JP3640577B2 - Precursor for magnetic powder production and ferromagnetic metal powder obtained therefrom - Google Patents

Precursor for magnetic powder production and ferromagnetic metal powder obtained therefrom Download PDF

Info

Publication number
JP3640577B2
JP3640577B2 JP25849199A JP25849199A JP3640577B2 JP 3640577 B2 JP3640577 B2 JP 3640577B2 JP 25849199 A JP25849199 A JP 25849199A JP 25849199 A JP25849199 A JP 25849199A JP 3640577 B2 JP3640577 B2 JP 3640577B2
Authority
JP
Japan
Prior art keywords
magnetic
particles
amount
ferromagnetic metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP25849199A
Other languages
Japanese (ja)
Other versions
JP2001081506A (en
Inventor
和久 斉藤
弘毅 加藤
明朗 沢辺
健一 井上
貴行 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP25849199A priority Critical patent/JP3640577B2/en
Publication of JP2001081506A publication Critical patent/JP2001081506A/en
Application granted granted Critical
Publication of JP3640577B2 publication Critical patent/JP3640577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は,強磁性金属粉末を製造するのに好適な先駆物質に係り,特に,高密度磁気記録媒体用強磁性金属粉末の製造に適するように変性されたオキシ水酸化鉄系または酸化鉄系の粉末に関する。
【0002】
【従来の技術】
磁気テープや磁気デイスク等の塗布型磁気記録媒体の分野において,小型化,高容量化および長時間耐久化等の要望から高記録密度化が進んでいる。高記録密度化が進むと,磁性粉自体が高Hcおよび高σs を有していることに加え,テープ特性として保磁力が高く且つSFDが狭いこと(小さいこと)と角形比(Br/Bm)が大きいこと等が要求される。
【0003】
ここで,SFD値は,周知のように,テープのヒステリシスループのHc(保磁力) に対するその微分半値幅ΔHの比, ΔH/Hc 分布で表されるものであり,SFD値が大きいと磁化の立上りが急峻でなくなり,したがって,記録された信号の磁化反転の遷移領域の幅が大きくなるので,高密度の記録には適さない。SFD値の小さいものとしてはバリウムフエライトの磁性粉を用いたものが知られている。しかし,メタル系磁性粉を用いたものでは一般にSFD値が高くなり,この値が0.40以下のものは知られていない。酸化鉄磁性粉(Coで変性したもの)ではSFD値が0.40に達したものも報告されている。
【0004】
角形比(Br/Bm)は,テープの飽和磁束密度Bmに対するテープの残留磁束密度Brの比であり,Bmは磁性粉の飽和磁気量σs とテープにしたときの磁性粉の充填性で決まる。この角形比(Br/Bm)が高いと出力が向上する。したがって,高密度記録には角形比が高ければ高いほどよいが,メタル磁性粉を用いたテープではこれまでのところ角形比が0.92までに達したものが報告されている。しかし,角形比が0.93以上および又はSFD値が0.25以下を示すような高密度記録媒体は,メタル磁性粉を用いたテープでは知られていない。
【0005】
現在,高いHcと高いσs を有するメタル磁性粉として,鉄を主成分とする金属磁性粉末が実用化され,オーデイオ用,8mmVTR用,データ保存用テープ等の磁気記録媒体の磁性層を構成するのに幅広く利用されている。このような鉄を主成分とする金属磁性粉末は,針状の酸化鉄またはオキシ水酸化鉄の粉末を原料として,これを加熱還元することによって一般に製造される。この加熱還元時に,針状性が失われたり,粒子間の焼結が発生したりして品質が劣化するので,これを改善するための様々な提案がなされている。
【0006】
例えば,針状粒子表面にSi,Al,Ti,Ca,Zr,Mn,Zn,Ni,B,Mo,Cd,Pなどの元素やY,La,Ce,Pr,Nd,Pmをはじめとする希土類元素などを被着させる提案(特開平10−83906号,特開平9−171913号,特開平9−171914号,特開平8−236327号公報,特開平8−236326号公報,特開平8−102037号公報,特開平7−210856号公報,特開平6−25702号公報,特開平4−61302号公報,特開平2−107701号公報,特開昭63−13121号公報など)や,Alを固溶したオキシ水酸化鉄または酸化鉄を還元する方法(特公昭59−17161号公報)が知られている。このような提案について一般的に言えることは,AlまたはSiを含有したオキシ水酸化鉄や酸化鉄を原料として加熱還元すると,針状性の保持や焼結防止に有益に作用するということである。
【0007】
【発明が解決しようとする課題】
前記のような様々な提案がなされているにも拘わらず,これまでの鉄を主成分として金属磁性粉末の分野では,高記録密度化のためのさらなる要求には対応できなかったというのが実状である。例えば,テープ特性として(保磁力が2400(Oe )以上,角形比(Br/Bm)が0.93以上,および又はSFD値が0.25以下を達成できるような高密度磁気記録に適する塗布型磁気記録媒体用の磁性粉は,針状のオキシ水酸化鉄や酸化鉄を原料として製造する鉄を主体とする金属磁性粉末の分野では,実現できていなかった。本発明の課題はこれを実現することにある。
【0008】
【課題を解決するための手段】
前記の課題を解決するための手段として、本発明によれば、酸化鉄に、Co、Al、SiおよびR(RはYを含む希土類元素の少なくとも一種を表す)を含有させた針状粒子からなる磁性粉製造用先駆物質であって、該針状粒子が、Feに対してCoを0超え〜50at.%含有し且つFeに対して0.1〜30at.%のAlを固溶した酸化鉄粒子の表層部に、SiとR(ただし、粒子中のSi含有量はFeに対して0.1〜10at.%でR含有量はFeに対して0.1〜15at.%である)を含む層が被着したものである磁性粉製造用先駆物質を提供する。
【0009】
また本発明によれば、酸化鉄に、Co、Al、SiおよびR(RはYを含む希土類元素の少なくとも一種を表す)を含有させた針状粒子からなる粉末をガス還元してなる強磁性金属粉末であって、還元前の前記の針状粒子が、Feに対してCoを0超え〜50at.%含有し且つFeに対して0.1〜30at.%のAlを固溶した酸化鉄粒子の表層部に、SiとR(ただし、粒子中のSi含有量はFeに対して0.1〜10at.%でR含有量はFeに対して0.1〜15at.%である)を含む層が被着したものである、強磁性金属粉末を提供する。
【0010】
【発明の実施の形態】
本発明者らは前記の課題を解決すべく,針状のオキシ水酸化鉄または酸化鉄を原料として,これに各種の元素をその種類や含有形態を変えながら加える試験を数多く実施し,どのようにしたら,高密度磁気記録媒体に適する強磁性金属粉末が得られるかを知るべく研究を重ねた。その結果,数ある元素のなかで,Co,Al,SiおよびR(RはYを含む希土類元素の少なくとも一種を表す)の4種の元素を組み合わせ,これらの含有形態をそれぞれ特定の形態にしてオキシ水酸化鉄または酸化鉄に含有させると,これを還元した粉末は優れた特性をもつ金属磁性粉末となることがわかった。そして,この金属磁性粉末を用いると,後記の実施に示すように,保磁力(Hc)が2400(Oe )以上,角形比(Br/Bm)が0.93以上,SFD値が0.25以下を同時に満足する塗布型磁気記録媒体が得られることがわかった。
【0011】
以下に本発明の内容を具体的に説明する。
【0012】
本願と同一出願人に係る特公昭59−17161号公報には,Alを固溶したα−FeOOH又はFe23を還元することにより保磁力が1100(Oe )レベル,飽和磁束密度が140emu/g レベルの磁性粉が得られることが記載されているが,これだけでは,前記のような最近の高密度記録化への要求を満足することは困難である。
【0013】
そこで,このようなAlを固溶するオキシ水酸化鉄または酸化鉄をベースとして,これをさらに改善すべく種々の試験を行ったところ,Coを含有し,Alをを固溶した粒子の表層部にRとSiを被着させることが非常に有効であることを知った。
【0014】
まずCoについては,Feに対してCoを0超え〜50at.%含有させると(ここで「Feに対するCoのat.%」とは,Fe原子の数に対するCo原子の数の百分比すなわちCo/Feの原子比×100を表すものとし,他の元素についても同様とする),すなわちCo/Feの原子比(%)が0超え〜50at.%となるような量でCoを含有させると,含有させない場合に比べて, 得られる磁性粉のとくに飽和磁束密度(σs)を改善することができる。また,Coの含有により磁性粉の結晶粒径(X線粒径Dx)を小さくする効果や耐候性改善効果が奏される。Coの好ましい含有量は,Co/Feの原子比(%)で0超え〜50at.%,さらに好ましくは1〜40at.%,最も好ましくは3〜35at.%である。Coの含有形態については,AlやRの場合とは異なり,粒子中に含有されていても粒子の表層部に存在していてもよい。
【0015】
Rについては,Feに対して0.1〜15at.%,すなわちR/Feの原子比(%)が0.1〜15at.%,好ましくは1〜13at.%となるような量で含有させ且つその含有形態が針状粒子の表層部にRが被着した状態とすることにより,後述の実施例に示すように様々な有利な改善効果が得られることがわかった。とくに,RをFeに対して2at.%以上,さらに好ましくは5at.%以上の量で被着させると,磁気記録媒体のHc,Br/BmおよびSFD値が顕著に改善されることがわかった。針状粒子表面にRが“被着”した状態とは,実際には該粒子表面にRもしくはR化合物の濃縮層が形成されていることを意味しており,この濃縮層内に添加したRの実質上全てが存在するような被着状態が理想的である。このR濃縮層はアモルフアス,結晶,化合物層(酸化物や塩化物等)であることができる。また,針状粒子表面にRが被着した状態はESCA等の表面分析機器で解析すれば明瞭に判別できる。
