WO1991005281A1 - Boitiers de raccordement et assemblage de cadres de distribution et de boitiers de raccordement pour cable optique - Google Patents

Boitiers de raccordement et assemblage de cadres de distribution et de boitiers de raccordement pour cable optique Download PDF

Info

Publication number
WO1991005281A1
WO1991005281A1 PCT/CA1990/000271 CA9000271W WO9105281A1 WO 1991005281 A1 WO1991005281 A1 WO 1991005281A1 CA 9000271 W CA9000271 W CA 9000271W WO 9105281 A1 WO9105281 A1 WO 9105281A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
connector
mounting
fibers
connectors
Prior art date
Application number
PCT/CA1990/000271
Other languages
English (en)
Inventor
George Debortoli
Laurence A. J. Beaulieu
Brian T. Osborne
Original Assignee
Northern Telecom Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CA000615192A external-priority patent/CA1328365C/fr
Application filed by Northern Telecom Limited filed Critical Northern Telecom Limited
Publication of WO1991005281A1 publication Critical patent/WO1991005281A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4453Cassettes
    • G02B6/4454Cassettes with splices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4452Distribution frames
    • G02B6/44526Panels or rackmounts covering a whole width of the frame or rack
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/44528Patch-cords; Connector arrangements in the system or in the box
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/444Systems or boxes with surplus lengths
    • G02B6/4453Cassettes
    • G02B6/4455Cassettes characterised by the way of extraction or insertion of the cassette in the distribution frame, e.g. pivoting, sliding, rotating or gliding

