WO1989002913A1 - Cell propagation apparatus - Google Patents

Cell propagation apparatus Download PDF

Info

Publication number
WO1989002913A1
WO1989002913A1 PCT/JP1988/001002 JP8801002W WO8902913A1 WO 1989002913 A1 WO1989002913 A1 WO 1989002913A1 JP 8801002 W JP8801002 W JP 8801002W WO 8902913 A1 WO8902913 A1 WO 8902913A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
culture
cells
unit
tank
Prior art date
Application number
PCT/JP1988/001002
Other languages
English (en)
French (fr)
Inventor
Fumihiko Yonemori
Yutaka Shibata
Akira Nishimura
Original Assignee
Sumitomo Electric Industries, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to DE3889104T priority Critical patent/DE3889104T2/de
Priority to EP88908388A priority patent/EP0336974B1/en
Publication of WO1989002913A1 publication Critical patent/WO1989002913A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M33/00Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus
    • C12M33/10Means for introduction, transport, positioning, extraction, harvesting, peeling or sampling of biological material in or from the apparatus by centrifugation ; Cyclones
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability

Definitions

  • the present invention relates to a cell proliferating device for separating a target cell group, growing the cell group, and enhancing and activating a specific function of the cell.
  • lymphocytes are cultured in vitro with lymphokine and the like, and cells that are grown, activated and cultured (lymphokine activated killer: LAK) or cells with tumor tissue fragments (cytotoxic T lymphocyte: CTL) Cultured cells are used for the treatment of eliminating tumors by returning them into the body. (The New England Journal Vol.313, Ko-23, pp. 1485-1492)
  • the collected peripheral blood is separated into lymphocyte fractions and other fractions using a specific gravity difference (density gradient eccentricity) using a drug such as Ficol * Peter.
  • lymphokine such as interleukin 2 such as RPM I-164 (serum-containing).
  • the cell solution in which the lymphocytes have been suspended is sealed in a roller bottle ⁇ and subjected to rotary culture, static culture in a culture bottle ⁇ , or cultivation using a holofiber-based incubator. If necessary, replace the medium with fresh one. Incubate the culture vessel at 37 ° C and maintain the pH by ventilating CO 2 as necessary. By the above procedure, the number of lymphocytes increases and the shape becomes irregular, and cells having killer activity appear.
  • the lymphocyte solution is injected into the body.
  • the number of active potash emission path balls required for treatment is, for example, many necessary than the number of tumor cells, for example, when you not disappear the tumor ⁇ diameter about 1 cm. Shimeyo, 1 0 1 1 More than one order It is said that an activated lymphocyte is required.
  • the number of lymphocytes that can be collected from a patient at one time is on the order of 10 cells, and manual culturing, for example, culturing using a roller bottle, can yield only about twice as many cells.
  • the cells in the culture may be contaminated with various bacteria.
  • the researchers (doctors) themselves may be infected with pathogenic bacteria, etc., because they are highly viable and treat the patient's blood.
  • the culture conditions for cells vary from patient to patient, and there are variations in the work performed by researchers (doctors). The characteristics of the cultured cells are different each time, and cells can be obtained stably.
  • the present invention has been made in order to solve the above-mentioned various problems, and an object of the present invention is to provide a cell growth apparatus capable of automatically growing cells without contamination of bacteria.
  • a cell growth apparatus includes a separation unit for separating cells, and a culture tank for culturing cells.
  • a culture unit for separating cells
  • a transport unit that transports cells between the separation unit and the culture unit, and the separation unit
  • a cultivation unit and a controller that controls the work of the transportation means.
  • the required cell groups among the input cell groups are separated in the separation unit, cultured in the culture unit, and cultured in the controller. Change, and the point at which cells should be collected, and based on the signal from the controller, controls the administration of physiologically active substances, etc. in the culturing section, and based on the signal from the controller. Next, the cells are collected in the separation section.
  • the separation unit is a centrifugal device capable of centrifuging the liquid, a pitting device capable of sucking and discharging the liquid, a mulbulator for operating the pitting device, and the position of each fraction after centrifugation.
  • a sensor for singing may be provided, and the pitting operation may be controlled based on the sensing result of each fractionation position.
  • the centrifugation operation of the separation unit may be continuous centrifugation.
