WO1990010785A1 - Verfahren zum betreiben eines kombinierten gasturbinen-/dampfturbinen-prozesses - Google Patents

Verfahren zum betreiben eines kombinierten gasturbinen-/dampfturbinen-prozesses Download PDF

Info

Publication number
WO1990010785A1
WO1990010785A1 PCT/EP1990/000367 EP9000367W WO9010785A1 WO 1990010785 A1 WO1990010785 A1 WO 1990010785A1 EP 9000367 W EP9000367 W EP 9000367W WO 9010785 A1 WO9010785 A1 WO 9010785A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas turbine
fluidized bed
turbine process
pressure
gas
Prior art date
Application number
PCT/EP1990/000367
Other languages
English (en)
French (fr)
Inventor
Raimund Croonenbrock
Hubert Steven
Reinhold Ulrich Pitt
Original Assignee
L. & C. Steinmüller Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L. & C. Steinmüller Gmbh filed Critical L. & C. Steinmüller Gmbh
Publication of WO1990010785A1 publication Critical patent/WO1990010785A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/205Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products in a fluidised-bed combustor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/061Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with combustion in a fluidised bed
    • F01K23/062Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with combustion in a fluidised bed the combustion bed being pressurised
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/003Gas-turbine plants with heaters between turbine stages

Definitions

  • the invention relates to a method for operating a combined gas turbine / steam turbine process in which the supercharged advance gas turbine process by means of compressed air and a fuel fluid and the
  • Fluidized bed firing with the oxygen-containing exhaust gases from the primary gas turbine process takes place and electrical energy can be generated with both turbine processes.
  • the gas generated in the pressure gasification is at a very low pressure level, e.g. B. 1.35 bar relaxed and a circulating atmospheric fluidized bed
  • Fluidization air takes place in two stages, the first in the compressor of a turbocharger and the second in one driven by a gas turbine
  • the air is intercooled between the two stages in order to keep the compression work small overall.
  • the compressed air is in one before the entry into the combustion chamber of the pressure fluidized bed
  • Preheated air preheater which is acted upon by the flue gas from the pressure fluidized bed combustion, which is partially expanded in the gas turbine.
  • heat is removed from the flue gas, which is still under higher pressure, to the compressed air.
  • the air preheater is followed by a feed water preheater in which heat is still transferred to the feed water. The energy then remaining in the flue gas is sufficient to operate the
  • Pressure fluidized bed is a limit for increasing efficiency and specific work.
  • the invention provides that the exhaust gases of the
  • Pressure fluidized bed can be operated, and that the exhaust gases from the pressure fluidized bed combustion after dedusting are expanded in a second gas turbine process and thereafter a heat exchange with the compressed air of the
  • the compression energy for the first stage being applied by the second gas turbine process and the compression energy for the second stage being applied by the preliminary gas turbine process.
  • Fuel flexibility, natural gas and oil can be used as fuel fluids in plants to be built at short notice
  • the primary gas turbine can also use coal gas, hydrogen or from the gasification of coal
  • Methanol / ethanol are fired.
  • the method according to the invention leads to systems with a high power density, which are distinguished in particular by good part-load behavior.
  • Fluidized bed in particular highly expanded fluidized bed with trap separation.
  • VoraItturbinen process partially compressed air is supplied to the first compression stage. Further subclaims relate to advantageous ones
  • FIG. 1 a fluidized bed combustion with supercharged primary gas turbine, exhaust gas turbine and
  • FIG. 2 a circuit comparable to FIG. 1 where, however, the feed gas turbine with one in one
  • Low-pressure turbine 2 builds a gas turbine set 3, compressed in a first stage, via a valve 4, a partial flow of this compressed air is fed to the combustion chamber 5 of a pressure fluidized bed combustion system 6, shown schematically. Another partial flow is located in a steam turbine system 7 connected downstream of the pressure fluidized bed furnace 6 in the feed water circuit
  • Recooler 8 recooled and then in one
  • High pressure compressor 9 further compressed.
  • the compressed air is preheated in a preheater 10 and into a combustion chamber 12 fired with natural gas 11
  • VoraItgasurbine 13 initiated.
  • the combustion gas is expanded in the gas turbine to a pressure suitable for the operation of the pressure fluidized bed combustion and corresponding to the pressure of the partial air flow supplied via valve 4 and then to the combustion chamber 5
  • Compressed fluidized bed combustion 6 supplied.
  • the flue gas from the pressure fluidized bed combustion 6 is filtered in a hot gas filter 14 and the
  • Low pressure turbine 2 supplied.
  • the flue gas cools down according to the pressure ratio during expansion.
  • downstream feed water preheater 15 used.
  • absolute mass flows and outputs are given.
  • the process which has not yet been optimized, has an efficiency of 47.5%, yields a specific useful output of 3.8 and a CO 2 emission value of 0.189 kg / MJ with a natural gas share of 24.3% of the total
  • valve 4 If the valve 4 is closed, i.e. H. only the combustion gas from the natural gas-fired gas turbine is used as an oxygen carrier
  • FIG. 1 shows that the gas turbine set 3 and the supercharged advance gas turbine 13 can be coupled to a generator 17 via couplings 16a and 16b, respectively. It is advantageous to clutch 16b when starting the gas turbine set 3 or at extreme
  • the system according to FIG. 1 offers the cheapest way for regulation, partial loads by reducing the
  • a bypass line 18 assigned to the turbine 2 is first opened and then the gas turbine 13 is started up.
  • the gas turbine exhaust gas is hot enough to heat the fluidized bed onto the
  • the combustion chamber 12 becomes coal gas as a fuel gas
  • the coke formed in the partial gasification 19 is fed via line 21 together with the separated dust 22 to the pressure fluidized bed combustion 6 together with the coal 5a.
  • a partial flow of the compressed air is fed to the pressure fluidized bed partial gasification 19 via a branch line 23.
  • the coal 19a fed to the partial pressure gasification 19 can be pre-dried in a steam fluidized bed dryer 24 known per se. Furthermore, in FIG. 2
  • Fluidized beds with arranged in the interior of the reactor
  • Channel separator 25 can be, as are known from DE-OS 36 40 377.6.
  • the excess power is the generator 17 as