【0016】
R元素はYおよびランタノイド元素やアクチノイド元素を言うが,とくにYまたはランタノイド元素であるのが好ましく,ランタノイド元素のうちでもLa,Ce,Pr,Nd,Sm,Eu,Tb,Dy,Gd,Ho等が使用に便である。これらの元素を複合して含有する場合には,その含有量については,その総量を0.1〜15at.%とする。好ましい含有量は2〜10at.%である。なお,この含有量はこれらの元素が化合物として含有されている場合,化合物の量ではなく化合物中の当該元素の含有量を言う。このR元素の被着含有により磁性粉のX線粒径が小さくなることもわかった。X線粒径(Dx)とはX線を用いて針状粒子の結晶子の大きさ(微粒子では短軸長に相当する)を測定した値であり,この値が小さいほど磁気変換特性のノイズが小さくなると言われている。また,このR元素の被着含有により磁性粉の針状性が良好となり保磁力も向上する。
【0017】
Siについては,その含有量はSi/Feの原子比が0.1〜10at.%であればよく,好ましくは1〜9at.%,特に3〜8at.%の範囲において磁気テープのSFDとBr/Bsが共に著しく改善される。そして,このようにSiを被着せさせると,強磁性粉末の「活性」が抑えられ,分散性や耐久性を改善できることがわかった。ここでいう活性とは,テープ化するさいに強磁性粉末を溶剤に混合する時の反応性をいう。強磁性粉末の活性が高いと混合時に溶剤が他の物質に反応(変性)する割合が高くなる。溶剤が他の物質に変化すると強磁性粉末の分散性やテープの耐久性,更には電磁変換特性へ悪影響を与えることになる。この反応性の評価は,混合時の上昇温度を測定することでその指標とすることができる。すなわち,混合時の上昇温度が高いと反応熱が多く発生したため,反応が活発に進んだと考える。今回,理由は不明だが,Siを被着したものは,しないものと比較して,混合時の温度上昇を抑えられることがわかった。
【0018】
針状粒子表面にSiが“被着”した状態とは,実際には該粒子表面にSiもしくはSi化合物の濃縮層が形成されていることを意味しており,この濃縮層内に添加したSiの実質上全てが存在するような被着状態が理想的である。このSi濃縮層はアモルフアス,結晶,化合物層(酸化物や塩化物等)であることができる。また,針状粒子表面にSiが被着した状態はESCA等の表面分析機器で解析すれば明瞭に判別できる。
【0019】
このように,針状粒子表面にRとSiを被着させるのであるが,この場合,R層の上にSi層を被着させる態様と,Si層にR層を被着させる態様と,RとSiを一体的に被着させる態様がある。本発明では,そのいずれでもよいが,効果の大きいのは,R層の上にSi層を被着させる態様であり,これによると,前記の「強磁性粉末の活性」を抑制できる効果が顕著になる。
【0020】
Alについては,前記のようにオキシ水酸化鉄または酸化鉄に“固溶”した状態で含有されていることが肝要であり,その含有量はAl/Feの原子比(%)で0.1〜30at.%であればよく,好ましくは1〜20at.%,さらに好ましくは2〜15at.%である。Al含有量は,Al元素が化合物として含有されている場合,化合物の量ではなく化合物中のAl元素の含有量を言い,このため,Feに対するAlの原子比(%)でAl含有量を表す。
【0021】
ここで,オキシ水酸化鉄または酸化鉄にAlを“固溶”するとは,オキシ水酸化鉄または酸化鉄の結晶を構成しているFeの一部がAlで置換されているような状態を言う。先の特公昭59−17161号公報には,オキシ水酸化鉄にAlを固溶した場合とAlを被着した場合のX線回折による格子定数の変化の様子が記載されており,Al固溶α−FeOOHの格子定数はα−FeOOHの格子定数とAlOOHの格子定数の中間の値となり,その値はAl/Feの原子比に比例したものとなると記載されている。すなわち,AlはFeよりもイオン半径が小さいので,α−FeOOHの結晶中のFeの一部がAlで置換されると,その置換量に応じて,その格子定数はα−FeOOHよりも小さくなると言える。他方,α−FeOOHの結晶の表面にAl(AlOOH)が被着した状態では,α−FeOOHの格子定数に近くなる。したがって,オキシ水酸化鉄または酸化鉄にAlが固溶しているか否かは,X線回折による格子定数の測定から明瞭に判別できる。
【0022】
図1,図2および図3は,後記の実施例1の条件で磁気テープを作成し,そのさい,Yの被着量とSiの被着量を種々変化させて得られた各磁気テープについて測定されたSFDの等高線図(図1),Br/Bm(磁性粉のSQと区別するためにSQxと表示)の等高線図(図2)および保磁力(磁性粉のHcと区別するためにHcxと表示)の等高線図(図3)である。
【0023】
これらの図に見られるように,YとSiの被着量をそれぞれ単独に増加させてもSFD値・SQx値およびHcxは向上してゆくが,YとSiを複合被着させた場合には,YおよびSiの被着量が適正であると,それらの単独被着の場合に現れる以上の効果が発現し,或る領域でピークを有することがわかる。とくにYの被着量がFeに対して4〜9at.%で且つSiの被着量がFeに対して3〜10at.%の場合に,SFD値が0.25以下,SQx値が0.93以上,Hcxが2500(Oe )以上となることがわかる。
【0024】
このようにAl,Co,RおよびSiを適切な量で且つその含有形態を適切にしてオキシ水酸化鉄または酸化鉄に含有させてなる本発明に従う先駆物質を還元処理すると,従来のものにはない保磁力,Br/BmおよびSFD値をもつ磁気テープの製作を可能とする金属磁性粉末が得られるが,この針状粒子からなる先駆物質の粒径や軸比は,先駆物質がオキシ水酸化鉄系である場合には,長軸長が0.01〜0.60μm,短軸長が0.001〜0.060μm,軸比が1〜30であるのがよく,このオキシ水酸化鉄系のものから脱水して酸化物系とした先駆物質の場合には,長軸長が0.01〜0.50μm,短軸長が0.001〜0.050μm,軸比が1〜30であるのがよい。
【0025】
本発明に従う先駆物質を製造するには,Al固溶のオキシ水酸化鉄を製造し,これにRとSiの被着処理を行うことを原則とし,Coについてはオキシ水酸化鉄の生成過程の途中またはその前後に含有させればよい。以下にその代表的な方法を説明する。
【0026】
まずAl固溶のオキシ水酸化鉄を製造するには,通常のオキシ水酸化鉄の生成反応である第一鉄塩水溶液(FeSO4やFeCl2の水溶液)を水酸化アルカリ(NaOHやKOH水溶液)で中和したあと空気等で酸化してα−FeOOHを生成させる方法において,このα−FeOOHの生成反応を水溶性Al塩やアルミン酸塩の存在下で行えばよい。別法として,前記のような第一鉄塩溶液を炭酸アルカリで中和したあと空気等で酸化してα−FeOOHを生成させる方法において(この方法では紡錘状の水酸化鉄が得られやすい),このα−FeOOHの生成反応を水溶性Al塩やアルミン酸塩の存在下で行えばよい。さらに別法として,第二鉄塩水溶液(FeCl3水溶液等)をNaOH等で中和する反応を水溶性Al塩やアルミン酸塩の存在下で行う方法でもよい。最後の方法では平針状の水酸化鉄が得られやすい。
【0027】
このAl固溶オキシ水酸化鉄の製造において,Coを含有させるには,前記のオキシ水酸化鉄生成前の鉄塩水溶液,或いはオキシ水酸化鉄生成途中の液に水溶性Co塩(例えばCoCl2)を添加しておけばよい。また,得られたAl固溶オキシ水酸化鉄を水中に分散させたあと,これに前記のCo塩を添加してアルカリで中和する方法や,該分散液から水を蒸発させる方法などによっても,Al固溶オキシ水酸化鉄にCoを含有させることができる。
【0028】
このようにして得られたCo含有Al固溶オキシ水酸化鉄粒子にRを被着するには,水溶性R塩(例えばRの硝酸塩等)の水溶液にこの粒子を分散させ,この分散液から水分を蒸発させる方法や,この分散液にアルカリを添加して中和する方法により,該粒子の表面にRを被着させることができる。
【0029】
また,前記のCo含有Al固溶オキシ水酸化鉄粒子を脱水処理してCo含有Al固溶酸化鉄(Co含有Al固溶のFe23粒子)としたうえで,この酸化鉄系粒子に前記のようなR被着処理を行ってもよい。具体的には,前記のようにして得たCo含有Al固溶オキシ水酸化鉄粒子を200〜600℃で空気中で加熱処理してCo含有Al固溶酸化鉄粒子とし,この酸化鉄系粒子を水溶性R塩(例えばRの硝酸塩等)の水溶液に分散させ,NaOH等のアルカリを添加して中和することによって,該粒子表面にRを被着させ,ろ過,水洗後,空気中で適当な温度例えば200℃で焼成するのがよい。この方法においてCo含有Al固溶オキシ水酸化鉄を加熱処理して脱水してもAlは該粒子中に固溶した状態に維持される。また,これをRを被着させたあと200℃程度の温度で空気中加熱処理してもRの被着状態はそのまま維持される。この方法に代えて,CoAl固溶酸化鉄粒子を水溶性R塩(例えばRの硝酸塩等)の水溶液中に分散させ,この分散液から水分を蒸発させる方法でも,同様にCo含有Al固溶酸化鉄にRを被着させることができる。このようにRを被着処理したあと,150〜250℃の比較的低温で焼成処理すると,Rを該粒子表面に固定することができる。
【0030】
粒子表面にSiを被着するには、,水溶性Si塩(例えばケイ酸ナトリウム)の水溶液に当該粒子を分散させ,この分散液から水分を蒸発させる方法や,この分散液に酸を添加して中和する方法により,該粒子表面にSiを被着させることができる。このSiの被着は,Coを含有したAl固溶オキシ水酸化鉄に被着しても良く,またCo含有Al固溶オキシ水酸化鉄を脱水処理して,Al固溶酸化鉄としたうえで,この酸化鉄に被着しても良い。いずれの場合でも,RとSiの被着の順序は,先にRを被着してからSiを被着しても,またSiを先に被着した後にRを被着しても良い。さらに,Rを被着したCo含有Al固溶オキシ水酸化鉄を脱水処理して酸化鉄にしてSiを被着したり,Siを被着したCo含有Al固溶オキシ水酸化鉄を脱水処理して酸化鉄にしてRを被着しても良い。
【0031】
RとSiを一体的に被着させるには,Rの水溶性塩とSiの水溶性塩を同時に使用すればよいが,Rの水溶性塩とSiの水溶性塩の混合水溶液を予め調整すると,Rの水溶性塩は酸性でSiの水溶性塩はアルカリなので混合時に沈澱物が生じる。このため,粒子表面にRとSiを一体的に被着させるには両液を粒子が存在する状態で混合する必要がある。
