the upper surface of the gun diode 4 and the upper end surface 8 of the ceramic ring 3 to be 50 tm to: L 50 m, Adjust the length of the gold foil 5 connecting the upper end face 8 of the magnetic ring 7 and the upper electrode of the gland diode 4, and adjust the inductor of the gold foil 5. This prevents the value of L from becoming too large and affecting the characteristics of the element. The connection between the upper electrode of the gun diode 4 and the metal coating on the upper end face 8 of the ceramic ring 3 is generally performed by a W-band (75 to L L OGHz). A gold foil with a thickness of about 10 to 15 m and a width of about 100 m, and a gold ribbon 5 are used. That is, the distance (difference in height) between the upper surface of the gun diode 4 and the upper end surface 8 of the ceramic ring is 10 times the thickness of the gold ribbon 5. It is selected to be about twice or less. A gold-plated lid 6 made of Au is fixed to the upper end surface 8 of the ceramic ring 7 with an Au-Sn eutectic alloy with the gold ribbon 5 interposed therebetween. It is. The alloying ensures that the lid 6 is in close contact with the upper end surface 8 of the ceramic ring 7. However, if this distance (difference in height) is made much shorter, the thickness of the gold ribbon 5 is 10 to 15 / m and its deflection is 10 to 20 m. The eutectic solder (Au—Sn) used to seal the lid 6 flows into the gold ribbon 5 side because the gap between the lid 6 and the lid 6 is reduced. The reliability of the device is impaired because the quality of the rib 5 becomes hard and gives stress such as pulling and slipping to the gland diode chip. Because of the possibility, it is preferable that the distance (difference in height) be at least three times the thickness of the gold ribbon.
次 に 図 4 A お よ び 4 B に 示す本発明 の ミ リ 波用 パ ッ ケ ー ジ の特性を 図 5 に 示す。 図 5 に 示す 出 力 特性 は 9 4 G H z で発振す る よ う に 設計 さ れ た ガ ン ダ イ ォ ー ド を用 い た 場合で あ り 、 比較の た め に 本発明 の 最良 の 実施 の 形態 と は異 な る 条件 の 場合 も 示 し て い る 。 す な わ ち 、 本発明 の 実施 の 形態 に つ い て 2 通 り 、 比較例 と し て 2 通 り の 合 計 4 通 り に つ い て 、 セ ラ ミ ッ ク リ ン グ 7 の 端面 の 面積 を 変え て 、 蓋 6 と パ ッ ケ ー ジ 本体 の 放熱体 1 間で形成 さ れ る 寄生 キ ャ パ シ タ ン ス C の 値を変 え た 場 合 の 、 発振実験 の 結果で あ る 。 よ り 詳細 に 述べ る と 、 セ ラ ミ ッ ク リ ン グ 7 の 端面 の 面積 を 、 セ ラ ミ ッ ク リ ン グ 7 の 外 径 a と 内 径 b の 組 み 合 わ せ ( a , b ) を変 え てパ ッ ケ ー ジ を 構成 し た 場合の 実験結果で あ る 。 こ こ で 、 高周 波特性 の 比較例 と し て は外 径 a と 内 径 b の 組 み 合 わ せ ( a . b ) を ( 0 . 7 8 m m , 0 . 4 m m ) 及 び ( 〇 . 7 7 m m , 0 . 4 6 m m ) と し 、 本発明 の 第 1 の 実施例 と し て は ( 0 . 7 3 m m , 0 . 4 6 m m ) と し 、 第 2 の 実施例 と し て は ( 0 . 7 5 m m , 0 . 5 0 m m ) と し て い る 。 つ ま り 、 比铰例 の セ ラ ミ ッ ク リ ン グ 7 の 厚み ( ( a — b ) / 2 ) を 0 . 1 9 m m お よ び 0 . 1 5 5 m m と し 、 本発明 の 第 1 お よ び第 2 の 実施例 の セ ラ ミ ッ ク リ ン グ 7 の 厚 み を そ れ ぞれ 0 . 1 3 5 m m お よ び 0 . 1 2 5 m m と 変え る こ と で 、 高周 波特性の 相違 を示 し て い る 。 Next, FIG. 5 shows the characteristics of the Millimeter wave package of the present invention shown in FIGS. 4A and 4B. The output characteristics shown in FIG. 5 are for a case where a gun diode designed to oscillate at 94 GHz is used. For comparison, the best practice of the present invention is shown. The figure also shows the case of a condition different from that of the above. That is, in two embodiments of the present invention, and in two comparative examples, four in total, the end faces of the ceramic ring 7 were used. This is the result of an oscillation experiment when the value of the parasitic