  • a method using a density gradient centrifugation method for separating cells may be used.
  • the separation unit may be configured with a membrane for separating cells, a jig for holding the membrane, and a liquid channel, and may separate cells by filtration.
  • the jig and the liquid path for holding the film ash film may be configured to be reversible.
  • the separation unit may separate the cells by utilizing the difference in the amount of charge of the cells.
  • the separation unit may be constituted by a tank having an electrode for applying a voltage to the liquid and a liquid path.
  • the culturing unit may be configured so that the culture solution can be injected into the culture tank and discharged from the culture tank.
  • the culturing tank may have a structure capable of attaching and detaching more than the culturing section, and the transportation means may move the culturing tank between the culturing section and the separating section.
  • Each operation of the separation unit, the culture unit, and the transportation means may be performed aseptically.
  • the cell culture device of the present invention includes: a separation unit for separating cells; a culture unit having a culture tank for culturing cells; a transportation means for transporting cells between the separation unit and the culture unit; A cell monitor for measuring the characteristics of the cells in the cell, and the cell characteristics obtained by the cell monitor are calculated to control the culturing conditions of the culture tank, and the separation, culturing, and transport means It consists of a controller that controls the operation and The required cell group of the cell group is separated in the separation unit, cultured in the culture unit, the cell culture state is monitored in a part of the culture monitor, and the result of monitoring the cell culture state using the controller is also monitored. At the same time, the culture conditions are changed and the point at which cells are to be collected is determined. Based on the signal from the controller, the administration of the physiologically active substance is controlled in the culture unit, and the signal from the controller is also used. At this time, the cell is collected in the separation section. No
  • a density gradient centrifugation method can be used for the separation part.
  • a separation method using a membrane can be used for the separation part.
  • electrophoresis can be used for the separation part.
  • a continuous culture method can be used in the culture section.
  • the measurement of vesicle damage activity in which the activity of cultured cells is monitored in a part of the culture monitor can be used.
  • the culture monitor can be used to monitor the activity (juvenile development) of cultured cells or to use image processing to distinguish cells of a specific subgroup o
  • the culture monitor may have a means for staining cells or a means for labeling cells.
  • the culture monitor may have a measuring means for measuring the characteristics of the cells.
  • the measuring means may be one for performing image processing on a cell image obtained through a microscope.
  • the measuring means may have a photometric device.
  • the measuring means may measure the amount of radioisotope.
  • the culture conditions may be controlled by controlling the dose of the physiologically active substance using the measurement results of the characteristics of the cells.
  • the culture conditions may be controlled by controlling the exchange of the culture solution using the measurement results of the characteristics of the cells.
  • the timing of collecting the cells may be controlled.
  • the characteristic of the cell to be measured may be a cell number or a cell concentration (density).
  • the property of the cell to be measured may be cytotoxic activity.
  • the characteristic of the cell to be measured may be the cell type or funotype.
  • the characteristic of the cell to be measured may be cell shape or cell size or cell morphology.
  • At least one of the pH, temperature, humidity, or CO 2 concentration of the liquid may be measured, and the measured value may be subjected to feedback control.
  • Fig. I is a perspective view showing an outline of an embodiment of the culture apparatus of the present invention.
  • FIG. 3 a to 3 Figure is a block diagram showing the culture device of the present invention
  • FIG. 3 a to 3 FIG e is a view showing a main part of the operation of the centrifugal unit
  • perspective view Fig. 4 shows another embodiment of the separation unit 5 and 6 are perspective views showing another embodiment of the separation unit.
  • FIG. 7 is a diagram showing another embodiment of the culture unit
  • FIG. 8 is another embodiment of a part of moyuta.
  • FIG. 9 is a flowchart showing a main part of the operation.
  • the apparatus of the present invention comprises
  • the system includes a separation unit 20, a monitor unit 30, and a control unit or a controller part 50, which is, for example, a microphone computer that controls each unit.
  • the culture medium taken out from the culture medium tank 11 having the predetermined culture medium in the culture unit 10 and from the culture medium tank 11 taken from the conduit 11a is taken out from the addition liquid tank 12 with the mixer 1 lb.
  • the mixture is mixed with the added liquid and sent to the culture tank 14 by the pump 13. Unnecessary liquid is discharged to a waste liquid tank 16 by a pump 15.
