WO1991002007A1 - Emulsions polymeres resistantes a l'eau - Google Patents

Emulsions polymeres resistantes a l'eau Download PDF

Info

Publication number
WO1991002007A1
WO1991002007A1 PCT/US1990/004226 US9004226W WO9102007A1 WO 1991002007 A1 WO1991002007 A1 WO 1991002007A1 US 9004226 W US9004226 W US 9004226W WO 9102007 A1 WO9102007 A1 WO 9102007A1
Authority
WO
WIPO (PCT)
Prior art keywords
emulsion
monomer
weight percent
polymer
group
Prior art date
Application number
PCT/US1990/004226
Other languages
English (en)
Inventor
John Biale
Original Assignee
Union Oil Company Of California
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Union Oil Company Of California filed Critical Union Oil Company Of California
Publication of WO1991002007A1 publication Critical patent/WO1991002007A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols

Definitions

  • the present invention relates to water-re ⁇ sistant polymeric emulsions and processes for manufac ⁇ turing polymeric emulsions.
  • Oil-base products exist for rendering the surface of a substrate water-resistant. However, the long term availability of these products is doubtful because of increasing environmental restrictions on oil-based products.
  • the present invention provides water-based polymeric emulsions that are used to render the surface of a substrate water-resistant.
  • the polymeric emul ⁇ sions contain at least about 40 percent solids and comprise a (i) a polymer, (ii) water, and (iii) a surfactant.
  • the emulsion comprises less than about 1 weight percent surfactant based on the total monomer weight in the polymer.
  • the polymer comprises about 25 to about 90 weight percent soft monomer, about 10 to about 75 weight percent hard monomer, about 1 to about 5 weight percent olefinic carboxylic acid mono ⁇ mer, and about 0.5 to about 5 weight percent cross- linking monomer.
  • the term "soft monomer” means a monomer whose homopolymer has a T q of less than about -20° C;
  • the term “hard monomer” means a monomer whose homopolymer has a T_ of greater than about 30° C;
  • the terms "weight percent hard monomer,” “weight percent soft monomer,” “weight percent olefinic carboxylic acid monomer,” and “weight percent cross-linking monomer” each mean the total dry weight of the respective con ⁇ stituent ingredient employed in making the polymer divided by the total weight of the monomers employed in making the polymer, this quotient being multiplied by 100%.
  • the emulsions have a surface tension of at least about 45 dynes/cm and the polymers have an average particle size of less than 250 nm.
  • the emulsion When the emulsion is applied to a surface and dried, it forms a water-resistant film.
  • the invention also encompasses a process for making the emulsion.
  • the process comprises the steps of (a) delay adding the soft monomer, the hard monomer, the olefinic carboxylic acid, the cross-linking agent, and additional catalyst to a charged reactor to form an emulsion; and (b) proximate the end of the delay addi ⁇ tion step, adjusting the pH of the emulsion to sub ⁇ stantially neutralize all carboxylic acid groups on the polymer to stabilize the emulsion.
  • delay adding is a term of art that means adding ingredients during at least a portion of the polymerization period.
  • each polymeric emulsion comprises a (i) polymer, (ii) water, and (iii) a surfactant.
  • the emulsion comprises less than about 1 weight percent surfactant.
  • weight percent surfactant is defined as the total dry weight of the surfactant(s) employed in making the polymer divided by the total weight of the monomers employed in making the polymer, this quotient being multiplied by 100%.
  • the emulsion comprises less than about 0.5 weight percent surfactant.
  • the emulsion has a surface tension of at least about 45 dynes/cm, and preferably about 45 to about 65 dynes/cm.
  • the surfactant is normally a copolymerizable surfactant, an anionic surfactant, a nonionic surfact ⁇ ant, or a mixture of two or more of these surfactants.
  • exemplary copolymerizable surfactants include, but are not limited to, sulfoethylmethacrylate, vinylsulfonate salts, sulfopropylmethacrylate, styrene sulfonate salts, 2-acrylamido-2-methylpropanesulfonic acid salts, and mixtures thereof.