capacitance C formed between the lid 6 and the radiator 1 of the package body was changed by changing the area. . More specifically, the area of the end face of the ceramic ring 7 is determined by the combination of the outer diameter a and the inner diameter b of the ceramic ring 7 (a, b ) Is the experimental result when the package is configured by changing the above. Here, a comparative example of high frequency characteristics The combination of the outer diameter a and the inner diameter b (a.b.) is (0.78 mm, 0.4 mm) and (0.77 mm, 0.46 mm). The first embodiment of the present invention is (0.73 mm, 0.46 mm), and the second embodiment is (0.75 mm, 0.5 mm). 0 mm). That is, the thickness ((a−b) / 2) of the ceramic ring 7 of the comparative example is set to 0.19 mm and 0.155 mm, and By changing the thickness of the ceramic ring 7 of the first and second embodiments to 0.135 mm and 0.125 mm, respectively, the height is increased. The difference in frequency characteristics is shown.
な お 、 本発明 の第 1 お よ び第 2 の 実施例 に お い て は セ ラ ミ ッ ク リ ン グ 7 の 内 径 a は 、 セ ラ ミ ッ ク リ ン グ 7 の 中 に 半導体素子 2 , 4 を入れ る こ と がで き る よ ラ に 、 0 . 3 5 m m 以上 0 . 5 m m以下で あ る こ と が必要で あ る 。 な お 、 0 . 5 m m を超 え る と 、 セ ラ ミ ッ ク リ ン グ 7 の 上 端面 8 と ガ ン ダ イ ォ ー ド 4 の 上部電極 と を接 fee る 金 m 箔 5 の イ ン ダ ク タ ン ス L の 値力《大 き く な り 、 発振周 波数 を下 げ て し ま う の で 、 0 . 5 m m を超 え る こ と は で き な い  In the first and second embodiments of the present invention, the inner diameter a of the ceramic ring 7 is different from that of the semiconductor device in the ceramic ring 7. It must be at least 0.35 mm and not more than 0.5 mm so that 2 and 4 can be inserted. If the thickness exceeds 0.5 mm, the thickness of the gold-m foil 5 that contacts the upper end face 8 of the ceramic ring 7 and the upper electrode of the gland diode 4 is increased. Since the value of the inductance L becomes large and the oscillation frequency decreases, it cannot exceed 0.5 mm.
図 5 に 示す よ う に 、 セ ラ ミ ッ ク リ ン グ 7 の 厚 み ( ( a - b ) / 2 ) 、 す な わ ち セ ラ ミ ッ ク リ ン グ 7 の 上端面 お よ び下端面 の 面積が小 さ い本発明 の第 1 お よ び第 2 の 実 施例 の 場合が 、 端面 の 面積 の 大 き い 比較例 に 比 し て高周 波特性が向 上 し て い る こ と が わ 力、 る 。  As shown in FIG. 5, the thickness of the ceramic ring 7 ((ab) / 2), that is, the upper and lower surfaces of the ceramic ring 7 In the first and second embodiments of the present invention in which the area of the end face is small, the high frequency characteristics are improved as compared with the comparative example in which the area of the end face is large. This is the strength.
図 5 に 示す高周 波特性の 測定 に お い て は 4 種 の 試料 は マ ウ ン ト 、 共振器 は 同一条件で あ る こ と は も ち ろ ん で あ る 。 比較例で あ る セ ラ ミ ッ ク リ ン グ 7 の 厚 み 力《 0 . 1 5 5 m m ( a = 0 . 7 7 m m , b = 0 . 4 6 m m ) の 試料 で は 、 発振周 波数が 8 1 〜 8 5 G H z で あ る の に 対 し 、 厚 み を 0 . 1 3 5 m m ( a = 0 . 7 3 m m , b = 0 . 4 6 m m ) と し た 本発明 の 第 1 の 実施例 の 試料で は 、 発振 周 波数が 8 9 〜 9 9 G H z と な っ て い る こ と 力く わ 力、 る 。 ま た 、 厚 み を 0 . 1 2 5 m m ( a = 0 . 7 5 m m , b = 0 . 5 0 m m ) と し た 本発明 の 第 2 の 実施例で は 発振周 波数が 9 4 〜 1 0 0 G H z と な っ て い る こ と が わ 力、 る 。 但 し 、 セ ラ ミ ッ ク リ ン グ 7 の 厚み ( a — b ) 2 を 0 . 0 8 m m未满 と す る と 、 セ ラ ミ ッ ク リ ン グ の ロ ウ 付 (溶 着) 時 に ク ラ ッ ク が入 る 等 な どの 理由 に よ り 機械 的強度 が弱 く な る た め 、 装置 の 信頼性が損わ れ る お そ れが あ る 確実 に 装置 の 信頼性 を確保す る た め に は 、 0 . 0 8 m m 以上、 好 ま し く は 0 . 