WO1995015399A1 - Procede d'amplification et de detection d'une sequence nucleotidique au moyen d'enzymes thermostables - Google Patents

Procede d'amplification et de detection d'une sequence nucleotidique au moyen d'enzymes thermostables Download PDF

Info

Publication number
WO1995015399A1
WO1995015399A1 PCT/JP1994/002025 JP9402025W WO9515399A1 WO 1995015399 A1 WO1995015399 A1 WO 1995015399A1 JP 9402025 W JP9402025 W JP 9402025W WO 9515399 A1 WO9515399 A1 WO 9515399A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
nucleic acid
acid sequence
primer
rna
Prior art date
Application number
PCT/JP1994/002025
Other languages
English (en)
French (fr)
Inventor
Yutaka Takarada
Hiroaki Inoue
Shuji Shibata
Yoshihisa Kawamura
Original Assignee
Toyo Boseki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha filed Critical Toyo Boseki Kabushiki Kaisha
Priority to DE69431240T priority Critical patent/DE69431240T2/de
Priority to EP95902289A priority patent/EP0682121B1/en
Publication of WO1995015399A1 publication Critical patent/WO1995015399A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6865Promoter-based amplification, e.g. nucleic acid sequence amplification [NASBA], self-sustained sequence replication [3SR] or transcription-based amplification system [TAS]

