WO1989008356A1 - Method and apparatus for modulating a semiconductor laser - Google Patents

Method and apparatus for modulating a semiconductor laser Download PDF

Info

Publication number
WO1989008356A1
WO1989008356A1 PCT/JP1989/000220 JP8900220W WO8908356A1 WO 1989008356 A1 WO1989008356 A1 WO 1989008356A1 JP 8900220 W JP8900220 W JP 8900220W WO 8908356 A1 WO8908356 A1 WO 8908356A1
Authority
WO
WIPO (PCT)
Prior art keywords
semiconductor laser
modulation
optical
light
phase
Prior art date
Application number
PCT/JP1989/000220
Other languages
English (en)
French (fr)
Inventor
Masataka Shirasaki
Original Assignee
Fujitsu Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Limited filed Critical Fujitsu Limited
Priority to DE68924747T priority Critical patent/DE68924747T2/de
Priority to EP89903271A priority patent/EP0357799B1/en
Publication of WO1989008356A1 publication Critical patent/WO1989008356A1/ja

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/50Transmitters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/12Modulator circuits; Transmitter circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • H04L27/20Modulator circuits; Transmitter circuits
    • H04L27/2096Arrangements for directly or externally modulating an optical carrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/068Stabilisation of laser output parameters
    • H01S5/0683Stabilisation of laser output parameters by monitoring the optical output parameters
    • H01S5/06832Stabilising during amplitude modulation

