WO1993004266A1 - Methode de reduction de la retention d'un agent de deplacement et application a la recuperation assistee d'hydrocarbures - Google Patents

Methode de reduction de la retention d'un agent de deplacement et application a la recuperation assistee d'hydrocarbures Download PDF

Info

Publication number
WO1993004266A1
WO1993004266A1 PCT/FR1992/000812 FR9200812W WO9304266A1 WO 1993004266 A1 WO1993004266 A1 WO 1993004266A1 FR 9200812 W FR9200812 W FR 9200812W WO 9304266 A1 WO9304266 A1 WO 9304266A1
Authority
WO
WIPO (PCT)
Prior art keywords
solution
cations
rock matrix
displacement agent
concentration
Prior art date
Application number
PCT/FR1992/000812
Other languages
English (en)
Inventor
Guy Chauveteau
Jacqueline Lecourtier
Véronique PLAZANET
Antide Putz
Original Assignee
Institut Français Du Petrole
Total S.A.
Elf Aquitaine Production S.A.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Français Du Petrole, Total S.A., Elf Aquitaine Production S.A. filed Critical Institut Français Du Petrole
Priority to US08/039,413 priority Critical patent/US5368101A/en
Priority to RU93032321/03A priority patent/RU2097538C1/ru
Publication of WO1993004266A1 publication Critical patent/WO1993004266A1/fr
Priority to GB9308163A priority patent/GB2264966B/en
Priority to NO93931467A priority patent/NO931467L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/84Compositions based on water or polar solvents
    • C09K8/845Compositions based on water or polar solvents containing inorganic compounds