Definitions

  • thermostable enzymes L target nucleic acid sequence amplification and detection methods
  • the present invention relates to a method for amplifying a specific nucleic acid sequence, a method for detecting a target nucleic acid sequence from an RNA copy or a DNA copy of the specific nucleic acid sequence obtained by the amplification method, and a reagent kit used for the method.
  • nucleic acid is present in a sufficient amount for direct detection, but it is difficult to detect the target gene directly if the target gene is very small or its abundance ratio is very small. is there.
  • the number of target genes has been increased by a cell culture method or a bacterial culture method, but these methods have the disadvantage of requiring a long time.
  • PCR polymerase chain reaction
  • a replication RNA-based amplification system As another nucleic acid amplification method, a replication RNA-based amplification system has been known (Japanese Patent Application Laid-Open Nos. Hei 2-58664, Hei 2-500565, Hei 2-501). 5 3 2).
  • a primer used for synthesizing double-stranded DNA from a target nucleic acid contains a promoter sequence of a DNA-dependent RNA polymerase, so that the primer is synthesized following double-stranded DNA synthesis.
  • the double-stranded DNA is converted into type II, and RNA corresponding to the target nucleic acid is synthesized by the DNA-dependent RNA polymerase.
  • a DNAZRNA strand is synthesized from the synthesized RNA by an RNA-dependent DNA polymerase, and the DNA strand is separated to obtain a single-stranded DNA.
  • Known methods for DNA separation include a method using thermal denaturation (Japanese Patent Application Laid-Open Nos. 2-500565 and 2-501532) and a method using ribonuclease H (Japanese Patent Application Laid-Open No. 2-58684).
  • double-stranded DNA containing a DNA-dependent RNA polymerase promoter sequence is synthesized, and an RNA transcription reaction is performed.
  • RNA molecules can be transcribed and amplified from a single double-stranded nucleic acid by DNA-dependent RNA polymerase. high.
  • ribonuclease H when ribonuclease H is used, the temperature cycle required in the PCR method is unnecessary, and amplification can be performed more easily.
  • RNA-dependent DNA polymerase RNA-dependent DNA polymerase
  • DNA-dependent RNA polymerase DNA-dependent DNA polymerase
  • DNA-dependent DNA polymerase DNA-dependent DNA polymerase
  • DNA-dependent DNA polymerase RNA-dependent DNA polymerase
  • thermostability The temperature during the amplification reaction cannot be increased, and non-specific hybridization between the nucleic acid that becomes the type II and the primer cannot be avoided, resulting in a problem of reduced specificity.
  • the enzyme is supplied as a reagent, instability during storage becomes a serious problem, and it requires freezing or refrigerated storage.
  • An object of the present invention is to reduce specificity due to non-specific hybridization, An object of the present invention is to provide a method for solving instability during supply and storage of an enzyme reagent.
  • FIG. 1 is a process chart of the amplification method of the present invention when the target nucleic acid is RNA.
  • FIG. 2 is a process chart of the amplification method of the present invention when the target nucleic acid is DNA.
  • Figure 3 shows the SDS of ribonuclease H from Thermos thermophilus.
  • FIG. 4 is a graph showing the thermostability of ribonuclease H derived from salmon ⁇ thermophilus.
  • FIG. 5 is a graph showing the optimum pH of ribonuclease H derived from Thermos thermophilus.
  • One embodiment of the present invention is a method for increasing the copy number of a target nucleic acid sequence at a substantially constant temperature in a reaction medium, comprising the following steps: This is a method for amplifying a nucleic acid sequence.
  • Step 1 A sequence that is sufficiently complementary to the type I nucleic acid sequence (RNA) of single-stranded type I RNA, which is obtained by denaturing the target nucleic acid if necessary, and a promoter at the 5 'end Hybridizing the first primer having the sequence and extending it with a thermostable RNA-dependent DNA polymerase to obtain a first primer extension (DNA) which is a second type complementary to the first type RNA;
  • Step 2 Separation of type II RNA from type I RNA by heat-resistant ribonuclease H, which specifically degrades only RNAZDNA hybrid RNA, and single-stranded type II nucleic acid Obtain (DNA);
  • Step 3 A second primer having a nucleic acid sequence complementary to the type II nucleic acid sequence (DNA) is hybridized to the main strand type II DNA, and the primer is extended with a heat-resistant DNA-dependent DNA polymerase.
  • a second primer extension (DNA), thus producing a double-stranded DNA intermediate having a operable promoter sequence upstream of the target nucleic acid sequence;
  • the nucleic acid sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 ′ end of the first primer is the same as that of the second primer on the complementary strand. Pointed to the 3 'end)
  • Step 4 Complementary to the target nucleic acid sequence (type I RNA) from the double-stranded DNA intermediate using a heat-resistant DNA-dependent RNA polymerase capable of recognizing the promoter sequence Producing single-stranded type III RNA with sequence;
  • Step 5 The second primer is hybridized to the main stranded type III RNA, and is extended by a thermostable RNA-dependent DNA polymerase to form a type IV RNA complementary to the type III RNA. Obtaining a second primer extension (DNA);
  • Step 6 Separate type IV DNA from type III RNA using heat-resistant ribonuclease H, which specifically degrades only RNA of RNAZDNA hybrid to obtain single-stranded type II nucleic acid (DNA) ;
  • Step 7 The first primer is hybridized to the type IV DNA of the strand, extended by a thermostable DNA-dependent DNA polymerase, and the first primer extension product complementary to the type IV DNA (DNA ) And a type IV DNA extension that is complementary to the promoter sequence of the first primer, thereby producing a double-stranded DNA intermediate having a functionally operable promoter sequence upstream of the target nucleic acid sequence.
  • Step 8 Using a heat-resistant DNA-dependent RNA polymerase capable of recognizing the promoter sequence, has a sequence complementary to the target nucleic acid sequence (type I RNA) from the double-stranded DNA intermediate Increase copies of single-stranded type III RNA;
  • Step 9 The above steps 5 to 8 are repeated as necessary using the RNA copy as necessary.
  • Another aspect of the present invention is a method for increasing the copy number of a target nucleic acid sequence in a reaction medium, the method comprising amplifying a target nucleic acid sequence using a thermostable enzyme comprising the following steps. is there.
  • Step 1 The target nucleic acid has, as necessary, a denatured single-stranded type I DNA and a sequence sufficiently complementary to the type I nucleic acid sequence and a promoter sequence at its 5 'end
  • the first primer is hybridized and extended by a thermostable DNA-dependent DNA polymerase to obtain a second primer extension (DNA) which is a second type II complementary to the first type II DNA;
  • Step 2 separating type II DNA from type I DNA to obtain single-stranded type II nucleic acid (DNA);
  • Step 3 Hybridized second type II DNA is hybridized with a second primer having a nucleic acid sequence (DNA) complementary to the type II nucleic acid sequence (DNA), and is then treated with a heat-resistant DNA-dependent DNA polymerase. Extension to obtain a second primer extension (DNA) complementary to type II DNA, thus producing a double-stranded DNA intermediate having a functional promoter sequence upstream of the target nucleic acid sequence Let;
  • the nucleic acid sequence of the first primer or the second primer is Sufficiently complementary or homologous to the sequence, with the 3 'end of the first primer directed to the 3' end of the second primer on the complementary strand)
  • Step 4 Using a heat-resistant DNA-dependent RNA polymerase capable of recognizing the promoter sequence, a sequence complementary to the target nucleic acid sequence (Type I DNA) is converted from the double-stranded DNA intermediate. Increase the copy of the single-stranded type III RNA that has;
  • Step 5 The second primer is hybridized to the main stranded type III RNA, and is extended by a thermostable RNA-dependent DNA polymerase to form a type IV RNA complementary to the type III RNA. Obtaining a second primer extension (DNA);
  • Step 6 A thermostable ribonuclease H, which specifically degrades only RNA / DNA hybrid RNA, separates quaternary DNA from tertiary RNA and converts it to single-stranded quaternary nucleic acid ( DNA);
  • Step 7 The first primer is hybridized to the type IV DNA of the strand, extended by a thermostable DNA-dependent DNA polymerase, and the first primer extension (DNA) complementary to the type IV DNA And a type IV DNA extension complementary to the promoter sequence of the first primer is obtained, and thus a double-stranded DNA intermediate having a functionally operable promoter sequence upstream of the target nucleic acid sequence is generated.
  • the nucleic acid sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 ′ end of the first primer is 3 ′ of the second primer on the complementary strand. Pointed towards the end)
  • Step 8 Using a heat-resistant DNA-dependent RNA polymerase capable of recognizing the promoter sequence, a single-stranded third strand having a sequence complementary to the target nucleic acid sequence from the double-stranded DNA intermediate Increased copy of type RNA Let;
  • Step 9 The above steps 5 to 8 are repeated as necessary using the RNA copy as necessary. .
  • a single-stranded RNA, a double-stranded DNA, or a DNAZRNA hybrid which is an amplification product obtained by the above-described amplification method, is subjected to denaturation treatment if necessary, and then a labeled probe is hybridized.
  • This is a method for detecting a target nucleic acid sequence, which comprises detecting the label of a soybean labeled probe or the label of a nonhybridized labeled probe.
  • kits for amplifying a specific nucleic acid sequence are provided.
  • One embodiment of such a kit is a kit for amplifying a specific nucleic acid sequence
  • thermostable RNA-dependent DNA polymerase (d) thermostable RNA-dependent DNA polymerase
  • thermostable DNA-dependent RNA polymerase (e) thermostable DNA-dependent RNA polymerase
  • thermostable DNA-dependent DNA polymerase thermostable DNA-dependent DNA polymerase
  • the nucleic acid sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 ′ end of the first primer is 3 ′ of the second primer on the complementary strand.
  • a kit directed to the end is there.
  • kits for amplifying a specific nucleic acid sequence Another aspect of the kit is a kit for amplifying a specific nucleic acid sequence
  • thermostable DNA-dependent RNA polymerase (d) thermostable DNA-dependent RNA polymerase
  • thermostable DNA-dependent DNA polymerase having RNA-dependent DNA polymerase activity (e) a thermostable DNA-dependent DNA polymerase having RNA-dependent DNA polymerase activity
  • the nucleic acid sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 ′ end of the first primer is 3 ′ of the second primer on the complementary strand. It is a kit directed to the end. Further, another embodiment of the kit is a kit for amplifying a specific nucleic acid sequence,
  • thermostable DNA-dependent RNA polymerase thermostable DNA-dependent RNA polymerase
  • thermostable DNA-dependent DNA polymerase having RNA-dependent DNA polymerase activity and ribonuclease H activity
  • thermostable DNA-dependent DNA polymerase having RNA-dependent DNA polymerase activity and ribonuclease H activity
  • ribonucleoside triphosphate and
  • the nucleic acid sequence of the first or second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 ′ end of the first primer is located at the 3 ′ end of the second primer on the complementary strand. It is a kit that is aimed at.
  • kit for amplifying a specific nucleic acid sequence
  • thermostability RNA-dependent DNA polymerase
  • thermostable DNA-dependent RNA polymerase (e) thermostable DNA-dependent RNA polymerase
  • thermostable DNA-dependent DNA polymerase thermostable DNA-dependent DNA polymerase
  • the nucleic acid sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 ′ end of the first primer is the 3 ′ end of the second primer on the complementary strand. It is a kit aimed at
  • kits for amplifying a specific nucleic acid sequence J'Met,
  • the sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 ′ end of the first primer is located at the 3 ′ end of the second primer on the complementary strand. It is a kit aimed at. Another embodiment of the kit of the present invention is a kit for amplifying a specific nucleic acid sequence,
  • thermostable DNA-dependent DNA polymerase having RNA-dependent DNA polymerase activity and nuclease H activity
  • the sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 ′ end of the first primer The end is a kit directed to the 3 'end of the second primer on the complementary strand.
  • the target nucleic acid of the present invention may be DNA or RNA.
  • the strand is subjected to an amplification reaction in advance as a single strand by heating, denaturation treatment with an acid, alkali, or the like.
  • the amplification method of the present invention may be carried out after conversion into RNA by a conventionally known method.
  • the first primer used in the present invention has a nucleic acid sequence sufficiently complementary to the target nucleic acid sequence of the first type and a motor sequence at the 5 ′ end thereof.
  • the 3 'end of the first primer is directed to the 3' end of the second primer on the complementary strand.
  • the second primer in the present invention has a nucleic acid sequence complementary to the nucleic acid sequence of type II and is sufficiently homologous to the target nucleic acid sequence.
  • the second primer may have a promoter sequence at its 5 'end if necessary in addition to the nucleic acid sequence complementary to the nucleic acid sequence of type II.
  • the promoters of the first primer and the second primer may be different or the same. If different, a plurality of heat-resistant DNA-dependent RNA polymerases acting on respective promoters are used if necessary.
  • both types of promoters can function with one type of thermostable DNA-dependent RNA polymerase. Amplification efficiency can be further enhanced by providing both the first primer and the second primer with a promoter function.
  • the setting of the promoter sequence varies depending on the target nucleic acid to be amplified, and when performing amplification in a state of high specificity, it is preferable to set the Tm of the primer to 50 to 70 ° C. When performing amplification at a temperature lower than this, primer It is necessary to carefully examine one sequence to maintain its specificity, and the nucleic acid sequence to be amplified cannot be freely selected.
  • the promoter sequence used in the present invention is not particularly limited, but must be a sequence that functions so that a thermostable DNA-dependent RNA polymerase acts.
  • Such promoter sequences include, for example, the DNA-dependent RNA polymerase of Thermus thermophilus,
  • a promoter sequence has a subsequent spacer sequence up to the replication origin.
  • the spacer sequence up to these replication origins, and further the sequence of the portion that initiates replication, can be considered as a promoter.In fact, when this sequence is included, the efficiency of transcription and replication may be higher. Are known. Therefore, the efficiency of transcription amplification can be increased by designing a primer with a promoter containing this sequence portion. In the present invention, amplification can be performed even with a primer in which a sequence containing the spacer sequence up to the replication start point is ligated to the 5 'end of the primer.
  • Other promoter sequences include: 5'-CTTGACGCCGCCCAGGGCGGGCCTCTACCCT-3 '
  • phage promoters are highly specific, but the promoters of other organisms may not always be highly specific.
  • the term “high specificity” here means that the promoter-dependent DNA-dependent RNA polymerase has a very small number of promoter sequences that can act, even if one or more of the DNA-dependent RNA polymerases are present. Says that the activity is very low. Therefore, it is shown that even if various promoters are present in the sample nucleic acid to be detected, the promoter-dependent DNA-dependent RNA polymerase can act with practically no problem.
  • the promoter sequence on which DNA-dependent RNA polymerase acts is not always one type, and it is known that there are multiple types of promoter sequences. Some bacteria and fungi have high commonality. Therefore, it is also conceivable that the sample nucleic acid to be detected may contain a promoter sequence in which the DNA-dependent RNA polymerase to be used acts.
  • non-specific promoter function is expressed by reacting at 50 to 70 ° C at which thermostable DNA-dependent RNA polymerase can act. As it is not performed, highly specific amplification and detection are possible.
  • the double-stranded DNA intermediate having a promoter sequence operable upstream of the target nucleic acid sequence in the present invention means the double-stranded DNA intermediate in step 3 or step 7 (FIG. 1 or FIG. 2).
  • heat-resistant DNA It has the function of initiating the synthesis of RNA with DNA as type II by the action of dependent RNA polymerase.
  • RNA produced by the function of the promoter has a sequence complementary to the target RNA.
  • thermoostable enzyme means that an enzymatic reaction can be carried out at 50 to 70 ° C in order to specifically perform hybridization, and heat denaturation of nucleic acid is performed at 90 to 95 ° C for 10 seconds to 10 seconds.
  • such enzymes are generally sufficiently stable even in refrigerated storage or room temperature storage, and in many cases do not need to be stored in a frozen state, and have good stability during supply and storage.
  • thermostable RNA-dependent DNA polymerase also called thermostable reverse transcriptase
  • Thermus thermophilus or Thermus aquaticus has this activity. It has been known.
  • thermostable DNA-dependent RNA polymerase examples include enzymes derived from Thermus thermophilus.
  • the resistant DNA-dependent RNA polymerase can recognize a promoter sequence.
  • thermostable DNA polymerases include: Thermus thermophilus, Samus. Tralice, thermococcus litorakis) and those derived from Thermus flavus.
  • thermostable ribonuclease H examples include enzymes derived from Thermus thermophilus, and other enzymes can be used as long as they meet the thermostability of the present invention.
  • RNA-dependent DNA polymerases have DNA-dependent DNA polymerase activity
  • DNA-dependent DNA polymerases derived from Thermus thermophilus and Thermus aquaticus have RNA-dependent DNA polymerase activity. It is known to exist, and it is possible to use one type of DNA polymerase having both activities in common.
  • thermostable DNA-dependent DNA polymerase derived from Thermos' thermophilus has thermostable ribonuclease H activity (Japanese Patent Application No. 6-258190). Therefore, by using a thermostable DNA-dependent DNA polymerase derived from Thermus thermophilus, one substance (enzyme) can be used instead of the thermostable RNA-dependent DNA polymerase and thermostable ribonuclease H to achieve three types of enzyme activities. Can be used.
  • thermostable enzyme used in the present invention thermostable RNA-dependent DNA polymerase, thermostable ribonuclease H and thermostable DNA-dependent DNA polymerase are preferably one enzyme.
  • Such an enzyme is preferably an enzyme derived from S. thermophilus having the following physicochemical properties.
  • RNAZDNA double-stranded RNA Operate specifically and end-specifically on RNAZDNA double-stranded RNA to generate DNA-stranded strands.
  • the production of the above enzyme is described in Japanese Patent Application No. 6-258190. That is, the enzyme is obtained by culturing Thermos thermophilus HB8 (ATCC 27634) which is a thermophilic bacterium, and collecting the thermostable ribonuclease H having the above physicochemical properties from the culture.
  • Thermos thermophilus HB8 ATCC 27634 which is a thermophilic bacterium, and collecting the thermostable ribonuclease H having the above physicochemical properties from the culture.
  • the first primer is hybridized to a single-stranded first-strand nucleic acid that has been denatured as necessary, and the heat-dependent RNA-dependent RNA is present in the presence of deoxyribonucleoside triphosphate.
  • Extension with a DNA polymerase and / or a thermostable DNA-dependent DNA polymerase yields a first Bramer extension, a second type II complementary to the first type II nucleic acid.
  • the first primer extension is a thermostable RNA-dependent DNA polymerase when the first type II is RNA, a thermostable DNA-dependent DNA polymerase when the first type II is DNA, and a target nucleic acid. If the sequence contains DNA and RNA, it is extended with a thermostable DNA-dependent DNA polymerase and a thermostable RNA-dependent DNA polymerase to obtain a DNA extension product (Fig. 1, Fig. 2, Process