Definitions

  • the present invention relates to a semiconductor laser device used for various optical communication systems and the like, and also refers to a method for modifying the semiconductor laser. Background technology ''
  • a semiconductor laser 10 is often used as a light source.
  • the modulation method can be broadly classified into a direct modulation method in which a semiconductor laser current is modulated by transmission data and an external modulation method in which output light of a semiconductor laser is modulated by an external modulator.
  • I T is supplied as a bias current
  • a modulation current according to transmission data is superposed on the bias current to drive.
  • the semiconductor laser has a relatively large amplitude.
  • a modulation current Im 5 of about 10 mA and a constant bias current I n sufficiently larger than the laser threshold are applied to the modulation current Im 5 of about 10 mA.
  • some modulations use only the region where the current is larger than the laser's current IT. According to this method, since the light is emitted even when the transmission data is "0", there is a serious problem that the extinction ratio of the output light is deteriorated.
  • FIG. 2 shows a configuration of an optical interferometer including a general Mach-Zehnder type electro-optic modulator used as an external modulator of a semiconductor laser.
  • the stationary light from a semiconductor laser or the like was input to one optical waveguide 1 on the input side, this was once branched, and passed through the two optical waveguides 2 and 3. After that, these are combined and made incident on one optical waveguide 4.
  • electrodes 5 and 6 were provided for 25.2 optical waveguides 2 and 3, By appropriately applying a voltage to these to change the optical path length difference, a phase difference is given to the two lights to be combined. As a result, the two lights interfere with each other at the time of combining, and an output light whose intensity is modulated according to the phase difference therebetween is obtained.
  • the purpose is to provide.
  • An object of the present invention is to provide an optical modulator capable of performing stable and high-speed light intensity modulation of a semiconductor laser using such an optical interferometer.
  • the oscillation frequency ⁇ of a semiconductor laser changes in proportion to the change ⁇ I of the current I near the average driving current.
  • the phase is 7T or 1 ⁇ during one time slot T.
  • the timing according to the transmission data By generating a modulation current pulse ⁇ I (t) in one step, the laser light can be phase-modulated between 0 and ⁇ .
  • the shape of I (t) that satisfies the above equation (1) is a function (for example, ⁇
  • the output light of the semiconductor laser which has been subjected to the phase modulation between 0 and ⁇ as described above, is passed through an optical interferometer using self-homodynes. Then, the intensity modulation according to each phase difference is applied by the self-homodyne, that is, it is converted into “0” and “1” light pulses. This enables high-speed light intensity modulation.
  • the extinction ratio is reduced even if it is moved between 'and'', but if the luminous intensity similarly moves instantaneously between' 1 'and' 0 ', the average of the two light
  • the output is also "1 no 2".
  • different average intensities are obtained in Fig. 3A and Fig. 3B. That is, while the actual average intensity between ⁇ and ⁇ 2 is just “1 no 2”, the actual average intensity between ⁇ ′ and “” is smaller than “1 2”.
  • the stabilization method of the optical interferometer according to the present invention firstly sets the intensity of the output light of the optical interferometer to a time lower than the modulation speed (for example, for a phase modulation of 1 Gb no 0 25 seconds) to calculate the average intensity. in this way By calculating the average intensity by integrating at a time slower than the modulation speed, the variation of “1” and “0” of the transmission data is compensated, and the value becomes sufficiently accurate. Then, using the above average intensity, the light wavelength of input 3 ⁇ 4 or two
  • Feedback is applied to the optical path length difference between the five optical paths, thereby correcting the phase bias during intensity modulation.
  • the shift in the phase bias can be easily known from the change in the average intensity, and feedback can be applied so as to eliminate this shift.
  • an optical modulation device includes a signal conversion unit, a differential surface path, a semiconductor laser, and an optical interferometer.
  • the sign conversion unit inverts the sign only when the transmission data is “1” and activates it,
  • the code is converted so as to output the previous code (or vice versa), and the converted output signal is differentiated by a differentiating circuit.
  • a bias current selected so that the semiconductor laser oscillates from a bias current source to obtain output light of a desired light intensity is applied to the semiconductor laser.
  • Optical interferometer is self-homody
  • the output of the optical interferometer is changed by changing the phase of the output light of the semiconductor laser to ⁇ or 1 ⁇ .
  • the light has a relative value of "0" or "1". 'According to this, the semiconductor laser is set to the continuous oscillation state, and the modulation current pulse is small compared to the constant bias current, so that the problem of chiseving is eliminated. Further, the optical interferometer obtains output light intensity-modulated in response to a change in the output light phase of the semiconductor laser, and has a small connection loss and can operate at an extremely high speed.
  • FIG. 4A and 4B are diagrams showing the entire configuration when the above-described present invention is applied to an optical communication system.
  • the optical interferometer 12 according to the present invention may be disposed after the semiconductor laser 11 on the transmission side and before the transmission optical fiber 13, Alternatively, as shown in FIG. 4B, on the receiving side, it may be arranged after the transmission optical fiber 13 and before the receiver 14.
  • the optical interferometer 12 is arranged on the transmitting side as shown in Fig. 4A, as a means for stabilizing it, the oscillation wavelength of the semiconductor laser 11 is fed back, or the optical interferometer 12 itself is used. It is possible to feed back the optical path length difference.
  • optical interferometer 12 is placed on the receiving side as shown in Fig. 4B, It is possible to feed back the difference in the optical path lengths of the optical interferometers 1 2 as a means for stabilizing the optical interference. In the latter case, even if the light is attenuated by the long transmission optical fiber 13, the light is still phase modulated.
  • FIGURES '-Fig. 1 is for explaining the operation of the conventional ⁇ direct modulation.
  • FIG. 2 is a diagram showing a configuration of a general Mach-Zünda type electro-optic modulator.
  • Figures 3 'and 3B show the ideal relationship between the phase difference and the output light intensity in intensity modulation in the optical interferometer.
  • FIGS. 4A and 4B are diagrams showing the overall configuration when the present invention is applied to an optical communication system.
  • FIG. 5 is a block diagram showing a laser driving circuit according to a first embodiment of the semiconductor laser modulation method of the present invention
  • FIG. 6 is a diagram showing a relationship between a change in drive current ⁇ I and a change in oscillation frequency ⁇ in a general semiconductor laser.
  • FIG. 7 is a diagram showing a first embodiment of a semiconductor laser modulation method according to the present invention.
  • Fig. 8 shows the results obtained according to the drive current I shown in Fig. 7.
  • FIG. 9 is a diagram showing a configuration of an optical amplifier according to a second embodiment of the semiconductor laser modulation method of the present invention
  • FIG. 1.0 is a diagram showing the configuration of the optical interferometer shown in FIG. Waveform diagram of optical output obtained according to the output optical phase.5
  • Fig. 11 shows the modulation method of the semiconductor laser of the present invention '.
  • FIG. 3 is a waveform diagram of the drive current I according to the third embodiment
  • FIGS. 12A and 12B are diagrams showing other examples of the self-homodyne optical interferometer, respectively.
  • FIG. 13 is a diagram showing a configuration for realizing a tenth embodiment of the optical interferometer stabilization method of the present invention
  • FIG. 14 is a diagram showing a configuration for realizing a second embodiment of the method for stabilizing an optical interferometer of the present invention
  • FIG. 15 is a diagram showing a configuration for realizing a third embodiment of the method for stabilizing an optical interferometer of the present invention.
  • FIG. 16 is a diagram showing a configuration for realizing a fourth embodiment of the optical interferometer stabilization method of the present invention.
  • FIG. 17 is a diagram showing a configuration for realizing a fifth embodiment of the method for stabilizing an optical interferometer of the present invention.
  • Fig. 1.8 is a 20-block diagram showing the principle configuration of the optical modulator of the present invention.
  • FIG. 19 is a diagram showing the configuration of a first embodiment of the light modulation device of the present invention.
  • FIGS. 20 (a) to (g) are diagrams for explaining the operation of the optical modulator shown in FIG. 19;
  • Fig. 21 shows a second embodiment of the optical modulator of the present invention.
  • 1 is a circuit diagram showing the differentiating circuit
  • FIG. 22 is a diagram showing a configuration of an optical modulator stabilizing means which is a descendant of a third embodiment of the optical modulator of the present invention.
  • FIG. 5 is a block diagram showing a laser drive circuit according to a first embodiment of the semiconductor laser modulation method of the present invention.
  • a bias current IQ having a constant value (for example, 100 mA) is created by the bias current creation circuit 21.
  • the modulation current ⁇ I of, for example, about several mA is generated by the current pulse generation surface 22 at timing according to the received data.
  • the shape of this ⁇ is
  • the oscillation frequency 6> fluctuates according to the current change ⁇ I (see Fig. 6), and a phase difference occurs that is only the time integral of the change ⁇ .
  • FIG. 8 shows the change of the phase ⁇ of the output light according to the drive current waveform in FIG. 7 at the same time position 10 on the horizontal axis.
  • the phase of the output light is inverted by ⁇ at a certain part of the current change ⁇ I, and the phase modulation is applied between 0 and ⁇ .
  • the constant bias current I With only a small current change ⁇ I, a phase difference of 15 ⁇ can be given to the output light. Since the amplitude of the modulation current can be made very small in this way, the load on both the semiconductor laser and its driving circuit is extremely reduced. In addition, the spread of the oscillation wavelength can be suppressed only to the sideband due to the modulation, and can be suppressed to the same level as in the case where an external modulator is used, so that the adverse effect of the chabing does not occur. From these facts, the major problem that limited the speed up in conventional direct modulation was solved, and high-speed modulation (for example, several Gb / s or more) that greatly exceeds the frequency limit of conventional direct modulation is possible.
  • high-speed modulation for example, several Gb / s or more
  • the output light (phase modulated light) of the semiconductor laser 23 obtained in the above embodiment is shown in FIG.
  • the optical interferometer 24 separates and merges the light with the two half mirrors 24 a and 24 b, respectively, and applies the mirrors 24 c and 24 c to the light passing through one optical path 1.
  • the time delay created here should be equal to one time slot (one time slot) T of the kinetic current I shown in Fig. 7.
  • the output light of the optical interferometer 24 was obtained by combining the light of a certain time zone from the semiconductor laser 15 23 and the light of one time zone before (or after) this one.
  • an optical pulse of ⁇ 0 j or “1” corresponding to the phase difference of ⁇ or 0 of the two combined lights is obtained. That is, the output light (phase modulated light) of the semiconductor laser 23 is intensity-modulated by the optical amplifier 24 by self-homodyne.
  • FIG. 10 shows a change in the intensity of the emitted light of the optical interferometer 2 obtained according to the phase change in FIG.
  • the modulation current ⁇ I shown in FIG. 7 is designed to generate a phase of ⁇ , it may be a phase difference of 1 ⁇ , so that I is as shown in FIG. May be modulated so that ⁇ I is reduced by ⁇ I. In this case as well, by passing through the optical interferometer 24 in FIG. 9, the same intensity modulation as in FIG. 10 can be obtained.
  • the shape of the modulation current ⁇ I does not necessarily have to be a function or a shape close to the five functions, but may be any as long as the integration is ⁇ k in a narrow time region.