1 m m 以上で あ る こ と が必要で あ る o In the measurement of the high frequency characteristics shown in Fig. 5, four types of samples were used. It goes without saying that the mount and the resonator have the same conditions. In the comparative example, the thickness of the ceramic ring 7 was 0.155 mm (a = 0.77 mm, b = 0.446 mm). Is between 81 and 85 GHz, whereas the thickness is 0.135 mm (a = 0.73 mm, b = 0.46 mm). In the sample of the embodiment, the oscillation frequency is 89 to 99 GHz. Further, in the second embodiment of the present invention in which the thickness is 0.125 mm (a = 0.75 mm, b = 0.50 mm), the oscillation frequency is 94 to 1 mm. It is clear that it is 0 GHz. However, if the thickness (a-b) 2 of the ceramic ring 7 is less than 0.08 mm, when the ceramic ring is to be rolled (welded). The mechanical strength may be weakened due to cracks in the machine, etc., which may reduce the reliability of the equipment.Ensure the reliability of the equipment. For this purpose, it must be at least 0.08 mm, preferably at least 0.1 mm o
上述 の 結果 は 例示で あ り 、 E - b a n d ( 6 0 〜 9 0 G H z ) , F — b a n d ( 9 0 〜 : 1 4 0 G H z ) で も 同 様 に 、 本発明 の 第 1 , お よ び第 2 実施例 と 同 様 の 構造 の も の は 、 比較例 と 比べ て高周 波特性の 向 上が認 め ら れ た な お 、 I n P ガ ン ダ イ オ ー ド に 限 ら ず G a A s ガ ン ダ ィ ォ ー ド等他 の ミ リ 波素子で も 同様で あ る 。  The results described above are examples, and the same applies to E-band (60 to 90 GHz) and F-band (90 to: 140 GHz). In the case of the same structure as in the second embodiment and the second embodiment, the improvement of the high frequency characteristics was confirmed as compared with the comparative example, but only for the InP Gundode. The same applies to other Millimeter wave devices such as GaAs standard.
従 っ て 、 以上の 結果 か ら 絶縁体 の 半径方向 の 厚 み は ◦ 0 8 m m以上 0 . 1 4 m m 以下 と す る こ と に よ り 、 優 れ た高周波特性を得 る こ と がで き る 産業上の利用可能性 Therefore, based on the above results, the thickness of the insulator in the radial direction is better than ◦08 mm or more and 0.14 mm or less. High frequency characteristics can be obtained Industrial applicability
以上の よ う に 、 本発明 に かか る 半導体装置 は 円 筒状の 铯縁体の厚み ( a - b ) / 2 を 0 . 0 8 m m 以上 0 . 1 As described above, in the semiconductor device according to the present invention, the thickness (ab) / 2 of the cylindrical insulator is set to 0.08 mm or more to 0.1 mm or more.
4 m m 以下 と す る こ と に よ り 絶稼体の端面 (上端面及 び下端面) の面積が小 さ く な つ て、 蓋 と パ ッ ケ 一 ジ 本体 の放熱体間で形成 さ れ る 寄生キ ャ パ シ 夕 ン ス C の値が低 滅 し 、 ま た 半導体素子チ ッ プの上面 と 縁体の上端面 と の 間の距離を短 く し て い る の で寄生 イ ン ダ ク タ ン ス L も 小 さ く 9 0 G H z 以上の ミ 波帯で も 優れた fBJ周波特性 が得 ら れ る 。 さ ら に本発明 に かか る 半導体装置 は半導体 素子チ ッ プの一主面 (下面) を放熱体に 固着 さ せて い る の で十分な 放熱性が得 ら れ る 0 ま た 、 本発明 に かか る 半 導体装置 は蓋を合金化 に よ り 絶 s体の上端面 に取 り 付け て い る の で 、 高い信頼性が得 ら れ る By setting it to 4 mm or less, the area of the end face (upper and lower faces) of the underutilized body is reduced, and it is formed between the lid and the radiator of the package body. The value of the parasitic capacitance C has been reduced, and the distance between the top surface of the semiconductor chip and the top surface of the edge has been shortened. Excellent fBJ frequency characteristics can be obtained even in the microwave band of 90 GHz or higher, with a small capacitance L. Further, in the semiconductor device according to the present invention, one main surface (lower surface) of the semiconductor element chip is fixed to a heat radiator, so that sufficient heat radiation can be obtained. In the semiconductor device according to the invention, the lid is attached to the upper end surface of the insulator by alloying, so that high reliability can be obtained.
2 一 2 one