  • steps 2 to 9 are performed as follows ( Figure 1).
  • the second type DNA is separated from the first type RNA by the thermostable ribonuclease H, which specifically degrades only the RNA of the RNAZDNA hybrid, to form a single-stranded type II nucleic acid (DNA ).
  • a single-stranded type II DNA is hybridized with a second primer having a nucleic acid sequence complementary to the type II nucleic acid sequence (DNA), and is extended by a heat-resistant DNA-dependent DNA polymerase.
  • a second primer extension (DNA) complementary to the type II DNA and thus a double-stranded DNA having a target nucleic acid sequence bound to a functionally operable promoter sequence upstream of the target nucleic acid sequence.
  • the nucleic acid sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence;
  • the 3 'end of one primer is directed to the 3' end of the second primer on the complementary strand o
  • step 4 a sequence complementary to the target nucleic acid sequence (type I RNA) from the double-stranded DNA intermediate using a thermostable DNA-dependent RNA polymerase capable of recognizing the promoter sequence To generate single-stranded type III RNA having
  • step 5 the second primer is hybridized to the single-stranded type III RNA, extended by a thermostable RNA-dependent DNA polymerase, and the type IV RNA complementary to the type III RNA is synthesized. Obtain a certain second primer extension (DNA).
  • step 6 the heat-resistant ribonuclease H, which specifically degrades only RNA / RNA hybrid RNA, separates quaternary DNA from tertiary RNA to form a single-stranded second nucleic acid. (DNA).
  • the first primer is hybridized to the single-stranded type 40 DNA, extended by a heat-resistant DNA-dependent DNA polymerase, and the first primer complementary to the type 40 DNA is extended.
  • (DNA) and a type IV DNA extension that is complementary to the promoter sequence of the first primer, and thus has a target nucleic acid sequence bound to a functionally operable promoter sequence.
  • a double-stranded DNA intermediate is generated.
  • the nucleic acid sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 ′ end of the first primer is 3 ′ of the second primer on the complementary strand. Pointed to the end.
  • step 8 using a heat-resistant DNA-dependent RNA polymerase capable of recognizing the promoter sequence, a sequence having a sequence complementary to the target nucleic acid sequence (type I RNA) from the double-stranded DNA intermediate is used.
  • Type III of main chain Increase RNA copy.
  • step 9 the above-mentioned RNA copy is used if necessary, and the above-mentioned steps 5 to 8 are repeated as many times as necessary.
  • steps 2 to 9 are performed as follows (Fig. 2).
  • step 2 the type II DNA is separated from the type II DNA to obtain a single-stranded type II nucleic acid (DNA).
  • step 3 the single-stranded type II DNA is hybridized with a second primer having a nucleic acid sequence (DNA) complementary to the type II nucleic acid sequence (DNA), and the heat-dependent DNA It is extended by DNA polymerase to obtain a second primer extension (DNA) complementary to type II DNA, and thus a double-stranded DNA intermediate having a promoter sequence upstream of the target nucleic acid sequence. Is generated.
  • the nucleic acid sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 'end of the first primer is the same as that of the second primer on the complementary strand. Pointed to the 3 'end.
  • step 4 using a heat-resistant DNA-dependent RNA polymerase capable of recognizing the promoter sequence, a sequence complementary to the target nucleic acid sequence (type I) is obtained from the double-stranded DNA intermediate. Increases copies of single-stranded type III RNA.
  • step 5 the second primer is hybridized to the single-stranded type III RNA, and is extended with a thermostable RNA-dependent DNA polymerase to form a type IV RNA complementary to the type III RNA.
  • a thermostable RNA-dependent DNA polymerase to form a type IV RNA complementary to the type III RNA.
  • step 6 using a heat-resistant ribonuclease H, which specifically degrades only RNA in the RNAZDNA hybrid, quaternary DNA is separated from tertiary RNA to form a single-stranded second nucleic acid (DNA ).
  • step 7 the first primer is hybridized to the single-stranded DNA of type 40, extended by a thermostable DNA-dependent DNA polymerase, and the DNA extension of type 4 DNA complementary to the DNA of type 4 And a double-stranded DNA intermediate having the target nucleic acid sequence bound to the upstream operable promoter sequence is thus generated.
  • the nucleic acid sequence of the first primer or the second primer is sufficiently complementary or homologous to the target nucleic acid sequence, and the 3 ′ end of the first primer is the same as that of the second primer on the complementary strand. Pointed to 3 'end.
  • the double-stranded DNA intermediate has a sequence complementary to the target nucleic acid sequence (type I). Increases copies of single-stranded type III RNA.
  • step 9 the above steps 5 to 8 are repeated as necessary by using the RNA copy as necessary.
  • thermostable enzyme groups When a plurality of thermostable enzyme groups are used in the method of the present invention, these enzyme groups are not deactivated even during heat denaturation, and there is no need to sequentially add enzymes.
  • normal enzymes work at room temperature, but at high temperatures these enzymes are unstable and cannot be used.
  • the reaction temperature is preferably higher. Therefore, maintaining primer specificity at relatively low temperatures would require significant restrictions on the primer sequence, and the addition of organic solvents, e.g., dimethylformamide, would result in lower temperatures. It is necessary to increase the stringency at the airport, which is not desirable.
  • Oligonucleotides to be the first primer and the second primer can be synthesized by, for example, a phosphoramidite method using a DNA synthesizer type 391 of ABI (Applied Biosystems Inc.). Another synthesis method Examples include the phosphoric triester method, the H-phosphonate method, and the thiophosphite method. It may also be isolated from biological sources, for example, from restriction endonuclease digests. There is no particular limitation on the length and structure of a nucleic acid set to function as a primer.
  • the primer moiety is 6 to 50, preferably 10 to 30 nucleotides. It is also possible to provide a spacer between the promoter region and a portion of the promoter sequence that hybridizes with the target nucleic acid, but the spacer is generally 0 to 100, preferably 0 to 20 nucleotides. .
  • the concentration of the first primer and the concentration of the second primer are generally 10 to 50,000 nM, preferably 100 to 500 ⁇ , respectively.
  • Concentrations of ribonucleoside triphosphate and deoxyribonucleoside triphosphate are generally: rNTP is 100 to 4000 // M.
  • the concentration ratio of ribonucleoside triphosphate to deoxyribonucleoside triphosphate is generally 180 to 28, preferably 1/2 to 3/4.
  • thermostable RNA-dependent DNA polymerases Thermus thermophilus ⁇ Samus * It is known that the thermostable DNA-dependent RNA polymerase of Aquaticus (Thermus aquaticus) has its activity. It is known that by selecting the type and amount of ions, RNA-expressed DNA polymerase activity is expressed. It is not easy to simultaneously express RNA-dependent DNA polymerase and DNA-dependent DNA polymerase activities, and as a result of the inventor's intensive studies on the conditions for maximizing the expression of the two enzyme activities, It has been found that the ratio of Mg ion to Mn ion is preferably 1: 1 to 4: 1, preferably 1.5: 1 to 3: 1.
  • thermostable enzymes have been known, it has not been known to use a plurality of thermostable enzymes in combination as in the present invention. Further, simply combining a thermostable enzyme does not cause a nucleic acid amplification reaction, and it is not easy to achieve higher amplification efficiency by cycling.
  • the reaction time varies depending on various conditions such as the nucleic acid sequence to be amplified, the sequence of the primer, the Tm, and the amount of the enzyme, and the reaction time for one cycle is about 5 to 300 minutes, preferably 20 to 120 minutes. .
  • cycles the number of cycles is not shown because the operation is performed at a substantially constant temperature.
  • the nucleic acid amplified by the amplification method of the present invention can be detected as required.
  • the detection of the amplified nucleic acid can be performed by measuring an RNA copy, by measuring a double-stranded DNA having a promoter all-over-one sequence, or by measuring a DNAZRNA hybrid. These can be detected by common measurement methods.
  • Riboxylnucleoside triphosphate or deoxyribonucleic acid to be added during extension reaction or transcription reaction by nucleic acid polymerase Using Leo Sid tri phosphine one DOO as 3 2 P, the target ⁇ such Piochin nucleotides, the labeled incorporated into the amplification product, you measure the labeling of the amplification product.
  • a method of measuring a label in an amplification product using a labeled primer and a method of detecting an amplified nucleic acid using a labeled probe.
  • Specific detection methods include electrophoretic fractionation, as well as Southern blots, Northern blots, dot blots, slot blots, and sandwich hybridizations. It is also possible to determine the concentration in the test sample by performing a quantitative measurement. It is also possible to improve the quantitativeness by a method using an internal standard (JP-A-62-205800).
  • a known labeling substance such as a radioisotope, an enzyme, a fluorescent substance, or a luminescent substance can be used as the labeling substance.
  • the reagents used in the present invention can be made into respective reagent kits as described above according to a method known per se, and the form, concentration, etc. of the reagents are not particularly limited.
  • the target nucleic acid can be prepared by using any of the RNA-dependent DNA polymerase, DNA-dependent DNA polymerase, DNA-dependent RNA polymerase, and ribonuclease H required for a replication RNA-based amplification system as thermostable enzymes.
  • the amplification reaction can be carried out at a sufficiently high temperature so as not to cause non-specific hybridization between the nucleic acid type I and the primer. As a result, nonspecific amplification does not occur, and highly specific amplification becomes possible.
  • thermostable enzymes are stable not only at low temperatures but also at room temperature, and there is almost no decrease in activity during supply and storage, and instability can be eliminated.
  • RNA-dependent DNA polymerase is called reverse transcriptase
  • DNA-dependent DNA polymerase is called DM polymerase
  • RNase H ribonuclease H
  • a polymerase DNA-dependent RNA polymerase
  • oligonucleotides having the following sequences were synthesized by the phosphoramidite method using ABI DNA Synthesizer Model 391. The method was performed on a 0.2 / M scale according to the ABI company manual. Deprotection of the oligonucleotide was carried out with aqueous ammonia at 55 ° C for 15 to 18 hours. Purification was carried out on a reverse phase column with HP LC manufactured by Hitachi, Ltd.
  • Oligonucleotide with promoter region (1) is complementary to the nucleotide sequence at positions 313 to 326 of the vibrio parahaemolyticus enterolytic hemolytic toxin (VP-TDH) gene, which is a promoter region linked by a linker (SEQ ID NO: 1).
  • VP-TDH vibrio parahaemolyticus enterolytic hemolytic toxin
  • Oligonucleotide (2) Oligonucleotide (24mer) homologous to positions 179 to 202 of the VP-TDH gene (SEQ ID NO: 2).
  • Oligonucleotide (3) an oligonucleotide (24mer) complementary to positions 254 to 277 of the VP-TDH gene (SEQ ID NO: 3 in the Sequence Listing). 5 'end. Phosphate group 32 P is labeled.
  • Amplification reaction using oligonucleotide (1) having promoter region and oligonucleotide (2)-Amplification reaction of Vibrio parahaemolyticus genome was performed using oligonucleotide (1) and oligonucleotide (2) of Reference Example 1, Many RNAs were obtained. Reaction conditions Is shown below.
  • RNA synthesized in Example 1 was diluted, and the nylon membrane was
  • Nylon membrane is made of 6 SSC (1 XSSC means 0.15 M NaCl, 0.015 sodium citrate (pH 7.0)), 5 X Dane Heart solution (1 X Den Heart solution is 0.02% ficoll, 0.02% polyvinylpyrrolidone, 0.02% % Bovine serum albumin), lmM EDTA, and 10 ⁇ g of boiled salmon semen DNA (average 500 bases).
  • the oligomer (3) prepared in Example 1 was added to the above solution, and the solution was hybridized at 55 ° C for 1 hour.
  • the nylon membrane was thoroughly washed in 6 XSSC at 55 ° C and dried.
  • An X-ray film (New AIF RX manufactured by Fuji Photo Kogyo) was adhered and exposed to light at 80 ° C for 24 hours.
  • About 106 times the RNA than the sensitivity to the genomic nucleic acid in the control of the VP was quantitatively synthesized RN A film has been synthesized. As a result, it was shown that the amplification method of the present invention was effective.
  • Example 3 Diluting the synthesized RNA in Example 3, about 107 times that of RNA than the sensitivity to the genomic nucleic acid in the control of the VP was quantitatively synthesized RNA of the film had been synthesized in the same manner as in Example 2. As a result, it was shown that the amplification method of the present invention was effective.
  • Example 5 Diluting the synthesized RNA in Example 5, about 106 times that of RN A than from sensitivity to the genomic nucleic acid in the control of the VP was quantitatively synthesized RNA of the film had been synthesized in the same manner as in Example 2 . The results showed that this amplification method was effective.
  • oligonucleotides having the following sequences were synthesized by the phosphoramidite method using ABI DNA Synthesizer Model 391. The method was performed on a 0.2 M scale according to the ABI company manual. Oligonucleotide deprotection was performed with aqueous ammonia at 55 ° C for 15 to 18 hours. Purification was carried out on a reverse phase column with HP LC manufactured by Hitachi, Ltd.
  • Oligonucleotide with promoter region (1) is a region of the promoter linked by a linker, a region complementary to the nucleotide sequence from 313 to 326 of the Vibrio parahaemolyticus hemolytic toxin (VP-TDH) gene. (SEQ ID NO: 1).
  • Oligonucleotide (3) Oligonucleotide (24mer) complementary to positions 254 to 277 of the VP-TDH gene (SEQ ID NO: 3). 5 'end phosphate group of 32 P is labeled.
  • Oligonucleotide (4) This oligonucleotide is linked by a linker
  • the promoter region consists of an oligonucleotide region homologous to positions 179 to 202 of the VP-TDH gene (SEQ ID NO: 4 in the Sequence Listing).
  • RNAs Using the oligonucleotide (1) and the oligonucleotide (4) of Reference Example 2, an amplification reaction of the Vibrio parahaemolyticus genome was performed to obtain a large number of RNAs.
  • the reaction conditions are shown below.
  • RNA synthesized in Example 7 was diluted and the film was prepared in the same manner as in Example 2. It was quantified synthetic RNA from sensitivity, compared to about 10 9 times the RNA has been synthesized in the genomic nucleic acid in the control of the VP. As a result, it was shown that the width method of the present invention was effective.
  • Ribonuclease H activity exhibited by DNA-dependent DNA polymerase.
  • TDP-2 oligonucleotide
  • SEQ ID NO: 5 oligonucleotide
  • SSIKsuperscript II M-MLV reverse as reverse transcriptase.
  • a cDNA / RNA hybrid was synthesized using transcriptase that had lost the ribonuclease activity (BRL).
  • E. coli ribonuclease H and Tth DNA polymerase (manufactured by Toyobo Co., Ltd.) were added to decompose KNA to form a single-stranded cDNA, and a probe hybridized to the cDNA was hybridized.
  • Hybridization was carried out using an ALP-labeled probe manufactured by Toyobo (product number PEB004) according to the instruction manual. The detection was quantified using a colorimeter described in JP-A-2-227099. The probe did not react with the hybrid double-stranded strand only with SSII, but the probe with E. coli ribonuclease H and Tth DNA polymerase could react and be single-stranded without denaturation. Proven. This indicated that Tth DNA polymerase had ribonuclease H activity.
  • Type II RNA Vibrio parahaemolyticus TDH toxin gene mRNA
  • TDP-2 oligonucleotide
  • Probe reaction Probe (PRB004)
  • reaction solution 21 was spotted on a nylon membrane (Hybond N + manufactured by Amersham), and the measurement was performed according to the instruction manual of DNA probe manufactured by Toyobo. ]
  • Results The results are shown in Table 2.
  • the ribonuclease activity of 60 units of Tth DNA polymerase was about half that of the E. coli ribonuclease 1.5 unit.
  • ⁇ ⁇ value A value that reflects the color of the spot and the pigment concentration.
  • thermophilic bacterium Thermus samophilus Transfer 100 ml of a medium (PH7.5) containing 1.0% polypeptone, 0.5% yeast extract and 10.2% NaC to a 500 ml 1 Sakaguchi flask, After autoclaving at 121 ° C for 15 minutes, the mixture was cooled at room temperature.
  • a thermophilic bacterium, thermophilus thermophilus HB8 ATCC27634 was inoculated therein and cultured with shaking at 70 ° C for 24 hours.
  • an ultrasonic homogenizer manufactured by Marine Electronics, 19 KHz
  • the active fraction was dialyzed against buffer A. Further, this solution is subjected to column chromatography of natiVe DNA cellulose (manufactured by Pharmacia) equilibrated with buffer A to be adsorbed. After washing the column with buffer A, the column was eluted with buffer A containing 0-1. OM NaC1, and ribonuclease H activity was obtained in the fraction eluted with 0-0.5M NaC1.
  • the active fraction was dialyzed against 1 OmM Tris-HC1 (pH 7.5), 300 mM KC1, ImM DTT, 0.1 mM EDTA, and 10% glycerol. Further, this solution was dialyzed against 1 OmM Tris-HC1 (H7.5)> 30 OmM KCl, lmM DTT, 0.1 ml EDTA, and 50% glycerol to obtain an enzyme preparation.
  • thermostable ribonuclease H activity was measured by the following method. First, reagents A, B, C and D having the following composition were prepared.
  • Poly A (Pharmacia: code 27-4110-01) l O Omg was dissolved in 10 ml of sterilized water.
  • Poly dT (Pharmacia: Code 27 -7834-01) Five units were dissolved in 200 1 TE buffer.
  • Poly A (manufactured by Amersham: code TRK. 480 10 ⁇ C i) was dissolved in the previously prepared poly A solution 50/1.
  • reagent A2.51, reagent B2tz1 and sterilized water 19.51 were added to a microtube, and after stirring, enzyme 1/1 was added and reacted at 60 ° C for 20 minutes. Thereafter, the mixture was cooled on ice, and reagent D25a1 and reagent C501 were added and stirred. After further cooling on ice for 10 minutes, the acid-insoluble fraction was separated by centrifugation (12,000 rpm, 10 minutes). The acid-soluble fraction of the supernatant was collected in a quantity of 501, and the free [ 3 H] was measured using a liquid scintillation counter (manufactured by Packard). One unit of the enzyme activity was defined as the amount of the enzyme that released 1 mol of an acid-soluble substance per minute under these conditions.
  • the above enzyme preparation was electrophoresed on SDS-PAGE simultaneously with a known molecular weight marker. From a comparison with known molecular weight markers, the molecular weight was estimated to be approximately 85,000-95,000 ( Figure 3).
  • the enzyme preparation was treated at pH 8.0 with a temperature of 60 ° C to 90 ° C for 2 hours, and its residual activity was measured.
  • the residual activity after the heat treatment was 50% or more even after the reaction at 75 ° C for 2 hours (Fig. 4).
  • the above enzyme preparation was allowed to act at pH 7.5 to pH 9.5, and the optimum pH was determined.
  • the pH was adjusted by changing the pH of reagent A. As a result, the optimum pH was around pH 7.5 to 9.3 (Fig. 5).
  • This enzyme had a DNA-dependent DNA polymerase activity in addition to the ribonuclease H activity, and was about 5 times or more the activity 1 thereof.
  • the definition of DNA-dependent DNA polymerase activity was defined as the amount of enzyme that takes 10 nmol of dTNP into an acid-insoluble precipitate in 30 minutes using ssDNA / primer as a substrate under the conditions of activity measurement at 70 ° C. .
  • RNA-dependent DNA polymerase reverse transcriptase
  • RNA-dependent DNA polymerase reverse transcriptase
  • RNA-dependent DNA polymerase activity is defined as acid-insoluble in 1 min mol of dTTP in 30 minutes using poly (A) oligo (dT) as a substrate under the conditions of activity measurement at 70 ° C.
  • the amount of enzyme taken into the precipitate was defined as one unit.
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid Number of chains: single strand
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA
  • Sequence type other nucleic acid synthetic DNA
  • spreader including replication origin
  • Sequence type nucleic acid
  • Sequence type other nucleic acid synthetic DNA