Definitions

  • the present invention relates to a method for reducing the retention of a displacement agent used in secondary recovery.
  • This method mainly consists in treating in a particular way the rock matrix by injection of a solution comprising in particular salts of phosphates or sulfites. It also relates to the application of this same method to improve a secondary recovery operation of hydrocarbons, in particular making it possible to save on the quantity of displacement agent injected, while providing control of the stability of particles present in the rock matrix of the oil reservoirs concerned, these particles generally coming from clay compounds.
  • the primary recovery by natural drainage of liquid hydrocarbon deposits can be quite low, even in the presence of an active aquifer or a cap of free gas, so it is often necessary to use an assisted recovery method for example in injecting a driving fluid into the formation.
  • Treated water can be injected to make it compatible with reservoir rock, gases immiscible with hydrocarbons, gases miscible with hydrocarbons, micro-emulsions or fluids based on polymers having a high viscosity in situ.
  • the displacement agent is based on polymers
  • these polymers have the property of adsorbing on the rock matrix. This adsorption is manifested by a retention of product on the rock matrix and therefore has the consequence of reducing the polymer concentration in the displacement. In addition, adsorption promotes the retention of the agent by trapping phenomenon in the rock matrix.
  • the mobility ratio of the displacement agent relative to the hydrocarbon which depends directly on the concentration, is then favorable only in a reduced area around the injection area. To overcome this major drawback, one can choose to inject large concentrations of polymers, but this will represent a large consumption of injected product and the cost of the operation will be prohibitive.
  • Document US-A-3523581 describes a method for injecting a first, then a second fluid, before injecting the displacement fluid.
  • the second fluid contains a product which can in particular comprise polyphosphates, but these are only intended to desorb the first fluid beforehand in the reservoir rock.
  • This method is more particularly suitable for reservoirs having heterogeneities in permeability.
  • the present invention relates to a method of reducing the retention of a displacement agent on a rock matrix of an underground reservoir containing a fluid, said agent being adapted to move said fluid, said rock matrix being stabilized by the presence of cations, said reduction being effected by the treatment of the rock matrix with an adsorbent solution.
  • said adsorbent solution comprises salts of phosphates or sulfites and the adsorption of said solution is increased by the presence of cations at a determined concentration.
  • Said adsorbent solution may contain sodium phosphate salts Na2HPO4, Na3PO4, potassium K2HPO4, K3PO4, or sodium or potassium sulfites.
  • the phosphate salt concentration of said adsorbent solution can be between 0.004 Mole / liter and 0.5 Mole / liter and preferably between 0.01 and 0.1
  • Said determined cation concentration may be between 0.5 to 2 Moles / liter.
  • the cations can come from monovalent ions of sodium or potassium salts.
  • the rock matrix can be treated, in the presence of the cations, with the adsorbent solution before injecting the displacement agent.
  • the adsorbent solution and the displacement agent can also be injected together in the presence of the cations.
  • the solution of the displacement agent may contain cations at a concentration close to said determined concentration when the latter is injected separately from the adsorbent solution.
  • the solutions injected into the rock matrix can have a pH substantially between 4 and 10 and preferably between 7 and 10.
  • said solution of a displacement agent may comprise partially hydrolyzed polyacrylamides or copolymers or hydrolysates of high molecular weight polyacrylamide, polysaccharides such as xanthan or scleroglucan of high molecular weight, or any synthetic or natural hydrosoluble polymer of high weight molecular, for example greater than 10 Daltons.
  • the invention also relates to the application of the previous method to the secondary recovery of hydrocarbons contained in a rock matrix of an underground reservoir crossed by at least one injection well and at least one production well.
  • said solutions are injected by said injection well and the hydrocarbons are produced by said production well.
  • Said rock matrix can consist of clays.
  • the method of the invention can be advantageously applied when the formation water contained in the pores of said rock matrix comprises calcium ions.
  • the main idea of the invention is the optimized use of a solution of phosphates or sulphites as a fluid for treating reservoir rock to reduce the retention of the displacement agent comprising polymers. Retention is the loss of a certain amount of the displacement agent, either by adsorption or by trapping. Which trapping is favored when there is adsorption of the agent.
  • the injection of such a solution into reservoir rocks containing in particular clay particles or not causes destabilization of these particles.
  • the destabilization process for porous media is as follows: phosphate or sulphite ions adsorb on the surface of minerals, forming strong bonds with surface hydroxyl groups (AlOH or SiOH). The result of this adsorption is a significant increase in the negative surface charge of the minerals and in particular of the clays. This modification of the surface properties leads to an increase in the repulsive forces of electrostatic origin, either between the clay particles between them, or between these particles and the quartz or carbonates constituting the matrix of the reservoir. These repulsive forces decrease the cohesion of the rock and consequently induce destabilization of the porous medium.
  • the invention describes the addition of cations, preferably monovalent salts of KC1 or NaCl at a determined concentration, this presence prevents the destabilization of the particles, clayey or not, by the adsorbent solution as described above, and jointly increases the 'efficiency of the adsorption of phosphates or sulphites on a rocky matrix that this one comprises clays, sands or carbonates. Indeed, the phosphate or sulphite ions are negatively charged as in particular the surface of sands or clays.
  • the salinity is increased by cations, preferably monovalent ions
  • the phosphate or sulphite ions can more easily approach the mineral surfaces due to the reduction (or screening) of the electrostatic repulsions.
