WO1991002366A1 - Ferromagnetic metal particle and production thereof - Google Patents

Ferromagnetic metal particle and production thereof Download PDF

Info

Publication number
WO1991002366A1
WO1991002366A1 PCT/JP1990/001011 JP9001011W WO9102366A1 WO 1991002366 A1 WO1991002366 A1 WO 1991002366A1 JP 9001011 W JP9001011 W JP 9001011W WO 9102366 A1 WO9102366 A1 WO 9102366A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
iron
metal
ferromagnetic metal
particle
Prior art date
Application number
PCT/JP1990/001011
Other languages
French (fr)
Japanese (ja)
Inventor
Kimiteru Tagawa
Seiichi Takahashi
Noritoshi Utsuno
Hideki Umehara
Fujio Hayashi
Shigeo Kiba
Satoru Suda
Original Assignee
Mitsui Toatsu Chemicals, Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Toatsu Chemicals, Incorporated filed Critical Mitsui Toatsu Chemicals, Incorporated
Priority to KR1019910700350A priority Critical patent/KR920701998A/en
Publication of WO1991002366A1 publication Critical patent/WO1991002366A1/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/712Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the surface treatment or coating of magnetic particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/09Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials mixtures of metallic and non-metallic particles; metallic particles having oxide skin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/29Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
    • Y10T428/2982Particulate matter [e.g., sphere, flake, etc.]
    • Y10T428/2991Coated

Definitions

  • the present invention provides, as a magnetic powder used for a magnetic recording medium suitable for high-density recording, at least one kind in which the surface layer of particles is selected from cobalt, zinc, manganese, aluminum, chromium, nickel, and copper.
  • the present invention relates to a ferromagnetic metal particle characterized by being laminated and coated as a film of a fluoride compound having a suberin structure composed of a metal and iron, and a method for producing the same.
  • Magnetic powders used in magnetic recording media such as audio tapes and video tapes were mainly 7 "-iron oxide or Cor-r iron oxide.
  • Ferromagnetic metal particles mainly composed of metallic iron or an alloy obtained by subjecting a powder mainly composed of iron oxide hydroxide or iron oxide to a catalytic reduction reaction using a reducing gas have high coercive force, It is known to have high saturation magnetization. Thus, these particles have been studied as high-density magnetic recording materials.
  • High-density magnetic recording media such as those for audio and video, are required to have higher output and lower noise in a wide recording JIT waveband. Therefore, items required for magnetic particles are, for example, that the particle size is finer, that the shape is acicular or prismatic, and that the particle is more stable against oxidation. It has high saturation magnetization even in environmental degradation or corrosion resistance tests.
  • Japanese Patent Application Laid-Open No. 52-134858 discloses a treatment of depositing a hydroxide of Si or Al using iron oxide hydroxide or iron oxide doped with a specific element as a starting material. Then, it is described that a method of heating and reducing to obtain ferromagnetic metal iron is described.
  • JP-A-54-122663 and JP-A-54-122664 (GB 2016526) describe that zinc oxide, iron oxide or iron oxide or a mixture of these elements containing Zn, Cr, Cu, Co, It describes a method of obtaining a ferromagnetic metallic iron by performing a treatment for attaching hydroxides of Ni, Mn, and Sb, and then reducing by heating.
  • JP-A-59-173209 discloses that a compound of Mg, Ti, Mn, Co,! Ii, Cu, Zn and an aqueous solution of ferrous ion (Fe 2+ ) are each neutralized to form a hydroxide. Later, air is blown into the spinel-type compound, which is adhered to the iron oxide hydroxide particles, After that, a method of performing reduction to obtain ferromagnetic metal particles is described.
  • Japanese Patent Application Laid-Open No. 55503/1981 discloses that iron or a metal mainly composed of iron obtained by heating and reducing may be oxidized and burned in the atmosphere or oxidized. As a result, the magnetic properties deteriorate over time. Therefore, there is further described a method for producing a metal magnetic powder having excellent corrosion resistance by forming an oxide film on the surface of the particles in a low-concentration oxygen atmosphere.
  • the demand for ferromagnetic metal particles as magnetic powder for high-density recording is to be fine particles without impairing high saturation magnetization.
  • the conventional technology has the following problems.
  • Mg, Ti, Hn, Co, Ni, Cu, Zn ions and ferrous ion are neutralized to form hydroxides, and then air oxidation is performed. It is a method of applying iron hydroxide and then reducing it by heating to obtain ferromagnetic metal particles.
  • the deposition is saturated when the constituent element in the spinel compound is 6 atomic% or more with respect to the Fe atoms in the iron oxide hydroxide.
  • the spinel-type compound is released from the surface of the iron oxyhydroxide, and the reduced ferromagnetic metal iron particles are slowly oxidized with a small amount of oxygen to form an oxide film.
  • the effect of preventing the progress of oxidation is poor.
  • An object of the present invention is to provide ferromagnetic metal particles which are stable against environmental degradation and maintain high saturation magnetization for environmental degradation or weather resistance tests.
  • the inventors of the present invention have made various studies to solve the above-mentioned object, and as a result, have reached the present invention.
  • a gel is formed when the gel is neutralized simultaneously.
  • FIG. 1 shows an X-ray diffraction spectrum of a gel formed by Co 2+ and Fe 3+ . From this figure, I understand.
  • this gel means that a composite metal hydroxide or oxide, which is a fluoride compound waiting for the spinel structure of ultrafine particles having a very low crystallinity, is formed. .
  • the gel is not ferromagnetic but rather paramagnetic. Considering that they have a spinel structure, they can be said to be superparamagnetic particles.
  • this composite metal hydroxide or oxide is an ultrafine particle of a fly compound waiting locally for a spinel-type spatial lattice structure.
  • the layered coating over the entire surface of the oxide hydroxide particles The formation of the formed film can also be confirmed by observing the obtained particles with an electron microscope.
  • the layered coating has a local spinel-type spatial lattice structure.
  • X-ray photoelectron spectrum (X-rays P hotoelectr on Spectroscopy below) of the particle surface, for example, the particle surface formed by iron-based oxyhydroxide particles and Coz + and Fe3 +.
  • X-rays P hotoelectr on Spectroscopy below X-ray photoelectron spectrum of the particle surface, for example, the particle surface formed by iron-based oxyhydroxide particles and Coz + and Fe3 +.
  • the valence of the metal present on the particle surface is Co 2+ and Fe 3+ .
  • the ultrafine particles having a spinel structure of the ultrafine particles obtained by the present invention are composed of extremely fine units with respect to the oxyhydroxide particles, that is, locally.
  • oxyhydroxide particles In the presence of oxyiron hydroxide particles, it is neutralized at the time of lsj, and if it is a fly that directly waits for the spinel structure, the accumulation progresses over the entire surface, A layered coating is formed.
  • phenomena such as peeling are scarcely observed, so that the thickness of the spinel-structured frit film layer can be arbitrarily controlled.
  • oxidized hydroxide particles mainly composed of iron having a superfine structure subinel structure having a subinel structure obtained by the present invention on the surface by heating to reduce them to ferromagnetic metal particles It is observed with an electron microscope that the morphology is maintained without causing collapse or sintering. From these results, it is presumed that the properties of this film have an excellent shape preserving effect.
  • the ferromagnetic metal particles have a remarkable effect of preventing the progress of oxidation, but also prevent the progress of oxidation even if the surface is slowly oxidized to form an oxide film on the surface of the ferromagnetic metal particles. Has the effect of doing
  • Mg, Ti, Mn, Co, Ni, Cu, Zn ions and ferrous ions are neutralized and hydroxylated (which is a divalent and divalent system).
  • a conventional technique for forming ferrite and then performing air oxidation to form a spinel-type compound, depositing it on acicular iron oxyhydroxide, and then reducing by heating to obtain ferromagnetic metal particles will be briefly described.
  • ferrous hydroxide crystal particles and these metals Hydroxide crystal particles are formed. Analysis of the X-ray diffraction spectrum of these particles shows that these particles do not have a spinel structure and that the line width is narrow and the crystals are large. In the next step, X-ray diffraction spectrum of the particles generated by air-oxidizing these crystal particles reveals the following.
  • the compound has a spinel structure.
  • the magnetic properties of the generated particles When the magnetic properties of the generated particles are measured, they indicate that they are ferromagnetic, indicating that the particles have a large particle size as a magnetic unit.
  • particles formed by air oxidation of metal hydroxide are particles of spinel-type compounds. It is based on the technical idea that particles of this spinel type compound are deposited on iron oxide hydroxide particles.
  • the present inventors have conducted research and development based on such basic technical ideas to achieve the above-mentioned object, and as a result, have come to the present invention which is a ferromagnetic metal particle and its manufacturing method.
  • Surface is cobalt, zinc
  • the present invention is characterized in that the fly compound having the spinel structure is a composite oxide composed of a divalent metal and a trivalent metal.
  • the fine metal particles having the above structure are formed by spinelite and spinelite hydrate having the above structure as a basic unit on the surface of acicular iron oxide hydroxide mainly composed of iron.
  • These are ferromagnetic metal particles obtained by heating and reducing an object having a film of matter and then bringing it into contact with air to stabilize it.
  • the coating of the fly compound can be identified by examining the X-ray diffraction image of the ferromagnetic metal particles by the powder method and examining the XPS.
  • XPS is a method of electron spectroscopy to determine the constituent elements on the surface of a body and their chemical state.
  • the surface of a solid sample is irradiated with X-rays, and photoelectrons are emitted from the surface elements excited by the X-rays.
  • photoelectron By measuring the kinetic energy of this photoelectron, the binding energy of the electron is determined, and this is a means by which elements can be identified and their chemical bonding states can be examined.
  • the constituent elements existing on the surface and the valence thereof can be determined.
  • These particles have a good shape that satisfies the desired fine particles of the present invention, and also have excellent oxidation stability.
  • the ferrite metal coating having a spinel structure of the ferromagnetic metal particles of the present invention was examined in detail using powder X-ray diffraction.
  • the ferric ion obtained by the present invention and the divalent iron Analysis of the powder X-ray tel-fold spectrum of Cobaltion's ferromagnetic metal particles revealed that the ultrafine particles obtained by simultaneous neutralization of ferric ion and divalent cobalt ion were obtained. It is confirmed that the powder X-ray diffraction spectrum of the particles is present.
  • the film of a fluoride compound having a spinel structure with iron is composed of a divalent metal, a composite oxide or a composite hydroxide of a trivalent metal mainly composed of a sbinel structure. It is often identified by the determination of the film by electron microscopy and the analysis of the surface condition by XPS.
  • the size or shape of the oxyhydroxide particles or ferromagnetic metal particles mainly composed of iron is not particularly limited.
  • the metal magnetic powder for high-density magnetic recording media in which the effect of the present invention is remarkable is used.
  • ferromagnetic metal fine particles having a needle-like particle shape and a particle length of the major axis of at least 0.3 m or less are preferred.
  • the ferromagnetic metal particles mainly composed of iron obtained by the present invention have a feature of being excellent in oxidation resistance.
  • a method for evaluating the oxidation resistance for example, a method called a corrosion resistance test is used to test ferromagnetic metal particles under high temperature and high humidity conditions (eg, 60'C, 90% relative humidity). It is determined by measuring the saturation magnetization (and s *) after a certain period of time (for example, one week) has passed after allowing the sample to stand for a while.
  • the value of the saturation magnetization after such a corrosion resistance test varies depending on the constituent elements, the thickness of the laminated film, the length of the particles, and the axial ratio. As a general rule, it is not strictly defined, but rather as an official standard, but as a rough guide, the preferred range of metal particles for high-density magnetic recording media is The following equation was used as the variable of.
  • the amount of metal components of cobalt, zinc, manganese, anolymium, nickel, chromium, and copper contained in the ferromagnetic metal particles is not limited, but is not limited to iron.
  • the content is preferably from 3% to 50%.
  • non-magnetic elements there is no limitation that other metals and non-metal elements other than those described above have the other components. Having a large amount of these non-magnetic elements is not preferable because it causes a decrease in magnetization. If it is a non-magnetic element, it is preferably at least 5% or less.
  • Si, P, B it is preferable to add a small amount of Si, P, B in order to further impart the effect of protecting the form.
  • the particle shape is almost similar to that of the oxyhydroxide particles, and the needle shape is well preserved.
  • the thickness of the film to be laminated can be arbitrarily controlled.
  • Audio and video media for magnetic recording Regardless of its characteristics, it has characteristics that sufficiently satisfy the demands for higher output and lower noise in a wide recording frequency band.
  • the present invention provides ferromagnetic metal particles of remarkably improved quality as a magnetic powder suitable for high-density magnetic recording, and a method for producing the same.
  • the second is the surface of the coating layer coated on the surface of the oxyhydroxide particles, for example, a particle obtained by layering and coating iron-based oxyhydroxide particles with Co 2+ and Fe 3+.
  • HI indicates the binding energy state spectrum of Co 2+ among the X-ray photoelectron spectra on the surface.
  • the surface of the coating layered on the surface of the oxide hydroxide particles for example, the layered coating of iron-based oxide hydroxide particles and Co 2+ and Fe 3+ by co-precipitation Shows the binding energy state spectrum of Fe 3+ out of the XPS on the particle surface.
  • FIG. 4 is a graph showing the coupling energy state spectrum of Co 2 + of XPS on the surface of the ferromagnetic metal particles having the layer-coated film obtained in Example 1.
  • Figure 5 is a 'Chi XPS sac of the surface portion of the ferromagnetic metal particles having a layered coated film obtained in Example 1 F e 3 + It is I that shows the binding energy state spectrum of.
  • FIG. 9 shows the obtained spectrum measured by diffraction.
  • the seventh ill is the surface of the film laminated and coated on the surface of the oxyhydroxide particles, for example, the particle surface obtained by laminating and coating the oxyhydroxide particles mainly composed of iron and Zn 2+ and Fe 3+.
  • FIG. 5 shows the bonding energy state spectrum of Zn 2+ in the X-ray photoelectron spectrum of FIG.
  • No. 81 is the surface of the film laminated and coated on the surface of the oxyhydroxide particles, for example, the particle surface obtained by laminating and coating the oxyhydroxide particles mainly composed of iron and Zn 2 + and Fe 3 +.
  • FIG. 4 is a view showing a kinetic energy state spectrum of Zn 2+ in XPS of FIG.
  • Fig. 9 shows the surface of the coating layered on the surface of the oxyhydroxide particles, for example, the particle surface obtained by layering and coating the iron-based oxyhydroxide particles with Zn2 + and Fe3 +.
  • Fig. 7 shows the binding energy state spectrum of Fe 3+ of the XPS.
  • FIG. 10 is a diagram showing a binding energy state spectrum of Zn 2 + of XPS on the surface portion of the ferromagnetic metal particles having a layer-coated film obtained in Example 2.
  • the coating film laminated and obtained in Example 2 was used.
  • FIG. 4 is a graph showing a kinetic energy state spectrum of Zn 2 + of XPS on the surface of the ferromagnetic metal particles.
  • FIG. 12 is a diagram showing the binding energy state spectrum of Fe 3 + of XPS on the surface of the ferromagnetic metal particles having the layer-coated film obtained in Example 2.
  • the present invention provides at least one metal selected from cobalt, zinc, manganese, aluminum, chromium, nickel, and copper in a slurry in which oxyhydroxide particles mainly composed of iron are dispersed. And a step of immediately forming a gel formed as a spinel compound in a one-step reaction simultaneously with the neutralization to form a film on the entire surface of the oxyhydroxide particles (also referred to as a pre-step).
  • This is a method for producing ferromagnetic metal particles, which comprises a step of heating and reducing the particles.
  • a treatment is performed to prevent the progress of oxidation by gently oxidizing (also referred to as a post-process).
  • divalent ions of at least one metal selected from cobalt, zinc, manganese, nickel and copper are used.
  • This is a method of simultaneously neutralizing ferric ion (Fe 3 + ) and forming a gel formed as a spinel compound directly on the entire surface of the oxyhydroxide particles as a film.
  • a small number selected from aluminum and chrome A method in which at least one metal trivalent ion and ferrous ion are simultaneously neutralized, and a gel formed as a subinel compound is directly formed as a film on the entire surface of the oxyhydroxide particles. It is.
  • an aqueous slurry containing iron-based oxyhydroxide particles is prepared.
  • Dispersion using a high-speed stirrer such as a homogenizer is possible.
  • dispersants such as phosphinates such as sodium orthophosphate, sodium triboronate, sodium hexamethate, sodium metasilicate, sodium orthosilicate, etc.
  • silicates such as water glass in order to improve dispersibility.
  • the pH of the aqueous slurry containing the iron-based oxyhydroxide particles dispersed therein be made alkaline, since it is necessary to neutralize the constituents of the particles having a spinel structure. At least a range of PH 9 or more is good, and more preferably PH 10 to 14.
  • Inorganic alkali salts are used as pH adjustment alkaline agents
  • NaOH can be used as an industrially inexpensive material.
  • Any slurry of oxyhydroxide particles mainly composed of iron produced on the alkaline side and having a pH of 9 or more can be used as it is.
  • the formation of the spinel film will be described for cobalt, zinc, manganese, nickel, and copper divalent and ferric ions.
  • a fluoride compound film can be formed by the same method as described below.
  • the salts of the divalent metal and ferric iron that can be used in the present invention may be inorganic salts such as sulfates, nitrates and chlorides, or organic salts such as acetic acid.
  • ferric nitrate is highly oxidizable, it is preferable to use it in ferric ion.
  • the neutralization limit PH of divalent ion and ferric ion of the metal is different, so that it is not neutralized at the same time as the addition of the mixed solution so as to prevent independent precipitation. Adjust the amount to be added. In addition, the addition of alkaline Adjust the pH of the rally. It is desirable to strictly adjust the PH adjustment range to a predetermined value. In order to complete the neutralization promptly, it is desirable to sufficiently mix and stir the slurry.
  • the slurry amount, addition amount, and stirring conditions are determined by taking out part of the slurry after addition, observing it with an electron microscope, and confirming that no free neutralized gel is observed. ⁇ Slurry mixing and stirring If the pH is insufficient or the pH range is on the acidic side, the divalent metal ion and the ferric ion are not neutralized at the same time, become independent hydroxide particles, and no film is formed. However, the result is scattered as foreign matter.
  • the neutralization temperature at normal pressure may be any temperature below the boiling point and above the freezing point, but is industrially 20 to 50.
  • the iron-based oxyhydroxide particles used in the present invention preferably in the range of C, are not particularly limited, and may be those produced by a method known per se. The preferred and rather, they are fine particles of about a specific surface area of 40 to 150 m z / g, is intended shape ⁇ acicular, crystalline forms a '- FeOOH, ⁇ -FeO OH : r - FeOOH any form Things are good.
  • at least one kind of element selected from elements such as P, Si, A1, Ti, Cr,, Co, Ni, and Zn is co-precipitated in the iron oxide hydroxide. Can also be used successfully.
  • the important point is to repeat.
  • the effect of the present invention is not recognized by using only the above-described metal alone, and it is inevitable that iron and metal e are simultaneously neutralized and immediately form a film as a fluorite compound having a spinel structure in a single-step reaction. is there.
  • a frit film having a spinel structure of imperfect crystals composed of ultrafine units is formed on the surface of the iron-based oxyhydroxide particles.
  • iron Fe and metal to be laminated The effect can be exhibited when the atomic ratio to 1e is in the range of 0.1 / 1.0 to 10.0 / 1.0. More preferably, the ratio is 0.5 / 1.0 to 5.0 / 1.0 for ferric ion and divalent metal ion, and 0.2 / 1.0 for ferrous ion and trivalent metal. 1.0 to 2.0 / 1.0 is preferred. Furthermore, a range including the composition ratio of spinel frite is also included. It is a feature of the present invention that a film is formed by sometimes neutralizing in this range, and a more remarkable effect is exhibited.
  • the effect of preventing sintering and maintaining the form is further improved by adding Si, ⁇ , ⁇ , ⁇ , etc. in any of the preceding steps.
  • S'i, Al, P, B used here are water-soluble salts, hydroxides, metal alkoxides and chelate compounds. Things.
  • Examples of the Si source include colloidal silica, sodium metasilicate, sodium orthosilicate, water glass, and methoxysilane.
  • A1 sources include sulfates, nitrates, chlorides, partial hydrolysates of these, colloidal alumina, aluminates such as sodium aluminate, alkoxides such as aluminum isopropoxide, and aluminum. Chelate compounds such as tris-cetyl acetate and their complex salts.
  • Examples of the B source include borates such as boric acid and sodium borate, alkoxides such as tetramethoxy borane, and chelate compounds.
  • Examples of the P source include phosphinates such as phosphoric acid, sodium hexametharate, and sodium triboronate.
  • the amount of Fe / Me to be laminated is not particularly limited with respect to the amount of metal component (mainly Fe) of the oxyhydroxide particles, but the range of Fe / Me is from 0.3 to 200%. It is possible. A preferable range of Fe / Me is about 100 to 3%. Even if it exceeds 200, it does not mean that the coating is not laminated, but it is a tentative guide from the viewpoint of particle enlargement, operation and economy. If the content is 0.3% or less, the effect of the object of the present invention will be poor.
  • the post-step of reducing by heating can be carried out by a method such as Japanese Patent Application No. 55-157214 and Japanese Patent Application No. 54-62915.
  • a method such as Japanese Patent Application No. 55-157214 and Japanese Patent Application No. 54-62915.
  • hydrogen or water This is achieved by reducing at a temperature in the range of 300 to 600 ⁇ in a reducing gas atmosphere mainly composed of nitrogen.
  • dehydration and firing may be performed at a temperature in the range of 300 ° C to 800 ° C.
  • the flow rate of the reducing hydrogen gas rather good in an amount sufficient to proceed promptly reduction reaction, ferromagnetic metal per particle K g, may be 3 N m 3 / H r ⁇ 40Nm 3 / H r about.
  • the oxidation treatment for preventing the ignition may be carried out according to a conventional method. Further, a method of dipping in an organic solvent such as toluene and drying, or a method of diluting air to perform gentle oxidation can also be applied.
  • the ferromagnetic metal particles obtained by the present invention can be produced on a high-density magnetic recording medium represented by a magnetic tape.
  • a binder resin component such as a vinyl chloride resin, a urethane resin, or an epoxy resin is mixed with a solvent component, and the mixture is highly prepared using a dispersant and a dispersing device.
  • This method involves dispersing and forming a magnetic paint, applying it to a base film using various types of coaters, arranging the magnetic field, drying, and then finishing the surface using a calendar.
  • Example 1 Iron oxyhydroxide particles (or -FeOOH) having a long axis average length of 0.2 ⁇ and an axial ratio of 12 were prepared.
  • l.OKg of the iron oxyhydroxide and 30 lb of pure water were added, and the mixture was dispersed by stirring with a homogenizer for 20 minutes. Thereafter, a sodium hydroxide solution was added to adjust the pH to 13.6, and the mixture was further stirred for 30 minutes to perform dispersion.
  • the slurry was filtered, washed, and dried, and the obtained particles were observed with a TEM (transmission electron microscope). As a result of the observation, a fine structure formed in a film form on the entire surface of the iron oxide hydroxide particles was observed.
  • the particles were subjected to structural analysis by powder X-ray diffraction, it was confirmed that the particles had a spinel structure having a low crystallinity separately from the structure of or-FeOOH.
  • This product was dried to obtain a spectrum shown in FIG. 1 by powder X-ray diffraction, and the structure was analyzed.
  • the structure shows a structure having a spinel structure with low crystallinity.
  • the structure of the gel prepared as such a model and the film that was neutralized at the same time as iron and cobalt and laminated and coated on the oxide hydroxide particles had the same structure.
  • the particles were calcined at 500 and then reduced in a stream of hydrogen at a temperature of 400 ° C.
  • the reduced particles were immersed in toluene, dried at room temperature, and taken out into the air.
  • the particles were observed with a transmission electron microscope, and as a result, the particles were found to be fine particles having a coating having a long axis average length of 0.18 / zom.
  • These ferromagnetic metal particles having excellent properties can be used for high-density magnetic recording materials.
  • the metal particles were observed with an analytical electron microscope (Analytical Electron Microscopy). As a result of a relative comparison of the amount of the metal element present in the surface of the acicular particles with the amount of the metal element present inside the particles, it was found that a large amount of the cobalt element was present on the surface. It turned out that it was.
  • ferric nitrate Fe (N0 3 ) 3 ⁇ 9H 20
  • 272 gr. of zinc nitrate Zn (N0 3 ) 2 ⁇ 6H 2 0
  • a mixed solution of Fe 3 + and Zn 2 + Fe / Zn molar ratio ⁇ 2/1 was prepared.
  • the mixed solution was added to the slurry solution in which the iron oxide hydroxide particles were dispersed while stirring and mixing at a rate of 3 £ / Hr, and the stirring was further continued at 50 ° C for 60 minutes.
  • the pH of the slurry solution after the addition was 12.2,
  • the slurry was filtered, washed, and dried. Obtained particles were observed by TEM. As a result of the observation, a fine structure formed in a film form on the surface of the oxyiron hydroxide was observed.
  • the particles were subjected to a structural analysis by powder X-ray Isj folding, it was confirmed that the particles had a spinel structure having a low crystallinity separately from the structure of a-FeOOH.
  • the particles were analyzed by XPS for the state of the elements on the powder surface. As shown in FIGS. 7, 8, and 9, Zn 2 + and Fe 3 + were confirmed. Or hydroxide.
  • the above particles were also calcined at 500 ° C and reduced at a temperature of 400 with a hydrogen stream ⁇ . Next, the reduced particles were immersed in toluene, dried at room temperature, and taken out into the air.
  • These ferromagnetic metal particles having excellent properties can be used for high-density magnetic recording materials.
  • Example 1 The iron oxyhydroxide of Example 1 was used. As in Example 1, sodium hydroxide was added, and the mixture was dispersed by stirring. Then, a solution in which only 266 gr. Of cobalt nitrate was dissolved was added and neutralized, followed by stirring and mixing. After filtration, washing and drying according to Example 1 and a method similar to l5j, the resulting particles were subjected to TEM observation to examine the film.
  • Example 2 The particles were heated and reduced in the same manner as in Example 1 to obtain ferromagnetic metal particles, and the particles were processed in the same manner as in Example 1 to examine the TEM, magnetic properties, and weather resistance.
  • Hc 9500e
  • s 140 erau / g
  • R 0.43
  • granular particles other than the granular particles as well as granular particles other than the granular particles.
  • Example 1 (In the case of using only zinc in Example 1) The iron oxyhydroxide of Example 1 was used. In the same manner as in Example 1, sodium hydroxide was added, and the mixture was stirred and dispersed. Then, a solution in which only 272 gr. Of zinc nitrate was dissolved was added, and the mixture was stirred and mixed. After filtration * washing / drying, TEM observation was performed to examine the film by the same method as in Example 1 and ⁇ .
  • the particles generated by the neutralization reaction were independent particles of zinc hydroxide, and it was confirmed that the particles were not coated with the acicular particles of iron oxyhydroxide.
  • the ferromagnetic metal particles were heated and reduced in the same manner as in Example 1 to obtain ferromagnetic metal particles.
  • the particles obtained by performing the same treatment as in Example 1 were examined for TEM, magnetic properties, and weather resistance.
  • Example 1 (In the case where only nickel was used in Example 1) The iron oxide hydroxide of Example 1 was used. Example 1 and Similarly, sodium hydroxide was added, and the mixture was stirred and dispersed. Then, a solution in which only nickel nitrate was dissolved in 260 gr. was added and mixed with stirring. Filtration / washing * After drying, the coating was examined by TEM observation in the same manner as in Example 1.
  • the fine particles were analyzed by powder X-ray HI and electron beam diffraction, and as a result, Ni (0H) 2 was obtained.
  • the particles produced by the neutralization reaction were independent nickel hydroxide particles.
  • heating and reduction were performed to obtain ferromagnetic metal particles, and the particles obtained by performing the same treatment as in Examples 1 and 1 and 1 were examined for TEM, magnetic properties, and weather resistance.
  • the slurry was filtered, washed and dried, and the obtained particles were observed by TEM. As a result of observation, cubic particles of the same size (0.2 im) as the length of the iron oxide hydroxide particles were scattered in the visual field.
  • the cubic particles were measured by electron beam diffraction and diffraction electron microscopy, and as a result of breaking, the particles were determined to be zinc fluoride. From these results, it was found that in the system of Fe 2+ and Zn z + , spinel-type fluoride particles were independently mixed and were not formed as a film on the surfaces of the iron oxide hydroxide particles.
  • the s was 95 emu / g after the corrosion resistance test, and was unsuitable as metal particles for high-density magnetic recording.
  • a large amount of Zn was detected. This means that spinel filament particles are reduced as they are. Almost no amount of Zn was observed in the acicular particles.
  • Example except that manganese nitrate and ferric nitrate, aluminum nitrate and ferrous sulfate, chromium nitrate and ferrous sulfate, nickel nitrate and ferric nitrate, and copper nitrate and ferric nitrate were used. In the same manner as in 1, iron oxide hydroxide particles and neutralization co-precipitation were performed respectively.
  • the obtained particles were measured by TEM, powder X-ray diffraction, and XPS. From the results, it was confirmed that the particles were iron oxyhydroxide particles having a coating of a fluoride compound waiting for a spinel structure on the surface of the particles.
  • the ferromagnetic metal particles had properties suitable for use as a magnetic powder for high-density magnetic recording.
  • the ferromagnetic metal particles had a spinel structure of manganese and iron, aluminum and iron, chromium and iron, nickel and iron, and copper and iron spinel structures, respectively. It was confirmed that it had a film.
  • Example 2 In the same manner as in Example 1, except that nickel nitrate, cobalt nitrate and ferric nitrate or zinc nitrate, cobalt nitrate and ferric nitrate or nickel nitrate, zinc nitrate and ferric nitrate were used. Laminated coating was performed on the iron oxide hydroxide particles by co-precipitation with neutralization.
  • the obtained particles were measured by TEM, powder X-ray diffraction, and XPS. From the results, it was confirmed that the particles were iron oxyhydroxide particles having a film of a fluoride compound having a spinel structure on the surface of the particles.
  • Example Conditions for layered coating Characteristics of ferromagnetic metal particles Co-precipitated layered layer Atomic ratio H cas R as * Particle length Gold ion (Oe) (emu / g) (-) (emu / g ) ( ⁇ m)
  • the iron oxide hydroxide particles having a cobalt and iron fluoride film on the surface obtained in Example 1 were dispersed in pure water, and co-pidal Si 0 2 (Nissan Chemical Snowtex 0) was oxidized. 2% was added to the iron hydroxide and adsorbed on the surface.
  • the iron oxyhydroxide particles were dried and reduced by heating and reducing by the same method as in Example 1 and lsj to obtain ferromagnetic metal particles.
  • TEM, magnetic properties, weather resistance test, powder X-ray tel-fold, and XPS measurement were performed on the particles obtained by performing the treatments of Examples 1 and 1 and 1 above. Table 3 shows the results of the TEM, magnetic properties, and weather resistance test. The coercive force has been further increased, confirming that the ferromagnetic metal particles are suitable for high-density magnetic recording materials.
  • Example 2 the Okishi iron hydroxide particles having Fuwerai bets coating of zinc and iron on the surface dispersed in pure water, co toroidal S i 0 2 O a (manufactured by Nissan Chemical Sno Te' box 0) key sheet 2% was added to the iron hydroxide and adsorbed on the surface.
  • the oxyiron hydroxide was dried and reduced by heating and reducing in the same manner as in Example 1 to obtain ferromagnetic metal particle powder.
  • the same treatment as in Example 1 was performed, and TEM, magnetic properties, weather resistance test, powder X-ray west folding, and XPS were measured. Table 3 shows the results of the TEM, magnetic properties, and weather resistance test.
  • the coercive force further increased, confirming that the particles were ferromagnetic metal particles suitable for high-density magnetic recording materials.
  • Each of the oxyiron hydroxide particles having a cobalt film and iron or zinc and iron fly film on the surface obtained in Examples 1 and 2 was dispersed in pure water.
  • compounds of A1, P and B were adsorbed instead of the Si compound.
  • Example 2 After filtration, washing, and drying, the powder was heated and reduced in the same manner as in Example 1 to obtain ferromagnetic metal particle powder.
  • the particles obtained by performing the same treatment as in Example 1 were subjected to TEM, magnetic properties, weather resistance test, powder X-ray diffraction and XPS measurement.
  • Table 3 shows the main results obtained. This material was suitable for metal particles for high-density magnetic recording.
  • Example 11 The iron oxide hydroxide of Example 1 was used. Without forming a spinel-structured frit film, Co-mouth Si0 2 was adsorbed in the same manner as in Example 11.
  • Example 2 Heating and reduction were performed in the same manner as in Example 1 to obtain ferromagnetic metal particle powder.
  • the particles obtained by performing the fel-like treatment in Example 1 were subjected to TEM, magnetic properties, and weather resistance tests. Table 3 shows the main results.
  • cr s * represents the saturation magnetization after one week at 60 * C, 903 ⁇ 4 relative humidity
  • iron oxide hydroxide particles having a long axis average length of 0.25 / m and an axial ratio of 15 coprecipitated to have 1% of And cobalt were laminated and coated by coprecipitation.
  • the obtained particles were subjected to TEM, X-ray powder lsj folding, and XPS measurement. As a result of analyzing these, it was found to be iron oxyhydroxide particles having a frit film on the surface waiting for a spinel structure.
  • Example 2 It was heated and reduced as in Example 1 to obtain ferromagnetic metal particles.
  • the TEM, powder X-ray diffraction, and XPS measurements of the particles were measured. Table 4 shows the main results.
  • the particles were ferromagnetic metal particles having a fluoride film having a subinel structure on the surface. From these results, it was found that oxyiron hydroxide particles having A1 as a coprecipitating component also had the effects intended by the present invention.
  • R-type iron oxyhydroxide particles (r-FeOOH) with an average particle length of 0.27 m and an axial ratio of 10 were used as raw materials.
  • Examples 1 and 1 Iron and cobalt were laminated and coated on r-FeOOH by coprecipitation in the same manner as in J.
  • the results of TEM, X-ray powder Inl folding, and XPS measurement of the particles revealed that the particles were r- PeOOH having a spinel-structured fluoride film on the surface.
  • the ferromagnetic metal particles were obtained in the same manner as in Example 1 and ⁇ Species properties were measured. Table 4 shows the main results. From the results of powder X-ray diffraction and XPS, a fluorine film having a spinel structure on the surface was confirmed. It has been found that the effect of the present invention can be achieved even if the type of the oxide hydroxide is changed.
  • R-FeOOH having an average particle length of 0.27 / m and an axial ratio of 10 was used as a raw material.
  • Examples 23 to 26-Iron and cobalt were produced in the same manner as in Example 1 except that the conditions for the coprecipitation lamination coating were changed. Table 5 shows the main conditions.
  • a ferromagnetic metal particle powder was obtained in the same manner as in Example 1. Table 5 shows the obtained results. Coprecipitation lamination The effect is low when the coating amount is small, but in each case, a fluorine coating having a spinel structure is formed on the surface, and the effect can be exerted by further coating. found.
  • Iron and nickel were manufactured in the same manner as in Example 6, except that the conditions for the co-precipitation lamination coating were changed. Table 6 shows the main conditions.
  • a ferromagnetic metal particle powder was obtained in the same manner as in Example 6. Table 6 shows the obtained results. Coprecipitation lamination The effect is low when the coating amount is small, but a fine coating with a spinel structure is formed on the surface, and having a coating further demonstrates the effect of corrosion resistance. found.
  • Ni / Fe multilayer coating r s * indicates saturation magnetization after one week storage at 60 -C, 90% RH
  • Fe Amount of NiFe (%) Atomic ratio of Hc csR ⁇ s * Fe / Fe (FeOOII) (Oe) (emu / g) (-) (emu / g)

Abstract

A ferromagnetic metal particle having a layered structure wherein the surface layer comprises a film of a ferrite compound having a spinel structure composed of iron and at least one metal selected from the group consisting of cobalt, zinc, manganese, aluminum, chromium, nickel, and copper. This particle is used for making a high-density magnetic recording medium.

Description

明 細 書  Specification
強磁性金属粒子およびその製法 技 術 分 野  Ferromagnetic metal particles and their manufacturing technology
本発明は、 高密度記録に適した磁気記録媒体に用い る磁性粉末として、 粒子表層部がコバル ト、 亜鉛、 マ ンガン、 アルミニウム、 ク ロム、 ニッケル、 銅から選 択される少な く とも 1種の金属と鉄とからなるスビネ ル構造を持つフユライ ト化合物の皮膜として積層被覆 している こ とを特徴とする強磁性金属粒子及びその製 造方法に関するものである。  The present invention provides, as a magnetic powder used for a magnetic recording medium suitable for high-density recording, at least one kind in which the surface layer of particles is selected from cobalt, zinc, manganese, aluminum, chromium, nickel, and copper. The present invention relates to a ferromagnetic metal particle characterized by being laminated and coated as a film of a fluoride compound having a suberin structure composed of a metal and iron, and a method for producing the same.
背 景 技 術  Background technology
オーディ オテープ、 ビデオテープに代表される磁気 記録媒体に用いられる磁性粉末は、 従来の 7"—酸化鉄 や Co— r酸化鉄が主体であつた。  Magnetic powders used in magnetic recording media such as audio tapes and video tapes were mainly 7 "-iron oxide or Cor-r iron oxide.
近年、 高密度磁性記録媒体が望まれている。  In recent years, high-density magnetic recording media have been desired.
ォキシ水酸化鉄あるいは酸化鉄を主体とする粉末を 還元性ガスを用いて接触還元反応する こ とによって得 られる金属鉄も し く は合金を主体とする強磁性金属粒 子が、 高い保磁力、 高い飽和磁化を有する こ とが知ら れている。 そこで、 これらの粒子が高密度磁性記録材 料と して検討されるようになってきた。  Ferromagnetic metal particles mainly composed of metallic iron or an alloy obtained by subjecting a powder mainly composed of iron oxide hydroxide or iron oxide to a catalytic reduction reaction using a reducing gas have high coercive force, It is known to have high saturation magnetization. Thus, these particles have been studied as high-density magnetic recording materials.
オーディ オ用、 ビデオ用などの高密度磁気記録媒体 に広い記録 JIT波数帯域での高出力化、 低ノ ィ ズ化が要 求されてる。 そのため、 磁性粒子に要求される項目としては、 例 えば、 粒子のサイズとしてはより微細なものであるこ と、 その形状としては針状若しく は角柱状のものであ ること、 酸化に対するより安定性のあるものであり、 環境劣化又は耐蝕性試験に対しても高飽和磁化を維持 することなどが挙げられる。 High-density magnetic recording media, such as those for audio and video, are required to have higher output and lower noise in a wide recording JIT waveband. Therefore, items required for magnetic particles are, for example, that the particle size is finer, that the shape is acicular or prismatic, and that the particle is more stable against oxidation. It has high saturation magnetization even in environmental degradation or corrosion resistance tests.
従来、 鉄もしく は鉄を主体とする金属化合物を出発 原料として還元性雰囲気中で加熱し還元し、 鉄もしく は鉄を主体とする強磁性金属粒子粉末を得るために、 幾つかの方法が提案されている。  Conventionally, several methods have been used to obtain iron or iron-based ferromagnetic metal particles by heating and reducing in a reducing atmosphere using iron or an iron-based metal compound as a starting material. Has been proposed.
① 例えば、 特開昭 52- 134858 には、 ォキシ水酸化鉄 もしく は酸化鉄に、 特定の元素を ド一プしたものを出 発原料として、 Si,Al の水酸化物を付着させる処理し た後、 加熱し還元し強磁性金属鉄を得る方法が記載し てある。  (1) For example, Japanese Patent Application Laid-Open No. 52-134858 discloses a treatment of depositing a hydroxide of Si or Al using iron oxide hydroxide or iron oxide doped with a specific element as a starting material. Then, it is described that a method of heating and reducing to obtain ferromagnetic metal iron is described.
② 特開昭 54- 122663及び 54- 122664 (G B 2016526 ) には、 ォキシ水酸化鉄もしく は酸化鉄又はこれらに特 定の元素を ド一ブしたものに、 Zn,Cr,Cu,Co,Ni,Mn,Sb の水酸化物を付着させる処理をした後、 加熱還元して 強磁性金属鉄を得る方法が記載してある。  ② JP-A-54-122663 and JP-A-54-122664 (GB 2016526) describe that zinc oxide, iron oxide or iron oxide or a mixture of these elements containing Zn, Cr, Cu, Co, It describes a method of obtaining a ferromagnetic metallic iron by performing a treatment for attaching hydroxides of Ni, Mn, and Sb, and then reducing by heating.
③ 特開昭 59- 173209には、 Mg, Ti , Mn, Co, !ii , Cu, Zn の化合物と第 1鉄イ オン(Fe2+ ) の水溶液をそれぞれ 中和し、 水酸化物とした後、 空気を吹き込みスピネル 型化合物とし、 これをォキシ水酸化鉄粒子に被着し、 その後還元を行い、 強磁性金属粒子とする方法が記載 してある。 (3) JP-A-59-173209 discloses that a compound of Mg, Ti, Mn, Co,! Ii, Cu, Zn and an aqueous solution of ferrous ion (Fe 2+ ) are each neutralized to form a hydroxide. Later, air is blown into the spinel-type compound, which is adhered to the iron oxide hydroxide particles, After that, a method of performing reduction to obtain ferromagnetic metal particles is described.
④ また、 特開昭 56— 55503 には、 加熱し還元によつ て得られた鉄も し く は鉄を主体とした金属は、 そのま までは大気中で酸化燃焼したり、 酸化が進行するこ と による磁気特性が経時劣化する。 そこで、 さ らに、 低 濃度酸素雰囲気中で該粒子表面に酸化皮膜を形成して 耐蝕性の優れた金属磁性粉末を製造する方法が記載さ れている。  ④ Also, Japanese Patent Application Laid-Open No. 55503/1981 discloses that iron or a metal mainly composed of iron obtained by heating and reducing may be oxidized and burned in the atmosphere or oxidized. As a result, the magnetic properties deteriorate over time. Therefore, there is further described a method for producing a metal magnetic powder having excellent corrosion resistance by forming an oxide film on the surface of the particles in a low-concentration oxygen atmosphere.
前述のよう に、 高密度記録用の磁性粉末と しての強 磁性金属粒子に対する要求は、 高い飽和磁化を損なう ことな く 、 更に微粒子である こ とである。  As described above, the demand for ferromagnetic metal particles as magnetic powder for high-density recording is to be fine particles without impairing high saturation magnetization.
したがって、 微粒子の酸化に対する安定性を付与す る こと、 又、 微粒子の焼結を防止し形態を制御する こ となどの更に困難な問題点が多 く残されている。  Therefore, there are still many more difficult problems such as imparting stability to oxidation of the fine particles and preventing sintering of the fine particles and controlling the morphology.
例えば、 従来の技術において、 次のよう な問題点が ある。  For example, the conventional technology has the following problems.
① ォキシ水酸化鉄等に S i , A 1 の水酸化物を付着し、 その後還元により強磁性金属粒子を得る方法では、 微 粒子になればなるほど焼結作用によって、 その形態を 保持するこ とが難しい。  (1) In the method of attaching Si, A1 hydroxides to oxyiron hydroxide, etc., and then obtaining ferromagnetic metal particles by reduction, the finer the particles, the more the shape is maintained by sintering action. Is difficult.
更に、 この金属鉄粒子をゆるやかに酸化して表面に 酸化皮膜を形成しても、 酸化の進行を防止する効果に 乏しい。 ② ォキシ水酸化鉄もしく は酸化鉄又はこれらに特定 の元素を ドーブしたものに、 Zn,Cr,Cu,Co,Ni,Mn,Sbの 化合物の水溶液をそれぞれ中和することにより得られ た金属水酸化物を付着した後、 還元してなる強磁性金 属粒子を得る方法において、 中和により得られる金属 水酸化物は、 結晶化速度が速いためォキシ水酸化鉄粒 子と同サイ ズかそれより大きいサイ ズの結晶粒子に成 長する。 そのため、 該金属水酸化物粒子は、 ォキシ水 酸化鉄粒子に付着し難い。 したがって、 これらの金属 水酸化物粒子とォキシ水酸化鉄の結晶粒子が独立に存 在し、 単なる混合物となっている。 Furthermore, even if the metal iron particles are slowly oxidized to form an oxide film on the surface, the effect of preventing the progress of oxidation is poor. (2) Metals obtained by neutralizing aqueous solutions of Zn, Cr, Cu, Co, Ni, Mn, and Sb compounds with iron oxide hydroxide or iron oxide or a mixture of these elements with a specific element. In the method of obtaining ferromagnetic metal particles obtained by attaching a hydroxide and then reducing, the metal hydroxide obtained by neutralization has the same crystallization rate as iron oxyhydroxide particles due to its high crystallization rate. It grows into larger crystal grains. Therefore, the metal hydroxide particles hardly adhere to the oxyhydroxide particles. Therefore, these metal hydroxide particles and crystal particles of iron oxyhydroxide exist independently and are merely a mixture.
このような混合物となつている状態のものを加熱還 元すると、 還元後の金属粒子は、 もとの粒子形態でな く、 崩壊したり、 焼結したり しているものが多く観察 される。 更に、 これらの中には、 金属水酸化物粒子が 還元されるこ とにより発生した金属粒子または酸化物 粒子が混在していることも観察される。  When such a mixture is reduced by heating, the reduced metal particles are often not collapsed or sintered, instead of the original particle form. . Furthermore, it is also observed that metal or oxide particles generated by reduction of metal hydroxide particles are present in these.
更に、 還元後の強磁性金属鉄粒子を微量の酸素によ り緩やかに酸化を行い、 酸化皮膜を形成しても、 酸化 の進行を防止する効果に乏しい。  Furthermore, even if the ferromagnetic metal iron particles after reduction are slowly oxidized with a small amount of oxygen to form an oxide film, the effect of preventing the progress of oxidation is poor.
③ また、 Mg,Ti,Hn,Co,Ni,Cu,Znイオンと第 1鉄ィォ ンとを中和し水酸化物を形成し、 その後空気酸化を行 ぃスピネル型化合物とし針状のォキシ水酸化鉄に被着 を行いその後加熱還元し強磁性金属粒子を得る方法で は、 このスピネル型化合物の粒子をォキシ水酸化鉄粒 子に被着する工程において、 ォキシ水酸化鉄中の Fe 原子に対しス ピネル化合物中の構成元素が 6原子%以 上では被着が飽和に達する と共にスピネル型化合物が ォキシ水酸化鉄表面から遊離する という欠点があった, 更に、 還元後の強磁性金属鉄粒子を微量の酸素によ り緩やかに酸化を行い、 酸化皮膜を形成しても、 酸化 の進行を防止する効果に乏しい。 ③ In addition, Mg, Ti, Hn, Co, Ni, Cu, Zn ions and ferrous ion are neutralized to form hydroxides, and then air oxidation is performed. It is a method of applying iron hydroxide and then reducing it by heating to obtain ferromagnetic metal particles. In the step of depositing the particles of the spinel compound on the iron oxide hydroxide particles, the deposition is saturated when the constituent element in the spinel compound is 6 atomic% or more with respect to the Fe atoms in the iron oxide hydroxide. At the same time, the spinel-type compound is released from the surface of the iron oxyhydroxide, and the reduced ferromagnetic metal iron particles are slowly oxidized with a small amount of oxygen to form an oxide film. In addition, the effect of preventing the progress of oxidation is poor.
発 明 の 開 示  Disclosure of the invention
本発明は、 高い保磁力又は飽和磁化を有していなが ら、 粒子のサイ ズとしては従来より微細なものであり 、 その形状としては針状若し く は角柱状のものであり 、 酸化に対する安定性のある ものであり、 環境劣化又 は耐候性試験に対する高飽和磁化を維持する強磁性金 属粒子を提供する こ とを目的とする。  Although the present invention has a high coercive force or saturation magnetization, the particle size is finer than before, and the shape is acicular or prismatic. An object of the present invention is to provide ferromagnetic metal particles which are stable against environmental degradation and maintain high saturation magnetization for environmental degradation or weather resistance tests.
本発明者等は、 上述の目的を解決するために銳意検 討をした結果、 本発明に到達したのである。  The inventors of the present invention have made various studies to solve the above-mentioned object, and as a result, have reached the present invention.
本発明を明確に把握できるよう に基本的な技術思想 について説明する。  The basic technical concept will be described so that the present invention can be clearly understood.
まず、 Co, Zn, Mn, Ni, Cuの 2価イ オ ンと第 2鉄イ オン (Fe3+ ) と或いは Al,Cr の 3価イ オンと第 1 鉄イ オ ン (Fez+ ) とを同時に中和する とゲルが生成する。 First, a divalent ion of Co, Zn, Mn, Ni, and Cu and a ferric ion (Fe 3+ ) or a trivalent ion of Al and Cr and a ferrous ion (Fe z + ) A gel is formed when the gel is neutralized simultaneously.
例えば、 Co2+ と Fe3+ とにより生成したゲルの X線 回折スぺク トルを第 1 図に示す。 この図から、 次のこ とが判る。 For example, FIG. 1 shows an X-ray diffraction spectrum of a gel formed by Co 2+ and Fe 3+ . From this figure, I understand.
①回折角度からスビネル構造を有していること。  (1) It must have a Svinel structure from the diffraction angle.
②線幅が広いこ とから微小な結晶である こと。  ②Because the line width is wide, it must be a fine crystal.
③ハローのある こ とからその結晶は不完全であるこ と (結晶化度が低い結晶であるともいう ) 。  (3) Due to halo, the crystal is incomplete (also called low crystallinity).
この結果、 このゲルは、 結晶化度の非常に低い超微細 粒子のスピネル構造を待つフユライ ト化合物である複 合金属水酸化物又は酸化物を形成されているものであ る こ とを意味する。 As a result, this gel means that a composite metal hydroxide or oxide, which is a fluoride compound waiting for the spinel structure of ultrafine particles having a very low crystallinity, is formed. .
また、 こ こで生成したゲルの磁気特性を常温で測定 すると、 強磁性でな く、 むしろ常磁性的なものである こ とを示す。 スピネル構造を有している こ とと考え合 わせる と、 超常磁性粒子と言える。  When the magnetic properties of the gel formed here are measured at room temperature, it is shown that the gel is not ferromagnetic but rather paramagnetic. Considering that they have a spinel structure, they can be said to be superparamagnetic particles.
以上のことから、 この複合金属水酸化物又は酸化物は 、 局所的にスピネル型空間格子構造を待つフ ライ ト 化合物の超微粒子である と言える。 From the above, it can be said that this composite metal hydroxide or oxide is an ultrafine particle of a fly compound waiting locally for a spinel-type spatial lattice structure.
次に、 鉄を主体とするォキシ水酸化物粒子が分散し たスラ リ ー中で、 コノ ル ト、 亜鉛、 マンガン、 アルミ 二ゥム、 ク ロム、 ニッケル、 銅から選択される少な く とも一つの金属と鉄とを同時に中和する。 中和と jsj時 に、 直接スピネル化合物と して生成するゲルは、 ただ ちに該ォキシ水酸化物粒子表面に積層被覆した皮膜を 形成する。 '  Next, at least one selected from the group consisting of copper, zinc, manganese, aluminum, chromium, nickel, and copper in a slurry in which oxyhydroxide particles mainly composed of iron are dispersed. Neutralizes two metals and iron simultaneously. During the neutralization and jsj, the gel formed directly as a spinel compound immediately forms a layered coating on the surface of the oxyhydroxide particles. '
このようにォキ シ水酸化物粒子表面全体に積層被覆 した皮膜が形成されているこ とは、 得られた粒子を電 子顕微鏡で観察しても確認できる。 In this way, the layered coating over the entire surface of the oxide hydroxide particles The formation of the formed film can also be confirmed by observing the obtained particles with an electron microscope.
また、 該粒子の磁気特性を測定する と、 強磁性でな く 、 常磁性的なものであるこ とを示す。 In addition, measurement of the magnetic properties of the particles shows that they are not ferromagnetic but paramagnetic.
これらの結果から、 該積層被覆した皮膜は、 局所的 にスピネル型空間格子構造を有するものであるこ とが 推定される。  From these results, it is presumed that the layered coating has a local spinel-type spatial lattice structure.
更に、 粒子表面、 例えば、 鉄を主体とするォキシ水 酸化物粒子と Coz+ と Fe3+ とにより形成した粒子表 面の X線光電子スぺク トル ( X— rays P hotoelectr on S pectroscopy 以下 X P S と略す。 ) を第 2図お よび第 3図に示す。 Furthermore, X-ray photoelectron spectrum (X-rays P hotoelectr on Spectroscopy below) of the particle surface, for example, the particle surface formed by iron-based oxyhydroxide particles and Coz + and Fe3 +. Are shown in Fig. 2 and Fig. 3.
これらの図から、 粒子表面に存在する金属の原子価 が、 Co2+ と Fe3+ であるこ とが判る。 From these figures, it can be seen that the valence of the metal present on the particle surface is Co 2+ and Fe 3+ .
このよう に、 本発明により得られる超微細粒子のス ピネル構造を持つフ ユ ラ イ ト化合物は、 ォキ シ水酸化 物粒子に対して極端に微細な単位で成り立っており、 つま り局所的にスビネル型空間格子構造となつており -、 ォキ シ水酸化鉄粒子の存在下で lsj時に中和し、 直接 ス ピネル構造を待つフ ライ ト とすれば表面全体に堆 積が進行し、 積層被覆した皮膜が形成される。 しかも 、 多量に堆積させても、 剥離などの現象はほとんど見 られないので、 スピネル構造を持つフヱ ライ ト皮膜層 の厚みを任意に制御できる ものである。 本発明により得られる超微細構造のスビネル構造を 持つフユ ラ イ ト皮膜を表面に有する鉄を主体とするォ キシ水酸化物粒子を、 加熱して還元する こ とにより強 磁性金属粒子とする反応において、 崩壌や焼結などが 生じないで形態を保持しているこ とが電子顕微鏡など によって観察される。 この結果から、 この皮膜の性質 により形態保待効果が優れているものと推測される。 該強磁性金属粒子は、 著し く酸化の進行を防止する 効果があるが、 更に、 緩やかな表面酸化して強磁性金 属粒子の表面に酸化皮膜を形成しても、 酸化の進行を 防止する効果がある。 As described above, the ultrafine particles having a spinel structure of the ultrafine particles obtained by the present invention are composed of extremely fine units with respect to the oxyhydroxide particles, that is, locally. In the presence of oxyiron hydroxide particles, it is neutralized at the time of lsj, and if it is a fly that directly waits for the spinel structure, the accumulation progresses over the entire surface, A layered coating is formed. In addition, even if a large amount is deposited, phenomena such as peeling are scarcely observed, so that the thickness of the spinel-structured frit film layer can be arbitrarily controlled. Reaction of oxidized hydroxide particles mainly composed of iron having a superfine structure subinel structure having a subinel structure obtained by the present invention on the surface by heating to reduce them to ferromagnetic metal particles It is observed with an electron microscope that the morphology is maintained without causing collapse or sintering. From these results, it is presumed that the properties of this film have an excellent shape preserving effect. The ferromagnetic metal particles have a remarkable effect of preventing the progress of oxidation, but also prevent the progress of oxidation even if the surface is slowly oxidized to form an oxide film on the surface of the ferromagnetic metal particles. Has the effect of doing
ここで、 本発明と比較するのために、 Mg,Ti,Mn,Co, Ni,Cu,Zn イオンと第 1鉄イ オンと ( 2価と 2価の系 である) を中和し水酸化物を形成し、 その後空気酸化 を行いス ピネル型化合物とし、 針状のォキシ水酸化鉄 に被着を行い、 その後加熱還元し強磁性金属粒子を得 る従来技術について簡単に述べる。  Here, for comparison with the present invention, Mg, Ti, Mn, Co, Ni, Cu, Zn ions and ferrous ions are neutralized and hydroxylated (which is a divalent and divalent system). A conventional technique for forming ferrite and then performing air oxidation to form a spinel-type compound, depositing it on acicular iron oxyhydroxide, and then reducing by heating to obtain ferromagnetic metal particles will be briefly described.
まず、 これら特定の金属と第 1鉄イ オ ンと ( 2価と 2価の系である) を中和し水酸化物を形成する過程で 、 水酸化第 1鉄の結晶粒子およびこれら金属の水酸化 物の結晶粒子が形成される。 これらの粒子の X線回折 スぺク トルを解折すると、 これらの粒子はスピネル構 造を有していないこ と、 線幅が狭く結晶が大きいこ と などが判る。 次の工程で、 これら結晶粒子を空気酸化する こ とに よって生成する粒子の X線回折スぺク ト ルを解折する と次のことが判る。 First, in the process of neutralizing these specific metals and ferrous ions (which are divalent and divalent systems) to form hydroxides, ferrous hydroxide crystal particles and these metals Hydroxide crystal particles are formed. Analysis of the X-ray diffraction spectrum of these particles shows that these particles do not have a spinel structure and that the line width is narrow and the crystals are large. In the next step, X-ray diffraction spectrum of the particles generated by air-oxidizing these crystal particles reveals the following.
①スピネル構造を持つ化合物を形成しているこ と。 (1) The compound has a spinel structure.
②線幅が狭く結晶が大きいこ と。 (2) The line width is narrow and the crystal is large.
③ハローもな く結晶が完全である (結晶化度が非常に 冋ぃ ) し と。  (3) The crystal is perfect without halo (crystallinity is very high).
また、 生成した粒子の磁気特性を測定すると、 強磁 性であるこ とを示し、 磁気単位と しても粒子径が大き い粒子である こ とが判明する。  When the magnetic properties of the generated particles are measured, they indicate that they are ferromagnetic, indicating that the particles have a large particle size as a magnetic unit.
以上のこ とから、 金属水酸化物を空気酸化してなる粒 子は、 ス ピネル型化合物の粒子である こ とが確認され る。 このス ピネル型化合物の粒子をォキ シ水酸化鉄粒 子に被着する という技術思^に基づいている。 From the above, it is confirmed that particles formed by air oxidation of metal hydroxide are particles of spinel-type compounds. It is based on the technical idea that particles of this spinel type compound are deposited on iron oxide hydroxide particles.
また、 これとは別に、 ォキシ水酸化鉄粒子に金属ィ オ ンを ドープして後、 高温で合金にして強磁性金属粒 子を製造する技術思想もある。  In addition, there is a technical idea to manufacture ferromagnetic metal particles by doping metal ions into oxyiron hydroxide particles and then alloying them at a high temperature.
本発明者らは、 前述の目的を達成するために、 この 様な基本技術思想のもとに研究開発した結果、 強磁性 金属粒子およびその製法たる本発明に至 , すなわち、 本発明は、 粒子表層部がコバル ト、 亜鉛 The present inventors have conducted research and development based on such basic technical ideas to achieve the above-mentioned object, and as a result, have come to the present invention which is a ferromagnetic metal particle and its manufacturing method. Surface is cobalt, zinc
、 マ ンガン、 アルミ ニウ ム、 ク ロ ム、 ニ ッケノレ、 銅か ら選択され ¾少な く とも 1 種の金属と鉄とからなるス ピネル構造を持つフ ニラ イ ト化合物の皮膜と して積層 被覆している こ とを特徴とする強磁性金属粒子及びそ の製造方法である。 , Manganese, aluminum, chromium, nickel, and copper, laminated as a coating of a phenylite compound with a spinel structure composed of at least one metal and iron A ferromagnetic metal particle characterized by being coated, and a method for producing the same.
更に該スピネル構造を持つフ ライ ト化合物が 2価 の金属、 3価の金属からなる複合酸化物であるこ とを 特徴とする ものである。  Further, the present invention is characterized in that the fly compound having the spinel structure is a composite oxide composed of a divalent metal and a trivalent metal.
また、 更には該構造を有する金属微粒子は、 鉄を主 体とする針状のォキシ水酸化鉄の表面に前記構造を基 本単位とするス ピネルフ ヱ ラ イ ト及びス ピネルフヱ ラ ィ ト水和物の皮膜を有する ものを、 加熱して還元した 後、 空気と接触させ安定化させるこ とにより得らる強 磁性金属粒子である。  Further, the fine metal particles having the above structure are formed by spinelite and spinelite hydrate having the above structure as a basic unit on the surface of acicular iron oxide hydroxide mainly composed of iron. These are ferromagnetic metal particles obtained by heating and reducing an object having a film of matter and then bringing it into contact with air to stabilize it.
本発明の強磁性金属粒子表面にあるコ バル ト、 亜鉛 、 マ ンガン、 アルミ ニウム、 ク ロム、 ニ ッ ケル、 銅か ら選択される少な く とも 1種の金属と鉄とのス ピネル 構造を持つフ ライ ト化合物の皮膜については、 強磁 性金属粒子の粉末法の X線画折像を調べるこ と及び X P Sを調べる こ とにより特定する こ とができる。  The spinel structure of iron and at least one metal selected from cobalt, zinc, manganese, aluminum, chromium, nickel, and copper on the surface of the ferromagnetic metal particles of the present invention. The coating of the fly compound can be identified by examining the X-ray diffraction image of the ferromagnetic metal particles by the powder method and examining the XPS.
X P Sは、 同体表面の構成元素やその化学伏態を知 るための電子分光法による分折手法である。 固体試料 表面に X線を照射し、 X線によって励起された表面の 元素から光電子が放出される。 この光電子の運動エネ ルギーを測定するこ とにより電子の結合エネルギーが 求められ、 元素の同定と化学結合状態を調べるこ とが 出来る手段である。 この様な手段により、 表面部に存在する構成元素と その原子価が求める ことができる。 XPS is a method of electron spectroscopy to determine the constituent elements on the surface of a body and their chemical state. The surface of a solid sample is irradiated with X-rays, and photoelectrons are emitted from the surface elements excited by the X-rays. By measuring the kinetic energy of this photoelectron, the binding energy of the electron is determined, and this is a means by which elements can be identified and their chemical bonding states can be examined. By such means, the constituent elements existing on the surface and the valence thereof can be determined.
更に粉末 X線回折スぺク ト ルの解折、 電子顕微鏡及 び磁気測定などの手段とを組み合わせる こ とにより、 本発明であるコバル ト、 亜鉛、 マ ンガン、 アルミニゥ ム、 ク ロム、 ニ ッ ケル、 銅の少な く とも一種の金属と 鉄とからなるス ビネル構造を有するフヱライ ト化合物 の皮膜と して積層被覆している ことを特徴とする強磁 性金属粒子である こ とが確認される。  Further, by combining means such as analysis of powder X-ray diffraction spectrum, electron microscope and magnetic measurement, cobalt, zinc, manganese, aluminum, chromium, nickel It has been confirmed that these are ferromagnetic metal particles characterized by being laminated and coated as a film of a fluorinated compound having at least one kind of metal such as quenched and copper and iron and having a sbynel structure. You.
この粒子は、 本発明の目的とする微粒子と して満足す る良好な形状をしていて、 酸化安定性にも優れている ものである。 These particles have a good shape that satisfies the desired fine particles of the present invention, and also have excellent oxidation stability.
本発明の強磁性金属粒子のス ピネル構造を持つフユ ラ イ ト皮膜について、 粉末 X線回折を用いて詳細に調 ベたところ、 例えば、 本発明で得られる第 2鉄イ オン と 2価のコバル ト ィォ ンの強磁性金属粒子の粉末 X線 tel折スぺク トルを解析する と、 第 2鉄イ オ ンと 2価の コ バル ト イ オ ンの同時中和により得られる超微細粒子 の粉末 X線回折スぺク トルが存在している こ とが確認 される。  The ferrite metal coating having a spinel structure of the ferromagnetic metal particles of the present invention was examined in detail using powder X-ray diffraction. For example, the ferric ion obtained by the present invention and the divalent iron Analysis of the powder X-ray tel-fold spectrum of Cobaltion's ferromagnetic metal particles revealed that the ultrafine particles obtained by simultaneous neutralization of ferric ion and divalent cobalt ion were obtained. It is confirmed that the powder X-ray diffraction spectrum of the particles is present.
また X P Sによる表面元素の状態分析を行つた結果 、 第 4冈および第 5冈に示すとおり、 Co 2 +と Fe 3 +が観 察され、 皮'膜構造に鉄とコバル ト との複合酸化物があ るこ とが確認された。 したがって、 X P Sなどの解折結果と考え合わせる と、 該金属粒子の表層部の基本的な皮膜構造は、 ォキ シ水酸化鉄の表面のスビネルフ ライ ト皮膜を良く継 承しているこ とがわかる。 The results having conducted a state analysis of a surface element by XPS, as shown in the fourth Department and fifth Department, are observation Co 2 + and Fe 3 + is seen, the composite oxide of iron and cobalt in the skin 'film structure It was confirmed that there was. Therefore, when considering the results of cracking such as XPS, the basic film structure of the surface layer of the metal particles can be said to well inherit the svinel-flight film on the surface of iron oxide hydroxide. Understand.
また、 本発明でいう鉄を主体としたォキシ水酸化物 粒子表面にあるコバル ト、 亜鉛、 マンガン、 アルミ二 ゥム、 ク ロム、 ニッケル、 銅から選択される少な く と も 1種の金属と鉄とのスピネル構造を持つフユライ ト 化合物の皮膜は、 スビネル構造を主体とした、 2価の 金属、 3価の金属の複合酸化物または複合水酸化物か らなるものであり、 粉末法 X線画折、 電子顕微鏡観察 による皮膜の判定と X P Sによる表面部の状態分析に より特定される ものである。  Further, at least one metal selected from cobalt, zinc, manganese, aluminum, chromium, nickel, and copper on the surface of the iron-based oxyhydroxide particles referred to in the present invention. The film of a fluoride compound having a spinel structure with iron is composed of a divalent metal, a composite oxide or a composite hydroxide of a trivalent metal mainly composed of a sbinel structure. It is often identified by the determination of the film by electron microscopy and the analysis of the surface condition by XPS.
また、 鉄を主体と したォキシ水酸化物粒子又は強磁 性金属粒子の大きさ或いは形状については、 特に制限 はないが、 本発明の効果が著しい高密度磁気記録媒体 用の金属磁性粉末と しては、 粒子形状が針状であり、 長軸の粒子の長さが少な く とも、 0 . 3 m 以下である 強磁性金属微粒子が好ま しい。  The size or shape of the oxyhydroxide particles or ferromagnetic metal particles mainly composed of iron is not particularly limited. However, the metal magnetic powder for high-density magnetic recording media in which the effect of the present invention is remarkable is used. For example, ferromagnetic metal fine particles having a needle-like particle shape and a particle length of the major axis of at least 0.3 m or less are preferred.
また、 本発明で得られる鉄を主体とする強磁性金属 粒子は耐酸化安定性に優れている特徴を有する もので ある。 耐酸化安定性を評価する方法として、 例えば、 耐蝕性試験と言われている方法で、 強磁性金属粒子を 高温度、 高湿度の条件下 (例えば 60 'C , 90 %相対湿度) 下に放置し、 一定時間 (例えば一週間) 経過させた後 の飽和磁化( び s*) を測定する こ とにより判定するこ とである。 Further, the ferromagnetic metal particles mainly composed of iron obtained by the present invention have a feature of being excellent in oxidation resistance. As a method for evaluating the oxidation resistance, for example, a method called a corrosion resistance test is used to test ferromagnetic metal particles under high temperature and high humidity conditions (eg, 60'C, 90% relative humidity). It is determined by measuring the saturation magnetization (and s *) after a certain period of time (for example, one week) has passed after allowing the sample to stand for a while.
このような耐蝕性試験後の飽和磁化の値は、 構成元 素、 積層皮膜の厚み、 粒子の長さ、 軸比により種々変 化する。 一般的に厳密に定義されていないから、 公の 基準値と してではな く、 一応の目安として、 高密度磁 気記録媒体用の金属粒子としての好ま しい の範两 を、 粒子の長さの変数と した次式で表してみた。  The value of the saturation magnetization after such a corrosion resistance test varies depending on the constituent elements, the thickness of the laminated film, the length of the particles, and the axial ratio. As a general rule, it is not strictly defined, but rather as an official standard, but as a rough guide, the preferred range of metal particles for high-density magnetic recording media is The following equation was used as the variable of.
すなわち、 60'C ,90%相対湿度下で一週間放置後の飽 和磁化( ぴ s*) とすれば  In other words, the saturation magnetization (ぴ s *) after standing at 60'C and 90% relative humidity for one week
6 s*(emu/g) > 80 + 1< <粒子長さ( m) である。  6 s * (emu / g)> 80 + 1 <<particle length (m).
ここで、 従来技術によるものの び s*の最大値を考盧 する と、 定数 Kは  Here, considering the maximum value of the conventional technology and s *, the constant K is
K = 1 0 0  K = 1 0 0
であり、 本発明による ものの び の最小値を考慮する と、 定数 Kは And taking into account the minimum values according to the invention, the constant K is
K = 1 5 0  K = 1 5 0
である。 勿論、 こ の飽和磁化( ff s*) は、 物質 ¾1有の 飽和磁化を越えないこ とは言う までもない。 It is. Of course, the saturation magnetization (ffs *) does not exceed the saturation magnetization of the substance ¾1.
更に、 強磁性金属粒子中に含まれるコ バル ト、 亜鉛 、 マ ンガン、 ァノレ ミ ニゥ ム、 ニ ッ ケル、 ク ロ ム、 銅の 金属成分の量と しては制限はないが、 鉄との重量比に 於いて 3 %以上 5 0 %以下が好ましい。 Furthermore, the amount of metal components of cobalt, zinc, manganese, anolymium, nickel, chromium, and copper contained in the ferromagnetic metal particles is not limited, but is not limited to iron. To weight ratio In this case, the content is preferably from 3% to 50%.
また、 その他の成分として上述以外の金属及び非金 属元素が舍有することに制限はない。 これらの非磁性 元素を多量に舍有することは、 磁化の低下を招き好ま しく ない。 非磁性元素であれば少なく とも 5 %以下が 好ましい。  Further, there is no limitation that other metals and non-metal elements other than those described above have the other components. Having a large amount of these non-magnetic elements is not preferable because it causes a decrease in magnetization. If it is a non-magnetic element, it is preferably at least 5% or less.
形態の保護の効果を更に付与するために、 S i , P , Bを 少量添加することは好ましい。  It is preferable to add a small amount of Si, P, B in order to further impart the effect of protecting the form.
表面層部に特定の金属元素と鉄からなるスビネル搆 造を持つフユライ ト皮膜を有することを特徵とする強 磁性金属粒子およびその製法である本発明の作用 ·効 果を纏めると、 以下の通り となる。  The effects and effects of the ferromagnetic metal particles, which are characterized by having a fluoride film having a Svinel structure composed of a specific metal element and iron on the surface layer and the present invention, which is a method for producing the same, are summarized as follows. Becomes
(1) 粒子形伏は、 ォキシ水酸化物粒子とほぼ相似形と なり、 その針状性をよ く保待する。  (1) The particle shape is almost similar to that of the oxyhydroxide particles, and the needle shape is well preserved.
(2) 粒子の大きさについて、 ォキシ水酸化物粒子が微 粒子であっても、 加熱 · 還元に対して焼結などの弊害 も起こ し難く、 微細な強磁性金属粒子が得られる。 (2) Regarding the particle size, even if the oxyhydroxide particles are fine particles, adverse effects such as sintering do not easily occur on heating and reduction, and fine ferromagnetic metal particles can be obtained.
(3) 積層被覆する皮膜厚を任意に制御できる。 (3) The thickness of the film to be laminated can be arbitrarily controlled.
(4) 高い保磁力を有する。  (4) High coercive force.
(5) 高い飽和磁化を有する。  (5) High saturation magnetization.
(6) 酸化に対して安定性に優れている。  (6) Excellent stability against oxidation.
(7) 環境劣化又は耐候性試験に対する高飽和磁化を維 持する。  (7) Maintain high saturation magnetization for environmental degradation or weather resistance test.
(8) 磁気記録用媒体として、 オーディオ用、 ビデオ用 を問わず広い記録周波数帯域での高出力化、 低ノ イ ズ 化の要求に対して十分満足する特性を有する。 (8) Audio and video media for magnetic recording Regardless of its characteristics, it has characteristics that sufficiently satisfy the demands for higher output and lower noise in a wide recording frequency band.
以上の効果から、 本発明は、 高密度磁気記録に適し た磁気粉末と して品質改良の著しい強磁性金属粒子お よびその製造方法を提供するものである。  From the above effects, the present invention provides ferromagnetic metal particles of remarkably improved quality as a magnetic powder suitable for high-density magnetic recording, and a method for producing the same.
図面の簡単な説明  BRIEF DESCRIPTION OF THE FIGURES
第 1 図は、 硝酸第二鉄と硝酸コバル ト との混合水溶 液(Fe/Coモル比 = 2/1)を中和して生成するゲルの粉末 X線回折スぺク トルを示す図である。  Fig. 1 shows a powder X-ray diffraction spectrum of a gel produced by neutralizing a mixed aqueous solution of ferric nitrate and cobalt nitrate (Fe / Co molar ratio = 2/1). is there.
第 2同は、 ォキシ水酸化物粒子表面に積層被覆した 皮膜の表面、 例えば、 鉄を主体とするォキシ水酸化物 粒子と Co2+ と F e3+ とを共沈により積層被覆した粒 子表面の X線光電子スぺク トルのう ち、 Co2+ の結合 エネルギー状態スぺク トルを示す HIである。 The second is the surface of the coating layer coated on the surface of the oxyhydroxide particles, for example, a particle obtained by layering and coating iron-based oxyhydroxide particles with Co 2+ and Fe 3+. HI indicates the binding energy state spectrum of Co 2+ among the X-ray photoelectron spectra on the surface.
第 3冈は、 ォキ シ水酸化物粒子表面に積層被覆した 皮膜の表面、 例えば、 鉄を主体とするォキ シ水酸化物 粒子と Co2+ と Fe3+ とを共沈により積層被覆した粒 子表面の X P Sのう ち、 Fe3+ の結合エネルギー状態 スペク トルを示す!^である。 Third, the surface of the coating layered on the surface of the oxide hydroxide particles, for example, the layered coating of iron-based oxide hydroxide particles and Co 2+ and Fe 3+ by co-precipitation Shows the binding energy state spectrum of Fe 3+ out of the XPS on the particle surface.
第 4図は、 実施例 1 で得られた積層被覆した皮膜を 有する強磁性金属粒子の表面部の X P Sのう ち Co2 + の結合ェネルギー状態スぺク トルを示す同である。 第 5図は、' 実施例 1 で得られた積層被覆した皮膜を 有する強磁性金属粒子の表面部の X P Sのう ち F e3 + の結合エネルギー状態スぺク トルを示す Iである。 第 6 1ヌ Iは、 硝酸第二鉄と硝酸亜鉛との.混合水溶液 (Fe/Znモル比 = 2/1)を中和して生成する不溶物 (複合 金属水酸化物) を粉末 X線回折により測定して、 得ら れたスぺク トルを示す である。 FIG. 4 is a graph showing the coupling energy state spectrum of Co 2 + of XPS on the surface of the ferromagnetic metal particles having the layer-coated film obtained in Example 1. Figure 5 is a 'Chi XPS sac of the surface portion of the ferromagnetic metal particles having a layered coated film obtained in Example 1 F e 3 + It is I that shows the binding energy state spectrum of. No. 61 I is an X-ray powder of insolubles (composite metal hydroxide) produced by neutralizing a mixed aqueous solution (ferrous / Zn molar ratio = 2/1) of ferric nitrate and zinc nitrate. FIG. 9 shows the obtained spectrum measured by diffraction.
第 7 illは、 ォキシ水酸化物粒子表面に積層被覆した 皮膜の表面、 例えば、 鉄を主体とするォキシ水酸化物 粒子と Zn2+ と Fe3+ とを共沈により積層被覆した粒 子表面の X線光電子スぺク トルのう ち、 Zn2+ の結合 ェネルギ一状態スぺク トルを示す囟である。 The seventh ill is the surface of the film laminated and coated on the surface of the oxyhydroxide particles, for example, the particle surface obtained by laminating and coating the oxyhydroxide particles mainly composed of iron and Zn 2+ and Fe 3+. FIG. 5 shows the bonding energy state spectrum of Zn 2+ in the X-ray photoelectron spectrum of FIG.
第 8 1は、 ォキシ水酸化物粒子表面に積層被覆した 皮膜の表面、 例えば、 鉄を主体とするォキシ水酸化物 粒子と Zn2+ と Fe3+ とを共沈により積層被覆した粒 子表面の X P Sのう ち、 Zn2+ の運動エネルギー扰態 スペク ト ルを示す図である。 No. 81 is the surface of the film laminated and coated on the surface of the oxyhydroxide particles, for example, the particle surface obtained by laminating and coating the oxyhydroxide particles mainly composed of iron and Zn 2 + and Fe 3 +. FIG. 4 is a view showing a kinetic energy state spectrum of Zn 2+ in XPS of FIG.
第 9図は、 ォキシ水酸化物粒子表面に積層被覆した 皮膜の表面、 例えば、 鉄を主体とするォキシ水酸化物 粒子と Zn2+ と Fe3+ とを共沈により積層被覆した粒 子表面の X P Sのう ち、 Fe3+ の結合エネルギー状態 スペク トルを示す闵である。 Fig. 9 shows the surface of the coating layered on the surface of the oxyhydroxide particles, for example, the particle surface obtained by layering and coating the iron-based oxyhydroxide particles with Zn2 + and Fe3 +. Fig. 7 shows the binding energy state spectrum of Fe 3+ of the XPS.
第 10図は、 実施例 2で得られた積層被覆した皮膜を 有する強磁性金属粒子の表面部の X P Sのう ち Zn2 + の結合エネルギー状態スペク トルを示す図である。 第 11冈は、 実施例 2で得られた積層被覆した皮膜を 有する強磁性金属粒子の表面部の X P Sのう ち Z n 2 + の運動エネルギー状態スぺク トルを示す冈である。 第 12同は、 実施例 2で得られた積層被覆した皮膜を 有する強磁性金属粒子の表面部の X P Sのう ち F e 3 + の結合エネルギー状態スぺク トルを示す図である。 FIG. 10 is a diagram showing a binding energy state spectrum of Zn 2 + of XPS on the surface portion of the ferromagnetic metal particles having a layer-coated film obtained in Example 2. In the eleventh, the coating film laminated and obtained in Example 2 was used. FIG. 4 is a graph showing a kinetic energy state spectrum of Zn 2 + of XPS on the surface of the ferromagnetic metal particles. FIG. 12 is a diagram showing the binding energy state spectrum of Fe 3 + of XPS on the surface of the ferromagnetic metal particles having the layer-coated film obtained in Example 2.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
本発明は、 鉄を主体とするォキシ水酸化物粒子が分 散したスラ リー中でコバルト、 亜鉛、 マンガン、 アル ミ ニゥム、 ク ロム、 ニッケル、 銅から選択される少な く とも一つの金属と鉄とを同時に中和し、 中和と同時 に 1段反応でスピネル化合物として生成するゲルをた だちに該ォキシ水酸化物粒子全表面に皮膜として形成 させる工程と (前工程ともいう。 ) 、 該粒子を加熱し て還元する工程からなる強磁性金属粒子の製造方法で ある。 更に発火性を防止するためにゆるやかに酸化す るこ とで酸化の進行を防止する処理を行う (後工程と もいう。 :) 。  The present invention provides at least one metal selected from cobalt, zinc, manganese, aluminum, chromium, nickel, and copper in a slurry in which oxyhydroxide particles mainly composed of iron are dispersed. And a step of immediately forming a gel formed as a spinel compound in a one-step reaction simultaneously with the neutralization to form a film on the entire surface of the oxyhydroxide particles (also referred to as a pre-step). This is a method for producing ferromagnetic metal particles, which comprises a step of heating and reducing the particles. Furthermore, in order to prevent ignition, a treatment is performed to prevent the progress of oxidation by gently oxidizing (also referred to as a post-process).
更に詳細には、 鉄を主体としたォキシ水酸化物粒子 が分散したスラ リ 一中でコバル ト、 亜鉛、 マンガン、 ニッケル、 銅から選択される少な く とも 1つの金属の 2価イ オ ンと第 2鉄イ オ ン(Fe 3 + ) とを同時に中和し 、 スピネル化合物として生成するゲルを直接該ォキシ 水酸化物粒午全表面に皮膜として形成させる方法であ る。 また、 アルミ ニウム、 ク ロムから選択される少な く とも一つの金属の 3価イオ ンと第 1 鉄イ オンとを同 時に中和し、 ス ビネル化合物として生成するゲルを直 接該ォキシ水酸化物粒子全表面に皮膜と して形成する 方法である。 More specifically, in a slurry in which oxyhydroxide particles mainly composed of iron are dispersed, divalent ions of at least one metal selected from cobalt, zinc, manganese, nickel and copper are used. This is a method of simultaneously neutralizing ferric ion (Fe 3 + ) and forming a gel formed as a spinel compound directly on the entire surface of the oxyhydroxide particles as a film. In addition, a small number selected from aluminum and chrome A method in which at least one metal trivalent ion and ferrous ion are simultaneously neutralized, and a gel formed as a subinel compound is directly formed as a film on the entire surface of the oxyhydroxide particles. It is.
鉄を主体とするォキシ水酸化物粒子表面に皮膜を形 成する方法を更に具体的に説明する。  The method for forming a film on the surface of an oxyhydroxide particle mainly composed of iron will be described more specifically.
まず、 鉄主体とするォキシ水酸化物粒子を分散した ス ラ リ一水溶液を準備する。  First, an aqueous slurry containing iron-based oxyhydroxide particles is prepared.
ホモジナイ ザ一等の高速攪拌器により分散する方法 が可能である。 また、 分散にあたり分散剤、 例えばォ ル ト リ ン酸ソ一ダ、 ト リ ボリ リ ン酸ソーダ、 へキサメ タ リ ン酸ソーダ等のリ ン酸塩類やメ タ珪酸ソーダ、 ォ ル ト珪酸ソーダ、 水ガラ ス等の珪酸塩類等を添加する こ とは分散性を向上する うえで好ま しい。  Dispersion using a high-speed stirrer such as a homogenizer is possible. In dispersing, dispersants such as phosphinates such as sodium orthophosphate, sodium triboronate, sodium hexamethate, sodium metasilicate, sodium orthosilicate, etc. It is preferable to add silicates such as water glass in order to improve dispersibility.
鉄主体とするォキシ水酸化物粒子を分散したスラ リ 一水溶液の P Hは、 ス ピネル構造の粒子の構成成分を ^時に中和する必要性から、 アル力 リ性にするこ とが 望ま しい。 少な く とも P H 9以上の範两が良好であり 、 更に好ま し く は P H 1 0 〜 1 4 である。  It is desirable that the pH of the aqueous slurry containing the iron-based oxyhydroxide particles dispersed therein be made alkaline, since it is necessary to neutralize the constituents of the particles having a spinel structure. At least a range of PH 9 or more is good, and more preferably PH 10 to 14.
ォキ シ水酸化物粒子を酸性溶液て'分散し、 構成元素 を溶液中に溶解した後、 アル力 リ剤で中和する方法で は、 同時に中和する こ とが難しいため、 実用上あまり 好ま し く ない。  In the method of dispersing the hydroxide hydroxide particles in an acidic solution, dissolving the constituent elements in the solution, and then neutralizing with an alkaline agent, it is difficult to neutralize at the same time. I don't like it.
P H調整のアルカ リ剤と しては、 無機アルカ リ塩類 であればよいが、 工業的に安価なものと して Na OHを用 いる こ とができる。 またアルカ リ側で製造した鉄を主 体とするォキシ水酸化物粒子の P H 9以上のス ラ リ ー であればそのまま利用できる。 Inorganic alkali salts are used as pH adjustment alkaline agents However, NaOH can be used as an industrially inexpensive material. Any slurry of oxyhydroxide particles mainly composed of iron produced on the alkaline side and having a pH of 9 or more can be used as it is.
ス ピネル皮膜の形成について、 コ バル ト、 亜鉛、 マ ンガン、 ニッケル、 銅の 2価イ オ ンと第 2鉄イ オンの 場合について説明する。  The formation of the spinel film will be described for cobalt, zinc, manganese, nickel, and copper divalent and ferric ions.
勿論、 3価イ オ ンのアル ミ ニウ ム、 ク ロ ム と第 1 鉄 イ オ ンの場合についても、 以下に述べる方法と同様の 方法でフユラ イ ト化合物皮膜を形成する ことができる , 本発明に利用でき る 2価金属と第 2鉄の塩類は、 硫 酸塩、 硝酸塩、 塩化物などの無機酸塩又は、 酢酸など の有機酸塩であればよい。  Of course, in the case of aluminum, chromium and ferrous ion of trivalent ion, a fluoride compound film can be formed by the same method as described below. The salts of the divalent metal and ferric iron that can be used in the present invention may be inorganic salts such as sulfates, nitrates and chlorides, or organic salts such as acetic acid.
また、 3価金属と第 1鉄の塩類に関しても同様であ る。 硝酸鉄に関しては酸化性が強いため、 第 2鉄ィ ォ ンで利用する こ とが好ま しい。  The same applies to salts of trivalent metal and ferrous iron. Since ferric nitrate is highly oxidizable, it is preferable to use it in ferric ion.
該金属の 2価イ オ ン と第 2鉄ィ ォ ンの酸性混合水瑢 液を作成し、 P H 9以上のォキ シ水酸化物粒子のスラ リ 一中に高速攪拌しながら徐々 に添加する。 そうする と、 中和と同時にスピネル皮膜を形成する。  Prepare an acidic mixed aqueous solution of divalent ion and ferric ion of the metal, and gradually add it to a slurry of oxyhydroxide particles having a pH of 9 or more while stirring at a high speed. . Then, a spinel film is formed simultaneously with the neutralization.
このとき、 該金属の 2価イ オ ンと第 2鉄イ オ ンとは 中和する限界 P Hが異なるため、 独立した沈藏となら ないよう に、' 混合溶液の添加と同 ·時に中和するよう に 、 添加量を調整する。 更にアルカ リ剤の添加により ス ラ リーの P Hを調節する。 この P Hの調節範囲は所定 の値に厳密に調整する こ とが望ま しい。 中和を速やか に完了させるために、 スラ リ 一の混合攪拌を充分に行 う こ とが望ま しい。 At this time, the neutralization limit PH of divalent ion and ferric ion of the metal is different, so that it is not neutralized at the same time as the addition of the mixed solution so as to prevent independent precipitation. Adjust the amount to be added. In addition, the addition of alkaline Adjust the pH of the rally. It is desirable to strictly adjust the PH adjustment range to a predetermined value. In order to complete the neutralization promptly, it is desirable to sufficiently mix and stir the slurry.
スラ リー量、 添加量、 攪拌の条件は、 添加後のスラ リーを一部取り出し、 電子顕微鏡により観察して、 遊 離した中和ゲルが観察されないことなどから確定する < スラ リ ーの混合攪拌が不充分であったり、 P H範两 が酸性側となれば、 2価金属イオンと第 2鉄イ オンは 同時に中和されず、 それぞれ独立の水酸化物粒子とな り、 皮膜は形成されず、 異物と して点在する結果とな る。  The slurry amount, addition amount, and stirring conditions are determined by taking out part of the slurry after addition, observing it with an electron microscope, and confirming that no free neutralized gel is observed. <Slurry mixing and stirring If the pH is insufficient or the pH range is on the acidic side, the divalent metal ion and the ferric ion are not neutralized at the same time, become independent hydroxide particles, and no film is formed. However, the result is scattered as foreign matter.
常圧で中和する温度は、 沸点以下氷点以上であれば 良いが、 工業的には、 2 0 〜 5 0 。Cの範两が好ま しい, 本発明に使用される鉄を主体とするォキシ水酸化物 粒子は、 特に限定する ものではな く 、 それ自体公知の 方法により製造されたものであってもよい。 好ま し く は、 比表面積が 40〜150mz/g 程度の微粒子であり、 形 抆が針状のものであり、 結晶形態が a' - FeOOH , β -FeO OH: r - FeOOHいずれの形態のものがよい。 また、 ォキ シ水酸化鉄に P , S i, A 1 , T i , Cr , , Co , N i , Zn 等の元素か ら選ばれる少な く とも一種の兀素が共沈しているもの も良好に使用するこ とができる。 The neutralization temperature at normal pressure may be any temperature below the boiling point and above the freezing point, but is industrially 20 to 50. The iron-based oxyhydroxide particles used in the present invention, preferably in the range of C, are not particularly limited, and may be those produced by a method known per se. The preferred and rather, they are fine particles of about a specific surface area of 40 to 150 m z / g, is intended shape抆acicular, crystalline forms a '- FeOOH, β -FeO OH : r - FeOOH any form Things are good. In addition, at least one kind of element selected from elements such as P, Si, A1, Ti, Cr,, Co, Ni, and Zn is co-precipitated in the iron oxide hydroxide. Can also be used successfully.
本発明において、 重要な点は、 操り返し述べるが、 上記金属単独のみでは本発明の効果が認められず、 必 ず、 鉄と金属 eを 「同時に中和し 1 段反応でスピネル 構造 持つフユ ラ イ ト化合物として、 ただちに皮膜を 形成させる」 こ とにある。 このこ とにより超微細な単 位からなる不完全結晶のスピネル構造を持つフ ライ ト皮膜を鉄を主体とするォキシ水酸化物粒子表面に形 成する こ とにある。 In the present invention, the important point is to repeat. The effect of the present invention is not recognized by using only the above-described metal alone, and it is inevitable that iron and metal e are simultaneously neutralized and immediately form a film as a fluorite compound having a spinel structure in a single-step reaction. is there. As a result, a frit film having a spinel structure of imperfect crystals composed of ultrafine units is formed on the surface of the iron-based oxyhydroxide particles.
更に加熱して還元して強磁性金属粒子とした後、 ゆ るやかに酸化する と、 強磁性金属粒子全表面にスビネ ル構造を持つフユ ライ ト皮膜が形成され、 磁気記録用 強磁性粒子と して驚く,べき効果を発揮するものが得ら れる。  After heating to reduce to ferromagnetic metal particles and then slowly oxidizing, a ferromagnetic film having a subinel structure is formed on the entire surface of the ferromagnetic metal particles. As a result, something surprisingly effective is obtained.
ここで、 積層被覆する鉄 Feと金属! 1eとの原子比は、 0.1/1.0 〜10.0/1.0の範两で効果が発揮できる。 更 に好ま し く は、 第 2鉄イ オ ンと 2価金属イ オ ンの場合 は、 0.5/1.0 〜5.0/1.0 であり、 第 1 鉄イ オ ンと 3価 金属の場合は、 0.2/1.0 〜2.0/1.0 が好ま しい。 更に 、 スピネルフ ラ イ 卜の組成比を内包する範两も含ま れる。 かかる範两で 時に中和する こ とで皮膜を形成 し、 より顕著な効果を示すのが本発明の特徴である。 本発明において、 何れの前工程でも、 Si, ΑΙ,Β,Ρ等 を添加する と、 焼結防止 · 形態保持の効果が更に向上 する。 こ こで使用する S'i,Al,P,B は、 水溶性塩類、 水 酸化物コ 口ィ ド、 金属アルコキシ ド及びキ レー ト化合 物である。 Here, iron Fe and metal to be laminated! The effect can be exhibited when the atomic ratio to 1e is in the range of 0.1 / 1.0 to 10.0 / 1.0. More preferably, the ratio is 0.5 / 1.0 to 5.0 / 1.0 for ferric ion and divalent metal ion, and 0.2 / 1.0 for ferrous ion and trivalent metal. 1.0 to 2.0 / 1.0 is preferred. Furthermore, a range including the composition ratio of spinel frite is also included. It is a feature of the present invention that a film is formed by sometimes neutralizing in this range, and a more remarkable effect is exhibited. In the present invention, the effect of preventing sintering and maintaining the form is further improved by adding Si, ΑΙ, Β, Ρ, etc. in any of the preceding steps. S'i, Al, P, B used here are water-soluble salts, hydroxides, metal alkoxides and chelate compounds. Things.
Si源と しては、 コ ロイ ダルシリ カ、 メ タ珪酸ソーダ 、 オル ト珪酸ソ一ダ、 水ガラス、 メ トキシシラ ン等で ある。 A1源としては、 硫酸塩、 硝酸塩、 塩化物、 これ らの部分加水分解物、 コ ロイ ダルアルミナ、 アルミ ン 酸ソ一ダ等のアルミ ン酸塩類、 アルミ ニウムイ ソプロ ポキシ ド等のアルコキシ ド類、 アルミニウム ト リ スァ セチルァセ トナー ト等のキレー ト化合物及びその複合 塩類等である。 B 源としては、 硼酸、 硼酸ソーダ等の 硼酸塩類、 テ ト ラメ トキシボラ ン等のアルコキシ ド類 及びキ レー ト化合物等である。 P 源としては、 リ ン酸 、 へキサメ タ リ ン酸ソ一ダ、 ト リ ボリ リ ン酸ソ一ダ等 のリ ン酸塩類である。  Examples of the Si source include colloidal silica, sodium metasilicate, sodium orthosilicate, water glass, and methoxysilane. A1 sources include sulfates, nitrates, chlorides, partial hydrolysates of these, colloidal alumina, aluminates such as sodium aluminate, alkoxides such as aluminum isopropoxide, and aluminum. Chelate compounds such as tris-cetyl acetate and their complex salts. Examples of the B source include borates such as boric acid and sodium borate, alkoxides such as tetramethoxy borane, and chelate compounds. Examples of the P source include phosphinates such as phosphoric acid, sodium hexametharate, and sodium triboronate.
積層被覆する Fe/Me の量と してはォキシ水酸化物粒 子の金属成分の量 (主と して Fe) に対して特に制限は ないが、 Fe/Meの範囲は 0.3 〜200%まで可能である。 好ま しい Fe/Me の範两と して 100 ~ 3 %程度である。 200 を越えても、 積層被覆しないわけではないが、 粒 子が肥大化したり、 操作上や経済上から、 一応の目安 としている。 また、 0.3%以下では、 本発明の目的の効 果が乏し く なる。  The amount of Fe / Me to be laminated is not particularly limited with respect to the amount of metal component (mainly Fe) of the oxyhydroxide particles, but the range of Fe / Me is from 0.3 to 200%. It is possible. A preferable range of Fe / Me is about 100 to 3%. Even if it exceeds 200, it does not mean that the coating is not laminated, but it is a tentative guide from the viewpoint of particle enlargement, operation and economy. If the content is 0.3% or less, the effect of the object of the present invention will be poor.
本発明において、 加熱して還元する後工程について は、 特願昭 55— 157214および特願昭 54— 62915 などの 方法によつても実施できる。 例えば、 水素もし く は水 素を主体とする還元性ガス雰囲気下で 300 て〜 600 ΐ の温度範囲で還元する こ とにより達成される。 予備的 に 300 'C〜800 ての温度範囲で脱水 · 焼成を行っても よい。 In the present invention, the post-step of reducing by heating can be carried out by a method such as Japanese Patent Application No. 55-157214 and Japanese Patent Application No. 54-62915. For example, hydrogen or water This is achieved by reducing at a temperature in the range of 300 to 600ΐ in a reducing gas atmosphere mainly composed of nitrogen. Preliminarily, dehydration and firing may be performed at a temperature in the range of 300 ° C to 800 ° C.
還元水素ガスの流量は速やかに還元反応が進行する 充分な量でよ く 、 強磁性金属粒子 K g当たり、 3 N m 3 / H r 〜40Nm 3 /H r程度でよい。 The flow rate of the reducing hydrogen gas rather good in an amount sufficient to proceed promptly reduction reaction, ferromagnetic metal per particle K g, may be 3 N m 3 / H r ~40Nm 3 / H r about.
発火性を防止するための酸化処理については、 常法 に従って行ってもよい。 また、 トルエン等の有機溶媒 に浸漬し、 乾燥する方法或いは、 空気を希釈して緩や かな酸化を行う方法を適用する こともできる。  The oxidation treatment for preventing the ignition may be carried out according to a conventional method. Further, a method of dipping in an organic solvent such as toluene and drying, or a method of diluting air to perform gentle oxidation can also be applied.
本発明により得られる強磁性金属粒子は、 磁気テー プに代表される高密度磁気記録媒体に作成する こ とが できる。 高密度磁気記録媒体に製造する方法と しては 、 例えば、 塩化ビニル樹脂、 ウ レタ ン樹脂、 エポキシ 樹脂等の結合樹脂成分と溶剤成分と混合し、 分散剤及 び分散機器を用いて高度に分散し磁気塗料と し、 各種 塗工機を用いて、 ベースフ ィ ルム上に塗布し、 磁場配 向、 乾燥の後、 カ レンダ一による表面仕上げを行う な どの方法である。  The ferromagnetic metal particles obtained by the present invention can be produced on a high-density magnetic recording medium represented by a magnetic tape. As a method for producing a high-density magnetic recording medium, for example, a binder resin component such as a vinyl chloride resin, a urethane resin, or an epoxy resin is mixed with a solvent component, and the mixture is highly prepared using a dispersant and a dispersing device. This method involves dispersing and forming a magnetic paint, applying it to a base film using various types of coaters, arranging the magnetic field, drying, and then finishing the surface using a calendar.
〔実施例〕  〔Example〕
以下に具体的に実施例を記載するが、 これらのもの のみが本発明とする ものではない。  Examples will be specifically described below, but these are not the only examples.
実施例 1 長軸平均長さ 0.2 μ、 軸比 12 であるォキシ水酸化 鉄粒子 ( or -FeOOH ) を用意した。 ジャケ ッ ト付きの 5 0 £容器に該ォキシ水酸化鉄を l.OKg と純水 30£を いれ、 ホモジナイザーで 2 0分間攪拌し分散した。 その後水酸化ナ ト リ ウム溶液を加え PHを 13.6 とし 、 更に 3 0分間攪拌し分散を行った。 Example 1 Iron oxyhydroxide particles (or -FeOOH) having a long axis average length of 0.2 µ and an axial ratio of 12 were prepared. In a 50-pound container with a jacket, l.OKg of the iron oxyhydroxide and 30 lb of pure water were added, and the mixture was dispersed by stirring with a homogenizer for 20 minutes. Thereafter, a sodium hydroxide solution was added to adjust the pH to 13.6, and the mixture was further stirred for 30 minutes to perform dispersion.
次に硝酸第二鉄(Fe(N03)3 · 9H20) 723 gr. と硝酸 コバルト(Co(N03) 2 · 6H20) 266 gr. を計量し、 合わ せて純水 3 £に溶解し、 Fe3+と Coz +の混合溶液(Fe/Co モル比 = 2/1)を作成した。 該混合溶液をォキシ水酸化 鉄粒子を分散したスラ リ一溶液に攪拌混合をしながら 3 £/Hr の添加速度で添加し、 更に、 50てで 60分間、 攪拌を続けた。 添加後のスラ リ ー溶液の PHは 12.2であ つた。 Next, 723 gr. Of ferric nitrate (Fe (N0 3 ) 3 · 9H 20 ) and 266 gr. Of cobalt nitrate (Co (N 0 3 ) 2 · 6H 2 0) were weighed and combined to obtain 3 £ of pure water. And a mixed solution of Fe 3+ and Co z + (Fe / Co molar ratio = 2/1) was prepared. The mixed solution was added to the slurry solution in which the iron oxide hydroxide particles were dispersed at a rate of 3 £ / Hr while stirring and mixing, and the stirring was further continued at 50 ° for 60 minutes. The pH of the slurry solution after the addition was 12.2.
該スラ リ ーを濾過し、 洗浄し、 乾燥して得られた粒 子を T E M (透過型電子顕微鏡) により観察を行った 。 観察の結果、 ォキシ水酸化鉄粒子表面全体に皮膜状 に形成した微細構造物が観察された。  The slurry was filtered, washed, and dried, and the obtained particles were observed with a TEM (transmission electron microscope). As a result of the observation, a fine structure formed in a film form on the entire surface of the iron oxide hydroxide particles was observed.
更に該粒子を粉末 X線回折により構造解折を行つた 所、 or-FeOOHの構造とは別に結晶化度の低いスピネル 構造を有するものの存在が確認された。  Further, when the particles were subjected to structural analysis by powder X-ray diffraction, it was confirmed that the particles had a spinel structure having a low crystallinity separately from the structure of or-FeOOH.
この結晶化度の低いスピネル構造を有するものを明 確に同定するために、 別に、 硝酸第二鉄と硝酸コバル トを純水に溶解し、 Fe3+と Co2 +の混合溶液(Fe/Coモル 比 = 2/1)を作成し、 これを中和して生成するゲルを作 成する。 この物を乾燥して粉末 X線回折により第 1 図 に示すスぺク トルを得て、 これを構造解析した。 その 結果、 結晶性の低いスピネル構造を有する構造を示す ものである こ とが判る。 すなわち、 このようなモデル 的に作成したゲルと、 鉄とコバル トを同時に中和して ォキ シ水酸化物粒子に積層被覆した皮膜の構造は、 同 じ構造を持つことが確認できた。 In order to clearly identify those having a spinel structure with low crystallinity, ferric nitrate and cobalt nitrate were separately dissolved in pure water, and a mixed solution of Fe 3+ and Co 2+ (Fe / Co mole Ratio = 2/1) and neutralize it to produce a gel. This product was dried to obtain a spectrum shown in FIG. 1 by powder X-ray diffraction, and the structure was analyzed. As a result, it can be seen that the structure shows a structure having a spinel structure with low crystallinity. In other words, it was confirmed that the structure of the gel prepared as such a model and the film that was neutralized at the same time as iron and cobalt and laminated and coated on the oxide hydroxide particles had the same structure.
また、 該粒子を X P Sにより粒子表面の元素の状態 分折を行ったところ、 第 2図および第 3冈に示す通り Fe3 +と Co2 +が確認され、 皮膜は複合酸化物または水酸 化物であるこ とが確認された。 In addition, when the particles were subjected to XPS analysis of the state of the elements on the particle surface, Fe 3 + and Co 2 + were confirmed as shown in FIGS. 2 and 3 and the film was composed of a composite oxide or hydroxide. Was confirmed.
この粒子を、 500 で焼成し、 その後水素気流中で 400 ΐの温度で還元を行つた。  The particles were calcined at 500 and then reduced in a stream of hydrogen at a temperature of 400 ° C.
次いで、 還元粒子を ト ルエ ンに浸漬後、 常温で乾燥 し、 空気中に取り 出した。  Next, the reduced particles were immersed in toluene, dried at room temperature, and taken out into the air.
磁気特性の測定の結果、 He = 1515 Oe , ク s = 150 emu/g , R = 0.52 である。  As a result of the measurement of the magnetic properties, He = 1515 Oe, s = 150 emu / g, and R = 0.52.
また、 透過型電子顕微鏡により、 粒子観察を行った 結果、 長軸平均長さが 0.18 /ゾ m の皮膜を有する微粒子 であった。  The particles were observed with a transmission electron microscope, and as a result, the particles were found to be fine particles having a coating having a long axis average length of 0.18 / zom.
60て、 90%RH ( 相対湿度) 下での酎蝕性試験を行つ たと ころ、 一週間後の s = 138 emu/g であり、 僅か 8% の低下率であり、 このこ とは、 優れた耐蝕性を有 していると評価される。 In a test conducted at 60 and 90% RH (relative humidity), s = 138 emu / g after one week, a decrease of only 8%, indicating that Has excellent corrosion resistance Is evaluated.
優れた特性を有しているこの強磁性金属粒子は、 高 密度磁気記録材料に利用できる。  These ferromagnetic metal particles having excellent properties can be used for high-density magnetic recording materials.
該金属粒子の粉末 X線回折スぺク トルを解折した結 果、 α-Fe 00H とは別に結晶化度の低いスピネル構造 を持つ酸化物のスぺク トルの存在が観察された。 また X P Sによる表面元素の状態分折を行った結果、 第 4 同および第 5図に示すとおり、 Co2+と Fe3 +が観察され 、 皮膜構造に鉄とコバル ト との複合酸化物があること が確認された。 As a result of analyzing the powder X-ray diffraction spectrum of the metal particles, it was observed that, apart from α-Fe 00H, the presence of an oxide spectrum having a low crystallinity and a spinel structure was observed. The result of the state amount folding surface element by XPS, as shown in the fourth same and FIG. 5, Co 2+ and Fe 3 + is observed, there is a composite oxide of iron and cobalt in the coating structure This was confirmed.
該金属粒子を分析電子顕微鏡(Analytical Electron Microscopy)により観察し、 針状粒子の表面部と粒子 内部に存在する金属元素の量を相対的に比較した結果 、 表面部にコバル ト元素が多く存在していることが判 明した。  The metal particles were observed with an analytical electron microscope (Analytical Electron Microscopy). As a result of a relative comparison of the amount of the metal element present in the surface of the acicular particles with the amount of the metal element present inside the particles, it was found that a large amount of the cobalt element was present on the surface. It turned out that it was.
実施例 2 Example 2
実施例 1 と同じスラ リ ーを用意する。  Prepare the same slurry as in Example 1.
次に硝酸第二鉄(Fe(N03)3 · 9H20) 723 gr. と硝酸 亜鉛(Zn(N03)2 ♦ 6H20) 272 gr. を計量し、 合わせて 純水 3 に溶解し、 Fe3 +と Zn2 +の混合溶液(Fe/Znモル 比- 2/1)を作成した。 該混合溶液をォキシ水酸化鉄粒 子を分散したスラ リ一溶液に攪拌混合をしながら 3 £ /Hr の添加'速度で添加し、 更に、 50'Cで 60分間、 攪拌 を続けた。 添加後のスラ リー溶液の pHは 12.2であった, 該スラ リーを濾過し、 洗浄し、 乾燥して得られた粒 子を T E Mにより観察を行った。 観察の結果、 ォキシ 水酸化鉄表面部に皮膜状に形成した微細構造物が観察 された。 Next, 723 gr. Of ferric nitrate (Fe (N0 3 ) 3 · 9H 20 ) and 272 gr. Of zinc nitrate (Zn (N0 3 ) 2 ♦ 6H 2 0) were weighed and dissolved in pure water 3 together. Then, a mixed solution of Fe 3 + and Zn 2 + (Fe / Zn molar ratio −2/1) was prepared. The mixed solution was added to the slurry solution in which the iron oxide hydroxide particles were dispersed while stirring and mixing at a rate of 3 £ / Hr, and the stirring was further continued at 50 ° C for 60 minutes. The pH of the slurry solution after the addition was 12.2, The slurry was filtered, washed, and dried. Obtained particles were observed by TEM. As a result of the observation, a fine structure formed in a film form on the surface of the oxyiron hydroxide was observed.
更に該粒子を粉未 X線 Isj折により構造解析を行った 所、 a -FeOOHの構造とは別に結晶化度の低いスピネル 構造を有する ものの存在が確認された。  Further, when the particles were subjected to a structural analysis by powder X-ray Isj folding, it was confirmed that the particles had a spinel structure having a low crystallinity separately from the structure of a-FeOOH.
この結晶化度の低いスピネル構造を有する ものを明 確に同定するために、 別に、 硝酸第二鉄と硝酸亜鉛を 純水に溶解し、 Fe3 +と Zn2 +の混合溶液(Fe/Znモル比 = 2/1)を作成し、 これを中和して生成するゲルを作成す る。 この物を乾燥して粉末 X線回折により第 6同に示 すスペク トルを得て、 これを構造解析した。 その結果 、 結晶性の低いスピネル構造を有する構造を示すもの である こ とが判る。 すなわち、 このようなモデル的に 作成したゲルと、 鉄と亜鉛を同時に中和してォキ シ水 酸化物粒子に積層被覆した皮膜の構造は、 じ構造を 持つこ とが確認できた。 To identify those having a low spinel structure of this crystallinity in clearly separately, dissolving a ferric nitrate and zinc nitrate in deionized water, Fe 3 + and Zn 2 + in the mixed solution (Fe / Zn Make a molar ratio = 2/1) and neutralize this to make a gel. The product was dried to obtain the spectrum shown in No. 6 by powder X-ray diffraction, and the structure was analyzed. As a result, it can be seen that the structure shows a structure having a spinel structure with low crystallinity. In other words, it was confirmed that the structure of the gel prepared in such a model and the film formed by layering and coating the hydroxide hydroxide particles by simultaneously neutralizing iron and zinc had the same structure.
また、 該粒子を X P Sにより粉末表面の元素の状態 分析を行ったところ、 第 7図、 第 8図および第 9図に 示す通り Zn2 +と Fe3 +が確認され、 皮膜は複合酸化物ま たは水酸化物である こ とが確認された。 The particles were analyzed by XPS for the state of the elements on the powder surface. As shown in FIGS. 7, 8, and 9, Zn 2 + and Fe 3 + were confirmed. Or hydroxide.
上記粒子も、 500 'Cで焼成し、 水素気流 Φで 400 て の温度で還元を行つた。 次いで、 還元粒子を トルエ ンに浸漬後、 常温で乾燥 し空気中に取り出した。 The above particles were also calcined at 500 ° C and reduced at a temperature of 400 with a hydrogen stream Φ. Next, the reduced particles were immersed in toluene, dried at room temperature, and taken out into the air.
磁気特性の測定の結果、 He = 1530 0e t a s = 145 eniu/g , R = 0.52 であった。 Results of measurement of magnetic properties, He = 1530 0e t as = 145 eniu / g, was R = 0.52.
また、 透過型電子顕微鏡により、 粒子観察を行った 結果、 軸平均長さが 0.18 // «1 の皮膜を有する微粒子 こ * つァこ。  In addition, as a result of observing the particles with a transmission electron microscope, it was found that the fine particles having a coating with an axial average length of 0.18 // «1.
60て、 90 RH ( 相対湿度) 下での耐蝕性試験を行つ たところ、 一週間後の σ s = 133 emu/g であり、 僅か 8% の低下率であり、 このことは、 優れた耐蝕性を有 していると評価される。  In a corrosion test at 60 and 90 RH (relative humidity), σ s = 133 emu / g after one week, a decrease of only 8%. It is evaluated as having corrosion resistance.
優れた特性を有しているこの強磁性金属粒子は、 高 密度磁気記録材料に利用できる。  These ferromagnetic metal particles having excellent properties can be used for high-density magnetic recording materials.
該金属粒子粉末を粉末 X線同折により観察した結果 、 a -Fe 00H とは別に結晶化度の低いス ビネル構造を 持つ酸化物が観察された。  As a result of observing the metal particle powder by powder X-ray diffraction, an oxide having a sbynel structure with low crystallinity was observed separately from a-Fe00H.
また X P Sによる表面元素の状態分折を行った結果 、 第 1 0図、 第 1 .1 Iおよび第 1 2図に示すとおり、 Zn と Fe3 +が観察され、 皮膜構造に鉄と亜鉛との複合 酸化物があることが確認された。 The result of the state amount folding surface element by XPS, the first 0 diagram, as shown in the first .1 I and the first 2 FIG, Zn and Fe 3 + is observed, of iron and zinc coating structure It was confirmed that there was a composite oxide.
該金厲粒子を分析電子顕微鏡により観察し、 針状粒 子の表面部と粒子内部に存在する金属元素の量を相対 的に比較した結果、 表面部に亜鉛元素が多く存在して いることが判明した。 比較例 1 The gold particles were observed with an analytical electron microscope, and the surface portion of the acicular particles was compared with the amount of metal element present inside the particles. As a result, it was found that a large amount of zinc element was present on the surface portion. found. Comparative Example 1
(硝酸第二鉄を用いない以外は実施例 1 と^じ場合) 実施例 1 のォキシ水酸化鉄を使用した。 実施例 1 と同 様に、 水酸化ナ ト リ ゥムを添加し攬拌分散した後、 硝 酸コバルトのみを 266 gr. 溶解した溶液を添加し中和 し、 攪拌混合した。 実施例 1 と l5j様の方法により、 濾 過♦ 洗浄 · 乾燥後、 得られた粒子の T E M観察を行な い皮膜を調べた。  (The same as in Example 1 except that ferric nitrate was not used) The iron oxyhydroxide of Example 1 was used. As in Example 1, sodium hydroxide was added, and the mixture was dispersed by stirring. Then, a solution in which only 266 gr. Of cobalt nitrate was dissolved was added and neutralized, followed by stirring and mixing. After filtration, washing and drying according to Example 1 and a method similar to l5j, the resulting particles were subjected to TEM observation to examine the film.
観察の結果、 ォキシ水酸化鉄の針状粒子とは別に六 角板状の粒子が多数観察され、 またォキシ水酸化鉄表 面部に皮膜は確認されなかった。  As a result of observation, a number of hexagonal plate-like particles were observed in addition to the needle-like particles of iron oxide hydroxide, and no film was observed on the surface of the iron oxide hydroxide.
粉末 X線面折及び電子線回折により六角板状の粒子 を測定した結果、 ^ -Co(0H)2であると isj定した。 この 中和反応により生じたものは、 水酸化コバルトの独立 した粒子であつた。 As a result of measuring hexagonal plate-like particles by powder X-ray diffraction and electron diffraction, it was determined to be ^ -Co (0H) 2 . What resulted from this neutralization reaction were independent particles of cobalt hydroxide.
実施例 1 と同様に、 加熱し還元を行い、 強磁性金属 粒子とし更に実施例 1 と同様の処理を行い、 T E M、 磁気特性、 耐侯性を調べた結果、 針状粒子以外に粒状 の粒子が観察され、 He = 980 Oe , び s = 135 emu/g , R = 0.45 であった。  As in Example 1, heating and reduction were performed to obtain ferromagnetic metal particles.Furthermore, the same treatment as in Example 1 was performed, and the TEM, magnetic properties, and weather resistance were examined. Observed: He = 980 Oe, s = 135 emu / g, R = 0.45.
また劣化後の s = 9 6 emu/g であり、 高密度磁気 記録用材料として、 不適性であった。  The s after degradation was s = 96 emu / g, making it unsuitable as a material for high-density magnetic recording.
粒状の粒子を分析電子顕微鏡により金属元素を同定 した結果、 ほとんどがコバル トである粒子であること が判明した。 Most of the particles were cobalt, as a result of identifying the metal elements of the granular particles by analytical electron microscopy. There was found.
上記の結果からコ バル トのみをォキシ水酸化物粒子 と中和して得られたものは、 沈澱と しても鉄とコバル ト とのス ピネル構造を持たず、 またス ピネル構造を持 つ積層被覆した皮膜もない強磁性金属粒子であるこ と が判明した。 比較例 2  From the above results, those obtained by neutralizing cobalt only with oxyhydroxide particles did not have the spinel structure of iron and cobalt even when precipitated, and had the spinel structure. It turned out that the ferromagnetic metal particles did not have the film coated by lamination. Comparative Example 2
(第 1 鉄イ オンとコバル ト 2価ィォ ンとを中和共沈さ せる以外は実施例 1 と同じとした場合)  (Same as in Example 1 except that the ferrous ion and cobalt divalent ion are co-precipitated)
実施例 1 のォキシ水酸化鉄を使用した。 実施例 1 と 同様に、 水酸化ナ ト リ ゥムを添加し攪拌分散した後、 硫酸第 1鉄(FeS04 · 7H20 ) 508 gr.と硫酸コバル ト (CoS04 - 7Ηε0) 257 gr. とを溶解した溶液(Fe/Coモル 比 =2 ) を添加し攪拌混合した。 添加後のス ラ リ ー 溶液の pHは 12.7であった。 The oxyiron hydroxide of Example 1 was used. As in Example 1, it was stirred and dispersed hydroxide was added Na Application Benefits © beam, ferrous (FeS0 4 · 7H 2 0) sulphate 508 gr sulfate cobalt. (CoS0 4 - 7Ηε0) 257 gr. Was dissolved (Fe / Co molar ratio = 2) and mixed with stirring. The pH of the slurry solution after the addition was 12.7.
その後空気を 1 £ /min 導入し酸化を続け 3時間混合 を続けた。 酸化の温度は 5 0 'Cで行った。 Thereafter, air was introduced at a rate of 1 £ / min, oxidation was continued, and mixing was continued for 3 hours. The oxidation was performed at 50'C.
該スラ リ一を濾過 * 洗浄 · 乾燥した後、 得られた粒 子を T E Mにより観察を行った。 観察の結喿、 視野中 にォキ シ水酸化鉄粒子の長さ と 1ョ jじ く らい (0.2 // m ) の立方体の粒子が点在しているこ とが観察された。  After filtering, washing and drying the slurry, the obtained particles were observed by TEM. As a result of the observation, it was observed that cubic particles having a length of 1 × 10 (0.2 // m) were dispersed in the visual field.
この立方体の粒子を電子線 1ロ!折及び分折電子顕微鏡 により測定し、 解析した結果、 コ バル トフ ラ イ 卜で あると 1司定した。 これらの結果から、 F e z + と C o 2 + との系では、 スピ ネル型フユライ ト粒子として独立に混在し、 ォキシ水 酸化鉄粒子表面に皮膜として形成されていないことが 判つた。 As a result of measuring and analyzing the particles of the cube with an electron beam 1-fold and a diffraction electron microscope, it was determined that the particles were a cobalt float. HanTsuta These results in F e z + and C o 2 + and systems, mixed independently as spinel type Fuyurai DOO particles, that are not formed as a film on Okishi water iron oxide particle surface.
実施例 1 と同様の方法により、 加熱し還元を行い、 強磁性金属粒子とし、 更に実施例 1 と同様の処理を行 い得られた粒子の T E M、 磁気特性、 耐候性を調べた 結果、 針状粒子以外に粒状粒子が観察されると共に、 Hc= 950 0e , び s = 140 erau/g , R = 0. 43であった。  The particles were heated and reduced in the same manner as in Example 1 to obtain ferromagnetic metal particles, and the particles were processed in the same manner as in Example 1 to examine the TEM, magnetic properties, and weather resistance. Hc = 9500e, s = 140 erau / g, R = 0.43, as well as granular particles other than the granular particles.
また、 劣化後のび s = 95 em u/g であり、 高密度磁 気記録用金属粒子として、 不適性であった。 粒状粒子 の分折電子顕微鏡により金属元素分析を行った結果、 Coの量が多量に検出されており、 スピネルフヱラ イ ト 粒子がそのまま還元されていることが判明した。  In addition, the elongation after deterioration was s = 95 emu / g, which was unsuitable as a metal particle for high density magnetic recording. As a result of metal elemental analysis of the granular particles by a diffraction electron microscope, a large amount of Co was detected, and it was found that the spinel graphite particles were reduced as they were.
また、 針状粒子には、 Coの量がほとんど検出されな かった。  In addition, the amount of Co was hardly detected in the acicular particles.
比較例 3 Comparative Example 3
(実施例 1 において、 亜鉛のみを用いた場合) 実施例 1 のォキシ水酸化鉄を使用した。 実施例 1 と 同様に、 水酸化ナ ト リ ウムを添加し攪拌分散した後、 硝酸亜鉛のみを 272 gr . 溶解した溶液を添加し攪拌混 合した。 濾過 * 洗浄 · 乾燥後、 実施例 1 と^様の方法 により、 T E M観察を行ない皮膜を調べた。  (In the case of using only zinc in Example 1) The iron oxyhydroxide of Example 1 was used. In the same manner as in Example 1, sodium hydroxide was added, and the mixture was stirred and dispersed. Then, a solution in which only 272 gr. Of zinc nitrate was dissolved was added, and the mixture was stirred and mixed. After filtration * washing / drying, TEM observation was performed to examine the film by the same method as in Example 1 and ^.
観察の結果、 ォキシ水酸化鉄の針状粒子とは別に板 状の粒子が多数観察され、 またォキシ水酸化鉄表面部 に皮膜は確認されなかった。 As a result of the observation, a plate separate from the needle-like particles of iron oxide hydroxide A number of particles were observed, and no film was observed on the surface of the iron oxyhydroxide.
板状の粒子を分折電子顕微鏡により測定した結果、 Znが検出された。 中和反応により生じたものは、 水酸 化亜鉛の独立した粒子であり、 ォキシ水酸化鉄の針状 粒子に被覆されていないこ とが確認された。  As a result of measuring the plate-like particles with a diffraction electron microscope, Zn was detected. The particles generated by the neutralization reaction were independent particles of zinc hydroxide, and it was confirmed that the particles were not coated with the acicular particles of iron oxyhydroxide.
実施例 1 と同様に加熱し還元を行い、 強磁性金属粒 子とし、 更に実施例 1 と同様の処理を行い得られた粒 子の T E M、 磁気特性、 耐侯性を調べた。  The ferromagnetic metal particles were heated and reduced in the same manner as in Example 1 to obtain ferromagnetic metal particles. The particles obtained by performing the same treatment as in Example 1 were examined for TEM, magnetic properties, and weather resistance.
その結果、 針伏粒子以外に粒状粒子が観察され、 He = 1050 0e , ΰ s = 130 emu/g , R = 0.48 であった, また耐蝕性試験後の ff s = 95 emu/g であり、 高密 度磁気記録用材料と して、 不適性であった。  As a result, granular particles other than needle-like particles were observed, He = 10500e, ΰs = 130 emu / g, R = 0.48, and ffs = 95 emu / g after the corrosion resistance test. It was unsuitable as a material for high-density magnetic recording.
粒状粒子の分析電子顕微鏡により金属元素を解折し た結果、 ほとんどが亜鉛である粒子である と同定され た。  As a result of analyzing the metallic element by analytical electron microscopy of the granular particles, it was identified that the particles were mostly zinc.
上記の結果から亜鉛のみをォキシ水酸化物粒子と中 和して得られたものは、 沈殺としても鉄と亜鉛とのス ピネル構造を持たず、 また、 スピネル構造を持つ積層 被覆した皮膜もない強磁性金属粒子である こ とが判明 した。  From the above results, those obtained by neutralizing zinc alone with oxyhydroxide particles did not have the spinel structure of iron and zinc even when precipitated, and the coating film with a spinel structure had a multilayer coating. No ferromagnetic metal particles were found.
比較例 4 Comparative Example 4
(実施例 1 においてニッケルのみを用いた場合) 実施例 1 のォキ シ水酸化鉄を使用した。 実施例 1 と 同様に、 水酸化ナ ト リ ゥムを添加し攪拌分散した後、 硝酸ニ ッケルのみを 260 gr. 溶解した溶液を添加し攪 拌混合した。 濾過 · 洗浄 * 乾燥後、 実施例 1 と同様の 方法により、 T E M観察を行ない皮膜を調べた。 (In the case where only nickel was used in Example 1) The iron oxide hydroxide of Example 1 was used. Example 1 and Similarly, sodium hydroxide was added, and the mixture was stirred and dispersed. Then, a solution in which only nickel nitrate was dissolved in 260 gr. Was added and mixed with stirring. Filtration / washing * After drying, the coating was examined by TEM observation in the same manner as in Example 1.
観察の結果、 ォキシ水酸化鉄の針状粒子とは別に微 細な粒子が多数観察され、 またォキシ水酸化鉄表面部 に皮膜は確認されなかった。  As a result of observation, many fine particles were observed in addition to the needle-like particles of iron oxyhydroxide, and no film was observed on the surface of the iron oxyhydroxide.
粉末 X線 HI折及び電子線冋折により該微細粒子を l5j 定した結果、 Ni (0H) 2 であり、 中和反応により生じた ものは、 水酸化ニッケルの独立した粒子であった。 実施例 1 と同様に、 加熱し還元を行い、 強磁性金属 粒子とし、 更に実施例 1 と 1ョ、1様の処理を行い得られた 粒子の T E M、 磁気特性、 耐侯性を調べた。 その結果 、 針状粒子以外に粒状粒子が観察され、 He = 830 Oe , σ s = 125 emu/g : R = 0.44 であった。 The fine particles were analyzed by powder X-ray HI and electron beam diffraction, and as a result, Ni (0H) 2 was obtained. The particles produced by the neutralization reaction were independent nickel hydroxide particles. In the same manner as in Example 1, heating and reduction were performed to obtain ferromagnetic metal particles, and the particles obtained by performing the same treatment as in Examples 1 and 1 and 1 were examined for TEM, magnetic properties, and weather resistance. As a result, granular particles were observed in addition to the acicular particles, with He = 830 Oe, σs = 125 emu / g : R = 0.44.
また耐蝕性試験後の び s = 89emu/g であり、 高密度 磁気記録用材料と して、 不適性であった。  The value of s = 89 emu / g after the corrosion resistance test was unsuitable as a high-density magnetic recording material.
粒状粒子の分折電子顕微鏡により金属元素を解折し た結果、 ニッケルだけからなっている と同定された。 上記の結果からニッケルのみをォキシ水酸化物粒子 と中和して得られたものは、 沈殺と しても鉄とニッケ ルとのス ピネル構造を持たず、 また、 スピネル構造を 待つ積層被覆した皮膜もない強磁性金属粒子であるこ とが判明した。 比較例 5 As a result of breaking down the metal element by a diffraction electron microscope of the granular particles, it was identified that the particles consisted of nickel only. From the above results, the one obtained by neutralizing only nickel with oxyhydroxide particles does not have the spinel structure of iron and nickel even when sedimented, and has a multilayer coating waiting for the spinel structure It was found that the ferromagnetic metal particles had no coated film. Comparative Example 5
(実施例 1 において、 第 1鉄と亜鉛ともに 2価イ オ ン を用いた場合)  (In the case of Example 1, when divalent ion is used for both ferrous iron and zinc)
実施例 1 のォキシ水酸化鉄を使用した。 実施例 1 と 同様に、 水酸化ナ ト リ ゥムを添加し攪拌分散した後、 硫酸第 1鉄(FeS04 ♦ 7H20) 508 gr. と硫酸亜鉛(ZnS04 - 7HZ0) 263 gr. とを溶解した混合溶液(Fe/Coモル比 = 2/1) を添加し攪拌し中和した。 添加後のス ラ リ ー溶 液の pHは 12.7であつた。 The oxyiron hydroxide of Example 1 was used. As in Example 1, it was stirred and dispersed hydroxide was added Na Application Benefits © beam, ferrous (FeS0 4 ♦ 7H 2 0) sulphate 508 gr and zinc sulfate. (ZnS0 4 - 7H Z 0 ) 263 gr And a mixed solution (Fe / Co molar ratio = 2/1) in which was dissolved was added, and the mixture was stirred and neutralized. The pH of the slurry solution after the addition was 12.7.
その後空気を 1 の流速で導入し、 3時間酸化反 応を続けた。 酸化反応の温度は 5 0 'Cで行った。 Thereafter, air was introduced at a flow rate of 1 and the oxidation reaction was continued for 3 hours. The temperature of the oxidation reaction was 50 ° C.
該ス ラ リ ーを濾過 · 洗浄 · 乾燥し、 得られた粒子を T E Mにより観察した。 観察の結果、 視野中にォキシ 水酸化鉄粒子の長さと同じく らい (0.2 i m ) の立方 体の粒子が点在していた。  The slurry was filtered, washed and dried, and the obtained particles were observed by TEM. As a result of observation, cubic particles of the same size (0.2 im) as the length of the iron oxide hydroxide particles were scattered in the visual field.
この立方体の粒子を電子線冋折及び分折電子顕微鏡 により測定し、 解折した結果、 亜鉛フヱライ トである と 1司定した。 これらの結果から、 Fe2+ と Znz+ との 系では、 スピネル型フヱライ ト粒子が独立して混在し 、 ォキシ水酸化鉄粒子表面に皮膜として形成されてい ないことが判った。 The cubic particles were measured by electron beam diffraction and diffraction electron microscopy, and as a result of breaking, the particles were determined to be zinc fluoride. From these results, it was found that in the system of Fe 2+ and Zn z + , spinel-type fluoride particles were independently mixed and were not formed as a film on the surfaces of the iron oxide hydroxide particles.
実施例 1 と同様の方法により、 加熱し還元を行い、 強磁性金属粒子とした。 更に実施例 1 と同様の処理を 行い得られた粒子の T E M、 磁気特性、 耐候性を測定 した。 その結果、 針状粒子以外に粒状粒子が観察され る と共に、 Hc= 960 0e, ΰ s = 130 emu/g , R = 0.45 であった。 Heating and reduction were performed in the same manner as in Example 1 to obtain ferromagnetic metal particles. Further, the same processing as in Example 1 was performed, and the TEM, magnetic properties, and weather resistance of the particles obtained were measured. did. As a result, granular particles other than acicular particles were observed, Hc = 9600e, ΰs = 130 emu / g, and R = 0.45.
また、 耐蝕性試験後の び s = 95 emu/g であり、 高 密度磁気記録用金属粒子として、 不適性であった。 粒状粒子の分析電子顕微鏡により金属元素分析を行つ た結果、 Znの量が多量に検出された。 このことは、 ス ピネルフヱライ ト粒子がそのまま還元されている こ と を意味する。 針状粒子には、 Znの量がほとんど観察さ れなかった。  In addition, the s was 95 emu / g after the corrosion resistance test, and was unsuitable as metal particles for high-density magnetic recording. As a result of metal element analysis of the granular particles by an analytical electron microscope, a large amount of Zn was detected. This means that spinel filament particles are reduced as they are. Almost no amount of Zn was observed in the acicular particles.
実施例 3〜 Ί Example 3 ~ Ί
硝酸マンガンと硝酸第二鉄、 硝酸アルミ ニゥムと硫 酸第一鉄、 硝酸ク ロムと硫酸第一鉄、 硝酸ニッケルと 硝酸第二鉄、 硝酸銅と硝酸第二鉄を使用した以外は、 実施例 1 と同様の方法で、 ォキ シ水酸化鉄粒子とそれ ぞれ中和共沈を行つた。  Example except that manganese nitrate and ferric nitrate, aluminum nitrate and ferrous sulfate, chromium nitrate and ferrous sulfate, nickel nitrate and ferric nitrate, and copper nitrate and ferric nitrate were used. In the same manner as in 1, iron oxide hydroxide particles and neutralization co-precipitation were performed respectively.
得られた粒子を T E M、 粉末 X線回折、 X P Sによ り測定した。 その結果から、 該粒子表面にスピネル構 造を待つフユ ラ イ ト化合物の皮膜を有するォキシ水酸 化鉄粒子である こ とが確認された。  The obtained particles were measured by TEM, powder X-ray diffraction, and XPS. From the results, it was confirmed that the particles were iron oxyhydroxide particles having a coating of a fluoride compound waiting for a spinel structure on the surface of the particles.
実施例 1 と同様の方法により、 加熟し還元を行い強 磁性金属粒子を得た。  In the same manner as in Example 1, ripening and reduction were performed to obtain ferromagnetic metal particles.
実施例 1 と同様の処理を行い得られた粒子の T E M 、 磁気特性、 耐候性試験、 粉末 X線同折、 X P S測定 を行った。 主な結果を第 1表に示す。 TEM, magnetic properties, weather resistance test, powder X-ray diffraction, XPS measurement of particles obtained by performing the same treatment as in Example 1 Was done. Table 1 shows the main results.
T E M、 磁気特性、 耐候性試験の結果、 高密度磁気 記録用磁性粉末として適した特性を有する強磁性金属 粒子であることが確認された。  As a result of TEM, magnetic properties, and weather resistance tests, it was confirmed that the ferromagnetic metal particles had properties suitable for use as a magnetic powder for high-density magnetic recording.
また粉末 X線画折、 X P Sの結果から、 強磁性金属 粒子表面に、 それぞれマンガンと鉄、 アルミ ニウムと 鉄、 ク ロムと鉄、 ニッケルと鉄、 銅と鉄のスピネル構 造を持つフユライ ト化合物の皮膜を有することが確認 された。  From the results of powder X-ray diffraction and XPS, it was found that the ferromagnetic metal particles had a spinel structure of manganese and iron, aluminum and iron, chromium and iron, nickel and iron, and copper and iron spinel structures, respectively. It was confirmed that it had a film.
実施例 8〜 1 0 Examples 8 to 10
硝酸二ッケル、 硝酸コバル ト及び硝酸第二鉄または 硝酸亜鉛、 硝酸コバル ト及び硝酸第二鉄または硝酸二 ッケル、 硝酸亜鉛及び硝酸第二鉄を使用した以外は、 実施例 1 と同様の方法でォキシ水酸化鉄粒子に中和共 沈により積層被覆を行った。  In the same manner as in Example 1, except that nickel nitrate, cobalt nitrate and ferric nitrate or zinc nitrate, cobalt nitrate and ferric nitrate or nickel nitrate, zinc nitrate and ferric nitrate were used. Laminated coating was performed on the iron oxide hydroxide particles by co-precipitation with neutralization.
得られた粒子を T E M、 粉末 X線回折、 X P Sによ り測定した。 その結果から、 該粒子表面にスピネル構 造を持つフユライ ト化合物の皮膜を有するォキシ水酸 化鉄粒子であることが確認された。  The obtained particles were measured by TEM, powder X-ray diffraction, and XPS. From the results, it was confirmed that the particles were iron oxyhydroxide particles having a film of a fluoride compound having a spinel structure on the surface of the particles.
実施例 1 と同様の方法により、 加熱 · 還元を行い強 磁性金属粒子粉末を得た。  Heating and reduction were performed in the same manner as in Example 1 to obtain ferromagnetic metal particle powder.
実施例 1 と同様の処理を行い、 T E M、 磁気特性、 耐候性試験、' 粉末 X線 折、 X P Sの測定を行った。 主な結果を第 2表に示す。 第 1 表 実施例 積層被覆の条件 強磁性金属粒子の特性 共沈積層被覆する 原子比 H c a s R a s * 粒子長さ 金厲イ オ ン (Oe) (emu/g) (-) (emu/g) ( μ m) The same processing as in Example 1 was performed, and TEM, magnetic properties, weather resistance test, X-ray powder diffraction, and XPS were measured. Table 2 shows the main results. Table 1 Example Conditions for layered coating Characteristics of ferromagnetic metal particles Co-precipitated layered layer Atomic ratio H cas R as * Particle length Gold ion (Oe) (emu / g) (-) (emu / g ) (μm)
1 第二鉄、 2価 C 0 2 : 1 1 5 1 5 1 5 0 0 . 5 2 1 3 8 0 . 1 8 1 Ferric iron, divalent C 0 2: 1 1 5 1 5 1 5 0 0 5 2 1 3 8 0.
2 第二鉄、 2価 Z n 2 : 1 1 5 3 0 1 4 5 0 . 5 2 1 3 3 0 . 1 8 2 Ferric iron, divalent Zn 2: 1 1 5 3 0 1 4 5 0 5 2 1 3 3 0.
3 第二鉄、 2価 M n 2 : 1 1 ο 1 0 1 4 0 5 2 1 2 8 0 . 1 7 一鉄、 3価 A 1 1 : 2 1 4 5 0 1 4 3 0 . 5 1 1 3 2 0 . 1 5 3 Ferric, divalent Mn2: 1 11 ο 10 14 0 5 2 1 2 8 0. 17 Ferrous, trivalent A 1 1: 2 1 4 5 0 1 4 3 0.5 1 1 3 2 0. 1 5
0 第一鉄、 3価 C r i : 2 1 4 6 0 1 4 2 0 . 5 1 1 3 0 0 . 1 6 c 0 第二鉄、 2価 N i 2 : 1 1 4 8 0 1 4 5 0 . 5 0 1 3 3 0 . 1 8 0 Ferrous iron, trivalent C ri: 2 1 4 6 0 1 4 2 0 .5 1 1 3 0 0 .1 6 c 0 Ferric iron, divalent Ni 2: 1 1 4 8 0 1 4 5 0 . 5 0 1 3 3 0. 1 8
7 第二鉄、 2価 C u 2 : 1 1 4 0 0 1 4 8 0 . 5 1 1 2 8 0 . 2 0 比較例 7 Ferric iron, divalent Cu 2: 1 1 4 0 0 1 4 8 0 5 1 1 2 8 0.
1 2価 C 0 9 8 0 1 3 5 0 . 4 5 9 6 0 . 2 8 1 Divalent C 0 9 8 0 1 3 5 0 .4 5 9 6 0 .2 8
2 第一鉄、 2価 C 0 9 5 0 1 4 0 0 . 4 3 9 5 0 . 3 12 Ferrous iron, divalent C 0 95 0 1 4 0 0 4 3 9 5 0 3 0 1
3 2価 Z n 1 0 5 0 1 3 0 0 . 4 8 9 5 0 . 2 93 Divalent Zn 1 0 5 0 1 3 0 0 .4 8 9 5 0 .2 9
4 2価 N i 8 3 0 1 2 5 0 . 4 4 8 9 0 . 3 04 Divalent N i 8 3 0 1 2 5 0 .4 4 8 9 0 .3 0
5 '笫一鉄、 2価 Z n 9 6 0 1 3 0 0 . 4 5 9 5 0 . 3 5 s * は 60 ΐ ,90¾ 相対湿度下で一週間放置後の飽和磁化を表す, 5 '笫 Iron iron, divalent Zn 9 6 0 1 3 0 0 .4 5 9 5 0 .5 3 5 s * represents the saturation magnetization after one week at 60ΐ and 90¾ relative humidity,
第 2 表 Table 2
実施例 共沈積層被覆の条件 強磁性金属粒子の特性 Example Conditions for Coprecipitation Lamination Coating Properties of Ferromagnetic Metal Particles
F e と各種金属 F e の量 H c 0 s R び s 粒子長さ の原子比 Fe/Fe(FeOOH) (Oe) (emu/ g) (-) ( m ) Atomic ratio of Fe and the amount of various metals Fe Hc 0 s R and s particle length Fe / Fe (FeOOH) (Oe) (emu / g) (-) (m)
Co Ni Co Ni
3 2 % 1 5 4 0 1 4 5 0 . 5 3 1 3 0 0 . 1 6
Figure imgf000040_0001
3 2 % 1 6 1 5 1 5 4 0 . 5 3 1 4 2 0 . 1 7
3 2% 1 5 4 0 1 4 5 0 .5 3 1 3 0 0 .1 6
Figure imgf000040_0001
3 2% 1 6 1 5 1 5 4 0 .5 3 1 4 2 0 .1 7
Fe i Zn Fe i Zn
1 0 4 1 1 3 2 % 1 4 7 0 1 4 0 0 . 5 2 1 2 5 0 . 1 7  1 0 4 1 1 3 2% 1 4 7 0 1 4 0 0 .5 2 1 2 5 0 .1 7
( s *は 60 'C ,90¾ 相対湿度下で一週間放置後の飽和磁化を表す。 (s * represents the saturation magnetization after one week storage at 60 'C and 90 ° relative humidity.
T E M、 磁気特性、 耐候性試験の結果、 高密度磁気 記録用磁性粉末として適した特性を有する強磁性金属 粒子て :あることが確認された。 TEM, magnetic properties, weather resistance test results, the ferromagnetic metal particles having properties suitable as a magnetic powder for high-density magnetic recording Te: It was confirmed that.
また粉末 X線冋折、 X P Sの結果から、 強磁性金属 粒子表面に、 それぞれニッケルとコバル ト と鉄、 亜鉛 とコバルト と鉄、 ニッケルと亜鉛と鉄のスビネル構造 を持つフ ライ ト化合物の皮膜を有することが確認さ れた。 表面にこれらの皮膜を有する事により、 粒子の 形態と磁気特性更に耐候性に優れた特性を有する強磁 性金属粒子となることが判った。  From the results of powder X-ray diffraction and XPS, it was found from the results of ferrite metal particles that a coating of a frit compound having a subine structure of nickel, cobalt, and iron, zinc, cobalt, and iron, nickel, zinc, and iron, respectively. It was confirmed that it had. It was found that the presence of these films on the surface resulted in ferromagnetic metal particles having the morphology and magnetic properties of the particles, as well as excellent weather resistance.
実施例 1 1 Example 1 1
実施例 1で得られた表面にコバル トと鉄のフヱライ ト皮膜を有するォキシ水酸化鉄粒子を純水に分散し、 コ πイダル S i 02 (日産化学製スノ ーテッ クス 0 ) をォ キシ水酸化鉄に対し 2 %添加し、 表面に吸着させた。 該ォキシ水酸化鉄粒子を乾燥し、 実施例 1 と lsj様の 方法で加熱し還元して強磁性金属粒子を得た。 実施例 1 と 1ョ、1様の処理を行い得られた粒子の T E M、 磁気特 性、 耐候性試験、 粉末 X線 tel折及び X P S測定を行つ た。 T E M、 磁気特性、 耐候性試験の結果を第 3表に 示す。 保磁力について更に増加しており、 高密度磁気 記録材料に適した強磁性金属粒子であることが確認さ れた。 The iron oxide hydroxide particles having a cobalt and iron fluoride film on the surface obtained in Example 1 were dispersed in pure water, and co-pidal Si 0 2 (Nissan Chemical Snowtex 0) was oxidized. 2% was added to the iron hydroxide and adsorbed on the surface. The iron oxyhydroxide particles were dried and reduced by heating and reducing by the same method as in Example 1 and lsj to obtain ferromagnetic metal particles. TEM, magnetic properties, weather resistance test, powder X-ray tel-fold, and XPS measurement were performed on the particles obtained by performing the treatments of Examples 1 and 1 and 1 above. Table 3 shows the results of the TEM, magnetic properties, and weather resistance test. The coercive force has been further increased, confirming that the ferromagnetic metal particles are suitable for high-density magnetic recording materials.
粉末 X線同折及び X P Sの測定の結果、 鉄とコバル ト とのスビネル構造を待つ皮膜を有する強磁性金属粒 子である こ とが確認された。 以上のこ とから S iを舍有 する こ とも、 より良好な目的とする効果を付与できる ことが判った。 Results of powder X-ray diffraction and XPS measurement, iron and koval It was confirmed that the particles were ferromagnetic metal particles having a film that waited for the subinel structure with the metal. From the above, it has been found that possessing Si can also provide a better desired effect.
実施例 1 2 Example 1 2
実施例 2で得られた、 表面に亜鉛と鉄のフヱライ ト 皮膜を有するォキシ水酸化鉄粒子を純水に分散し、 コ ロイダル S i 02 (日産化学製スノ ーテッ クス 0 ) をォキ シ水酸化鉄に対し 2 %添加し、 表面に吸着させた。 該ォキシ水酸化鉄を乾燥し、 実施例 1 と 様の方法 で加熱 · 還元し強磁性金属粒子粉末を得た。 実施例 1 と l5j様の処理を行い、 T E M、 磁気特性、 耐候性試験 、 粉末 X線西折及び X P Sの測定を行った。 T E M、 磁気特性、 耐候性試験の結果を第 3表に示す。 保磁力 の更に.増加があり、 高密度磁気記録材料に適した強磁 性金属粒子である こ とが確認された。 Obtained in Example 2, the Okishi iron hydroxide particles having Fuwerai bets coating of zinc and iron on the surface dispersed in pure water, co toroidal S i 0 2 O a (manufactured by Nissan Chemical Sno Te' box 0) key sheet 2% was added to the iron hydroxide and adsorbed on the surface. The oxyiron hydroxide was dried and reduced by heating and reducing in the same manner as in Example 1 to obtain ferromagnetic metal particle powder. The same treatment as in Example 1 was performed, and TEM, magnetic properties, weather resistance test, powder X-ray west folding, and XPS were measured. Table 3 shows the results of the TEM, magnetic properties, and weather resistance test. The coercive force further increased, confirming that the particles were ferromagnetic metal particles suitable for high-density magnetic recording materials.
粉末 X線回折及び X P Sの測定の結果、 鉄と亜鉛と のスピ.ネル構造を持つ皮膜を有する強磁性金属粒子で ある こ とが確認された。 この結果から S iを舍有する こ とも、 より良好な特性が得られるこ とが判つた 実施例 1 3 ~ 1 8  As a result of powder X-ray diffraction and XPS measurement, it was confirmed that the particles were ferromagnetic metal particles having a film having a spinel structure of iron and zinc. From these results, it was found that better characteristics can be obtained even with Si. Examples 13 to 18
実施例 1 および 2で得られた、 表面にコバル ト と鉄 および亜鉛と鉄のフヱ ラ イ ト皮膜を有するそれぞれの ォキシ水酸化鉄粒子を純水に分散した。 それぞれ実施 例 1 1及び 1 2の方法に従い、 Si化合物に代えて、 A1 , P, Bの化合物を吸着した。 A1はアルミ ン酸ソーダ、 P は燎酸、 B はホウ酸を使用した。 Each of the oxyiron hydroxide particles having a cobalt film and iron or zinc and iron fly film on the surface obtained in Examples 1 and 2 was dispersed in pure water. Implement each According to the methods of Examples 11 and 12, compounds of A1, P and B were adsorbed instead of the Si compound. A1 used sodium aluminate, P used wild acid, and B used boric acid.
濾過 · 洗浄乾燥後、 実施例 1 と同様に加熱し還元を 行い強磁性金属粒子粉末を得た。 実施例 1 と同様の処 理を行い得られた粒子の T E M、 磁気特性、 耐候性試 験、 粉末 X線回折及び X P S測定を行った。  After filtration, washing, and drying, the powder was heated and reduced in the same manner as in Example 1 to obtain ferromagnetic metal particle powder. The particles obtained by performing the same treatment as in Example 1 were subjected to TEM, magnetic properties, weather resistance test, powder X-ray diffraction and XPS measurement.
得られた主な結果を第 3表に示す。 高密度磁気記録 用金属粒子に適した材料であつた。  Table 3 shows the main results obtained. This material was suitable for metal particles for high-density magnetic recording.
また鉄とコバル ト とのスピネル構造を持つフヱライ 卜皮膜を有する強磁性金属粒子粉末であった。 この結 果から ΑΙ,Ρ,Βを舍有するこ とも、 より良好な特性が得 られる こ とが判つた。  Further, it was a ferromagnetic metal particle powder having a fine film having a spinel structure of iron and cobalt. From these results, it was found that having ΑΙ, と も, and 舍 could provide better characteristics.
比較例 6 Comparative Example 6
(実施例 1 1 において、 ォキシ水酸化鉄粒子に Siのみ を吸着した場合)  (In the case of Example 11, only Si was adsorbed on the iron oxide hydroxide particles)
実施例 1 のォキ シ水酸化鉄を使用した。 スピネル構 造のフ ラ イ ト皮膜を形成せず、 実施例 1 1 と同様の 方法により コ 口 ィ ダル S i 02を吸着した。 The iron oxide hydroxide of Example 1 was used. Without forming a spinel-structured frit film, Co-mouth Si0 2 was adsorbed in the same manner as in Example 11.
実施例 1 と同様の方法により加熱し還元を行い強磁 性金属粒子粉末を得た。 実施例 1 と fel様の処理を行い 得られた粒子の T E M、 磁気特性、 耐候性試験を行つ た。 そのう ち主な結果を第 3表に示す。  Heating and reduction were performed in the same manner as in Example 1 to obtain ferromagnetic metal particle powder. The particles obtained by performing the fel-like treatment in Example 1 were subjected to TEM, magnetic properties, and weather resistance tests. Table 3 shows the main results.
T E Mによる形態保持及び磁気特性は良好であるが 第 3 衷 t
Figure imgf000044_0001
Good shape retention and magnetic properties by TEM 3rd t
Figure imgf000044_0001
cr s * は 60 *C , 90¾ 相対湿度下で一週間放置後の飽和磁化を表す cr s * represents the saturation magnetization after one week at 60 * C, 90¾ relative humidity
、 耐候性試験による劣化が激し く高密度磁気記録用磁 性粒子と して実用に不適性なものであった。 However, it was severely deteriorated by the weather resistance test and was unsuitable for practical use as magnetic particles for high-density magnetic recording.
鉄とコバル ト等の特定の金属とのスビネル構造を持 つフ ライ ト皮膜を持たない強磁性金属粒子では、 目 的とする効果が得られないこ とが判明した。  It has been found that the intended effect cannot be obtained with ferromagnetic metal particles that do not have a frit film, which has a Svinel structure of iron and a specific metal such as cobalt.
実施例 1 9 Example 19
を Feに対して 1 %舍有するよう に共沈した長軸平 均長さ 0.25 / m 、 軸比 15のォキ シ水酸化鉄粒子を用い て、 実施例 1 と^様の方法により、 鉄とコバル ト とを 共沈により積層被覆した。 得られた粒子の T E M、 粉 末 X線 lsj折、 X P S測定をした。 それらを解析した結 果、 表面にス ピネル構造を待つフ ラ イ ト皮膜を有す るォキシ水酸化鉄粒子であった。 Using iron oxide hydroxide particles having a long axis average length of 0.25 / m and an axial ratio of 15 coprecipitated to have 1% of And cobalt were laminated and coated by coprecipitation. The obtained particles were subjected to TEM, X-ray powder lsj folding, and XPS measurement. As a result of analyzing these, it was found to be iron oxyhydroxide particles having a frit film on the surface waiting for a spinel structure.
実施例 1 と同様に加熱し還元して、 強磁性金属粒子 を得た。 得られた粒子の T E M、 粉末 X線问折、 X P S測定をした。 主な結果を第 4表に示す o  Heating and reduction were performed in the same manner as in Example 1 to obtain ferromagnetic metal particles. The resulting particles were subjected to TEM, powder X-ray diffraction, and XPS measurements. The main results are shown in Table 4.o
また、 粉末 X線冋折、 X P Sの結果から、 強磁性金 属粒子表面にスピネル構造を待つフユラ イ ト皮膜を有 する ものであった。  From the results of powder X-ray diffraction and XPS, it was found that the ferromagnetic metal particles had a fu- lite film waiting for a spinel structure.
これらの結果から、 共沈成分として を舍有するォ キ シ水酸化鉄粒子でも、 本発明の 的とする効 ¾があ る こ とが判つた。  From these results, it was found that the iron oxide hydroxide particles having as a coprecipitating component also have the effect of the present invention.
実施例 2 0 " Example 20 "
A1を Feに対して 1 %舍有するよう に共沈した長軸平 均長さ 、 軸比 15のォキシ水酸化鉄粒子 ( -F eOOH) を原料に用いた。 Long axis flat co-precipitated so that A1 has 1% of Fe Iron oxyhydroxide particles (-F eOOH) having an average length and an axial ratio of 15 were used as raw materials.
実施例 1 と同様の方法により鉄とニッケルとを共沈 により該ォキシ水酸化鉄粒子に積層被覆した。 得られ た粒子の T E M、 粉末 X線冋折、 X P S測定の結果を 解折すると、 該粒子表面にスビネル構造を持つフ ラ ィ ト皮膜を有するものであることが確認された。  In the same manner as in Example 1, iron and nickel were co-precipitated to coat and coat the iron oxyhydroxide particles. When the results of TEM, powder X-ray diffraction, and XPS measurement of the obtained particles were analyzed, it was confirmed that the particles had a flint film having a subinel structure on the surface of the particles.
実施例 1 と] 様に加熱し還元して、 強磁性金属粒子 を得た。 この粒子の T EM、 粉末 X線回折、 X P S測 定を測定した。 主な結果を第 4表に示す。  It was heated and reduced as in Example 1 to obtain ferromagnetic metal particles. The TEM, powder X-ray diffraction, and XPS measurements of the particles were measured. Table 4 shows the main results.
また粉末 X線回折、 X P Sの結果から表面にスビネ ル構造を持つフユライ ト皮膜を有する強磁性金属粒子 であった。 ごれらの結果から、 共沈成分として A1を舍 有するォキシ水酸化鉄粒子でも、 本発明の目的とする 効果があることが判った。  Also, from the results of powder X-ray diffraction and XPS, the particles were ferromagnetic metal particles having a fluoride film having a subinel structure on the surface. From these results, it was found that oxyiron hydroxide particles having A1 as a coprecipitating component also had the effects intended by the present invention.
実施例 2 1 Example 2 1
粒子平均長さ 0.27 m 、 軸比 10の r型のォキシ水酸 化鉄粒子 ( r - FeOOH) を原料に使用した。  R-type iron oxyhydroxide particles (r-FeOOH) with an average particle length of 0.27 m and an axial ratio of 10 were used as raw materials.
実施例 1 と 1ョ J様の方法で鉄とコバル トを共沈により r -FeOOHに積層被覆した。 この粒子の T E M、 粉末 X 線 Inl折、 X P S測定の結果を解折すると、 表面にスピ ネル構造のフヱライ ト皮膜を有する r -PeOOHであるこ とが確認された。 Examples 1 and 1 Iron and cobalt were laminated and coated on r-FeOOH by coprecipitation in the same manner as in J. The results of TEM, X-ray powder Inl folding, and XPS measurement of the particles revealed that the particles were r- PeOOH having a spinel-structured fluoride film on the surface.
実施例 1 と ^様の方法で、 強磁性金属粒子とし、 各 種特性について測定した。 主な結果を第 4表に示す。 また粉末 X線回折、 X P Sの結果から、 表面にス ピ ネル構造を有するフユ ライ ト皮膜が確認された。 ォキ シ水酸化物の種類を変更しても、 本発明の 的とする 効果があるこ とが判つた。 The ferromagnetic metal particles were obtained in the same manner as in Example 1 and ^ Species properties were measured. Table 4 shows the main results. From the results of powder X-ray diffraction and XPS, a fluorine film having a spinel structure on the surface was confirmed. It has been found that the effect of the present invention can be achieved even if the type of the oxide hydroxide is changed.
実施例 2 2 Example 22
粒子平均長さ 0.27 / m 、 軸比 10の r -FeOOHを原料と して使用した。  R-FeOOH having an average particle length of 0.27 / m and an axial ratio of 10 was used as a raw material.
実施例 1 と同様の方法で鉄と二 ッケルを共沈により 7" -FeOOHに積層被覆した。 該粒子の T E M、 粉末 X線 冋折、 X P S測定の結果を解折する と、 表面にス ピネ ル構造のフヱライ ト皮膜を有する r - FeOOHであった。 実施例 1 と 1 様の方法で、 強磁性金属粒子とし、 各 種特性について測定した。 主な結果を第 4表に示す。  Iron and nickel were co-precipitated and coated on 7 "-FeOOH in the same manner as in Example 1. The results of TEM, powder X-ray diffraction, and XPS measurement of the particles revealed that spine appeared on the surface. It was an r-FeOOH having a monolithic structure of a fluoride film, and ferromagnetic metal particles were used to measure various characteristics by the same method as in Examples 1 and 1. The main results are shown in Table 4.
また粉末 X線回折、 X P Sの結果から、 表面にスピ ネル構造を有するフ ユ ラ イ 卜皮膜が確認された。 また 、 ォキ シ水酸化物の種類を変更しても、 本発明の冃的 とする効果がある こ とが判った。  From the results of powder X-ray diffraction and XPS, a fine film having a spinel structure on the surface was confirmed. It was also found that changing the type of the oxide hydroxide had the desired effect of the present invention.
実施例 2 3〜 2 6 - 鉄とコ バル ト について、 共沈積層被覆の条件を変え た以外は実施例 1 と同様の方法により、 製造した。 主 な条件を第 5表に示す。 Examples 23 to 26-Iron and cobalt were produced in the same manner as in Example 1 except that the conditions for the coprecipitation lamination coating were changed. Table 5 shows the main conditions.
いづれの場合も、 T E M、 粉末 X線面折、 X P Sに よる測定を行った結果、 ス ピネル構造を持つフ ュラ イ ト皮膜が確認された。 In each case, TEM, X-ray powder bending, and XPS measurements showed that the spinel-structured fury Film was confirmed.
また実施例 1 と同様な方法により、 強磁性金属粒子 粉末を'得た。 得られた結果を第 5表に示す。 共沈積層 被覆量が少ないと効果の程度が低く なるが、 いずれの 場合も、 表面にス ピネル構造を持つフユ ライ ト被膜が できており、 更に皮膜を有する こ とで効果を発揮する ことが判明した。  Further, a ferromagnetic metal particle powder was obtained in the same manner as in Example 1. Table 5 shows the obtained results. Coprecipitation lamination The effect is low when the coating amount is small, but in each case, a fluorine coating having a spinel structure is formed on the surface, and the effect can be exerted by further coating. found.
実施例 2 7 〜 3 0 Example 27 to 30
鉄とニ ッケルについて、 共沈積層被覆の条件を変え た以外は実施例 6 と同様の方法により、 製造した。 主 な条件を第 6表に示す。  Iron and nickel were manufactured in the same manner as in Example 6, except that the conditions for the co-precipitation lamination coating were changed. Table 6 shows the main conditions.
いづれの場合も、 T E M、 粉末 X線面折、 X P Sに よる測定を行った結果、 ス ピネル構造を持つフ ライ ト皮膜が確認された。  In each case, as a result of measurement by TEM, powder X-ray bending, and XPS, a frit film having a spinel structure was confirmed.
また実施例 6 と同様な方法により、 強磁性金属粒子 粉末を得た。 得られた結果を第 6表に示す。 共沈積層 被覆量が少ないと効果の程度が低く なるが、 表面にス ピネル構造を持つフヱライ ト被膜ができており、 更に 皮膜を有する こ とでと く に耐食性の効果を発揮する こ とが判明した。  Further, a ferromagnetic metal particle powder was obtained in the same manner as in Example 6. Table 6 shows the obtained results. Coprecipitation lamination The effect is low when the coating amount is small, but a fine coating with a spinel structure is formed on the surface, and having a coating further demonstrates the effect of corrosion resistance. found.
更に、 N iが還元を速やかに進行させるとか、 N' iの量 が多 く なる と保磁力を制御できるとかの効果は、 本実 施例においても発現した。 第 4 表 Furthermore, the effects of Ni progressing the reduction promptly and controlling the coercive force when the amount of N ′ i increases are also manifested in this embodiment. Table 4
原料のォキ シ 強磁性金属粒子の特性 Raw material properties of ferromagnetic metal particles
実施例 水酸化物粒子 Example hydroxide particles
H c ΰ s R a s * 粒子長さ  H c ΰ s R a s * Particle length
(Oe) (emu/g) (-) (emu/g) ( U ra)  (Oe) (emu / g) (-) (emu / g) (U ra)
1 9 Niを共沈した 1 9 Ni coprecipitated
一 F e 00 H 1 6 2 0 1 4 6 0. 5 4 1 3 3 0. 2 2 2 0 A 1を共沈した  One Fe 00 H 1 6 2 0 1 4 6 0 .5 4 1 3 3 0 .2 2 2 0 A 1 was co-precipitated
α - F e 0 0 H 1 5 0 1 4 5 0. 5 1 1 3 3 0. 2 2  α-F e 0 0 H 1 5 0 1 4 5 0 .5 1 1 3 3 0 .2 2
2 1 r - F e 0 0 H 1 4 3 0 1 5 5 0. 5 2 1 3 7 0. 2 5 2 1 r-F e 0 0 H 1 4 3 0 1 5 5 0 .5 2 1 3 7 0 .2 5
Co/Fe 積層被覆  Co / Fe laminated coating
2 2 r - F e 0 0 H 1 4 1 0 1 4 7 0. 5 1 1 3 4 0. 2 5  2 2 r-F e 0 0 H 1 4 1 0 1 4 7 0. 5 1 1 3 4 0. 2 5
Ni/Fe 積層被覆 r s * は 60 -C ,90% 相対湿度下で一週間放置後の飽和磁化を表す  Ni / Fe multilayer coating r s * indicates saturation magnetization after one week storage at 60 -C, 90% RH
1 第 5 表 1 Table 5
00 00
Figure imgf000050_0001
Figure imgf000050_0001
<; s *は 60 *C ,90% 相対湿度下で一週間放置後の飽和磁化を表す <; s * represents the saturation magnetization after one week storage at 60 * C, 90% RH
第 6 表 Table 6
実施例 共沈積層被覆の条件 強磁性金属粒子の特性 Example Conditions for Coprecipitation Lamination Coating Properties of Ferromagnetic Metal Particles
F e : N i F e の量 (% ) H c ΰ s R σ s * の原子比 Fe/Fe(FeOOII) (Oe) (emu/g) (-) (emu/g) Fe: Amount of NiFe (%) Atomic ratio of Hc csRσs * Fe / Fe (FeOOII) (Oe) (emu / g) (-) (emu / g)
2 7 1 : 1 1 6 1 0 5 1 3 8 0 . 5 2 1 3 0 2 7 1: 1 1 6 1 0 5 1 3 8 0. 5 2 1 3 0
I  I
2 8 3 : 1 1 6 1 5 2 5 1 5 0 . 5 0 1 2 3 2 8 3: 1 1 6 1 5 2 5 1 5 .0.5 0 1 2 3
2 9 2 : 1 5 0 1 3 1 0 1 3 1 0 . 5 2 1 2 6 2 9 2: 1 5 0 1 3 1 0 1 3 1 0. 5 2 1 2 6
3 0 2 : 1 1 0 0 1 1 8 0 1 2 8 0 . 5 3 1 2 5 s * は 60 *C ,90% 相対湿度下で一週間放置後の飽和磁化を表す  3 0 2: 1 1 0 0 1 1 8 0 1 2 8 0. 5 3 1 2 5 s * indicates saturation magnetization after one week standing at 60 * C, 90% relative humidity

Claims

請 求 の 範 两 Scope of claim
1. 粒子表層部がコ バル ト、 亜鉛、 マンガン、 アルミ 二ゥム、 ク ロム、 ニ ッケル、 銅から選択される少な く とも 1 種の金属と鉄とからなるス ピネル構造を持 つフユライ ト化合物の皮膜として積層被覆している ことを特徴とする強磁性金属粒子。  1. Light with a spinel structure in which the particle surface layer is made of at least one metal selected from cobalt, zinc, manganese, aluminum, chromium, nickel, and copper and iron. Ferromagnetic metal particles characterized by being laminated as a compound film.
2. フェライ ト化合物が、 鉄の原子価と異なる原子価 の金属と鉄とからなる複合酸化物である こ とを特徴 とする特許請求の範两第 1項記載の強磁性金属粒子, 2. The ferromagnetic metal particles according to claim 1, wherein the ferrite compound is a composite oxide composed of iron and a metal having a valence different from the valence of iron.
3. 粒子表面にコバル ト、 亜鉛、 マ ンガン、 アルミ 二 ゥム、 ク ロム、 ニ ッ ケル、 銅から選択される少な く とも 1 種の金属と鉄とからなるス ピネル構造を持つ フユライ ト化合物の皮膜が積層被覆している こ とを 特徴とする鉄を主体とするォキシ水酸化物粒子。3. A compound with a spinel structure composed of iron and at least one metal selected from cobalt, zinc, manganese, aluminum, chromium, nickel, and copper on the particle surface. Iron-based oxyhydroxide particles, characterized in that the film is laminated.
4. フユ ライ ト化合物が、 鉄の原子価と異なる原子価 の金属と鉄とからなる複合酸化物又は水酸化物であ るこ とを特徴とする特許請求の範两第 3項記載の鉄 を主体とするォキシ水酸化物粒子。 4. The iron according to claim 3, wherein the fluoride compound is a composite oxide or hydroxide composed of iron and a metal having a valence different from the valence of iron. Oxyhydroxide particles mainly composed of
5. 粒子の長軸の長さが少な く とも、 0.3 m 以下で ある特許請求の範两第 1 項記載の粒子。  5. The particle according to claim 1, wherein the major axis of the particle has a length of at least 0.3 m or less.
6. 粒子の長軸の長さが少な く とも、 0.3 以下で ある特許請求の範两第 3項記載の粒子。  6. The particle according to claim 3, wherein the major axis of the particle is at least 0.3 or less.
7. 耐蝕性試験後の飽和磁化( s*) が、 次式で示さ れる値をこえる もの ΰ s* (emu/g) = 80 + 100 X粒子長さ( m) である ことを特徴とする特許請求の範 W第 1項又は 第 2項記載の強磁性金属粒子。 7. Those whose saturation magnetization (s *) after the corrosion resistance test exceeds the value shown by the following formula 3. The ferromagnetic metal particles according to claim 1, wherein s * (emu / g) = 80 + 100 × particle length (m).
8. フユライ ト化合物中の鉄 (Fe ) と金属 (Me) との 原子比 (Feのグラ ム原子/ Meのグラム原子を言う。 以下 ^じ。 ) が、 0.1/1.0 〜 10.0/1.0の範钾である 特許請求の範囲第 1項又は第 2項記載の強磁性金属 粒子。  8. The atomic ratio between iron (Fe) and metal (Me) in the fluoride compound (gram atom of Fe / gram atom of Me; hereafter, ^) is in the range of 0.1 / 1.0 to 10.0 / 1.0. 3. The ferromagnetic metal particle according to claim 1 or 2, which is:
9. ォキシ水酸化物中の鉄に対するフ ライ ト化合物 中の鉄 Feの量比が、 0 . 3 〜 2 0 0重量%であるこ とを特徴とする特許請求の範 M第 1 項又は第 2項記 載.の強磁性金属粒子。  9. The method according to claim 1, wherein an amount ratio of iron Fe in the fly compound to iron in the oxyhydroxide is 0.3 to 200% by weight. Ferromagnetic metal particles described in the item.
10. 鉄を主体とするォキシ水酸化物粒子が分散したス ラ リ ー中でコバル ト、 亜鉛、 マ ンガ ン、 アルミ ニゥ ム、 ク ロ ム、 ニ ッケル、 綱から選択される少な く と も一つの金属と鉄とを同時に中和し、 中和と同時に 直接ス ピネル構造を持つフユ ライ ト化合物と して生 成するゲルを、 ただちに鉄を主体とするォキ シ水酸 化物粒子表面に積層被覆した皮膜と して形成させる 工程 (前工程とも言う。 ) と、 該粒子を加熱して還 元し、 更に徐酸化する工程 (後工程とも言う。 ) と からなる強磁性金属粒子の製造方法。  10. At least at least one selected from cobalt, zinc, manganese, aluminum, chromium, nickel, and steel in a slurry in which iron-based oxyhydroxide particles are dispersed. One metal and iron are simultaneously neutralized, and a gel generated as a fluoride compound having a spinel structure at the same time as the neutralization is immediately applied to the surface of the iron-based oxyhydroxide particles. Production of ferromagnetic metal particles comprising: a process of forming a layer-coated film (also referred to as a pre-process); and a process of heating and reducing the particles, followed by gradual oxidation (also referred to as a post-process). Method.
11. 特許請'求の範两第 1 0項の方法^おいて、 選択さ れる少な く とも 1 つの金属が 2価イ オ ンであり、 鉄 4 02366 PCT/JP90/01011 11. In the method of claim 10 in the scope of patent claim, at least one metal selected is divalent ion and 4 02366 PCT / JP90 / 01011
一 52 一 が第 2鉄ィォンである方法。 The method in which one is the second iron ion.
12. 特許請求の範两第 1 0項の方法において、 選択さ  12. In the method of claim 10, the method
れるすく なく とも 1種の金属が 3価イオンであり、  At least one metal is a trivalent ion,
鉄が第 1鉄ィォンである方法。  The way iron is ferrous.
13. 特許請求の範两第 1 0項の方法において、 鉄を主  13. The method of claim 10 wherein iron is mainly used.
体とするォキシ水酸化物粒子を分散剤で分散したス  Oxyhydroxide particles dispersed in a
ラリ一とする方法。  Rari one way.
14. 特許請求の範囲第 1 0項の製造方法において、 前  14. The manufacturing method according to claim 10
工程中に、 Si,/U,P,B から選択される少なく とも一  During the process, at least one selected from Si, / U, P, B
種の化合物を鉄を主体とするォキシ水酸化物粒子に  Of various compounds into iron-based oxyhydroxide particles
被着処理することを特徴とする方法。  A method characterized by performing a deposition treatment.
15. 鉄を主体とするォキシ水酸化物粒子が、 or-FeOOH  15. Iron-based oxyhydroxide particles are or-FeOOH
, β -FeOOfl , r -PeOOH のいづれかの形態であるも  , β -FeOOfl, r -PeOOH
の又は、 これらに卩,5 1,:1 (1", 1111,(:0, ^, 211 の少  Or, in addition to them, the rice, 5 1,: 1 (1 ", 1111, (: 0, ^, 211
なく とも一種とォキシ水酸化鉄とを共沈しているも  At least one co-precipitated with oxyiron hydroxide
のであることを特徴とする特許請求の範两第 1 0項  Claim 10 characterized by the following claim 10.
〜第 1 4項のいづれかに記載の製造方法。  -The production method according to any one of Items 14 to 14.
16. 皮膜中の鉄 (Fe) と金属 (Me) との原子比が、  16. The atomic ratio between iron (Fe) and metal (Me) in the coating is
0.1/1.0 〜: 10.0/1.0の範两である特許請求の範两第  0.1 / 1.0-Claims that are in the range 10.0 / 1.0
1 0項〜第 1 5項のいづれかに記載の製造方法。  Item 10. The production method according to any one of Items 10 to 15.
17. ォキシ水酸化物粒子中の鉄に対する皮膜中の鉄 Fe  17. Iron in the coating against iron in the oxyhydroxide particles
の量比が、 0. 3〜 2 0 0重量%であることを特徴  Characterized in that the amount ratio is 0.3 to 200% by weight.
とする特許請求の範两第 1 0項〜第 1 5項のいづれ  Any of claims 10 to 15
かに記載の製造方法。  The production method described in Crab.
PCT/JP1990/001011 1989-08-09 1990-08-08 Ferromagnetic metal particle and production thereof WO1991002366A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019910700350A KR920701998A (en) 1989-08-09 1990-08-08 Ferromagnetic metal particles and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP20485289 1989-08-09
JP1/204852 1989-08-09

Publications (1)

Publication Number Publication Date
WO1991002366A1 true WO1991002366A1 (en) 1991-02-21

Family

ID=16497463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1990/001011 WO1991002366A1 (en) 1989-08-09 1990-08-08 Ferromagnetic metal particle and production thereof

Country Status (4)

Country Link
US (1) US5188898A (en)
EP (1) EP0437635A4 (en)
KR (1) KR920701998A (en)
WO (1) WO1991002366A1 (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5965194A (en) * 1992-01-10 1999-10-12 Imation Corp. Magnetic recording media prepared from magnetic particles having an extremely thin, continuous, amorphous, aluminum hydrous oxide coating
JPH06100317A (en) * 1992-02-05 1994-04-12 Toda Kogyo Corp Magnetic iron oxide grain powder and its production
FR2714205A1 (en) * 1993-12-17 1995-06-23 Atg Sa Composite material for magneto-optical recording, its preparation and its use.
JP3389935B2 (en) * 1994-03-04 2003-03-24 戸田工業株式会社 Acicular cobalt-coated magnetite particle powder and method for producing the same
US5735969A (en) * 1996-03-07 1998-04-07 Imation Corp. Method of producing acicular magnetic alloy particles
JP3928309B2 (en) * 1998-10-06 2007-06-13 昭栄化学工業株式会社 Nickel composite particles, conductor paste, and ceramic multilayer electronic components
JP4154111B2 (en) * 2000-06-09 2008-09-24 富士フイルム株式会社 Magnetic recording medium
DE10110341A1 (en) * 2001-03-03 2002-10-31 Bosch Gmbh Robert Metal powder composite and starting material and method for producing such
WO2002081130A1 (en) * 2001-04-02 2002-10-17 Mitsubishi Materials Corporation Composite soft magnetic sintered material having high density and high magnetic permeability and method for preparation thereof
US20150140595A1 (en) * 2012-05-22 2015-05-21 Joseph Gerard Utermohlen Formulations for the synthesis of paramagnetic particles and methods that utilize the particles for biochemical applications

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112465A (en) * 1975-03-28 1976-10-04 Sony Corp Method of producing metallic magnetic powder
JPS58164706A (en) * 1982-03-26 1983-09-29 Nippon Soda Co Ltd Production of acicular ferromagnetic iron powder
JPS63142607A (en) * 1986-12-05 1988-06-15 Mitsui Toatsu Chem Inc Manufacture of magnetic iron powder
JPS63142608A (en) * 1986-12-05 1988-06-15 Mitsui Toatsu Chem Inc Manufacture of magnetic iron powder
JPH05254998A (en) * 1992-03-16 1993-10-05 Matsushita Electric Ind Co Ltd Device for cleaning apparatus for producing zinc oxide whisker

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS525497A (en) * 1975-07-02 1977-01-17 Fuji Photo Film Co Ltd Ferromagnetic grit manufacturing process
DE2905352A1 (en) * 1979-02-13 1980-08-21 Basf Ag METHOD FOR PRODUCING NEEDLE-SHAPED COBAL-CONTAINING MAGNETIC IRON OXIDE
DE2905351A1 (en) * 1979-02-13 1980-08-21 Basf Ag METHOD FOR PRODUCING NEEDLE-SHAPED COBAL-CONTAINING, MAGNETIC IRON OXIDE
DE2916403A1 (en) * 1979-04-23 1980-11-06 Basf Ag NEEDLE-SHAPED MAGNETIC IRON OXIDE AND METHOD FOR THE PRODUCTION THEREOF
JPS58176902A (en) * 1982-04-09 1983-10-17 Sony Corp Manufacture of magnetic powder
JPS61188548A (en) * 1985-02-16 1986-08-22 Konishiroku Photo Ind Co Ltd Electrostatic charge image developing carrier
JPS62108737A (en) * 1985-11-08 1987-05-20 Fuji Photo Film Co Ltd Production of ferromagnetic iron oxide powder
DE3616096A1 (en) * 1986-05-13 1987-11-19 Basf Ag METHOD FOR PRODUCING COBALTIC, NEEDLE-SHAPED, MAGNETIC IRON OXIDES
JPS6365085A (en) * 1986-09-05 1988-03-23 Nippon Paint Co Ltd Method for coating ferrite on particle or fibrous material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51112465A (en) * 1975-03-28 1976-10-04 Sony Corp Method of producing metallic magnetic powder
JPS58164706A (en) * 1982-03-26 1983-09-29 Nippon Soda Co Ltd Production of acicular ferromagnetic iron powder
JPS63142607A (en) * 1986-12-05 1988-06-15 Mitsui Toatsu Chem Inc Manufacture of magnetic iron powder
JPS63142608A (en) * 1986-12-05 1988-06-15 Mitsui Toatsu Chem Inc Manufacture of magnetic iron powder
JPH05254998A (en) * 1992-03-16 1993-10-05 Matsushita Electric Ind Co Ltd Device for cleaning apparatus for producing zinc oxide whisker

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0437635A4 *

Also Published As

Publication number Publication date
EP0437635A4 (en) 1992-04-22
US5188898A (en) 1993-02-23
KR920701998A (en) 1992-08-12
EP0437635A1 (en) 1991-07-24

Similar Documents

Publication Publication Date Title
JP5966064B1 (en) Iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder
JP6676493B2 (en) Method for producing iron-based oxide magnetic particle powder
JP2016130208A (en) Ferrous oxide magnetic particle powder, method for manufacturing the same, coating material, and magnetic recording medium
WO2016047559A1 (en) Iron-based oxide magnetic particle powder and method for producing iron-based oxide magnetic particle powder
WO2007145301A1 (en) Iron nitride-based magnetic powder, process for producing the same, and magnetic recording medium
EP0633564B1 (en) Ferromagnetic metal powder
WO1991002366A1 (en) Ferromagnetic metal particle and production thereof
Sudakar et al. Effect of cationic substituents on particle morphology of goethite and the magnetic properties of maghemite derived from substituted goethite
JP3389935B2 (en) Acicular cobalt-coated magnetite particle powder and method for producing the same
JPH0625702A (en) Magnetic metal powder and its production
JPH03174704A (en) Ferromagnetic metal particle and manufacture thereof
JP3640577B2 (en) Precursor for magnetic powder production and ferromagnetic metal powder obtained therefrom
JP5160129B2 (en) Flaky iron oxide fine particles, flaky Fe-based metal fine particles, and methods for producing them
JPH03293703A (en) Ferromagnetic metallic particle and manufacture thereof
JP4139873B2 (en) Powder for coating type magnetic recording media
JPH03293702A (en) Ferromagnetic metallic particle and manufacture thereof
JPH0237403B2 (en)
JP3049698B2 (en) Method for producing plate-like iron oxide fine particle powder
KR950002968B1 (en) Acicular metal iron fine particles, process for preparing same, magnetic coating composition and magnetic recording medium containing same
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
EP0480696A1 (en) Process for the preparation of ferromagnetic metallic particles for magnetic recording
JP3428197B2 (en) Acicular magnetic iron oxide particles and method for producing the same
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JP3049704B2 (en) Acicular cobalt-coated magnetite particle powder
JPH08186015A (en) Metal magnetic particle

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): KR US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990912082

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990912082

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990912082

Country of ref document: EP