  • optical interferometer 24 other than the Mach-Zehnder type optical interferometer as described above, as long as interference by self-homodyne is possible, for example, the optical interferometer shown in FIG. Kelson shape and the file shown in Fig. 12B
  • 24 e, 24 f and 24 ⁇ are mirrors
  • 24 g and 24 i are half mirrors.
  • FIG. 13 is a diagram 5 showing a configuration for realizing the first embodiment of the method for stabilizing the optical interferometer of the present invention, which is the optical interferometer shown in FIG. The present embodiment is applied to FIG.
  • These two photodetectors 32, 34 are the semiconductor laser 2
  • An average intensity obtained in 20 hours (for example, for 1 Gb / s phase modulation, about 1/100 seconds) can be obtained.
  • Such a change in the average intensity corresponds to the deviation of the phase bias at the time of intensity modulation as described above.
  • the difference By calculating the difference between the above two photodetectors 3 2 and 3 4 with the 1 dynamic amplifier 35, the deviation of the average intensity from “1 2” is determined.
  • the output of the differential amplifier 35 is zero, the average intensity is “1 no 2”, indicating that there is no phase bias shift.
  • the oscillation wavelength of the semiconductor laser 23 is fed back using the output value of the differential chamber 35 corresponding to such a phase bias shift.
  • the oscillation wavelength of the semiconductor laser 23 is changed 15 . If the oscillation wavelength of the laser 23 changes, the phase difference between the two lights combined by the half mirror 24b changes, thereby changing the phase bias at the time of intensity modulation and the output accordingly.
  • FIG. 14 is a diagram showing a configuration for realizing a second embodiment of the optical interferometer stabilizing method of the present invention.
  • the optical path length difference is fed back to stabilize. That is, in FIG. 14, the mirror 24 c of the optical interferometer 24 is fixed to the piezo element 36, and the piezo element 36 is driven according to the output of the differential amplifier 35, and By moving the mirror 24'c in the direction of arrow 10, the actual ⁇ length of the optical path from the half mirror 24a to the mirror 24b via the mirror 24c and the mirror 24d. It is designed to change the height.
  • the phase difference between the two lights combined by the half mirror 15——24b can be changed, so that the output of the differential pump 35 becomes zero. If feedback is constantly applied as much as possible, the phase bias can be maintained in an ideal state as in the above embodiment, and the output can be stabilized.
  • FIG. 15 shows a diagram of the method for stabilizing the optical
  • FIG. 13 is a diagram illustrating a configuration for realizing a third embodiment.
  • the heater 37 in order to change the optical path length difference as in the second embodiment, instead of providing the piezo element 36, the heater 37 is connected to the optical path 25 between the mirrors 24c and 24d.
  • the heater 37 is connected to the output of the differential amplifier 35. It is driven according to one force. If the temperature changes with such a heater 37, the refractive index of that part also changes, so that the optical path length changes accordingly. Even if the optical path length difference is returned in this way,
  • FIG. 16 is a diagram showing a configuration for realizing a fourth embodiment of the method for stabilizing an optical interferometer of the present invention, which is applied to the optical interferometer 10 shown in FIG. The example is applied.
  • FIG. 17 is a diagram showing a configuration for realizing the 255th embodiment of the stabilization method of the optical interferometer of the present invention, 1
  • This is an example of application to an optical interferometer 10 ′ in which the lengths of two optical waveguides 2 and 3 in the optical interferometer 10 shown in FIG. 2 are equal to each other.
  • the phase difference is changed by applying feedback to the optical path length difference between the optical waveguides 2 and 3, that is, in FIG. 17, according to the output of the differential amplifier 35.
  • the voltage applied to the electrode 6 is changed, and the optical path length of the optical waveguide 3 is changed by the change in the refractive index.
  • the phase bias can be maintained in the ideal state, and the output of the optical interferometer 10 ′ can be stabilized, as in each of the tenth embodiments.
  • the 15 optical detectors 32, 34 and the differential amplifier 35 are used. I used it.
  • the configuration is not limited to these, and any configuration can be used as long as it can detect the average intensity obtained by integrating the intensity of the optical light of the optical interferometer at a later time than the phase modulation. Les, o
  • the optical stabilizing method of the present invention can be applied to various types of optical interference of, for example, a Michaelson type Fabry-Bleup type. Of course, it can be applied to vessels.
  • FIGS. 14 and 17 Two arrangements as shown in Figures 4A and 4B As mentioned earlier, 1 can be considered.
  • the configuration for feeding back the optical path length difference as shown in FIGS. 14, 15 and 17 is suitable for any of the arrangements in FIGS. 4A and 4B.
  • the configuration in which the oscillation wavelength is fed back as shown in FIGS. 13 and 5 16 is suitable for the arrangement in FIG. 4A.
  • the arrangement shown in FIG. 4A is used to feed back the oscillation wavelength, there is an advantage that the response is fast.
  • the arrangement shown in FIG. 4B gives the feedback to the optical path length difference. In this case, direct light amplification can be easily performed even if the light is attenuated during transmission.
  • FIG. 18 is a block diagram showing the principle configuration of the optical modulator of the present invention
  • FIG. 19 is a diagram showing the configuration of the first embodiment.
  • the optical modulator of this embodiment includes an AND circuit 50, a flip-flop 51, a capacitor 52, a semiconductor laser 53, and an optical isolator 5 as shown in FIG. 4, bias current source 55, inductance 56, resistor 57, optical interferometer 58 (half mirror 58a, 58b and 20 and mirror 58c, 58d), Half mirror 5 9, 6
  • the transmission data consisting of "1” and “0” is added to the clock terminal CK of the flip-flop 51, and the transmission data "1” is used to output the signal of the output terminal Q.
  • "1_! And “0j are inverted from each other ', and the output terminal Q is
  • This converted output signal is supplied as a modulated current pulse ⁇ I to the semiconductor laser 53 via the capacitor 52, and is superimposed on the constant bias current I0 from the bias current source 55.
  • This constant bias current I Q is, for example, as shown in FIG.
  • Laser oscillation is selected so that output light of the desired intensity can be obtained.
  • the output light of the semiconductor laser 53 is input to the optical interferometer 58 via the optical isolator 5'4.
  • the basic configuration of the optical interferometer 58 is the same as that of the optical interferometer 2425 shown in FIG. 9, etc., and is branched by a half mirror 58a.
  • the ⁇ optical signal is on the path of half mirrors 59 and 58b
  • the other optical signal is on the path of mirrors 58c and 58d and half mirrors 60 and 58b (optical delay circuit).
  • the relative delay time is set to 1 time slot and the relative phase difference is set to 0 or ⁇ , and the optical interference by the self-homodyne is performed.
  • an optical fiber may be used instead of using the mirrors 58c and 58d.
  • the half mirrors 59, 60, 61, the photodetectors 62, 63, the subtraction processing path 64, and the mirror driving section 65 are shown in FIG. This is one configuration example for stabilizing the output of the optical amplifier 58, almost in the same manner as the configuration.
  • a differential amplifier can be used as the subtraction processing circuit 64, and a piezo element is used as the mirror driving section 65, for example. it can. '
  • the modulation current pulse I (t) given to the semiconductor laser 53 is determined.
  • 1 Select so that the product of the time slot time integral and the chabing coefficient k is ⁇ or 1 ⁇ .
  • a differentiating circuit including the capacitor 52, the semiconductor laser 53, and the resistor 57 is selected so that a modulated current pulse ⁇ I (t) satisfying the above relationship is obtained.
  • Output light phase 3 Modulate so that 1 becomes ⁇ or 1 ⁇ .
  • the relative delay time between one of the branched optical signals and the other optical signal is one time slot, and the relative phase difference is 0 or
  • the phase difference of the optical signal input to the half mirror 58 b becomes 2 ⁇ during one time slot. Therefore, the intensity of the modulated output light is “1 j” in relative value, that is, the modulated current pulse is fixed to a constant bias current In.
  • the semiconductor laser 53 is driven by superimposing 15 I (t), the phase ⁇ of the output light of the semiconductor laser 53 is changed to ⁇ or ⁇ , and the output is applied to the optical interferometer 58. Light intensity modulation can be performed.
  • the relative phase difference in the optical interferometer 58 is set to 0.
  • the modulated output light intensity of the other time apertures is “1 j” as a relative value.
  • the transmission data composed of “1” and “0” as shown in FIG. 20 (a) is code-transformed by the flip-flop 51 as shown in FIG. 20 (b). That is, the sign of the converted output signal is inverted for each "1" of the transmission data, and the transmission data of "0 1 1 0 1 0 0 1" is converted to "0 1 0 0 1 1 1'0".
  • this converted output signal which is an output signal
  • the waveform shown in FIG. 20 (c) is obtained.
  • “1” is an isolated pulse waveform
  • the oscillation frequency ⁇ of the semiconductor laser 53 can be changed so that the phase becomes ⁇ as described above.
  • the converted output signal is differentiated using the differentiating circuit 41 (capacitor 52, resistor 57) and converted into a modulated current pulse as shown in FIG. 20 (d). .
  • the half mirror 58b has an optical signal having a phase indicated by a solid line in FIG. 20 (e).
  • This optical signal is a delayed optical signal having a phase indicated by a broken line and delayed by one time slot time T. Therefore, the phase difference of the optical signal entering the half mirror 58b is as shown in FIG. 20 (f). When the converted output signal is "0", it is 7 £, and the phase difference of "1" is obtained. Time is 2
  • the modulating current pulse is selected in accordance with the characteristics of the laser 53, and this is set to, for example, 60 mA, while the modulation current pulse I superimposed and supplied from the differentiating circuit can be set to, for example, 11 mA. Therefore, the modulating current pulse is
  • the optical interferometer 58 sets the relative phase difference to 0 or ⁇ when an optical delay of 1 time slot is given in advance. ⁇ The connection loss is small. , very
  • the output of the subtraction processing circuit 64 is provided by the half mirrors 59, 60, 61, the photodetectors 62, 63, the subtraction processing circuit 64, and the mirror driving section 65 described above.
  • FIG. 21 is a circuit diagram showing a differential surface according to a second embodiment of the light modulation device of the present invention.
  • the circuit shown in the figure is composed of a code converter 71 and a capacitor 72.
  • the code conversion unit 71 converts the code of the transmission data in the same manner as in the above-described embodiment, and also performs a 1/2 time slot
  • the length of 4 is selected so that the polarity of the converted output signal is inverted and reflected, and is input to the capacitor 72 after 1 time slot. Therefore, it is added to the semiconductor laser 73 through the capacitor 72.
  • the modulated current pulse has a waveform similar to that shown in FIG. 20 (d), and is applied to the semiconductor laser 73 by superimposing the modulated current pulse on a constant bias current from the bias current source. . Accordingly, output light having a phase as shown in FIG. 20 (e) is obtained from the semiconductor laser 73.
  • FIG. 22 shows a third embodiment of the optical modulator of the present invention.
  • FIG. 2 is a diagram showing a configuration of an optical modulator stabilizing means according to FIG. In the figure, similarly to the stabilization method shown in FIG. 13, the output signal of the subtraction processing circuit 6 is added to the bias current source 55 to change the oscillation wavelength of the semiconductor laser 53.
  • optical interferometer 58 is of the Mach-Zehnder type, it may be composed of an optical waveguide, or a Michaelson-type Fabry-Bello-type optical interferometer may be used instead. You may.
  • the processing is performed by the mining processing circuit 64 in accordance with the occurrence probability.
  • the detection signals of the photodetectors 62 and 63 are
  • the feedback may be applied so that the difference of 20 becomes a predetermined value.
  • the method of modulating a semiconductor laser, the method of stabilizing an optical interferometer, and the optical modulator 25 of the present invention are particularly suitable for optical communication as shown in FIGS. 4A and 4B. 1 Useful for communication systems.
  • the present invention can be applied to various optical devices.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Communication System (AREA)
  • Semiconductor Lasers (AREA)