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Abstract

Bei einem Verfahren zum Betreiben eines kombinierten Gasturbinen-/Dampfturbinen-Prozesses, bei dem der aufgeladene Vorschaltgasturbinen-Prozess mittels komprimierter Luft und einem Brennfluid und der Dampfturbinen-Prozess mit einer mit kohlenstoffhaltigem festen Brennstoff gespeisten Wirbelschichtfeuerung betrieben wird, wobei die Verbrennung in der Wirbelschichtfeuerung mit den sauerstoffhaltigen Abgasen des Vorschaltgasturbinen-Prozesses erfolgt und mit beiden Turbinenprozessen elektrische Energie erzeugt werden kann, ist zur Erhöhung des Wirkungsgrades vorgesehen, das die Abgase des Vorschaltgasturbinen-Prozesses (13) nur soweit entspannt werden, dass die Wirbelschichtfeuerung als Druckwirbelschicht (6) betrieben werden kann und dass die Abgase der Druckwirbelschichtfeuerung nach Entstaubung (14) in einem zweiten Gasturbinen-Prozess (2) entspannt werden und danach einem Wärmetausch (10) mit der komprimierten Luft des Vorschaltgasturbinen-Prozesses (13) unterzogen werden und dass die Luft für den Vorschaltgasturbinen-Prozess einer zweistufigen Kompression (19) mit Rückkühlung (8) unterzogen wird, wobei die Kompressionsenergie für die erste Stufe (1) von dem zweiten Gasturbinen-Prozess (2) und die Energie für die zweite Stufe (9) von dem Vorschaltgasturbinen-Prozess (13) aufgebracht wird.