Definitions

  • This invention relates to connector holders and distribution frame and connector holder combinations for optical cable
  • optical fibers when optical fibers are connected in series, this may be done either with a mechanical connector or by fusing the ends of the fibers together in a packaged connection splice. In either case, adjacent ends of the in series fibers are held in axial alignment. End portions of optical fibers extending from the packaged splices may be coiled in organizing trays which also house the packaged splices.
  • An arrangement of this type is shown in U.S. Patent 4,359,262, granted November 16, 1982 and U.S. Patent 4,489,830 granted December 25, 1984.
  • conductor wires of an electrical tele ⁇ communications cable entering a customer's premises are normally connected to conductor wires of the customer's internal network by the use of a distribution frame.
  • In ⁇ coming cable extends to the distribution frame and the jacket and other material surrounding the core of the cable is removed for a distance along the cable from its end to expose the core.
  • Groups of insulated conductor wires are directed from the core and are connected to terminals on the incoming side of different connectors held by the frame, one group to the terminals of each connector.
  • Con ⁇ ductor wires of the internal network are then connected to other terminals on the outgoing side of the connectors so that each connector wire of the internal network is con ⁇ nected to an individual conductor wire of the incoming cable.
  • a typical distribution frame is described in U.S. Patent 4,278,315 granted July 14, 1981 in the name of B.T. Osborne.
  • This arrangement of distribution frame allows for removal and reinsertion of conductors of the internal net ⁇ work or for interchange of terminals for these conductor wires without any need for the customer to interfere with the terminals of the incoming cable.
  • an incoming electrical telecommunications cable is connected to the conductor wires of a customer's internal network in an essentially straightforward manner and in a compact arrangement of distribution frame.
  • incoming optical fibers are conventionally joined to optical fibers of an internal network by use of structures referred to as "pig ⁇ tails".
  • a pigtail is located in series between a respec- tive incoming optical fiber and an internal network fiber so as to connect them together.
  • a pigtail is a factory made item which comprises a protection surrounded optical fiber of certain length (referred to herein as a "pigtail fiber") and a mechanical connector which is joined to one end of the pigtail fiber.
  • Optical fibers of the incoming cable are connected to the free ends of pigtail fibers by splicing operations, such operations being less time con ⁇ suming than with the use of mechanical connectors.
  • the splicing operations thus optically couple the optical fibers of the incoming cable with the mechanical connectors of the pigtails.
  • These connectors are mounted upon a framework to make them readily accessible for the customer to connect the optical fibers of his internal network thereto. While the conventional arrangement described above for connecting incoming optical cables to a customer's internal network has been found to be largely acceptable, the design arrangement is unsatisfactory in some respects.
  • the incoming cable is spliced to the pig- tail fibers at a different location from that in which the connectors are mounted upon the framework.
  • a housing carries a tray which is pivotally mounted for movement in and out of the housing.
  • Incoming optical fibers are stored within the tray and are connected to pigtail fibers also stored within the tray.
  • the pigtail fibers extend from the tray to pig ⁇ tail connectors mounted at the rear of the housing. It would be very inconvenient for a maintenance person to service the tray pivoted out from the front of the housing while, at the same time having to concern himself with connectors at the rear of the housing. It would also be extremely difficult to know which of the incoming optical fibers corresponded to a certain connector at the rear of the housing.
  • the width of the housing would need to be such as to provide clearance for pivotal movement of the tray.
  • U.S. Patent 4,792,203 a structure is described which is similar to that described in the above German document.
  • the pigtail connectors are all mounted upon trays within a housing.
  • the density of connectors is such that only about 250 incoming fibers would be connectable to distribution fibers of an internal network in a housing having frontal area dimensions of approximately 84 inches by 26 inches.
  • the design of each tray is such that an increase in the number of pigtail connections would result in an increase in width of the housing to accommodate the tray.
  • the present invention provides a planar connector holder and which allows for a greater density of incoming optical fiber connections into an internal network than has previously been possible while also providing for ease of accessability to both fibers and connectors.
  • the present invention provides an optical fiber distribu ⁇ tion frame and connector holder combination to provide a high density of fiber connections while enabling the size of the distribution frame to be minimized.
  • a planar connector holder for connecting a plurality of incoming optical fibers of an incoming optical fiber cable to outgoing fibers, the holder having:- a front end region and a rear end region remote from the front end region and a storage facility for the storage of a plurality of coiled lengths of fiber in planes of the holder and which ensures the coils do not have a bend radius below a desired minimum bend radius, the storage facility lying between the front and rear end regions, characterized in that the holder further includes:- a mounting region for a plurality of optical connectors, the mounting region disposed at the front end region of the holder with the storage facility direction disposed between the mounting region and the rear end region of the holder with the mounting region contained between side boundaries of the holder and comprising a plurality of connector mounting positions disposed in a series which extends from mounting position to mounting position along the front end region of the holder for location of connectors in the mounting positions with an end of each connector facing forwardly from the
  • the mounting region extends along the front end region and with the storage facility directly between the mounting region and the rear end region, extra width of the holder for the mounting region, in addition to that re ⁇ quired for the storage facility is unnecessary.
  • a holder width may be approximately "5.4" inches. It is found that with a mounting region extending for this width of holder, as many as twelve connectors may be pro- vided in the mounting region dependent upon the connector size.
  • each holder is capable of connecting twelve incoming fibers to twelve outgoing fibers through the connections solely in the width of holders required for storage.
  • the guard when in the guarding posi ⁇ tion protects connectors in the mounting region. More importantly when the holder is in use in a distribution frame, the guard is effective in preventing any light signal emitted from a connector, having no optical fiber connected to its forwardly facing end, from passing from the front of the distribution frame, thereby avoiding eye damage to personnel.
  • the guard is preferably pivotal into and out of the guarding position. Alternatively, the guard may be completely removable from the holder to remove it from the guarding position and will then be returned to the holder to resume the guarding position.
  • the storage facility has two means for limiting the minimum bend radius of optical fiber coils, the two means being separated so as to limit the bend radius of two sets of coils with each set at a differ ⁇ ent location in the facility.
  • the storage facility may comprise a single storage compartment. However, in one preferred arrange- ment, the storage facility has a first and second storage compartments for storin two sets of coils of fiber, one set in each compartment.
  • a base is provided in the holder, the base extending between the front and rear end regions with the compartments being spaced apart one on each side of the base and opposed to one another in a depth direction of the holder which is normal to the plane of the holder.
  • the distance between the front and rear end regions is minimized as the two compartments do not lie in the same planes, but are in different planes with the base in between.
  • the mounting surface lies on one side of the general plane of the holder base and faces in the depth direction across the general plane of the holder.
  • the connector holder size is minimized in all directions and it is ensured that the connectors are mounted so as to lie in the depth direction in the same region as one or both of the compartments. It follows that a holder with minimized overall dimensions is capable of accommodating up to possibly twelve connectors.
  • an optical fiber distribution frame and connector holder combination comprising a plurality of planar connector holders each for connecting a plurality of incoming optical fibers of an incoming optical fiber cable to outgoing optical fibers, each holder having a front end region and a rear end region remote from the front end region and a storage facility for the storage of a plur ⁇ ality of coiled lengths of fiber and which ensures the coils do not have a bend radius below a desired minimum bend radius, in planes of the holder the storage facility lying between the front and rear end regions; and the dis ⁇ tribution frame having a front and a rear and providing a plurality of side-by-side holder receiving stations with access at the front of the frame for insertion of each holder into a respective station, characterized in that each holder further includes:- a mounting region for a plurality of optical connectors, the mounting region dis ⁇ posed at the front end region of the holder with the storage facility directly disposed between the mounting region and the rear end
  • each holder is movable in its receiv ⁇ ing station between a rearward fully operative position and a forward connector access position and with each holder in its fully operative position, the respective guard is held in its connector guarding position and, with each holder in its access position, the respective guard is movable into and out of its guarding position.
  • an optical fiber distribution frame and connector holder combination comprising a plurality of planar con ⁇ nector holders each having a storage facility for storing a plurality of coiled lengths of fiber in planes of the holder and which ensures the coils do not have below a desired minimum bend radius, and a distribution frame for carrying the holders, characterized in that:- each holder has a mounting region comprising a plurality of mounting positions for optical connectors, the mounting positions disposed in a series which extends from mounting position to mounting position along a front end region of the holder with optical connectors located in the mounting positions and with one end of each connector facing forwardly from the front end region of the holder; the distribution frame has a first and second vertical banks of holder receiving stations with access at a front of the frame for insertion of each holder into a respective station, the first and second banks horizontally spaced apart to provide a ver ⁇ tical storage channel for fiber between the banks; the holders are inserted into the receiving stations of the first and
  • groups of incoming optical fiber may extend, one group to each holder in both banks of receiving stations, and outgoing optical fibers provide the other fibers, the outgoing fibers being disposed within the storage channel.
  • a plurality of groups of incoming optical fibers extend one group to each holder in the first bank of re ⁇ closing stations and a plurality of groups of outgoing optical fibers extend one group to each holder in the second bank of receiving stations.
  • cross-connection is provided by patch cords each of which extends from an individual optical connector in a holder in one bank to an individual optical connector in a holder in the other bank. Excess lengths of patch cords between their ends, hang freely as loops in the storage channel. The length of any loop depends upon the relevant positions of the two connectors to which a patch cord is connected.
  • the storage facility allows for change in coil size and with the group of incoming optical fibers extending into the facility through an inlet, movement of the holder in its receiving station may be accompanied by progressive movement of the group of fibers into or out of the holder through the inlet to provide a corresponding change in coil size.
  • each group of in ⁇ coming optical fibers may be contained within an individual tube forming a part of and extending from an incoming op ⁇ tical cable.
  • no tube is provided and each group of incoming optical fibers is exposed as it extends to its holder receiving station.
  • the fibers are normally of small diameter, e.g. around 0.25 mm and in need of greater protection than fibers devoid of tubes, these latter fibers normally being of larger diameter, e.g. around 0.9 mm.
  • each tube In a holder struc ⁇ ture comprising a first and second storage compartments which are interconnected and where tubes each encloses a group of fibers, each tube extends in coiled form around the first compartment and passes through a strain relief, by which it is held, before the tube or the incoming op ⁇ tical fibers extending from an end of the tube pass to the second compartment.
  • the group of fibers extend around the first compart ⁇ ment and is held directly by strain relief before passing to the second compartment.
  • a method of optically coupling a group of incoming optical fibers to optical connectors and locating the fibers and connectors in a distribution frame having a front and a rear characterized in that it comprises:- directing the group of fibers to cause it to extend from the frame to a planar connector holder for optical connectors, the holder disposed in a position spaced from the distribution frame and having a front end region and a rear end region remote from the front end region; at a position spaced from ends of the fibers in the group, disposing the group of fibers in a fixed location in the holder by passing the group through a strain relief to provide end portions of the fibers extending from one side of the strain relief and lengths of the group of fibers extending from the other side of the strain relief to the distribution frame; optically coupling ends of the fibers of the group to the optical connectors one fiber to an end of each connector; mounting the connectors in mounting positions disposed in a series from mounting
  • Figure 2 is a plan view of the side of the holder shown in Figure 1;
  • Figure 3 is a view similar to Figure 1 of the other side of the holder
  • Figure 4 is a plan view of the other side of the holder shown in Figure 3;
  • Figure 5 is an end view of the holder in the direction of arrow V in Figure 4;
  • Figures 6 and 7 are cross-sectional views of the holder taken along line VI-VI in Figure 2 and showing two different positions of a movable part of the holder;
  • Figure 8 is a cross-sectional view of the holder taken along line VIII-VIII in Figure 4;
  • Figure 9 is an isometric view of a connector mount for use in the holder of previous figures;
  • Figure 10 is an end view of the holder taken in the direction of arrow X in Figure 9;
  • Figure 11 is an isometric view of a distribution frame of the first embodiment
  • Figure 12 is a cross-sectional view of the frame taken along line XII-XII in Figure 11;
  • Figure 13 is an isometric view of a partial assembly of the distribution frame and a plurality of holders according to the first embodiment;
  • Figures 14, 15, 16, 17 and 18 are views showing stages in the assembly of optical fibers in a connector holder and the holder into the frame of the first embodi ⁇ ment;
  • Figure 19 is a cross-sectional view of the frame and holder assembly along line XII-XII in Figure 11;
  • Figure 20 is an isometric view of part of the frame and holder assembly;
  • Figure 21 is an isometric view of a frame and holder assembly according to a second embodiment
  • Figure 22 is a cross-sectional view of the frame and holder assembly of the second embodiment taken along line XXII-XXII in Figure 21;
  • Figure 23 is a plan view of one side of a con ⁇ nector holder according to a third embodiment.
  • a planar connector holder 10 according to a first embodiment is shown in Figures 1 to 4.
  • the holder has a mounting region 12 for a plurality (namely twelve) of optical connectors as will be described, the mounting region being disposed at a front end region of the holder.
  • a planar holder base 16 lying in a plane of the holder.
  • the holder base extends from the front end region (i.e. at the mounting region) to the rear end region and also between side boundaries of the holder provided by side walls 18.
  • the holder base 16 is disposed substan- tially half-way in the depth direction of the holder (as shown in Figure 8) with side walls 18 extending above and below the base.
  • the holder 10 has a storage facility for storing coiled lengths of optical fiber.
  • This facility comprises two storage compartments, namely a first compartment 20 on one side of the holder base and a storage compartment 22 on the other side of the holder base.
  • the two compartments lie between side walls 18 and between the mounting region 12 and the rear end region of the holder.
  • the first compartment is provided for storing a tube containing a group of incoming optical fibers as will be described, the tube extending from an incoming optical fiber cable.
  • One side wall 18 is provided with an inlet opening 24 towards the mounting region 12 for introducing the tube into the first compartment 20.
  • Means is provided in the first or tube storage compartment 20 for limiting the minimum bend radius of coils of the tube which is to be disposed within it. This bend radius limiting means com ⁇ prises a cylindrical member 26 and surrounding cup 32, the member 26 extending from the holder base and being disposed a substantial distance from the side walls 18 and rear end 14 of the storage compartment to enable the coils of the tube to increase in diameter or decrease as required.
  • Retaining projections 30 extend inwardly from the side walls 18 and rear end 14 over the tube storage compartment for the purpose of retaining coils of the tube within the compartment.
  • the cup 32 has a cylindrical portion 31 which is frictionally held by the member 26 and is telescopically movable upon member 26 from an inner operative position as shown in Figure 7 to a position outwardly from the member 26 and beyond side walls 18 as shown in Figure 6.
  • the cup 32 has a retaining flange 34 which extends radially out ⁇ wardly and opposes the projections 30 so that, with the cup in the inner operative position of Figure 7, projections 30 and flange 34 lie substantially close to each other to prevent removal of a tube from between them.
  • the cup 32 is omitted from other figures for clarity except for a chain- dotted outline of flange 34 in Figure 2. With the cup 32 moved to the position shown in Figure 6, a gap is provided between the projections 30 and flange 34 to enable the tube to be coiled around the cylindrical member 26.
  • the second storage compartment 22 is a fiber storage compartment.
  • the fiber storage compartment 22 has a minimum bend radius limiting means in the form of a cylinder 36 extending from the base, and retaining projections 38 extend inwards from the side walls 18 and rear end 14 and radially out from the cylinder 36 to hold coils of fiber in position.
  • the two compartments 20 and 22 are interconnected by a passage 40 formed by a discontinuity in the rear end 14 of the holder.
  • a curved guide passage 42 is formed in the tube storage compartment 20 to guide the tube to the passage 40 and a curved guide passage 44 is similarly provided in the fiber storage compartment 22 for guiding the tube into the com- partment 22.
  • a strain relief is provided at the end of the guide passage 44 for the tube. This strain relief may be of any known construction, but as shown in Figure 4 com ⁇ prises a clip 46 for surrounding the tube and a screw 48 for securing the clip to the holder base 16.
  • To one side of the fiber storage compartment 22 is disposed an optical fiber splice block 50 of conven ⁇ tional construction. This splice block is permanently held in position either by being formed integrally with or otherwise secured to the base 16, and is spaced from an adjacent side wall 18.
  • the mounting region 12 is contained between side walls 18 and is constructed to provide a plurality of con ⁇ nector mounting positions extending in a series which ex ⁇ tends from mounting position to mounting position along the front end region of the holder, i.e. between the side walls 18.
  • the mounting region comprises a recess 52 extending between the side walls (see Figures 3 and 8) .
  • a bottom surface 54 of the recess provides a mounting surface for connectors to be disposed in the holder.
  • the surface 54 faces in the depth direction of the holder across the general plane of the base 16.
  • the mounting region is provided with a location and retaining means for locating and retaining connectors correctly in connector mounting positions along the mounting surface.
  • the location and retaining means comprises a plurality of parallel grooves 56 formed in the surface 54, these grooves extending towards the rear end region of the holder and spaced apart along the mounting surface as shown in Figure 3.
  • the location and retaining means also comprises two opposing side surfaces 58 and 60 of the recess 52.
  • the surface 58 is inclined onto recess 52 and spaced apertures 63 are formed in the base of the recess.
  • the surface 60 overhangs the mounting region and apertures 65 are formed in the wall 67 having the surface 60.
  • the apertures 63 and 65 are disposed in connector mounting positions along the mounting region ( Figure 3) .
  • a connector mount 62 for mounting in the mounting region 12 is of substan- tially parallel-sided shape and has two ribs 64 on an undersurface which are spaced apart for location within two of the grooves 56 in the mounting surface.
  • Such a connec ⁇ tor mount may be disposed in any of the twelve desired mounting positions along the mounting region 12. From one end of the mount 62 there is provided an aperture 66 for accepting an optical fiber connector for fiber mounted in the storage compartment 20. The other end of the mount is formed as a square-sided recess 68 for receiving a connec ⁇ tor of a patch cord to be optically coupled to one of the fibers contained in the storage compartment 20.
  • the aper ⁇ ture 66 extends into recess 68.
  • a front surface is in ⁇ clined, as shown to provide a forwardly projecting foot 69.
  • a resilient latch 71 is provided for flexing movement in a front to rear direction.
  • each mount overlaps the tube and fiber storage compartments 20 and 22 in the depth direction of the holder and does not extend beyond edges of side walls 18.
  • the mount may be removed by raising the rear of the mount upwardly which causes the latch 71 to become released.
  • the holder is provided with a connector guard for preventing any injury to maintenance personnel from any light beam emitted from an end of an exposed connector mounted in any of the mounts 62.
  • this guard 70 comprises a wall 72 which extends across the width of the holder, and two hinge projections 74 at the ends of the wall by which the guard 70 is hingedly mounted at the front ends of the side walls 18.
  • the guard may be either in a raised and connector guarding position (in full outline) in a position in front of the mounting region or in a lowered or non-guarding position, as shown in chain-dotted outline in Figure 3.
  • the wall 72 is spaced forwardly from the mounting region and from the front end region of the holder as shown in the figures to define a gap 75 to allow for passage of ends of patch cords from the front end region and into the gap 75 to enable the patch cord con- nectors to be disposed in the mounts 62 provided in the mounting region 12.
  • the guard 70 protects connectors and ends of patch cords extending to the connectors. More importantly, in the event that any connector has no patch cord connected to it, the guard 70 in the guarding position prevents light signals, which could damage eyes of operating personnel, from being trans ⁇ mitted from the connectors and out from a distribution frame (to be described) .
  • the guard is moved to the non- guarding position of Figure 3 to enable the connections with the patch cords to be easily made by maintenance personnel.
  • a plurality of the holders 10 together with a plurality of holders 10a of opposite hand to the holders 10 are to be assembled into a distribution frame 76 shown in Figures 11 and 12.
  • the distribution frame and holder combination is intended for connecting the optical fibers of an incoming cable with outgoing fibers, i.e. distribu- tion fibers of a customer's internal network.
  • the frame 76 comprises two spaced apart banks of holder receiving stations 78.
  • the frame comprises a rear wall 80 and two side walls 82 with each side wall 82 defining a vertical bank of stations 78 together with an intermediate wall 84 for that particular bank.
  • the intermediate walls 84 are spaced apart as shown in Figure 11 to provide a fiber storage channel 85 between the banks of receiving stations.
  • Holder receiving stations in each bank comprise holder support flanges 86 ( Figure 17) which project in- wardly of each bank from each side wall 82 and each inter ⁇ mediate wall 84 of that bank, the flanges 86 forming part of guide means for the holders 10.
  • Each holder 10 or 10a and its corresponding side wall 82 and intermediate wall 84 is provided with part of the guide means in the form of a guide rail 90 projecting outwardly from each side wall 18 which lies vertically and extends laterally in the depth direction of the holder.
  • Each guide rail 90 is received within a guide channel 87 defined between a respective flange 86 and a discontinuous flange 88 spaced above it ( Figure 17) .
  • Means is provided for receiving each holder 10 or 10a in the receiving station either in a rearward fully operative position or in a connector access position forwardly of the operative position.
  • This particular means comprises, in respect of each wall 82 and 84, a latch 89 which normally forms part of the flange 88.
  • Each latch is connected to a part of its flange 88 by a neck 92 and is not otherwise connected to its wall 82 or 84 so that it may be resiliently flexed upwards as shown by arrow 94 in Figure 17.
  • Each of the guide rails 90 is formed with two recesses 95 in spaced positions along the respective holder 10, these recesses being provided to accommodate a finger projection 96 at the free end of the latch 89.
  • the holder receiving stations are accessible from the front of the frame to slide the holders into the receiving stations.
  • the guide rails 90 are received between the respective flanges 86 and 88 and a holder is pushed in the plane of the holder and along a straight line path in the rear to front direction of the holder towards the rear of the distribution frame.
  • each channel is for receiving a group of tubular members containing optical fibers.
  • a convex surface member or arcuate channel 102 presenting a convex surface into the region between the walls 84.
  • the channel 102 forms part of a patch cord positioning means.
  • corralling hooks 104 of the positioning means for patch cords extend ⁇ ing between the two banks.
  • the left- hand bank 78 of receiving stations is to be connected to the incoming optical fibers of incoming cable and the right-hand bank to the distribution optical fibers.
  • the optical fiber connections and assembly of the holders into the distribution frame is performed in the following manner.
  • an incoming optical cable 108 comprising a plurality of tubes 110 each surrounding a group of incoming optical fibers, is secured in a position above the channel 100 on the left-hand side of the distri- bution frame.
  • the jack ⁇ et and any sheath of the cable surrounding the tubes 110 Prior to its location in position, the jack ⁇ et and any sheath of the cable surrounding the tubes 110 has been removed and the tubes are disposed so as to extend down the left-hand channel 100 as shown in the figure.
  • the holder 10 To connect a holder 10 to fibers of the cable at any of the holder receiving stations in the left-hand bank 78, the holder 10 is disposed in front of the frame on a supporting structure such as a work table 112. A selected one of the tubes 110 is then brought forwardly from the frame and an end length of the tube is removed to expose excess lengths of the group of fibers 114 housed within the tube.
  • the fibers 114 have a diameter of approximately 0.25 mm. In this particular case where the holder is to accom ⁇ modate twelve optical connectors at its mounting region, then there are twelve optical fibers 114 in the tube.
  • an end region of the tube 110 is then located along the curved guide passage 44 on the fiber storage compartment side of the holder and the end of the tube is secured to the holder by the strain relief clip 46. In this position, all of the excess lengths of the fibers 114 extend loosely outwardly from the end of the tube.
  • Each of the fibers is then connected to a pigtail 116.
  • Each pigtail comprises an optical connector housed within a connector mount 62 and a length of optical fiber 118 exten ⁇ ding from the connector.
  • Each fiber 114 is connected to a corresponding fiber 118 by a splice 120, as shown in Figure 14, by a splicing operation performed outside the holder upon the table 112, the splice then being placed directly after its formation in an appropriate position in the splice block 50.
  • excess lengths of the corresponding fibers 114 and 118 are wound into coils around the cylinder 36 in the fiber storage compartment 22 and the connector mount 62 is disposed in a desired mounting position in the mounting region 12 as shown in Figure 15.
  • FIG. 15 In this figure, for clarity, only one splice connection together with pigtail 116 and corresponding fiber 114 is shown. This connection procedure is then followed with each of the remaining op- tical fibers 114 and corresponding pigtails 116 until the splicing operation is finalized and connector mounts 62 have been located in their mounting positions in the holder.
  • the holder 10 is then removed from the supporting table 112 and the tube 110 is caused to pass through the passage 40 ( Figure 5) to bring it into the tube storage compartment 20.
  • the cup 32 With the cup 32 raised to its position shown in Figure 6, the length of tube extending from the table 112 to the distribution frame is wound into coils around the cylindrical part 31 of the cup accompanied by rotation of the holder in its own plane, as indicated by arrow 122 in Figure 16, to effect the coiling action.
  • the tube 110 Upon the holder reaching its desired holder receiving station on the left-hand side of the frame, the tube 110 is caused to pass through the aperture 24 in the side wall 18, as shown in Figure 16, and the holder with the tube storage com ⁇ partment 20 facing downwardly, is moved into its rearward fully operative position by sliding reception of the guide rails 90 between the corresponding flanges 86 and 88. In the fully operative position of the holder, the finger projections 96 of the associated latches 89 are received within the forward recesses 95 of the holder.
  • the sliding movement of the holder into the frame is accompanied by appropriate change in the size of the coils of the tube 110 in the tube storage compartment 20 as the inlet 24 of the holder ap ⁇ proaches towards the channel 100 accommodating the tubes 110. This is because any further excess length of tube extending from the holder is progressively received through the inlet 24 into the tube storage compartment 20 during reception of the holder into the frame.
  • All of the other tubes 110 are then connected to associated holders 10 in a similar fashion with their optical fibers connected to pigtail assemblies and with the connector mounts 62 located in the mounting positions. These holders are then positioned in the left-hand bank of holder receiving positions as required. Holders 10a of opposite hand to the holders 10 are then dealt with sequentially to splice optical fibers 128 of pigtails to optical fibers of a customer's internal network housed within distribution tubes 126 housed in the right-hand channel 100 (see Figure 13) .
  • the tubes 110 are hence optically connected to the rear ends of the connectors in mounts 62 of the holders 10.
  • outgoing or distribution fibers 124 from the tubes 126 are coiled in the fiber storage compartments 22a to be spliced to the pigtails 128 with the splices located in the splice blocks 50 of the holders 10a.
  • the connectors joined to the fibers 128 of the pigtails are held in connector mounts 62a which are mounted into the mounting regions of the holders 10a.
  • the left-hand bank of receiving stations 78 housing the holders 10 is the incoming tele ⁇ communication cable side of an interfacial region in the distribution frame while the right-hand bank of receiving stations housing the holders 10a is on the outgoing or customer's internal network side of the frame side and is connected directly to the distribution optical fibers of that network.
  • the guards 70 are retained in their connector guarding positions with the adjacent guards providing a substantially continuous vertical front surface to the assembly having no fibers or tubes containing fibers projecting from this front surface.
  • the guards 70 provide a safety feature against eye damage in the event that any connector 62 has no patch cord (to be described) connected to it.
  • the guards are retained in their guarding positions either because of restriction on movement created by adjacent guards or, in the event that a holder is dis ⁇ posed adjacent to an empty receiving station 78, by inter ⁇ ference of the projections 74 of that particular guard with a frame member.
  • the connectors 134 of a patch cord are connected to the front end of a desired connector in a mount 62 with the front end of another selected connector in a mount 62a.
  • An access position of one holder 10a is shown, by way of example, by the chain-dotted position in Figure 20.
  • each of the patch cords 130 is disposed in controlled fashion between its connectors 134 by being located in the storage channel 85 between the side walls 84 as shown in Figures 19 and 20.
  • Each of the groups of patch cords is passed substantially horizontally around the arcuate channels 102 so as to control their minimum bend radius, through the corralling hooks 104 on each wall 84 and then passes rearwardly between the side walls 84 to be located over and behind patch cord loop supporting brackets 136 of the positioning means.
  • These brackets 136 extend between the side walls 184 and have ends slightly spaced apart for passage of the pigtails.
  • Each of the patch cords then extends freely downwardly in a loop 132 behind the brackets 136 to accom ⁇ modate any excess length of the patch cord.
  • the storage channel 85 is sufficiently wide to ensure that the loops 132 exceed a desired minimum bend radius for the patch cord fibers.
  • each of the holders 10 or 10a may be of compact size while still enabling a multiplicity of fibers to be connected to con- nectors in the holder.
  • there are twelve connector mounting positions for each holder and this large number of mounting positions is only made possible in the compact size of holder by providing the mounting region at the front end region of the holder so as to lie in the same holder width region as the fiber and tube storage compartments 20 and 22, i.e. the two com ⁇ partments lie between the mounting region and the rear end 14 of the holder.
  • the holder does not require additional width to that required for the storage compartments in order to accommodate the connector mounting region.
  • the width of the holder is minimized while maximizing on the number of connectors which may be mounted in the holder.
  • the holder length is minimized in that the two compartments 20 and 22 lie side- by-side through the depth of the holder as distinct from lying side-by-side in the length or width of the holder.
  • each holder need only be 11.8 inches long by 5.4 inches wide by 0.88 inches deep, while providing the advantages of the first embodiment.
  • a distribution frame 76 measuring 84 inches deep by 26 inches wide, may accommodate sixty holders in each bank for a total of 1440 connectors at the front regions of the holders in both banks. Hence, a total of 720 incoming fibers may be connected from one bank to the other and into the customer's internal network.
  • the tube storage compartment 20 in being completely separate from the fiber storage compartment 22 enables the tube to move within its compartment, during movement of the holder into and out of the fully operative position, without engaging and abrading against the bare fibers in the tube storage compartment.
  • any holder may be completely removed from the frame and placed on the work table 112 by removal of its tube from the holder by an uncoiling action without any movement or possible damage occurring to the fibers in the fiber storage compartment 22. Hence, damage to the coiled lengths of fiber by the coiled tube is avoided under any circumstances.
  • the above dimensions of 84 inches by 26 inches for the distribution frame of the first embodiment may be reduced in a case where a frame is not used for the purpose of having an incoming bank and an outgoing bank.
  • the holders 10 and 10a may be used quite effectively in a frame which deals exclusively with in ⁇ coming optical fibers from an incoming cable.
  • two banks 140 of holders 10 and 10a are disposed closely adjacent so as to avoid the storage channel 85 between side walls 84 as described in the first embodiment.
  • each of the holders 10 and 10a is slidably moved in its own plane into the frame and into its respective holder receiving position in a manner similar to that described in the first embodiment.
  • the two banks of holders are separated solely by the thick- ness of a wall 142, the wall being provided solely for the purpose of supporting the guide rails for the holders.
  • incoming optical fiber tubes 144 from the same incoming cable extend along ver ⁇ tical channels 146 which lie at the front of and open at the front of the frame.
  • Each tube is received in its tube storage compartment of its own holder 10 or 10a as described for the tubes in the first embodiment and the incoming optical fibers 151 extend into the respective fiber storage compartment to be spliced to pigtail fibers 150 as shown in Figure 22.
  • the pigtail fibers 150 form part of pigtails having connectors mounted in connector mounts 152 which are held in the mounting regions of the holders 10 and 10a as described in the first embodiment. Patch cords 154 from both banks of holders then extend outwardly from the distribution frame as shown in Figure 22.
  • patch cords may themselves extend along the channels 146 before continuing to another or other distri ⁇ bution frames where they are connected to the customer's internal network side of the interface with the incoming cable. As shown in Figure 21, the patch cords conveniently may extend downwardly of and away from the bottoms of the channels. Such an arrangement need only have a distribu ⁇ tion frame width of about 17.3 inches to perform its function while providing for a total of 1440 fiber connections.
  • a holder 156 of a third embodiment is substantially of the same construction as that described in the first embodiment except that the splice block is omitted.
  • the incoming tube 110 extends from the coils in the tube storage compartment (not shown) through the passage 40 between the two compartments so as to be held by the strain relief clip at its end in the storage compartment.
  • the incoming optical fibers 114 then extend in coiled form around the cylinder 36 and are passed to the connectors held by the mounts 62 held in the ount- ing region 12 of the holder.
  • additional retaining flanges 160 may be required for the purpose of holding the fibers within the storage com ⁇ partment.
  • each holder 10 and 10a will accommodate twelve connector mounts 62.
  • the whole of the mounting region of the holder may be detachable in any desired manner.
  • the mounting region is formed for this purpose as a separate molded element.
  • the mounting regions has dovetail ends. These dovetail ends are received within complementary dovetail slots pro- vided at the forward ends of the arms 18 of the holder.
  • the mounting region is urged downwardly between the arms to locate it in position within the holder.
  • the mounting region is replaceable by other mounting regions having the parallel grooves 56 of the location and retaining means spaced closer together or further apart as is appropriate. While the above embodiments are described in relation to connection of small diameter incoming fibers contained within tubes of a cable, to connectors, alterna ⁇ tively, cables having larger diameter fibers (e.g. around 0.9 mm) which are not contained in tubes may be connected

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

L'invention se rapporte à un boîtier de raccordement plat (10, 156) pour fibres optiques, qui comprend des compartiments de stockage (20, 22) pour les fibres entrantes (114) et une région de montage (12) pour les raccordements de connexion aux fibres sortantes. Les deux compartiments de stockage sont disposés dos à dos sur chaque côté d'une base plane (16) du boîtier de raccordement et sont reliés entre eux pour permettre le passage des fibres d'un compartiment à l'autre. La région de montage et les compartiments de stockage sont alignés d'une extrémité à l'autre du boîtier de raccordement. Des supports (62) pour les raccordements, qui sont montés dans la région de montage, sont situés dans des plans communs aux deux compartiments de stockage dans le sens de la profondeur du boîtier de raccordement. Une plaque de garde mobile (70) pour les raccordements est montée sur la face frontale du boîtier de raccordement. Est également prévu un assemblage combiné qui est constitué d'un cadre de distribution (76) et de boîtiers de raccordement et dans lequel les boîtiers de raccordement sont montés en deux rangées dans des logements récepteurs de boîtiers de raccordement (78), des câbles volants (130) s'étendant entre les rangées et sélectivement entre les raccordements. Ces câbles volants pendent de préférence librement sous la forme de longueurs de câble excédentaires à l'intérieur d'un canal de rangement formé entre les deux rangées verticales des logements récepteurs.
PCT/CA1990/000271 1989-09-29 1990-08-29 Boitiers de raccordement et assemblage de cadres de distribution et de boitiers de raccordement pour cable optique WO1991005281A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CA000615192A CA1328365C (fr) 1988-12-20 1989-09-29 Supports de connecteurs et repartiteur et ensembles supports de connecteurs pour cables optiques
CA615,192 1989-09-29

Publications (1)

Publication Number Publication Date
WO1991005281A1 true WO1991005281A1 (fr) 1991-04-18

Family

ID=4140880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CA1990/000271 WO1991005281A1 (fr) 1989-09-29 1990-08-29 Boitiers de raccordement et assemblage de cadres de distribution et de boitiers de raccordement pour cable optique

Country Status (4)

Country Link
EP (1) EP0493407A1 (fr)
JP (1) JPH05503162A (fr)
AU (1) AU6278290A (fr)
WO (1) WO1991005281A1 (fr)

Cited By (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH485672A (de) * 1966-05-17 1970-02-15 Philips Nv Verfahren zur Herstellung aromatischer Nitrilverbindungen
EP0529830A1 (fr) * 1991-08-30 1993-03-03 Siecor Corporation Stockage de fibre optique
EP0547997A1 (fr) * 1991-12-12 1993-06-23 Telefonica De Espana, S.A. Répartiteur modulaire pour fibres optiques
WO1993019392A1 (fr) * 1992-03-25 1993-09-30 Fibernet Research Pty. Ltd. Logement destine a des fibres optiques
EP0603847A1 (fr) * 1992-12-23 1994-06-29 Reichle + De-Massari AG Elektro-Ingenieure Répartiteur
DE4308228C1 (de) * 1993-03-16 1994-10-20 Quante Ag Hauptverteiler für Lichtleitfasern der Kommunikationstechnik
EP0623832A1 (fr) * 1993-05-05 1994-11-09 KRONE Aktiengesellschaft Monture de répartition pour cables
WO1995007486A1 (fr) * 1993-09-10 1995-03-16 British Telecommunications Public Limited Company Systeme de gestion de fibres optiques
EP0689074A1 (fr) * 1994-06-20 1995-12-27 PIRELLI GENERAL plc Dispositif pour l'utilisation de connection des fibres optiques
CH686267A5 (de) * 1993-07-30 1996-02-15 G & B Elektro Ag Stapelbarer Kabelendverschluss fur Lichtwellenleiter.
US5588076A (en) * 1993-09-10 1996-12-24 British Telecommunications Public Limited Company Optical fibre management system
CN1040581C (zh) * 1992-11-25 1998-11-04 雷伊化学公司 纤维光学连接罩
WO2004095107A1 (fr) * 2003-04-22 2004-11-04 Corning Cable Systems Llc Armoire de convergence locale pour reseaux de cables en fibre optique
EP1656576A2 (fr) * 2003-07-17 2006-05-17 Teraspan Networks Inc. Installations de reseau a fibre optique enfoui sous la surface
WO2006053603A1 (fr) * 2004-11-11 2006-05-26 Ccs Technology, Inc. Dispositif repartiteur de fibres optiques
WO2007009593A1 (fr) * 2005-07-21 2007-01-25 Ccs Technology, Inc. Dispositif de distribution de fibres optiques
US7676136B2 (en) 2008-06-26 2010-03-09 Emerson Network Power, Energy Systems, North America, Inc. Fiber distribution hubs with patch and splice enclosures
WO2011049857A1 (fr) * 2009-10-23 2011-04-28 Corning Cable Systems Llc Plates-formes de montage permettant de maintenir solidairement un ou plusieurs plateaux d'épissure optique et/ou un ou plusieurs répartiteurs optiques dans un connecteur optique multi-accès et procédés associés
EP2315062A3 (fr) * 2009-10-22 2011-07-27 CCS Technology, Inc. Dispositif de gestion de fibre amorce et dispositif de distribution de guide d'onde optique
US8184938B2 (en) 2008-08-29 2012-05-22 Corning Cable Systems Llc Rear-installable fiber optic modules and equipment
US8280216B2 (en) 2009-05-21 2012-10-02 Corning Cable Systems Llc Fiber optic equipment supporting moveable fiber optic equipment tray(s) and module(s), and related equipment and methods
US8433171B2 (en) 2009-06-19 2013-04-30 Corning Cable Systems Llc High fiber optic cable packing density apparatus
US8452148B2 (en) 2008-08-29 2013-05-28 Corning Cable Systems Llc Independently translatable modules and fiber optic equipment trays in fiber optic equipment
US8542973B2 (en) 2010-04-23 2013-09-24 Ccs Technology, Inc. Fiber optic distribution device
US8593828B2 (en) 2010-02-04 2013-11-26 Corning Cable Systems Llc Communications equipment housings, assemblies, and related alignment features and methods
US8625950B2 (en) 2009-12-18 2014-01-07 Corning Cable Systems Llc Rotary locking apparatus for fiber optic equipment trays and related methods
US8660397B2 (en) 2010-04-30 2014-02-25 Corning Cable Systems Llc Multi-layer module
US8662760B2 (en) 2010-10-29 2014-03-04 Corning Cable Systems Llc Fiber optic connector employing optical fiber guide member
US8699838B2 (en) 2009-05-14 2014-04-15 Ccs Technology, Inc. Fiber optic furcation module
US8705926B2 (en) 2010-04-30 2014-04-22 Corning Optical Communications LLC Fiber optic housings having a removable top, and related components and methods
US8712206B2 (en) 2009-06-19 2014-04-29 Corning Cable Systems Llc High-density fiber optic modules and module housings and related equipment
US8718436B2 (en) 2010-08-30 2014-05-06 Corning Cable Systems Llc Methods, apparatuses for providing secure fiber optic connections
US8755663B2 (en) 2010-10-28 2014-06-17 Corning Cable Systems Llc Impact resistant fiber optic enclosures and related methods
US8873926B2 (en) 2012-04-26 2014-10-28 Corning Cable Systems Llc Fiber optic enclosures employing clamping assemblies for strain relief of cables, and related assemblies and methods
US8879881B2 (en) 2010-04-30 2014-11-04 Corning Cable Systems Llc Rotatable routing guide and assembly
US8913866B2 (en) 2010-03-26 2014-12-16 Corning Cable Systems Llc Movable adapter panel
US8953924B2 (en) 2011-09-02 2015-02-10 Corning Cable Systems Llc Removable strain relief brackets for securing fiber optic cables and/or optical fibers to fiber optic equipment, and related assemblies and methods
US8985862B2 (en) 2013-02-28 2015-03-24 Corning Cable Systems Llc High-density multi-fiber adapter housings
US8989547B2 (en) 2011-06-30 2015-03-24 Corning Cable Systems Llc Fiber optic equipment assemblies employing non-U-width-sized housings and related methods
US8995812B2 (en) 2012-10-26 2015-03-31 Ccs Technology, Inc. Fiber optic management unit and fiber optic distribution device
US9008485B2 (en) 2011-05-09 2015-04-14 Corning Cable Systems Llc Attachment mechanisms employed to attach a rear housing section to a fiber optic housing, and related assemblies and methods
US9020320B2 (en) 2008-08-29 2015-04-28 Corning Cable Systems Llc High density and bandwidth fiber optic apparatuses and related equipment and methods
US9022814B2 (en) 2010-04-16 2015-05-05 Ccs Technology, Inc. Sealing and strain relief device for data cables
US9038832B2 (en) 2011-11-30 2015-05-26 Corning Cable Systems Llc Adapter panel support assembly
US9042702B2 (en) 2012-09-18 2015-05-26 Corning Cable Systems Llc Platforms and systems for fiber optic cable attachment
US9059578B2 (en) 2009-02-24 2015-06-16 Ccs Technology, Inc. Holding device for a cable or an assembly for use with a cable
US9069151B2 (en) 2011-10-26 2015-06-30 Corning Cable Systems Llc Composite cable breakout assembly
US9075216B2 (en) 2009-05-21 2015-07-07 Corning Cable Systems Llc Fiber optic housings configured to accommodate fiber optic modules/cassettes and fiber optic panels, and related components and methods
US9075217B2 (en) 2010-04-30 2015-07-07 Corning Cable Systems Llc Apparatuses and related components and methods for expanding capacity of fiber optic housings
US9116324B2 (en) 2010-10-29 2015-08-25 Corning Cable Systems Llc Stacked fiber optic modules and fiber optic equipment configured to support stacked fiber optic modules
US9213161B2 (en) 2010-11-05 2015-12-15 Corning Cable Systems Llc Fiber body holder and strain relief device
US9250409B2 (en) 2012-07-02 2016-02-02 Corning Cable Systems Llc Fiber-optic-module trays and drawers for fiber-optic equipment
US9279951B2 (en) 2010-10-27 2016-03-08 Corning Cable Systems Llc Fiber optic module for limited space applications having a partially sealed module sub-assembly
US9519118B2 (en) 2010-04-30 2016-12-13 Corning Optical Communications LLC Removable fiber management sections for fiber optic housings, and related components and methods
US9632270B2 (en) 2010-04-30 2017-04-25 Corning Optical Communications LLC Fiber optic housings configured for tool-less assembly, and related components and methods
US9645317B2 (en) 2011-02-02 2017-05-09 Corning Optical Communications LLC Optical backplane extension modules, and related assemblies suitable for establishing optical connections to information processing modules disposed in equipment racks
US9720195B2 (en) 2010-04-30 2017-08-01 Corning Optical Communications LLC Apparatuses and related components and methods for attachment and release of fiber optic housings to and from an equipment rack
US11294135B2 (en) 2008-08-29 2022-04-05 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US11372186B2 (en) 2017-04-04 2022-06-28 Commscope Technologies Llc Optical splice and termination module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405309A1 (de) * 1984-02-15 1985-08-22 Wilhelm Quante Spezialfabrik für Apparate der Fernmeldetechnik GmbH & Co, 5600 Wuppertal Vorrichtung zur aufnahme der glasfaserspleisse von zu verbindenden glasfaser-kabeln
WO1985004960A1 (fr) * 1984-04-16 1985-11-07 American Telephone & Telegraph Company Unite de distribution pour fibres optiques
EP0215668A2 (fr) * 1985-09-17 1987-03-25 Adc Telecommunications, Inc. Répartiteur de fibres optiques

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62112106A (ja) * 1985-09-17 1987-05-23 エ−デイ−シ− テレコミユニケ−シヨンズ,インコ−ポレイテイド 光フアイバの相互接続方法と該方法を実施するための光フアイバ分配装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3405309A1 (de) * 1984-02-15 1985-08-22 Wilhelm Quante Spezialfabrik für Apparate der Fernmeldetechnik GmbH & Co, 5600 Wuppertal Vorrichtung zur aufnahme der glasfaserspleisse von zu verbindenden glasfaser-kabeln
WO1985004960A1 (fr) * 1984-04-16 1985-11-07 American Telephone & Telegraph Company Unite de distribution pour fibres optiques
EP0215668A2 (fr) * 1985-09-17 1987-03-25 Adc Telecommunications, Inc. Répartiteur de fibres optiques