【0032】
なお,Coの含有処理については,前記のオキシ水酸化鉄の状態で含有させる場合のほか,Al固溶酸化鉄系粒子の状態から含有させもよい。例えば,Al固溶オキシ水酸化鉄系粒子を得たあと,これを空気中で加熱してAl固溶酸化鉄系粒子とし,この酸化鉄系粒子を水中に分散させたあと,これに前記のCo塩を添加してアルカリで中和する方法や,該分散液から水を蒸発させる方法などによって,Co含有Al固溶酸化鉄系粒子を得ることができ,このようにして得られたCo含有Al固溶酸化鉄系粒子に対して,前記と同様のR被着処理およびSi被着処理を行うことによっても,前記と同様の本発明に従う先駆物質を得ることができる。
【0033】
このようにして得られた本発明に従う先駆物質は,これを還元処理するとAl,Co,RおよびSiを含有した金属磁性粉末となる。本発明に従う先駆物質がオキシ水酸化鉄系粒子の場合には,還元処理に先立って,空気中で200〜600℃の温度に加熱する脱水処理を行ない,これによって酸化鉄系粒子としてから,金属磁性粉末にまで還元するのがよい。もっともこの脱水処理のための加熱処理と,これに引続く還元処理は,同一反応容器で雰囲気ガスを切換えることによって,連続した操作で実施することもできる。
【0034】
還元処理は,水素ガス等の還元性雰囲気中で300〜700℃の温度で加熱還元すればよい。その最適温度は先駆物質中のAl量,Co量,R量およびSi量によってそれぞれ異なるが300〜700℃の範囲内で選定される。還元処理後は調湿処理(水蒸気を含む雰囲気での処理)することにより,適量の水分を保有した耐酸化性を有する金属磁性粉末が得られる。
【0035】
金属磁性粉末が保有する水分は100℃で検出(放出)される量が2.0重量%以下,好ましくは1.5重量%以下であること,また300℃で検出(放出)される量が4.0重量%,好ましくは3.0重量%以下であるのが良い。該粉末が保有する水分量により,磁性層にするための塗料の粘度が変化し,バイダー吸着量も変化するが,100℃で検出される水分量が2.0重量%を超えると,または300℃で検出される水分量が4.0重量%を超えると塗布のさいに分散不十分となる。
【0036】
そのほか,周期律表第1a族元素例えばLi,Na,K等や周期律表第2a族元素例えばMg,Ca,Sr,Ba等が前記の金属磁性粉末粒子の表面に付着していると,樹脂系バインダーに分散させる場合に分散性を悪くし,また,媒体製品の保存安定性や耐候性を劣化させる。また,第1a族元素が先駆物質中に存在すると還元工程で焼結を促進する作用もあることがわかった。したがって,これらの元素類は還元工程前に出来るだけ排除しておくのがよい。すなわち本発明に従う先駆物質は,これを還元した後の周期律表第1a族元素の含有量が0.05重量%以下(これら元素が複数含有する場合にもその総量が0.05重量%以下),また同じく還元した後の周期律表第2a族元素の含有量が0.1重量%以下(これら元素が複数含有する場合にもその総量が0.1重量%以下)となるものであるのが好ましい。これらの元素は本発明の先駆物質を製造するさいの原料や中和工程等で混入しやすいが,混入した場合にはその除去処理を十分に行うのが望ましい。
【0037】
また,本発明の先駆物質を還元して得た強磁性金属粉末は平均長軸長が0.01〜0.40μmであるのが好ましい。平均長軸長が0.01μm未満では超常磁性となり,また0.40μmを超えると粒子が多磁区となりやすく,このため,いずれもテープとしたときの電磁変換特性が低下する。強磁性金属粉末の結晶子(X線結晶粒径Dx)は50〜250オングストロームであるのがよく,50オングストローム未満では超常磁性となり,250オングストロームを超えるとノイズが増大してテープの電磁変換特性が低下する。
【0038】
さらに,該強磁性金属粉末の真密度は5.3g/cm3以上であるのがよい。比表面積はBET法で30〜70m2/g であるのがよく,30m2/g 未満ではテープ化するときの樹脂との相溶性が悪くなって電磁変換特性を低下させ,70m2/g を超えるとテープ化時に分散不良を起こしてやはり電磁変換特性を低下させやすくなる。
【0039】
このような強磁性金属粉末で塗布型磁気記録媒体の磁性層を形成する場合,磁性層の形態としては,支持フイルム上に磁性層の単層を塗布するもののほか,支持フイルムと磁性層の間に非磁性粉末を用いた非磁性塗布層(下層)を形成することによって,より薄くて平滑な磁性層(上層)を形成するいわゆる多層構造の塗布型磁気記録媒体のいずれに対しても適用できる。また,後者の下層と上層とからなる多層構造の場合には,下層を形成するための非磁性粉末として,本発明に従う先駆物質をそのまま適用することができる。
【0040】
【実施例】
〔実施例1〕
0.2モル/L(Lはリットル)のFeSO4水溶液10Lに,10モル/LのNa2CO3水溶液1Lと,Al/Feの原子比(%)=13at.%となる量のアルミン酸ナトリウムを加えて53℃で空気を6時間吹込んだ。この酸化処理のあと,Co/Feの原子比(%)=30at.%となる量のCoCl2を加え,30時間熟成した。この沈澱物を濾過,水洗,乾燥した。得られた粉体は,α−FeOOHに,Feに対しCoを29at.%含み且つFeに対しAlを12.7at.%固溶した,長軸長さ0.14μm,短軸長さ0.024μm,軸比6の針状粒子からなるものであった。
【0041】
ついで,前記のオキシ水酸化鉄系粉体を空気中で450℃で焼成して,酸化鉄系粉体とし,この酸化鉄系粉体を水中に分散させた。この分散液にY/Feの原子比(%)=6.5at.%となる量の硝酸イットリウムを加え,NaOHを添加して53℃で中和し, 該粒子表面にイットリウムを被着させた。その後,液から濾別し,水洗後, 空気中で200℃で焼成した。このようにして得られたYを粒子表面に被着したCo含有Al固溶酸化鉄を水中に分散させ,その分散液に,Si/Feの原子比(%)=6.5at.%となる量のケイ酸ナトリウムを加え60分間攪拌後このスラリーを乾燥機に入れ100oCで水分を蒸発させてSiを被着させた。得られた粉体は,Feに対しCoを29at.%含み且つFeに対しAlを12.7at.%固溶し,そしてFeに対しYを6.2at.%被着し,Feに対してSiを5.5at.%被着した長軸長さ0.12μm,短軸長さ0.022μm,軸比5.6の針状粒子からなるものであった。
【0042】
こうして得られたAl固溶Co含有Y・Si被着の酸化鉄系粒子からなる粉末10gを回転炉に装填しH2気流を導入して450℃で10時間加熱還元した。還元終了後,N2ガスを導入して室温まで冷却した。ついで,1%のO2を含むN2ガスを導入して5時間処理した。得られた金属磁性粉末は長軸長さ=0.10μm,X線結晶粒径Dx=165オングストローム,比表面積(BET)=61m2/g であり,その磁気特性は保磁力(Hc)=2470(Oe),飽和磁化率(σs)=141emu/g, σr/σs =0.523(σrは残留磁束密度emu/g ),Δσs=10%であった。Δσsは60℃・相対湿度90%RHの雰囲気下で1週間放置後の飽和磁化率σsの低下率であり,この値が小さいほど耐酸化性に優れていることを示す。この強磁性金属粉末粒子が含有するCo量,Al量,Y量およびSi量はそれぞれFeに対し29at.%,12.7at.%,6.2at.%および5.5at.%であった。これらの強磁性金属粉末の諸特性値を表1に示した。
【0043】
なお,前記粒子の長軸長さ,短軸長さおよび軸比については,174000倍の電子顕微鏡写真から測定した100個の粒子の平均値で示した。結晶粒径(Dx)は,X線回折装置を用いて得られたプロフイルから(110)面に相当するピークの半価幅を求め,これをシェラーの式に代入して算出した。また,表1のΔTは,強磁性金属粉末とテープ溶剤との反応性の指標であり,この値は,強磁性金属粒子を容器に20g取り,溶剤として使用されるシクロヘキサンを30g添加し,添加直後の上昇温度を測定したものである。本例の強磁性金属粉末のΔTは8℃であった。
【0044】
得られた強磁性金属粉末を磁気テープ作製試験に供した。試験は,強磁性金属粉末100重量部に対し以下の材料を下記組成となるような割合で配合して遠心ボールミルで1時間分散させて磁性塗料を作製し,この磁性塗料をポリエチレンテレフタレートからなるベースフイルム上にアプリケーターを用いて目標厚みが3μmとなるように塗布することにより,磁気テープを作製した。
【0045】
〔塗料の組成〕
金属磁性粉末 100重量部
ポリウレタン樹脂 30重量部
メチルエチルケトン190重量部
シクロヘキサノン 80重量部
トルエン 110重量部
ステアリン酸 1重量部
アセチルアセトン 1重量部
アルミナ 3重量部
カーボンブラック 2重量部
【0046】
得られた磁気テープの磁気特性を測定したところ,保磁力Hc=2630(Oe ),残留磁束密度Br=4287(ガウス),飽和磁束密度Bm=4561(ガウス),角形比Br/Bm=0.94であり,磁気テープのヒステリシスループから算出したSFD値は0.22を示し,Hi8デッキを用いて測定した電磁変換特性の出力とC/N比はそれぞれ1.13dB,1.43dBであった。これらの磁気テープ特性を表2に示した。
【0047】
〔実施例2〕
硝酸イットリウムの添加量をY/Feの原子比(%)=5.3at.%相当量となるように,そしてケイ酸ナトリウムの添加量をSi/Feの原子比(%)=5.9at.%相当量となるように変更した以外は,実施例1に従った。得られた強磁性金属粉末および磁気テープの各特性を表1および表2に併記した。
【0048】
〔比較例1〕
硝酸イットリウムの添加量をY/Feの原子比(%)=12.5at.%相当量となるように変更し,ケイ酸ナトリウムは添加しなかった以外は,実施例1に従った。得られた強磁性金属粉および磁気テープの各特性を表1および表2に併記した。
【0049】
〔比較例2〕
ケイ酸ナトリウムの添加量をSi/Feの原子比(%)=13.0at.%相当量となるように変更し,硝酸イットリウムは添加しなかった以外は,実施例1に従った。得られた強磁性金属粉末および磁気テープの各特性を表1および表2に併記した。
【0050】
〔比較例3〕
アルミン酸ナトリウムの添加を,塩化コバルトを添加し熟成した後の時点に変更し,硝酸イットリウムの添加量をY/Feの原子比(%)=12.5at.%相当量となるように変更し,ケイ酸ナトリウムは添加しなかった以外は,実施例1に従った。得られた強磁性金属粉および磁気テープの各特性を表1および表2に併記した。
【表1】