  • the phosphate or sulphite ions then form more bonds with these surfaces, that is to say that they adsorb more, and therefore decrease more strongly the number of possible adsorption sites for the displacement agent.
  • the preferred cations are monovalent ions, but while remaining within the scope of this invention, other cations are admissible, such as calcium or magnesium, insofar as their concentration does not induce precipitation of phosphates or sulphites.
  • solutions and fluids present in the method can admit PH varied between 4 and 10, but preferably, the PH is above 7.
  • the rock matrix is first treated with a volume of adsorbent solution as defined in the invention.
  • the operation consists in injecting into the formation a volume of solution before the actual injection of the solution comprising the displacement agent.
  • This procedure known as "preflushing" requires the determination of the volume of treatment solution in relation to the volume of pores of the rock matrix considered.
  • This volume of treatment solution is generally at least equal to the volume of pores in which the solution of the displacement agent must play its role of motive fluid and pusher of the hydrocarbons contained in this same volume.
  • the solution comprising the displacement agent substantially retains its characteristics and initial compositions during its circulation in the reservoir rock.
  • the rheology (in particular the viscosity) of the displacement agent is then more easily controlled, which makes it possible to achieve the maximum efficiency of displacement of the hydrocarbons by the displacement agent.
  • the adsorbent solution and the displacement agent are injected at the same time. This injection is obviously done always in the presence of cations or monovalent ions at the determined concentration to prevent destabilization of particles and increase the action of the adsorbent solution.
  • the water contained in the geological formation contains significant quantities of divalent ions, such as calcium or magnesium, it will be possible to inject a solution of cations at the determined concentration to avoid precipitation of the divalent salts of phosphates or sulphites.
  • divalent ions such as calcium or magnesium
  • the injection volume of this solution prior to injections of the phosphate solution and the displacement fluid can be in particular between 0.2 and a pore volume.
  • FIG. 1 represents curves 1 and 2 showing the relationship of the polymer concentration of the displacement agent at the outlet of the porous medium as a function of the volume injected, for two test conditions on a sample of clay sand,
  • FIG. 2 also represents two curves linking the same parameters under two other test conditions on a sample of clayey sandstone
  • FIG. 3 shows the relationship of the adsorption of a polymer as a function of the phosphate concentration and the concentration of monovalent ions.
  • the samples are saturated with water.
  • the volumes of solutions injected are pushed with water.
  • the volumes injected and the polymer concentration of the solutions leaving the sample are measured.
  • the appearance of the polymer front is interpreted according to the volume of solution injected. If the appearance takes place when a volume corresponding to a volume of pore has been injected, there is no retention. If it takes place afterwards, there is retention.
  • the first experiment consisted in injecting into the solid mass a polyacrylamide solution at a concentration of 330 pp.
  • the injection speed is 0.35 m / d.
  • a volume of solution is injected into the solid mass equal to three times the pore volume of said solid mass.
  • Curve A in FIG. 1 gives the results in the form of a curve of the relative concentration C / Co of polymer at the outlet from the porous medium as a function of the volume injected, measured at the outlet from the porous medium. Co being the initial concentration of injected polymer.
  • the appearance of the polymer front takes place at point 3, after the measurement of a pore volume. This front is characteristic of a large retention of polymer in the solid mass, the greater the delay in appearance relative to a pore volume, the greater the retention.
  • the second experiment is carried out under the same conditions as above, but preceeding the injection of polymer with an adsorbent solution of Na2HPO4 at a concentration of 0.008 mole / liter.
  • the volume injected with this solution is equal to the pore volume.
  • the polymer injection cannot be continued due to the bursting of the mass.
  • the third experiment is still carried out under the same conditions as above, but the two solutions of phosphates (Na2HPO4) and of polymer were injected in a salty medium at 20 g / liter of NaCl.
  • the phosphate and polyacrylamide concentrations remain identical, as do the injection speed and the PH.
  • the polymer concentration at the outlet of the porous medium reaches its maximum in
  • the measured retention of the polymer is very low, of the order of 10 10 g gram.
  • the reduction in permeability after passage of the polymer is of the order of 1.1.
  • This experiment illustrates the method applied to a mass of clayey sandstone comprising sands and around 5% illite.
  • the permeability measured is 640 mD.
  • the injections of the phosphate and polymer solution both take place in a NaCl salt medium at a concentration of 20 g / l.
  • the Na2HPO4 phosphate solution has a concentration of 0.01 mole / liter.
  • the polyacrylamide solution has a concentration of 330 ppm.
  • the phosphate solution is injected into the solid mass at a volume equal to 1.5 times the pore volume, at a speed of 0.5 m / d.
  • curve D in FIG. 2 we observe an almost total absence of polymer retention compared to the same phosphate-free injection represented by curve C in FIG. 2.
  • the arrival of the polymer front at 5 proves the absence of retention.
  • a reduction in permeability is measured less than 1.1 after sweeping with water.
  • the method is therefore applied with the same results in a rock of much lower permeability than that of the first example.
  • This experiment demonstrates retention by adsorption of a partially hydrolyzed polyacrylamide polymer at a rate of 30% on a kaolinite.
  • Adsorption is measured as a function of the NaCl salt concentration and as a function of the Na2HPO4 phosphate concentration.
  • the measurements were made on the kaolinite particles using the residue method.
  • the polymer is dosed by measuring the organic carbon in solution. The measurements are carried out at a temperature of 30 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Water Treatment By Sorption (AREA)