Description

Beschreibung
Verfahren zun Betreiben eines kombinierten Gasturbinen-/Dampfturbinen-Prozesses
Die Erfindung betrifft ein Verfahren zum Betreiben eines kombinierten Gasturbinen-/Dampfturbinen-Prozesses bei dem der aufgeladene VorschaItgasturbinen-Prozeß mittels komprimierter Luft und einem Brennfluid und der
Dampfturbinen-Prozeß mittels einer mit koh lenstoffha lti gern festen Brennstoff gespeisten Wirbelschichtfeuerung
betrieben wird, wobei die Verbrennung in der
Wirbelschichtfeuerung mit den sauerstoffhaltigen Abgasen des Vorschaltgasturbinen-Prozesses erfolgt und mit beiden Turbinenprozessen elektrische Energie erzeugt werden kann.
Aus der DE-OS 36 12 888 ist ein solches Verfahren bekannt, bei dem als Brennfluid ein aus einem festen
kohlenstoffhaltigen Material durch Druckvergasung in einer zirkulierenden Wirbelschicht gewonnenes Gas verwendet wird. Das in der Druckvergasung erzeugte Gas wird auf eine sehr niedrige Druckstufe, z. B. 1,35 bar entspannt und einer zirkulierenden atmosphärischen Wirbelschicht
zugeleitet. Der bei der bekannten Verfahrensführung erreichbare Gesamtwirkungsgrad beträgt 42 %.
Aus der DE-OS 35 36 451 ist ein Verfahren zum Betreiben eines kombinierten Gasturbinen-Dampfturbinen-Prozesses bekannt, bei der die Verdichtung der für den Betrieb der Druckwirbelschicht erforderlichen Verbrennungs- u.
Fluidisierungsluft in zwei Stufen erfolgt, von denen die erste in dem Verdichter eines Turboladers erfolgt, und die zweite in einem von einer Gasturbine angetriebenen
Verdichter. Zwischen den beiden Stufen wird die Luft zwischengekühlt, um die Verdichtungsarbeit insgesamt klein zu halten. Die verdichtete Luft wird vor ihrem Eintritt in den Feuerraum der Druckwirbelschicht in einem
Luftvorwärmer vorgewärmt, der von dem in der Gasturbine teilexpandiertem Rauchgas der Druckwirbelschichtfeuerung beaufschlagt wird. Im Luftvorwärmer wird aus dem noch immer unter höherem Druck stehenden Rauchgas Wärme an die verdichtete Luft abgeführt. Dem Luftvorwärmer ist noch ein Speisewasservorwärmer nachgeschaltet, in dem noch Wärme an das Speisewasser übertragen wird. Die im Rauchgas dann noch verbleibene Energie reicht zum Betrieb des
Turboladers der ersten Kompressionsstufe aus. Bei der bekannten Verfahrensweise wird ein Nettowirkungsgrad von 38 % erreicht. Die Verbrennungstemperatur von 850 in der Druckwirbelschicht setzt somit dem Kombiprozeß mit
Druckwirbelschicht eine Grenze für die Steigerung des Wirkungsgrades und der spezifischen Arbeit.
Es ist die Aufgabe der vorliegenden Erfindung, den
Wirkungsgrad des bekannten kombinierten Gasturbinen-/ und Dampfturbinen-Prozesses mit aufgeladener
VorschaItgasturbine zu erhöhen. Zur Lösung der Aufgabe ist erfindungsgemäß vorgesehen, daß die Abgase des
Vorschaltgasturbinen-Prozesses nur soweit entspannt werden, daß die Wirbelschichtfeuerung als
Druckwirbelschicht betrieben werden kann, und daß die Abgase der Druckwirbelschichtfeuerung nach Entstaubung in einem zweiten Gasturbinen-Prozeß entspannt werden und danach einem Wärmetausch mit der komprimierten Luft des
Vorschaltgasturbinen-Prozesses unterzogen werden und daß die Luft für den VorschaItgasturbinen-Prozeß einer
zweistufigen Kompression mit Rückkühlung unterzogen wird, wobei die Kompressionsenergie für die erste Stufe von dem zweiten Gasturbinen-Prozeß und die Kompressionsenergie für die zweite Stufe von dem VorschaItgasturbinen-Prozeß aufgebracht wird.