Figure 0003640577
【0051】
【表2】
Figure 0003640577
【0052】
表1〜表2に見られるように,実施例1〜2のものでは,SFD値0.25以下,角形比(SQx=Br/Bm)0.93以上,保磁力2400(Oe )以上の高特性の磁気テープが得られるのに対し,比較例のものではその値が達成できず,電磁変換特性が必ずしも良好ではない。
【0053】
〔実施例n〕
硝酸イットリウムの添加量をY/Feの原子比(%)で0〜15at.%の範囲で変化させ,また,ケイ酸ナトリウムの添加量をSi/Feの原子比(%)で0〜11at.%の範囲で変化させた以外は,実施例1に従った。得られた各磁気テープについて,SFD,Br/Bm(SQxと表示)および保磁力(Hcxと表示)を測定し,これらの値を,強磁性粉末中のY量とSi量を横軸と縦軸として平面図上で等高線で表現し,これを図1〜図3に示した。
【0054】
図1は,各強磁性金属粉末中の各Y量at.%(Feに対するYの原子百分比)とSi量at.%(Feに対するSiの原子百分比)がどのように磁気テープのSFD値に影響するかを等高線で表示したものである。図1から,SFD値はSi被着量の特定範囲とY被着量の特定範囲で最も低くなるボトム領域があることがわかる。本例ではFeに対するSi被着量がほぼ4〜9at.%,Y被着量がほぼ4〜8at.%の領域ではSFD値は0.25以下となる。
【0055】
図2は,各強磁性金属粉末中の各Y量at.%(Feに対するYの原子百分比)とSi量at.%(Feに対するSiの原子百分比)がどのように磁気テープのBr/Bm(SQx)に影響するかを等高線で表示したものである。図2から,SQxはSi被着量の特定範囲とY被着量の特定範囲でピークを示す領域があることがわかる。本例では,Feに対するSi被着量がほぼ3〜11at.%,Y被着量がほぼ4〜9at.%でSQxは0.93以上となる。
【0056】
図3は,各強磁性金属粉末中の各Y量at.%(Feに対するYの原子百分比)とSi量at.%(Feに対するSiの原子百分比)がどのように磁気テープの保磁力(Hcx)に影響するかを等高線で表示したものである。図3から,HcxはSi被着量の特定範囲とY被着量の特定範囲でピークを示す領域があることがわかる。高いHcxを得るに望ましいY被着量は2〜13%でSi被着量は2〜9%である。
【0057】
図1〜3の結果から,SFD値0.25以下,角形比(SQx=Br/Bm)0.93以上,保磁力2400(Oe )以上さらには2500(Oe )以上の,従来のものにはない高特性の磁気テープが得られることがわかる。この全要件を満たす場合の,強磁性金属粉末のY被着量とSi被着量は特定の狭い領域にあり,Y被着量についてはFeに対して4〜9at.%,Si被着量についてはFeに対して2〜9at.%である。
【0058】
Al固溶オキシ水酸化鉄または酸化鉄の焼結防止に及ぼすSiとYの効果を比較すると,Siの方がYよりも焼結防止効果が低いこと,Yはその被着量が多くなるに従って焼結防止効果は高くなるが,あまり多すぎると配向特性が低下してくる。すなわち,Si単独被着では粒子の針状性保持効果を高いものの焼結時に粒子間を結合させる傾向があり,Y単独被着では,その被着量が多くなると粒子が凝集しやすくなる(TEM像で確認)ので,あまり多すぎると凝集による配向特定の低下が見られるようになる。ところが,SiとYを複合被着させた場合には,前記の試験に見られるように,或る狭い被着量領域において,テープ特性の向上が見られ,Y単独での効果が飽和する付近でSiを共存させると,今までにないSFD値が得られている。このことは,粒子間を結合させるSiの作用がYによって抑制され,同時にYによってSiの形状保持効果が有利に発現できたのではないかと推察される。
【0059】
【発明の効果】
以上説明したように,本発明によると,高密度磁気記録に適した塗布型磁気記録媒体の性能向上に大きく貢献できる強磁性金属粉末およびその先駆物質が提供される。とくに,本発明によれば,これまでの水準を超えた保磁力が2500(Oe )以上,角形比(Br/Bm)が0.93以上およびSFD値が0.25以下の磁気テープが製作できるようになる。
【図面の簡単な説明】
【図1】強磁性金属粉末へのY被着量(Feに対する原子比%)とSi被着量(Feに対する原子比%)が,その強磁性金属粉末を用いた磁気テープのSFDにどのように影響するかを等高線で示した関係図である。
【図2】強磁性金属粉末へのY被着量(Feに対する原子比%)とSi被着量(Feに対する原子比%)が,その強磁性金属粉末を用いた磁気テープのSQx(角形比)にどのように影響するかを等高線で示した関係図である。
【図3】強磁性金属粉末へのY被着量(Feに対する原子比%)とSi被着量(Feに対する原子比%)が,その強磁性金属粉末を用いた磁気テープのHcx(保磁力)にどのように影響するかを等高線で示した関係図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a precursor suitable for producing a ferromagnetic metal powder, and more particularly, an iron oxyhydroxide system or an iron oxide system modified to be suitable for production of a ferromagnetic metal powder for high-density magnetic recording media. Relating to the powder.
[0002]
[Prior art]
In the field of coating-type magnetic recording media such as magnetic tapes and magnetic disks, recording density is increasing due to demands for miniaturization, higher capacity, and longer durability. As the recording density increases, the magnetic powder itself has high Hc and high σ s, as well as high coercive force and narrow SFD as tape characteristics, and squareness ratio (Br / Bm). Is required to be large.
[0003]
Here, as is well known, the SFD value is represented by the ratio of the differential half width ΔH to the Hc (coercivity) of the hysteresis loop of the tape, ΔH / Hc distribution. The rise is not steep, and therefore the width of the transition region of the magnetization reversal of the recorded signal is increased, which is not suitable for high-density recording. As one having a small SFD value, one using barium ferrite magnetic powder is known. However, those using metal-based magnetic powder generally have high SFD values, and those having this value of 0.40 or less are not known. It has also been reported that iron oxide magnetic powder (modified with Co) has an SFD value of 0.40.
[0004]
The squareness ratio (Br / Bm) is the ratio of the residual magnetic flux density Br of the tape to the saturated magnetic flux density Bm of the tape, and Bm is determined by the saturation magnetic quantity σs of the magnetic powder and the filling property of the magnetic powder when the tape is formed. When this squareness ratio (Br / Bm) is high, the output is improved. Accordingly, a higher squareness ratio is better for high-density recording, but tapes using metal magnetic powder have been reported so far in which the squareness ratio has reached 0.92. However, a high-density recording medium having a squareness ratio of 0.93 or more and / or an SFD value of 0.25 or less is not known for a tape using metal magnetic powder.
[0005]
Currently, as a magnetic metal powder having high Hc and high σs, a metal magnetic powder mainly composed of iron has been put into practical use, and constitutes a magnetic layer of a magnetic recording medium such as an audio, 8 mm VTR, or data storage tape. Widely used. Such a metal magnetic powder containing iron as a main component is generally produced by using a needle-like iron oxide or iron oxyhydroxide powder as a raw material and heating and reducing it. At the time of this heat reduction, the acicularity is lost or the sintering between particles occurs, so that the quality deteriorates. Various proposals have been made to improve this.
[0006]
For example, elements such as Si, Al, Ti, Ca, Zr, Mn, Zn, Ni, B, Mo, Cd, and P, and rare earths including Y, La, Ce, Pr, Nd, and Pm are formed on the surface of the acicular particles. Proposals for depositing elements and the like (JP-A-10-83906, JP-A-9-171913, JP-A-9-171914, JP-A-8-236327, JP-A-8-236326, JP-A-8-102037) No. 7, JP-A-7-210856, JP-A-6-25702, JP-A-4-61302, JP-A-2-107701, JP-A-63-13121, etc.), Al A method of reducing dissolved iron oxyhydroxide or iron oxide (Japanese Patent Publication No. 59-17161) is known. What can be generally said about such a proposal is that heat reduction using iron oxyhydroxide or iron oxide containing Al or Si as a raw material has a beneficial effect on maintaining acicularity and preventing sintering. .
[0007]
[Problems to be solved by the invention]
In spite of various proposals as described above, in the field of metal magnetic powders based on iron as the main component, it has not been possible to meet further demands for higher recording density. It is. For example, a coating type suitable for high density magnetic recording that can achieve tape characteristics (coercive force of 2400 (Oe) or more, squareness ratio (Br / Bm) of 0.93 or more, and / or SFD value of 0.25 or less). Magnetic powders for magnetic recording media have not been realized in the field of iron-based metallic magnetic powders made from needle-like iron oxyhydroxide or iron oxide as raw materials. There is to do.
[0008]
[Means for Solving the Problems]
As a means for solving the above-described problems, according to the present invention, from an acicular particle containing iron oxide containing Co, Al, Si, and R (R represents at least one kind of rare earth elements including Y). A precursor for magnetic powder manufacturing, wherein the acicular particles contain 0 to 50 at.% Co with respect to Fe and 0.1 to 30 at.% Al with respect to Fe as a solid solution. On the surface layer of the iron particles, Si and R (however, the Si content in the particles is 0.1 to 10 at.% Relative to Fe and the R content is 0.1 to 15 at.% Relative to Fe) Provided is a precursor for magnetic powder production in which a layer containing is deposited.
[0009]
Further, according to the present invention, a ferromagnetic material obtained by gas reduction of a powder composed of acicular particles containing Co, Al, Si and R (R represents at least one kind of rare earth element including Y) in iron oxide. Iron oxide, which is a metal powder, and in which the acicular particles before reduction contain 0 to 50 at.% Co with respect to Fe and 0.1 to 30 at.% Al with respect to Fe as a solid solution Si and R (wherein the Si content is 0.1 to 10 at.% With respect to Fe and the R content is 0.1 to 15 at.% With respect to Fe) on the surface layer of the particle Provided is a ferromagnetic metal powder, to which the containing layer is deposited.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
In order to solve the above-mentioned problems, the present inventors have conducted a number of tests in which needle-like iron oxyhydroxide or iron oxide is used as a raw material and various elements are added to the raw material while changing the type and the form of inclusion. Then, research was repeated to find out if ferromagnetic metal powders suitable for high-density magnetic recording media could be obtained. As a result, among a number of elements, four elements of Co, Al, Si, and R (R represents at least one kind of rare earth elements including Y) are combined, and these inclusion forms are made into specific forms, respectively. It was found that when incorporated in iron oxyhydroxide or iron oxide, the reduced powder becomes a magnetic metal powder with excellent properties. When this metal magnetic powder is used, as will be described later, the coercive force (Hc) is 2400 (Oe) or more, the squareness ratio (Br / Bm) is 0.93 or more, and the SFD value is 0.25 or less. It was found that a coating type magnetic recording medium satisfying the above can be obtained.
[0011]
The contents of the present invention will be specifically described below.
[0012]
Japanese Patent Publication No. Sho 59-17161, which belongs to the same applicant as the present application, describes α-FeOOH or Fe in which Al is dissolved. 2 O Three It is described that a magnetic powder with a coercive force level of 1100 (Oe) and a saturation magnetic flux density of 140 emu / g level can be obtained by reducing the above, but this alone leads to the recent high-density recording as described above. It is difficult to satisfy these requirements.
[0013]
Therefore, based on iron oxyhydroxide or iron oxide, which is a solid solution of such Al, various tests were carried out to further improve this. As a result, the surface layer portion of particles containing Co and containing Al as a solid solution was studied. It was found that it was very effective to deposit R and Si.
[0014]
First, regarding Co, when Co is contained in an amount exceeding 0 to 50 at.% With respect to Fe (here, “at.% Of Co with respect to Fe” means the percentage of the number of Co atoms to the number of Fe atoms, that is, Co / Fe The atomic ratio x100 of the same, and the same applies to other elements), that is, if Co is contained in such an amount that the atomic ratio (%) of Co / Fe exceeds 0 to 50 at. Compared with the case where the magnetic powder is not used, the saturation magnetic flux density (σs) of the obtained magnetic powder can be improved. In addition, the effect of reducing the crystal grain size (X-ray grain size Dx) of the magnetic powder and improving weather resistance are exhibited by the inclusion of Co. The preferred Co content is more than 0 to 50 at.%, More preferably 1 to 40 at.%, And most preferably 3 to 35 at.% In terms of Co / Fe atomic ratio (%). Concerning the Co-containing form, unlike the case of Al or R, it may be contained in the particle or may be present in the surface layer portion of the particle.
[0015]
R is contained in an amount such that 0.1 to 15 at.% Of Fe, that is, the atomic ratio (%) of R / Fe is 0.1 to 15 at.%, Preferably 1 to 13 at.%. And it turned out that various advantageous improvement effects are acquired as shown in the below-mentioned Example by making the containing form into the state which R adhered to the surface layer part of the acicular particle | grains. In particular, it was found that Hc, Br / Bm, and SFD values of the magnetic recording medium were remarkably improved when R was deposited in an amount of 2 at.% Or more, more preferably 5 at.% Or more of Fe. . The state in which R is “deposited” on the surface of the acicular particles means that a concentrated layer of R or R compound is actually formed on the surface of the particles, and the R added in the concentrated layer. Ideally, a deposition state in which substantially all of the above exists. This R enriched layer can be amorphous, crystalline, or compound layer (oxide, chloride, etc.). Further, the state in which R is deposited on the surface of the acicular particles can be clearly discriminated by analyzing the surface analysis equipment such as ESCA.
[0016]
The R element refers to Y and a lanthanoid element or actinoid element. Particularly, Y or a lanthanoid element is preferable. Among the lanthanoid elements, La, Ce, Pr, Nd, Sm, Eu, Tb, Dy, Gd, Ho, etc. Is convenient to use. When these elements are contained in combination, the total amount is 0.1 to 15 at.%. The preferred content is 2 to 10 at.%. In addition, this content means content of the said element in a compound instead of the quantity of a compound, when these elements are contained as a compound. It has also been found that the X-ray particle size of the magnetic powder is reduced by the inclusion of the R element. The X-ray particle size (Dx) is a value obtained by measuring the crystallite size (corresponding to the short axis length for fine particles) using X-rays, and the smaller this value, the noise of the magnetic conversion characteristics. Is said to be smaller. Further, the inclusion of the R element improves the acicularity of the magnetic powder and improves the coercive force.
[0017]
As for the Si content, the Si / Fe atomic ratio may be 0.1 to 10 at.%, Preferably 1 to 9 at.%, Particularly 3 to 8 at.%, And the SFD and Br of the magnetic tape. Both / Bs are significantly improved. And it was found that when Si was deposited in this way, the “activity” of the ferromagnetic powder was suppressed, and the dispersibility and durability could be improved. The activity here means the reactivity when the ferromagnetic powder is mixed with the solvent when taped. When the activity of the ferromagnetic powder is high, the proportion of the solvent reacting (modifying) with other substances during mixing increases. If the solvent is changed to other substances, the dispersibility of the ferromagnetic powder, the durability of the tape, and the electromagnetic conversion characteristics will be adversely affected. This reactivity evaluation can be used as an index by measuring the temperature rise during mixing. In other words, if the temperature rise during mixing is high, a large amount of heat of reaction is generated, and the reaction is considered to have progressed actively. This time, the reason is unknown, but it was found that the temperature increase during mixing can be suppressed in the case where Si is applied, compared to the case where Si is not applied.