  • Anionic surfactants include, but are not limited to, alkylphenolethoxylate sulfates and sulfonates, alkylsulfates and sulfonates, and mixtures thereof.
  • Nonionic surfactants include, but are not limited to, alkylarylpolyether alcohols, alkylphenolet- hoxylates, alkylethoxylates, ethyleneoxide/propylene oxide block copolymers, and mixtures thereof.
  • the polymer generally comprises about 25 to about 90 weight percent of a soft monomer, about 10 to about 75 weight percent of a hard monomer, about 1 to about 5 weight percent of an olefinic carboxylic acid, and about 0.5 to about 5 weight percent of a cross- linking agent, and typically has a T_ of about -50° to about 50° C.
  • the polymer comprises about 2 to about 4 weight percent olefinic carboxylic acid and about 1 to about 3 weight percent cross-linking agent.
  • Olefinic carboxylic acid monomers include both mono-olefinic carboxylic acid monomers and di- olefini ⁇ carboxylic acid monomers.
  • Exemplary mono- olefinic carboxylic acids include, but are not limited to, acrylic acid and methacrylic acid.
  • An exemplary di-olefinic carboxylic acid is itaconic acid.
  • the preferred olefinic carboxylic acid monomer is metha ⁇ crylic a ⁇ id. However, mixtures of olefinic carboxylic acids can also be used.
  • Typical cross-linking agents include, but are not limited to, N-methylol acrylamide, N-methylol methacrylamide, diacrylates, dimethacrylates, triallyl cyanurate, diallyl maleate, methyl acrylamidoglycolate methyl ether, olefinically unsaturated monomers having the formula I
  • R 1 ⁇ CH C - R 3 - C - CH 2 - Z (I)
  • R ⁇ . - s selected from the group consisting of hydrogen and halogen
  • R 2 is select- ed from the group consisting of hydrogen, halo, thio, and monovalent organic radicals
  • R 3 is a divalent radical
  • Z is selected from the group consisting of organoa ⁇ yl and cyano.
  • R- ⁇ is hydrogen
  • R 2 is hydrogen or an alkyl radical having up to about 10 carbon atoms
  • R 3 is a cyclic or acyclic organic radical containing up to about 40 carbon atoms
  • Z is an organoacyl having the formula II
  • R 4 is selected from the group consisting of hydrogen and monovalent organic radicals. More prefer ⁇ ably, R 3 is an acyclic radical containing up to about 20 atoms in length, with any and all side groups each being up to about 6 atoms in length, and R 4 is hydrogen or an alkyl group containing up to about 7 carbon atoms. R 3 is most preferably an alkylene group con ⁇ taining up to about 10 carbon atoms, and R 4 is most preferably methyl. Due to its commercial availability, the preferred cross-linking agent of formula I is acetoacetoxyethyl methacrylate. However, the most preferred cross-linking agent is N-methylol acrylamide.
  • the emulsion is employed as a water-resistant edge sealer for composite (or particle) boards or plywood.
  • the weight ratio of the hard monomer to the soft monomer in the polymer is preferably about 1:1 to about 1.5:1, and the polymer preferably has a T_ of about 0° to about 20° C.
  • the emulsion is applied to a sub ⁇ strate and dried at ambient temperature.
  • the emulsion is applied to a substrate, e.g., ceramic or cement tiles, and dried at an elevated temperature, e.g., above about 50° C.
  • the weight ratio of the hard monomer to the soft monomer in the polymer is preferably about 1.5:1 to about 3:1, and the polymer preferably has a T g of about 30° to about 50° C.
  • the emulsion is employed as a water-resistant pressure sensitive adhesive (PSA) .
  • PSA water-resistant pressure sensitive adhesive
  • the weight ratio of the hard monomer to the soft monomer in the polymer is prefera ⁇ bly about 1:4 to about 1:9, and the polymer preferably has a T_ of about -35° to about -50° C.
  • the soft and hard monomers together typically constitute at least about 90 weight percent of the polymer, and preferably at least about 95 weight percent of the polymer.
  • the soft monomer is typically selected from the group consisting of non-functional acrylic mono ⁇ mers, ethylene, and mixtures thereof.