Cited By (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH485672A (de) * 1966-05-17 1970-02-15 Philips Nv Verfahren zur Herstellung aromatischer Nitrilverbindungen
EP0529830A1 (fr) * 1991-08-30 1993-03-03 Siecor Corporation Stockage de fibre optique
EP0547997A1 (fr) * 1991-12-12 1993-06-23 Telefonica De Espana, S.A. Répartiteur modulaire pour fibres optiques
WO1993019392A1 (fr) * 1992-03-25 1993-09-30 Fibernet Research Pty. Ltd. Logement destine a des fibres optiques
GB2281408A (en) * 1992-03-25 1995-03-01 Fibernet Research Pty Ltd Housing for optical fibres
GB2281408B (en) * 1992-03-25 1995-11-22 Fibernet Research Pty Ltd Housing for optical fibres
US5473724A (en) * 1992-03-25 1995-12-05 Fibernet Research Pty. Ltd. Housing for optical fibres
CN1040581C (zh) * 1992-11-25 1998-11-04 雷伊化学公司 纤维光学连接罩
EP0603847A1 (fr) * 1992-12-23 1994-06-29 Reichle + De-Massari AG Elektro-Ingenieure Répartiteur
DE4308228C1 (de) * 1993-03-16 1994-10-20 Quante Ag Hauptverteiler für Lichtleitfasern der Kommunikationstechnik
EP0623832A1 (fr) * 1993-05-05 1994-11-09 KRONE Aktiengesellschaft Monture de répartition pour cables
CH686267A5 (de) * 1993-07-30 1996-02-15 G & B Elektro Ag Stapelbarer Kabelendverschluss fur Lichtwellenleiter.
CN1041964C (zh) * 1993-09-10 1999-02-03 英国电讯公司 光纤管理***
WO1995007486A1 (fr) * 1993-09-10 1995-03-16 British Telecommunications Public Limited Company Systeme de gestion de fibres optiques
US5588076A (en) * 1993-09-10 1996-12-24 British Telecommunications Public Limited Company Optical fibre management system
US5706384A (en) * 1993-09-10 1998-01-06 British Telecommunications Public Limited Company Optical fibre management system
EP0689074A1 (fr) * 1994-06-20 1995-12-27 PIRELLI GENERAL plc Dispositif pour l'utilisation de connection des fibres optiques
AU692732B2 (en) * 1994-06-20 1998-06-11 Prysmian Cables & Systems Limited Apparatus for use in interconnecting optical fibers
US5550947A (en) * 1994-06-20 1996-08-27 Pirelli General Plc Slidable optical fiber interconnecting tray with flexible fiber guiding tubes
WO2004095107A1 (fr) * 2003-04-22 2004-11-04 Corning Cable Systems Llc Armoire de convergence locale pour reseaux de cables en fibre optique
AU2004231932B2 (en) * 2003-04-22 2010-04-22 Corning Cable Systems Llc Local convergence cabinet for optical fiber cable networks
EP1656576A2 (fr) * 2003-07-17 2006-05-17 Teraspan Networks Inc. Installations de reseau a fibre optique enfoui sous la surface
AU2004257311B2 (en) * 2003-07-17 2009-07-02 Teraspan Networks Inc. Junction box housings for surface inlaid fibre optic network installations
WO2006053603A1 (fr) * 2004-11-11 2006-05-26 Ccs Technology, Inc. Dispositif repartiteur de fibres optiques
WO2007009593A1 (fr) * 2005-07-21 2007-01-25 Ccs Technology, Inc. Dispositif de distribution de fibres optiques
US7676136B2 (en) 2008-06-26 2010-03-09 Emerson Network Power, Energy Systems, North America, Inc. Fiber distribution hubs with patch and splice enclosures
US10564378B2 (en) 2008-08-29 2020-02-18 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US11754796B2 (en) 2008-08-29 2023-09-12 Corning Optical Communications LLC Independently translatable modules and fiber optic equipment trays in fiber optic equipment
EP2995981A3 (fr) * 2008-08-29 2016-07-13 Corning Optical Communications LLC Modules à translation indépendante et des plateaux d'équipements à fibres optiques dans un équipement à fibres optiques
US8184938B2 (en) 2008-08-29 2012-05-22 Corning Cable Systems Llc Rear-installable fiber optic modules and equipment
US10422971B2 (en) 2008-08-29 2019-09-24 Corning Optical Communicatinos LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US10222570B2 (en) 2008-08-29 2019-03-05 Corning Optical Communications LLC Independently translatable modules and fiber optic equipment trays in fiber optic equipment
US8452148B2 (en) 2008-08-29 2013-05-28 Corning Cable Systems Llc Independently translatable modules and fiber optic equipment trays in fiber optic equipment
US10444456B2 (en) 2008-08-29 2019-10-15 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US10416405B2 (en) 2008-08-29 2019-09-17 Corning Optical Communications LLC Independently translatable modules and fiber optic equipment trays in fiber optic equipment
US9910236B2 (en) 2008-08-29 2018-03-06 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US10120153B2 (en) 2008-08-29 2018-11-06 Corning Optical Communications, Llc Independently translatable modules and fiber optic equipment trays in fiber optic equipment
US10459184B2 (en) 2008-08-29 2019-10-29 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US11609396B2 (en) 2008-08-29 2023-03-21 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US9020320B2 (en) 2008-08-29 2015-04-28 Corning Cable Systems Llc High density and bandwidth fiber optic apparatuses and related equipment and methods
US11294136B2 (en) 2008-08-29 2022-04-05 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US10126514B2 (en) 2008-08-29 2018-11-13 Corning Optical Communications, Llc Independently translatable modules and fiber optic equipment trays in fiber optic equipment
US11294135B2 (en) 2008-08-29 2022-04-05 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US11092767B2 (en) 2008-08-29 2021-08-17 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US11086089B2 (en) 2008-08-29 2021-08-10 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US10852499B2 (en) 2008-08-29 2020-12-01 Corning Optical Communications LLC High density and bandwidth fiber optic apparatuses and related equipment and methods
US10094996B2 (en) 2008-08-29 2018-10-09 Corning Optical Communications, Llc Independently translatable modules and fiber optic equipment trays in fiber optic equipment
US10606014B2 (en) 2008-08-29 2020-03-31 Corning Optical Communications LLC Independently translatable modules and fiber optic equipment trays in fiber optic equipment
US9059578B2 (en) 2009-02-24 2015-06-16 Ccs Technology, Inc. Holding device for a cable or an assembly for use with a cable
US8699838B2 (en) 2009-05-14 2014-04-15 Ccs Technology, Inc. Fiber optic furcation module
US9075216B2 (en) 2009-05-21 2015-07-07 Corning Cable Systems Llc Fiber optic housings configured to accommodate fiber optic modules/cassettes and fiber optic panels, and related components and methods
US8538226B2 (en) 2009-05-21 2013-09-17 Corning Cable Systems Llc Fiber optic equipment guides and rails configured with stopping position(s), and related equipment and methods
US8280216B2 (en) 2009-05-21 2012-10-02 Corning Cable Systems Llc Fiber optic equipment supporting moveable fiber optic equipment tray(s) and module(s), and related equipment and methods
US8712206B2 (en) 2009-06-19 2014-04-29 Corning Cable Systems Llc High-density fiber optic modules and module housings and related equipment
US8433171B2 (en) 2009-06-19 2013-04-30 Corning Cable Systems Llc High fiber optic cable packing density apparatus
EP2315062A3 (fr) * 2009-10-22 2011-07-27 CCS Technology, Inc. Dispositif de gestion de fibre amorce et dispositif de distribution de guide d'onde optique
WO2011049857A1 (fr) * 2009-10-23 2011-04-28 Corning Cable Systems Llc Plates-formes de montage permettant de maintenir solidairement un ou plusieurs plateaux d'épissure optique et/ou un ou plusieurs répartiteurs optiques dans un connecteur optique multi-accès et procédés associés
US8180191B2 (en) 2009-10-23 2012-05-15 Corning Cable Systems Llc Mounting platforms for integrally supporting an optical splice tray(s) and/or an optical splitter(s) in a multi-port optical connection terminal and related methods
US8625950B2 (en) 2009-12-18 2014-01-07 Corning Cable Systems Llc Rotary locking apparatus for fiber optic equipment trays and related methods
US8992099B2 (en) 2010-02-04 2015-03-31 Corning Cable Systems Llc Optical interface cards, assemblies, and related methods, suited for installation and use in antenna system equipment
US8593828B2 (en) 2010-02-04 2013-11-26 Corning Cable Systems Llc Communications equipment housings, assemblies, and related alignment features and methods
US8913866B2 (en) 2010-03-26 2014-12-16 Corning Cable Systems Llc Movable adapter panel
US9022814B2 (en) 2010-04-16 2015-05-05 Ccs Technology, Inc. Sealing and strain relief device for data cables
US8542973B2 (en) 2010-04-23 2013-09-24 Ccs Technology, Inc. Fiber optic distribution device
US9519118B2 (en) 2010-04-30 2016-12-13 Corning Optical Communications LLC Removable fiber management sections for fiber optic housings, and related components and methods
US8705926B2 (en) 2010-04-30 2014-04-22 Corning Optical Communications LLC Fiber optic housings having a removable top, and related components and methods
US8660397B2 (en) 2010-04-30 2014-02-25 Corning Cable Systems Llc Multi-layer module
US9632270B2 (en) 2010-04-30 2017-04-25 Corning Optical Communications LLC Fiber optic housings configured for tool-less assembly, and related components and methods
US8879881B2 (en) 2010-04-30 2014-11-04 Corning Cable Systems Llc Rotatable routing guide and assembly
US9720195B2 (en) 2010-04-30 2017-08-01 Corning Optical Communications LLC Apparatuses and related components and methods for attachment and release of fiber optic housings to and from an equipment rack
US9075217B2 (en) 2010-04-30 2015-07-07 Corning Cable Systems Llc Apparatuses and related components and methods for expanding capacity of fiber optic housings
US8718436B2 (en) 2010-08-30 2014-05-06 Corning Cable Systems Llc Methods, apparatuses for providing secure fiber optic connections
US9279951B2 (en) 2010-10-27 2016-03-08 Corning Cable Systems Llc Fiber optic module for limited space applications having a partially sealed module sub-assembly
US8755663B2 (en) 2010-10-28 2014-06-17 Corning Cable Systems Llc Impact resistant fiber optic enclosures and related methods
US8662760B2 (en) 2010-10-29 2014-03-04 Corning Cable Systems Llc Fiber optic connector employing optical fiber guide member
US9116324B2 (en) 2010-10-29 2015-08-25 Corning Cable Systems Llc Stacked fiber optic modules and fiber optic equipment configured to support stacked fiber optic modules
US9213161B2 (en) 2010-11-05 2015-12-15 Corning Cable Systems Llc Fiber body holder and strain relief device
US10481335B2 (en) 2011-02-02 2019-11-19 Corning Optical Communications, Llc Dense shuttered fiber optic connectors and assemblies suitable for establishing optical connections for optical backplanes in equipment racks
US9645317B2 (en) 2011-02-02 2017-05-09 Corning Optical Communications LLC Optical backplane extension modules, and related assemblies suitable for establishing optical connections to information processing modules disposed in equipment racks
US9008485B2 (en) 2011-05-09 2015-04-14 Corning Cable Systems Llc Attachment mechanisms employed to attach a rear housing section to a fiber optic housing, and related assemblies and methods
US8989547B2 (en) 2011-06-30 2015-03-24 Corning Cable Systems Llc Fiber optic equipment assemblies employing non-U-width-sized housings and related methods
US8953924B2 (en) 2011-09-02 2015-02-10 Corning Cable Systems Llc Removable strain relief brackets for securing fiber optic cables and/or optical fibers to fiber optic equipment, and related assemblies and methods
US9069151B2 (en) 2011-10-26 2015-06-30 Corning Cable Systems Llc Composite cable breakout assembly
US9038832B2 (en) 2011-11-30 2015-05-26 Corning Cable Systems Llc Adapter panel support assembly
US8873926B2 (en) 2012-04-26 2014-10-28 Corning Cable Systems Llc Fiber optic enclosures employing clamping assemblies for strain relief of cables, and related assemblies and methods
US9250409B2 (en) 2012-07-02 2016-02-02 Corning Cable Systems Llc Fiber-optic-module trays and drawers for fiber-optic equipment
US9042702B2 (en) 2012-09-18 2015-05-26 Corning Cable Systems Llc Platforms and systems for fiber optic cable attachment
US8995812B2 (en) 2012-10-26 2015-03-31 Ccs Technology, Inc. Fiber optic management unit and fiber optic distribution device
US8985862B2 (en) 2013-02-28 2015-03-24 Corning Cable Systems Llc High-density multi-fiber adapter housings
US11372186B2 (en) 2017-04-04 2022-06-28 Commscope Technologies Llc Optical splice and termination module
US11860433B2 (en) 2017-04-04 2024-01-02 Commscope Technologies Llc Optical splice and termination module