Claims

請求の範囲 The scope of the claims
1 . 放熱体 と 、 該放熱体の上部 に 固着 さ れた 半導体素子 と 、 該半導体素子を取囲み、 下端面を該放熱体 に 接 し た 中空円筒状絶縁体 と 、 該絶縁体の上端面 と 該半導体素子 と を接続す る 金厲箔 と 、 該金厲箔の一部 と 接 し 、 かつ 該 絶縁体の上部 に形成 さ れ、 該絶縁体の 中空部を密閉す る 蓋 と か ら 少な く と も 構成 さ れ、 1. A heat radiator, a semiconductor element fixed on an upper part of the heat radiator, a hollow cylindrical insulator surrounding the semiconductor element and having a lower end face in contact with the heat radiator, and an upper end face of the insulator A gold foil for connecting the metal foil to the semiconductor element; and a lid formed in contact with a part of the gold foil and formed on an upper part of the insulator to seal a hollow portion of the insulator. Is composed of at least
該絶縁体の半径方向 に刺 っ た厚み力《 0 . 0 8 m m 以上 0 . 1 4 m m以下で あ る こ と を特徴 と す る 半導体装置。 A semiconductor device characterized in that a thickness force pierced in a radial direction of the insulator is not less than 0.08 mm and not more than 0.14 mm.
2 . 前記半導体素子は台座部 と 、 該台座部の上部 に 、 下 面を密着 し て形成 さ れた ミ リ 波素子チ ッ プ と か ら 少な く と も 構成 さ れ る こ と を特徴 と す る 請求の範囲第 1 項記載 の半導体装置。 2. The semiconductor element is characterized by comprising at least a pedestal portion and a Millimeter-wave device chip formed on the upper portion of the pedestal portion with its lower surface adhered to the pedestal portion. The semiconductor device according to claim 1.
3 . 前記 ミ リ 波素子チ ッ プは化合物半導体か ら な る こ と を特徴 と す る 請求の範囲第 2 項記載の半導体装置。  3. The semiconductor device according to claim 2, wherein the Millimeter-wave element chip is made of a compound semiconductor.
4 . 前記 ミ リ 波素子チ ッ プはガ ン ダイ オ ー ドで あ る こ と を特徴 と す る 請求の範囲第 2 項記載の半導体装置。  4. The semiconductor device according to claim 2, wherein said Millimeter-wave element chip is a Gunn diode.
5 . 前記台座部 は ダイ ヤ モ ン ド ヒ ー ト シ ン ク で あ る こ と を特徴 と す る 請求の範囲第 2 項記載の半導体装置。  5. The semiconductor device according to claim 2, wherein said pedestal portion is a diamond heat sink.
6 . 前記蓋 は前記金厲箔の一部 と 合金 化 さ れて前記絶縁 体の上端面 に 固着 さ れて い る こ と を特徴 と す る 請求の範 囲第 1 項記載の半導体装置。  6. The semiconductor device according to claim 1, wherein the lid is alloyed with a part of the gold foil and is fixed to an upper end surface of the insulator.
7 . 前記金厲箔 は金 リ ボ ン であ り 、 前記蓋 は A u - S n 系共晶合金で合金化 さ れ前記絶縁体の上端面 に 固着 さ れ て い る こ と を特徴 と す る 請求の範囲第 6 項記載の 半導体 装置。 7. The gold foil is gold ribbon, and the lid is alloyed with an Au-Sn eutectic alloy and fixed to the upper end surface of the insulator. The semiconductor device according to claim 6, wherein the semiconductor device is characterized in that:
8 . 前記半導体素子の上面 と 前記絶縁体の上端面 と の 間 の距離が前記金厲箔の厚み の 3 倍以上 1 0 倍以下であ る こ と を特徴 と す る 請求の範囲第 1 項記載の 半導体装置。  8. The method according to claim 1, wherein a distance between an upper surface of the semiconductor element and an upper end surface of the insulator is not less than three times and not more than 10 times the thickness of the gold foil. The semiconductor device as described in the above.
4 - Four -
PCT/JP1996/000377 1995-02-21 1996-02-20 Semiconductor device WO1996026540A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8525555A JP2918125B2 (en) 1995-02-21 1996-02-20 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3251895 1995-02-21
JP7/32518 1995-02-21