Auf diese Weise kann die von der Wirbelschichtfeuerung gesetzte Begrenzung der Turbinen-Eintrittstemperatur auf 850 C im Kombiprozeß durch das Einbinden der aufgeladenen VorschaItgasturbine in den Prozeß aufgehoben werden. Es kann ein Wirkungsgrad bis über 50 % erreicht werden.
Weiterhin wird eine Verminderung des CO2-Emissionswertes erreicht, der sonst nur von Erdgasanlagen erreicht wird. Das Verfahren bietet außerdem eine sehr große
Brennstoffflexibilitat, so können als Brennstofffluide Erdgas und öl in kurzfristig zu bauenden Anlagen
eingesetzt werden. Mit fortschreitender Entwicklung kann die VorschaItgasturbine jedoch auch mit aus der Vergasung von Kohle stammendem Kohlegas, Wasserstoff oder
Methanol/Äthanol gefeuert werden. Das erfindungsgemäße Verfahren führt zu Anlagen hoher Leistungsdichte, die sich insbesondere durch ein gutes TeillastverhaIten auszeichnen.
Wenn als Brennfluid ein aus einem festen
kohlenstoffhaltigen Material durch Druckvergasung
gewonnenes Gas, insbesondere Kohlegas verwendet wird, ist es weiter von Vorteil, wenn die Vergasung in einer
Wirbelschicht, insbesondere Hochexpandierter Wirbelschicht mit Fangri nnenabschei düng erfolgt.
Zum verbesserten TeillastverhaIten ist es zweckmäßig, wenn der Druckwirbelschichtfeuerung neben den Abgasen des
VorschaItturbinen-Prozesses teilkomprimierte Luft der ersten Kompressionsstufe zugeführt wird. Weitere Unteransprüche betreffen vorteilhafte
Ausgestaltung des erfindungsgemäßen Verfahrens und eine Anlage zur Durchführung des Verfahrens.
Die Erfindung soll nun anhand der beigefügten Figuren näher erläutert werden.
Es zeigen:
FIG. 1 eine Drύckwirbelschichtfeuerung mit aufgeladener VorschaItgasturbine, Abgasturbine und
Dampfturbinenanordnung, wobei die VorschaItgasturbine mit Erdgas betrieben wird und
FIG. 2 eine Schaltung vergleichbar FIG. 1 bei der jedoch die VorschaItgasturbine mit einem in einer
Druckteilvergasung erzeugtem Kohlegas betrieben wird.
Bei der Anordnung gemäß FIG. 1 wird Verbrennungsluft in dem Verdichter 1, der zusammen mit einer
Niederdruckturbine 2 einem Gasturbosatz 3 aufbaut, in einer ersten Stufe verdichtet, über ein Ventil 4 wird ein Teilstrom dieser verdichteten Luft dem Feuerraum 5 einer schematisch dargestellten DruckwirbeIschichtfeuerung 6 zugeführt. Ein anderer Teilstrom wird in einem in den Speisewasserkreislauf einer der Druckwirbelschichtfeuerung 6 nachgeschalteten Dampfturbinenanlage 7 liegenden
Rückkühler 8 rückgekühlt und danach in einem
Hochdruckverdichter 9 weiterverdichtet. Die verdichtete Luft wird in einem Vorwärmer 10 vorgewärmt und in eine mit Erdgas 11 gefeuerte Brennkammer 12 einer
VorschaItgasturbine 13 eingeleitet. Das Verbrennungsgas wird in der Gasturbine auf einen für den Betrieb der Druckwirbelschichtfeuerung geeigneten und dem Druck des über Ventil 4 herangeführten Luftteilstrom entsprechenden Druck expandiert und dann dem Feuerraum 5 der
Druckwirbelschichtfeuerung 6 zugeführt. Das Rauchgas aus der Druckwirbelschichtfeuerung 6 wird in einem Heißgasfilter 14 gefiltert und der
Niederdruckturbine 2 zugeführt. Das Rauchgas kühlt sich entsprechend dem Druckverhältnis bei der Expansion ab.
Seine fühlbare Wärme wird in dem Luftvorwärmer 10 auf die komprimierte Luft und in einem dem Rückkühler 8