Description

発明の名称
半導体レーザの変調方法、 及び装置
技術分野
5 本発明は、 各種光通信システム等に使用される半 導体レーザ装置に関するもので、 その半導体レーザ の変諷方法についても言及するものである。 背景技術 '
光通信においては、 発光光源として半導体レーザ 10 が多く使用されている。 また、 変調方式としては、 半導体レーザの躯勳電流を送信データによって変調 する直接変調方式と、 半導体レーザの出力光を外部 変調器により変調する外部変調方式とに大別するこ とができる。
15 従来の直接変調方式は、 半導体レーザの閾値電流
I T をバイ アス電流として供給し、 送信データに従' つた変調電流を上記バイ ァス電流に重畳して駆動す る方式が一般的である。 ところが、 このような変調 方式においては、 半導体レーザを比較的大きな振幅
20 のパルス電流で駆動する必要があるので、 発振波長 のチヤ一ビング (動的波長シフ ト ) が生じる。 この チヤ一ビングにより、 光フ ァ イ バを伝搬した光バル スの波形が歪むこ とになる。 従って、 数 G b / s 以 上の高速データによる直接変調は困難であるという
25 問題があった。 更に、 変調振幅が大きいため、 半導 1 体レーザ及びその駆動!^路の双方に大きな負担がか かるという問題もあつた。
なお、 上記チヤ一ビングを低減するため、 第 1図 に示すように、 例えば士数 10 m A程度の変調電流 I m 5 にレーザの閾値より充分大きい程度の一定のバイ ァ ス電流 I n を加えて、 レーザの閻値電流 I T より も 電流の大きい領域のみを使って変調するようにした ものもある。 この方法によれば、 送信データが 「 0 の時でも発光している状態となるため、 出力光の消 10 光比が劣化するという大きな問題を伴う。
また、 従来の外部変調方式は、 電気光学効果材料 や音響光学効果材料等を用いた外部変調器、 導波路 型の外部変調器、 光偏向型の外部変調器等の各種の 変調器を用いている。 そのため、 これらの外部変調 15 器が大きな接続損失を発生させ、 しかも高速変調の ためには複雑な構造を必要とするとい.う問題があつ た。
次に、 半導体レーザの外部変調器等として使用さ れる、 一般的なマッハツユンダ形電気光学変調器か 20 らなる光干渉器の構成を第 2図に示す。 同図の光干 渉器 1 0では、 入力側の 1本の光導波路 1 に半導体 レーザ等からの定常光を入力させ、 これを一旦分岐 して 2本の光導波路 2、 3 に通過させた後、 これら を合成して 1本の光導波路 4 に入射させる。 この際、 25 . 2本の光導波路 2、 3 に対して電極 5、 6を設け、 これらに電圧を適宜印加して光路長差を変化させる こ とにより、 上記合成される 2つの光に位相差を与 えるようにする。 これにより、 上記 2つの光は合成 時に干渉しあい、 それらの位相差に応じて強度変調 された出力光が得られる。
ところが、 このような光干渉器 1 0 では、 温度変 化に伴って光路の実際の長さが変動したり、 或いは 入力光の波長自体が変動したりすること'等により、 ' 合成されるべき 2つの光の位相差が時間的に変動し、 そのため強度変調時における動作の基準点 (位相バ ィァス) が時間的に安定しな く なるという問題が生 じる。 例えば、 強度変調における位相差と出力光強 度との理想的な関係を第 3 A図に示す。 すなわち、 位相差を ( = 2 η π ) と ί52 ( = ( 2 η + 1 ) ^ ) の間で動かした場合に、 出力光強度がそれぞれ 「 1 」 と 「 0 j に切り換わる。 ところが、 位相差 Φ I
Φ 2 に変動が生じて ' 、 Φ 2 ' になったとする と、 第 3 Β図に示すように位相バイァスがずれてし まう。 すると、 出力光強度が最大でも上記 「 1 」 よ り小さ く、 最小でも上記 「 0 」 より大き く なること から、 出力光の消光比が低下してしまう。
そこで、 このような問題を解消するためには、 出 力光から位相差のずれを検出し、 このずれがな く な るように位相差を補正してやることが考えられる。 しかし、 出力光は位相差の変化に応じて 「 1 」 と 1 「 0 j に高速で切り換わっているので、 このよう,な 出力光から位相の扰態を直接検出するのは非常に函 難であり、 よってこれまでは位相差の変動を充分に 抑えることができなかった。
5 発明の開示
本発明は、 上記従来の問題点に鑑み、 チヤ一ビン グによる悪影響をな く し、 かつ、 半導体レーザ及び その駆動回路の負担を小さ く して、 直接変調による 高速変調を可能にする半導体レーザの変調方法を提
10 供することを目的とする。
本発明の他の目的は、 上記従来の光干渉器の問題 点に鑑み、 出力側での位相のずれをなく して、 安定 した出力を得ることのできる光干渉器を提供するこ とにある。 また、 本発明の更に他の目的は、 このよ
15 うな光干渉器を用いて、 半導体レーザの光強度変調 を安定かつ高速に行う ことのできる光変調装置を提 供するこ とにある。
一般に、 半導体レーザの発振周波数 ωは、 平均駆 動電流の近傍では電流 I の変化 Δ I に比例して変化
20 すると考えることができる。 この関係を第 6図に示 す。 すなわち、 I ( t ) = 1 。 + Δ I ( t ) の時、 ω ( t ) = ω ο +厶 ω ( t ) に対して、
Δ ω ( t ) = k Δ I ( t )
と表すことができる。 ここで、 kはチヤ一ビング係.
25 数 (一定) である。 そして、 光電場をコ ヒーレン ト時間内で e
Figure imgf000007_0001
と表すと、 発振周波数 ωが上記のように時間で変動 する場合、
Δ ω ( t )
Figure imgf000007_0002
= e x p 〔一 i { ω 0 t + k 、厶 I ( t ) d t } )
10
となる。 これにより = k 厶 I ( t ) d t とおけ るので、 駆動電流の変化 Δ I で位相 を制御できる こ とがわかる。.
そこで、 本発明の半導体レーザの変調方法では、
15 上記駆動電流の変化 Δ I ( t ) を変調電流パルスと して用い、 この 1 タ イ ムスロ ッ ト Tの時間積分 i t 4* T
△ I ( t ) d t ) とチヤ一ビング係数 ( k ) と to
の積が 7: もし く は一 7Γ となるようにしている。 すな
20 わち、
I t -""T
Δ I ( t ) d t = ?r もしく は一 π
to
• · · · (1)と している。 このよ う にすれば、 1 タイ ムスロ ッ ト Tの間で位相 が 7T も し く は一 πだ
25 け反転する。 よって、 送信データに応じたタイ ミ ン 1 グで変調電流パルス Δ I ( t ) を発生させるこ とに より、 半導体レーザの岀カ光に 0 と πの間で位相変 調をかけることができる。 なお、 上記式 (1)を満足さ せる I ( t ) の形状としては、 関数 (例えば Δ
5 I ( t ) = ( jr/k ) 5 ( t - t o ) ) が考えられ るが、 この他にも、 時間的に狭い領域にあって積分 が TiZkも し く は一 Tc Zkになるものであれば何で もよい。
これによれば、 発振波長の広がりが変調によるサ 10 ィ ドバン ドのみになるので、 従来の直接変調のよう なチヤ一ビングによる悪影響をなくすことができる < しかも、 半導体レーザの小振幅変調となるため、 半 導体レーザ及びその駆動回路の双方の負担を極めて 小さ くすることができる。 これらのことから、 従来 15 の直接変調の周波数限界を越えた高速変調が実現さ れる。
また、 本発明の半導体レーザの変調方法では、 上 記のようにして 0 と πの間で位相変調のかけられた 半導体レーザの出力光を、 自己ホモダイ ンによる光 20 干渉器に通す。 すると、 自己ホモダイ ンにより'各位 相差に応じた強度変調がかかり、 すなわち 「 0」 、 「 1 」 の光パルスに変換される。 これにより、 高速 の光強度変調が可能になる。
次に、 上記のように高速の位相変調のかかった光 25 信号を入力光とする光干渉器、 或いは第 2図に示し 1 たように定常光を入力光とする光干渉器において、 例えば第 3 A図に示したように位相差を , と Φ 2 の間で動かすとすると、 出力光はそれぞれ 「 1 」 と 「 0 」 に強度変調される。 これらの 2値の確率は一 5 般にはそれぞれ 2分の 1 ずつなので、 光の強度が 「 1 」 と 「 0 」 の間を瞬時に移動すると考えれば、 この 2つの光の平均強度は 「 1 2 」 と.なる。 一方, 第 3 B図に示したように位相差を ! ' 、 " ' の 間で動かしたとしても、 消光比は低下するが、 光め 10 強度が同様に 「 1 」 と 「 0 」 の間を瞬時に移動する と考えれば、 その 2つの光の平均出力は同じ く 「 1 ノ 2 」 となる。 ところが、 光の強度が 「 1 」 から 「 0 」 まで、 又は 「 0 」 から 「 1 」 まで切り換わる までの実際の平均強度を考えた場合は、 2値の間に 15 有限の遷移時間があるため、 第 3 A図と第 3 B図で は異なる平均強度が得られる。 すなわち、 φ と φ 2 の間の実際の平均強度が丁度 「 1ノ 2 」 であるのに 対し、 Φ ' と " ' との間の実際の平均強度は 「 1 2 」 より も小さ く なる。
20 よって、 このような平均強度の変化を検出すれば、 位相バイ アスのずれを容易に知ることができる。 そ こで、 本発明の光干渉器の安定化方法は、 まず、 光 干渉器の出力光の強度を変調速度より も遅い時間 (例えば 1 G bノ s の位相変調に対し、 1ノ 1 0 0 25 秒程度) で積分した平均強度を求める。 このように 1 変調速度より も遅い時間で積分して平均強度を求め ることにより、 送信データの 「 1 」 と 「 0 」 のばら つきが捕償されて、 充分に正確な値となる。 続いて 上記平均強度を用いて、 入力 ¾の光波長又は 2つの
5 光路の光路長差に帰還をかけ、 これにより強度変調 時の位相バイァスを補正する。
これによれば、 平均強度の変化から位相バイ アス のずれ 容易に知ることができ、 このずれがなく な るように帰還をかけることができるので、 光干渉器
10 の出力を著しく安定化させることができる。
また、 本発明の光変調装置は、 号変換部と、 微 分面路と、 半導体レーザと、 光干渉器とを備えて構 成されている。 符号変換部により例えば送信データ の 「 1 」 の時のみ符号を反転して岀力し、 「 0 」 の
15 ときは前の符号を出力するように符号変換し (或い はこの逆でもよい) 、 その変換出力信号を微分回路 により微分する。 半導体レーザには、 バイ アス電流 源から半導体レーザがレーザ発振して所望の光強度 の出力光が得られるように選定したバイァス電流を
20 供給し、 それに、 微分回路の微分出力信号を変調電 流パルスとして重畳して供給する。 この変調電流バ ルスにより、 半導体レーザの出力光の位相が変化す る。 この位相変化が π又は一 π となるように上記変 調電流パルスを選定する。 光干渉器は自己ホモダイ
25 ンが可能な構成となっており、 1 タイ ムスロ ッ トの 相対遅延時間と、 0又は π の相対位相差とを与える 光遅延回路を有しているので、 上記半導体レーザの -. 出力光の位相を π又は一 πに変化させると、 光干渉 器の出力光は相対値で 「 0 」 又は 「 1 」 となる。 ' これによれば、 半導体レーザを連繞発振状態とす ると共に、 変調電流パルスが一定バイ ァス電流に比 較してわずかであるから、 チゼービングの問題はな く なる。 また、 光干渉器は、 半導体レーザの出力光 位相の変化に対応して強度変調された出力光を得る ものであり、 接続損失が少な く、 かつ極めて高速で 動作可能である。 従って、 数 G b Z s以上の高速デ ータについても、 安定な強度変調が可能となる。 、 第 4 A図及び第 4 B図は、 上述した本発明を光通 信システムに適用した場合の全 構成を示す図であ る。 本発明に係る光干渉器 1 2 は、 第 4 A図に示す ように、 送信側において半導体レーザ 1 1 の後段で あってかつ伝送用光ファ イバ 1 3の前段に配置して もよ く、 又は第 4 B図に示すように、 受信側におい て伝送用光フア イバ 1 3 の後段であってかつ受信器 1 4 の前段に配置してもよい。 光干渉器 1 2を第 4 A図のように送信側に配置した場合は、 その安定化 のための手段として、 半導体レーザ 1 1 の発振波長 に帰還をかけたり、 或いは光干渉器 1 2 自体の光路 長差に帰還をかけることが可能である。 光干渉器 1 2を第 4 B図のように受信側に配置した場合は、 そ の安定化のための手段として、 光干渉器 1 2 自体の 光路長差に帰還をかけることが可能である。 後者の 場合は、 長い伝送用光フア イバ 1 3によつて光が減 衰した場合であっても、 その光はまだ位相変調のか
5 かった段階であって、 強度は常に一定なので、 光を 光のままで増幅する、 いわゆる光直接増幅を容易に 行う ことができる。
図面の簡単な説明 ' - 第 1図は従来 φ直接変調の動作を説明するための
10 図、
第 2図は一般的なマッハツュンダ形電気光学変調 器の構成を示す図、
第' 3 Α図及び第 3 B図は光干渉器での強度変調に おける位相差と出力光強度との理想的な関係及びず
15 れた関係を示す図、
第 4 A図及び第 4 B図は本発明を光通信システム に適用した場合の全体構成を示す図、
'第 5図は本発明の半導体レーザの変調方法の第 1 の実施例に係る レーザ駆動回路を示すブロ ック図、
20 第 6図は一般の半導体レーザにおける駆動電流の 変化 Δ I と発振周波数の変化 Δ ω との関係を示す図. 第 7図は本発明の半導体レーザの変調方法の第 1 の実施例に係る駆動電流 I の波形図、