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Immunology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)

Description

明 細 書 耐熱性酵素を用 L、る標的核酸配列の増幅法および検出法 産業上の利用分野
本発明は特定の核酸配列の増幅法およびその増幅法により得られた特定 核酸配列の R N Aコピーまたは D N Aコピーから目的とする核酸配列を検 出する方法およびそれらの方法に用いる試薬キッ 卜に関する。
従来の技術
D N Aまたは R N A等の遺伝子の検出による疾病の診断方法が、 細菌や ウィルス等の検出のために開発されている。 ある種の検体では、 直接検出 するのに充分な量の核酸が存在するが、 目的遺伝子が非常に少量であつた り、 存在比が非常に小さい場合、 直接目的遺伝子を検出することは困難で ある。 従来は細胞培養法や細菌培養法により目的遺伝子を増すことが行わ れてきたが、 これらの方法では長時間を要するという欠点があつた。
また、 他の標的核酸増幅法としてポリメラーゼ連鎖反応 (P C R ;特公 平 4一 6 7 9 5 7号公報) 法が知られている。 この方法では、 標的核酸の 増幅の程度はサイクル数によって調整される。 増幅率は理論的には 2 n ( n はサイクル数) で求められる。 実際に検出可能量まで標的核酸を増幅する には 2 5〜3 0サイクルが必要であった。
さらに、 別の核酸増幅法として、 複製 R N Aベースの増幅系が知られて いる (特開平 2— 5 8 6 4号、 特開平 2— 5 0 0 5 6 5号、 特開平 2— 5 0 1 5 3 2号) 。 これらの方法は、 標的核酸から二本鎖 D N Aを合成す る際に用いるプライマーに、 D N A依存R N Aポリメラーゼのプロモータ 一配列を含有させることにより、 二本鎖 D N A合成に引き続き、 合成され た二本鎖 DN Aを铸型とし、 DN A依存 RN Aポリメラーゼによって、 標 的核酸に相当する RNAが合成される。 さらに、 合成された RNAから RNA依存性 DNAポリメラーゼによって DNAZRNA鎖が合成され、 DNA鎖を分離し一本鎖の DNAを得る。 DNAの分離の方法としては加 熱変性による方法 (特開平 2— 500565号、 特開平 2— 501532 号) と、 リボヌクレアーゼ Hを用いる方法 (特開平 2— .5864号) が知 られている。 こうして得た一本鎖 DNAとプライマーによって、 DNA依 存 RNAポリメラーゼのプロモーター配列を含む二本鎖 DNA合成を行い、 RNA転写反応を行う。 この方法によれば、 DNA依存 RNAポリメラ一 ゼにより、 一分子の二本鎖核酸から数十から数千分子の R N Aを転写増幅 することができ、 P CR法に比べ 1サイクル当たりの増幅効率が高い。 ま た、 リボヌクレアーゼ Hを用いた場合、 P CR法の際必要であった温度サ ィクルが不要であり、 より簡便に増幅が可能である。
発明が解決しようする課題
複製 RN Aベースの増幅系では増幅効率が高いが、 反応系で使用する従 来の酵素、 すなわち、 RNA依存 DNAポリメラーゼ、 DNA依存 RNA ポリメラーゼ、 DN A依存 DN Aポリメラーゼは熱安定性が低いため、 増 幅反応時の温度を高くすることが出来ず、 铸型となる核酸とプライマー間 での非特異的ハイブリダィゼーションを避けることが出来ず、 特異性の低 下が問題となる。 また、.酵素の試薬としての供袷時、 保存時に不安定性は 大きな問題となり、 冷凍保存や冷蔵保存が必要となる。
さらに、 リボヌクレアーゼ Hを使用しない増幅法では二本鎖核酸の変性 に加熱変性を用いるが、 酵素が不安定であるため加熱のたびに酵素群を逐 次添加する必要がある。
本発明の目的は、 非特異的ハイブリダイゼーションによる特異性の低下、 酵素試薬の供給、 保存時の不安定を解決する方法を提供することにある。 図面の簡単な説明
図 1は標的核酸が RN Aである場合の本発明の増幅法の工程図である。 図 2は標的核酸が D N Aである場合の本発明の増幅法の工程図である。 図 3はサーマス ·サーモフィルス由来のリボヌクレアーゼ Hの SDS—
PAGEの泳動パターンを示す図である。
図 4はサ一マス♦サーモフィルス由来のリボヌクレアーゼ Hの熱安定性 を示すグラフである。
図 5はサーマス ·サーモフィルス由来のリボヌクレアーゼ Hの至適 pH を示すグラフである。
課題を解決するための手段
本発明の一つの態様は、 反応媒体中で実質的に一定の温度で標的核酸配 列のコピー数を増加させる方法であって、 下記工程を含むことを特徴とす る耐熱性酵素を用いる標的核酸配列の増幅法である。
工程 1 :標的核酸を必要により変性処理した一本鎖の第一铸型 RN Aに、 第一铸型の核酸配列(RNA)に対して十分に相補的な配列およびその 5' 末端側にプロモーター配列を有する第一プライマーをハイブリダィズさせ、 耐熱性 RNA依存 DNAポリメラ一ゼにより伸長させて、 第一铸型 RNA に相補的な第二铸型である第一プライマ一伸長物 (DNA) を得る ; 工程 2 : RNAZDNAハイプリッ ドの RN Aのみを特異的に分解する耐 熱性リボヌクレア一ゼ Hにより、 第一铸型 RN Aから第二铸型 DN Aを分 離して一本鎖の第二铸型核酸 (DNA) を得る ;
工程 3 :—本鎖の第二铸型 DNAに、 第二铸型の核酸配列 (DNA) に 相補的な核酸配列を有する第二プライマーをハイブリダィズさせ、 耐熱性 DNA依存 DNAポリメラーゼにより伸長し、 第二铸型 DNAに相補的な 第二プライマー伸長物 (DNA) を得、 このようにして標的核酸配列の上 流に機能可能なプロモーター配列を有する二本鎖 DN A中間体を生成させ る ;
(ここで第一ブライマ一または第二ブライマ一の核酸配列は標的核酸配 列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端 は相補的鎖上の第二プライマーの 3' 末端に向けられる)
工程 4 :前記プロモーター配列を認識することができる耐熱性 DN A依 存 RNAポリメラ一ゼを用いて、 前記二本鎖 D N A中間体から前記標的核 酸配列 (第一铸型 RNA) と相補的な配列をもつ一本鎖の第三铸型 RNA を生成させる ;
工程 5 :—本鎖の第三铸型 RNAに、 前記第二プライマーをハイブリダ ィズさせ、 耐熱性 RNA依存 DNAポリメラーゼにより伸長させて、 第三 铸型 RNAに相補的な第四铸型である第二プライマー伸長物 (DNA) を 得る ;
工程 6 : RNAZDNAハイプリッ ドの R N Aのみを特異的に分解する 耐熱性リボヌクレアーゼ Hにより、 第三铸型 RNAから第四铸型 DNAを 分離して一本鎖の第二铸型核酸 (DNA) を得る ;
工程 7 :—本鎖の第四铸型 DNAに、 前記第一プライマーをハイブリダ ィズさせ、 耐熱性 DNA依存 DNAポリメラーゼにより伸長し、 第四铸型 DNAに相補的な第一プライマー伸長物 (DNA) および前記第一プライ マーのプロモーター配列に相補的な第四铸型 DNA伸長物を得、 このよう にして標的核酸配列の上流に機能可能なプロモーター配列を有する二本鎖 DN A中間体を生成させる ;
(ここで第一プライマーまたは第二プライマーの核酸配列は標的核酸配 列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端 は相補的鎖上の第二プライマーの 3' 末端に向けられる)
工程 8 :前記プロモーター配列を認識することができる耐熱性 DNA依 存 RNAポリメラーゼを用いて、 前記二本鎖 DNA中間体から前記標的核 酸配列(第一铸型 RNA)と相補的な配列を有する一本鎖の第三铸型 R N A のコピーを増加させる ;
そして、
工程 9 :必要により前記 RNAコピーを用いて前記工程 5から工程 8を 必要な回数繰り返す。
また、 本発明のもう一つ態様は、 反応媒体中で標的核酸配列のコピー数 を増加させる方法であって、 下記工程を含むことを特徴とする耐熱性酵素 を用いる標的核酸配列の増幅法である。
工程 1 :標的核酸を必要により変性処理した一本鎖の第一铸型 DN Aに、 第一铸型の核酸配列に対して十分に相補的な配列およびその 5' 末端側に プロモーター配列を有する第一プライマーをハイプリダイズさせ、 耐熱性 DNA依存DNAポリメラーゼにより伸長し、 第一铸型 DN Aに相補的な 第二铸型である第一プライマー伸長物 (DNA) を得る ;
工程 2 :第一铸型 DNAから第二铸型 DNAを分離して一本鎖の第二鋅 型核酸 (DNA) を得る ;
工程 3 ;—本鎖の第二铸型 DNAに、 第二铸型の核酸配列 (DNA) に 相補的な核酸配列 (DNA) を有する第二プライマーをハイブリダィズさ せ、 耐熱性 DNA依存 DNAポリメラーゼにより伸長し、 第二铸型 DNA に相補的な第二プライマー伸長物 (DNA) を得、 このようにして標的核 酸配列の上流に機能可能なプロモーター配列を有する二本鎖 DN A中間体 を生成させる ;
(ここで第一プライマーまたは第二プライマーの核酸配列は標的核酸配 列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端 は相補的鎖上の第二プライマーの 3' 末端に向けられる)
工程 4 :前記プロモーター配列を認識することができる耐熱性 DNA依 存 RNAポリメラーゼを用いて、 前記二本鎖 DN A中間体から前記標的核 酸配列 (第一铸型 DNA)と相補的な配列を有する一本鎖の第三铸型 RN A のコピーを増加させる ;
工程 5 :—本鎖の第三铸型 RNAに、 前記第二プライマーをハイブリダ ィズさせ、 耐熱性 RNA依存 DNAポリメラーゼにより伸長させて、 第三 铸型 RNAに相補的な第四铸型である第二プライマー伸長物 (DNA) を 得る ;
工程 6 : RNA/DNAハイプリ ッ ドの RN Aのみを特異的に分解する 耐熱性リボヌクレアーゼ Hにより、 第三铸型 RNAから第四铸型 DNAを 分離して一本鎖の第四铸型核酸 (DNA) を得る ;
工程 7 :—本鎖の第四铸型 DN Aに、 第一プライマーをハイブリダィズ させ、 耐熱性 DN A依存 DNAポリメラーゼにより伸長し、 第四铸型 DNAに相補的な第一プライマー伸長物 (DNA) および前記第一プライ マーのプロモータ一配列に相補的な第四铸型 DNA伸長物を得、 このよう にして標的核酸配列の上流に機能可能なプロモーター配列を有する二本鎖 DN A中間体を生成させる ;
(ここで第一プライマーまたは第二プライマーの核酸配列は標的核酸配 列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端 は相補的鎖上の第二プライマーの 3' 末端に向けられる)
工程 8 :前記プロモーター配列を認識することができる耐熱性 DNA依 存 R N Aポリメラーゼを用いて、 前記二本鎖 D N A中間体から前記標的核 酸配列と相補的な配列を有する一本鎖の第三銪型 RN Aのコピーを増加さ せる ;
そして、
工程 9 :必要により前記 RNAコピーを用いて前記工程 5から工程 8を 必要な回数繰り返す。.
さらに本発明のもう一つ態様は、 上記増幅法による増幅産物である一 本鎖 RNA、 二重鎖 DNAまたは DNAZRNAハイプリッ ドに、 必要に より変性処理を行った後、 標識プローブをハイブリダィズさせ、 ハイプリ ダイズした標識プローブの標識またはハイブリダイズしない標識プローブ の標識を検出することを特徴とする標的核酸配列の検出法である。
本発明のさらに別の態様は、 特定の核酸配列を増幅するためのキッ 卜で ある。 かかるキッ 卜の一つの態様は、 特定の核酸配列を増幅するためのキッ 卜であって、
( a ) 第一铸型の核酸配列に対して十分に相補的な配列およびその 5 ' 末端側にプロモーター配列を有する第一プライマー、
(b) 第二铸型の核酸配列に対して相補的な核酸配列を有する第二ブラ イマ一、
(c) 耐熱性リボヌクレア一ゼ11、
(d)耐熱性 RNA依存 DN Aポリメラーゼ、
(e) 耐熱性 DN A依存 RNAポリメラーゼ、
( f )耐熱性 DN A依存 DN Aポリメラーゼ、
(g) リボヌクレオシ ドト リホスフユー トおよび
(h) デォキシリボヌクレオシドトリホスフヱートとを含み、
ただし、 第一プライマ一または第二ブライマ一の核酸配列は標的 核酸配列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ トで ある。
また、 該キッ トのもう一つ別の態様は、 特定の核酸配列を増幅するため のキッ 卜であって、
( a )第一铸型の核酸配列に対して十分に相補的な配列およびその 5 ' 末端側にプロモーター配列を有する第一プライマ一、
(b)第二铸型の核酸配列に対して相補的な核酸配列を有する第二ブラ イマ一、
(c)耐熱性リボヌクレアーゼ11、
(d)耐熱性 DN A依存 RN Aポリメラーゼ、
(e) RNA依存 DNAポリメラーゼ活性を有する耐熱性 D N A依存 DNAポリメラーゼ、
( f ) リボヌクレオシドトリホスフユートおよび
(g) デォキシリボヌクレオシドトリホスフ —トとを含み、
ただし、 第一プライマー又は第二プライマーの核酸配列は標的核 酸配列に対して十分に相補的または相同的であり、 第一ブライマ一の 3 ' 末端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ トである。 さらに、 キッ トのもう一つ別の態様は、 特定の核酸配列を増幅するため のキッ 卜であって、
( a ) 第一铸型の核酸配列に対して十分に相補的な配列およびその 5 ' 末端側にプロモーター配列を有する第一プライマー、
(b) 第二铸型の核酸配列に対して相補的な核酸配列を有する第二ブラ イマ一、
(c) 耐熱性 DN A依存 RN Aポリメラーゼ、
(d) RNA依存 DNAポリメラーゼ活性およびリボヌクレアーゼ H活 性を有する耐熱性 DNA依存 DNAポリメラーゼ、 (e) リボヌクレオシドトリホスフェートおよび
( f ) デォキシリボヌクレオシドトリホスフェートとを含み、
ただし、 第一ブラィマーまたは第二ブラィマーの核酸配列は標的 核酸配列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ トで あ 。
該キッ 卜のさらに別の態様は、 特定の核酸配列を増幅するためのキッ ト であって、
( a ) 第一铸型の核酸配列に対して十分に相補的な配列およびその 5 ' 末端側にプロモーター配列を有する第一プライマー、
(b) 第二铸型の核酸配列に対して相補的な核酸配列およびその 5' 末 端側にプロモーター配列を有する第二プライマー、
(c) 耐熱性リボヌクレア一ゼ11、
(d)耐熱性 RN A依存 DN Aポリメラーゼ、
(e)耐熱性 DN A依存 RN Aポリメラーゼ、
( f ) 耐熱性 DN A依存 DN Aポリメラーゼ、
(g) リボヌクレオシドトリホスフヱー卜および
( h ) デォキシリボヌクレオシドトリホスフェートとを含み、
ただし、 第一プライマーまたは第二プライマ一の核酸配列は標的 核酸配列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ トで あ 。
さらにまた、 該キッ 卜の別の態様は、 特定の核酸配列を増幅するための ャッ 卜 (J 'めつ 、
(a) 第一铸型の核酸配列に対して十分に相捕的な配列およびその 5' 末端側にプロモーター配列を有する第一プライマー、
(b) 第二铸型の核酸配列に対して相補的な核酸配列およびその 5' 末 端側にプロモーター配列を有する第二プライマー、
(c)耐熱性リボヌクレアーゼ1^
(d)耐熱性 DNA依存 RNAポリメラーゼ、
(e) RNA依存 DNAポリメラーゼ H活性を有する耐熱性 D N A依存 DNAポリメラーゼ、
( f ) リボヌクレオシドトリホスフェートおよび
(g) デォキシリボヌクレオシドトリホスフエ一卜とを含み、
ただし、 第一プライマーまたは第二プライマーの配列は標的核酸 配列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末 端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ トである。 本発明のキッ トのもう一つ別の態様は、 特定の核酸配列を増幅するため のキッ 卜であって、
( a )第一铸型の核酸配列に対して十分に相補的な配列およびその 5 ' 末端側にプロモーター配列を有する第一プライマー、
(b) 第二铸型の核酸配列に対して相補的な核酸配列およびその 5' 末 端側にプロモーター配列を有する第二プライマー
(c)耐熱性 DNA依存 RNAポリメラーゼ、
(d) RNA依存性 DNAポリメラーゼ活性およびリヌクレア一ゼ H活 性を有する耐熱性 DNA依存 DNAポリメラーゼ、
(e) リボヌクレオシドトリホスフェートおよび
( f ) デォキシリボヌクレオシドトリホスフェートとを含み、
ただ,し、 第一プライマーまたは第二プライマーの配列は標的核酸 配列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末 端は相補的鎖上の第二プライマーの 3 ' 末端に向けられるキッ トである。 本発明の標的核酸は D N Aであっても R N Aであってもよい。 二本鎖の 場合や一本鎖であつても高次構造をとっているような場合は、 予め加熱、 酸、 アルカリ等の変性処理により一本鎖として増幅反応に供する。 また、 標的核酸が D N Aである場合、 従来公知の方法により、 R N Aに変換して から本発明の増幅法を実施してもよい。
本発明において使用する第一プライマーは、 標的核酸配列である第一铸 型の核酸配列に対して十分に相補的な核酸配列およびその 5 ' 末端側にプ 口モーター配列を有する。 第一プライマーの 3 ' 末端は相補的鎖上の第二 プライマーの 3 ' 末端に向けられる。
また、 本発明における第二プライマーは第二铸型の核酸配列に対して相 補的な核酸配列を有し、 標的核酸配列に対して十分に相同である。
第二プライマ一は第二铸型の核酸配列に対して相補的な核酸配列に加え て必要によりその 5 ' 末端側にプロモーター配列を有していてもよい。 第 二プライマーにプロモーター配列を有している場合、 この第一プライマ一、 第二プライマーのプロモーターはそれぞれ異なっていても同一であっても よい。 異なる場合はそれぞれのプロモーターに作用する耐熱性 D N A依存 R N Aポリメラーゼを必要により複数種用いる。
プロモーターの種類によっては一種の耐熱性 D N A依存 R N Aポリメラ ーゼにより 2種のプロモーターともに機能するように選択することも可能 である。 第一プライマー、 第二プライマー共にプロモーター機能を持たせ ることで増幅効率をより高めることが可能である。
プロモーター配列の設定は増幅しょうとする標的核酸により多様性があ り、 特異性が高い状態で増幅を行う場合、 プライマーの T mを 5 0〜7 0 °Cに設定するのが好ましい。 これ以下の温度で増幅を行う場合、 プライマ 一の配列を充分吟味して特異性を維持する必要があり、 増幅しょうとする 核酸配列が自由に選択できなくなってしまう。
本発明に用いるプロモーター配列は特に制限はないが、 耐熱性 D N A依 存 R N Aポリメラーゼが作用するように機能する配列である必要がある。 このようなプロモーター配列としては、 例えば、 サ一マス サ一モフィル ス(Thermus thermophilus) の D N A依存 R N Aポリメラーゼならば、
5' -CTTGACAAAAAGGAGGGGGATTGATTGATAGCAT-3'
5' -TTCGCGCCCATCGTACACCGAGGCGGTATCCTC-3'
5' -CTTGACGGAGGCGGACGGCGCTGGTACACT-3'
5' -CTGGACAGGGCCCCCGTGTCCCGCTATCCT-3'
δ' -CTAGCCTCAGGGCTTCCATGGGTGCTATACT-3'
5' -CTTGACCCCGCAGGCCTCGAGGGCTTACCT-3*
が知られている。
一般的にプロモータ一配列にはその後に続く複製開始点までのスぺーサ 一配列が存在している。 例えば
CTTGACAAAAAGGAGGGGGATTGATAGCAT
ならばその後に続く
GGCTTT
が知られている。 これらの複製開始点までのスぺーサー配列、 さらには、 複製を開始する部分の配列を合わせてプロモーターと考えることもでき、 事実、 この配列を含む場合の方が転写複製の効率が高いことも知られてい る。 したがって、 この配列部分を含む形でプロモーター付きプライマーを 設計することで転写増幅の効率を上げることができる。 本発明ではこの複 製開始点までのスぺーサー配列を含んだ配列をプライマーの 5'末端側に結 合したブライマ一でも増幅が可能である。 プロモーター配列としては、 その他に以下のものがある, 5' -CTTGACGCCGCCCAGGGCGGGCCTCTACCCT-3'