nachgeschalteten Speisewasservorwärmer 15 ausgenutzt. In der FIG. 1 sind beispielsweise absolute Massenströme und Leistungen angegeben. Der noch nicht optimierte Prozeß hat einen Wirkungsgrad von 47,5 %, erbringt eine spezifische Nutzleistung von 3,8 und einen CO2-Emissionswert von 0,189 kg/MJ bei einem Erdgasanteil von 24,3 % der gesamten
Brennstoffleistung. Wird das Ventil 4 geschlossen, d. h. wird nur noch das Verbrennungsgas aus der erdgasgefeuerten Gasturbine als Sauerstoffträger der
Druckwirbelschichtfeuerung 6 zugeführt, so steigt der Wirkungsgrad auf über 51 %, die spezi fi sehe Nutzarbei t auf 5,48 und der CO2-Emessionswert sinkt auf 0,17 kg/MJ bei einem Erdgasanteil von 39,7 % an der gesamten
Brennstoffleistung. In der FIG. 1 ist dargestellt, daß der Gasturbosatz 3 und die aufgeladene VorschaItgasturbine 13 über Kupplungen 16a bzw. 16b mit einem Generator 17 koppelbar sind. Es ist von Vorteil, Kupplung 16b beim Anfahren des Gasturbosatzes 3 bzw. bei extremer
Schwachlast und zu niedriger Eintrittstemperatur der Turbine 3 zu trennen, so daß der Gasturbosatz frei läuft.
Die Anlage gemäß FIG. 1 bietet für die Regelung den günstigen Weg, Teillasten durch eine Minderung der
Luftmenge der Wirbelschichtfeuerung über Ventil 4 bei festem Betrieb der Vors cha Itgasturbi ne 13 einzustellen. Bei Anfahren der Anlage wird zunächst eine der Turbine 2 zugeordneten Bypass-Leitung 18 geöffnet und dann die Gasturbine 13 angefahren. Das Gasturbinenabgas ist heiß genug zum Aufheizen der Wirbelschicht auf die
Zündtemperatur der über 5a herangeführten Kohle.
Bei der FIG. 2 sind für vergleichbare Bestandteile der Anlage die gleichen Bezugszeichen verwendet worden. Als Brenngas wird der Brennkammer 12 Kohlegas aus einer
Wirbelschichtteilvergasung 19 nach einer Entstaubung und ggf. Entschwefelung und Entha lagoni si e rung zugeleitet.
Hiervon ist nur die Entstaubung 20 schematisch
dargestellt. Der in der Teilvergasung 19 entstehende Koks wird über Leitung 21 zusammen mit dem abgeschiedenen Staub 22 der Druckwirbelschichtfeuerung 6 zusammen mit der Kohle 5a zugeführt.
Der Druckwirbelschichtteilvergasung 19 wird über eine Zweigleitung 23 ein Teilstrom der komprimierten Luft zugeführt.
Die der Teildruckvergasung 19 zugeführte Kohle 19a kann in einem an sich bekannten DampfwirbeIschichttrockner 24 vorgetrocknet werden. Weiterhin ist in der FIG. 2
angedeutet, daß die DruckteiIvergasungswirbeIschicht 18 und die Druckwirbelschichtfeuerung 6 expandierte
Wirbelschichten mit im Reaktorinnenraum angeordneten
Fangrinnenabscheider 25 sein können, wie sie aus der DE-OS 36 40 377.6 bekannt sind.
Bei der Druckteilvergasung erfolgt keine Wasser- oder Dampfkühlung bei der erreichbaren Reakti onstemperatur von 850 C. Die Leistung der Turbine 13 wird wieder
überwiegend im Verdichter zur Kompression des
Verbrennungsgases und der Vergasungsluft benutzt. Die überschußleistung wird über den Generator 17 als
Netzleistung abgegeben.
Bei der in der FIG. 2 gezeigten Ausführungsform sind die Verdichterturbinengruppen 1/2 und 9/13 voneinander getrennt angeordnet und ihnen ist jeweils ein Generator 17a bzw. 17 b zugeordnet. Beispiel geβäß FIG. 1
und bevorzugte Bereiche
Figur Bereiche
Eintrittsdruck für
Vorschaltturbine 13 29,7 bar 25-35 bar
Eintrittstemperatur 1200 nach Stand der
Gasturbinentechnik
Gasdruck im Feuerraum 5 6 bar 4 - 12 bar
Lufteintritts-temperatur in
Feuerraum 5 235 180 - 385
Turbinengaseintritts-temperatur in Feuerräum 5 780 °C 600 - 850
Rauchgasdruck 5,3 .bar 3,5 - 10 bar
(Hierzu 2 Blatt Zeichnungen)