第 8図は第 7図に示した駆動電流 I に応じて得ら
25 れる出力光位相 の波形図、 1 第 9図は本発明の半導体レーザの変調方法の第 2 の実施例に係る光干涉器の構成を示す図、 第 1 .0図は第 9図に示した光干渉器から第 8図の 出力光位相 に応じて得られる光出力の波形図、 5 第 1 1図は本発明'の半導体レーザの変調方法の第
3 の実施例に係る駆動電流 I の波形図、
第 1 2 A図及び第 1 2 B図はそれぞれ自己ホモダ ィ ン光干渉器の他の例を示す図、
第 1 3図は本発明の光干渉器の安定化方法の第 1 10 の実施例を実現するための構成を示す図、
第 1 4図は本発明の光干渉器の安定化方法の第 2 の実施例を実現するための構成を示す図、
第 1 5図は本発明の光干渉器の安定化方法の第 3 の実施例を実現するための構成を示す図、
15 第 1 6図は本発明の光干渉器の安定化方法の第 4 の実施例を実現するための構成を示す図.、
第 1 7図は本発明の光干渉器の安定化方法の第 5 の実施例を実現するための構成を示す図、
第 1 .8図は本発明の光変調装置の原理構成を示す 20 ブロ ッ ク図、
第 1 9図は本発明の光変調装置の第 1 の実施例の 構成を示す図、
第 2 0図 (a)〜(g)は第 1 9図に示した光変調装置の 動作を説明するための図、
25 第 2 1図は本発明の光変調装置の第 2 の実施例に 1 係る微分回路を示す回路図、
第 2 2図は本発明の光変調装置の第 3 の実施例に 孫る光変調器安定化手段の構成を示す図である。
発明を実施するための最良の形態
5 本発明をより詳細に説述するために、 添付の図面 に従ってこれを説明する。 '
第 5図は、 本発明の半導体レーザの変調方法の第 1 の実施例に係る レーザ駆動回路を示すプロ 'ン ク図 である。 ,
10 同図において、 バイアス電流作成画路 2 1 により 一定値 (例えば 1 0 0 m A ) のバイ アス電流 I Q を 作成する。 また、 電流パルス発生面路 2 2 により、 信データに応じたタィ ミ ングで、 例えば数 m A程' 度の変調電流 Δ I を発生させる。 この Δ Ι の形状は,
15
前述した式 α)を満たすように、 すなわち、 k 厶 I
( t ) d t = π となるように予め設定しておく。 例 えば、 厶 I ( t ) = ( π / k ) δ ( t - t ο ) とな るような形状、 或いはこれに近い形状にしておく。
20 そして、 電流パルス発生回路 2 2で得られる変調 電流厶 I を、 バイァス電流作成画路 2 1 で得られた バイ アス電流 I a に重畳し、 駆動電流 I ( = 1 。 + Δ I ) として半導体レーザ 2 3 に与える。 この駆動 電流 I の波形の一例を第 7図に示す。 このように駆
25 動電流 I が所々でパルス的に一瞬変化すると、 その 1 時点で発振周波数 6>が電流の変化 Δ I に応じて変動 し (第 6図参照) 、 その変動 Δ ωを時間積分しただ けの位相差が生じ ¾。 本実施例では、 上述したよ.う に、 Δ ωの時間積分 Δ I
Figure imgf000015_0001
( t ) d t = jr となるように厶 I を設定しているた め、 Δ I を加えた前後で相対的に πの位相差を生じ させることができる。 例えば第 7図の駆動電流波形 に応じた出力光の位相 Φの変化を横軸に同じ時間位 10 置で第 8図に示す。 すなわち、 電流変化 Δ I のある 部分で出力光の位相 が πだけ反転し、 0 と πの間 で位相変調がかかっていることがわかる。
本実施例によれば、 一定バイ アス電流 I 。 にほん のわずかな電流変化 Δ I を加えるだけで、 出力光に 15 πの位相差を与える ことができる。 このように変調 電流の振幅を非常に小さ く できることから、 半導体 レーザ及びその駆動回路の双方にかかる負担が極め て小さ く なる。 しかも、 発振波長の広がり は、 変調 によるサイ ドバン ドのみで、 外部変調器を用いた場 20 合と同程度に抑えられるため、 チヤ一ビングによる 悪影響も生じない。 これらのことから、 従来の直接 変調において高速化を制限していた大きな問題が解 消され、 よって従来の直接変調の周波数限界を大き く越える高速変調 (例えば数 G b / s以上) が可能
25 にな ¾。 1 繞いて、 本発明の半導体レーザの変調方法の第 2 の実施例について述べる。
本実施例では、 上記実施例において得られた半導 体レーザ 2 3 の出力光 (位相変調光) を、 第 9図に
5 示す自己ホモダイ ン光干渉器 2 4 に入力させる。 こ の光干渉器 2 4 は、 2つのハーフ ミ ラー 2 4 a、 2 4 bでそれぞれ光の分離、 合流を行って、 一方の光 路 1 を通過した光に対し、 ミ ラー 2 4 c、 2 4 d で反射されながらもう一方の光路 £ 2 を通過した光
10 に時間遅れを生じさせるようにしたものである。 こ こで生じさせる時間遅れは、 第 7図に示した躯動電 流 I の 1 つの時間帯 ( 1 タイ ムスロ ッ ト) Tに等し く してお く。
すると、 光干渉器 2 4 の出力光は、 半導体レーザ 15 2 3からの或る時間帯の光と、 これより も 1つだけ 前 (もし く は後) の時間帯の光とが合成されたもの となり、 よってこの合成された 2つの光の π もしく は 0の位相差に応じた Γ 0 j もしく は 「 1 」 の光パ ルスが得られる。 すなわち、 半導体レーザ 2 3 の出 20 力光 (位相変調光) は、 光干涉器 2 4 により、 自己 - ホモダイ ンによって強度変調がかけられる。 例えば 第 8図の位相変化に応じて得られる光干渉器 2 の 岀カ光の強度変化を第 1 0図に示す。 同図に明らか なように、 合成される 2つの光の間に 0 の位相差が 25 あると 2 つの光は加算され、 一方位相差が πだと 2 1 つの光は互いに打ち消し合う ことになり、 よって第 7図の変調電流厶 I の有無に応じた 「 1 」 、 「 0 」 の光出力が得られる。
本実施例によれば、 前記第 1 の実施例と同様に駆 5 動電流にほんのわずかな電流変化 Δ I を与えるだけ . で、 半導体レーザの出力光に 「 0 」 、 「 1 」 の強度 変調をかけることができる。 従って、 前記第 1 の実 施例と同様に、 チヤ一ビングによる悪影響をな く し、 かつ半導体レーザ及び駆動回路の負担、を小さ く して、
10 直接変調による高速化を実現できる。
なお、 第 7図に示した変調電流 Δ I は、 π の位相 を生じるようにしたものであるが、 一 πの位相差で あってもよいことから、 第 1 1図に示すように I 。 から Δ I だけ減じるように変調してもよい。 この場 15 合も、 第 9図の光干渉器 2 4 を通せば、 第 1 0図と 同様な強度変調を得ることができる。
また、 変調電流 Δ I の形状は、 必ずしも 5関数も し く はそれに近い形である必要はな く、 時間的に狭 い領域にあって積分が π kになるものであればよ
20 い。 ^
また、 光干渉器 2 4 としては、 自己ホモダイ ンに よる干渉が可能なものであれば、 上述したようなマ ッハツユ ンダ形の光干渉器の他にも、 例えば第 1 2 A図に示すマイ ケルソ ン形や第 1 2 B図に示すファ
25 ブリーべ口形の各種光干涉器を使用できることは勿 1 論である。 同図において 2 4 e , 2 4 f , 2 4 ίιは ミ ラ一、 2 4 g , 2 4 i はハーフ ミ ラーである。
次に、 第 1 3図は、 本発明の光干渉器の安定化方 法の第 1 の実施例を実現するための構成を示す図で 5 あり、 これは第 9図に示した光干渉器 2 4に本実施 例を適用したものである。
第 1 3図では、 まず第 9図で述べたようにハーフ ミ ラー 2 4 bで合成して得られた出力光を、 ハーフ ミ ラー 3 1 を介して光検出器 3 2で検出する。 これ
10 と共に、 ハーフ ミ ラー 2 4 bで上記出力光とは異な る方向に出力された、 上記出力光とはその強度が逆 転した閡係にあるもう一方の光を、 ハーフミラ一 3 3を介してもう 1つの光検出器 3 4で検出する。 こ れら 2つの光検出器 3 2、 3 4 は、 半導体レーザ 2
15 3 による位相変調の時間間隔と比べて大きな時定数 を有し、 例えば通常のフォ トダイオー ドに大きな容 量を並列に痠続したような構成である。 このような 光検岀器 3 2、 3 4で出力光を検出することにより . それぞれ、 出力光の強度を上記位相変調より も遅い
20 時間 (例えば 1 G bノ s の位相変調に対しては、 1 ノ 1 0 0秒程度) で積分した平均強度が得られる。 このような平均強度の変化は、 前述したように、 強 度変調時の位相バイ アスのずれに対応している。
铳いて、 上記光検出器 3 2、 3 4で検出される各 25 光の強度が互いに逆転した関係にあることから、 差 1 動ア ンプ 3 5 で上記 2 つの光検出器 3 2、 3 4 の差 をとることにより、 平均強度が 「 1ノ 2 」 からどれ - だけずれているかを求める。 こ こで、 差動ア ンプ 3 5 の出力がゼロであれば平均強度が 「 1ノ 2 」 であ 5 り、 すなわち位相バイ アスのずれがないこ とを示し
(第 3 A図参照) 、 一方、 差動ア ンプ 3 5 の出力が 正もし く は負に偏っていれば平均強度が 「 1 2 j でな く、 すなわち位相バイ アスがずれていることを 示す (第 3 B図参照) 。 そこで、 このよう な位相バ 10 ィァスのずれに対応した差動ァンブ 3 5 の出力値を 用いて、 半導体レーザ 2 3 の発振波長に帰還をかけ る。 すなわち、 半導体レーザ 2 3 のバイ ァス電流 I 0 (第 5図参照) に上記差動ァンプ 3 5 の出力を載せ るこ とにより、 半導体レーザ 2 3 の発振波長を変化 15 させる。 このよう に半導体レーザ 2 3 の発振波長が 変化すれば、 ハーフ ミ ラー 2 4 bで合成される 2つ の光の位相差が変化する。 これにより、 強度変調時 の位相バイ アスが変化し、 これに伴い出力光の平均 強度が変化する。 よって、 差動アンプ 3 5 の出力が 20 ゼロ となるように絶えず帰還をかけておけば、 位相 バイ アスを 「 1ノ 2 」 に維持することができ、 出力 光の安定化が得られる。 しかも、 この場合、 光検出 器 3 2、 3 4 で検出する各出力光の強度が上述した ように互いに逆転した.関係にあるので、 それらの差 25 には位相バイ ァスのずれが 2倍となって大き く現れ、 1 よって極めて正確なずれ検出が可能となる。
第 1 4図は、. 本発明の光干渉器の安定化方法の第 2 の実施例を実現するための構成を示す図である。 本実施例では、 半導体レーザ 2 3の発振波長に帰 5 還をかける代わりに、 光路長差に帰還をかけて安定 化を るようにしたものである。 すなわち第 1 4図 において、 光干渉器 2 4のミ ラー 2 4 cをビエゾ素 子 3 6に固定しておき、 差動アンプ 3 5 の出力に応 じてビエゾ素子 3 6を駆動し、 ミ ラー 2 4 'cを矢印 10 方向に移動させることにより、 ハーフ ミラ一 2 4 a からミラー 2 4 c及びミ ラー 2 4 dを介しハ一フミ ラー 2 4 bに至るまでの光路の実際 φ長さを変化さ せるようにしたものである。
このように光路長差を変化させても、 ハーフ ミ ラ 15 —— 2 4 bで合成される 2つの光の位相差を変化させ ることができるので、 差動ァンプ 3 5 の出力がゼロ となるように絶えず帰還をかけておけ'ば、 上記実施 例と同様に位相バイァスを理想状態に維持すること ができ、 出力の安定化を図ることができる。
20 第 1 5図ば、 本発明の光干渉器の安定化方法の第
3の実施例を実現するための構成を示す図で-ある。 本実施例では、 上記第 2 の実施例と同様に光路長 差を変化させるため、 ビエゾ素子 3 6を設ける代わ りに、 ヒータ 3 7 をミ ラー 2 4 c、 2 4 d間の光路 25 上に配設し、 このヒータ 3 7を差動アンプ 3 5 の出 1 力に応じて駆動するようにしたものである。 このよ うなヒータ 3 7 により温度が変化すれば、 その部分 の屈折率も変化するの'で、 それに伴って光路長が変 化する。 このようにして光路長差に帰還をかけても
5 上記実施例と同様に光干渉器 2 4 の出力の安定化が 図れ。る。
第 1 6図は、 本発明の光干渉器の安定化方法の第 4 の実施例を実現するための構成を示す図であり、 これは第 2図に示した光干渉器 1 0 に本実施例を適 10 用したものである。
本実施例では、 第 1 3図に示した実施例と同様に、 まず光強度が互いに逆転した関係にある 2つの出力 光を、 それぞれハーフ ミ ラ一 3 1 、 3 3を介して光 検出器 3 2 、 3 4で検出する。 そして、 差動ア ンプ 15 3 5でそれらの差をとり、 これに基づいて、 定常光 出力の半導体レーザ 3 8 の発振波長に帰還をかける。 すると、 光導波路 2 、 3 の光路長が互いに異なるこ とから、 発振波長が変化すれば光導波路 2 、 3を通 過する光の位相差も変化し、 これにより光干渉器 1 20 0 の出力光の平均強度が変化する。 よって、 差動ァ ンプ 3 5 の出力がゼロとなるように絶えず帰還をか けておけば、 上記実施例と同椽に光干渉器 1 0 の出 力の安定化を図ることができる。
第 1 7図は、 本発明の光干渉器の.安定化方法の第 25 5 の実施例を実現するための構成を示す図であり、 1 これは第 2図に示した光干渉器 1 0 における 2本の 光導波路 2、 3 の長さを互いに等しく した光干渉器 1 0 ' に対する適用例である。