  • the separation unit 20 has a plurality of containers 21 containing various culture solutions, and each container 21 is mounted on a centrifugal device 22.
  • the bit 24 is attached to the manipulator 23, and by moving the bit 24 up and down, the bit 24 is pulled out of the container 21 or inserted.
  • a desired culture solution is taken out by a pump 29 and fed to a culture tube 17 in a culture tank 14.
  • a television camera for monitoring or a position-sensitive diode (PSD) to monitor the contents of a container (indicated by 21X) hung on one rotating arm 22a of the centrifuge 22 2 5 are provided.
  • PSD 25 position-sensitive diode
  • the image signal obtained from the TV camera or PSD 25 is connected to the motor TV 51 of the controller 50, and the contents of the container 21X can also be viewed on the motor TV 51. Can be done.
  • the culture solution containing the cells collected in the culture tube 17 is taken out by the pump 31 by the pump 31, and the culture solution is moved by the manifold 32 in the XY direction. It is transferred by a predetermined amount to the retainer 34 placed on the table 33.
  • the reservoir 34 is sent to the right side of the figure by the XY table 33, and is sequentially stored or removed from the stock 35.
  • a cannula 36 for injecting the dyed strings On the transfer path of the XY table 33, there is provided a cannula 36 for injecting the dyed strings, and the cultivator 36, as described above, is used to feed the culture solution into the reservoir 34 as described above.
  • the dye solution can be injected using a pump 37.
  • a microscope 38 is provided at a position shifted in the Y direction from the transfer path 33a for transferring the X—Y table 33, and the retainer 34 is connected to the microscope
  • the culture solution in the container 34 is enlarged by sending it to the bull 39 so that it can be seen.
  • the image magnified by the microscope 38 is picked up by the TV camera 40, and the image signal is sent to the image processing device 41.
  • the signal obtained by the image processing device 41 is transmitted to the 5 Projected by 1.
  • the centrifugal device 22 is driven by a command from the controller 50, and the arm 22 a is rotated to rotate the container.
  • 21 Level the cell 1 by rotating centrifugal force (Fig. 3a), thereby fractionating the cells, and sensing the fractionation position of the required cells.
  • Television camera or position-sensitive diode From (PSD) 25 the sense signal and the fractionation position are obtained using the luminance difference, absorbance difference or reflected light amount difference of each fraction (Fig. 3b). Based on sense location information The tip of the bit 24 is moved to the required cell fractionation position by driving the data 23. Then, the cells are aspirated by the pump 29. Next, bring the tip of bit 24 to another centrifuge tube position. Discharge by pump.
  • the balanced salt solution is discharged into the B centrifuge tube, agitated, and centrifuged, and the cell fraction ⁇ is sensed in the same manner as in the above-described sensing.
  • the electromagnetic pulp 26 is opened, and the cell solution is sent to the pit 24 from the culture tank 17.
  • centrifugation / fractionation process and the purification process are the same as the separation process described above.
  • a substance for density gradient centrifugation such as ficoll / peak, is loaded from the liquid tank 200 via the pump 206.
  • liquid tank 605 ⁇ filtration tank 601 ⁇ waste liquid tank 60 S (solenoid valve 600 open, S03 closed)
  • culture tank 14 ⁇ filtration tank 60 Set the three-way cocks 6 08, 6 0 9 and 6 10 so that 1 ⁇ waste liquid tank 6 06.
  • Each stopcock is switched by a control signal from a controller 50 by an electromagnetic solenoid (not shown).
  • a liquid containing cells is passed from the culture tank 17 so as to pass through the filter 62. At this time, the cells remain on the front side of the membrane filter 62.
  • the particle size that can pass through the filter should be selected from 1 dragon to several 10 times depending on the cell as appropriate.
  • Filter materials include, for example, cellulose-based materials, polycarbonate, and fluorine-based materials. Can be used.
  • the filter may adsorb and desorb depending on the state of the liquid such as nylon wool.
  • ⁇ C) Backwashing The liquid flow path is from the buffer tank 607 to the filter.
  • Electromagnetic valve 600 is closed and 603 is open.
  • the pump 604 and the pump 613 are driven by the signal from the controller 50, and the cells are sent to the culture tank 17 (for separation) or the liquid tank 605 (for recovery).