Claims

Patentansprüche
1.) Verfahren zum Betreiben eines kombinierten
Gasturbinen-/Dampfturbinen-Prozesses, bei dem der aufgeladene VorschaItgasturbinen-Prozeß mittels komprimierter Luft und einem Brennfluid und der
Dampfturbinen-Prozeß mit einer mit kohlestoffhaltigern festen Brennstoff gespeisten Wi rbelschichtfeuerung betrieben wird, wobei die Verbrennung in der
Wirbelschichtfeuerung mit den sauerstoffhaltigen
Abgasen des Vorschaltgasturbinen-Prozesses erfolgt und mit beiden Turbinenprozessen elektrische Energie erzeugt werden kann, d a d u r c h g e k e n n z e i c h n e t, daß die Abgase des Vorschaltgasturbinen-Prozesses nur soweit entspannt werden, daß. die Wi rbelschichtfeuerung als Druckwirbelschicht betrieben werden kann und daß die Abgase der
Druckwirbelschichtfeuerung nach Entstaubung in einem zweiten Gasturbinen-Prozeß entspannt werden und danach einem Wärmetausch mit der komprimierten Luft des Vorschaltgasturbinen-Prozesses unterzogen werden und daß die Luft für den Vorschaltgasturbinen-Prozeß einer zweistufigen Kompression mit Rückkühlung unterzogen wird, wobei die Kompressionsenergie für die erste Stufe von dem zweiten Gasturbinen-Prozeß und die Kompressionsenergie für die zweite Stufe von dem VorschaItgasturbinen-Prozeß aufgebracht wird.
2.) Verfahren nach Anspruch 1, d a d u r c h g e k e n n z e i c h n e t, daß der Druckwi rbel- schichtfeuerung neben den Abgasen des
Vorschaltgasturbinen-Prozesses teilkomprimierte Luft der ersten Kompressionsstufe zugeführt wird.
3.) Verfahren nach Anspruch 1 oder 2, d a d u r c h
g e k e n n z e i c h n e t, daß die Abgase nach dem Wärmetausch mit der komprimierten Luft einem
Wärmetausch mit dem Speisewasser des
Dampferzeugungsprozesses unterzogen werden.
4.) Verfahren nach mindestens einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß als Brennfluid Erdgas eingesetzt wird.
5.) Verfahren nach mindestens einem der Ansprüche 1 bis 3, d a d u r c h g e k e n n z e i c h n e t, daß als Brennfluid ein aus einem festen kohlenstoffhaltigen Material durch Druckvergasung gewonnenes Gas verwendet wird und kohlenstoffhaltige Vergasungsrückstände in der Druckwirbelschicht ggf. unter Zufuhr weiteren Brennstoffes verbrannt werden.
6.) Verfahren nach mindestens einem der Ansprüche 1 bis 5, d a d u r c h g e k e n n z e i c h n e t, daß der Druckvergasung in einem Dampfwi rbe Ischi chtt rockner getrocknetes kohlenstoffhaltiges Material zugeführt wird.
7.) Verfahren nach mindestens einem der Ansprüche 1 bis 6, d a d u r c h g e k e n n z e i c h n e t, daß beim Anfahren des zweiten Gasturbinen-Prozesses bei zu niedriger Eintrittstemperatur der zugeordnete
Gasturbosatz frei läuft.
8.) Anlage zur Durchführung des Verfahrens nach mindestens einem der Ansprüche 1 bis 7 mit einer mit einem kohlenstoffhaltigen festen Brennstoff
gespe i sten Wirbelschichtfeuerung, einer der Wirbelschichtfeuerung vorgeschalteten aufgeladenen Gasturbine und einem der Wirbelschichtfeuerung nachgeschalteten
Dampfturbinen-Prozeß, wobei die VorschaItgasturbine abgasseitig mit der Wirbelschichtfeuerung verbunden ist und mit den Turbinen zugeordneten elektrischen Generatoren, d a d u r c h g e k e n n z e i c h n e t, daß die Wirbelschichtfeuerung als
Druckwirb'elschichtfeuerung (6) ausgebildet ist und der Druckwirbelschichtfeuerung abgasseitig ein
Heißgasfilter (13), eine Gasturbine (2) und ein
Luftvorwärmer (10) nachgeschaltet sind, der luftseitig von der der VorschaItgasturbine (13) zugeführten Luft beaufschlagt ist und für die Kompression der der
VorschaItgasturbine zugeführten Luft ein Verdichter (1) angetrieben von der Gasturbine (2) und ein zweiter Verdichter (9) angetrieben von der VorschaItgasturbine (13) vorgesehen sind, wobei zwischen den beiden
Verdichtern ein in den Wasser-Dampf-Kreislauf der Wirbelschichtfeuerung eingebundener Rückkühler (8) vorgesehen ist.
PCT/EP1990/000367 1989-03-07 1990-03-06 Verfahren zum betreiben eines kombinierten gasturbinen-/dampfturbinen-prozesses WO1990010785A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3907217A DE3907217A1 (de) 1989-03-07 1989-03-07 Verfahren zum betreiben eines kombinierten gasturbinen-/dampfturbinen-prozesses
DEP3907217.7 1989-03-07

Publications (1)

Publication Number Publication Date
WO1990010785A1 true WO1990010785A1 (de) 1990-09-20

Family

ID=6375668

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP1990/000367 WO1990010785A1 (de) 1989-03-07 1990-03-06 Verfahren zum betreiben eines kombinierten gasturbinen-/dampfturbinen-prozesses

Country Status (4)

Country Link
US (1) US5212941A (de)
EP (1) EP0462137A1 (de)
DE (1) DE3907217A1 (de)
WO (1) WO1990010785A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU651871B2 (en) * 1991-02-15 1994-08-04 Veag Vereinigte Energiewerke Aktiengesellschaft Dressing brown coal prior to combustion
AU651870B2 (en) * 1991-02-15 1994-08-04 Veag Vereinigte Energiewerke Aktiengesellschaft Dressing brown coal by carbonisation to coke prior to combustion