Abstract

La présente invention concerne une méthode de réduction de la rétention d'un agent de déplacement à base de polymères, injecté dans une matrice rocheuse contenant des hydrocarbures. La méthode consiste à traiter la matrice par une solution adsorbante comportant des phosphates ou des sulfites. Le traitement se fait en présence des cations pour augmenter l'action de la solution adsorbante et contrôler la stabilisation de la roche. L'invention est appliquée à la récupération secondaire d'hydrocarbures par injection d'un fluide de déplacement dans une roche réservoir.

Description

METHODE DE REDUCTION DE LA RETENTION D'UN AGENT DE DEPLACEMENT ET APPLICATION A LA RECUPERATION ASSISTEE D'HYDROCARBURES
La présente invention concerne une méthode pour la réduction de la rétention d'un agent de déplacement utilisé en récupération secondaire. Cette méthode consiste principalement à traiter d'une manière particulière la matrice rocheuse par injection d'une solution comportant notamment des sels de phosphates ou sulfites. Elle concerne également l'application de cette même méthode pour améliorer une opération de récupération secondaire d'hydrocarbures en permettant notamment de faire une économie sur la quantité d'agent de déplacement injecté, tout en fournissant un contrôle de la stabilité de particules présentes dans la matrice rocheuse des réservoirs pétroliers concernés, ces particules provenant généralement de composés argileux. La récupération primaire par drainage naturel des gisements d'hydrocarbures liquides peut être assez faible, même en présence d'un aquifère actif ou d'une calotte de gaz libre, aussi il est souvent nécessaire d'utiliser une méthode de récupération assistée par exemple en injectant dans la formation un fluide moteur.
On peut injecter de l'eau traitée pour être rendue compatible avec la roche réservoir, des gaz non miscibles aux hydrocarbures, des gaz miscibles aux hydrocarbures, des micro-émulsions ou des fluides à base de polymères ayant une forte viscosité in situ.
Tous ces procédés, bien connus de l'art antérieur, ont pour objectif d'obtenir un balayage le plus efficace possible de la roche réservoir contenant l'hydrocarbure. Ce balayage consiste à repousser rhydrocarbure vers les puits de production.
Mais ces procédés se heurtent tous, à des degrés différents en fonction de leur sophistication, au problème de la rentabilité économique. En effet, compte tenu du coût supplémentaire représenté par les opérations d'injection et les produits injectés, qui sont souvent non récupérables, la rentabilité de l'exploitation d'un tel gisement peut s'avérer faible si ce n'est nulle. Aussi, il sera déterminant de ne pas consommer une quantité importante de ces produits coûteux.
Dans le cas où l'agent de déplacement est à base de polymères, ceux-ci sont des additifs utilisés principalement comme produits viscosifiant du fluide de base, c'est-à-dire l'eau. Leur action peut également agir sur les eaux de gisements. Or ces polymères ont pour propriété de s'adsorber sur la matrice rocheuse. Cette adsorption se manifeste par une rétention de produit sur la matrice rocheuse et a donc pour conséquence de faire diminuer la concentration en polymères dans l'agent de déplacement. De plus l'adsorption favorise la rétention de l'agent par phénomène de piègeage dans la matrice rocheuse. Le rapport de mobilité de l'agent de déplacement par rapport à l'hydrocarbure, qui dépend directement de la concentration, n'est alors favorable que dans une zone réduite autour de la zone d'injection. Pour pallier cet inconvénient majeur, on peut choisir d'injecter des concentrations importantes de polymères, mais cela représentera une grande consommation de produit injecté et le coût de l'opération sera prohibitif.
On connaît par le document US-A-4627494 un procédé d'injection d'un produit chimique dans un réservoir pétrolier pour limiter les pertes de produits tensioactifs utilisés en récupération secondaire. Mais ce procédé ne concerne que les produits à base de lignosulfonates.
Le document US-A-3523581 décrit un procédé d'injection d'un premier, puis d'un second fluide, avant d'injecter le fluide de déplacement. Le second fluide contient un produit pouvant notamment compoπer des polyphosphates mais ceux-ci sont uniquement destinés à désorber le premier fluide préalablement dans la roche réservoir.
Cette méthode est plus particulièrement adaptée à des réservoirs présentant des hétérogénéités en perméabilité.
Telle qu'elle est revendiquée, la présente invention concerne une méthode de réduction de la rétention d'un agent de déplacement sur une matrice rocheuse d'un réservoir souterrain contenant un fluide, ledit agent étant adapté à déplacer ledit fluide, ladite matrice rocheuse étant stabilisée par la présence de cations, ladite réduction étant effectuée par le traitement de la matrice rocheuse par une solution adsorbante.
Dans la présente invention, ladite solution adsorbante comporte des sels de phosphates ou de sulfites et on augmente l'adsorption de ladite solution par la présence de cations à une concentration déterminée.
Ladite solution adsorbante peut comporter des sels de phosphates de sodium Na2HPO4, Na3PO4, de potassium K2HPO4, K3PO4, ou des sulfites de sodium ou potassium.
La concentration en sels de phosphates de ladite solution adsorbante peut être comprise entre 0,004 Mole/litre et 0,5 Mole/litre et préférentiellement entre 0,01 et 0,1
Mole/litre. Ladite concentration déterminée en cations peut être comprise entre 0,5 à 2 Moles/litre.
Les cations peuvent provenir d'ions monovalents de sels de sodium ou de potassium.
Selon la méthode, on peut traiter la matrice rocheuse, en présence des cations, par la solution adsorbante avant d'injecter l'agent de déplacement.
Mais on peut également injecter ensemble la solution adsorbante et l'agent de déplacement en présence des cations.
La solution de l'agent de déplacement peut comporter des cations à une concentration voisine de ladite concentration déterminée lorsque celui-ci est injecté séparément de la solution adsorbante.
Les solutions injectées dans la matrice rocheuse peuvent avoir un PH sensiblement compris entre 4 et 10 et préférentiellement entre 7 et 10.
Selon la méthode de l'invention, en présence d'ions calcium dans la matrice rocheuse, on peut injecter avant ladite solution adsorbante une solution de cations à ladite concentration déterminée.
Selon la méthode, ladite solution d'un agent de déplacement peut comporter des polyacrylamides partiellement hydrolyses ou copolymères ou hydrolysats de polyacrylamide de haut poids moléculaire, des polysaccharides type xanthane ou scléroglucane de haut poids moléculaire, ou tout polymère hydrosoluble synthétique ou naturel de haut poids moléculaire, par exemple supérieur à 10 Daltons.
L'invention concerne également l'application de la précédente méthode à la récupération secondaire d'hydrocarbures contenus dans une matrice rocheuse d'un réservoir souterrain traversé par au moins un puits d'injection et au moins un puits de production. Dans l'application, on injecte lesdites solutions par ledit puits d'injection et on produit les hydrocarbures par ledit puits de production.
Ladite matrice rocheuse peut compoπer des argiles.
La méthode de l'invention peut être avantageusement appliquée lorsque l'eau de formation contenue dans les pores de ladite matrice rocheuse comporte des ions calcium. L'idée maîtresse de l'invention est l'utilisation optimisée de solution de phosphates ou de sulfites comme fluide de traitement de la roche réservoir pour réduire la rétention de l'agent de déplacement compoπant des polymères. La rétention est la perte d'une certaine quantité de l'agent de déplacement, soit par adsorption, soit par piégeage. Lequel piégeage étant favorisé lorsqu'il y a adsorption de l'agent. Toutefois, l'injection d'une telle solution dans des roches réservoirs contenant notamment des particules argileuses ou non provoque une déstabilisation de ces particules.
Le processus de déstabilisation des milieux poreux est le suivant : les ions phosphates ou sulfites s'adsorbent à la surface des minéraux en formant des liaisons fortes avec les groupements hydroxyles (AlOH ou SiOH) de surface. Il résulte de cette adsorption une augmentation importante de la charge négative de surface des minéraux et notamment des argiles. Cette modification des propriétés de surface entraîne une augmentation des forces répulsives d'origine électrostatique, soit entre les particules d'argiles entre elles, soit entre ces particules et le quartz ou les carbonates constituant la matrice du réservoir. Ces forces répulsives diminuent la cohésion de la roche et par suite induisent une déstabilisation du milieu poreux.
Dans ces conditions, la roche réservoir court un grand risque d'être colmatée par l'agglomération de ces particules déstabilisées qui sont alors déplacées par entraînement au cours de l'écoulement de l'agent de déplacement injecté.
L'invention décrit l'adjonction de cations, préférentiellement des sels monovalent de KC1 ou NaCl à une concentration déterminée, cette présence empêche la déstabilisation des particules, argileuses ou non, par la solution adsorbante comme cela est décrit plus haut, et conjointement augmente l'efficacité de l'adsorption des phosphates ou sulfites sur une matrice rocheuse que celle-ci comporte des argiles, des sables ou des carbonates. En effet, les ions phosphates ou sulfites sont chargés négativement comme notamment la surface des sables ou des argiles. Lorsqu'on augmente la salinité par des cations, préférentiellement des ions monovalents, les ions phosphates ou sulfites peuvent plus facilement s'approcher des surfaces minérales du fait de la diminution (ou de l'écrantage) des répulsions électrostatiques. Les ions phosphates ou sulfites forment alors plus de liaisons avec ces surfaces, c'est-à-dire qu'ils s'adsorbent plus, et de ce fait diminuent plus fortement le nombre de sites d'adsorption possibles pour l'agent de déplacement
Comme précisé plus haut, les cations préférés sont les ions monovalents, mais tout en restant dans le cadre de cette invention, d'autres cations sont admissibles, tels calcium ou magnésium, dans la mesure où leur concentration n'induisent pas de précipitations des phosphates ou des sulfites.
De plus, il a été mis en évidence que la méthode de la présente invention est indépendante de la température, ce qui permet l'utilisation efficace de cette méthode quelque soit la profondeur du réservoir d'hydrocarbures.
Les solutions et les fluides en présence dans la méthode peuvent admettre des PH variés entre 4 et 10, mais de façon préférentielle, les PH se situent au-dessus de 7.
Selon la méthode préférentielle de l'invention, la matrice rocheuse est d'abord traitée par un volume de solution adsorbante telle que définie dans l'invention. L'opération consiste à injecter dans la formation un volume de solution avant l'injection proprement dite de la solution comportant l'agent de déplacement. Cette procédure connue sous le nom de "preflushing", nécessite la détermination du volume de solution de traitement en relation avec le volume de pores de la matrice rocheuse considérée. Ce volume de solution de traitement est en général au moins égal au volume de pores dans lequel la solution de l'agent de déplacement doit jouer son rôle de fluide moteur et pousseur des hydrocarbures contenus dans ce même volume.
Grâce au traitement selon l'invention, la solution comportant l'agent de déplacement conserve sensiblement ses caractéristiques et compositions initiales pendant sa circulation dans la roche réservoir. La rhéologie (notamment la viscosité) de l'agent de déplacement est alors plus aisément contrôlée ce qui permet d'atteindre le maximum d'efficacité du déplacement des hydrocarbures par l'agent de déplacement.
On ne sortira pas du cadre de cette invention, si dans certaines conditions de gisement et dans le but de simplifier les opérations, on injecte en même temps la solution adsorbante et l'agent de déplacement. Cette injection se faisant bien évidemment toujours en présence de cations ou d'ions monovalents à la concentration déterminée pour empêcher la déstabilisation de particules et augmenter l'action de la solution adsorbante.
Lorsque l'eau contenue dans la formation géologique contient des quantités importantes d'ions divalents, tels de calcium ou de magnésium, on pourra injecter une solution de cations à la concentration déterminée pour éviter la précipitation des sels divalents de phosphates ou de sulfites. On apprécie l'importance des quantités notamment par la proportion relative de ces ions par rapport aux autres en solution. Le volume d'injection de cette solution préalable aux injections de la solution de phosphate et du fluide de déplacement peut être notamment entre 0,2 et un volume de pore. On préférera choisir comme cations des ions monovalents de NaCl ou KC1.
La présente invention sera mieux comprise et ses avantages apparaîtront plus nettement à la description qui suit d'essais nullement limitatifs illustrés par les figures ci- annexées, parmi lesquelles :
- la figure 1 représente les courbes 1 et 2 montrant la relation de la concentration en polymère de l'agent de déplacement à la sortie du milieu poreux en fonction du volume injecté, pour deux conditions d'essais sur un échantillon de sable argileux,
- la figure 2 représente également deux courbes liant les mêmes paramètres dans deux autres conditions d'essais sur un échantillon de grès argileux,
- la figure 3 représente la relation de l'adsorption d'un polymère en fonction de la concentration en phosphates et de la concentration en ions monovalents.
Le principe des expériences suivantes et de l'interprétation des courbes des figures 1 et 2 est le suivant :