Also Published As

Publication number Publication date
EP0493407A1 (fr) 1992-07-08
JPH05503162A (ja) 1993-05-27
AU6278290A (en) 1991-04-28

Similar Documents

Publication Publication Date Title
US5071211A (en) Connector holders and distribution frame and connector holder assemblies for optical cable
WO1991005281A1 (fr) Boitiers de raccordement et assemblage de cadres de distribution et de boitiers de raccordement pour cable optique
US10527809B2 (en) Telecommunications connection cabinet
EP0590018B1 (fr) Equipement de connexion de fibres optiques
EP0623225B1 (fr) Systeme de connexion de fibres optiques
US5138688A (en) Optical connector holder assembly
US6507691B1 (en) Fiber optic splice organizer with splicing tray and associated method
US5024498A (en) Switch box for producing freely selectable optical plug connections
US4911662A (en) Distribution frame for telecommunications cable
US5353367A (en) Distribution frame and optical connector holder combination
US8315498B2 (en) Fiber management panel
CA2079144C (fr) Dispositif de commutation pour cables a fibres optiques utilises en telecommunications et en transmissions de donnees
US20190072736A1 (en) High density distribution frame with an integrated splicing compartment
US6081644A (en) Cable sleeve with a holding apparatus for cartridges or cassettes for storing and splicing light waveguides
EP2365364A1 (fr) Enceinte terminale dotée d'un plateau d'organisation extractible en fibre
WO1985004960A1 (fr) Unite de distribution pour fibres optiques
KR20070035515A (ko) 원격통신 접속 캐비넷에서의 광섬유 커넥터 보관용멀티-포지션 광섬유 커넥터 홀더 및 그에 따른 방법
US10295773B2 (en) Segregated fiber in a splice cassette
WO2011029022A2 (fr) Terminal sur socle à châssis basculant
US20230189468A1 (en) Managing cables in fiber installation
CA1328365C (fr) Supports de connecteurs et repartiteur et ensembles supports de connecteurs pour cables optiques
CN220271627U (zh) 一种光缆终端盒
US20240151925A1 (en) Fiber optic management tray
KR100760717B1 (ko) 광케이블 중간 절체장치의 접속판
CA1316248C (fr) Repartiteur de cables de telecommunication

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990913043

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990913043

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990913043

Country of ref document: EP