[0018]
The state in which Si is “deposited” on the surface of the acicular particles means that a concentrated layer of Si or Si compound is actually formed on the surface of the particles. Ideally, a deposition state in which substantially all of the above exists. This Si enriched layer can be an amorphous, crystal, or compound layer (oxide, chloride, etc.). Further, the state where Si is deposited on the surface of the acicular particles can be clearly discriminated by analyzing the surface analysis equipment such as ESCA.
[0019]
Thus, R and Si are deposited on the surface of the acicular particles. In this case, a mode in which the Si layer is deposited on the R layer, a mode in which the R layer is deposited on the Si layer, and R And Si are integrally deposited. In the present invention, any of them may be used, but the effect is significant in the aspect of depositing the Si layer on the R layer. According to this, the effect of suppressing the “activity of the ferromagnetic powder” is remarkable. become.
[0020]
As described above, it is important that Al is contained in the form of “solid solution” in iron oxyhydroxide or iron oxide as described above, and the content is 0.1 in terms of the atomic ratio (%) of Al / Fe. It may be ˜30 at.%, Preferably 1 to 20 at.%, More preferably 2 to 15 at.%. When the Al element is contained as a compound, the Al content refers to the content of the Al element in the compound, not the amount of the compound. For this reason, the Al content is expressed by the atomic ratio (%) of Al to Fe. .
[0021]
Here, “solid solution” of Al in iron oxyhydroxide or iron oxide means a state in which a part of Fe constituting the iron oxyhydroxide or iron oxide crystal is substituted with Al. . In Japanese Patent Publication No. 59-17161, the state of change in lattice constant by X-ray diffraction when Al is dissolved in iron oxyhydroxide and when Al is deposited is described. It is described that the lattice constant of α-FeOOH is an intermediate value between the lattice constant of α-FeOOH and the lattice constant of AlOOH, and the value is proportional to the atomic ratio of Al / Fe. That is, since Al has a smaller ionic radius than Fe, if a part of Fe in the α-FeOOH crystal is substituted with Al, the lattice constant becomes smaller than α-FeOOH depending on the amount of substitution. I can say that. On the other hand, when Al (AlOOH) is deposited on the surface of the α-FeOOH crystal, it is close to the lattice constant of α-FeOOH. Therefore, whether or not Al is dissolved in iron oxyhydroxide or iron oxide can be clearly determined from the measurement of the lattice constant by X-ray diffraction.
[0022]
1, FIG. 2 and FIG. 3 show magnetic tapes produced under the conditions of Example 1 to be described later, and various magnetic tapes obtained by variously changing the deposition amount of Y and the deposition amount of Si. Contour plot of measured SFD (FIG. 1), contour plot of Br / Bm (labeled SQx to distinguish from SQ of magnetic powder) and coercivity (Hcx to distinguish from Hc of magnetic powder) Is a contour map (FIG. 3).
[0023]
As can be seen from these figures, the SFD value, SQx value, and Hcx are improved even when the deposition amounts of Y and Si are individually increased, but when Y and Si are deposited together, It can be seen that if the deposition amounts of Y, Y and Si are appropriate, effects more than those appearing in the case of single deposition of these materials are manifested, and there is a peak in a certain region. In particular, when the deposition amount of Y is 4 to 9 at.% With respect to Fe and the deposition amount of Si is 3 to 10 at.% With respect to Fe, the SFD value is 0.25 or less and the SQx value is 0.3. It can be seen that 93 or more and Hcx is 2500 (Oe) or more.
[0024]
Thus, when the precursor according to the present invention containing Al, Co, R, and Si in an appropriate amount and containing them in an appropriate form and contained in iron oxyhydroxide or iron oxide is reduced, The metal magnetic powder that enables the production of magnetic tapes with no coercive force, Br / Bm and SFD values can be obtained, but the particle size and axial ratio of the precursor consisting of these needle-shaped particles are In the case of iron-based, the major axis length is preferably 0.01 to 0.60 μm, the minor axis length is 0.001 to 0.060 μm, and the axial ratio is 1 to 30, and this iron oxyhydroxide system In the case of an oxide-based precursor dehydrated from the above, the major axis length is 0.01 to 0.50 μm, the minor axis length is 0.001 to 0.050 μm, and the axial ratio is 1 to 30. It is good.
[0025]
In order to manufacture the precursor according to the present invention, in principle, an iron oxyhydroxide in an Al solid solution is manufactured and subjected to an R and Si deposition treatment. It may be contained in the middle or before and after. A typical method will be described below.
[0026]
First, in order to produce Al solid solution iron oxyhydroxide, a ferrous salt aqueous solution (FeSO 4), which is an ordinary iron oxyhydroxide formation reaction, is used. Four And FeCl 2 In the method of neutralizing with an alkali hydroxide (NaOH or KOH aqueous solution) and then oxidizing with air or the like to produce α-FeOOH, this α-FeOOH formation reaction is carried out with a water-soluble Al salt or aluminate. It can be done in the presence. Alternatively, in a method in which a ferrous salt solution as described above is neutralized with alkali carbonate and then oxidized with air or the like to produce α-FeOOH (this method easily produces spindle-shaped iron hydroxide) The α-FeOOH formation reaction may be performed in the presence of a water-soluble Al salt or aluminate. As another method, ferric salt aqueous solution (FeCl Three Alternatively, the reaction of neutralizing the aqueous solution with NaOH or the like may be performed in the presence of a water-soluble Al salt or aluminate. In the last method, flat needle-like iron hydroxide is easily obtained.
[0027]
In the production of the Al solid solution iron oxyhydroxide, in order to contain Co, a water-soluble Co salt (for example, CoCl) is added to the iron salt aqueous solution before the iron oxyhydroxide generation or the liquid during the iron oxyhydroxide generation. 2 ) Should be added. In addition, after the obtained Al solid solution iron oxyhydroxide is dispersed in water, the Co salt is added to the solution and neutralized with an alkali, or the water is evaporated from the dispersion. , Co can be contained in Al solid solution iron oxyhydroxide.
[0028]
In order to deposit R on the Co-containing Al solid solution iron oxyhydroxide particles thus obtained, the particles are dispersed in an aqueous solution of a water-soluble R salt (for example, nitrate of R). R can be deposited on the surface of the particles by a method of evaporating water or a method of neutralizing the dispersion by adding an alkali.
[0029]
The Co-containing Al solid solution iron oxyhydroxide particles are dehydrated to obtain Co-containing Al solid solution iron oxide (Co-containing Al solid solution Fe oxide). 2 O Three The iron oxide particles may be subjected to the R deposition treatment as described above. Specifically, the Co-containing Al solid solution iron oxyhydroxide particles obtained as described above are heat-treated in air at 200 to 600 ° C. to obtain Co-containing Al solid solution iron oxide particles. Is dispersed in an aqueous solution of a water-soluble R salt (for example, R nitrate), and neutralized by adding an alkali such as NaOH, so that R is deposited on the particle surface, filtered, washed with water, and then in the air. Baking at an appropriate temperature such as 200 ° C. is preferable. In this method, even if the Co-containing Al solid solution iron oxyhydroxide is heat-treated and dehydrated, Al is maintained in a solid solution state in the particles. Further, even if this is applied with R and then heat-treated in the air at a temperature of about 200 ° C., the R applied state is maintained as it is. Instead of this method, CoAl solid solution iron oxide particles can also be dispersed in an aqueous solution of a water-soluble R salt (for example, nitrate of R) and water can be evaporated from this dispersion. R can be deposited on iron. After R is applied in this manner, R can be fixed to the particle surface by baking at a relatively low temperature of 150 to 250 ° C.
[0030]
In order to deposit Si on the particle surface, the particles are dispersed in an aqueous solution of a water-soluble Si salt (for example, sodium silicate) and water is evaporated from the dispersion, or an acid is added to the dispersion. Thus, Si can be deposited on the particle surface by the neutralization method. This Si deposition may be performed on Al-solution iron oxyhydroxide containing Co, and after dehydrating the Co-containing Al solid-solution iron oxyhydroxide to Al-solution iron oxide. Thus, it may be deposited on this iron oxide. In any case, the deposition order of R and Si may be such that R is deposited first and then Si is deposited, or R is deposited after Si is deposited first. Further, the Co-containing Al solid solution iron oxyhydroxide coated with R is dehydrated to form iron oxide, and Si is deposited, or the Co-containing Al solid solution iron oxyhydroxide coated with Si is dehydrated. Then, R may be deposited as iron oxide.
[0031]
In order to deposit R and Si integrally, a water-soluble salt of R and a water-soluble salt of Si may be used at the same time, but if a mixed aqueous solution of a water-soluble salt of R and a water-soluble salt of Si is prepared in advance, , R's water-soluble salt is acidic and Si's water-soluble salt is alkaline, so a precipitate is formed upon mixing. For this reason, in order to deposit R and Si integrally on the particle surface, it is necessary to mix both liquids in the presence of particles.
[0032]
In addition, about Co containing process, you may make it contain from the state of Al solid solution iron oxide type particle | grains besides the case where it contains in the state of the said iron oxyhydroxide. For example, after obtaining Al solid solution iron oxyhydroxide particles, this is heated in air to form Al solid solution iron oxide particles, and the iron oxide particles are dispersed in water. Co-containing Al solid solution iron oxide particles can be obtained by adding a Co salt and neutralizing with an alkali, or by evaporating water from the dispersion. A precursor according to the present invention similar to that described above can also be obtained by subjecting the Al solid solution iron oxide-based particles to the same R deposition treatment and Si deposition treatment as described above.
[0033]
The precursor obtained according to the present invention thus obtained is reduced to metal magnetic powder containing Al, Co, R and Si. When the precursor according to the present invention is iron oxyhydroxide particles, prior to the reduction treatment, a dehydration treatment is performed by heating to a temperature of 200 to 600 ° C. in the air. It is better to reduce it to magnetic powder. However, the heat treatment for the dehydration treatment and the subsequent reduction treatment can be carried out in a continuous operation by switching the atmospheric gas in the same reaction vessel.
[0034]
The reduction treatment may be performed by heat reduction at a temperature of 300 to 700 ° C. in a reducing atmosphere such as hydrogen gas. The optimum temperature varies depending on the Al content, Co content, R content and Si content in the precursor, but is selected within the range of 300 to 700 ° C. After the reduction treatment, a metal magnetic powder having an appropriate amount of moisture and having oxidation resistance can be obtained by adjusting the humidity (treatment in an atmosphere containing water vapor).
[0035]
The amount of water contained in the metal magnetic powder is detected (released) at 100 ° C. is 2.0% by weight or less, preferably 1.5% by weight or less, and the amount detected (released) at 300 ° C. It should be 4.0% by weight, preferably 3.0% by weight or less. Depending on the amount of water held by the powder, the viscosity of the paint for forming the magnetic layer changes, and the amount of binder adsorption also changes, but when the amount of water detected at 100 ° C. exceeds 2.0% by weight, or 300 If the amount of water detected at 0 ° C. exceeds 4.0% by weight, the dispersion becomes insufficient during coating.
[0036]
In addition, if a group 1a element of the periodic table such as Li, Na, K or the like, or a group 2a element of the periodic table such as Mg, Ca, Sr, Ba, or the like adheres to the surface of the metal magnetic powder particles, the resin When dispersed in a binder, the dispersibility is degraded, and the storage stability and weather resistance of the media product are degraded. It was also found that the presence of the Group 1a element in the precursor also has the effect of promoting sintering in the reduction process. Therefore, these elements should be removed as much as possible before the reduction process. That is, in the precursor according to the present invention, the content of the Group 1a element of the periodic table after reduction thereof is 0.05% by weight or less (the total amount is 0.05% by weight or less even when a plurality of these elements are contained). ) In addition, the content of Group 2a element of the periodic table after reduction is 0.1% by weight or less (the total amount is 0.1% by weight or less even when a plurality of these elements are contained). Is preferred. These elements are likely to be mixed in the raw material for producing the precursor of the present invention, the neutralization process, etc., but when mixed, it is desirable to sufficiently remove them.
[0037]
