WO1995011296A1 - Verfahren zur gezielten veränderung von enzymen, veränderte enzyme und deren verwendung - Google Patents

Verfahren zur gezielten veränderung von enzymen, veränderte enzyme und deren verwendung Download PDF

Info

Publication number
WO1995011296A1
WO1995011296A1 PCT/EP1994/003420 EP9403420W WO9511296A1 WO 1995011296 A1 WO1995011296 A1 WO 1995011296A1 EP 9403420 W EP9403420 W EP 9403420W WO 9511296 A1 WO9511296 A1 WO 9511296A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme
enzymes
amino acids
group
binding
Prior art date
Application number
PCT/EP1994/003420
Other languages
English (en)
French (fr)
Inventor
Paul C. Engel
David Rice
Original Assignee
Degussa Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Degussa Aktiengesellschaft filed Critical Degussa Aktiengesellschaft
Priority to JP7511318A priority Critical patent/JPH09504426A/ja
Priority to AU79382/94A priority patent/AU7938294A/en
Priority to US08/831,753 priority patent/US5798234A/en
Priority to EP94930183A priority patent/EP0724629A1/de
Publication of WO1995011296A1 publication Critical patent/WO1995011296A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0012Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7)
    • C12N9/0014Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4)
    • C12N9/0016Oxidoreductases (1.) acting on nitrogen containing compounds as donors (1.4, 1.5, 1.6, 1.7) acting on the CH-NH2 group of donors (1.4) with NAD or NADP as acceptor (1.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P13/00Preparation of nitrogen-containing organic compounds
    • C12P13/04Alpha- or beta- amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids

Definitions

  • the invention relates to a method for the targeted modification of enzymes, modified enzymes and their use.
  • Enzymes can generally be modified either by chemical modification of the amino acids forming the enzyme or by mutation of the gene encoding the enzyme. Chemical modifications are often unspecific, so that the targeted modification of the enzyme structure through directed mutation of the gene has advantages over chemical modification.
  • Modified enzymes often show improved properties in terms of activity, specificity or stability compared to the unchanged enzymes. Previous activities in this area have often been limited to improving the global properties of the enzyme such as. B. Stability towards
  • the selectivity for the production of enantiomerically pure compounds is particularly desirable.
  • the enantioselectivity is particularly well developed for amino acid dehydrogenases, among others. So were amino acid dehydrogenases screened from a number of organisms.
  • the most important enzymes for use in organic synthesis are alanine dehydrogenase (AlaDH, EC 1.4.1.1.), Phenylalanine dehydrogenase (PheDH; no EC number yet)) and especially leucine dehydrogenase (LeuDH, EC 1.4.1.9.).
  • GluDH gluta at dehydrogenase
  • Amino acid dehydrogenases generally catalyze the reversible reductive amination of prochiral keto acids to L-amino acids ((S) configuration) or the reverse reaction of the oxidative deamination of L-amino acids to oxo acids.
  • the enzyme has six identical subunits, each about 48 kD. Significant homology is found in the polypeptide chain of the hexameric GluDHs, in particular the glutamate binding pocket and the active center are remarkably similar (Britton, KL, Baker, PJ, Rice, DW and Stillman, TJ, Eur. J. Bioche. 1992, 209, 851-859).
  • Amino acid dehydrogenases originate from a single superfamily of enzymes, which has arisen from divergent evolution (S. Nagata, K. Tanisawa, N. Esaki, Y. Saka oto, T. Ohshima, H. Tanaka and K. Soda, Biochemistry 1988, 27, 9056- 62; H. Takada, T. Yoshimura, T. Ohshima, N. Esaki and K. Soda, J. Bioche. 1991, 109, 371-6).
  • the three-dimensional structure of the glutamate dehydrogenase from Clostridium symbiosum is known (Baker, P.J. et al., Proteins 1992, 12, 75-86).
  • the gene of this enzyme was cloned and overexpressed in Escherichia coli (Teller, J.K., et al., Eur. J. Biochem. 1992, 286, 151-159). So far, however, it has not been possible to change the enzyme structure by directed mutation of the gene in such a way that certain substrates selected before the mutation are also implemented.
  • the object of the invention is therefore to provide a method for the targeted modification of enzymes in which the desired substrates are independent of the natural ones
  • Substrate specificity of the enzyme can be implemented. Another object of the invention is to provide a modified enzyme which is modified at its binding site for a substrate so that a desired, generally not preferred, substrate is converted by the modified enzyme with sufficient activity, selectivity and stability.
  • the type of sub-subclass is not particularly limited.
  • the preferred sub-subclasses include NAD (P) + -dependent redox reactions with amines (group 1.4.1. According to the EC nomenclature), serine proteases (group 3.4.21. According to the EC nomenclature) and carboxylester hydrolases (group 3.1.1 . according to EC nomenclature).
  • structure elucidation is understood to mean the determination of the spatial structure of an enzyme. Basically, it is necessary to obtain information about the structure of two enzymes from a group. All methods known to the person skilled in the art for structure elucidation of enzymes can be used advantageously for the process according to the invention. It is particularly preferred that the analysis of the amino acid sequence is carried out on at least one enzyme of a group, an associated one
  • Enzyme-substrate complex crystallizes and the spatial structure of the enzyme-substrate complex is elucidated. If the sequence of a second enzyme of the group is highly homologous to the structure of the first, this is sufficient with regard to the structure of the second Enzyme of the group as information for making the changes to the enzyme. Highly homologous here means the at least 50% agreement of the sequence of two enzymes.
  • the binding pockets of the enzymes from a group whose structure was clarified in the first step of the method according to the invention are compared with one another.
  • the binding pocket is understood to mean the three-dimensional environment of the binding site of a substrate on the enzyme for the ultimate purpose of the reaction by the enzyme, the binding pocket being formed from amino acids which are not necessarily adjacent to one another in the sequence of the enzyme.