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3801886A1 (de) * 1987-01-23 1988-10-27 Erhard Beule Kombiniertes gas- und dampfturbinenkraftwerk mit aufgeladener wirbelschichtfeuerung
DE4029991A1 (de) * 1990-09-21 1992-03-26 Siemens Ag Kombinierte gas- und dampfturbinenanlage
US5428953A (en) * 1992-08-06 1995-07-04 Hitachi, Ltd. Combined cycle gas turbine with high temperature alloy, monolithic compressor rotor
CA2102637A1 (en) * 1992-11-13 1994-05-14 David H. Dietz Circulating fluidized bed reactor combined cycle power generation system
US5285629A (en) * 1992-11-25 1994-02-15 Pyropower Corporation Circulating fluidized bed power plant with turbine fueled with sulfur containing fuel and using CFB to control emissions
US5544479A (en) * 1994-02-10 1996-08-13 Longmark Power International, Inc. Dual brayton-cycle gas turbine power plant utilizing a circulating pressurized fluidized bed combustor
US5572861A (en) * 1995-04-12 1996-11-12 Shao; Yulin S cycle electric power system
US20030182944A1 (en) * 2002-04-02 2003-10-02 Hoffman John S. Highly supercharged gas-turbine generating system
US7421835B2 (en) * 2005-09-01 2008-09-09 Gas Technology Institute Air-staged reheat power generation system
US7770376B1 (en) 2006-01-21 2010-08-10 Florida Turbine Technologies, Inc. Dual heat exchanger power cycle
US20100293962A1 (en) * 2009-04-29 2010-11-25 Carrier Corporation Method for configuring combined heat and power system
CN102498267B (zh) 2009-06-09 2015-11-25 西门子公司 用于使天然气液化的装置和用于启动所述装置的方法
US20130269334A1 (en) * 2012-04-17 2013-10-17 Chandrashekhar Sonwane Power plant with closed brayton cycle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL63476C (de) *
US4270344A (en) * 1978-05-19 1981-06-02 General Motors Corporation Hybrid dual shaft gas turbine with accumulator
DE3224577A1 (de) * 1982-07-01 1984-01-05 Rudolf Dr. 6800 Mannheim Wieser Kombinierte gasturbinen/dampfturbinenanlage
DE3415768A1 (de) * 1984-04-27 1985-10-31 Elin-Union Aktiengesellschaft für elektrische Industrie, Wien Kombinierte gas-dampfkraftanlage
WO1987002755A1 (en) * 1985-10-23 1987-05-07 A. Ahlstrom Corporation Pressurized fluidized bed apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH584352A5 (de) * 1975-04-08 1977-01-31 Bbc Brown Boveri & Cie
CH601651A5 (de) * 1975-05-14 1978-07-14 Bbc Brown Boveri & Cie
DE2743830C2 (de) * 1977-09-29 1984-03-22 Saarbergwerke AG, 6600 Saarbrücken Verfahren zum Betreiben einer kombinierten Gas-Dampfkraftanlage und Gas-Dampfkraftanlage zur Durchführung des Verfahrens
US4352300A (en) * 1980-08-21 1982-10-05 Vitafin N.V. Combined linear and circular drive mechanism
US4387560A (en) * 1980-12-29 1983-06-14 United Technologies Corporation Utilization of coal in a combined cycle powerplant
DE3536451A1 (de) * 1985-10-12 1987-04-16 Steinmueller Gmbh L & C Druckaufgeladen betreibbare feuerung fuer einen dampferzeuger
JPH063144B2 (ja) * 1985-12-16 1994-01-12 石川島播磨重工業株式会社 再熱再生サイクルガスタ−ビン
DE3612888A1 (de) * 1986-04-17 1987-10-29 Metallgesellschaft Ag Kombinierter gas-/dampfturbinen-prozess
DE3613300A1 (de) * 1986-04-19 1987-10-22 Bbc Brown Boveri & Cie Verfahren zum erzeugen von elektrischer energie mit einer eine wirbelschichtfeuerung aufweisenden kombinierten gasturbinen-dampfkraftanlage sowie anlage zur durchfuehrung des verfahrens
SE453114B (sv) * 1986-04-29 1988-01-11 Asea Stal Ab Sett for drift av ett turbinaggregat
FI76866C (fi) * 1987-01-30 1988-12-12 Imatran Voima Oy Med vattenhaltigt braensle driven gasturbinanlaeggning och foerfarande foer utnyttjande av vaermeenergin i naemnda braensle.
DE3731627A1 (de) * 1987-09-19 1989-03-30 Klaus Prof Dr Ing Dr In Knizia Verfahren zur leistungsregelung eines kohlekombiblocks mit integrierter kohlevergasung und nach dem verfahren betriebenes kohlekraftwerk
CH678987A5 (de) * 1989-10-24 1991-11-29 Asea Brown Boveri