The ferromagnetic metal powder obtained by reducing the precursor of the present invention preferably has an average major axis length of 0.01 to 0.40 μm. If the average major axis length is less than 0.01 μm, it becomes superparamagnetic, and if it exceeds 0.40 μm, the particles tend to become multi-domain, and therefore, the electromagnetic conversion characteristics when both are made into tapes are lowered. The crystallite (X-ray crystal grain size Dx) of the ferromagnetic metal powder is preferably 50 to 250 angstroms, and becomes superparamagnetic below 50 angstroms. descend.
[0038]
Furthermore, the true density of the ferromagnetic metal powder is 5.3 g / cm. Three That is good. Specific surface area is 30-70m by BET method 2 / G, 30m 2 If it is less than / g, compatibility with the resin when taped is deteriorated and electromagnetic conversion characteristics are deteriorated. 2 If it exceeds / g, dispersion failure will occur at the time of tape formation, and the electromagnetic conversion characteristics will be easily deteriorated.
[0039]
When the magnetic layer of the coating type magnetic recording medium is formed of such a ferromagnetic metal powder, the magnetic layer may be formed by coating a single magnetic layer on the supporting film, or between the supporting film and the magnetic layer. By applying a non-magnetic coating layer (lower layer) using non-magnetic powder, it can be applied to any so-called multi-layer coating type magnetic recording medium that forms a thinner and smoother magnetic layer (upper layer). . In the latter case, the precursor according to the present invention can be applied as it is as a nonmagnetic powder for forming the lower layer.
[0040]
【Example】
[Example 1]
0.2 mol / L (L is liter) of FeSO Four To 10 L of aqueous solution, 10 mol / L Na 2 CO Three 1 L of an aqueous solution and an amount of sodium aluminate in an atomic ratio (%) of Al / Fe = 13 at.% Were added, and air was blown in at 53 ° C. for 6 hours. After this oxidation treatment, an amount of CoCl in which Co / Fe atomic ratio (%) = 30 at. 2 And aged for 30 hours. The precipitate was filtered, washed with water and dried. The obtained powder contains α-FeOOH containing 29 at.% Co in Fe and 12.7 at.% Al in solid solution with a major axis length of 0.14 μm and a minor axis length of 0.1. It consisted of needle-shaped particles having a diameter of 024 μm and an axial ratio of 6.
[0041]
Subsequently, the iron oxyhydroxide powder was fired in air at 450 ° C. to obtain an iron oxide powder, and the iron oxide powder was dispersed in water. An amount of yttrium nitrate in an amount of Y / Fe atomic ratio (%) = 6.5 at.% Was added to this dispersion, and NaOH was added to neutralize at 53 ° C. to deposit yttrium on the particle surface. . Then, it filtered off from the liquid, washed with water, and baked at 200 degreeC in the air. The Co-containing Al solid solution iron oxide obtained by depositing Y thus obtained on the particle surface is dispersed in water, and the Si / Fe atomic ratio (%) = 6.5 at.% Is obtained in the dispersion. After adding an amount of sodium silicate and stirring for 60 minutes, the slurry is put in a dryer. o Water was evaporated with C to deposit Si. The resulting powder contains 29at.% Co to Fe and 12.7at.% Al to Fe, and deposits 6.2at.% Y to Fe. It consisted of acicular particles having a major axis length of 0.12 μm, a minor axis length of 0.022 μm, and an axial ratio of 5.6 coated with 5.5 at.% Si.
[0042]
10 g of the powder made of iron oxide-based particles deposited on Al / Co-containing Y / Si deposited in this way was charged in a rotary furnace. 2 An air stream was introduced and heat reduction was performed at 450 ° C. for 10 hours. After reduction, N 2 Gas was introduced and cooled to room temperature. Then 1% O 2 N including 2 Gas was introduced and treated for 5 hours. The obtained metal magnetic powder has a major axis length of 0.10 μm, an X-ray crystal grain size Dx = 165 Å, and a specific surface area (BET) = 61 m. 2 The magnetic characteristics are coercive force (Hc) = 2470 (Oe), saturation magnetic susceptibility (σs) = 141 emu / g, σr / σs = 0.523 (σr is residual magnetic flux density emu / g), Δσs = 10%. Δσs is the rate of decrease in saturation magnetic susceptibility σs after standing for 1 week in an atmosphere of 60 ° C. and relative humidity 90% RH. The smaller this value, the better the oxidation resistance. The amount of Co, Al, Y, and Si contained in the ferromagnetic metal powder particles was 29 at.%, 12.7 at.%, 6.2 at.%, And 5.5 at.%, Respectively, with respect to Fe. Various characteristic values of these ferromagnetic metal powders are shown in Table 1.
[0043]
The major axis length, minor axis length, and axial ratio of the particles are shown as an average value of 100 particles measured from a 174,000 times electron micrograph. The crystal grain size (Dx) was calculated by obtaining the half width of the peak corresponding to the (110) plane from the profile obtained using an X-ray diffractometer and substituting it into Scherrer's equation. In addition, ΔT in Table 1 is an index of reactivity between the ferromagnetic metal powder and the tape solvent. This value is obtained by adding 20 g of ferromagnetic metal particles in a container and adding 30 g of cyclohexane used as a solvent. This is a measurement of the rising temperature immediately after. ΔT of the ferromagnetic metal powder of this example was 8 ° C.
[0044]
The obtained ferromagnetic metal powder was subjected to a magnetic tape production test. In the test, 100 parts by weight of the ferromagnetic metal powder was blended with the following materials at a ratio of the following composition and dispersed with a centrifugal ball mill for 1 hour to produce a magnetic paint, and this magnetic paint was made of a polyethylene terephthalate base. A magnetic tape was produced by applying the film to a target thickness of 3 μm using an applicator on the film.
[0045]
[Composition of paint]
100 parts by weight of metal magnetic powder
30 parts by weight of polyurethane resin
190 parts by weight of methyl ethyl ketone
80 parts by weight of cyclohexanone
110 parts by weight of toluene
1 part by weight of stearic acid
1 part by weight of acetylacetone
3 parts by weight of alumina
2 parts by weight of carbon black
[0046]
When the magnetic properties of the obtained magnetic tape were measured, the coercive force Hc = 2630 (Oe), the residual magnetic flux density Br = 4287 (Gauss), the saturation magnetic flux density Bm = 4561 (Gauss), and the squareness ratio Br / Bm = 0. The SFD value calculated from the hysteresis loop of the magnetic tape was 0.22, and the output of the electromagnetic conversion characteristics and the C / N ratio measured using the Hi8 deck were 1.13 dB and 1.43 dB, respectively. . These magnetic tape characteristics are shown in Table 2.
[0047]
[Example 2]
The addition amount of yttrium nitrate is equivalent to the atomic ratio of Y / Fe (%) = 5.3 at.%, And the addition amount of sodium silicate is changed to the atomic ratio of Si / Fe (%) = 5.9 at. Example 1 was followed except that the amount was changed to be equivalent to%. The properties of the obtained ferromagnetic metal powder and magnetic tape are shown in Tables 1 and 2.
[0048]
[Comparative Example 1]
Example 1 was followed except that the amount of yttrium nitrate added was changed to be equivalent to the atomic ratio of Y / Fe (%) = 12.5 at.%, And sodium silicate was not added. The properties of the obtained ferromagnetic metal powder and magnetic tape are shown in Tables 1 and 2.
[0049]
[Comparative Example 2]
Example 1 was followed except that the amount of sodium silicate added was changed so that the Si / Fe atomic ratio (%) was equivalent to 13.0 at.%, And yttrium nitrate was not added. The properties of the obtained ferromagnetic metal powder and magnetic tape are shown in Tables 1 and 2.
[0050]
[Comparative Example 3]
The addition of sodium aluminate was changed to the time after ripening with the addition of cobalt chloride, and the addition amount of yttrium nitrate was changed so that the atomic ratio of Y / Fe (%) = 12.5 at.% Equivalent. Example 1 was followed except that no sodium silicate was added. The properties of the obtained ferromagnetic metal powder and magnetic tape are shown in Tables 1 and 2.
[Table 1]
Figure 0003640577
[0051]
[Table 2]
Figure 0003640577
[0052]
As can be seen from Tables 1 and 2, in Examples 1 and 2, the SFD value is 0.25 or less, the squareness ratio (SQx = Br / Bm) is 0.93 or more, and the coercive force is 2400 (Oe) or more. While a magnetic tape with characteristics can be obtained, the value of the comparative example cannot be achieved, and the electromagnetic conversion characteristics are not necessarily good.
[0053]
[Example n]
The amount of yttrium nitrate added was changed in the range of 0 to 15 at.% In terms of the atomic ratio (%) of Y / Fe, and the amount of sodium silicate was changed in the range of 0 to 11 at. Example 1 was followed except that it was changed in the range of%. For each of the obtained magnetic tapes, SFD, Br / Bm (indicated as SQx) and coercive force (indicated as Hcx) were measured, and these values were expressed as the amount of Y and the amount of Si in the ferromagnetic powder on the horizontal and vertical axes. The axes are represented by contour lines on the plan view, and these are shown in FIGS.
[0054]
FIG. 1 shows how the amount of Y in each ferromagnetic metal powder (atomic percent of Y to Fe) and the amount of Si (atomic percent of Si to Fe) affect the SFD value of magnetic tape. It is displayed with contour lines. From FIG. 1, it can be seen that there is a bottom region where the SFD value is lowest in the specific range of the Si deposition amount and the specific range of the Y deposition amount. In this example, the SFD value is 0.25 or less in the region where the Si deposition amount on Fe is approximately 4 to 9 at.% And the Y deposition amount is approximately 4 to 8 at.%.
[0055]
FIG. 2 shows how the amount of Y in each ferromagnetic metal powder (atomic percent of Y to Fe) and the amount of Si at.% (Atomic percent of Si to Fe) of Br / Bm ( SQx) is indicated by contour lines. From FIG. 2, it can be seen that SQx has a peak region in the specific range of the Si deposition amount and the specific range of the Y deposition amount. In this example, the amount of Si deposited on Fe is about 3 to 11 at.%, The amount of Y deposited is about 4 to 9 at.%, And SQx is 0.93 or more.
[0056]
FIG. 3 shows how the amount of Y in each ferromagnetic metal powder at.% (Atomic percentage of Y to Fe) and the amount of Si at.% (Atomic percentage of Si to Fe) are determined by the coercive force (Hcx) of the magnetic tape. ) Is indicated by contour lines. From FIG. 3, it can be seen that there is a region where Hcx has a peak in the specific range of the Si deposition amount and the specific range of the Y deposition amount. A desirable Y deposition amount is 2 to 13% and a Si deposition amount is 2 to 9% for obtaining high Hcx.
[0057]
From the results shown in FIGS. 1 to 3, the conventional ones having an SFD value of 0.25 or less, a squareness ratio (SQx = Br / Bm) of 0.93 or more, a coercive force of 2400 (Oe) or more, and 2500 (Oe) or more It can be seen that a high-performance magnetic tape can be obtained. When all these requirements are satisfied, the Y deposition amount and the Si deposition amount of the ferromagnetic metal powder are in a specific narrow region. The Y deposition amount is 4 to 9 at.% With respect to Fe, and the Si deposition amount. Is 2 to 9 at.% With respect to Fe.
[0058]
Comparing the effects of Si and Y on the prevention of sintering of Al solute iron oxyhydroxide or iron oxide, the effect of Si is lower than that of Y, and Y increases as the amount of deposition increases. Although the effect of preventing sintering is enhanced, if it is too much, the orientation characteristics are degraded. In other words, although the Si single deposition has a high effect of maintaining the acicularity of the particles, there is a tendency to bond the particles during sintering. In the Y single deposition, the particles tend to aggregate when the deposition amount increases (TEM). Therefore, if the amount is too much, a specific drop in orientation due to aggregation is observed. However, when composite deposition of Si and Y is performed, as seen in the above test, the tape characteristics are improved in a certain narrow deposition amount region, and the effect of Y alone is saturated. When Si is allowed to coexist, an unprecedented SFD value is obtained. This is presumed that the action of Si for bonding particles is suppressed by Y, and at the same time, the shape retention effect of Si can be advantageously expressed by Y.
[0059]
【The invention's effect】
As described above, according to the present invention, there are provided a ferromagnetic metal powder and a precursor thereof that can greatly contribute to improving the performance of a coating type magnetic recording medium suitable for high-density magnetic recording. In particular, according to the present invention, it is possible to manufacture a magnetic tape having a coercive force exceeding 2500 (Oe) or more, a squareness ratio (Br / Bm) of 0.93 or more, and an SFD value of 0.25 or less. It becomes like this.
[Brief description of the drawings]
FIG. 1 shows how the amount of Y deposition (atomic ratio% relative to Fe) and the amount of Si deposition (atomic ratio% relative to Fe) on a ferromagnetic metal powder are affected by the SFD of a magnetic tape using the ferromagnetic metal powder. FIG.
FIG. 2 shows that the Y deposition amount (atomic ratio% relative to Fe) and the Si deposition amount (atomic ratio% relative to Fe) on the ferromagnetic metal powder are the SQx (square ratio) of the magnetic tape using the ferromagnetic metal powder. It is a relational diagram showing how contours are affected.
FIG. 3 shows that the amount of Y deposition (atomic ratio% relative to Fe) and the amount of Si deposition (atomic ratio% relative to Fe) on the ferromagnetic metal powder are Hcx (coercive force) of the magnetic tape using the ferromagnetic metal powder. It is a relational diagram showing how contours are affected.