本実施例は、 光導波路 2、 3 の光路長差に帰還を 5 かけて、 位相差を変化させるようにしたものである, すなわち第 1 7図において、 差動アンプ 3 5 の出力 に応じて電極 6の印加電圧を変化させ、 それに伴う 屈折率変化により光導波路 3 の光路長を変化させる ようにしたものである。 本実施例によっても、 前記 10 各実施例と同様に、 位相バイアスを理想状.態に維持 することができ、 光干渉器 1 0 '. の出力の安定化を 図ることができる。
なお、 光干 器 2 4、 1 0、 1 0 ' の出力光の平 均強度を検出する手段としては、 上記各実施例では 15 光検出器 3 2、 3 4及び差動ア ンプ 3 5を用いたが.
これらに限定されることはなく、 光干渉器の岀カ光 の強度を位相の変調より も遅い時間で積分した平均 強度を検出しうるものであれば、 どのような構成で あつ し ¾>よレ、 o
20 また、 本発明の光干涉器の安定化方法は、 第 2図 や第 9図に示したようなマッハツユンダ形光干渉器 の他に、 例えばマイ ケルソ ン形ゃフアブリ ーペ口形 の各種光干渉器に適用できることは勿論である。
また、 本発明を光通信システムに適用した場合、
25 第 4 A図及び第 4 B図に示したように 2種類の配置 1 が考えられるという ことは、 前述した。 例えば上記 第 1 4図、 第 1 5図及び第 1 7図に示したように光 路長差に帰還をかける構成は第 4 A図及び第 4 B .図 のいずれの配置にも適しているが、 第 1 3図及び第 5 1 6図に示したように発振波長に帰還をかける構成 は第 4 A図の配置に適している。 こ こで、 第 4 A図 の配置にして発振波長に帰還をかけるようにした場 合には、 、答が速いという利点があり、 一方、 第 4 B図の配置にして光路長差に帰還をかけるようにし 10 た場合には、 光が伝送途中で減衰しても光直接増幅 を容易に行えるという利点がある。
次に、 第 1 8図は本発明の光変調装置の原理構成 を示すブロ ック図であり、 第 1 9図はその第 1 の実 施例の構成を示す図である。
15 本実施例の光変調器は、 第 1 9図に示すように、 . アン ド回路 5 0、 フ リ ップフロ ップ 5 1 、 コ ンデン サ 5 2、 半導体レーザ 5 3、 光アイ ソ レータ 5 4、 バィ ァス電流源 5 5、 イ ンダクタ ンス 5 6、 抵抗 5 7、 光干渉器 5 8 (ハーフ ミ ラー 5 8 a、 5 8 b及 20 びミ ラー 5 8 c、 5 8 d ) 、 ハーフ ミ ラー 5 9、 6
0、 6 1、 光検出器 6 2、 6 3、 減算処理回路 6 、 及びミ ラ一駆動部 6 5から構成されている。 すなわ ち、 本実施例の構成を第 1 8図の構成と対比すれば、 アン ド回路 5 0 とフ リ ップフロ ップ 5 1 とからなる 25 回路が符号変換部 4 0 に相当し、 コ ンデンサ 5' 2 と 1 抵抗 5 7 とからなる回路が微分画路 4 1 に相当する。 また、 半導体レーザ 5 3、 光干渉器 5 8、 バイ アス 電流源 5 5が、 それぞれ半導体レーザ 4 2、 ·光干渉 器 4 3、 バイ アス電流源 4 4 に相当する。
5 上記構成からなる光変調装置において、 「 1 」 及 び 「 0 」 からなる送信データはフリ ップフロ ップ 5 1 のクロ ック端子 C Kに加えられ、 送信データの 「 1 」 により出力端子 Qの 「 1 _! 、 「 0 j が互いに 反転し'、 送信データの 「 0 」 では出力端子 Qはその
10 ままとなる。 従って、 送信データの 「 1 」 の時のみ 符号反転'される符号変換が行われ、 ア ン ド回路 5 0 から送信ク ロ ック信号に従って出力される。 このァ ン ド面路 5 0 は、 変換出力信号を R Z信号とするた めのものである。
15 この変換出力信号は、 コ ンデンサ 5 2を介して半 導体レーザ 5 3 に変調電流パルス Δ I として供袷さ れ、 バィ ァス電流源 5 5からの一定バィ ァス電流 I 0 に重畳される。 この一定バイァス電流 I Q は、 例え ば第 1図に示したように、 半導体レーザ 5 3が常に
20 レーザ発振し、 所望の強度の出力光が得られる値に 選定される。
半導体レーザ 5 3 の出力光は、 光アイ ソ レータ 5 ' 4を介して光干渉器 5 8 に入力される。 この光干涉 器 5 8の基本構成'は第 9図等に示した光干渉器 2 4 25 と同一でありく ハーフ ミ ラ一 5 8 aにより分岐され た一方 φ光信号をハーフ ミ ラー 5 9、 5 8 b の経路 に、 他方の光信号をミ ラー 5 8 c、 5 8 d とハーフ ミ ラー 6 0、 5 8 bの経路 (光遅延回路) にそれぞ れ伝搬させ、 ハーフ ミ ラー 5 8 において相対遅延 時間が 1 タイムスロ ッ ト となり、 かつ相対位相差が 0又は π となるように設定し、 自己ホモダイ ンによ ' る光干渉を行わせる。 なお、 上記光遅延画路として は、 ミ ラ一 5 8 c、 5 8 dを使用せ に; 光フア イ バを用いてもよい。
また、 ハーフ ミ ラー 5 9、 6 0、 6 1 と、 光検出 器 6 2、 6 3 と、 減算処理画路 6 4 と、 ミ ラー躯動 部 6 5 とは、 第 1 4図に示した構成とほぼ同様に、 光干涉器 5 8 の出力安定化のための 1 つの構成例で ある。 ここで、 減算処理回路 6 4 と しては例えば差 動ア ンプを使用でき、 ミ ラー駆動部 6 5 と しては例 えばピエゾ素子を使用。できる。'
本実施例においても、 第 5図に示した半導体レー ザの変調方法と同様に前記式 (1)を満足するように、 すなわち半導体レーザ 5 3に与えられる変調電流パ ルス厶 I ( t ) の 1 タイ ムスロ ッ トの時間積分とチ ヤービング係数 k との積が π又は一 π となるように 選定する。 そのために、 コ ンデンサ 5 2 と半導体レ 一ザ 5 3 と抵抗 5 7 とからなる微分回路を、 上記の 関係を満たす変調電流パルス Δ I ( t ) が得られる ように選定して、 半導体レーザ 5 3 の出力光の位相 1 が π又は一 π となるように変調する。
光干渉器 5 8では、 上述したように、 分岐した一 方の光信号と他方の光信号との相対遅延時間が 1 タ ィムスロ ッ トであって、 かつ相対位相差が 0又は
5 に設定されている。 そのため、 例えば相対位相差が %に設定されているとすると、 半導体レーザ 5 3の 出力光の位相 ^が連続して同一の場合は、 ハーフミ ラー 5 8 bに入力される光信号の位相差が? Γ となる から、 これによる変調出力光強度は 「 0 j となる。
10 —方、 半導体レーザ 5 3 の岀カ光の位相 ίίを に変 化させると、 ハーフ ミ ラー 5 8 bに入力される光信 号の位相差は、 1 タイ ムスロ ッ トの間、 2 π となる から、 変調出力光強度は相対値で 「 1 j となる。 す なわち、 一定バイ アス電流 I n に変調電流パルス厶
15 I ( t ) を重畳して半導体レーザ 5 3を駆動し、 そ の半導体レーザ 5 3の出力光の位相 Φを π又は— π に変化させ、 その出力を光干渉器 5 8 に加えること により、 光強度変調を行う ことができる。
また、 光干渉器 5 8 における上記相対位相差を 0
20 に設定した場合は、 半導体レーザ 5 3の出力光の位 相 を πに変化させた時に、 1 タイムスロ ッ トの間. 位相差が JT となって、 変調出力光強度は 「 0 」 とな り、 他のタイ ムス口 'シ トの変調出力光強度は相対値 で 「 1 j となる。
25 次に、 第 2 0図 )〜 (g)を用いて、 本実施例の動作 を具体的に説明する。 ,
例えば第 2 0図 (a)に示すような 「 1 」 、 「 0 」 か らなる送信データは、 フリ ップフロ ップ 5 1 により 第 2 0図 (b)に示すように符号変換される。 すなわち 送信データの 「 1 」 毎に変換出力信号の符号が反転 されたものとなり、 「 0 1 1 0 1 0 0 1 」 の送信デ —タは 「 0 1 0 0 1 1 1'0 」 の変換出力信号となる, この変換出力信号を半導体レーザ 5 3への変調電流 パルス Δ I とした場合は、 第 2 0図 (c)に示す波形と なる。 しかし、 「 1 」 が孤立したパルス波形の場合 は、 半導体レーザ 5 3 の発振周波数 ωは前述のよう に位相 を π とするように変化させることができる が、 「 1 」 が連続した場合のパルス波形の場合は、 平均駆動電流が増加した場合に相当し、 所望の位相 の変化を与えることができな く なる。 そこで、 本 発明においては、 微分回路 4 1 (コ ンデンサ 5 2、 抵抗 5 7 ) を用いて変換出力信号を微分し、 第 2 0 図 (d)に示すような変調電流パルスに変換している。
これにより、 半導体レーザ 5 3では、 上記変調電 流パルスに対応した発振周波数 ωの変化が生じる。 ' - この.際、 半導体レーザ 5 3 の出力光位相 ま、 上述 したように発振周波数 ωの時間積分に相当するもの であるから、 第 2 0図 (e)に示すようになる。 すなわ ち、 変換出力信号が 「 1 」 の連続で ¾つても、 半導 体レーザ .5 3を、 その出力光位相 Φ πの変化が生 1 じるよう に駆動する ことができ る。
更に、 このような位相を持つ光信号が光干渉器 5 8を通過することにより、 そのハーフ ミ ラー 5 8 b には、 第 2 0図 (e)に実線で示す位相を持つ光信号と.
5 この光信号とは 1 タイ ムスロ ッ ト時間 Tだけ遅延さ れた破線.で示す位相を持つ遅延光信号とが入射する ことになる。 よって、 上記ハーフ ミ ラー 5 8 bに入 射する光信号の位相差は、 第 2 0図 (f)に示すように. 変換出力信号が 「 0 」 の時は 7£で、 「 1 」 の時は 2
10 又は 0 となる。 このような 2 π又は 0 の位相差の 光信号がハーフ ミ ラー 5 8 bで干渉しあう ことによ り、 第 2 0図 (g)に示すように、 送信データに従って 強度変調された出力光が得られる。
本実施例によれば、 バイアス電流源 5 5から半導
15 体レーザ 5 3に供給するバイ アス電流 I Q は半導体
レーザ 5 3 の特性に応じて選定されるもので、 これ を例えば 6 0 m Aとし、 一方、 微分回路から重畳し て供給する変調電流パルス厶 I を例えば 1 1 m Aと することができる。 従って、 変調電流パルスはバイ
20 ァス電流に比較してわずかであるから、 従来のよう なチヤ一ビングの問題は生じない。 また、 光干渉器 5 8 は、 予め 1 タイ ムスロ ッ トの光遅延を与えると 兵に、 相対位相差を 0又は π となるように設^する ■ もので、 その接続損失はわずかであるから、 非常に
25 効率の良い強度変調を実現できる。 1 また、 上述したハーフ ミ ラ一 5 9、 6 0、 6 1、 光検出器 6 2、 6 3、 減算処理回路 6 4、 及びミ ラ —駆動部 6 5 により、 減算処理回路 6 4 の出力がゼ 口となるようにミ ラー躯勳部 6 5でミ ラー 5 8 cを
5 移動して光干渉器 5 8の光路長差に帰還をかけるよ うにしたので、 前記第 1 4図と同様に光干渉器 5 8 の出力の安定化を図ることができる。 ' 次に、 第 2 1図は、 本発明の光変調装置の第 2 の 実施例に係る微分面路を示す回路図である。
10 同図の回路は、 符号変換部 7 1 、 コ ンデンサ 7 2 .
' 半導体レーザ 7 3、 スタブ 7 4、 抵抗 7 5、 及びィ ンダクタ ンス 7 6 によつて構成されている。 符号変 換部 7 1 では、 送信データの符号を前記実施例と同 様に変換すると共に、 1 / 2 タイ ムスロ ッ トのバル
15 ス幅の変換出力信号を生じさせる。 また、 スタブ 7
4 は、 変換出力信号の極性が反転して反射され、 1 ノ 2 タイ ムスロ ッ ト後にコ ンデンサ 7 2 に入力され るように、 その長さ が選定してある。 よって、 コ ンデンサ 7 2を介して半導体レーザ 7 3 に加えられ
20 る変調電流パルスは、 第 2 0図 (d)と同様な波形とな り、 バイ アス電流源からの一定バイ ァス電流に上記 変調電流パルスが重畳されて半導体レーザ 7 3 に加 えられる。 従って、 半導体レーザ 7 3からは、 第 2 0図 (e)に示すような位相 を持つ出力光が得られる。
25 第 2 2図は、 本発明の光変調装置の第 3 の実施例 1 に係る光変調器安定化手段の構成を示す図である。 同図では、 第 1 3図に示した安定化方法と同様に、 減算処理回路 6 の出力信号をバイ ァス電流源 5 5 に加えることにより半導体レーザ 5 3 の発振波長に
5 帰還を加えて、 減箕処理回路 6 4の出力信号が常に ゼロとなるようにしている。 これにより、 光干渉器 5 8の強度変調時の位相バイ ァスを理想状態 (第 3 A図参照) に維持して、 出力の安定化を図ることが できる。
10 なお、 上述した光干渉器 5 8 はマッハツヱンダ形 であるが、 これを光導波路で構成してもよ く、 或い はその代わりにマイケルソ ン形ゃフアブリ一ベロ形 の光干渉器を使用してもよい。
また、 上記第 1 9図や第 2 2図に示した光干渉器
15 安定化のための面路では、 送信データの 「 1 」 と
[ 0 」 の岀現確率をいずれも 1ノ 2 とした場合につ いて述べたが、 他の出現確率に設定されている場合 は、 その出現確率に対応して減箕処理回路 6 4で処 理することにより、 光検出器 6 2、 6 3 の検出信号
20 の差が所定の値となるように帰還をかけるようにし てもよい。
産業上の利用可能性
以上に説明したように、 本発明の半導体レーザの 変調方法、 光干渉器の安定化方法、 及び光変調装置 25 は、 特に第 4 A図及び第 4 B図に示したような光通 1 信システムに有用である。 また、 その他にも、 各種 光デバイ スに適用できることも勿論である。
5
10
15
20
25