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL63476C (de) *
US4270344A (en) * 1978-05-19 1981-06-02 General Motors Corporation Hybrid dual shaft gas turbine with accumulator
DE3224577A1 (de) * 1982-07-01 1984-01-05 Rudolf Dr. 6800 Mannheim Wieser Kombinierte gasturbinen/dampfturbinenanlage
DE3415768A1 (de) * 1984-04-27 1985-10-31 Elin-Union Aktiengesellschaft für elektrische Industrie, Wien Kombinierte gas-dampfkraftanlage
WO1987002755A1 (en) * 1985-10-23 1987-05-07 A. Ahlstrom Corporation Pressurized fluidized bed apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 11, no. 368 (M-467)(2815) 02 Dezember 1987, & JP-A-62 142828 (ISHIKAWA AJIMA HARIMA HEAVY) 26 Juni 1987, siehe das ganze Dokument *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU651871B2 (en) * 1991-02-15 1994-08-04 Veag Vereinigte Energiewerke Aktiengesellschaft Dressing brown coal prior to combustion
AU651870B2 (en) * 1991-02-15 1994-08-04 Veag Vereinigte Energiewerke Aktiengesellschaft Dressing brown coal by carbonisation to coke prior to combustion

Also Published As

Publication number Publication date
EP0462137A1 (de) 1991-12-27
US5212941A (en) 1993-05-25
DE3907217C2 (de) 1993-07-01
DE3907217A1 (de) 1990-09-13

Similar Documents

Publication Publication Date Title
EP0150340B1 (de) Verfahren zum Betreiben einer kombinierten Gas-Dampfturbinen-Kraftwerkanlage
DE19940763B4 (de) Im kombinierten Zyklus arbeitender Energieerzeuger mit integrierter Kohlevergasung
DE69505302T2 (de) Kombikraftwerk mit Kohlebrenner und Brennstoffreformierung
EP1307641B1 (de) Verfahren und vorrichtung zur umwandlung von thermischer energie in mechanische arbeit
DE2743830C2 (de) Verfahren zum Betreiben einer kombinierten Gas-Dampfkraftanlage und Gas-Dampfkraftanlage zur Durchführung des Verfahrens
DE69918492T2 (de) Turbine à gaz à chauffage indirect integree à une unite de separation des gaz de l'air
WO1990010785A1 (de) Verfahren zum betreiben eines kombinierten gasturbinen-/dampfturbinen-prozesses
DE69400252T2 (de) Gebrauch von Stickstoff von einer Luftzerlegungsanlage um die Zufuhrluft zum Kompressor einer Gasturbine zu kühlen und dadurch der Wirkungsgrad zu erhöhen
EP0750718B1 (de) Verfahren zum betreiben einer gas- und dampfturbinenanlage sowie danach arbeitende anlage
DE2503193A1 (de) Verfahren zur herstellung eines heizgases durch druckvergasung kohlenstoffhaltiger brennstoffe
DE102004039164A1 (de) Verfahren zur Erzeugung von Energie in einer eine Gasturbine umfassenden Energieerzeugungsanlage sowie Energieerzeugungsanlage zur Durchführung des Verfahrens
WO2008065156A1 (de) Verfahren zum betrieb einer gasturbine
DE69807664T2 (de) Kohlebefeuerte gasturbinenanlage
EP0758045B1 (de) Anfahrverfahren einer als Einwellenanlage ausgeführten Kombianlage
DE3536451C2 (de)
DE4303174A1 (de) Verfahren zum Erzeugen elektrischer Energie
DE102009038323A1 (de) Verfahren und Vorrichtung zur Verwertung von Biomasse
DE60034529T2 (de) Brenngasentspannungsturbine für einen sauerstoffaufblas-vergaser und zugehöriges verfahren
EP1577507A1 (de) Kraftanlage mit Kohlefeuerung
DE112006002028B4 (de) Verfahren zum Betrieb einer Gasturbine sowie Gasturbine zur Durchführung des Verfahrens
EP1286030B1 (de) Gas- und Luftturbinenanlage
EP2423457A2 (de) Kraftwerk für IGSC-Prozess
DE3731082C1 (en) Method and plant for obtaining energy from solid, high-ballast fuels
WO2004003348A1 (de) Dampfkraftwerk
EP1658418A1 (de) Dampfkraftwerk

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1990903834

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1990903834

Country of ref document: EP

WWW Wipo information: withdrawn in national office

Ref document number: 1990903834

Country of ref document: EP