Les échantillons sont saturés à l'eau. Les volumes de solutions injectées sont poussés à l'eau. On mesure les volumes injectés et la concentration en polymère des solutions en sortie de l'échantillon. L'apparition du front de polymère s'interprète en fonction du volume de solution injecté. Si l'apparition a lieu lorsqu'on a injecté un volume correspondant à un volume de pore, il n'y a pas rétention. Si elle a lieu après, il y a rétention.
Exemple 1 :
Trois expériences sont réalisées sur une roche réservoir constituée par un massif de sable argileux non consolidé. La perméabilité, mesurée suivant les normes habituelles, est de 3,6 darcy.
La première expérience a consisté à injecter dans le massif une solution de polyacrylamide à une concentration de 330 pp . La vitesse d'injection est de 0,35 m/j.
Cette solution a été préparée dans une eau faiblement salée ayant la composition suivante :
- sodium : 42 ppm, - calcium : 40 ppm, - magnésium : 24 ppm,
- potassium : 11 ppm. Le PH est de 7.
On injecte dans le massif un volume de solution égal à trois fois le volume de pore dudit massif.
La courbe A de la figure 1 donne les résultats sous forme d'une courbe de la concentration relative C/Co en polymère à la sortie du milieu poreux en fonction du volume injecté, mesuré à la sortie du milieu poreux. Co étant la concentration initiale en polymère injecté. L'apparition du front de polymère se fait au point 3, après la mesure d'un volume de pore. Ce front est caractéristique d'une rétention importante de polymère dans le massif, plus le retard de l'apparition est grand par rapport à un volume de pore, plus la rétention est grande.
On a confirmé et quantifié ce phénomène par bilan de matière entre l'entrée et la sortie d duu mmiilliieeuu poreux. Ce bilan donne une rétention de 90 10" g de polymère par gramme de roche
A la suite de cette injection, une mesure de la perméabilité du massif poreux a été effectuée. Cette mesure conventionnelle s'effectue à l'eau avant l'expérience puis après l'expérience. Le rapport de ces deux mesures donne une réduction de perméabilité liée à la rétention du polymère de l'ordre de 1,4.
Cette première expérience met en évidence la perte relativement importante de produit de déplacement notamment par adsorption sur la matrice rocheuse.
La deuxième expérience est réalisée dans les mêmes conditions que précédemment, mais en faisant précéder l'injection de polymère par une solution adsorbante de Na2HPO4 à une concentration de 0,008 mole/litre. Le volume injecté de cette solution est égal au volume de pore. Dès le début d'injection de la solution de polymère à la même vitesse de 0,35 m/j, on constate un colmatage progressif du milieu poreux par la mesure de l'évolution des pertes de charge à travers le milieu. Ce colmatage est provoqué par l'agglomération d'argiles déstabilisées par la première injection de Na2HPO4. L'injection de polymère ne peut pas être poursuivie par suite de l'éclatement du massif.
La troisième expérience est toujours réalisée dans les mêmes conditions que précédemment, mais les deux solutions de phosphates (Na2HPO4) et de polymère ont été injectées en milieu salé à 20 g/litre de NaCl. Les concentrations en phosphate et polyacrylamide restent identiques, ainsi que la vitesse d'injection et le PH.
Les résultats sont représentés par la courbe B de la figure 1. Le polymère apparaît en 4 sensiblement à la mesure d'un volume de pore. Cela est caractéristique de l'absence d'adsorption dans un milieu poreux.
La concentration en polymère à la sortie du milieu poreux atteint son maximum en
2, alors que pour la première expérience le maximum est atteint en 1. La surface comprise entre les deux courbes A et B, et délimitée par les points 1, 2, 3, et 4, représente la quantité de l'agent retenu dans le massif comparativement entre la première expérience et la troisième.
Aucun colmatage du milieu poreux n'a été constaté.
La rétention mesurée du polymère est très faible, de l'ordre de 10 10 g gramme.
La réduction de perméabilité après passage du polymère est de l'ordre de 1,1.
Cette expérience met en évidence que les argiles ne sont plus déstabilisés par l'injection de la solution de phosphate, qu'ils n'ont pas été déplacés et agglomérés par l'injection du fluide déplaçant, puisque la réduction de perméabilité est faible.
Cette expérience prouve également qu'il y a diminution de la rétention de polymère comparativement à la première expérience. Cela confirme l'efficacité de la méthode selon l'invention.
Exemple 2 :
Cette expérience illustre la méthode appliquée à un massif de grès argileux comportant des sables et environ 5 % d'illite. La perméabilité mesurée est de 640 mD. Les injections de la solution de phosphate et de polymère ont toutes deux lieu en milieu salé NaCl à une concentration de 20 g/1.
La solution de phosphate Na2HP04 a une concentration de 0,01 mole/litre. La solution de polyacrylamide a une concentration de 330 ppm.
On injecte dans le massif sous un volume égal à 1,5 fois le volume de pore, la solution de phosphate à une vitesse de 0,5 m/j. On observe sur les résultats représentés par la courbe D de la figure 2, une absence pratiquement totale de rétention de polymère comparativement à la même injection sans phosphate représentée par la courbe C de la figure 2. De même que dans la troisième expérience du premier exemple, l'arrivée du front de polymère en 5 prouve l'absence de rétention.
Une réduction de perméabilité est mesurée inférieure à 1,1 après balayage à l'eau.
La méthode est donc appliquée avec les mêmes résultats dans une roche de perméabilité beaucoup plus faible que celle du premier exemple.
Exemple 3 :
Cette expérience met en évidence la rétention par d'adsorption d'un polymère polyacrylamide partiellement hydrolyse à un taux de 30% sur une kaolinite. L'adsorption est mesurée en fonction de la concentration en sel NaCl et en fonction de la concentration en phosphate Na2HPO4. Les mesures ont été faites sur les particules de kaolinite en utilisant la méthode des restes. Le polymère est dosé par mesure du carbone organique en solution. Les mesures sont effectuées à la température de 30°c.
Sur les courbes de la figure 3, l'adsorption du polymère est donnée en milligramme par gramme en ordonnée, et la concentration en phosphate est donnée en mole par litre en abscisse. La courbe E est tracée pour une concentration de 5 grammes par litre de sel NaCl. La courbe F est tracée pour une concentration de 20 grammes par litre de NaCl. La courbe G est tracée pour une concentration de 50 grammes par litre de
NaCl.
On constate que pour toutes les concentrations en phosphate choisies pour l'expérimentation, l'efficacité de la solution adsorbante est augmentée avec l'augmentation de la concentration en sel de sodium.
On constate également la réduction importante de l'adsorption du polymère par la présence de phosphate. Dans cette expérience la concentration optimale de phosphate est sensiblement 0,08 mole par litre.