  • non-functional monomer means a monomer that is devoid of any group, e.g., hydroxyl, carboxyl, amide, and amine, that can undergo further reaction after polymerization of the monomer; and the term “soft monomer” means a monomer whose homopolymer has a T g of less than about -20° C.
  • Non-functional acrylic monomers are the preferred soft monomers.
  • the non-functional acrylic monomers have the formula III
  • R 5 is selected from the group consisting of hydrogen and methyl
  • R 6 is an alkyl group, prefera ⁇ bly having up to about 15 carbon atoms.
  • alkyl means cyclic and acyclic saturated hydrocarbon groups that can be either branched or unbranched.
  • Exemplary soft, non ⁇ functional acrylic monomers include, but are not limit ⁇ ed to, butyl acrylate, isobutyl acrylate, ethylhexyl acrylate, isodecyl methacrylate, lauryl methacrylate, tride ⁇ ylmethacrylate. 2-ethylhexyl acrylate is the preferred soft, non-functional monomer.
  • hard mono ⁇ mers include, but are not limited to, alkylene aromatic monomers and non-functional methacrylic monomers.
  • alkenyl aromatic monomers are defined as any organic compound contain ⁇ ing at least one aromatic ring and at least one ali ⁇ phatic-containing moiety having alkenyl unsaturation; and the term "hard monomer” means a monomer whose homopolymer has a T q of greater than about 30° C.
  • Preferred alkenyl aromatic monomers are represented by the formula IV
  • X is an aliphatic radical containing at least one alkenyl bond
  • Y is a substituent on the aromatic ring
  • n is the number of Y substituents on the ring, n being an integer from 0 to 5.
  • X comprises at least 2 carbon atoms, but usually no more than about 6, and preferably no more than about 3 carbon atoms.
  • X is preferably a substituted or unsub- stituted alkenyl group.
  • Preferred substituents on the alkenyl group are halogen radicals, e.g., chloride.
  • the most preferred alkenyl group is unsubsti- tuted, i.e., a hydrocarbon, and contains only one olefinic unsaturation.
  • Ethylene is the most preferred X. ⁇ ⁇ _
  • Y is an organic or inorganic radical.
  • organic radical means any group containing at least one carbon atom
  • inorganic radical means any group devoid of carbon atoms.
  • Y can be the same or different. If organic, Y general ⁇ ly contains from 1 to about 15 carbon atoms and, pref ⁇ erably, is an aliphatic radical. Even more preferably,
  • Y is a saturated aliphatic radical. If inorganic, Y is preferably a halogen. Exemplary Y substituents include halo and cyano radicals and substituted and unsubsti- tuted alkyl radicals of 1 to about 10 carbon atoms. Preferred Y substituents are chloride and unsubstituted alkyl groups of 1 to about 6 carbon atoms. Y is more preferably a chloride radical and C to about C 4 unsub ⁇ stituted alkyl radicals.
  • Illustrative alkenyl aromatic monomers in ⁇ clude styrene, p-methyl styrene, methyl styrene, o,p- dimethyl styrene, o,p-diethyl styrene, p-chlorostyrene, isopropyl styrene, t-butyl styrene, o-methyl-p-isopro- pyl styrene, o,p-dichlorostyrene, and mixture thereof. Due to its commercial availability and low cost, sty ⁇ rene is the preferred alkenyl aromatic monomers.
  • exemplary non-functional methacrylic monomers have the formula V
  • R 7 is an alkyl group that preferably contains up to about 6 carbon atoms.
  • Typical non-functional methacrylic monomers include methyl methacrylate, ethyl methacrylate, isobutyl methacrylate, isobornyl metha ⁇ crylate, and mixtures thereof.
  • the polymer preferably has an average parti ⁇ cle size (i.e., a maximum cross-sectional diameter) of less than about 250 nm.
  • average particle size of the polymer be- from about 85 to about 200 nm, more prefera- bly from about 90 to about 190 nm, and most preferably from about 100 to about 150 nm.
  • ie polymeric emulsion optionally comprises one or more other ingredients.
  • the poly ⁇ mer can comprise a wax.
  • the wax is generally used in an amount sufficient to increase the water-resistance of resulting film.
  • the polymer optionally comprises a chain transfer agent.
  • the chain transfer agent when used, is typically incorporated to control the molecu ⁇ lar weight of the polymer, and is usually employed in a concentration of about 0.01 to about 0.5 weight percent based upon the amount of monomers used in making the polymer.
  • the presence of chain transfer agents is particularly advantageous in PSAs where some low molec ⁇ ular weight polymeric components tend to be desirable.
  • ureido-containing monomers are also optionally present in the polymer.
  • exemplary ureido-containing monomers include, but are not limited to, 2-ureido-ethyl acrylate, 2-ureido-methyl acrylate,
  • the ureido-containing monomers are generally used in a concentration suffi ⁇ cient to enhance the wet adhesion strength of the emulsion, e.g., from about 0.25 to about 1 weight per ⁇ cent of the polymer.
  • a surfactant-containing seed is another optional ingredient present in the polymer.
  • the seed generally has an average particle size of less than about 80 nm, and preferably within the range of about 25 to about 60 nm.
  • Exemplary seeds are comprised of alkenyl aromatic monomers, acrylate monomers, and mixtures thereof. Usually, styrene and/or butyl acry ⁇ late monomers are employed in manufacturing the seed.
  • the emulsions of the present invention are made, for example, by a delayed addition polymerization process.
  • the delay-addition polymerization process comprises forming a monomer mixture containing about 25 to about 90 weight percent soft monomer and about 10 to about 75 weight percent hard monomer, about 1 to about 5 weight percent olefinic carboxylic acid monomer, and about 0.5 to about 5 weight percent cross- linking monomer.
  • Water is added to a reactor and heated, generally to about 150° to about 190° F., while preferably purging the reactor with an inert gas, such as nitrogen, to remove substantially all oxygen from the reactor.
  • a catalyst is then added to the reactor.
  • a locus for polymerization e.g., a sur ⁇ factant and/or a surfactant-containing seed
  • a locus for polymerization is added to the reactor before, simultaneously with, or after the catalyst addition to form a reactor charge.
  • the delay-addition of the monomer mixture is then commenced.
  • the ensuing reaction forms the emulsion of the present invention.
  • the addition of the monomer mixture typically takes up to about 3 hours.
  • additional catalyst is typically also added to the reactor.
  • a portion, for example up to about 1/2 of the monomer mixture is added to the reactor at the beginning of the reaction along with the addition of the initial catalyst and/or seed and/or surfactant.
  • the pH of the emulsion is typically adjusted. Generally, the pH of the emulsion is adjusted to at least about 6, prefera ⁇ bly to about 6 to about 10, and most preferably to about 6 to about 8. Adjusting the pH to within these ranges substantially neutralizes all olefinic carboxyl ⁇ ic acid groups on the polymer.
  • the pH of the emulsion is adjusted from about 30 minutes before to about 30 minutes after terminating the addition of the monomer mixture.
  • the pH adjustment occurs within about 15 minutes after terminating the monomer mixture addition.
  • catalyst is commonly added while maintaining the emulsion at the elevated reaction temperature to ensure that substantially all of the monomers polymer ⁇ ize.
  • the same catalyst can be used whenever one is employed.
  • Exemplary catalysts include, but are not limited to, t-butyl hydroperoxide, sodium persulfate, hydrogen peroxide, and mixtures thereof.
  • the emulsion is allowed to cool to ambient or room temperature after all the monomer mixture and catalyst have been added.
  • the pH of the cooled emulsion is adjusted, if necessary, to about 8 to about 10.
  • a base is employed in each instance where the pH of the emulsion is adjusted.
  • Exemplary bases are selected from the group consisting of amine-containing bases, hydroxide-containing bases, and mixtures thereof. Dimethylamine, diethylamine, aminopropanol, ammonium hydroxide, and sodium hydroxide are typical bases, with volatile bases being preferred, and ammonium hydroxide being the most preferred.
  • the polymerization process yields the poly ⁇ meric emulsion of the present invention.