Claims (6)

酸化鉄に、Co、Al、SiおよびR(RはYを含む希土類元素の少なくとも一種を表す)を含有させた針状粒子からなる磁性粉製造用先駆物質であって、該針状粒子が、Feに対してCoを0超え〜50at.%含有し且つFeに対して0.1〜30at.%のAlを固溶した酸化鉄粒子の表層部に、SiとR(ただし、粒子中のSi含有量はFeに対して0.1〜10at.%でR含有量はFeに対して0.1〜15at.%である)を含む層が被着したものである磁性粉製造用先駆物質。 A precursor for magnetic powder production comprising needle-like particles containing iron oxide and Co, Al, Si and R (R represents at least one rare earth element including Y), wherein the needle-like particles are: In the surface layer portion of the iron oxide particle containing Co in an amount of more than 0 to 50 at.% With respect to Fe and 0.1 to 30 at.% Of Al with respect to Fe, Si and R (however, A precursor for magnetic powder production, to which a layer containing 0.1 to 10 at.% Of Fe and R of 0.1 to 15 at.% Of Fe is deposited. 粒子中のR含有量はFeに対して1〜13at.%、Si含有量はFeに対して1〜10at.%である請求項1に記載の磁性粉製造用先駆物質。  The precursor for magnetic powder production according to claim 1, wherein the R content in the particles is 1 to 13 at.% With respect to Fe, and the Si content is 1 to 10 at.% With respect to Fe. Al固溶Co含有の酸化鉄の粒子表面に先ずR層が被着し、その表層にSi層が被着している請求項1または2に記載の磁性粉製造用先駆物質。The precursor for magnetic powder production according to claim 1 or 2, wherein an R layer is first deposited on the surface of particles of iron oxide containing Al solute Co, and a Si layer is deposited on the surface layer. 酸化鉄に、Co、Al、SiおよびR(RはYを含む希土類元素の少なくとも一種を表す)を含有させた針状粒子からなる粉末をガス還元してなる強磁性金属粉末であって、還元前の前記の針状粒子が、Feに対してCoを0超え〜50at.%含有し且つFeに対して0.1〜30at.%のAlを固溶した酸化鉄粒子の表層部に、SiとR(ただし、粒子中のSi含有量はFeに対して0.1〜10at.%でR含有量はFeに対して0.1〜15at.%である)を含む層が被着したものである、強磁性金属粉末。 A ferromagnetic metal powder obtained by gas reduction of a powder composed of acicular particles containing Co, Al, Si and R (R represents at least one rare earth element including Y) in iron oxide , In the surface layer portion of the iron oxide particles in which the previous acicular particles contain Co in excess of 0 to 50 at.% With respect to Fe and 0.1 to 30 at. And a layer containing Si (provided that the Si content in the particles is 0.1 to 10 at.% With respect to Fe and the R content is 0.1 to 15 at.% With respect to Fe). A ferromagnetic metal powder. R含有量がFeに対して1〜13at.%、Si含有量がFeに対して1〜10at.%である請求項4に記載の強磁性金属粉末。  The ferromagnetic metal powder according to claim 4, wherein the R content is 1 to 13 at.% With respect to Fe and the Si content is 1 to 10 at.% With respect to Fe. R含有量がFeに対して4〜9at.%、Si含有量がFeに対して2〜9at.%である請求項4に記載の強磁性金属粉末。  The ferromagnetic metal powder according to claim 4, wherein the R content is 4 to 9 at.% With respect to Fe and the Si content is 2 to 9 at.% With respect to Fe.
JP25849199A 1999-09-13 1999-09-13 Precursor for magnetic powder production and ferromagnetic metal powder obtained therefrom Expired - Fee Related JP3640577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25849199A JP3640577B2 (en) 1999-09-13 1999-09-13 Precursor for magnetic powder production and ferromagnetic metal powder obtained therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25849199A JP3640577B2 (en) 1999-09-13 1999-09-13 Precursor for magnetic powder production and ferromagnetic metal powder obtained therefrom