  • FIG. 6 shows a case where separation is performed using an electrophoresis apparatus.
  • the cell solution taken out of the liquid tank 301 by the pump 302 is sent to the electrophoresis tank 305 via the electromagnetic valve 303 and the three-way cock 304.
  • Cells are poured out between the electrodes 303a and 3Q6b, which are provided opposite each other in the electrophoresis tank 304.
  • a predetermined DC voltage is applied between these electrodes 303a and 303b. Electric swimming, depending on the cell type
  • the cells are separated by the principle of movement and fall into one of the separation chambers 307a to 307e. Then, by selectively opening the electromagnetic valves 308a to 308e provided in each of the separation chambers 3Q7a to 307e, desired cells can be separated and taken out. .
  • the removed cells are sent to a three-way cock 3110 by a pump 309, and the above-mentioned separated and removed cells are opened by opening a solenoid valve 311. Send to culture tube 17 in Fig. 4 (Fig. 1).
  • the pump 313 is stopped, the solenoid valve 314 is closed, and the solenoid valve 316 to the recovery tank 315 is closed.
  • the solenoid valve 311 When the cells are collected from the electrophoresis tank 300, the solenoid valve 311 is closed and the electromagnetic valve 316 is opened, so that the cells from the electrophoresis tank 300 are collected in the collection tank 310. Sent to
  • the surface of the culture tube 17 is a semi-permeable membrane that does not allow cells to pass through, but does allow the passage of culture solutions and waste products (for example, the material is a cellulosic, polyolefin, polysulfone, polybutene, or fluorine-based material). It is preferable to use a mesh.
  • the additive solution may be mixed with the culture solution after adding the substance to the mixture.
  • the additive liquid may be plural kinds.
  • Sampling Opening the electromagnetic pulp 405 at regular intervals and culturing the cell-containing solution from the culture tube 17 in the culture tank 14 1
  • Measurement preparation The measurement container 34 is transported to the microscope stage 39 by the transport path signal, the XY table signal, the light source signal, and the image processing device drive signal. Turn on light source 39a.
  • the image processing device 41 is driven to display the image information obtained by the television camera 40 on the monitor 51. Apologize.
  • (E) Measurement The image processing device 41 is driven by the image processing signal and the X-Y table light source signal, and the screen of the monitor television 51 is viewed or the processing in the controller 50 is performed to obtain, for example, the number of cells, Measure the degree of deformity, cell type, etc.
  • preprocessing ⁇ measurement is performed using a signal from controller 15Q at regular intervals.
  • the number of cells, the degree of malformation (such as the degree of immature transformation), the type of cells, etc. are measured, and these are used as parameters of the degree of cell activation. Controls administration of physiologically active substances such as
  • (A) Target The cells in culture are activated by the transport path signal, unloading mechanism signal, pre-processing manipulator cell dispensing data signal, pump signal, pre-processing manipulator signal, and pump signal. Dispense target cells (eg, K-562ce 11 line). Unload the measuring container 501 from the stock 502 and transport it to the work position. The target cells are dispensed into the container 501 by the manipulator 504, the pipette 503, and the pump 506. Dispense the staining solution into the same container 501.
  • target cells eg, K-562ce 11 line
  • the procedure described above is as follows: (1) The cells in the staining solution may be dispensed in advance. 2 Stained cells may be used from (c) below.
  • the staining substances (such as 51 C r or Eu For example) is to Maseru Captures in Tagetsu preparative intracellularly.
  • washing signal from controller one, and delivery mechanism signal, transportable sending passage signal, 'preprocessing manipulator signal, a predetermined period after the container is unloaded from the co 2 Lee Nkyube motor 507 by a pump signal, to the work position Transport.
  • the supernatant is removed by a bit 503, a manipulator 504, and a pump 506 based on the sensing data according to the pre-processing multiplexor signal and the pump signal.
  • the culture solution is dispensed into the centrifuge container 510 according to the pretreatment manipulator signal and the pump signal.
  • the measuring vessel 2 is transported from the stock to the unloading work position by the transport path signal and the unloading mechanism signal.