  • the solids content of the emulsion is generally at least about 40 weight percent, preferably within the range of about 45 to about 60 weight percent, and more preferably within the range of about 45 to about 55 weight percent.
  • the emulsion is applied to at least a portion of a surface of a substrate. Upon drying, the emulsion forms a water-resistant film. Accordingly, the emulsion of the instant invention is capable of enhancing the water-resistance of a substrate (e.g., particle board and plywood) and/or maintaining the desirable characteristics of a composition when exposed to moisture (e.g., PSAs).
  • a substrate e.g., particle board and plywood
  • moisture e.g., PSAs
  • ST de ⁇ tes styrene.
  • 2EHA denotes 2-ethylhexyl acrylate.
  • MAA denotes methacrylic acid.
  • IBMA denotes isobornyl methacrylate.
  • AAEM denotes acetoacetoxyethyl methacrylate.
  • Example 3 water (about 550 g) was added to a reactor and heated while purging the reactor with nitrogen. When the water reached a tem ⁇ perature of either about 180° F (Examples 1-2) or about 160° F (Example 3), the ingredients listed in Table II, infra, were individually added to the reactor.
  • f. 50S denotes a 30 weight percent total solids emul ⁇ sion containing a styrene seed having an average parti ⁇ cle size of about 50 nm.
  • 3OS denotes a 30 weight percent total solids emul ⁇ sion containing a styrene seed having an average parti ⁇ cle size of about 30 nm.
  • Example 3 at the end of the 3 hour period and after the emulsion in the reactor cooled to about room temperature, the pH of the emulsion was raised to about 8.5 using a solution of about 10% ammonium hydroxide.
  • Example 3 immediately after finishing the addition of the catalyst solution and the mon mer mixture, a; solution containing about 5 ml ammonium hydroxide and about 20 ml water was added to the emulsion. After the emulsion cooled to room tem ⁇ perature, the 10% ammonium hydroxide solution was added in a sufficient amount to raise the pH of the emulsion to about 8.5.
  • the total solid content of the emulsions and the average particle size of the polymers are given in Table III, infra.
  • the monomer mixture comprised about 1470.g styrene, about 1470 g 2-ethylhexyl acry ⁇ late, and about 90 g methacrylic acid.
  • the cross- linking solution contained about 250 g water and about 125 g N-methylol acrylamide.
  • water about 2500 g was added to a reactor and heated while purging the reactor with nitrogen.
  • a temperature of about 160° F about 4.5 g sodium persulfate and about 90 g of a 30 weight percent total solids emulsion containing a styrene seed having an average particle size of about 30 nm were individually added to the reactor.
  • the monomer mixture and a catalyst solution comprising about 4.5 g sodium persulfate and about 135 g water were then separately added to the contents of the reactor over a period of about 3 hours while main ⁇ taining the temperature within the reactor at about 165° F.
  • a solu ⁇ tion containing about 50 ml ammonium hydroxide and about 100 ml water was added to the emulsion.
  • the temperature of the emulsion was afterwards raised to about 175° F and maintained at that temperature for about 1.5 hours while adding additional catalyst solu ⁇ tion to reduce the concentration of any unreacted monomers.
  • the emulsion was then allowed to cool to room temperature.
  • One end of particle board strips was com ⁇ pletely coated with an emulsion of Examples 1-4. After drying the coated strip at about 180° F for about one hour or at room temperature for about a week, the thickness of the coated end of each strip was first measured and then immersed in water for a period of about 16 hcfurs. The thickness of the coated, immersed end was measured, and the percent increase in thickness (percent swelling) was calculated. The same procedure was followed with a control, i.e., an uncoated particle board strip. The results are set forth in Table IV, infra.
  • the emulsion can include one or more ingredients that enhance other film and/or emul ⁇ sion properties. Therefore, the spirit and scope of the appended claims should not necessarily be limited to the description of the preferred embodiments con ⁇ tained herein.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)