Claims

雲青 求 の 範 面
1 ) —定値のバイ ァス電流に重畳された変調電流 パルスにより半導体レーザを駆動する半導体レーザ 装置において、
5 前記変調電流パルスによつて変動した発振周波数 の積分値が位相量として もしく は一 になるよう に前記変調電流パルスを与えるこ とにより、 前記半 導体レーザの出力光に位相変調をかけることを特徴 とする半導体レーザ装置。
10 2 ) 前記変動発振周波数の積分値として、 前記変 調電流パルスの 1 タイ ムスロ ッ トの時間積分とチヤ 一ビングの係数との積であることを特徴とする請求 の範囲第 1項記載の半導体レーザ装置。
3 ) 請求の範囲第 1項において、
15 前記変調電流パルスは、 データ伝送の 1或いは 0
に対応して与えられるものであることを特徴とする 半導体レーザ装置。
4 ) 請求の範囲第 1項において、
前記変調電流パルスは、 5関数形であることを特
20 徴とする半導体レーザ装置。
5 ) 請求の範囲第 2項において、
前記位相変調のかけられた半導体レーザの出力光 を、 自己ホモダイ ン検出回路により光パルスに変換 して強度変調とすることを特徴とする半導体レーザ
25 6 ) 請求の範囲第 5項において、
前記自己ホモダイ ン検出回路として、 1 タイ ムス ロ ッ トの遅延差を与えるマッハツエンダ形干渉回路 であることを特徴とする半導体レーザ装 。
7 ) 請求の範囲第 5項において、
前'記自己ホモダイ ン検出回路として、 1 タイ ムス ロ ッ トの遅延差を与えるマイ ケルソ ン形干渉面路で あることを特徴とする半'導体レーザ装置。
8 ) 請求の範囲第 5項において、
10 前記自己ホモダイ ン検出回路として、 フアブリ べ 口形干渉面路であることを特徴とする半導体'レーザ
9 ) 請求の範囲第 2項において、
前記位相変調のかけられた半導体レーザの出力部
15 に、 自己ホモダイ ンを行う干渉回路を備えたことを 特徴とする半導体レーザ装置。
10 ) 請求の範囲第 2項において、
前記位相変調のかけれらた半導体レーザの出力光 を伝送用光ファイバに入力し、 前記伝送用光フア イ
20 バの出射端側にて、 自己ホモダイ ン検出回路により
0或いは 1 の光パルスに変換することを特徴とする 半導体レーザ装置。
11 ) 請求の範囲第 2項において、
前記半導体レーザの出力光である位相変諷の力、か
25 つた光信号を入力光と し、 該入力光を分岐して光路長の互いに異なる 2つの 光路に通過させた後に合成し、 該合成された 2つの 光の位相差に基づ.き強度変調された出力光を得る光 干涉面路において、 ·
該光干渉面路の出力光の強度'を前記位相変調より も遅い時間で積分した平均強度を用いて前記入力光 の光波長に帰還をかけ、 前記強度変調時の位相バイ ァスを補正することを特徴とする半導体レーザ装置 < 12 ) 請求の範囲第 2項において、
前記半導体レーザの出力光である位相変調のかか つた光信号を入力光とし、
該入力光を分岐して光路長の互いに異なる 2つの 光路に通過させた後に合成し、
該合成された 2つの光の位相差に基づき強度変調 された出力光を得る光干渉回路において、
該光干渉回路の出力光の強度を前記位相変調より も遅い時間で積分した平均強度を用いて前記 2つの 光路の光路長差に帰還をかけ、 前記強度変調時の位 相バイァスを補正することを特徵とする半導体レー ザ装置。
• 13 ) 請求の範西第 1項において、
前記半導体レーザの駆動回路において、
送信データの 1又は 0 の何れか一方の時のみ符号 反転する符-号変換部と、
該符号変換部の変換出力信号を微分する微分回路 1 と、
該微分回路の微分出力信号を変調パルス電流とし て一定バイァス電流に重畳して駆動する手段を備え たことを特徴とする半導体レーザ装置。
5 14 ) 請求の範囲第 13項において、
前記半導体レーザの出力光を分岐した一方と他方 との相対位相差を 0又は とし、 且つ相対遅延時間 を 1 タイ ムスロ ッ ト とする光遅延回路を有し、 自己 ホモダイ ンを行う干渉器を備えたことを特徴とする
10 半導体レーザ装置。
15 ) 請求の範囲第 13項において、
前記微 回路には、 スタブを備えていることを特 徴とする半導体レーザ装置。
16 ) 半導体レーザと、 該半導体レーザの出力光に 15 変調手段を備えた半導体レーザ装置において、
前記変調手段は、 入力光を分岐して光路長差の変 調可能な 2 つの光路に通過させた後に合成し、 該合 成された 2つの光の前記光路長差による位相差に基 づき強度変調された出力光を得る光干涉面路からな 20 、
該光干渉回 の出力光の強度を前記変調より も遅 い時間で積分した平均強度を用いて前記入力光の光 波長に帰還をかけ、 前記強度変調時の位相バイ アス を補正することを特徴とする半導体レーザ装置。 25 Π ) 半導体レーザと、 該半導体レーザの出力光に 1 変調手段を備えた半導体レーザ装置において、 前記変調手段は、 該入力光を分岐して光路長差の 変調可能な 2つの光路に通過さ.せた後に合成し、 該 合成された 2つの光の前記光路長差による位相差に
5 基づき強度変調された出力光を得る光干渉面路から なり、
該光干渉回路の出力光の強度を前記変調より も遅 い時間で積分した平均強度を用いて前記 2つの光路 の光路長差に帰還をか^、 前記強度変調時の位相バ 10 ィ ァスを補正することを特徴とする半導体レーザ装
18 ) 一定値のバイ ァス電流に重畳された変調電流 パルスにより半導体レーザを駆動する半導体レーザ の変調方法であって、
15 前記変調電流パルスの 1 タイ ムスロ ッ トの時間積 分とチヤ一ビングの係数との積が 7 もし く は一 JTに なるようにして、 前記半導体レーザの出力光に位相 変調をかけることを特徴とする半導体レーザ変調方 法。
20 19 ) 請求の範西第 18項において、
位相変調のかけられた半導体レーザの出力光を、 自己ホモダイ ン法により光パルスに変換して強度変 調することを特徴とする半導体レーザ変調方法。 20) 一定値のバイァス電流に重畳された変調電流
25 パルスにより半導.体レーザ ( 2 3 ) を駆動する半導 1 体レーザ装置において、
前記変調電3流パルスによって変動した発振周波数 の積分値によって位相差を生じることにより前記変 調電流パルスの有無に対応して前記半導体レーザの
5 出力光に位相変調をかけることを特徴とする半導体 レーザ装置。
21) 前記位相変調がかけられた半導体レーザの出 力光を自己ホモダイ ン検出器により強度変調に変え ることを特徴とする請求の範囲第 27項記載の半導体 10 レーザ装置。
15
20
25
PCT/JP1989/000220 1988-03-04 1989-03-02 Method and apparatus for modulating a semiconductor laser WO1989008356A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE68924747T DE68924747T2 (de) 1988-03-04 1989-03-02 Vorrichtung und verfahren zur modulierung eines halbleiterlasers.
EP89903271A EP0357799B1 (en) 1988-03-04 1989-03-02 Method and apparatus for modulating a semiconductor laser