5* -TTTGAGGGCCTGGGGCAGTACCTCTTCT-3'
5' -TTTGTAAAGTGCTTTATTTCACAAAACT-3'
5' -TTTCACAAAACTGTCCCTCCCCCCGGGTTAGACT-3'
5' -TTGACACTCTCGGGCGGGTGTGCTAGCCT-3'
5' -CTTGAGGATCTCGGGGAGGCGGGCTTCCAT-3'
5' -TTGGGGTGGAGGAGCTTCTGCCGTAGAAT-3'
5' -CTTGACAAAAAGGAGGGGGATTGATAGCAT-3'
5' -CGTGAGGGCCACGGCGAGCGCGCCTAGGGGT-3'
5' -CTAGTCCAAGGGAAAGTATAGCCCAAGGTACACT-3*
5' -CTTGACGTGAAACTTGAAGACCACCATCTCAA-3'
5' -TTCGCGCCCATCGTACACCGAGGCGGTATCCTC-3'
5' -CTTGACGGAGGCGGACGGCGCTGGTACACT-3'
5" -CTGGACAGGGCCCCCGTGTCCCGCTATCCT-3'
δ' -CTAGCCTCAGGGCTTCCATGGGTGCTATACT-3'
5' -CTTGACAAAaaggagggggattgatagcat-3'
5' -CTTGACCCCGCAGGCCTCGAGGGCTTACCT-3' ' 5' -CTTGACACCGCAGGCCTAGAGGGCTTACCT-3'
5' -CTTGACACCGCAGGCCTCGAGGGCTATCCT-3'
5' -CTTGACACCGCGGGCCTCGAGGGCTATAAT-3'
5' -CTGGACACCGCAGGCCTCGAGGGCTATCCT-3'
5' -CTTGACACCCCAGGCCTCGAGGGGTATCCT-3'
5' -GTTTACAAAATCCCCGCCCCCGTCCTAGCCT-3'
5' -CTTGCCAATCCGCCCCTTAGAGTGTACCATAGCGA-3' 5' -GTTGACCATCTTCCTCCTTGGCCTTATCCT-3'
5 ' -GTTGACGGGACGGGGAGGAGGGCCTATCCT-3'
5' -CTTGTCAAGTAAGCTTAGCTATGGTAACAT-3*
5 ' -CTTGACGGGGAGGAGGCAACGGGGTAAAAC-3'
一般に、 ファージのプロモーターは特異性が高いが、 その他の生物のプ 口モーターは必ずしも特異性が高いとは言えない場合がある。 ここで言う 特異性の高さとは、 プロモーターに依存する DNA依存 RNAポリメラー ゼが作用できるプロモーター配列が、 その DNA依存 RNAポリメラーゼ には一種または複数あっても非常に少ないこと、 また、 プロモータ一とし ての活性が非常に低いことを言う。 したがって、 検出しょうとする試料核 酸中に各種プロモーターが存在していても実質上問題なく特異的にプロモ 一ターに依存する DNA依存性 RNAポリメラーゼが作用できることを示 す。
—方、 細菌その他の生物では DN A依存 RN Aポリメラーゼが作用する プロモーター配列は必ずしも一種類ではなく、 複数種のプロモータ一配列 が存在することが知られている。 細菌や真菌類では共通性の高いものも存 在する。 したがって、 検出しょうとする試料核酸中にも用いる DNA依存 RNAポリメラーゼが作用するプロモーター配列が存在する可能性も考え られる。
本発明ではこのような点も考慮して検討を進めた結果、 耐熱性 D N A依 存 RN Aポリメラ一ゼの作用可能な 50〜70°Cで反応することにより、 非特異的なプロモーター機能が発現されないため特異性の高い増幅および 検出が可能である。 なお、 本発明における標的核酸配列の上流に機能可能 なプロモーター配列を有する二本鎖 DN A中間体とは、 工程 3または工程 7における二本鎖 DN A中間体(図 1または図 2)を意味し、 耐熱性 DNA 依存 RNAポリメラーゼの作用により、 DNAを铸型として RNAの合成 を開始する機能を有するものである。 該プロモーターが機能して生成する RNAは、 標的 RN Aと相補的な配列を有する。
本発明にいう耐熱性酵素とは、 ハイプリダイゼーションを特異的に行う ために 50〜 70°Cで酵素反応が実施可能であり、 核酸の加熱変性を行う 90〜95°C、 10秒〜 10分程度でも失活の少ない酵素をいう。 また、 このような酵素は一般的に冷蔵保存、 室温保存でも十分安定であり、 冷凍 保存の必要がない場合が多く、 供給時、 保存時の安定性もよい。
耐熱性 RNA依存 DNAポリメラーゼ (耐熱性逆転写酵素とも呼ぶ) と しては、 サーマス 'サーモフィルス(Thermus thermophilus)、 サーマス ' アクアティカス(Thermus aquaticus) 由来の D N A依存 D N Aポリメラー ゼに該活性があることが知られている。
耐熱性 DNA依存 RNAポリメラーゼ (耐熱性 RN Aポリメラーゼとも 呼ぶ) としては、 サ一マス ·サーモフィルス(Thermus thermophilus)由来 の酵素などが挙げられる。 該耐 性 DNA依存 RNAポリメラ一ゼはプロ モータ一配列を認識することができる。
耐熱性 DNA依存 DNAポリメラーゼ (耐熱性 DNAポリメラーゼとも 呼ぶ) としては、 サーマス 'サーモフィルス(Thermus thermophilus)、 サ 一マス .アクアティカス(Thermus aquaticus)^ ピロコッカス · フリオサ ス (Pyrococcus furiosus) ヽ サーモコッカス · リ 卜ラリス、 thermococcus litorakis)、 サーマス ·フラビス(Thermus flavus)由来のものなどが挙げ られる。
耐熱性リボヌクレアーゼ Hとしては、 サーマス ·サーモフィルス (Thermus thermophilus) 由来の酵素などがあげられるが、 その他の酵素 でも本発明の耐熱性に合致するならば使用可能である。 一般に、 RNA依存 DNAポリメラーゼには DNA依存 DNAポリメラ ーゼ活性が存在すること、 また、 サーマス .サーモフィルス由来、 サーマ ス ·アクアティカス由来の DN A依存 DN Aポリメラーゼには RN A依存 D N Aポリメラーゼ活性が存在することが知られており、 両活性をもつ一 種の DNAポリメラーゼを共通に用いることも可能である。
また、 我々は、 サーマス 'サーモフィルス由来の耐熱性 DNA依存 DN Aポリメラーゼが耐熱性リボヌクレアーゼ Hの活性を有することを見い出 した (特願平 6- 258190号) 。 したがって、 サーマス ·サーモフィルス由来 の耐熱性 DNA依存 DNAポリメラーゼを使用することにより、 耐熱性 R NA依存 DNAポリメラーゼと耐熱性リボヌクレアーゼ Hに代えて、 1種 の物質 (酵素) でもって 3種の酵素活性を利用することが可能となる。 本発明に使用する耐熱性酵素としては、 耐熱性 RNA依存 DNAボリメ ラーゼ、 耐熱性リボヌクレアーゼ Hおよび耐熱性 DNA依存 DNAポリメ ラーゼが一つの酵素であることが好ましい。
このような酵素としては、 下記理化学的性質を有するサ一マス ·サーモ フィルス由来の酵素であることが好ましい。
(1) 次の反応を触媒する。
① RNAを铸型として、 DNAを合成する。
② RNAZDNA二本鎖の RNAのみに特異的にかつェンド的に作 用して DNA—本鎖を生じさせる。
③ DNAを铸型として、 DNAを合成する。
( 2 ) 分子量: 85, 000〜 95, 000
(3) 熱安定性: 75°C、 2時間処理後、 50%以上の活性を保持する。
(4) 至適 pH :約 7. 5〜9. 3
上記酵素の製造については、 特願平 6- 258190号に記載されている。 すなわち、 上記酵素は好熱性細菌であるサーマス ·サーモフィラス HB 8 (ATCC 27634) を培養し、 該培養物から、 上記理化学的性質を 有する耐熱性リボヌクレアーゼ Hを採取して得られる。
本発明の方法における工程 1では必要により変性処理した単鎖の第一铸 型核酸に、 第一プライマーをハイブリダィズさせ、 デォキシリボヌクレオ シドトリホスフヱー卜の存在下に、 耐熱性 RNA依存 DNAポリメラーゼ および/または耐熱性 DNA依存 DN Aポリメラーゼにより伸長させて、 第一铸型核酸に相補的な第二铸型である第一ブラィマー伸長物を得る。 第一プライマ一伸長物は、 第一铸型が RN Aの場合には、 耐熱性 RNA 依存 DN Aポリメラーゼ、 第一铸型が DN Aの場合には、 耐熱性 DNA依 存 DNAポリメラーゼ、 標的核酸配列が DN Aおよび RN Aを含む場合は、 耐熱性 DNA依存 DNAポリメラーゼおよび耐熱性 RN A依存 DN Aポリ メラーゼにより伸長させて、 DNA伸長生成物を得る (図 1、 図 2、 工程
1)
第一铸型が RN Aの場合、 各工程 2〜9は以下のように実施する(図 1)。 工程 2では、 RNAZDNAハイブリッ ドの RN Aのみを特異的に分解 する耐熱性リボヌクレアーゼ Hにより、 第一铸型 RNAから第二铸型 DN Aを分離して一本鎖の第二铸型核酸 (DNA) を得る。
工程 3では、 一本鎖の第二铸型 DNAに、 第二铸型の核酸配列 (DNA) に相補的な核酸配列を有する第二ブライマーをハイブリダイズさせ、 耐熱 性 DNA依存 DNAポリメラーゼにより伸長し、 第二铸型 DN Aに相補的 な第二プライマ一伸長物 (DNA) を得、 このようにして標的核酸配列の 上流に機能可能なプロモーター配列に結合した標的核酸配列を有する二本 鎖 DNA中間体を生成させる。 ここで第一プライマーまたは第二プライマ 一の核酸配列は標的核酸配列に対して十分に相補的又は相同的であり、 第 一プライマーの 3' 末端は相補的鎖上の第二プライマーの 3' 末端に向け れる o
工程 4では、 前記プロモータ一配列を認識することができる耐熱性 DNA依存 RNAポリメラーゼを用いて、 前記二本鎖 DN A中間体から前 記標的核酸配列 (第一铸型 RNA) と相補的な配列をもつ一本鎖の第三铸 型 RNAを生成させる。
工程 5では、 一本鎖の第三铸型 RNAに、 前記第二プライマーをハイブ リダイズさせ、 耐熱性 RNA依存 DNAポリメラーゼにより伸長させて、 第三铸型 RN Aに相補的な第四铸型である第二プライマー伸長物 (DNA) を得る。
工程 6では、 RNA/DNAハイプリッ ドの RN Aのみを特異的に分解す る耐熱性リボヌクレアーゼ Hにより、 第三铸型 RNAから第四铸型 DNA を分離して一本鎖の第二铸型核酸 (DNA) を得る。
工程 7では一本鎖の第四铸型 D N Aに、 前記第一プライマーをハイブリ ダイズさせ、 耐熱性 DN A依存 DN Aポリメラ一ゼにより伸長し、 第四铸 型 DNAに相補的な第一プライマー伸長物 (DNA) および前記第一ブラ イマ一のプロモーター配列に相補的な第四铸型 DN A伸長物を得、 このよ うにして上流に機能可能なプロモーター配列に結合した標的核酸配列を有 する二本鎖 DN A中間体を生成ささせる。 ここで第一プライマーまたは第 二プライマーの核酸配列は標的核酸配列に対して十分に相補的または相同 的であり、 第一プライマーの 3' 末端は相捕的な鎖上の第二プライマーの 3' 末端に向けられる。
工程 8では前記プロモータ一配列を認識することができる耐熱性 D N A 依存 RNAポリメラーゼを用いて、 前記二本鎖 DNA中間体から前記標的 核酸配列 (第一铸型 RNA) と相補的な配列を有する一本鎖の第三铸型 RNAのコピーを増加させる。
そして、 工程 9では必要により前記 R N Aコピーを用 t、て前記工程 5か ら工程 8を必要な回数繰り返す。
第一铸型が D N Aの場合、 各工程 2〜 9は以下のように実施する(図 2 )。 工程 2では、 第一铸型 D N Aから第二铸型 D N Aを分離して一本鎖の第 ニ铸型核酸 (DNA) を得る。
工程 3では、 一本鎖の第二铸型 DNAに、 第二鋅型の核酸配列 (DNA) に相補的な核酸配列(D N A)を有する第二ブライマ一をハイブリダイズさ せ、 耐熱性 DNA依存 DNAポリメラ一ゼにより伸長し、 第二铸型 DNA に相補的な第二プライマー伸長物 (DNA) を得、 このようにして標的核 酸配列の上流にプロモーター配列を有する二本鎖 DN A中間体を生成させ る。 ここで第一ブライマ一または第二ブラィマ一の核酸配列は標的核酸配 列に対して十分に相補的または相同的であり、 第一プライマ一の 3' 末端 は相補的鎖上の第二プライマーの 3' 末端に向けられる。
工程 4では、 前記プロモーター配列を認識することができる耐熱性 DN A依存 RNAポリメラーゼを用いて、 前記二本鎖 DNA中間体から前記標 的核酸配列 (第一铸型) と相補的な配列をもつ一本鎖の第三铸型 RNAの コピーを増加させる。
工程 5では、 一本鎖の第三铸型 RN Aに、 前記第二プライマーをハイブ リダイズさせ、 耐熱性 RNA依存 DNAポリメラーゼにより伸長させて、 第三铸型 RN Aに相補的な第四铸型である第二プライマー伸長物 (DNA) を得る。
工程 6では、 RNAZDNAハイプリ ッ ドの R N Aのみを特異的に分解 する耐熱性リボヌクレアーゼ Hにより、 第三铸型 RNAから第四铸型 DN Aを分離して一本鎖の第二铸型核酸 (DNA) を得る。 工程 7では、 一本鎖の第四铸型 D N Aに、 第一プライマーをハイブリダ ィズさせ、 耐熱性 D N A依存 D N Aポリメラーゼにより伸長し、 第四铸型 D N Aに相補的な第四铸型 D N A伸長物を得、 このようにして上流に機能 可能なプロモーター配列に結合した標的核酸配列を有する二本鎖 D N A中 間体を生成させる。 ここで第一プライマーまたは第二プライマーの核酸配 列は標的核酸配列に対して十分に相補的または相同的であり、 第一ブラィ マーの 3 ' 末端は相捕的な鎖上の第二プライマーの 3 ' 末端に向けられる。 工程 8では、 前記プロモータ一配列を認識することができる耐熱性 D N A依存 R N Aポリメラーゼを用いて、 前記二本鎖 D N A中間体から前記標 的核酸配列 (第一铸型) と相補的な配列を有する一本鎖の第三铸型 R N A のコピーを増加させる。
そして、 工程 9では必要により前記 R N Aコピーを用いて前記工程 5か ら工程 8を必要な回数繰り返す。
本発明法で複数の耐熱酵素群を用いた場合、 加熱変性時にもこれらの酵 素群の失活かなく、 酵素の逐次添加の必要がない。 従来の核酸増幅法では 常温では通常の酵素が作用するが、 高温ではこれらの酵素が不安定なため 使用することが出来ない。 一方、 プライマーの特異性を維持しょうとする と反応温度は高いほうが好ましい。 したがって、 比較的低い温度でプライ マーの特異性を維持しょうとした場合、 ブライマ一配列に大きな制限を加 える必要があり、 また、 有機溶媒、 例えば、 ジメチルホルムアミ ドなどを 添加して低い温度でのストリンジヱンシーを高めることが必要となり好ま しくない。
第一プライマーおよび第二プライマーとなるオリゴヌクレオチドは、 例 えば、 A B I社 (Applied Biosystems Inc. ) の D N Aシンセサイザー 3 9 1型を用いてホスホアミダイ 卜法により合成出来る。 他の合成法とし て、 リン酸トリエステル法、 H—ホスホネート法、 チォホスファイ ト法等 がある。 また、 生物学的起源、 例えば、 制限エンドヌクレアーゼ消化物か ら単離してもかまわない。 プライマーとして機能するように設定された核 酸ならば長さ、 構造に特に制限はない。
—般に、 プライマー部分として 6〜 50、 好ましくは 10〜 30ヌクレ ォチドである。 また、 プロモーター領域と標的核酸とハイブリダィズする プロモータ一配列部分との間にスぺーサ一を設けることも可能であるが、 このスぺーサ一は一般に 0〜100、 好ましくは 0〜20ヌクレオチドが よい。
第一プライマーおよび第二プライマーの濃度としては、 それぞれ一般に 10〜50000nM好ましくは 100〜500πΜ である。 リボヌクレオシドトリホス フエ一トおよびデォキシリボヌクレオシドトリホスフヱ一卜の濃度として は、 —般に dNTP 10〜: 10000ί/Μ、 rNTP 10〜: 10000/ίΜ、 好ましくは dNTP 100- 2000/iM, rNTP100〜4000//M である。 また、 リボヌクレオシドトリホスフエ —卜およびデォキシリボヌクレオシドトリホスフェートの濃度比率として は、 一般に 1八 0〜2八 好ましくは 1/2〜3/4 である。
耐熱性 RNA依存 DNAポリメラーゼとしてはサーマス ·サーモフィル ス (Thermus thermophilus) ヽ サ一マス *アクアティカス (Thermus aquaticus) の耐熱性 D N A依存 R N Aポリメラーゼにその活性があるこ とが知られており、 2価金属イオンの種類、 量を選択することで RNA支 配 DN Aポリメラーゼ活性を発現することが知られている。 し力、し、. RN A依存 DNAポリメラーゼと DNA依存 DNAポリメラーゼ活性を同時に 発現させるのは容易ではなく、 本発明者らは二つの酵素活性を最大限に発 現させる条件を鋭意検討した結果、 Mgイオンと Mnイオンとの比率を 1:1 ~ 4:1 、 好ましくは、 1.5:1〜3:1 の条件が好ましいことを見出した。 さら に D N A依存 R N Aポリメラーゼに対しても 2価金属イオンの種類、 量は 重要であり、 これら三者の活性を最大限に発現させるには、 Mgイオンと Mn イオンとの比率を 1:1〜4:1、 好ましくは、 1.5:1〜3:1かつ、 dNTP:rNTP= 1:10〜10:1、 好ましくは 1:2〜3.5 の条件が好ましい。
耐熱性酵素は従来から知られていたが、 本願発明のように耐熱性酵素を 複数組み合わせて使用することは公知でなかった。 また単に耐熱酵素を組 み合わせても核酸増幅反応は起こらないし、 サイクル化することでより高 い増幅効率を得ることは容易に到達できるものではない。
本発明では反応時間は増幅する核酸配列、 プライマーの配列や Tm、 酵 素量など諸条件により多様であり、 1サイクルの反応時間は約 5〜300 分、 好ましくは 20〜120分が適当である。 所謂サイクルという概念は あるが、 実質的に一定の温度で実施するためサイクル数何回という数字は 示されない。 これらの条件は増幅効率や増幅量、 反応所要時間も考慮して 設定される。 標的核酸が単鎖であっても高次構造をとっている場合も多く、 反応開始時に反応液を 90〜95 °Cに上昇させることも可能である。 この 場合も実質的に酵素の劣化がないので、 反応液を準備した後、 加熱処理す ることが可能であって、 簡便性、 汚染防止の観点からも優れた方法である。 反応中は反応液を 50〜70°Cの一定温度に保持するのみで増幅が可能で あって、 特殊な機器を必要とせず容易に実施可能である。
本発明の増幅法により増幅した核酸を必要により検出することが可能で ある。 この増幅した核酸の検出は RNAコピーを測定することも、 プロモ 一夕一配列を有する二重鎖 DN Aを測定することも、 また、 DNAZRN Aハイプリッ ドを測定することも可能である。 これらの検出は一般的な測 定法で検出可能である。 核酸ポリメラ一ゼによる伸長反応、 転写反応の際、 添加するリボキシヌクレオシト トリホスフ ートまたはデォキシリボヌク レオシドトリホスフヱ一トとして3 2 P、 ピオチン化ヌクレオチドなどの標 識物を用い、 増幅産物中に標識を取り込ませ、 増幅産物中の標識を測定す る。 また、 標識プライマーを用いて増幅産物中の標識を測定する方法、 標 識プローブを用いて増幅された核酸を検出するなどの方法がある。 具体的 な検出法として電気泳動による分画、 さらにサザンブロッ ト、 ノーザンブ ロッ ト、 またドッ トブロッ ト、 スロッ トブロッ ト、 サンドイッチハイブリ ダイゼーシヨンなどがある。 定量的な測定をすることで検査試料中の濃度 を求めることも可能である。 また内部標準を用いる方法 (特開 62-205800 号公報) によって定量性を向上させるごとも可能である。
標識プライマー、 標識プローブを用いる検出方法では、 標識物として放 射性同位元素、 酵素、 蛍光物質、 発光物質など公知の標識物質を用いるこ とができる。 また、 本発明に用いる試薬を、 自体公知の方法に従って、 前 記したような、 それぞれの試薬キッ 卜にすることができ、 試薬自体の形態、 濃度等は特に限定するものではない。
かくして、 本発明によれば、 複製 R N Aベースの増幅系に必要な R N A 依存 D N Aポリメラーゼ、 D N A依存 D NAポリメラ一ゼ、 D N A依存 R N Aポリメラーゼ、 リボヌクレアーゼ Hをいずれも、 耐熱性酵素とする ことで標的核酸の増幅反応を核酸铸型とプライマー間の非特異ハイプリダ ィゼ一ションを生じさせないよう充分な高温で実施することが出来る。 その結果、 非特異的増幅が生じず、 特異性の高い増幅が可能となる。 ま た、 耐熱性酵素は低温では勿論のこと常温でも安定であり、 供給時にも保 存時にも活性の低下が殆どなく、 不安定性の解消が可能である。 さらに、 リボヌクレアーゼ Hを用いず加熱により変性を行う場合でも耐熱性酵素を 用いることで酵素群の失活を防止し酵素を逐次添加することなく增幅が可 能となる。 以下に、 参考例、 実施例および比較例を例示して本発明をさらに詳しく 説明する。 なお、 実施例中、 RN A依存 DN Aポリメラーゼを逆転写酵素、 DNA依存 DN Aポリメラーゼを DM polymerase, リボヌクレアーゼ Hを RNase H、 D N A依存 R N Aポリメラーゼを A polymeraseと呼ぶ。
参考例 1
各種ォリゴヌクレオチドの合成
ABI社 DNA シンセサイザ一 391 型を用いて、 ホスホアミダイ ト法にて下 記配列のオリゴヌクレオチドを各種合成した。 手法は AB I社マニュアル に従って 0. 2 / Mスケールで実施した。 オリゴヌクレオチドの脱保護は アンモニア水で 55 °C15〜18時間実施した。 精製は日立製作所製 HP L Cで逆相カラムにて実施した。
プロモータ一領域を有するオリゴヌクレオチド(1):本オリゴヌクレオチ ドはリンカーで連結されたプロモーター領域、 腸炎ビブリオ耐熱性溶血毒 素 (VP- TDH) 遺伝子の 313 番目から 326 番目のヌクレオチド配列に相補的 な領域から成っている (配列表配列番号 1) 。
オリゴヌクレオチド(2):VP-TDH遺伝子の 179 番目から 202 番目に相同的 なオリゴヌクレオチド (24mer) (配列表配列番号 2) 。
オリゴヌクレオチド(3):VP- TDH遺伝子の 254 番目から 277 番目に相補的 なオリゴヌクレオチド (24mer) (配列表配列番号 3) 。 5' 末端の.リン 酸基は32 Pが標識されている。
実施例 1
プロモーター領域を有するオリゴヌクレオチド(1) とオリゴヌクレオチ ド(2) を用いた増幅反応 - 参考例 1のオリゴヌクレオチド(1) とオリゴヌクレオチド(2) を用い、 腸炎ビブリオゲノムの増幅反応を実施し、 多数の RNAを得た。 反応条件 を以下に示す。
反応液 50 1
lOmM Tris-HCl pH8.3
50mM KC1
6mM MgCl2
3mM MnCl2
0.6mM dNTP
lmM rNTP
20pmol オリゴヌクレオチド(1)
20pmol オリゴヌクレオチド(2)
Tth-DNApolymerase (東洋紡績製) 60 単位
Tth-RNApolymerase (EPICENTRE製) 2.5単位
Tth-ENase H (東洋紡績製) 2 単位
反応: 93°C、 3分
65°C、 60分 '
実施例 2
合成した RN Aの測定
実施例 1で合成した RN Aを希釈し、 50〃1 づっナイロン膜、
GeneScreen plus(DuPont社製) にドッ トブロッ トした。 また対照として VPのゲノム核酸を変性させて、 50/ 1 ドッ トプロッ トした。 ナイロン膜を 6 S S C (1 X S S Cとは 0.15M NaCl, 0.015 クェン酸ナトリウム(pH 7.0) を意味する) 、 5 Xデーンハート液 (1 Xデンハート液とは 0.02% フィコール、 0.02% ポリビニルピロリ ドン、 0.02%牛血清アルブミンを意 味する) 、 lmM EDTA、 10〃g の煮沸したサケ*** DNA (平均 500塩基) を含む液 100 fil 中で 60°C、 1時間プレハイブリダィズした後、 上記液に実施例 1で調製したオリゴマー(3) を加え、 55°C1時間ハイプリ ダイズした。 55°Cの 6 XSSC 中でナイロン膜を充分洗浄した後、 乾燥させ た。 X線フィルム (New AIF RX富士写真工業製) を密着させ、 一 80°Cで一 昼夜感光させた。 フィルムの感光度から合成 RN Aを定量したところ対照 の VPのゲノム核酸に比べて約 106 倍の RNAが合成されていた。 この結果、 本発明の増幅法が有効であることが示された。
実施例 3
RN A铸型からの例
プロモーター領域を有するオリゴヌクレオチド(1) とオリゴヌクレオチ ド(2) を用いた増幅反応
参考例 1のオリゴヌクレオチド(1) とオリゴヌクレオチド(2) を用い、 腸炎ビブリオ mRNAの増幅反応を実施し、 多数の RNAを得た。 反応条 件を以下に示す。
反応液 50 fil
10mM Tris-HCl pH8.3 '
50mM KC1
6mM MgCl2
3mM nCl2
0.6m dNTP
ImM rNTP
20pmol オリゴヌクレオチド(1)
20pmol オリゴヌクレオチド(2)
Tth-DNApolymerase (東洋紡績製) 60 単位
Tth-RNApolymerase (EPICENTRE 製) 2.5単位
Tth-RNase H (東洋紡績製) 2 単位 反応: 6 5 °C、 6 0分
実施例 4
合成した R N Aの測定
実施例 3で合成した R N Aを希釈し、 実施例 2と同様にしてフィルムの 感光度から合成 R N Aを定量したところ対照の VPのゲノム核酸に比べて約 107 倍の R N Aが合成されていた。 この結果、 本発明の増幅法が有効であ ることが示された。
実施例 5
酵素 2種を使用
プロモーター領域を有するオリゴヌクレオチド(1) とオリゴヌクレオチ ド(2) を用いた増幅反応
参考例 1のォリゴヌクレオチド(1) とオリゴヌクレオチド(2) を用い、 腸炎ビブリオゲノムの増幅反応を実施し、 多数の R N Aを得た。 反応条件 を以下に示す。
反応液 50 1
lOmM Tris-HCl ρΗδ. 3
50mM KC1
6m MgCl2
3mM nCl2
0. 6m dNTP
Im rNTP
20pmol オリゴヌクレオチド(1)
20pmol オリゴヌクレオチド(2)
Tth-DNApolymerase (参考例 4 ) 60 単位
Tth-RNApolymerase (EPICENTRE 製) 2. 5単位 反応: 95°C、 3分の後、
60°C、 20分
70°C、 20分
を 4回繰り返す。
実施例 6
合成した RN Aの測定
実施例 5で合成した RNAを希釈し、 実施例 2と同様にしてフィルムの 感光度から合成 R N Aを定量したところ対照の VPのゲノム核酸に比べて約 106 倍の RN Aが合成されていた。 この結果、 本増幅法が有効であること が示された。
参考例 2
.各種ォリゴヌクレオチドの合成
ABI社 DNA シンセサイザー 391型を用いて、 ホスホアミダイ ト法にて下 記配列のオリゴヌクレオチドを各種合成した。 手法は AB I社マニュアル に従って 0. 2 Mスケールで実施した。 オリゴヌクレオチドの脱保護は アンモニア水で 55°C15〜18時間実施した。 精製は日立製作所製 HP L Cで逆相カラムにて実施した。
プロモーター領域を有するオリゴヌクレオチド(1):本ォリゴヌクレオチ ドはリンカーで連結されたプロモータ一領域、 腸炎ビブリオ耐熱性溶血毒 素 (VP- TDH) 遺伝子の 313 番目から 326 番目のヌクレオチド配列に相補的 な領域から成っている (配列表配列番号 1) 。
オリゴヌクレオチド(3): VP- TDH遺伝子の 254 番目から 277 番目に相補的 なオリゴヌクレオチド (24mer) (配列表配列番号 3) 。 5' 末端のリン 酸基は32 Pが標識されている。
ォリゴヌクレオチド(4):本ォリゴヌクレオチドはリンカーで連結された プロモーター領域、 VP- TDH遺伝子の 179 番目から 202 番目に相同的なオリ ゴヌクレオチド領域から成っている (配列表配列番号 4 ) 。
実施例 7
プロモーター領域を有するオリゴヌクレオチド(1) とオリゴヌクレオチ ド(4) を用いた増幅反応
参考例 2のオリゴヌクレオチド(1) とオリゴヌクレオチド(4) を用い、 腸炎ビブリオゲノムの増幅反応を実施し、 多数の R N Aを得た。 反応条件 を以下に示す。
反応液 50 l
10mM Tris-HCl pH8. 3
50mM KC1
6mM MgCl2
3raM MnCl2
0. 6m dNTP
ImM rNTP '
20pmol オリゴヌクレオチド(1)
20pmol オリゴヌクレオチド(4)
Tth-DNApolymerase (東洋紡績製) 60 単位
Tth-RNApolymerase (EPICENTRE 製) 2. 5単位
Tth-RNase H (東洋紡績製) 2 単位
反応: 9 3 °C、 3分
6 5 °C、 6 0分
実施例 8
合成した R N Aの測定
実施例 7で合成した R N Aを希釈し、 実施例 2と同様にしてフィルムの 感光度から合成 RNAを定量したところ、 対照の VPのゲノム核酸に比べて 約 109 倍の RNAが合成されていた。 この結果、 本発明の增幅法が有効で あることが示された。
参考例 3
DNA依存性DNAポリメラーゼが示すリボヌクレアーゼ H活性 実施例 3の mRN Aを铸型とし、 オリゴヌクレオチド(TDP-2) (配列表 配列番号 5) を用い、 逆転写酵素として SSIKsuper script II: M-MLV reverse transcriptase のリボヌクレアーゼ活性をなく したもの、 BRL社) を使用し、 cDNA/RNAハイプリッ ドを合成した。 つぎに、 E.coliリボヌクレ ァーゼ Hおよび Tth DNA ポリメラーゼ (東洋紡績製) を添加し KNAを分解 し、 cDNA の一本鎖をつく り、 cDNA に相補的なプローブハイブリした。 ハイブリダイゼーションには東洋紡績製 ALP標識プローブ (商品番号 PEB0 04) を用い、 説明書に従って実施した。 検出には特開平 2- 227099号明細書 の記載の色彩色差計を用いて定量化した。 SSIIのみではハイプリ ッ ド 2本 鎖のままでプローブは反応しなかったが、 E.coliリボヌクレアーゼ Hおよ び Tth DNA ポリメラーゼを添加したものは変性なしでもプローブが反応し 1本鎖であることが証明された。 これにより Tth DNA ポリメラーゼがリボ ヌクレア一ゼ H活性を有することがわかった。
反応条件および反応操作を以下に詳細に示す。
反応条件
铸型 RNA :腸炎ビブリオ TDH毒素遺伝子 mRNA
プライマー:オリゴヌクレオチド(TDP- 2)
反応液: lOmM Tris HC1 pH8.3
75mM KC1
Figure imgf000032_0001
0. 4/1. OraM d/rNTP
100 単位 SSII
操作: 以下の表 1に従い実施した t
4 5 eC、 2 0分
B. co l i リボヌレア H?H 1. 5U添加 Tth DNA ラ-ゼ 60U添加 無添加 3TC、 30分 60°C、 30分 60。C、 30分
プローブ反応:プローブ(PRB004)
〔ナイロン膜 (アマシャム製 Hybond N+)に反応液 2 1 をスポッ 卜し 東洋紡镇製 DNAプローブ取扱説明書に準じて測定した。 〕
結果:その結果を表 2に示す。 Tth DNA ポリメラーゼ 60 単位のリボヌ クレアーゼ活性は、 E. coliリボヌクレアーゼ 1. 5単!位の約半分の活性を示 した。
表 2
Figure imgf000033_0001
Δ Ε値: スポッ 卜の色彩、 色素濃度を反映する値。 無単位 c 参考例 4
好熱性細菌サーマス サ一モフィルス由来のリボヌクレアーゼ Hの調製 ポリペプトン 1. 0%、 酵母エキス 0. 5% NaC 10. 2%を含む 培地 (PH7. 5) 100m 1を 500m 1容の坂口フラスコに移し、 121°Cで 15分間ォートクレーブ滅菌を行った後、 室温にて冷却した。 そこへ好熱性細菌サ一マス サーモフィルス HB 8(ATCC27634) を 1白金 耳接種し、 70°Cにて 24時間振盪培養した。 つぎに、 同組成の培地 6リツ トルを 10リ ッ トル ジャフアーメ ンターに移し、 121°Cで 15分間ォ 一トクレーブ滅菌を行い、 放冷後これに上記記載したフラスコにて培養し た培養液 100mlを接種した。 通気量 2リッ トル 分、 撹拌数 400回 転/分、 温度 70°Cの条件にて 10時間培養した。
培養液 6リッ トルを遠心分離 (8000回転ノ 10分間) にて集菌し、 1 OmM 2—メルカプトエタノール、 5% グリセロールを含む Kーリ ン酸バッファー pH7. 5 (以下バッファー Aと称する) に懸濁した。 超 音波破砕機 (海上電気製、 19KHz) にて 20分間処理し、 再度遠心分 離し細胞残渣を取り除いた上清を回収した。
上清液を硫酸アンモニゥムによる塩析後、 バッファー Aに対し透析した。 この液をバッファー Aにて平衡化した D EAE—セファロース CL一 6B (フアルマシア社製) カラムクロマトグラフィーに供し、 吸着させる。 ファー Aにてカラムを洗浄後、 0~1. OM NaC lを含むバッファ一 Aにて溶出したところ、 0 0. 5M N a C 1溶出画分にリボヌクレア ーゼ H活性を得た。 活性画分をバッファー Aに対し透析した。 この液をバッ ファ一 Aにて平衡化したフォスフォセルロース P— 11 (Wha tman 社製) カラムクロマトグラフィーに供し、 吸着させる。 ファー Aにて カラムを洗浄後、 0 1. OM N a C 1を含むバッファー Aにて溶出し たところ、 0〜0. 5M N a C 1溶出画分にリボヌクレアーゼ H活性を 得た。
活性画分をバッファー Aに対し透析した。 更に、 この液をバッファー A にて平衡化した n a t i V e DNAセルロース (フアルマシア社製) カラ ムクロマトグラフィーに供し、 吸着させる。 バッファー Aにてカラムを洗 浄後、 0〜1. OM Na C 1を含むバッファー Aにて溶出したところ、 0〜0. 5M N a C 1溶出画分にリボヌクレアーゼ H活性を得た。
活性画分を 1 OmM Tr i s— HC 1 (pH7. 5) 、 300mM KC 1、 ImM DTT、 0. 1 mM EDTA、 10% グリセロール に対し透析した。 更に、 この液を 1 OmM Tr i s— HC 1 ( H 7. 5) > 30 OmM KC l、 lmM DTT、 0. 1ml EDTA、 50% グリセロールに対し透析し酵素標品を得た。
なお、 耐熱性リボヌクレアーゼ H活性は、 以下の方法により測定した。 まず、 下記組成を有する試薬 A, B, Cおよび Dを調製した。
(試薬)
A. 10 OmM Tr i s— HC 1 (p H 8. 3)
75 OmM 塩化カリウム
6 OmM 塩化マグネシウム
3 OmM 塩化マンガン
B. 104 c pm/2^ 1 ポリ AZポリ dT*
C. 20% トリクロ口酢酸 (2 mM ピロリン酸)
D. 10 g/ a 1 B S A
* : 〔3H〕 にてラベルされた基質ポリ ポリ dTの調製方法
ポリ A (フアルマシア製: コード 27— 4110— 01) l O Omgを 10mlの滅菌水にて溶解した。 ポリ dT (フアルマシア製: コード 27 - 7834-01) 5ユニッ トを 200 1の T Eバッファ一にて溶解し た。 〔3H〕 ポリ A (アマ一シャム製: コード TRK. 480 10 ^ C i ) を先に調製したポリ A溶液 50 / 1にて溶解した。 50サンプル分の基質 調製のために、 ここで調製した 〔3¾ ポリ A +ポリ Aを 50万 c pm相当 量を取り出し、 先に調製したポリ dT溶液 20 1 (19 pmo \ / n ) と混合した。 5倍濃度のアニーリングバッファー (5 OmM H e p e s 一 KOH 〔pH8. 0] . 50 OmM KC 1 ) 20 K および滅菌水 を加え 100 1 とした。 この溶液を 65°Cにて 10分間加熱後、 室温に て冷却し基質溶液とした。
ついで、 試薬 A 2. 5 1、 試薬 B 2 tz 1および滅菌水 19. 5 1を マイクロチューブに加え、 撹拌後、 酵素 1 / 1を加え、 60°Cにて 20分 間反応した。 その後氷冷し、 試薬 D25 a 1および試薬 C 50 1を加え て撹拌した。 更に 10分間氷冷した後、 遠心分離 (12000回転、 10 分間) にて、 酸不溶性画分を分離した。 この上清の酸可溶性画分を 50 1採取し、 液体シンチレーシヨンカウンター (パッカード社製) で計測し、 遊離 〔3H〕 を測定した。 酵素活性の 1単位は、 この条件下で 1分間当たり 1 mo 1の酸可溶性物質を遊離する酵素量とした。
( 1 ) 分子量
上記酵素標品を、 SDS— PAGEにて既知の分子量マーカーと同時に 泳動した。 既知の分子量マーカーとの比較から、 分子量は約 85, 000 〜95, 000と推定された (図 3)。
(2) 熱安定性
上記酵素標品を pH 8. 0.で 60°C〜90°Cで 2時間処理後、 その残存 活性を測定した。 熱処理後の残存活性は、 75°Cにて 2時間反応後におい ても、 50%以上認められた (図 4)。 (3) 至適 pH
上記酵素標品を pH7. 5〜pH9. 5にて作用させ、 その至適 pHを 求めた。 pHの調整は試薬 Aの pHを変動させて行った。 その結果、 至適 pHは pH7. 5〜9. 3付近であった (図 5) 。
(4) DNA依存 DNAポリメラーゼ圧政
本酵素はリボヌクレアーゼ H活性以外に、 DNA依存 DNAポリメラー ゼ活性を有しており、 その活性 1に対し、 約 5倍以上であった。 DNA依 存 DNAポリメラーゼ活性の定義は、 70°Cでの活性測定条件下で s s DNA/プライマーを基質として、 30分間に 10 nモルの dTNP を酸不溶性沈殿物に取り込む酵素量を 1単位とした。
(5) RNA依存 DNAポリメラーゼ (逆転写酵素) 活性
本酵素はリボヌクレアーゼ H活性以外に、 RNA依存DNAポリメラー ゼ (逆転写酵素) 活性を有しており、 その活性はリボヌクレアーゼ H Iに 対し、 約 0. 1以下であった。 RNA依存 DNAポリメラ一ゼ (逆転写酵 素) 活性の定義は、 70°Cでの活性測定条件でポリ (A) オリゴ (dT) を基質として、 30分間に 1 O nモルの dTTPを酸不溶性沈殿物に取り 込む酵素量を 1単位とした。
配列表
配列番号: 1
配列の長さ : 64
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴
特徴を表す記号: promoter
存在位置: 1. . 30
特徴を決定した方法: S
他の特徴:プロモーター配列
存在位置: 31. . 40
特徴を決定した方法: S
他の特徴:複製開始点を含むスぺーサー配列
存在位置: 41. . 64
他の特徴:腸炎ビブリオ TDH 遺伝子の 313番目から 326番目の配列と相 補的な配列を有する。
配列
CTTGACAAAA AGGAGGGGGA TTGATAGCAT GGCTTTTCTG GACACCGCTG
CCATTGTATA GTCT 64
配列番号: 2
配列の長さ : 24
配列の型:核酸 鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴
存在位置: 1. . 24
他の特徴:腸炎ビブリオ TDH遺伝子の 179番目から 202番目の配列と相 同的な配列を有する。
配列
CTGACTTTTG GACAAACCGT AATG 24 配列番号: 3
配列の長さ : 24
配列の型:核酸
鎖の数:一本鎖 +
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴
存在位置: 1. . 24
他の特徴:腸炎ビブリオ TDH遺伝子の 254 番目から 277 番目の配列.と相 補的な配列を有する。
配列
CAGGTACTAA ATGGTTGACA TCCT 24 配列番号: 4
配列の長さ : 64 配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
配列の特徴
存在位置: 1. . 30
特徴を決定した方法: S
他の特徴:プロモーター配列
存在位置: 31. . 40
特徴を決定した方法: S
他の特徴:複製開始点を含むスぺ一サー
存在位置: 41. . 64
他の特徴:腸炎ビブリオ TDH遺伝子の 179番目から 202番目の配列と相 同的な配列を有する。
配列
CTTGACAAAA AGGAGGGGGA TTGATAGCAT GGCTTTTCTG CTGACTTTTG GACAAACCGT AATG 64 配列番号: 5
配列の長さ : 22
配列の型:核酸
鎖の数:一本鎖
トポロジー:直鎖状
配列の種類:他の核酸 合成 DNA
存在位置: 1. . 22 他の特徴:腸炎ビブリオ TDH 遺伝子の 483番目から 504番目の配列と相 捕的な配列を有する。
配列
ACTACCACTC TCATATGCTT CT 22