Abstract

Une émulsion polymère comprenant (i) un polymère (ii) de l'eau et (iii) un tensio-actif, est utile pour produire un film résistant à l'eau. Le polymère comprend environ 25 à environ 90 % en poids d'un monomère tendre dont l'homopolymère a une Tg inférieure à environ -20 °C, environ 10 à environ 75 % en poids d'un monomère dure dont l'homopolymère a une Tg supérieure à environ 30 °C, environ 1 à environ 5 % en poids d'un acide carboxylique oléfinique, et environ 0,5 à environ 5 % en poids d'un agent de réticulation. Le polymère comprend, typiquement, moins d'environ 1 % en poids de tensio-actif et a une Tg d'environ -50° à 50 °C, et une grosseur particulaire moyenne inférieure à environ 250 nm. L'émulsion comprend au moins environ 40 % en poids de solides, et a une tension superficielle d'au moins environ 45 dynes/cm .
PCT/US1990/004226 1989-07-28 1990-07-27 Emulsions polymeres resistantes a l'eau WO1991002007A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US38688689A 1989-07-28 1989-07-28
US386,886 1989-07-28

Publications (1)

Publication Number Publication Date
WO1991002007A1 true WO1991002007A1 (fr) 1991-02-21

Family

ID=23527480

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US1990/004226 WO1991002007A1 (fr) 1989-07-28 1990-07-27 Emulsions polymeres resistantes a l'eau

Country Status (5)

Country Link
EP (1) EP0484399A1 (fr)
JP (1) JPH04506371A (fr)
AU (1) AU6142290A (fr)
CA (1) CA2064081A1 (fr)
WO (1) WO1991002007A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590604A3 (en) * 1992-09-29 1996-03-27 Amerchol Corp Hairsprays and acrylic polymer compositions for use therein
EP0822206A1 (fr) * 1996-07-31 1998-02-04 Elf Atochem S.A. Polyméres adhésifs sensibles à la pression
WO2000073354A1 (fr) * 1999-05-28 2000-12-07 Atofina Dispersions aqueuses de polymeres
WO2018007325A1 (fr) * 2016-07-04 2018-01-11 Dsm Ip Assets B.V. Émulsion aqueuse de polymère
CN112708006A (zh) * 2020-12-28 2021-04-27 浙江睿高新材料股份有限公司 一种用于百洁布的丙烯酸乳液及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009256476A (ja) * 2008-04-17 2009-11-05 Dic Corp プラスチック塗料用樹脂組成物、およびプラスチック塗料

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1072042A (en) * 1962-11-21 1967-06-14 Union Carbide Corp Self-crosslinking interpolymers
DE2556327A1 (de) * 1975-12-13 1977-06-23 Hoechst Ag Feinteilige copolymer-dispersionen und verfahren zu ihrer herstellung
DE2431576B2 (de) * 1973-07-03 1979-11-29 Vianova Kunstharz Ag, Wien Verfahren zur Herstellung von wäßrigen Polymerisatdispersionen
EP0044399A2 (fr) * 1980-06-19 1982-01-27 BASF Aktiengesellschaft Solutions de liant et leur usage dans des compositions diluables à l'eau, sèchant physiquement
EP0071071A1 (fr) * 1981-07-16 1983-02-09 Hoechst Aktiengesellschaft Procédé de préparation d'une dispersion aqueuse d'un copolymère et usage de celle-ci
JPS59161417A (ja) * 1983-03-04 1984-09-12 Daicel Chem Ind Ltd 塗装材料
DE2545108C2 (de) * 1974-11-04 1986-07-31 The Goodyear Tire & Rubber Co., Akron, Ohio Verfahren zur Herstellung einer Überzugsmasse in Form einer wäßrigen Dispersion oder Lösung und ihre Verwendung
EP0219868A2 (fr) * 1985-10-23 1987-04-29 E.I. Du Pont De Nemours And Company Micro-particules polymères réticulées

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1072042A (en) * 1962-11-21 1967-06-14 Union Carbide Corp Self-crosslinking interpolymers
DE2431576B2 (de) * 1973-07-03 1979-11-29 Vianova Kunstharz Ag, Wien Verfahren zur Herstellung von wäßrigen Polymerisatdispersionen
DE2545108C2 (de) * 1974-11-04 1986-07-31 The Goodyear Tire & Rubber Co., Akron, Ohio Verfahren zur Herstellung einer Überzugsmasse in Form einer wäßrigen Dispersion oder Lösung und ihre Verwendung
DE2556327A1 (de) * 1975-12-13 1977-06-23 Hoechst Ag Feinteilige copolymer-dispersionen und verfahren zu ihrer herstellung
EP0044399A2 (fr) * 1980-06-19 1982-01-27 BASF Aktiengesellschaft Solutions de liant et leur usage dans des compositions diluables à l'eau, sèchant physiquement
EP0071071A1 (fr) * 1981-07-16 1983-02-09 Hoechst Aktiengesellschaft Procédé de préparation d'une dispersion aqueuse d'un copolymère et usage de celle-ci
JPS59161417A (ja) * 1983-03-04 1984-09-12 Daicel Chem Ind Ltd 塗装材料
EP0219868A2 (fr) * 1985-10-23 1987-04-29 E.I. Du Pont De Nemours And Company Micro-particules polymères réticulées

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CHEMICAL ABSTRACTS, Volume 102, No. 12, 25 March 1985, (Columbus, Ohio, US), page 67, Abstract 97055g; & JP,A,59 161 417 (COATING MATERIALS), 12 September 1984. *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0590604A3 (en) * 1992-09-29 1996-03-27 Amerchol Corp Hairsprays and acrylic polymer compositions for use therein
US5589157A (en) * 1992-09-29 1996-12-31 Amerchol Corporation Hairsprays and acrylic polymer compositions for use therein
EP0822206A1 (fr) * 1996-07-31 1998-02-04 Elf Atochem S.A. Polyméres adhésifs sensibles à la pression
FR2751974A1 (fr) * 1996-07-31 1998-02-06 Atochem Elf Sa Polymeres adhesifs sensibles a la pression
CN1090221C (zh) * 1996-07-31 2002-09-04 埃勒夫阿托化学有限公司 压敏粘合剂聚合物
WO2000073354A1 (fr) * 1999-05-28 2000-12-07 Atofina Dispersions aqueuses de polymeres
US6620881B1 (en) 1999-05-28 2003-09-16 Atofina Aqueous polymer dispersions
WO2018007325A1 (fr) * 2016-07-04 2018-01-11 Dsm Ip Assets B.V. Émulsion aqueuse de polymère
CN112708006A (zh) * 2020-12-28 2021-04-27 浙江睿高新材料股份有限公司 一种用于百洁布的丙烯酸乳液及其制备方法

Also Published As

Publication number Publication date
JPH04506371A (ja) 1992-11-05
AU6142290A (en) 1991-03-11
CA2064081A1 (fr) 1991-01-29
EP0484399A1 (fr) 1992-05-13

Similar Documents

Publication Publication Date Title
US5202375A (en) Water-resistant polymeric emulsions
US5516865A (en) Waterborne (meth) acrylic latex polymers for release
JP4130993B2 (ja) 部分的に架橋された微小球
US7115682B2 (en) Removable, water-whitening resistant pressure sensitive adhesives
EP0846731B1 (fr) Composition de résine durcissable, adhésif et laminate
US5461103A (en) Process for producing a stable aqueous pressure sensitive adhesive polymer emulsion
KR0181474B1 (ko) 함유의 감압성 접착제
AU683168B2 (en) Treated substrate having improved release properties
EP0913443A1 (fr) Feuille adhesive autocollante et thermosensible
EP1340797B1 (fr) Composition adhésive sensible à la pression sous forme de dispersion aqueuse et article adhésif sensible à la pression
JP2010196077A (ja) 水分散型粘着剤組成物及び粘着製品
WO1991002007A1 (fr) Emulsions polymeres resistantes a l'eau
US6114045A (en) Flexible coatings with low surface tack and surface tension
WO1991002775A1 (fr) Vernis a base d'eau
US4888395A (en) Core/shell polymers and improved sealable articles treated with the same
EP1447434A1 (fr) Adhésif sensible à la pression de type dispersion aqueuse et produit adhésif sensible à la pression
US5185396A (en) Water-based varnishes
JP3463715B2 (ja) 剥離紙用アンダーコート剤
JPH0539328A (ja) 合成樹脂エマルジヨンの製造方法
US5057569A (en) Process for manufacturing a latex-lipophilic polymer
JP4434432B2 (ja) 水分散型粘着剤及び粘着シート
JPH0757764B2 (ja) 水性樹脂分散液およびその用途
JP3620616B2 (ja) 剥離紙用アンダーコート剤
JP4032397B2 (ja) シリコーンエマルジョンを剥離層に用いた剥離紙用の、アンダーコート剤
JPS63234077A (ja) 水分散型感圧性接着剤組成物の製造方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU CA JP

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990911520

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2064081

Country of ref document: CA

WWP Wipo information: published in national office

Ref document number: 1990911520

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990911520

Country of ref document: EP