Claims

REVENDICATIONS
1) - Méthode de réduction de la rétention d'un agent de déplacement sur une matrice rocheuse d'un réservoir souterrain contenant un fluide, ledit agent étant adapté à déplacer ledit fluide, ladite matrice rocheuse étant stabilisée par la présence de cations, ladite réduction étant effectuée par le traitement de la matrice rocheuse par une solution adsorbante, caractérisée en ce que ladite solution comporte des sels de phosphates ou sulfites et en ce que l'on augmente l'adsorption de ladite solution par la présence desdits cations à une concentration déterminée.
2) - Méthode selon la revendication 1, caractérisée en ce que lesdits sels de phosphates ou de sulfites sont de sodium ou de potassium.
3) - Méthode selon l'une des revendications précédentes, caractérisée en ce que la concentration en sels de phosphates ou sulfites de ladite solution adsorbante est comprise entre 0,004 Mole/litre et 0,5 Mole/litre et préférentiellement entre 0,01 et 0,1 Mole litre.
4) - Méthode selon l'une des revendications précédentes, caractérisée en ce que ladite concentration déterminée en cations est comprise entre 0,5 à 2 Moles litre.
5) - Méthode selon l'une des revendications précédentes, caractérisée en ce que lesdits cations proviennent de sels de KC1 ou NaCl.
6) - Méthode selon l'une des revendications précédentes, caractérisée en ce que la matrice rocheuse est traitée par ladite solution adsorbante en présence desdits cations avant l'injection dudit agent de déplacement. 7) - Méthode selon l'une des revendications précédentes, caractérisée en ce qu'en présence desdits cations , on injecte ensemble ladite solution adsorbante et ledit agent de déplacement.
8) - Méthode selon l'une des revendications 1 à 6, caractérisée en ce qu'une solution de l'agent de déplacement comporte des cations à une concentration voisine de ladite concentration déterminée.
9) - Méthode selon l'une des revendications précédentes, caractérisée en ce que les solutions injectées dans la matrice rocheuse ont un PH sensiblement compris entre 4 et 10, et préférentiellement entre 7 et 10.
10) - Méthode selon l'une des revendications précédentes, caractérisée en ce qu'en présence d'ions calcium dans la matrice rocheuse, on injecte avant ladite solution adsorbante une solution desdits cations à ladite concentration déterminée.
11) - Méthode selon l'une des revendications précédentes, caractérisée en ce que ladite solution de l'agent de déplacement comporte des polyacrylamides partiellement hydrolyses ou copolymères ou hydrolysats de polyacrylamide de haut poids moléculaire, des polysaccharides type xanthane ou scléroglucane de haut poids moléculaire, ou tout polymère hydrosoluble synthétique ou naturel de haut poids moléculaire, c'est-à-dire supérieur à 10 Daltons.
12) - Application de la méthode selon l'une des revendications précédentes à la récupération secondaire d'hydrocarbures contenus dans une matrice rocheuse d'un réservoir souterrain traversé par au moins un puits d'injection et au moins un puits de production, caractérisée en ce que l'on injecte lesdites solutions et ledit agent par ledit puits d'injection et en ce que l'on produit les hydrocarbures par ledit puits de production. 13) - Application selon la revendication 12, caractérisée en ce que ladite matrice rocheuse comporte des argiles.
14) - Application selon la revendication 12 ou 13, caractérisée en ce que l'eau de formation contenue dans les pores de ladite matrice rocheuse comporte des ions calcium.
PCT/FR1992/000812 1991-08-22 1992-08-21 Methode de reduction de la retention d'un agent de deplacement et application a la recuperation assistee d'hydrocarbures WO1993004266A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US08/039,413 US5368101A (en) 1991-08-22 1992-08-21 Method for reducing retention of a displacement agent and application to assisted recovery of hydrocarbons
RU93032321/03A RU2097538C1 (ru) 1991-08-22 1992-08-21 Способ снижения потерь вытесняющего агента и способ вторичной добычи углеводородов
GB9308163A GB2264966B (en) 1991-08-22 1993-04-20 Method of reducing the retention of a displacement agent and application to theassisted recovery of hydrocarbons
NO93931467A NO931467L (no) 1991-08-22 1993-04-21 Fremgangsmaate for aa redusere et fortrengningsmiddelsretensjon, samt anvendelse ved assistert utvinning av hydrokarboner

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR91/10591 1991-08-22
FR9110591A FR2680540B1 (fr) 1991-08-22 1991-08-22 Methode de reduction de la retention d'un agent de deplacement et application a la recuperation assistee d'hydrocarbures.

Publications (1)

Publication Number Publication Date
WO1993004266A1 true WO1993004266A1 (fr) 1993-03-04

Family

ID=9416376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR1992/000812 WO1993004266A1 (fr) 1991-08-22 1992-08-21 Methode de reduction de la retention d'un agent de deplacement et application a la recuperation assistee d'hydrocarbures

Country Status (8)

Country Link
US (1) US5368101A (fr)
CN (1) CN1042163C (fr)
CA (1) CA2094389A1 (fr)
DE (1) DE4292665T1 (fr)
FR (1) FR2680540B1 (fr)
GB (1) GB2264966B (fr)
RU (1) RU2097538C1 (fr)
WO (1) WO1993004266A1 (fr)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5433200B2 (ja) * 2008-10-22 2014-03-05 株式会社東芝 油分吸着材、及び油分回収方法
JP2010207760A (ja) * 2009-03-11 2010-09-24 Toshiba Corp 油分吸着材、及び油分回収方法
US8657005B2 (en) * 2010-04-30 2014-02-25 Exxonmobil Upstream Research Company Systems and methods for hydraulic barrier formation to improve sweep efficiency in subterranean oil reservoirs
KR20160101917A (ko) 2013-12-17 2016-08-26 발스파 소싱 인코포레이티드 실리콘-개질된 폴리에스테르 코팅
US9504550B2 (en) 2014-06-26 2016-11-29 Vertera, Inc. Porous devices and processes for producing same
US9498922B2 (en) * 2014-06-26 2016-11-22 Vertera, Inc. Apparatus and process for producing porous devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3191676A (en) * 1962-11-14 1965-06-29 Pan American Petroleum Corp Use of phosphates in a waterflooding process
US3203480A (en) * 1963-03-18 1965-08-31 Pan American Petroleum Corp Use of sulfides in flooding water
US3478823A (en) * 1968-06-21 1969-11-18 Mobil Oil Corp Method of recovering oil using sacrificial agent and viscosifier
US3827499A (en) * 1972-10-02 1974-08-06 Marathon Oil Co Injectivity in supplemented oil recovery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3414053A (en) * 1966-11-18 1968-12-03 Pan American Petroleum Corp Removal of interfering ions in waterflood
US3437141A (en) * 1967-10-09 1969-04-08 Mobil Oil Corp Multistep method of waterflooding
US3469630A (en) * 1967-10-09 1969-09-30 Mobil Oil Corp Method of minimizing adsorption of surfactant from flooding water
US3788399A (en) * 1971-12-30 1974-01-29 Texaco Inc Method for inhibiting adsorption of surfactant in secondary oil recovery
US3977470A (en) * 1975-02-27 1976-08-31 Mobil Oil Corporation Oil recovery by alkaline-sulfonate waterflooding