  • the amino acids which are necessary for binding a substrate preferred for the enzyme are then determined.
  • the position of these amino acids in the sequence is also determined. This is followed by the selection of those amino acids in the binding pocket of enzymes with a clarified structure which are to be changed for the binding of a desired substrate which is not preferred by the unchanged enzyme.
  • the selected amino acids are preferably changed by mutating the corresponding triplet of the associated gene in such a way that the changed triplet codes the amino acid required for the binding of the desired substrate.
  • the mutated gene is expressed in a suitable organism, the modified enzyme is isolated from the organism and tested for binding of the desired substrate and for activity, selectivity and stability.
  • the process according to the invention has proven particularly useful when amino acids dehydrogenases of group 1.4.1. and 2-oxo acids, which differ only in the rest, are used as substrates preferred by both the unchanged enzyme and the modified enzyme. It was found, for example, that the following amino acids of the sequence of the enzyme exert particular influence on the binding of the substrate in the glutamate dehydrogenase from Clostridium symbiosum: valine 377, serine 380, threonine 193, lysine 89 and alanine 163; the following amino acids were also found to exert additional influence: glutamine 110, aspartate 114, methionine 121, arginine 205.
  • enzymes for the stereospecific reversible reaction of the oxidative deamination of an L-amino acid or reductive amination of an oxo acid are then used for an enzyme from the group with the E.C. number 1.4.1. changed a binding pocket with the residues valin 377, serine 380, threonine 193, lysine 89 and alanine 163 by mutation of a gene belonging to the enzyme.
  • the invention also provides novel enzymes.
  • binding pocket which is modified with respect to at least one residue, so that a desired substrate, which is not preferred by the unchanged enzyme, is reacted with sufficient activity, selectivity and stability.
  • a desired substrate which is not preferred by the unchanged enzyme
  • the binding pocket has at least one change in the residues valine 377, serine 380, threonine 193, lysine 89 and alanine 163, with the consequence that the desired substrate is bound and converted better by the modified enzyme.
  • the method according to the invention and the novel enzymes modified according to the invention can be used, inter alia, to convert 2-oxo acids to produce L-alpha amino acids in high enantiomeric yield. Furthermore, it is advantageous to use the enzymes which have been modified at least with respect to a residue in the binding pocket for the conversion of L-alpha amino acids for the production of 2-oxo acids. It is also of great advantage to use the modified enzymes to convert DL-alpha amino acids into the production of 2-oxo acids and D-alpha amino acids.
  • the three-dimensional crystal structure of the glutamate dehydrogenase from Clostridium symbiosum is known from the literature, both as a complex with glutamate (TJ Stillman et al., J. Mol. Biol., 1993, 234, pages 1131-1139) and in free form as well as a complex with the cofactor NAD + (PJ Baker et al., Proteins, 1992, 12, pages 75-86).
  • the wild type of glutamate dehydrogenase from Clostridium symbiosum is specific to glutamate as a substrate: at pH 7.0 and 25 ° C in 0.1 molar phosphate buffer, with 1 mmol / 1 NAD + and 40 mmol / 1 amino acid
  • the gene encoding the phenylalanine dehydrogenase from Bacillus sphaericus was point-specifically mutated using mismatch oligonucleotide primers and then selected for mutated DNA using the uracil DNA method, both as described by Kunkel TA et al. , Proc. Nat. Acad. Sci., 1985, 82, pages 488-492 and Kunkel TA et al. , Methods in Enzymology, 1987, 154, pages 367-382, with the polymerase chain reaction, DNA sequence analysis and expression in Escherichia coli (JK Teller et al., Eur. J. Biochem., 1992, 206, pages 151 to 159).
  • the enzyme expressed in Escherichia coli was chromatographed on Remazol Brilliant Red GG, immobilized on Sepharose 6B, as described by Syed S.E. H. et al. , Biochim. Biophys. Acta, 1990, 1115, pages 123-130, isolated and as described in T. J. Stillman et al. (J. Mol. Biol., 1993, 234, pages 1131-1139), crystallized and subjected to X-ray structure analysis.
  • Glutamate dehydrogenase from Clostridium symbiosum leucine dehydrogenase from Bacillus stearothermophilus, phenylalanine dehydrogenase from Thermoactinomyces intermedius and phenylalanine dehydrogenase from Bacillus sphaericus,
  • the residues Leu 89, Gly 90, Ala 163, Val 377 and Val 380 in the amino acid sequence of leucine dehydrogenase were recognized as crucial for the substrate specificity (KL Britton et al., J. Mol. Biol., 1993, 234, pages 943 and 944).
  • the residues Leu 89, Gly 90, Gly 163, Leu 377 and Val 380 in the amino acid sequence of the phenylalanine dehydrogenase were decisive for the substrate specificity recognized (KL Britton et al., J. Mol. Biol., 1993, 234, pages 943 and 944).
  • the count of the position of the amino acids here always relates to the numerical position of the respective amino acid in the sequence of the glutamate dehydrogenase from Clostridium symbiosum.
  • Gly 163 and Leu 377 residues modified and modified in the direction of the substrate specificity of a leucine dehydrogenase.
  • the gene encoding the phenylalanine dehydrogenase from Bacillus sphaericus was point-specifically mutated using mismatch oligonucleotide primers and then selected for mutated DNA by the uracil DNA method, both as described in Kunkel T. A. et al., Proc. Nat. Acad. Sei., 1985, 82, pages 488-492 and at Kunkel TA et al., Methods in Enzymology, 1987, 154, pages 367-382, with the polymerase chain reaction, DNA sequence analysis and expression in Escherichia coli (JK Teller et al., Eur. J. Biochem., 1992, 206, pages 151 to 159).
  • the wild-type Phe activity corresponds to 87.6 U / mg protein, measured under the same assay conditions as in Y. Asano et al. (J. Biol. Chem., 1987, 262, pages 10346-10354) at pH 10.4 and 25 ° C in 0.1 molar glycine-NaOH buffer, with 2.5 mmol / 1 NAD + and 10 mmol / 1 L-amino acid.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

Enzyme können gemeinhin entweder durch chemische Modifizierung der das Enzym bildenden Aminosäuren oder durch Mutation des das Enzym codierenden Gens verändert werden. Das erfindungsgemäße Verfahren ist dadurch gekennzeichnet, daß man nacheinander die Struktur von mindestens zwei Enzymen aus einer Gruppe von Enzymen klärt; die Bindungstaschen der Enzyme mit geklärter Struktur aus einer Gruppe vergleicht; die Aminosäuren ermittelt, die für die Bindung eines für das unveränderte Enzym bevorzugten Substrates notwendig sind; die Aminosäuren in der Bindungstasche des unveränderten Enzyms mit geklärter Struktur auswählt, welche für die Bindung eines erwünschten, vom unveränderten Enzym nicht bevorzugten Substrats zu verändern sind; die ausgewählten Aminosäuren durch Mutation eines zum Enzym gehörigen Gens verändert; und das mutierte Gen exprimiert und das gezielt veränderte Enzym isoliert. Zur Erfindung gehören auch neue veränderte Enzyme der Gruppe E.C. 1.4.1. Stereospezifische Umsetzung von Oxosäuren zu Aminosäuren und umgekehrt.

Description

Verfahren zur gezielten Veränderung von Enzymen, veränderte Enzyme und deren Verwendung
Beschreibung
Die Erfindung betrifft ein Verfahren zur gezielten Veränderung von Enzymen, veränderte Enzyme und deren Verwendung.
Enzyme können gemeinhin entweder durch chemische Modifizierung der das Enzym bildenden Aminosäuren oder durch Mutation des das Enzym codierenden Gens verändert werden. Chemische Modifizierungen sind häufig unspezifisch, so daß die gezielte Veränderung der Enzymstruktur durch gerichtete Mutation des Gens Vorteile gegenüber der chemischen Modifizierung aufweist.
Veränderte Enzyme zeigen häufig verbesserte Eigenschaften bezüglich Aktivität, Spezifität oder Stabilität gegenüber den unveränderten Enzymen. Bisherige Aktivitäten auf diesem Gebiet beschränkten sich häufig auf die Verbesserung globaler Eigenschaften des Enzyms wie z. B. Stabilität gegenüber
Reaktionsmedien. So zum Beispiel wurden alkalische Proteasen gegen die oxidierende Wirkung von Bleichmitteln stabilisiert. Das Problem der Änderung der Spezifität von Enzymen zur Umsetzung vorher definierter Substrate ist allerdings kaum bearbeitet worden. Eine Ausnahme bildet jedoch die Arbeit von H. M. Wilks et al. (H. M. Wilks et al. , Science 1988, 242, 1541 - 1544) , in der die Substratspezifität einer aktat- Dehydrogenase mit Laktat als bevorzugtem Substrat zu einer Malat-Dehydrogenase mit Malat als bevorzugtem Substrat umgewandelt wird.
Besonders erwünscht ist bei Enzymen die Selektivität zur Herstellung enantiomerenreiner Verbindungen. Die Enantioselektivität ist u. a. bei Aminosäure-Dehydrogenasen besonders gut ausgeprägt. So wurden Aminosäure-Dehydrogenasen aus einer Reihe von Organismen gescreent. Die wichtigsten Enzyme zum Einsatz in der organischen Synthese sind Alanin- Dehydrogenase (AlaDH, E.C. 1.4.1.1.), Phenylalanin- Dehydrogenase (PheDH; noch keine E.C. Nummer)) und insbesondere Leucin-Dehydrogenase (LeuDH, E.C. 1.4.1.9.) . Das bestuntersuchte Enzym der Gruppe ist aber die ubiquitäre Gluta at-Dehydrogenase (GluDH, E.C. 1.4.1.2.-4.), die einen wichtigen Knotenpunkt zwischen Kohlenstoff- und Stickstoffmetabolismus bildet. GluDH katalysiert die NAD(P)+- abhängige oxidative Desaminierung von L-Glutamat zu 2- Oxoglutarat und Ammoniak:
Glutamat + NAD(P)+ + H2O -^^ 2-Oxoglutarat + NH4+ + NAD(P)H + H
Aminosäure-Dehydrogenasen katalysieren allgemein die reversible reduktive Aminierung von prochiralen Ketosäuren zu L-Aminosäuren ( (S) -Konfiguration) bzw. die umgekehrte Reaktion der oxidativen Desaminierung von L-Aminosäuren zu Oxosäuren.
In den meisten Fällen, darunter allen NAD+-abhängigen GluDHs, weist das Enzym sechs identische Untereinheiten von je etwa 48 kD auf. Es wird eine erhebliche Homologie in der Polypeptidkette der hexameren GluDHs gefunden, insbesondere weisen die Glutamat-Bindungstasche und das aktive Zentrum eine bemerkenswerte Ähnlichkeit auf (Britton, K.L., Baker, P.J., Rice, D.W. und Stillman, T.J., Eur. J. Bioche . 1992, 209, 851-859) .
Der Grad der Ähnlichkeit zwischen den Strukturen der Mitglieder der Familie der Aminosäure-Dehydrogenasen aus verschiedenen Organismen ist so hoch, daß man bei den
Aminosäure-Dehydrogenasen von einer einzigen Superfamilie von Enzymen ausgeht, die durch divergente Evolution entstanden ist (S. Nagata, K. Tanisawa, N. Esaki, Y. Saka oto, T. Ohshima, H. Tanaka und K. Soda, Biochemistry 1988, 27, 9056- 62; H. Takada, T. Yoshimura, T. Ohshima, N. Esaki und K. Soda, J. Bioche . 1991, 109, 371-6) .
Die dreidimensionale Struktur der Glutamat-Dehydrogenase aus Clostridium symbiosum ist bekannt (Baker, P.J. et al. , Proteins 1992, 12, 75-86) . Das Gen dieses Enzyms wurde kloniert und überexprimiert in Escherichia coli (Teller, J.K., et al., Eur. J. Biochem. 1992, 286, 151-159) . Bisher gelang es jedoch nicht, durch gerichtete Mutation des Gens die Enzymstruktur dergestalt zu verändern, daß auch bestimmte, vor der Mutation ausgewählte Substrate umgesetzt werden.
Aufgabe der Erfindung ist es deshalb, ein Verfahren zur gezielten Veränderung von Enzymen bereitzustellen, bei dem gewünschte Substrate unabhängig von der natürlichen
Substratspezifität des Enzyms umgesetzt werden können. Eine weitere Aufgabe der Erfindung besteht darin, ein verändertes Enzym anzugeben, das an seinem Bindungsort für ein Substrat so abgeändert ist, daß ein gewünschtes, gemeinhin nicht bevorzugtes, Substrat vom veränderten Enzym mit hinreichender Aktivität, Selektivität und Stabilität umgesetzt wird.
Verfahrensmäßig gelöst wird das erfindungsgemäße Problem dadurch, daß man nacheinander die in Anspruch 1 angegebenen Schritte ausführt. Dadurch, daß man
- die Struktur von mindestens zwei Enzymen aus einer Gruppe von Enzymen klärt,
die Bindungstaschen der Enzyme mit geklärter Struktur aus einer Gruppe vergleicht;
die Aminosäuren ermittelt, die für die Bindung eines für das unveränderte Enzym bevorzugten Substrates notwendig sind; die Aminosäuren in der Bindungstasche des unveränderten Enzyms mit geklärter Struktur auswählt, welche für die Bindung eines erwünschten, vom unveränderten Enzym nicht bevorzugten Substrats zu verändern sind;
- die ausgewählten Aminosäuren durch Mutation eines zum Enzym gehörigen Gens verändert; und
das mutierte Gen exprimiert und das gezielt veränderte Enzym isoliert,
gelingt es, das Substratspektrum gegenüber dem unveränderten Enzym auf neue Zielstrukturen zu erweitern. Dadurch läßt sich eine vorteilhafte Aktivität, Selektivität oder Stabilität auf eine größere Anzahl Substrate ausdehnen.
Erfindungsgemäß werden dabei unter einer Gruppe von Enzymen alle Mitglieder einer Unter-Unterklasse (Sub-subclass) nach E.C. -Nomenklatur verstanden (E.C. = enzyme commission) . Die Art der Unter-unterklasse unterliegt keiner besonderen Beschränkung. Zu den bevorzugte Unter-unterklassen gehören NAD(P)+-abhängige Redoxreaktionen mit Aminen (Gruppe 1.4.1. nach E.C. -Nomenklatur) , Serin-Proteasen (Gruppe 3.4.21. nach E.C. -Nomenklatur) und Carboxylesterhydrolasen (Gruppe 3.1.1. nach E.C.-Nomenklatur) .
Im Rahmen der Erfindung wird unter Strukturaufklärung die Bestimmung der räumlichen Struktur eines Enzyms verstanden. Grundsätzlich ist es notwendig, Informationen über die Struktur zweier Enzyme aus einer Gruppe zu erhalten. Dabei können alle dem Fachmann bekannten Methoden zur Strukturaufklärung von Enzymen für das erfindungsgemäße Verfahren vorteilhaft eingesetzt werden. Besonders bevorzugt ist es, daß man bei wenigstens einem Enzym einer Gruppe die Analyse der Aminosäure-Sequenz durchführt, einen zugehörigen
Enzym-Substrat-Komplex kristallisiert und die Raumstruktur des Enzym-Substrat-Komplexes aufklärt. Ist die Sequenz eines zweiten Enzyms der Gruppe hochhomolog zur Struktur des ersten, genügt dies hinsichtlich der Struktur des zweiten Enzyms der Gruppe als Information für die Durchführung der Veränderungen am Enzym. Hierbei wird unter hochhomolog die mindestens 50%ige Übereinstimmung der Sequenz zweier Enzyme verstanden.
Im zweiten Schritt des erfindungsgemäßen Verfahrens werden die Bindungstaschen der Enzyme aus einer Gruppe, deren Struktur im ersten Schritt des erfindungsgemäßen Verfahrens geklärt wurde, miteinander verglichen. Unter Bindungstasche wird dabei die dreidimensionale Umgebung des Bindungsortes eines Substrates am Enzym zum letztlichen Zweck der Umsetzung durch das Enzym verstanden, wobei die Bindungstasche aus Aminosäuren gebildet wird, die in der Sequenz des Enzyms nicht notwendigerweise nebeneinander liegen. Beim Vergleichen der Bindungstaschen der Enzyme wird der Einfluß der einzelnen Aminosäuren der Bindungstaschen hinsichtlich Analogie in bezug auf Polarität, Ladung und sterischem Anspruch an das Substrat geprüft.
Unter Berücksichtigung der bei der Analogie-Prüfung erhältlichen Ergebnisse werden dann die Aminosäuren ermittelt, die für die Bindung eines für das Enzym bevorzugten Substrates notwendig sind. Ebenso wird die Stellung dieser Aminosäuren in der Sequenz ermittelt. Hieran schließt sich dann die Auswahl derjenigen Aminosäuren in der Bindungstasche von Enzymen mit geklärter Struktur an, welche für die Bindung eines gewünschten, vom unveränderten Enzym nicht bevorzugten Substrat zu verändern sind. Die ausgewählten Aminosäuren werden bevorzugt durch Mutation des entsprechenden Tripletts des zugehörigen Gens derart verändert, daß das veränderte Triplett die für die Bindung des gewünschten Substrates erforderliche Aminosäure codiert. Das mutierte Gen wird in einem geeigneten Organismus exprimiert, das veränderte Enzym aus dem Organismus isoliert und auf Bindung des gewünschten Substrates sowie auf Aktivität, Selektivität und Stabilität geprüft.
Hierbei wird vorteilhaft eine neuentwickelte Technik zur
Prüfung der veränderten Enzyme eingesetzt. Zum Screening und zur Optimierung der Mutanten wird auf Mikrotiterplatten getestet, die es gestatten, viele Mutanten (in Reihen) auf viele Substrate (Zeilen) testen. Im Falle der Gruppe 1.4.1. der Aminosäure-Dehydrogenasen wird als Screening-Reaktion die oxidative Desamidierung verwendet; dazu werden die Reaktanten (Aminosäure und Cofaktor) mit einem künstlichen Elektronenakzeptor als Mediator (Phenazinmethosulfat) sowie einem gefärbten terminalen Elektronenakzeptor (Tetrazoliumfarbstoff) zusammengebracht. Aktivität eines mutierten Enzyms wird durch eine Färbung angezeigt.
Das erfindungsgemäße Verfahren hat sich besonders dann bewährt, wenn als Enzyme Aminosäure-Dehydrogenasen der Gruppe 1.4.1. und als sowohl vom unveränderten Enzym als auch vom veränderten Enzym bevorzugte Substrate 2-Oxosäuren eingesetzt werden, die sich nur in ihrem Rest unterscheiden. So wurde gefunden, daß bei der Glutamat-Dehydrogenase aus Clostridium symbiosum die folgenden Aminosäuren der Sequenz des Enzyms besonderen Einfluß bei der Bindung des Substrates ausüben: Valin 377, Serin 380, Threonin 193, Lysin 89 und Alanin 163; ferner wurde gefunden, daß die folgenden Aminosäuren zusätzlichen Einfluß ausüben: Glutamin 110, Aspartat 114, Methionin 121, Arginin 205.
Verfahrensgemäß wird dann zur Herstellung von Enzymen für die stereospezifische reversible Reaktion der oxidativen Desaminierung einer L-Aminosäure oder reduktiven Aminierung einer Oxosäure, bei einem Enzym aus der Gruppe mit der E.C.¬ Nummer 1.4.1. eine Bindungstasche mit den Resten Valin 377, Serin 380, Threonin 193, Lysin 89 und Alanin 163 durch Mutation eines zum Enzym gehörigen Gens verändert.
Die Erfindung stellt auch neuartige Enzyme zur Verfügung.
Diese verfügen bevorzugt über mindestens eine Bindungstasche, die wenigstens hinsichtlich eines Restes verändert ist, so daß ein gewünschtes, vom unveränderten Enzym nicht bevorzugtes Substrat mit hinreichender Aktivität, Selektivität und Stabilität umgesetzt wird. Insbesondere zur Bindung eines vom unveränderten Enzym nicht bevorzugten Substrates für die stereospezifische Reaktion der oxidativen Desaminierung einer L-Aminosäure oder reduktiven Aminierung einer Oxosäure ist es von Vorteil, daß die Bindungstasche wenigstens eine Veränderung an den Resten Valin 377, Serin 380, Threonin 193, Lysin 89 und Alanin 163 aufweist, mit der Konsequenz, daß das gewünschte Substrat vom veränderten Enzym verbessert gebunden und umgesetzt wird.
Mit dem Verfahren gemäß der Erfindung und mit den neuartigen erfindungsgemäß veränderten Enzymen lassen sich unter anderem 2-Oxosäuren zur Herstellung von L-Alpha-Aminosäuren in hoher Enantiomerenausbeute umsetzen. Des weiteren ist es vorteilhaft, die wenigstens hinsichtlich eines Restes in der Bindungstasche veränderten Enzyme zur Umsetzung von L-Alpha- Aminosäuren zur Herstellung von 2-Oxosäuren zu verwenden. Außerdem ist es von großem Vorteil, die veränderten Enzyme zur Umsetzung von DL-Alpha-Aminosäuren zur Herstellung von 2- Oxosäuren und D-Alpha-Aminosäuren zu verwenden.
Durch den Einsatz von DL-Alpha-Aminosäuren als Substrate sind nach Umsetzung mit Enzymen der Gruppe 1.4.1. enantiomerenreine D-Aminosäuren zugänglich. Preiswerte L- Alpha-Aminosäuren lassen sich somit unter äußerst vorteilhaften Bedingungen zu Oxosäuren umsetzen.
Beispiel 1:
Die dreidimensionale Kristallstruktur der Glutamat- Dehydrogenase aus Clostridium symbiosum ist aus der Literatur bekannt und zwar sowohl als Komplex mit Glutamat (T. J. Stillman et al. , J. Mol. Biol., 1993, 234, Seiten 1131 - 1139) als auch in freier Form sowie als Komplex mit dem Cofaktor NAD+ (P. J. Baker et al. , Proteins, 1992, 12, Seiten 75 - 86) .
Aus der Literatur ist ebenfalls bekannt, daß die Substratspezifität der Glutamat-Dehydrogenase aus Clostridium symbiosum durch Wechselwirkungen mit den Seitenketten der Aminosäuren Lys 89, Ser 380, Gly 90, Ala 163 und Val 377 herrührt (T. J. Still an et al. , J. Mol. Biol., 1993, 234, Seiten 1131 - 1139; die zahlenmäßige Bezeichnung der Aminosäuren bezieht sich auf die Stellung der jeweiligen Aminosäure in der Sequenz der Glutamat-Dehydrogenase aus Clostridium symbiosum, gerechnet vom N-Terminus her) .
Die spezifische Wechselwirkung mit der 7-Carboxylgruppe des Substrates Glutamat wird durch die Lysin-Seitengruppe in Position 89 der Glutamat-Dehydrogenase aus Clostridium symbiosum ausgeübt (K. L. Britton et al., J. Mol. Biol., 1993, 234, Seiten 938 - 945) .
Ein Austausch dieser Seitenkette in Position 89 durch eine ungeladene und unpolare Gruppe setzt daher die Aktivität der Glutamat-Dehydrogenase aus Clostridium symbiosum gegenüber Glutamat drastisch herab und die Aktivität gegenüber unpolaren Aminosäuren steigt an.
Der Wildtyp der Glutamat-Dehydrogenase aus Clostridium symbiosum ist spezifisch in bezug auf Glutamat als Substrat: bei pH 7.0 und 25 °C in 0.1 molarem Phosphatpuf er, mit 1 mmol/1 NAD+ und 40 mmol/1 Aminosäure konnte die
Spezifitätskonstante kcat/κM ^ei L-Glutamat als Substrat zu 5,l-10- l-mol~----s_--- bzw. eine Aktivität von 11,2 U/mg bestimmt werden, während L-Norleucin und L-Methionin unter den gleichen Bedingungen keine meßbare Aktivität zeigen (Aktivität < 10-4 U/mg) .
Das Gen, das die Phenylalanin-Dehydrogenase aus Bacillus sphaericus kodiert, wurde durch Verwendung von Mismatch- Oligonukleotid-Primern punktspezifisch mutiert und anschließend nach der Uracil-DNA-Methode für mutierte DNA selektiert, beides wie beschrieben bei Kunkel T. A. et al. , Proc. Nat. Acad. Sei., 1985, 82, Seiten 488 - 492 und bei Kunkel T. A. et al. , Methods in Enzymology, 1987, 154, Seiten 367 - 382, mit der Polymerase-Chain-Reaktion kloniert, die DNA-Sequenzanalyse durchgeführt und Expression in Escherichia coli vorgenommen (J. K. Teller et al. , Eur. J. Biochem., 1992, 206, Seiten 151 bis 159) .
Das in Escherichia coli exprimierte Enzym wurde durch Chromatographie an Remazol Brilliant Red GG, immobilisiert auf Sepharose 6B, wie bei Syed S. E. H. et al. , Biochim. Biophys. Acta, 1990, 1115, Seiten 123 - 130 beschrieben, isoliert und wie in T. J. Stillman et al. (J. Mol. Biol., 1993, 234, Seiten 1131 - 1139) beschrieben, kristallisiert und der Röntgenstrukturanalyse unterworfen.
Ergebnis:
Durch die oben beschriebene Prozedur wurde die Glutamat- Dehydrogenase aus Clostridium symbiosum in der Position 89 durch gezielte Mutagenese von Lysin zu Leucin verändert (Lys89Leu, K89L) . Bei dem in Position 89 in der Sequenz geänderten Enzym wurden die Aktivitäten mit den gleichen Substraten wie beim Wildtyp ermittelt.
Hierbei wurden unter den gleichen Assay-Bedingungen wie oben die folgenden relativen Aktivitäten (U/mg) gemessen:
rel. Aktivität (U/mg)
L-Glutamat 0,011
L-Norleucin 0,012
L-Methionin 0,005
Während also der Wildtyp der Glutamat-Dehydrogenase aus Clostridium symbiosum nur Glutamat umsetzt, nicht aber Norleucin oder Methionin, setzt das in Position 89 mutierte Enzym Lys 89 Leu (K89L) die drei Aminosäuren Norleucin,
Glutamat und Methionin im Verhältnis der kcat/Kjγ[-Werte von 1,2 : 1,1 : 0,5 um. Beispiel 2 :
Die dreidimensionale Kristallstruktur der Glutamat- Dehydrogenase aus Clostridium symbiosum ist aus der Literatur bekannt und zwar sowohl als Komplex mit Glutamat (T. J. Stillman et al., J. Mol. Biol., 1993, 234,
Seiten 1131 - 1139) als auch in freier Form sowie als Komplex mit dem Cofaktor NAD+. (P. J. Baker et al. , Proteins, 1992, 12, Seiten 75 - 86) .
Aus der Literatur ist ebenfalls bekannt, daß die Substratspezifität der Glutamat-Dehydrogenase aus Clostridium symbiosum durch Wechselwirkungen mit den Seitenketten der Aminosäuren Lys 89, Ser 380, Gly 90, Ala 163 und Val 377 herrührt (T. J. Stillman et al., J. Mol. Biol., 1993, 234, Seiten 1131 - 1139; die zahlenmäßige Bezeichnung der Aminosäuren bezieht sich auf die Stellung der jeweiligen Aminosäure in der Sequenz der Glutamat-Dehydrogenase aus Clostridium symbiosum, gerechnet vom N-Terminus her) .
Durch zusätzlichen Vergleich der literaturbekannten Aminosäuresequenzen (K. L. Britton et al. , J. Mol. Biol., 1993, 234, Seiten 938 - 945) der vier Aminosäure- Dehydrogenasen
Glutamat-Dehydrogenase aus Clostridium symbiosum, Leucin-Dehydrogenase aus Bacillus stearothermophilus, Phenylalanin-Dehydrogenase aus Thermoactinomyces intermedius und Phenylalanin-Dehydrogenase aus Bacillus sphaericus,
wurden die Reste Leu 89, Gly 90, Ala 163, Val 377 und Val 380 in der Aminosäuresequenz der Leucin-Dehydrogenase für die Substratspezifität als ausschlaggebend erkannt (K. L. Britton et al., J. Mol. Biol., 1993, 234, Seiten 943 und 944). Desgleichen wurden die Reste Leu 89, Gly 90, Gly 163, Leu 377 und Val 380 in der Aminosäuresequenz der Phenylalanin- Dehydrogenase für die Substratspezifität als ausschlaggebend erkannt (K. L. Britton et al., J. Mol. Biol., 1993, 234, Seiten 943 und 944) . Die Zählung der Stellung der Aminosäuren bezieht sich hier immer auf die zahlenmäßige Stellung der jeweiligen Aminosäure in der Sequenz der Glutamat- Dehydrogenase aus Clostridium symbiosum.
Da die Substratspezifität von Leucin-Dehydrogenase und Phenylalanin-Dehydrogenase aber völlig verschieden ist (K. L. Britton et al. , J. Mol. Biol., 1993, 234, Seiten 943 und 944) , wird die Substratspezifität der Phenylalanin- Dehydrogenase aus Bacillus sphaericus durch Mutation der
Reste Gly 163 und Leu 377 abgeändert und in Richtung auf die Substratspezifität einer Leucin-Dehydrogenase modifiziert.
Das Gen, das die Phenylalanin-Dehydrogenase aus Bacillus sphaericus kodiert, wurde durch Verwendung von Mismatch- Oligonukleotid-Primern punktspezifisch mutiert und anschließend nach der Uracil-DNA-Methode für mutierte DNA selektiert, beides wie beschrieben bei Kunkel T. A. et al., Proc. Nat. Acad. Sei., 1985, 82, Seiten 488 - 492 und bei Kunkel T. A. et al., Methods in Enzymology, 1987, 154, Seiten 367 - 382, mit der Polymerase-Chain-Reaktion kloniert, die DNA-Sequenzanalyse durchgeführt und Expression in Escherichia coli vorgenommen (J. K. Teller et al. , Eur. J. Biochem., 1992, 206, Seiten 151 bis 159) .
Das in Escherichia coli exprimierte Enzym wurde durch Chromatographie an Remazol Brilliant Red GG, immobilisiert auf Sepharose 6B, wie bei Syed S. E. H. et al., Biochim. Biophys. Acta, 1990, 1115, Seiten 123 - 130 beschrieben, isoliert und wie in T. J. Stillman et al. (J. Mol. Biol., 1993, 234, Seiten 1131 - 1139) beschrieben, kristallisiert und der Röntgenstrukturanalyse unterworfen. Ergebnis :
Durch die oben beschriebene Prozedur wurde die Phenylalanin- Dehydrogenase aus Bacillus sphaericus in zwei Stellen in der Aminosäuresequenz verändert: Statt der Aminosäuren Gly 163 und Leu 377 wies das mutierte Enzym die Aminosäuren Ala 163 und Val 377 am entsprechenden Ort in der Sequenz auf. Bei dem in zwei Positionen in der Sequenz geänderten Enzym wurden die Aktivitäten mit verschiedenen potentiellen Substraten ermittelt unter den Assay-Bediungungen wie bei Y. Asano et al. (J. Biol. Chem. 1987, 262, Seiten 10346 - 10354) bei pH 10.4 und 25 °C in 0.1 molarem Glycin-NaOH-Puffer, mit 2.5 mmol/1 NAD+ und 10 mmol/1 L-Aminosäure. Die Ergebnisse sind wie folgt:
Aminosäure Wildtvp Doppelmutante
L-Leu 1 . 5 % 3 . 0 % L-Val 1 . 7 % 6 . 4 % L-Met 2 . 6 % 3 . 8 % L-Nva 2 . 9 % 3 . 2 % L-Ile 1 . 0 % 5 . 5 %
L-Phe (zum Vergleich) 100 . 0 % 7 . 7 %
Die Phe-Aktivität des Wildtyps entspricht 87.6 U/mg Protein, gemessen unter den gleichen Assay-Bedingungen wie bei Y. Asano et al. (J. Biol. Chem., 1987, 262, Seiten 10346 - 10354) bei pH 10.4 und 25 °C in 0.1 molarem Glycin-NaOH-Puffer, mit 2.5 mmol/1 NAD+ und 10 mmol/1 L-Aminosäure.
Es ist daher festzustellen, daß nicht nur die relative Aktivität der Mutante bei den aliphatischen L-Aminosäuren nahe an die Aktivität gegenüber L-Phenylalanin heranreicht, sondern daß die absolute Aktivität der Mutante gegenüber aliphatischen L-Aminosäuren höher ist als die Aktivität des Wildtyps gegenüber diesen Substraten. Dies bedeutet, daß die Spezifität signifikant hin zu derjenigen einer Leucin- Dehydrogenase verändert ist.
Beispiel 3 :
0.4 mmol (0.52 g) 2-Ketocaproat (= 2-Oxonorleucin) wurden in 100 ml 0.1 molarem Phosphatpuffer mit pH 7 gelöst und 0.05 mol (2.68 g) Ammoniumchlorid sowie 0.1 mmol (66.3 mg) NAD+ zugegeben. Anschließend wurden 4.5 mg einer in Position 89 von Lysin zu Leucin veränderten Glutamat- Dehydrogenase zugegeben und unter Magnetrührung reagieren gelassen. Die gemessene Aktivität des in Position 89 veränderten Enzyms betrug 1.3 U/mg. Nach 96 Stunden wurden zu dem Ansatz 100 ml Ethanol gegeben und am Rotationsverdampfer eingeengt. Das ausgefallene Produkt wurde je einmal mit 10 ml kaltem Wasser und Ethanol gewaschen und bei 50 °C im Vakuum getrocknet. Die Enantiomerenreinheit wurde durch GC über Chirasil-Val bestimmt.
Ausbeute an L-Norleucin: 0.41 g (78 % der Theorie)
Enantiomerenreinheit: > 99.8 % L-Anteil
Weitere Ausführungsformen der Erfindung werden an Hand der nachfolgenden Patentansprüche ersichtlich.

Claims

Patentansprüche
1. Verfahren zur gezielten Veränderung von Enzymen, dadurch gekennzeichnet, daß man nacheinander folgende Schritte ausführt:
- Strukturaufklärung von mindestens zwei Enzymen aus einer Gruppe von Enzymen;
Vergleich von Bindungstaschen der Enzyme mit geklärter Struktur aus einer Gruppe;
Ermittlung der Aminosäuren, die für die Bindung eines für das unveränderte Enzym nicht bevorzugten
Substrates notwendig sind;
Auswahl der Aminosäuren in der Bindungstasche des Enzyms mit geklärter Struktur, welche für die Bindung eines erwünschten, vom unveränderten Enzym nicht bevorzugten Substrates zu verändern sind;
Veränderung der ausgewählten Aminosäuren durch Mutation eines zum Enzyms gehörigen Gens;
Exprimierung des mutierten Gens und Isolierung des gezielt veränderten Enzyms.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß zum Schritt der Strukturaufklärung folgende Einzelschritte gehören:
- bei wenigstens einem Enzym einer Gruppe Analyse der
Aminosäure-Sequenz, Kristallisation eines zugehörigen Enzym-Substrat-Komplexes und Aufklärung der Raumstruktur des Enzym-Substrat-Komplexes;
Analyse einer hochhomologen Aminosäure-Sequenz wenigstens eines weiteren Enzyms derselben Gruppe und gegebenenfalls Kristallisation des Enzyms.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als gewünschte, vom unveränderten Enzym nicht bevorzugte Substrate 2-0xosäuren eingesetzt werden.
4. Verfahren zur Herstellung von Enzymen für die stereospezifische reversible Reaktion der oxidativen Desaminierung einer L-Aminosäure oder reduktiven Aminierung einer Oxosäure, bei dem bei einem Enzym aus der Gruppe mit der E.C.¬ Nummer 1.4.1. eine Bindungstasche mit den Resten Valin 377, Serin 380, Threonin 193, Lysin 89 und Alanin 163 durch Mutation eines zum Enzym gehörigen Gens verändert wird.
5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß eine Bindungstasche verändert wird, die zusätzlich die Reste Glutamin 110, Aspartat 114, Methionin 121, Arginin 205 und gegebenenfalls weitere Reste aufweist.
6. Enzym der Gruppe mit der E.C.-Nummer 1.4.1. mit wenigstens einer Bindungstasche zur Bindung eines Substrats für die stereospezifische reversible Reaktion der oxidativen Desaminierung einer L-Aminosäure oder reduktiven Aminierung einer Oxosäure, dadurch gekennzeichnet, daß es wenigstens einen geänderten Rest unter den zur Bindungstasche des unveränderten Enzyms gehörenden Resten Valin 377, Serin 380, Threonin 193, Lysin 89 und Alanin 163 aufweist. Enzym nach Anspruch 6, dadurch gekennzeichnet, daß die Bindungstasche zusätzlich die Reste Glutamin 110,
Aspartat 114, Methionin 121, Arginin 205 und gegebenenfalls weitere Reste aufweist, die ggf. verändert sind.
8. Verwendung eines Enzyms nach einem der Ansprüche 6 oder 7 zur Umsetzung von 2-Oxosäuren zur Herstellung von L- Alpha-Aminosäuren.
Verwendung eines Enzyms nach einem der Ansprüche 6 oder 7 zur Umsetzung von L-Alpha-Aminosäuren zur Herstellung von 2-Oxosäuren.
10. Verwendung eines Enzyms nach einem der Ansprüche 6 oder 7 zur Umsetzung von DL-Alpha-Aminosäuren zur Herstellung von 2-Oxosäuren und D-Alpha-Aminosäuren.
PCT/EP1994/003420 1993-10-18 1994-10-17 Verfahren zur gezielten veränderung von enzymen, veränderte enzyme und deren verwendung WO1995011296A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP7511318A JPH09504426A (ja) 1993-10-18 1994-10-17 酵素の合目的変更法、変更された酵素及びその使用
AU79382/94A AU7938294A (en) 1993-10-18 1994-10-17 Method for controlled modification of enzymes, enzymes modified in this way and the use of such enzymes
US08/831,753 US5798234A (en) 1993-10-18 1994-10-17 Method for the directed modification of enzymes, modified enzymes and their use
EP94930183A EP0724629A1 (de) 1993-10-18 1994-10-17 Verfahren zur gezielten veränderung von enzymen, veränderte enzyme und deren verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4335448 1993-10-18
DEP4335448.3 1993-10-18

Publications (1)

Publication Number Publication Date
WO1995011296A1 true WO1995011296A1 (de) 1995-04-27

Family

ID=6500406

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1994/003420 WO1995011296A1 (de) 1993-10-18 1994-10-17 Verfahren zur gezielten veränderung von enzymen, veränderte enzyme und deren verwendung

Country Status (5)

Country Link
US (1) US5798234A (de)
EP (1) EP0724629A1 (de)
JP (1) JPH09504426A (de)
AU (1) AU7938294A (de)
WO (1) WO1995011296A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692538A2 (de) * 1994-07-15 1996-01-17 Degussa Aktiengesellschaft Verfahren zur Herstellung optisch aktiver L-Aminosäuren, neue optisch aktive L-Aminosäuren mit raumerfüllenden Seitengruppen und deren Verwendung
US5670652A (en) * 1994-07-15 1997-09-23 Degussa Aktiengesellschaft Method of producing optically active, 4-substituted (S)-2-oxazolidinones
WO1998038286A1 (en) * 1997-02-28 1998-09-03 Novo Nordisk A/S Laccase mutants
US6060442A (en) * 1998-02-24 2000-05-09 Novo Nordisk A/S Laccase mutants
WO2000037631A1 (en) * 1998-12-22 2000-06-29 University College Dublin, National University Of Ireland, Dublin Process for the production of enzymes with altered catalytic activity relative to an amino acid substrate and enzymes so produced
JP2002345472A (ja) * 2001-05-11 2002-12-03 Oji Paper Co Ltd 新規ヘキセンウロニダーゼ、それをコードする遺伝子、およびそれらの使用
WO2005017171A2 (en) * 2003-08-16 2005-02-24 Degussa Ag Process for the production of d-amino acids
WO2018096169A1 (en) * 2016-11-28 2018-05-31 C-Lecta Gmbh Trehalose phosphorylase

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7202070B2 (en) * 2000-10-31 2007-04-10 Biocatalytics, Inc. Method for reductive amination of a ketone using a mutated enzyme
US7727756B2 (en) * 2003-03-21 2010-06-01 Novozymes A/S Subtilases
WO2004083362A2 (en) * 2003-03-21 2004-09-30 Novozymes A/S Modification of subtilases using protein modelling based on the jp170 three-dimensional structure
EP1702074B1 (de) * 2003-09-25 2009-11-11 Monsanto Technology LLC Verhinderung des einbaus von nichtstandard-aminosäuren in protein
WO2006015885A1 (en) * 2004-08-13 2006-02-16 University College Dublin, National University Of Ireland, Dublin Amino acid dehydrogenase-derived biocatalysts
WO2006113085A2 (en) * 2005-03-28 2006-10-26 Biocatalytics, Inc. D-amino acid dehydrogenase and method of making d-amino acids

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
GREEN, D.W. ET AL.: "Inversion of the substrate specificity of Yeast Alcohol Dehydrogenase", J.BIOL.CHEM., vol. 268, no. 11, 15 April 1993 (1993-04-15), pages 7792 - 7798 *
KATAOKA, K. ET AL.: "Site-directed mutagenesis of a hexapeptide segment involved in substrate recognition of Phenylalanine Dehydrogenase from Thermoacetinomyces intermedius", J.BIOCHEM., vol. 114, no. 1, July 1993 (1993-07-01), pages 69 - 75 *
POWER, S.D. ET AL.: "Biotechnology Vol. 7b, "Gene Technology"; vol. eds. Jacobsen, G.K & Jolly, S.O., chapter 6b: "The engineering of structural and catalytic properties of proteins", pages 262-276", VCH PUBLISHERS, ISBN 0-89573-561-X *
WILKS, H.M. ET AL.: "Designs for a broad substrate specificity keto acid dehydrogenase", BIOCHEMISTRY, vol. 29, no. 37, 1990, pages 8587 - 8591 *
WILSON, C. ET AL.: "Computational method for the design of enzymes with altered substrate specificity", J.MOL.BIOL., vol. 220, 1991, pages 495 - 506 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0692538A2 (de) * 1994-07-15 1996-01-17 Degussa Aktiengesellschaft Verfahren zur Herstellung optisch aktiver L-Aminosäuren, neue optisch aktive L-Aminosäuren mit raumerfüllenden Seitengruppen und deren Verwendung
EP0692538A3 (de) * 1994-07-15 1997-03-05 Degussa Verfahren zur Herstellung optisch aktiver L-Aminosäuren, neue optisch aktive L-Aminosäuren mit raumerfüllenden Seitengruppen und deren Verwendung
US5670652A (en) * 1994-07-15 1997-09-23 Degussa Aktiengesellschaft Method of producing optically active, 4-substituted (S)-2-oxazolidinones
US6218170B1 (en) 1997-02-28 2001-04-17 Novo Nordisk A/S Laccase mutants
WO1998038286A1 (en) * 1997-02-28 1998-09-03 Novo Nordisk A/S Laccase mutants
US6060442A (en) * 1998-02-24 2000-05-09 Novo Nordisk A/S Laccase mutants
WO2000037631A1 (en) * 1998-12-22 2000-06-29 University College Dublin, National University Of Ireland, Dublin Process for the production of enzymes with altered catalytic activity relative to an amino acid substrate and enzymes so produced
JP2002345472A (ja) * 2001-05-11 2002-12-03 Oji Paper Co Ltd 新規ヘキセンウロニダーゼ、それをコードする遺伝子、およびそれらの使用
JP4556344B2 (ja) * 2001-05-11 2010-10-06 王子製紙株式会社 新規ヘキセンウロニダーゼ、それをコードする遺伝子、およびそれらの使用
WO2005017171A2 (en) * 2003-08-16 2005-02-24 Degussa Ag Process for the production of d-amino acids
WO2005017171A3 (en) * 2003-08-16 2005-06-23 Degussa Process for the production of d-amino acids
WO2018096169A1 (en) * 2016-11-28 2018-05-31 C-Lecta Gmbh Trehalose phosphorylase
US11142749B2 (en) 2016-11-28 2021-10-12 New Matterhorn, Llc Trehalose phosphorylase

Also Published As

Publication number Publication date
AU7938294A (en) 1995-05-08
US5798234A (en) 1998-08-25
JPH09504426A (ja) 1997-05-06
EP0724629A1 (de) 1996-08-07

Similar Documents

Publication Publication Date Title
DE60020943T2 (de) HYDANTOINASE-VARIANTEN MIT VERBESSERTEN EIGENSCHAFTEN UND IHRE ANWENDUNG ZUR PRODUKTION VON AMINOSäUREN
DE69534801T2 (de) Neues lysin decarboxylasegen und verfahren zur herstellung von l-lysin
WO1995011296A1 (de) Verfahren zur gezielten veränderung von enzymen, veränderte enzyme und deren verwendung
DE69921881T2 (de) L-Glutaminsäure-herstellendes Bakterium und Verfahren zur Herstellung von L-Glutaminsäure
DE69332805T2 (de) Aspertokinasegenvarianten
DE68925083T2 (de) Rekombinante DNS, diese rekombinante DNS enthaltender Mikroorganismus und Verfahren zur Herstellung von L-Aminosäure unter Verwendung dieses Mikroorganismus
EP1730291B1 (de) Nitrilhydratase aus rhodococcus
EP2264051B1 (de) Neue, Polyaminosäuren bildende oder abbauende Genprodukte von Bacillus licheniformis und darauf aufbauende verbesserte biotechnologische Produktionsverfahren
DE69834452T2 (de) Verfahren zur Herstellung von optisch aktiven Verbindungen
EP0186035A2 (de) Neue D-Aminosäure-Transaminase und ihre Verwendung
EP2418276B1 (de) Mikroorganismenstamm zur Produktion von rekombinanten Proteinen
DE19909146A1 (de) Verfahren zur gezielten biologischen Synthese von Peptiden
EP1205542B1 (de) L-Aminosäure-Oxidase aus Rhodococcus-Arten
EP1197563B1 (de) Verfahren zur Herstellung von Aminosäuren
DE102008063234A1 (de) Biotechnologische Herstellung von Riboflavin mit hoher Ausbeute
DE69324118T2 (de) Verfahren zur Herstellung von Riboflavin
CA2384122C (en) Cyclic depsipeptide synthetase and gene thereof, and mass production system for cyclic depsipeptide
EP1200601B1 (de) Verfahren zur herstellung von l-aminosäuren aus ihren racemischen n-acetyl-d,l-derivaten durch enzymatische racemat-spaltung mittels isolierter, rekombinanter enzyme
EP0969095A2 (de) (S)-Hydroxynitrillyasen mit verbesserter Substratakzeptanz und deren Verwendung
DE69211340T2 (de) Verfahren zur enzymatischen herstellung von makrolakton
DE69938427T2 (de) An der herstellung von homo-glutaminsäure beteiligtes gen und dessen verwendung
DE3688816T2 (de) Dns-sequenz.
EP0107823A2 (de) DNA-Sequenz und DNA-Strukturen und sie verwendendes Verfahren zur Herstellung von Penicillin-acylase
DE3853092T2 (de) Verfahren zur Herstellung von Proteinen, die nicht in Proteinen vorkommende Aminosäuren enthalten.
DE19523279A1 (de) Verfahren zur mikrobiellen Herstellung von Aminosäuren mittels rekombinanter Mikroorganismen mit erhöhter Sekretionsrate

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AM AU BB BG BR BY CA CN CZ EE FI GE HU JP KG KP KR KZ LK LR LT LU LV MD MG MN NO NZ PL RO RU SI SK TJ TT UA US UZ VN

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): KE MW SD SZ AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE BF BJ CF CG CI CM GA GN ML MR NE SN TD TG

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1994930183

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1996 628699

Date of ref document: 19960417

Kind code of ref document: A

Format of ref document f/p: F

WWP Wipo information: published in national office

Ref document number: 1994930183

Country of ref document: EP

ENP Entry into the national phase

Ref country code: US

Ref document number: 1997 831753

Date of ref document: 19970401

Kind code of ref document: A

Format of ref document f/p: F

NENP Non-entry into the national phase

Ref country code: CA

WWW Wipo information: withdrawn in national office

Ref document number: 1994930183

Country of ref document: EP