Claims

請 求 の 範 囲
1. 反応媒体中で実質的に一定の温度で標的核酸配列のコピー数を増加 させる方法であって、 下記工程を含むことを特徴とする耐熱性酵素を用い る標的核酸配列の増幅法。
工程 1 :標的核酸を必要により変性処理した一本鎖の第一铸型 RNAに、 第一铸型の核酸配列(RNA)に対して十分に相補的な配列およびその 5' 末端側にプロモーター配列を有する第一プライマーをハイプリダイズさせ、 耐熱性 RNA依存 DNAポリメラーゼにより伸長させて、 第一铸型 RNA に相補的な第二铸型である第一プライマー伸長物 (DNA) を得る ; 工程 2 : RNAZDNAハイプリッ ドの RN Aのみを特異的に分解する 耐熱性リボヌクレアーゼ Hにより、 第一铸型 RNAから第二铸型 DNAを 分離して一本鎖の第二铸型核酸 (DNA) を得る ;
工程 3 :—本鎖の第二铸型 DNAに、 第二铸型の核酸配列 (DNA) に 相補的な核酸配列を有する第二プライマーをハイプリダイズさせ、 耐熱性 D N A依存 D N Aポリメラーゼにより伸長し、 第二铸型 D N Aに相補的な 第二プライマー伸長物 (DNA) を得、 このようにして標的核酸配列の上 流に機能可能なプロモーター配列を有する二本鎖 DN A中間体を生成させ る ;
(ここで第一ブラィマーまたは第二ブライマ一の核酸配列は標的核酸配 列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端 は相補的鎖上の第二プライマーの 3' 末端に向けられる)
工程 4 :前記プロモーター配列を認識することができる耐熱性 DNA依 存 RNAポリメラーゼを用いて、 前記二本鎖 DN A中間体から前記標的核 酸配列 (第一铸型 RNA) と相補的な配列をもつ一本鎖の第三铸型 RNA を生成させる :
工程 5 :—本鎖の第三铸型 RNAに、 前記第二プライマーをハイブリダ ィズさせ、 耐熱性 RNA依存 DNAポリメラーゼにより伸長させて、 第三 铸型 RNAに相補的な第四铸型である第二プライマー伸長物 (DNA) を 得る ;
工程 6 : RNAZDNAハイプリッ ドの R N Aのみを特異的に分解する 耐熱性リボヌクレアーゼ Hにより、 第三铸型 RNAから第四铸型 DNAを 分離して一本鎖の第二铸型核酸 (DNA) を得る ;
工程 7 :—本鎖の第四铸型 DNAに、 前記第一プライマーをハイブリダ ィズさせ、 耐熱性 DNA依存 DNAポリメラーゼにより伸長し、 第四铸型 DN Aに相補的な第一プライマー伸長物 (DNA) および前記第一プライ マーのプロモーター配列に相補的な第四铸型 DN A伸長物を得、 このよう にして標的核酸配列の上流に機能可能なプロモーター配列を有する二本鎖 DNA中間体を生成させる ;
(ここで第一ブラィマーまたは第二ブライマ一の核酸配列は標的核酸配 列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端 は相補的鎖上の第二プライマーの 3' 末端に向けられる)
工程 8 :前記プロモーター配列を認識することができる耐熱性 DN A依 存 RNAポリメラーゼを用いて、 前記二本鎖 DNA中間体から前記標的核 酸配列 (第一铸型 RNA) と相補的な配列を有する一本鎖の第三铸型 RN Aのコピーを増加させる ;
そして、
工程 9 :必要により前記 RNAコピーを用いて前記工程 5から工程 8を 必要な回数繰り返す。
2. 反応媒体中で標的核酸配列のコピー数を増加させる方法であって、 下記工程を含むことを特徴とする耐熱性酵素を用 、る標的核酸配列の増幅 工程 1 :標的核酸を必要により変性処理した一本鎖の第一铸型 D N Aに、 第一铸型の核酸配列に対して十分に相補的な配列およびその 5' 末端側に プロモーター配列を有する第一プライマーをハイブリダィズさせ、 耐熱性 DNA依存DNAポリメラーゼにより伸長し、 第一铸型 DN Aに相補的な 第二铸型である第一プライマー伸長物 (DNA) を得る ;
工程 2:第一铸型 DN Aから第二铸型 DN Aを分離して一本鎖の第二鋅 型核酸 (DNA) を得る ;
工程 3 ;—本鎖の第二铸型 DNAに、 第二铸型の核酸配列 (DNA) に 相補的な核酸配列 (DNA) を有する第二プライマーをハイブリダィズさ せ耐熱性 DNA依存 DNAポリメラーゼにより伸長し、 第二铸型 DNAに 相補的な第二プライマー伸長物 (DNA) を得、 このようにして標的核酸 配列の上流に機能可能なプロモーター配列を有する二本鎖 DN A中間体を 生成させる ;
(ここで第一プライマーまたは第二プライマーの核酸配列は標的核酸配 列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端 は相補的鎖上の第二プライマーの 3' 末端に向けられる)
工程 4:前記プロモーター配列を認識することができる耐熱性 DNA依 存 R N Aポリメラーゼを用いて、 前記二本鎖 D N A中間体から前記標的核 酸配列 (第一铸型 DNA) と相補的な配列を有する一本鎖の第三铸型 RN Aのコピーを増加させる ;
工程 5 :—本鎖の第三铸型 RN Aに、 前記第二プライマーをハイブリダ ィズさせ、 耐熱性 RNA依存 DNAポリメラーゼにより伸長させて、 第三 铸型 RNAに相補的な第四铸型である第二プライマー伸長物 (DNA) を 得る ;
工程 6 : RNAZDNAハイプリッ ドの RN Aのみを特異的に分解する 耐熱性リボヌクレアーゼ Hにより、 第三铸型 RNAから第四铸型 DNAを 分離して一本鎖の第四铸型核酸 (DNA) を得る ;
工程 7 :—本鎖の第四铸型 DNAに、 第一プライマーをハイブリダィズ させ、 耐熱性 DNA依存 DNAポリメラーゼにより伸長し、 第四鎢型 DN Aに相補的な第一ブライマ一伸長物(D N A)および前記第一ブライマ一の プロモータ一配列に相補的な第四铸型 D N A伸長物を得、 このようにして 標的核酸配列の上流に機能可能なプロモーター配列を有する二本鎖 DN A 中間体を生成させる ;
(ここで第一ブライマ一または第二ブラィマーの核酸配列は標的核酸配 列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端 は相捕的鎖上の第二プライマーの 3' 末端に向けられる)
工程 8 :前記プロモーター配列を認識することができる耐熱性 DNA依 存 RNAポリメラーゼを用いて 前記二本鎖 D N A中間体から前記標的核 酸配列と相補的な配列を有する一本鎖の第三铸型 RN Aのコピーを増加さ せる ;
そして、
工程 9 :必要により前記 RNAコピーを用いて前記工程 5から工程 8を 必要な回数繰り返す。
3. 試薬の逐次添加を行わず、 工程 1〜9を実施する請求項 1または請 求項 2に記載の耐熱性酵素を用いる標的核酸配列の増幅法。
4. 第二铸型の核酸配列に対して相捕的な核酸配列を有する第二プライ マーが 5 ' 末端側にプロモータ一配列を有する請求項 1〜請求項 3 I、ずれ か 1項に記載の耐熱性酵素を用いる標的核酸配列の増幅法。
5. 耐熱性 RNA依存 DNAポリメラーゼとして、 サーマス 'サ一モフィ ルス由来の DNA依存 DNAポリメラーゼの RNA依存 DNAポリメラ一 ゼ活性を用 、る請求項 1〜 4 、ずれか 1項記載の耐熱性酵素を用いる標的 核酸配列の増幅法。
6. 耐熱性 DNA依存 RNAポリメラーゼがサ一マス ·サーモフィルス 由来である請求項 1〜 5いずれか 1項記載の耐熱性酵素を用いる標的核酸 配列の増幅法。
7. 耐熱性 DNA依存 DNAポリメラーゼがサ一マス ·サーモフィルス 由来であり、 耐熱性 RNA依存 DNAポリメラーゼとして、 サーマス ·サ 一モフィルス由来の DNA依存 DNAポリメラーゼの RNA依存 DNAポ リメラーゼ活性を用 t、る請求項 1〜 6 t、ずれか 1項記載の耐熱性酵素を用 いる標的核酸配列の増幅法。
8. 耐熱性リボヌクレアーゼ Hがサーマス ·サーモフィルス由来である 請求項 1〜 7 、ずれか 1項記載の耐熱性酵素を用 t、る標的核酸配列の増幅 法。
9. 耐熱性リボヌクレアーゼ Hとして、 サーマス 'サーモフィルス由来 の DNA依存 DNAポリメラーゼのリボヌクレアーゼ H活性を用いる請求 項 1〜 8いずれか 1項記載の耐熱性酵素を用いる標的核酸配列の増幅法。
10. 耐熱性 RNA依存 DNAポリメラーゼ、 耐熱性リボヌクレアーゼ Hおよび耐熱性 DNA依存 DNAポリメラーゼとして一つの耐熱性酵素を 用いる請求項 1〜 9 t、ずれか 1項記載の耐熱性酵素を用 、る標的核酸配列 の増幅法。
11. 耐熱性 RNA依存 DNAポリメラーゼ、 耐熱性リボヌクレアーゼ Hおよび/または耐熱性 DN A依存 DN Aポリメラーゼとして、 下記理化 学的性質を有するサーマス ·サーモフィルス由来の酵素を用いる請求項 1 10いずれか 1項記載の耐熱性酵素を用いる標的核酸配列の増幅法。
(1) 次の反応を触媒する。
① RNAを铸型として、 DNAを合成する。
② RNAZDNA二本鎖の RNAのみに特異的にかつェンド的に作 用して DNA—本鎖を生じさせる。
③ DNAを铸型として、 DNAを合成する。
(2) 分子量: 85, 000〜95, 000
(3) 熱安定性: 75°C、 2時間処理後、 50%以上の活性を保持する:
(4)至適 pH:約 7. 5〜9. 3
12. 請求項 1〜11いずれか 1項に記載される標的核酸配列を増幅産 物である一本鎖 RNA、 二重鎖 DNAまたは DNA/RNAハイプリ ッ ド に、 必要により変性処理を行った後、 標識プローブをハイブリダィズさせ、 ハイブリダィズした標識プローブの標識またはハイブリダイズしない標識 プローブの標識を検出することを特徵とする標的核酸配列の検出法。
13. 特定の核酸配列を増幅するためのキッ トであって、
(a) 第一铸型の核酸配列に対して十分に相補的な配列およびその 5' 末端側にプロモーター配列を有する第一プライマー、
(b) 第二铸型の核酸配列に対して相補的な核酸配列を有する第二ブラ イマ一、
(c)耐熱性 RN A依存 DN Aポリメラーゼ、
(d) 耐熱性リボヌクレアーゼ1^
(e) 耐熱性 DNA依存 DNAポリメラーゼ、
(f )耐熱性 DNA依存 RNAポリメラーゼ、
(g) リボヌクレオシドトリホスフヱートおよび
( h ) デォキシリボヌクレオシドトリホスフェートとを含み、 ただし、 第一プライマーまたは第二プライマーの核酸配列は標的 核酸配列に対して十分に相補的または相同的であり、 第一プライマーの
3' 末端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ ト。
14. 特定の核酸配列を増幅するためのキッ トであって、
(a) 第一铸型の核酸配列に対して十分に相補的な配列およびその 5' 末端側にプロモーター配列を有する第一プライマー、
(b) 第二铸型の核酸配列に対して相補的な核酸配列を有する第二ブラ イマ一、
(c) RNA依存性DNAポリメラーゼ活性を有する耐熱性 DN A依存 DNAポリメラーゼ、
(d)耐熱性リボヌクレア一ゼ1¾、
(e)耐熱性 DNA依存 RNAポリメラーゼ、
( f ) リボヌクレオシドトリホスフェートおよび
(g) デォキシリボヌクレオシドトリホスフエ一トとを含み、
ただし、 第一プライマーまたは第二ブラィマーの核酸配列は標的 核酸配列に対して十分に相補的または相同的であり、 第一ブライマ一の 3' 末端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ ト。
15. 特定の核酸配列を増幅するためのキッ トであって、
( a ) 第一铸型の核酸配列に対して十分に相補的な配列およびその 5 ' 末端側にプロモーター配列を有する第一プライマー、
(b) 第二铸型の核酸配列に対して相補的な核酸配列を有する第二ブラ イマ一、
(c) RNA依存性 DNAポリメラーゼ活性およびリボヌクレアーゼ H 活性を有する耐熱性 DN A依存 DN Aポリメラーゼ、
(d) 耐熱性 DNA依存 RNAポリメラーゼ、 (e) リボヌクレオシドトリホスフェートおよび
(f ) デォキシリボヌクレオシドトリホスフエ一卜とを含み、
ただし、 第一ブライマ一または第二ブライマ一の核酸配列は標的 核酸配列に対して十分に相補的または相同的であり、 第一プライマーの 3* 末端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ ト。
16. 特定の核酸配列を増幅するためのキッ ドであって、
( a ) 第一铸型の核酸配列に対して十分に相補的な配列およびその 5 ' 末端側にプロモーター配列を有する第一プライマー、
(b)第二铸型の核酸配列に対して相補的な核酸配列およびその 5' 末 端側にプロモーター配列を有する第二プライマ一、
(c)耐熱性 RN A依存 DN Aポリメラーゼ、
(d)耐熱性リボヌクレア一ゼ11、
(e)耐熱性 DNA依存 DNAポリメラーゼ、
(f )耐熱性 DNA依存 RN Aポリメラーゼ、
(g) リボヌクレオシドトリホスフェートおよび
(h) デォキシリボヌクレオシドトリホスフエ一卜とを含み、
ただし、 第一プライマーまたは第二プライマーの核酸配列は標的 核酸配列に対して十分に相補的または相同的であり、 第一ブライマ一の 3' 末端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ ト。
17. 特定の核酸配列を増幅するためのキッ 卜であって、
( a ) 第一铸型の核酸配列に対して十分に相補的な配列およびその 5 ' 末端側にプロモーター配列を有する第一プライマー、
(b) 第二铸型の核酸配列に対して相補的な核酸配列およびその 5' 末 端側にプロモーター配列を有する第二プライマー、
( c ) R N A依存性 D N Aポリメラーゼ活性を有する耐熱性 D N A依存 DNAポリメラーゼ、
、d)耐熱性リボヌクレア一ゼ11、
(e)耐熱性 DNA依存 RN Aポリメラーゼ、
(f ) リボヌクレオシドトリホスフェートおよび
(g) デォキシリボヌクレオシドトリホスフヱー卜とを含み、
ただし、 第一プライマーまたは第二プライマーの核酸配列は標的 核酸配列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ ト。
18. 特定の核酸配列を増幅するためのキッ トであって、
( a ) 第一铸型の核酸配列に対して十分に相補的な配列およびその 5 ' 末端側にプロモーター配列を有する第一プライマー、
(b)第二铸型の核酸配列に対して相補的な核酸配列およびその 5' 末 端側にプロモーター配列を有する第二プライマー、
( c ) R N A依存性 D N Aポリメラーゼ活性およびリヌクレアーゼ H活 性を有する耐熱性 DN A依存 DN Aポリメラーゼ、
(d)耐熱性 DNA依存 RN Aポリメラーゼ、
(e) リボヌクレオシドトリホスフヱ一トおよび
( f ) デォキシリボヌクレオシドトリホスフヱ一卜とを含み、
ただし、 第一プライマーまたは第二プライマーの配列は標的核酸 配列配列に対して十分に相補的または相同的であり、 第一プライマーの 3' 末端は相補的鎖上の第二プライマーの 3' 末端に向けられるキッ ト。
19. RNA依存性 DNAポリメラーゼ活性およびリヌクレアーゼ H活 性を有する耐熱性 DNA依存 DNAポリメラーゼが、 下記理化学的性質を 有するサーマス ·サーモフィルス由来の酵素である請求項 13〜18いず れか 1項記載の特定の核酸配列を増幅するためのキッ 卜。 (1) 次の反応を触媒する。
① RNAを铸型として、 DNAを合成する。
② RNAZDNA二本鎖の RNAのみに特異的にかつェンド的に作 用して DNA—本鎖を生じさせる。
③ DNAを铸型として、 DNAを合成する。
(2)分子量: 85, 000〜95, 000
(3)熱安定性: 75°C、 2時間処理後、 50%以上の活性を保持する。
(4)至適 pH:約 7. 5〜9. 3
20. さらにカリウムイオン、 マグネシウムイオンおよびマンガンィォ ンを含有する請求項 13~19いずれか 1項記載の核酸配列を増幅するた めのキッ ト。
21. マグネシウムイオンとマンガンイオンの比率が 1 : 1〜4 : 1で あり、 デォキシリボヌクレオシドトリホスフェート (dNTP) とリボヌ クレオシドトリホスフェート ( r T N P ) の比率が 1 : 10〜: L0 : 1で ある請求項 20記載の核酸配列を増幅するためのキッ ト。
22. 請求項 13〜20いずれか 1項記載の核酸配列を増幅するための キッ トが、 さらに検出プローブを含有することを特徴とする特定の核酸配 列を検出するためのキッ ト。
PCT/JP1994/002025 1993-12-01 1994-12-01 Procede d'amplification et de detection d'une sequence nucleotidique au moyen d'enzymes thermostables WO1995015399A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE69431240T DE69431240T2 (de) 1993-12-01 1994-12-01 Verfahren zur ampflifizierung und zum nachweis bestimmter nukleinsäuresequenzen mittels thermostabiler enzyme
EP95902289A EP0682121B1 (en) 1993-12-01 1994-12-01 Method of amplifying and detecting target nucleic acid sequence by using thermostable enzymes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP30182393 1993-12-01
JP5/301823 1993-12-01

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US08/821,782 Continuation US5981183A (en) 1993-12-01 1997-03-20 Method for amplifying and detecting of target nucleic acid sequence using thermostable enzyme

Publications (1)

Publication Number Publication Date
WO1995015399A1 true WO1995015399A1 (fr) 1995-06-08

Family

ID=17901599

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1994/002025 WO1995015399A1 (fr) 1993-12-01 1994-12-01 Procede d'amplification et de detection d'une sequence nucleotidique au moyen d'enzymes thermostables

Country Status (4)

Country Link
US (2) US5981183A (ja)
EP (2) EP1251182A3 (ja)
DE (1) DE69431240T2 (ja)
WO (1) WO1995015399A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69431240T2 (de) * 1993-12-01 2003-04-17 Toyo Boseki Verfahren zur ampflifizierung und zum nachweis bestimmter nukleinsäuresequenzen mittels thermostabiler enzyme
JP4211948B2 (ja) * 1996-08-02 2009-01-21 ベーイーオー・メリュー 標的核酸配列の増幅方法
DE69917322T2 (de) * 1998-12-11 2005-05-04 bioMérieux B.V. Rna polymerase mutanten mit erhöhter stabilität
US7838225B2 (en) 1999-10-29 2010-11-23 Hologic, Inc. Methods for detection of a target nucleic acid by forming a cleavage structure using a reverse transcriptase
US7824859B2 (en) * 1999-10-29 2010-11-02 Cytyc Corporation Methods for detection of a target nucleic acid by forming a cleavage structure using an RNA polymerase
US7118860B2 (en) 1999-10-29 2006-10-10 Stratagene California Methods for detection of a target nucleic acid by capture
US20030017451A1 (en) * 2000-12-21 2003-01-23 Hui Wang Methods for detecting transcripts
US7354742B2 (en) 2002-02-22 2008-04-08 Ortho-Mcneil Pharmaceutical, Inc. Method for generating amplified RNA
DE10240868A1 (de) * 2002-09-04 2004-03-18 Artus Gesellschaft für molekularbiologische Diagnostik und Entwicklung mbH Verbesserte Verfahren zur Synthese von Nukleinsäuren
GB0701253D0 (en) * 2007-01-23 2007-02-28 Diagnostics For The Real World Nucleic acid amplification and testing
US10760074B2 (en) * 2008-09-03 2020-09-01 Takara Bio Inc. Composition for detection of RNA
FR2981088B1 (fr) 2011-10-06 2013-11-29 Biomerieux Sa Arn polymerases mutees

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992008800A1 (en) * 1990-11-13 1992-05-29 Siska Diagnostics, Inc. Nucleic acid amplification by two-enzyme, self-sustained sequence replication
JPH0467960B2 (ja) * 1985-03-28 1992-10-29 Hoffmann La Roche
JPH05505105A (ja) * 1989-12-22 1993-08-05 エフ.ホフマン ― ラ ロシュ アーゲー 高温度逆転写酵素

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4683195A (en) * 1986-01-30 1987-07-28 Cetus Corporation Process for amplifying, detecting, and/or-cloning nucleic acid sequences
US5322770A (en) * 1989-12-22 1994-06-21 Hoffman-Laroche Inc. Reverse transcription with thermostable DNA polymerases - high temperature reverse transcription
US5407800A (en) * 1986-08-22 1995-04-18 Hoffmann-La Roche Inc. Reverse transcription with Thermus thermophilus polymerase
IL86724A (en) * 1987-06-19 1995-01-24 Siska Diagnostics Inc Methods and kits for amplification and testing of nucleic acid sequences
WO1989001050A1 (en) * 1987-07-31 1989-02-09 The Board Of Trustees Of The Leland Stanford Junior University Selective amplification of target polynucleotide sequences
US5004682A (en) * 1987-11-02 1991-04-02 Olin Corporation Method and kit for detecting live microorganisms in chlorine- or bromine-treated water
CA1340807C (en) * 1988-02-24 1999-11-02 Lawrence T. Malek Nucleic acid amplification process
US5130238A (en) * 1988-06-24 1992-07-14 Cangene Corporation Enhanced nucleic acid amplification process
US5480784A (en) * 1989-07-11 1996-01-02 Gen-Probe Incorporated Nucleic acid sequence amplification methods
US5459055A (en) * 1991-12-27 1995-10-17 Epicentre Technologies Corporation Thermostable ribonuclease H isolated from Thermus flavus
US5268289A (en) * 1991-12-27 1993-12-07 Epicentre Technologies Corp. Thermostable ribonuclease H
CA2141430C (en) * 1992-08-04 2009-05-12 Sherrol H. Mcdonough Nucleic acid sequence amplification
WO1994005812A1 (en) * 1992-09-02 1994-03-17 The Scripps Research Institute Coupled isothermal polynucleotide amplification and translation system
DE4238699A1 (de) * 1992-11-17 1994-05-19 Boehringer Mannheim Gmbh Einfaches Nukleinsäurevermehrungsverfahren
ES2161731T3 (es) * 1993-07-01 2001-12-16 Hoffmann La Roche Reactivos y metodos para la transcripcion inversa acoplada a alta temperatura y reaccion en cadena de la polimerasa.
US5428190A (en) 1993-07-02 1995-06-27 Sheldahl, Inc. Rigid-flex board with anisotropic interconnect and method of manufacture
DE69431240T2 (de) * 1993-12-01 2003-04-17 Toyo Boseki Verfahren zur ampflifizierung und zum nachweis bestimmter nukleinsäuresequenzen mittels thermostabiler enzyme

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0467960B2 (ja) * 1985-03-28 1992-10-29 Hoffmann La Roche
JPH05505105A (ja) * 1989-12-22 1993-08-05 エフ.ホフマン ― ラ ロシュ アーゲー 高温度逆転写酵素
WO1992008800A1 (en) * 1990-11-13 1992-05-29 Siska Diagnostics, Inc. Nucleic acid amplification by two-enzyme, self-sustained sequence replication

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP0682121A4 *
The Journal of Biological Chemistry, Vol. 267, No. 14, May 15, 1992 (15.05.92), S. KANAYA: "Expression Purification and Characterization of a Recombinant Ribonuclease H from Thermus Thermophilus HB8", p. 10184-10192. *

Also Published As

Publication number Publication date
DE69431240D1 (de) 2002-10-02
EP0682121B1 (en) 2002-08-28
DE69431240T2 (de) 2003-04-17
EP0682121A4 (en) 1999-04-14
EP1251182A2 (en) 2002-10-23
EP1251182A3 (en) 2002-11-27
US6303306B1 (en) 2001-10-16
US5981183A (en) 1999-11-09
EP0682121A1 (en) 1995-11-15

Similar Documents

Publication Publication Date Title
EP1167524B1 (en) Method for amplifying a nucleic acid sequence employing a chimeric primer
JP3360977B2 (ja) 核酸の高感度検出方法
JP3745774B2 (ja) 末端反復増幅方法
US8673567B2 (en) Method and kit for nucleic acid sequence detection
KR100231383B1 (ko) Rna 레플리카제의 dna-의존성 rna 폴리머라제 활성을 이용한 핵산 증폭
KR101590175B1 (ko) 반복적 엑소핵산 절단 반응에 의한 타겟 핵산서열의 검출
JP2002536981A (ja) 核酸標的配列の存在を測定する方法およびその応用
US20050118578A1 (en) Amplified nucleic acids and immobilized products thereof
JP2006304763A (ja) オリゴヌクレオチド、オリゴヌクレオチドを用いた真核生物の検出方法及び同定方法
CN112301019B (zh) 新型耐高温arCas12a蛋白在核酸检测方面的应用
WO1995015399A1 (fr) Procede d'amplification et de detection d'une sequence nucleotidique au moyen d'enzymes thermostables
CN114174535A (zh) Crispr多靶标检测方法及其试剂盒
AU690294B2 (en) Species-specific detection of Mycobacterium kansasii
US6261773B1 (en) Reagent for nucleic acid amplification and process for nucleic acid amplification
US20230063705A1 (en) Methods and kits for amplification and detection of nucleic acids
US5972607A (en) Methods for nucleic acid amplification with thermostable ribonuclease H
JP4744053B2 (ja) マイコバクテリウム属(Mycobacterium)種の核酸増幅および検出
JP3241555B2 (ja) 耐熱性酵素を用いる標的核酸配列の増幅法および検出法
EP2126133A1 (en) Multiply-primed amplification of circular nucleic acid sequences
JP3241496B2 (ja) 耐熱性酵素を用いる標的核酸配列の増幅法および検出法
JP2001299375A (ja) 耐熱性酵素を用いる標的核酸配列の増幅法および検出法
AU2004205118B2 (en) Method for amplifying nucleic acid sequence
JPH0851979A (ja) Rnaの逆転写方法およびその用途
JP3624960B2 (ja) 耐熱性リボヌクレアーゼhおよびその用途
JP4644944B2 (ja) 標的核酸検出法およびそのための試薬

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref country code: US

Ref document number: 1995 446709

Date of ref document: 19950530

Kind code of ref document: A

Format of ref document f/p: F

AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

WWE Wipo information: entry into national phase

Ref document number: 1995902289

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 1995902289

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1995902289

Country of ref document: EP