Publications (1)

Publication Number Publication Date
WO1996026540A1 true WO1996026540A1 (en) 1996-08-29

Family

ID=12361195

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1996/000377 WO1996026540A1 (en) 1995-02-21 1996-02-20 Semiconductor device

Country Status (1)

Country Link
WO (1) WO1996026540A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288379A (en) * 2007-05-17 2008-11-27 Toshiba Corp Semiconductor package
JP2012089549A (en) * 2010-10-15 2012-05-10 Fujitsu Ltd Electronic apparatus, manufacturing method of the same, and transmitter-receiver

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162977A (en) * 1974-11-29 1976-05-31 Nippon Electric Co DAIYAMONDOHONETSUTAIO SONAETA KOSHUTSURYOKUHANDOTAISOCHI
JPS51120177A (en) * 1975-04-14 1976-10-21 Nippon Telegr & Teleph Corp <Ntt> Diode package
JPS5575247A (en) * 1978-12-04 1980-06-06 Nec Corp Semiconductor device package
JPS5793552A (en) * 1980-12-02 1982-06-10 Nec Corp Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5162977A (en) * 1974-11-29 1976-05-31 Nippon Electric Co DAIYAMONDOHONETSUTAIO SONAETA KOSHUTSURYOKUHANDOTAISOCHI
JPS51120177A (en) * 1975-04-14 1976-10-21 Nippon Telegr & Teleph Corp <Ntt> Diode package
JPS5575247A (en) * 1978-12-04 1980-06-06 Nec Corp Semiconductor device package
JPS5793552A (en) * 1980-12-02 1982-06-10 Nec Corp Semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008288379A (en) * 2007-05-17 2008-11-27 Toshiba Corp Semiconductor package
JP2012089549A (en) * 2010-10-15 2012-05-10 Fujitsu Ltd Electronic apparatus, manufacturing method of the same, and transmitter-receiver
US8952846B2 (en) 2010-10-15 2015-02-10 Fujitsu Limited Electronic apparatus, method of making the same, and transceiving device

Similar Documents

Publication Publication Date Title
CN1717156B (en) Electronic component packaging method, semiconductor module, and semiconductor device
US7157744B2 (en) Surface mount package for a high power light emitting diode
WO1983003922A1 (en) Semiconductor device
WO2016199621A1 (en) Manufacturing method for power semiconductor device, and power semiconductor device
US6056186A (en) Method for bonding a ceramic to a metal with a copper-containing shim
EP2159837B1 (en) Electronic component storing package and electronic device
US20090014867A1 (en) Seal ring for glass wall microelectronics package
JPH0964258A (en) Large power semiconductor device
JP3336982B2 (en) Semiconductor device and method of manufacturing the same
US5760473A (en) Semiconductor package having a eutectic bonding layer
WO1996026540A1 (en) Semiconductor device
US4566027A (en) Pre-matched module for an ultra-high frequency diode with high heat dissipation
US20190006254A1 (en) Microelectronic package construction enabled through ceramic insulator strengthening and design
JP2019175989A (en) Semiconductor device
JP2918125B2 (en) Semiconductor device
JP2002190540A (en) Storage package for semiconductor element
NL2021598B1 (en) Seed layer for electroplating eutectic AuSn solder
JP2633128B2 (en) Semiconductor device
JP2002289956A (en) Semiconductor laser device
JP3642739B2 (en) Package for storing semiconductor elements
WO2021182149A1 (en) Semiconductor device and method for manufacturing semiconductor device
US11869857B2 (en) Semiconductor package component
JP3527902B2 (en) Semiconductor element storage package and semiconductor device
JP2006114716A (en) Power semiconductor device
JPS61116848A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 732361

Date of ref document: 19961223

Kind code of ref document: A

Format of ref document f/p: F