Publications (2)

Publication Number Publication Date
JP2001081506A JP2001081506A (en) 2001-03-27
JP3640577B2 true JP3640577B2 (en) 2005-04-20

Family

ID=17320957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25849199A Expired - Fee Related JP3640577B2 (en) 1999-09-13 1999-09-13 Precursor for magnetic powder production and ferromagnetic metal powder obtained therefrom

Country Status (1)

Country Link
JP (1) JP3640577B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4143713B2 (en) 2002-03-07 2008-09-03 Dowaエレクトロニクス株式会社 Magnetic powder for magnetic recording
JP3886968B2 (en) 2002-03-18 2007-02-28 日立マクセル株式会社 Magnetic recording medium and magnetic recording cartridge
JP2003296915A (en) 2002-03-29 2003-10-17 Tdk Corp Magnetic recording medium
US6964811B2 (en) 2002-09-20 2005-11-15 Hitachi Maxell, Ltd. Magnetic powder, method for producing the same and magnetic recording medium comprising the same
GB2422949B (en) 2003-02-19 2007-05-30 Hitachi Maxell Magnetic recording medium
JP4834852B2 (en) * 2005-01-06 2011-12-14 Dowaエレクトロニクス株式会社 Metal magnetic powder and magnetic recording medium using the same
CN103722168A (en) * 2013-12-12 2014-04-16 内蒙古河西航天科技发展有限公司 Safe and environment-friendly aluminum powder and preparation method thereof

Also Published As

Publication number Publication date
JP2001081506A (en) 2001-03-27

Similar Documents

Publication Publication Date Title
US5645652A (en) Spindle-shaped magnetic iron-based alloy particles containing cobalt and iron as the main ingredients and process for producing the same
EP0466338B1 (en) Spindle-shaped magnetic iron based alloy particles and process for producing the same
JPH0722224A (en) Ferromagnetic metal powder
JP3640577B2 (en) Precursor for magnetic powder production and ferromagnetic metal powder obtained therefrom
JPH0625702A (en) Magnetic metal powder and its production
JP4143713B2 (en) Magnetic powder for magnetic recording
JPH11251122A (en) Precursor for manufacturing magnetic powder and ferromagnetic metal power obtained from the same
JP5130456B2 (en) Ferromagnetic metal powder and magnetic recording medium using the same
JPH059922B2 (en)
JP3427871B2 (en) Cobalt-coated acicular magnetic iron oxide particles
JP2003247002A (en) Metal magnetic grain powder essentially consisting of iron, production method thereof and magnetic recording medium
JP4182310B2 (en) Method for producing spindle-shaped alloy magnetic particle powder mainly composed of Fe and Co for magnetic recording
US5989516A (en) Spindle-shaped geothite particles
JP2924941B2 (en) Underlayer for magnetic recording media
JP2000302445A (en) Fusiform goethite particle powder, fusiform hematite particle powder, and fusiform metallic magnetic particle powder consisting mainly of iron, and their production
JP3135391B2 (en) Metal magnetic powder and method for producing the same
JP2007194666A (en) Precursor for use in manufacturing ferromagnetic metal powder
EP0371384B1 (en) Process for producing magnetic iron oxide particles for magnetic recording
JPH0679968B2 (en) Magnetic iron oxide pigment and method for producing the same
JP4670088B2 (en) Ferromagnetic metal powder for magnetic recording medium and magnetic recording medium using the same
JP3482177B2 (en) Cobalt-containing magnetic iron oxide powder and magnetic recording medium using the same
JPH0647681B2 (en) Spindle-shaped iron-based metallic magnetic particle powder and method for producing the same
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JP2965606B2 (en) Method for producing metal magnetic powder
JP3405748B2 (en) Method for producing metal magnetic powder

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050118

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080128

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100128

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110128

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120128

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees