WO1993012403A1 - Drehzahlsensor, insbesondere zahnradsensor - Google Patents

Drehzahlsensor, insbesondere zahnradsensor Download PDF

Info

Publication number
WO1993012403A1
WO1993012403A1 PCT/EP1992/002796 EP9202796W WO9312403A1 WO 1993012403 A1 WO1993012403 A1 WO 1993012403A1 EP 9202796 W EP9202796 W EP 9202796W WO 9312403 A1 WO9312403 A1 WO 9312403A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
speed
component
hall element
hall
Prior art date
Application number
PCT/EP1992/002796
Other languages
English (en)
French (fr)
Inventor
Ludwig Freund
Joachim Mathes
Original Assignee
Swf Auto-Electric Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Swf Auto-Electric Gmbh filed Critical Swf Auto-Electric Gmbh
Publication of WO1993012403A1 publication Critical patent/WO1993012403A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P3/00Measuring linear or angular speed; Measuring differences of linear or angular speeds
    • G01P3/42Devices characterised by the use of electric or magnetic means
    • G01P3/44Devices characterised by the use of electric or magnetic means for measuring angular speed
    • G01P3/48Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage
    • G01P3/481Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals
    • G01P3/488Devices characterised by the use of electric or magnetic means for measuring angular speed by measuring frequency of generated current or voltage of pulse signals delivered by variable reluctance detectors

Definitions

  • the invention relates to a speed sensor, in particular a gearwheel sensor, with a magnet and two Hall elements. can be moved past the speed sensor.
  • Such speed sensors are used wherever the speed or a rotational movement of a component is to be detected.
  • a preferred area of application is, for example, the automotive industry and in particular the automatic one
  • ABS Brake system
  • ASR automatic slip control
  • the known speed sensors emit an output signal when switched on, that is to say when current is supplied to them, which can be detected by the electronic control.
  • a gearwheel sensor it cannot be concluded from the presence of the output signal of this speed sensor whether a tooth or a tooth gap is assigned to the Hall IC.
  • Countable pulses only occur when the ferro-magnetic component is rotated and a complete signal period has arisen, i.e. a complete tooth and an entire tooth gap must have passed the Hall IC. So this sensor can only detect transitions.
  • the invention proposes that the speed sensor, in particular gear sensor according to the preamble of claim 1 corresponding to the characterizing Part of this claim is formed.
  • This speed sensor emits a defined switch-on signal when it is switched on and the gearwheel or similar component is stationary, i.e. there is in any case a defined switch-on state that can be appropriately detected and processed by the electronic control.
  • the pulses are counted in the same way as with the known speed sensor, i.e. For example, when a tooth reaches the Hall IC, a positive pulse is generated, while this pulse is absent when the tooth gap arrives at the Hall IC.
  • Another advantage of this speed sensor is that you can get by with a weaker magnet, which is correspondingly cheaper, which also allows the manufacturing costs of this speed sensor to be reduced.
  • the Hall element detects the height of the magnetic field in its area.
  • the basic field is the same for both Hall sensors.
  • the gearwheel or the like is closer to one Hall element than the other, the increase in the magnetic field is greater when the component is present on the Hall element near the component than on the component remote from the component.
  • a tooth follows a tooth gap, which brings about a further increase in the magnetic field. If the difference is now formed in a differential amplifier from the total amount of the magnetic field on the near-component and on the far-away Hall element, this results in a value different from zero. This enables an immediate conclusion to be drawn about the presence of a tooth or a tooth gap, because it is a defined signal which is also emitted when the gear is stationary.
  • both Hall elements are equally close to the tooth, and therefore the difference in the entire magnetic field at the differential amplifier gives the value zero there.
  • sensor 1 is assigned to a gearwheel 2 in the radial direction, ie it is aligned with a radius 3 of the gearwheel in the radial direction. According to the diagram, this refers to the magnet 4.
  • the tooth 5 is assigned the north pole of the magnet, for example, while the south pole points in the opposite direction.
  • a first Hall element 6 is located between the tooth 5 and the north pole of the magnet, while the magnet 4 is arranged between this first Hall element and a second Hall element 7.
  • this Hall IC 8 naturally also has conventional electronics, in particular a protective circuit. There is no difference to that the known speed sensors.
  • the second Hall element is farther away from the tooth 5 than the first Hall element 6. This means that the tooth 5 and also the gearwheel 2 itself cause a higher magnetic field on the first Hall element 6 than on second Hall element 2. If the signals from these two Hall elements are fed into a differential amplifier of a known type, this results in a non-zero value at the output of the differential amplifier, which leads to the unambiguous identification of the tooth and the tooth gap, ie, already after the definite signal is available for switching on, even if the gear is still stationary.
  • the front side of the first Hall element is assigned to the north pole and the rear side of the second Hall element is assigned to the south pole.
  • the second Hall element is attached to the first in a position turned through 180 °.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