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP4980388 1988-03-04
JP63/49803 1988-03-04
JP63/185399 1988-07-27
JP18539988 1988-07-27
JP20816388 1988-08-24
JP63/208163 1988-08-24

Publications (1)

Publication Number Publication Date
WO1989008356A1 true WO1989008356A1 (en) 1989-09-08

Family

ID=27293745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1989/000220 WO1989008356A1 (en) 1988-03-04 1989-03-02 Method and apparatus for modulating a semiconductor laser

Country Status (4)

Country Link
US (1) US5073331A (ja)
EP (1) EP0357799B1 (ja)
DE (1) DE68924747T2 (ja)
WO (1) WO1989008356A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0430231A2 (en) * 1989-11-30 1991-06-05 Nec Corporation Method of optical transmission and optical transmitter used in the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2758211B2 (ja) * 1989-06-19 1998-05-28 富士通株式会社 周波数直接変調psk方式
US5255274A (en) * 1989-09-06 1993-10-19 The Board Of Trustees Of The Leland Stanford University Broadband laser source
JPH0478235A (ja) * 1990-07-18 1992-03-12 Fujitsu Ltd 直接変調psk伝送システム並びに該システムにおける自動周波数制御方法、復調方法及び位相雑音抑圧方法
JP3001943B2 (ja) * 1990-08-30 2000-01-24 株式会社東芝 偏波スイッチング光源、光受信装置及びコヒーレント光伝送システム
JP2970776B2 (ja) * 1990-12-17 1999-11-02 富士通株式会社 光送信装置
US5170403A (en) * 1991-05-31 1992-12-08 Digital Equipment Corporation Modulation circuit for grayscale laser printing
JP3223562B2 (ja) * 1992-04-07 2001-10-29 株式会社日立製作所 光送信装置、光伝送装置および光変調器
US5208817A (en) * 1992-04-10 1993-05-04 At&T Bell Laboratories Modulator-based lightwave transmitter
DE19801469C2 (de) * 1998-01-16 2001-05-17 Campus Technologies Ag Zug Vorrichtung zur Erfassung oder Erzeugung optischer Signale
US6441940B1 (en) * 1998-10-09 2002-08-27 Agere Systems Guardian Corp. Wavelength stabilization of light emitting components
US6317526B1 (en) * 1998-12-21 2001-11-13 Fujitsu Limited Optical phase controller and optical switch
US6618404B2 (en) * 2001-06-19 2003-09-09 Lockheed Martin Corporation Method for producing highly accurate frequency and FM of a laser
JP4146800B2 (ja) * 2002-01-09 2008-09-10 株式会社アドバンテスト 位相変調回路、試験装置、及び通信システム
US7747171B1 (en) 2002-09-10 2010-06-29 Meriton Networks Us Inc. Method and apparatus for alleviating slope-induced impairments to chirped optical signals propagating in an optical transmission system
US20060268277A1 (en) * 2005-02-23 2006-11-30 Optoplex Corporation Michelson interferometer based delay line interferometers
KR100701101B1 (ko) * 2004-12-20 2007-03-28 한국전자통신연구원 광 간섭계 제어 장치 및 그 방법
EP1694017B1 (en) * 2005-02-18 2013-11-27 Nokia Solutions and Networks GmbH & Co. KG Method and apparatus for demodulating an optical differential phase-shift keying signal
US20090214224A1 (en) * 2007-04-03 2009-08-27 Celight, Inc. Method and apparatus for coherent analog rf photonic transmission
US7782913B2 (en) * 2007-07-20 2010-08-24 Corning Incorporated Intensity modulation in wavelength converting optical package
WO2009114163A2 (en) * 2008-03-11 2009-09-17 Oewaves, Inc. Optical locking based on optical resonators with high quality factors
JP2009253598A (ja) * 2008-04-04 2009-10-29 Fujitsu Ltd 位相変調信号受信装置
US8781336B1 (en) * 2011-02-10 2014-07-15 Finisar Corporation Optical filter for use in a laser transmitter
US10747031B2 (en) 2018-08-07 2020-08-18 Teraxion Inc. Method and system for optical phase modulation with reduced harmonic content

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112158A (en) * 1980-12-29 1982-07-13 Fujitsu Ltd Code converting circuit
JPS60235543A (ja) * 1984-05-08 1985-11-22 Nec Corp 光位相変調方法
JPS61212932A (ja) * 1985-03-18 1986-09-20 Nec Corp 位相偏移変調光送信装置
JPS62189832A (ja) * 1986-02-17 1987-08-19 Nec Corp 光送信装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2144598B (en) * 1981-07-14 1985-09-11 British Telecomm Laser telecommunications system
JPS5943724A (ja) * 1982-09-02 1984-03-10 Tokyo Erekutoron Kk 超音波浮上型搬送装置
NL8601510A (nl) * 1986-06-11 1988-01-04 Philips Nv Inrichting voor het aansturen van een laser.
NL8602303A (nl) * 1986-09-12 1988-04-05 Philips Nv Werkwijze voor het in pulsmode aansturen van een halfgeleiderlaser, aanstuurinrichting voor een halfgeleiderlaser en laserschrijfapparaat voorzien van een dergelijke aanstuurinrichting.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57112158A (en) * 1980-12-29 1982-07-13 Fujitsu Ltd Code converting circuit
JPS60235543A (ja) * 1984-05-08 1985-11-22 Nec Corp 光位相変調方法
JPS61212932A (ja) * 1985-03-18 1986-09-20 Nec Corp 位相偏移変調光送信装置
JPS62189832A (ja) * 1986-02-17 1987-08-19 Nec Corp 光送信装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0430231A2 (en) * 1989-11-30 1991-06-05 Nec Corporation Method of optical transmission and optical transmitter used in the same
EP0430231A3 (en) * 1989-11-30 1991-11-27 Nec Corporation Method of optical transmission and optical transmitter used in the same

Also Published As

Publication number Publication date
DE68924747D1 (de) 1995-12-14
EP0357799A4 (en) 1992-05-13
EP0357799B1 (en) 1995-11-08
DE68924747T2 (de) 1996-05-02
US5073331A (en) 1991-12-17
EP0357799A1 (en) 1990-03-14

Similar Documents

Publication Publication Date Title
WO1989008356A1 (en) Method and apparatus for modulating a semiconductor laser
US7068948B2 (en) Generation of optical signals with return-to-zero format
US5317443A (en) Optical transmitter
EP0444688A2 (en) Optical transmitter
WO2012132112A1 (ja) 補償方法、光変調システム、及び光復調システム
JP3210061B2 (ja) 光干渉器の動作点安定化装置
JP3772738B2 (ja) 光変調装置
JP2848942B2 (ja) 光送信装置
JP2000171766A (ja) 光変調器
JP2661574B2 (ja) Ln変調器直流バイアス回路
US6940638B2 (en) Optical frequency conversion systems and methods
JPH04294318A (ja) 光変調器バイアス自動制御回路
JP2004364288A (ja) 交番マーク反転およびデュオバイナリ光伝送のためのシステムおよび方法
JPH08248366A (ja) 光送信器
EP0491272B1 (en) Optical transmitter
US20040062470A1 (en) Optical differentiator description
JPH0375615A (ja) マッハツェンダ型光変調器を用いた位相シフトキーイング方式
JPS60147716A (ja) 消光比制御光送信装置
WO2012086220A1 (ja) 光時分割多重化回路
JP2004301965A (ja) 光変調器のバイアス制御装置および該バイアス制御装置を用いた光変調装置
JP2005159938A (ja) 光クロック再生装置及び光クロック再生方法
JPS62258528A (ja) 光送信器
JP2000206474A (ja) 光送信回路
JPS61212932A (ja) 位相偏移変調光送信装置
JP2003322830A (ja) 光変調装置及び光変調方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): JP US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1989903271

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1989903271

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1989903271

Country of ref document: EP