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3191676A (en) * 1962-11-14 1965-06-29 Pan American Petroleum Corp Use of phosphates in a waterflooding process
US3203480A (en) * 1963-03-18 1965-08-31 Pan American Petroleum Corp Use of sulfides in flooding water
US3478823A (en) * 1968-06-21 1969-11-18 Mobil Oil Corp Method of recovering oil using sacrificial agent and viscosifier
US3827499A (en) * 1972-10-02 1974-08-06 Marathon Oil Co Injectivity in supplemented oil recovery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REVUE DE L'INSTITUT FRANCAIS DU PETROLE. vol. 43, no. 4, 1988, PARIS FR pages 533 - 543 G.CHAUVETEAU 'reduction of polymer adsorption on reservoir rocks' *

Also Published As

Publication number Publication date
CA2094389A1 (fr) 1993-02-23
DE4292665T1 (de) 1993-10-07
FR2680540A1 (fr) 1993-02-26
GB2264966A (en) 1993-09-15
GB2264966B (en) 1995-02-08
RU2097538C1 (ru) 1997-11-27
US5368101A (en) 1994-11-29
FR2680540B1 (fr) 1993-10-22
CN1042163C (zh) 1999-02-17
GB9308163D0 (en) 1993-06-09
CN1070671A (zh) 1993-04-07

Similar Documents

Publication Publication Date Title
RU2382173C2 (ru) Водная добавка, повышающая клейкость, и способы подавления образования частиц
EP3490940B1 (fr) Procede de traitement d'une eau de production issue d'un procede de recuperation assistee du petrole et/ou du gaz
FR2940348A1 (fr) Amelioration de la recuperation assistee du petrole par polymere sans equipement ou produit complementaire.
CN1102953C (zh) 用氧化性水溶液进行地下碳质地层的化学诱导促进
FR2792678A1 (fr) Procede de recuperation assistee d'hydrocarbures par injection combinee d'une phase aqueuse et de gaz au moins partiellement miscible a l'eau
US20080115945A1 (en) Enzyme enhanced oil recovery (EEOR) for cyclic steam injection
EP0216661B1 (fr) Procédé pour la prévention de la venue d'eau dans un puits producteur d'huile et/ou de gaz
WO1993004266A1 (fr) Methode de reduction de la retention d'un agent de deplacement et application a la recuperation assistee d'hydrocarbures
EP0283344B1 (fr) Procédé pour la réduction sélective des venues d'eau dans les puits producteurs d'huile ou de gaz
Kohler et al. Polymer treatment for water control in high-temperature production wells
EP0155859A1 (fr) Procédé de colmatage réversible de formations souterraines
EP3585836B1 (fr) Suspension polyphasique de polymère et son utilisation
CA2068223C (fr) Procede ameliore de transport des particules en milieu poreux
CA1064690A (fr) Procede de colmatage selectif des zones proches des puits de production d'huile ou de gaz pour diminuer les venues d'eau_______________________
CA2076641C (fr) Une suspension stabilisee et son utilisation pour la recuperation d'hydrocarbures
FR2682991A1 (fr) Utilisation de gels faibles comprenant du polyacrylamide et du glyoxal pour la reduction selective de la permeabilite a l'eau.
EP3440152A1 (fr) Procede de traitement des abords d'un puits au moyen d'une solution aqueuse gelifiante comprenant une solution alcaline de silicate de potassium et un acide acetique
WO2016110655A1 (fr) Additif pour injectivité
EP4157963A1 (fr) Procédé de récupération assistée de pétrole dans une formation souterraine carbonatée
FR2686891A1 (fr) Nouvelles compositions a base de gels et leur utilisation pour la reduction selective de la permeabilite a l'eau dans les reservoirs chauds et sales.
CN117264615A (zh) 一种低矿化度盐水及其制备方法和在提高油藏采收率上的应用
WO2016110654A1 (fr) Additif pour injectivité
BE435272A (fr)
BE565552A (fr)

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): CA DE GB NO RU US

WWE Wipo information: entry into national phase

Ref document number: 2094389

Country of ref document: CA

RET De translation (de og part 6b)

Ref document number: 4292665

Country of ref document: DE

Date of ref document: 19931007

WWE Wipo information: entry into national phase

Ref document number: 4292665

Country of ref document: DE

EX32 Extension under rule 32 effected after completion of technical preparation for international publication

Free format text: KZ