Um bei einem Drehzahlsensor, insbesondere Zahnradsensor bereits beim Einschalten ein definiertes Signal zur Verfügung zu haben, welches die eindeutige Aussage zulässt, ob dem Sensor im Falle eines Zahnradsensors ein Zahn oder eine Zahnlücke zugeordnet ist, ordnet man die beiden Hall-Elemente (6, 7) je einem der beiden Magnetpole zu, oder anders ausgedrückt, befindet sich der Magnet bezogen auf das Bauteil oder das Zahnrad (2) zwischen dem ersten Hall-Element (6) und dem zweiten Hall-Element (7).

Description

Titel: Drehzahlsensor, insbesondere Zahnradsensor
Beschreibung
Die Erfindung bezieht sich auf einen Drehzahlsensor, insbesondere einen Zahnradsensor, mit einem Magneten und zwei Hall-Elementen, wobei ein einen unregelmäßigen Umfang aufweisendes oder mit Unstetigkeitsstellen am Umfang versehenes Bauteil aus ferromagnetischem Material, insbesondere ein Zahnrad, dessen Drehwinkel oder Drehzahl gemessen werden soll, am Drehzahlsensor vorbeibewegbar ist.
Solche Drehzahlsensoren verwendet man überall dort, wo die Drehzahl oder auch eine Drehbewegung eines Bauteils erfaßt werden soll. Ein bevorzugtes Anwendungsgebiet ist bspw. die Automobilindustrie und dort im Besonderen das automatische
Bremssystem (ABS) oder die automatische Schlupfregelung (ASR). Das von diesem Drehzahlsensor abgegebene Signal wird an die Elektronik weitergeleitet und dort ausgewertet. Dies führt dann zu einer ganz konkreten Steuerung der jeweiligen Komponenten.
Die bekannten Drehzahlsensoren geben beim Einschalten, also wenn ihnen Strom zugeführt wird, ein Ausgangssignal ab, welches von der elektronischen Steuerung erfaßt werden kann. Im Falle eines Zahnradsensors kann man aber aus dem Vorhandensein des AusgangsSignals dieses Drehzahlsensors nicht schließen, ob dem Hall-IC ein Zahn oder eine Zahnlücke zugeordnet ist. Zählbare Impulse entstehen nur, wenn das ferro agnetische Bauteil gedreht wird und eine komplette Signalperiode entstanden ist, d.h. am Hall-IC muß jeweils ein kompletter Zahn und eine ganze Zahnlücke vorbeigelaufen sein. Dieser Sensor kann also nur Übergänge erfassen.
Es liegt nun die Aufgabe vor, einen Drehzahlsensor der eingangs genannten Art so weiterzubilden, daß er bereits beim Einschalten, also ohne daß sich das ferromagnetische Bauteil, welches ihm zugeordnet ist, dreht, ein definiertes Signal abgibt, aus welchem man die exakte Lage des Zahnrads gegenüber dem Hall-IC zweifelsfrei erkennen kann.
Zur Lösung dieser Aufgabe wird erfindungsgemäß vorgeschlagen, daß der Drehzahlsensor, insbesondere Zahnradsensor gemäß dem Oberbegriff des Anspruchs 1 entsprechend dem kennzeichnenden Teil dieses Anspruchs ausgebildet ist.
Dieser Drehzahlsensor gibt beim Einschalten und stillstehendem Zahnrad oder dgl. Bauteil ein definiertes Einschaltsignal ab, d.h., es liegt in jedem Falle ein definierter Einschaltzustand vor, der von der elektronischen Steuerung entsprechend erfaßt und verarbeitet werden kann. Bei drehendem Bauteil werden die Impulse in gleicher Weise gezählt wie beim vorbekannten Drehzahlsensor, d.h. bspw. wenn ein Zahn den Hall-IC erreicht, wird ein positiver Impuls erzeugt, während dieser Impuls beim Ankommen der Zahnlücke am Hall-IC entfällt.
Ein weiterer Vorteil dieses Drehzahlsensors liegt darin, daß man mit einem schwächeren Magneten auskommt, der entsprechend preiswerter ist, wodurch sich auch die Herstellungskosten dieses Drehzahlsensors senken lassen.
Das Hall-Element erkennt die Höhe des Magnetfelds in seinem Bereich. Das Grundfeld ist für beide Hall-Sensoren gleich groß. Weil aber das Zahnrad oder dgl. dem einen Hall-Element näher ist als dem anderen, fällt die Erhöhung des Magnetfelds bei der Anwesenheit des Bauteils am bauteilnahen Hall-Element größer aus als am bauteilfernen. Dasselbe gilt auch, wenn auf eine Zahnlücke ein Zahn folgt, welcher eine weitere Erhöhung des Magnetfelds mit sich bringt. Bildet man nun in einem Differenzverstärker die Differenz aus dem Gesamtbetrag des Magnetfelds am bauteilnahen und am bauteilfernen Hall-Element, so ergibt sich ein von Null unterschiedlicher Wert. Dies ermöglicht den sofortigen Rückschluß auf das Vorhandensein eines Zahns oder einer Zahnlücke,weil es sich dabei um ein definiertes Signal handelt, welches auch bei stehendem Zahnrad abgegeben wird.
Im Gegensatz dazu sind bei dem bekannten Drehzahlsensor beide Hall-Elemente dem Zahn gleich nahe, und deswegen ergibt die Differenz des gesamten Magnetfelds am Differenzverstärker dort den Wert Null.
Die Erfindung wird nachstehend anhand eines Schemas näher erläutert.
Im Falle eines Drehzahlsensors ist der Sensor 1 einem Zahnrad 2 in radialer Richtung zugeordnet, d.h. er ist gegenüber einem Radius 3 des Zahnrads in-radialer Richtung ausgerichtet. Dies bezieht sich gemäß der SchemaZeichnung auf den Magneten 4. In der gezeichneten Stellung des Zahnrads 2 ist bspw. dem Zahn 5 der Nordpol des Magneten zugeordnet, während der Südpol in die entgegengesetzte Richtung weist. Zwischen dem Zahn 5 und dem Nordpol des Magneten befindet sich ein erstes Hall-Element 6, während der Magnet 4 zwischen diesem ersten Hall-Element und einem zweiten Hall-Element 7 angeordnet ist. Dieser Hall-IC 8 besitzt selbstverständlich außer dem Magneten und den beiden Hall-Elementen auch noch eine übliche Elektronik, insbesondere eine Schutzbeschaltung. Insoweit besteht kein Unterschied zu den bekannten Drehzahlsensoren. Wesentlich ist aber, daß das zweite Hall-Element vom Zahn 5 weiter weg ist als das erste Hall-Element 6. Dies führt dazu, daß der Zahn 5 und auch das Zahnrad 2 selbst am ersten Hall-Element 6 ein höheres Magnetfeld bewirken als am zweiten Hall-Element 2. Wenn man die Signale dieser beiden Hall-Elemente in einen Differenzverstärker bekannter Bauart gibt, so bewirkt dies am Ausgang des Differenzverstärkers einen von Null verschiedenen Wert, der zur eindeutigen Identifikation des Zahns und der Zahnlücke führt, d.h., bereits nach dem Einschalten steht im definitives Signal zur Verfügung, auch wenn das Zahnrad dabei noch stillsteht.
Um aber beim Einschalten von beiden Hall-Elementen z.B. ein positives Signal zu erhalten, ist es wichtig, daß bspw. dem Nordpol die Vorderseite des ersten Hall-Elements und dem Südpol die Rückseite des zweiten Hall-Elements zugeordnet sind, d.h. das zweite Hall-Element ist gegenüber dem ersten in einer um 180° gewendeten Stellung angebracht.

Claims

Patentansprüche
1. Drehzahlsensor, insbesondere Zahnradsensor, mit einem Magneten und zwei Hall-Elementen, wobei ein einen unregelmäßigen Umfang aufweisendes oder mit Unstetigkeitsstellen am Umfang versehenes Bauteil aus ferromagnetischem Material, insbesondere ein Zahnrad, dessen Drehwinkel oder Drehzahl gemessen werden soll, am Drehzahlsensor vorbeibewegbar ist, dadurch gekennzeichnet, daß die beiden Hall-Elemente (6,7) etwa in radialer Richtung des Bauteils bzw. Zahnrads (2) gegeneinander versetzt sind und sich zwischen ihnen der Magnet (4) befindet.
2. Drehzahlsensor nach Anspruch 1, dadurch gekennzeichnet, daß die Vorderseite des bauteilnahen Hall-Elements (6) und die Rückseite des. bauteilfernen Hall-Elements (7) gegen ihren zugeordneten Magnetpol weisen.
PCT/EP1992/002796 1991-12-19 1992-12-03 Drehzahlsensor, insbesondere zahnradsensor WO1993012403A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19914141959 DE4141959A1 (de) 1991-12-19 1991-12-19 Drehzahlsensor, insbesondere zahnradsensor
DEP4141959.6 1991-12-19

Publications (1)

Publication Number Publication Date
WO1993012403A1 true WO1993012403A1 (de) 1993-06-24

Family

ID=6447483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1992/002796 WO1993012403A1 (de) 1991-12-19 1992-12-03 Drehzahlsensor, insbesondere zahnradsensor

Country Status (2)

Country Link
DE (1) DE4141959A1 (de)
WO (1) WO1993012403A1 (de)

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994008203A1 (en) * 1992-09-29 1994-04-14 Honeywell Inc. Asymmetrical magnetic position detector
EP0629834A1 (de) * 1992-03-02 1994-12-21 Seiko Epson Corporation Verschiebungssensor
AT408004B (de) * 1998-02-19 2001-08-27 Ritzinger Otto Betonfertigwandschalelementsystem
WO2015009423A1 (en) * 2013-07-19 2015-01-22 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US20220065659A1 (en) * 2020-08-31 2022-03-03 Hitachi Metals, Ltd. Rotation detection apparatus
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2350196A (en) * 1999-05-20 2000-11-22 Electronics Ltd Ab Position sensor
EP2976595A4 (de) * 2013-03-13 2016-11-23 Tiax Llc Zahnerfassung
DE102013219796A1 (de) * 2013-09-30 2015-04-16 Continental Automotive Gmbh Impulsgeber für eine Vorrichtung zur Betriebsdatenerfassung, Getriebeanordnung mit einem Impulsgeber, Tachographenanordnung sowie Verfahren zur Erzeugung eines Ausgabesignals für eine Vorrichtung zur Betriebsdatenerfassung in einem Fahrzeug

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8714886U1 (de) * 1987-11-09 1987-12-17 Dietrich Grünau GmbH & Co KG, 7778 Markdorf Temperaturkompensierter Sensor zur Erfassung von Bewegungen

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE8714886U1 (de) * 1987-11-09 1987-12-17 Dietrich Grünau GmbH & Co KG, 7778 Markdorf Temperaturkompensierter Sensor zur Erfassung von Bewegungen

Cited By (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0629834A1 (de) * 1992-03-02 1994-12-21 Seiko Epson Corporation Verschiebungssensor
EP0629834A4 (de) * 1992-03-02 1996-07-03 Seiko Epson Corp Verschiebungssensor.
WO1994008203A1 (en) * 1992-09-29 1994-04-14 Honeywell Inc. Asymmetrical magnetic position detector
AT408004B (de) * 1998-02-19 2001-08-27 Ritzinger Otto Betonfertigwandschalelementsystem
US11313924B2 (en) 2013-07-19 2022-04-26 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
WO2015009423A1 (en) * 2013-07-19 2015-01-22 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
EP3168634A1 (de) 2013-07-19 2017-05-17 Allegro Microsystems, LLC Anordnungen für magnetfeldsensoren als zahndetektoren
US10495699B2 (en) 2013-07-19 2019-12-03 Allegro Microsystems, Llc Methods and apparatus for magnetic sensor having an integrated coil or magnet to detect a non-ferromagnetic target
US10254103B2 (en) 2013-07-19 2019-04-09 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US9810519B2 (en) 2013-07-19 2017-11-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as tooth detectors
US10145908B2 (en) 2013-07-19 2018-12-04 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US10670672B2 (en) 2013-07-19 2020-06-02 Allegro Microsystems, Llc Method and apparatus for magnetic sensor producing a changing magnetic field
US9823092B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9823090B2 (en) 2014-10-31 2017-11-21 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a target object
US9719806B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor for sensing a movement of a ferromagnetic target object
US11307054B2 (en) 2014-10-31 2022-04-19 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753769B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US10753768B2 (en) 2014-10-31 2020-08-25 Allegro Microsystems, Llc Magnetic field sensor providing a movement detector
US9720054B2 (en) 2014-10-31 2017-08-01 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10712403B2 (en) 2014-10-31 2020-07-14 Allegro Microsystems, Llc Magnetic field sensor and electronic circuit that pass amplifier current through a magnetoresistance element
US10012518B2 (en) 2016-06-08 2018-07-03 Allegro Microsystems, Llc Magnetic field sensor for sensing a proximity of an object
US10041810B2 (en) 2016-06-08 2018-08-07 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10260905B2 (en) 2016-06-08 2019-04-16 Allegro Microsystems, Llc Arrangements for magnetic field sensors to cancel offset variations
US10837800B2 (en) 2016-06-08 2020-11-17 Allegro Microsystems, Llc Arrangements for magnetic field sensors that act as movement detectors
US10641842B2 (en) 2017-05-26 2020-05-05 Allegro Microsystems, Llc Targets for coil actuated position sensors
US11768256B2 (en) 2017-05-26 2023-09-26 Allegro Microsystems, Llc Coil actuated sensor with sensitivity detection
US10837943B2 (en) 2017-05-26 2020-11-17 Allegro Microsystems, Llc Magnetic field sensor with error calculation
US10324141B2 (en) 2017-05-26 2019-06-18 Allegro Microsystems, Llc Packages for coil actuated position sensors
US11320496B2 (en) 2017-05-26 2022-05-03 Allegro Microsystems, Llc Targets for coil actuated position sensors
US10996289B2 (en) 2017-05-26 2021-05-04 Allegro Microsystems, Llc Coil actuated position sensor with reflected magnetic field
US11073573B2 (en) 2017-05-26 2021-07-27 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10649042B2 (en) 2017-05-26 2020-05-12 Allegro Microsystems, Llc Packages for coil actuated position sensors
US10310028B2 (en) 2017-05-26 2019-06-04 Allegro Microsystems, Llc Coil actuated pressure sensor
US10866117B2 (en) 2018-03-01 2020-12-15 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US11313700B2 (en) 2018-03-01 2022-04-26 Allegro Microsystems, Llc Magnetic field influence during rotation movement of magnetic target
US11255700B2 (en) 2018-08-06 2022-02-22 Allegro Microsystems, Llc Magnetic field sensor
US11686599B2 (en) 2018-08-06 2023-06-27 Allegro Microsystems, Llc Magnetic field sensor
US10823586B2 (en) 2018-12-26 2020-11-03 Allegro Microsystems, Llc Magnetic field sensor having unequally spaced magnetic field sensing elements
US11061084B2 (en) 2019-03-07 2021-07-13 Allegro Microsystems, Llc Coil actuated pressure sensor and deflectable substrate
US10955306B2 (en) 2019-04-22 2021-03-23 Allegro Microsystems, Llc Coil actuated pressure sensor and deformable substrate
US11280637B2 (en) 2019-11-14 2022-03-22 Allegro Microsystems, Llc High performance magnetic angle sensor
US11237020B2 (en) 2019-11-14 2022-02-01 Allegro Microsystems, Llc Magnetic field sensor having two rows of magnetic field sensing elements for measuring an angle of rotation of a magnet
US11262422B2 (en) 2020-05-08 2022-03-01 Allegro Microsystems, Llc Stray-field-immune coil-activated position sensor
US20220065659A1 (en) * 2020-08-31 2022-03-03 Hitachi Metals, Ltd. Rotation detection apparatus
US11764649B2 (en) * 2020-08-31 2023-09-19 Proterial, Ltd. Rotation detection apparatus
US11493361B2 (en) 2021-02-26 2022-11-08 Allegro Microsystems, Llc Stray field immune coil-activated sensor
US11578997B1 (en) 2021-08-24 2023-02-14 Allegro Microsystems, Llc Angle sensor using eddy currents

Also Published As

Publication number Publication date
DE4141959A1 (de) 1993-06-24

Similar Documents

Publication Publication Date Title
WO1993012403A1 (de) Drehzahlsensor, insbesondere zahnradsensor
EP0617792B1 (de) Drehzahlsensor, insbesondere zahnradsensor
DE2933557C2 (de) Meßumformer zur berührungslosen Weg- oder Geschwindigkeitsmessung
DE69103665T2 (de) Drehmomentmessvorrichtung an einer Welle.
EP1128159A2 (de) Mechanische Welle mit integrierter Magnetanordnung
DE10228744A1 (de) Raddrehzahlerfassungssystem
WO2007014599A1 (de) Vorrichtung zur detektion von umdrehungen einer lenkwelle
DE3521966A1 (de) Vorrichtung zur messung des magnetfeldes und/oder der magnetfeldaenderungen in einem luftspalt
DE10037211A1 (de) Lenkradstellungssensor
DE19507304B4 (de) Magnetfelddetektor
EP1324050A2 (de) Anordnung zum Detektieren der Bewegung eines Encoders
DE2606213A1 (de) Verfahren und anordnung zum erzeugen von digitalimpulsen mit einer der drehzahl der welle proportionalen frequenz
DE102007046942A1 (de) Impulsgeber für eine Vorrichtung, insbesondere für einen Tachopraphen, und Verfahren zum Betreiben des Impulsgebers
DE102013006379A1 (de) Sensorvorrichtung mit einer Drehmomentsensoreinrichtung und einer Inkrementalsensoreinrichtung und Kraftfahrzeug
DE2239926A1 (de) Stoerungsfreier elektromagnetischer aufnehmer
DE2629629C2 (de)
DE4311496C2 (de) Handbetätigter Winkelgeber
DE3523374C2 (de) Sensor für eine induktive Geschwindigkeitsmeßeinrichtung
DE3836508A1 (de) Vorrichtung zum erfassen der geschwindigkeit eines sich bewegenden koerpers
DE2460918C2 (de) Einrichtung zum Ausschalten eines Fahrtrichtungsanzeigers bei einem Kraftfahrzeug nach einer Kurvenfahrt
DE19753775A1 (de) Meßvorrichtung zur berührungslosen Erfassung eines Drehwinkels
EP0917643A1 (de) Wegsensor
DE3904958C2 (de)
EP0684454B1 (de) Magnetfeldinduzierter Impulsgeber, insbesondere zur Drehzahlerfassung einer sich in einem Gehäuse drehenden Welle
EP0496918A1 (de) Anordnung zur Gewinnung von Impulssignalen beim Vorbeilauf von Markierungen eines Geberteils

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): BR JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

122 Ep: pct application non-entry in european phase