  • the pump 503, the pump 506 and the pretreatment manipulator 504 are driven by the pump signal and the pretreatment Mayubreak signal, and the target cell liquid is measured from the centrifuge vessel 5 10 to the measurement vessel 2 Dispense into 0
  • the cultured cell liquid is dispensed from the culture tube 17 in the culture tank 14 by the pump 508 and the capillary liquid dispensing manipulator 505 according to the pump signal.
  • the cell mixture is transferred to a centrifuge vessel 510 at step 506 and at the pretreatment MV 500, 504. Centrifuge according to the centrifuge signal and separate the cell fraction (5 to 10 minutes). Sensor 40 performs cell fractionation sensing and sends sensing signal fractionation position data.
  • the measuring container 3 is unloaded from the stock 502 by the loading / unloading mechanism signal and the transport path signal, and transported to the work position.
  • pipette 503, pump 506 and pretreatment manipulator 504 are used to separate the cell mixture supernatant (fractionation position). (Based on the data), and dispense into measuring container 3.
  • the measuring container 2 After a certain period of time by the signal from the controller, the measuring container 2 is carried out, the cell mixture is transferred to the centrifugal container, and centrifuged.
  • the measuring device signal is sent to the controller 50. If a fluorescent substance such as Eu (europium) is used for the staining solution, measure the fluorescence.
  • a fluorescent substance such as Eu (europium) is used for the staining solution, measure the fluorescence.
  • the measurement principle is that Eu is incorporated into target cells during culture.
  • the Eu is released from the target cells by the killer activity of the cells in culture.
  • the principle is the same even if 51 Cr (RI) is used instead of Eu.
  • the measurement of “ ⁇ ” is performed at regular intervals under the control of the controller 50.
  • the number of cells is measured by image processing in the culture monitor, and the cell density of the cells in culture is calculated from the amount of cell liquid measured by the controller.
  • the measured cell density of the cells in culture, less density set to con preparative opening one error (setpoint Example: 5 X 1 O e celis / ml) the case of, for example, I interleukin 2 as a physiologically active substance Add.
  • the working site is the culture unit. ,-
  • the cytotoxicity of the cells in culture can be obtained by measuring the cytotoxicity of the culture monitor.
  • cell lapel 51 Cr, Eu, CFDA (carboxy fluo recceln diacetate) and the like can be used.
  • the bioactive substance ( Example: Add Interleukin 2).
  • the site of action is the culture section.
  • the type of cells being cultured is measured by image processing using a fluorescence image on the culture monitor or by a photometer using a fluorescence photometer, and the distribution and percentage of the cells are obtained by calculation by a controller.
  • a monoclonal antibody labeled with a fluorescent substance or the like may be used as the staining substance. If the ratio of a specific cell type of the cells in culture (for example, NK cells; natural * killer cells) is less than the value (ratio) set in the controller, administer a bioactive substance.
  • the site of action is the culture section.
  • parameters of the shape for example, '(i) cell size, (ii) flatness, etc. can be used.
  • a physiologically active substance such as interleukin 2 is added.
  • the site of action is the culture section.
  • the number of cells is measured by image processing of the culture monitor, Using a troller, calculate the cell density of the cells in culture from the measured cell volume.
  • control method is as follows. (Ii) For example, if the cell density of the cells in the culture exceeds the density set in the control port, control to dilute to the initial concentration.
  • the site of action is the culture section.
  • the site of action is the culture section.
  • control of cell recovery is as follows. [1] Control by cell number or cell concentration (density)
  • the number of cells is measured by image processing in the culture monitor section, and the controller calculates the cell density of the cells in culture from the measured cell liquid volume.
  • Control This setup ⁇ as it becomes more cell density set to an error; (setting example 1 X 1 0 7 cel ls Roh ml), Control This setup roller Then, a signal is sent to the separation unit and the culture tank, and the collection work is started.
  • the site of action is the separation section and the culture section.
  • the cytotoxic activity of the cells in culture is obtained by measuring the cytotoxic activity of the culture monitor.
  • the disability activity obtained when the disability of the headquarters is set to 100% is 30%.
  • a control signal is sent to start the collection operation.
  • the action sites are the separation part and the culture part.
  • the type of cells being cultured is determined by image processing using a fluorescent image of a part of the culture monitor or by a photometric device using a fluorescent light measuring device, and the ratio and the like are calculated by a controller. Obtain the distribution
  • fluorescent substances for example, FI
  • 1 ⁇ 2 bodies may be used.
  • the working parts are the separation part and the culture part.
  • shape parameter (i) cell size, (ii) flatness, etc. can be used, for example.
  • the working site is the culture unit.
  • each control may use a combination of two or more of the above-described controls, and the present invention is not limited to the above-described controls.
  • the present invention mainly has the following effects.
  • the entire device If the entire device is installed on a clean bench or a safety cabinet, it can be operated in a sterile environment and requires no human intervention. Is also safe. Also, workers (doctors) do not have to worry about infections such as pathogenic bacteria.
  • This device can measure cell density and cell activity at appropriate times, such as at the time of setting, and can control culture conditions dynamically, so that optimal culturing can be performed and cell density or cell activity compared to conventional methods. It is also possible to supply cells stably.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Analytical Chemistry (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

明 細 窨
発明の名称
細胞増殖装置
技術分野
この発明は目的とする細胞群を分離し、 該細胞群を増殖して該細 胞の特定の機能を高めて活性化する細胞増殖装置に関する。
背景技術
体外における動物細胞の培養は、 その細胞が産生する生理活性物 質たとえばモノ ク ローノ ル抗体、 リ ンホカイ ン、 ホルモン等を得る ために用いられるだけでなく、 癌等の機構解明の研究のためや、 ま た、 DN Aのクロ一ユングや活性化,分化の研究に用いられる。 ま た、 リ ンパ球を体外でリ ンホカイ ン等とともに培養し、 増殖活性化 された細胞(lymphokine activated killer : L A K)や腫瘍組織片 と共に培養し增殖,活性化した細胞(cytotoxic T lymphocyte: C T L)を体内に戻すことによって腫瘍等を消滅せしめる治療のために 培養細胞が用いられている。 (The New England Journal Vol.313, Ko- 23, 1485〜1492頁)
上記の様に、 動物細胞の钵外培養は、 その応用範囲が広範にわたつ ている。
従来、 動物細胞の体外培養は、 例えば以下の L A Κ細胞(群)の培 養カヽある a
採取した末稍血(peripheral blood)を、 ファイコ一ル *ペータの ような薬品で比重差を用いて(密度勾配違心法)リ ンパ球分画とそれ 以外の分画とに分ける。
' . リンパ球分画近傍を、 ピペッ トにより採取し、 H A N K ' S B B ' Sのような緩衝塩溶液に再浮遊させ、 遠心分離、 分画採取、 再浮遊 を 2回操り返してリンパ球を洗浄する。 次にイ ンターロイキン 2等 のリ ンホカイ ンを含む培養液例えば R P M I - 1 6 4 0 (含血清)に 浮遊させる。
上記リンパ球を浮遊させた細胞液を、 ローラーボ トル內に封入し、 回転培養を行ったり、 培養ボ トル內で静置培養、 あるいはホロファ ィバーを用いた培養器で培養する。 必要に応じて、 培養液を新鮮なものと交換する。 また、 培養容器 は 3 7 °Cに保温し、 必要に応じて C O 2を通気して p Hを保つ。 以上の操作により、 リンパ球の数が増加するほかに形状が不定形 となり、 キラー活性を持つ細胞が出現する。
上記の活性化された細胞を治療に用いる場合、 培養容器より細胞 浮遊液を回収し、 遠心、 細胞分画を採取、 前出緩衝塩溶液に再浮遊 し、 遠心、 採取、 再浮遊を 2回繰り返して、 細胞を冼浄する。 再度 遠心後、 採取した細胞分画を生理食塩水に浮遊させる。 更に、 サン プリ ングして細胞数やそのフ ノタイブ、 及び半ラ一活性等の活性 を測定する場合が多い。
上記の様にして得られた活性化されたリ ンパ球を治療に用いる場 合は、 そのリンパ球溶液を体内に注入する。
従来、 上述のように採血から、 回収までのリ ンパ球細胞の活性化 增殖は、 人手によって行われていた。 治療の為に必要な活性化リ ン パ球の数'は、 例えば、 腫瘍細胞数に比べ多く必要で、 例えば、 直径 1 cm程度の腫瘙を消滅せ.しめようとすると、 1 0 1 1個オーダー以上 の活性化リ ンパ球が必要であると言われている。
ところが、 患者から 1度に採取できる リ ンパ球の数は、 1 0 個 オーダーであり人手による培養、 例えば、 ローラーボトルを用いた 培養では、 2倍程度の個数の、 細胞数しか得られない。
治療に十分な個数の活性化リンパ球を得ようとすると、 数ケ月に わたって何度も採血、 培養を繰り返さなければならないため、 膨大 な作業量となる。
また、 体外で培養するが、 人手による作業が多いため雑菌等の混 入の危険が多々有り、 安全なものとは言えず、 医師が上記作業を行 うことが多い。 上記の理由により、 1人の医師が扱える患者数が 1人〜数人と少なく、 多くの患者を治療することができない。
また、 人手で培養を行うので、 培養中の細胞が、 雑菌で汚染され る可能 ί生が高いとともに患者血液を扱うため研究者(医師:)自身が病 原菌等に感染する恐れもあった。 さらに患者により細胞(リ ンパ球) の培養条件が異るうえ、 研究者(医師)による作業のパラツキが.あり , 毎回培養細胞の特性が異り、 安定して、 細胞を取得することができ なか た 0
上記作業量の膨大なこと及び危険なこと、 安定して細胞を取得で きないことは、 研究に用いる場合にも同様で研究の進展をはばんで いる。. また、 人手^よる增殖は、 適時に増殖状態や活性化状態を測 定することはできなかった。 従って最適な培養条件を見つけること ができず、 その結果活性の高い細胞を簡単に得ることができなかつ た。 .
この発明は上述の種々の問題点を解決するためになされたもので、 雑菌の混入がなく、 細胞増殖を自動的に行える細胞増殖装置を提供 することを目的とする。
発明の開示
この発明の細胞増殖装置は、 細胞を分離する分離部と、 細胞を培 養する培養槽を有する.培養部と、 前記分離部と培養部との間で細胞 を輸送する輸送手段と前記分離部、 培養部、 輸送手段の勤作を制御 するコ ン ト ローラ一とで構成され、 入力した細胞群の内必要な細胞 群を分離部で分離し、 培養部で培養し、 コン トローラーで培養条件 の変更及び細胞を回収すべき時点の判断を行いさらにコン トローラ 一よりの信号をもとに、 培養部で、 生理活性物質等の投与制御など を行い、 コ ン ト ローラーよりの信号をもとに、 分離部で細胞の回収 操作を行う。
分離部が、 液を遠心可能な遠心装置と、 液の吸引、 吐出可能なピ ぺッティ ング装置と、 ピぺッティ ング装置を操作するマユビュ レー タと、 遠心後の各分画の位置をセン シングするセンサーを具備し、 各分画位置のセンシング結果をもとにピぺッティ ング動作を制御す るものでもよい。
分離部の遠心操作が、 連続遠心分離であるものでもよい。
細胞の分離に密度勾配遠心法を用いるものでもよい。
分離部が、 細胞を分離する膜と、 前記膜を保持する治具及び液路 より構成され、 フィル ト レーショ ンにより細胞を分離するものでも よい。
前記膜灰び膜を保持する治具及び液路が逆 ¾可能な構成であるも のでもよい。 分離部が、 細胞の帯電量の差を利用して、 細胞の分離をするもの でもよい。
分離部が、 液に加電圧する電極を具備する槽と、 液路より構成さ れるものでもよい。
培養部が、 培養液を培養槽に注入、 培養槽より排出可能な構成で あるものでもよい。
培養槽が、 培養部より脱着司能な構造であり、 輸送手段は培養部 と、 分離部の間で前記培養槽を移動するものでもよい。
. 分離部、 培養部、 輸送手段.の各操作が、 無菌的に行えるものでも よい。
さらにこの発明の細胞增殖装置は、 細胞を分離する分離部と、 細 胞を培養する培養槽を有する培養部と、 前記分離部と培養部との.間 で細胞を輸送する輸送手段と、 培養部内にある細胞の特性を測定す る細胞モニター部と、 前記細胞モニター部で得られた細胞特性を演 算し、 培養槽の培養条件を制御するとともに、 前記分離部、 培養部、 輸送手段の動作を制御するコン トローラーとで構成され、 入力した 細胞群の內必要な細胞群を分離部で分離し、 培養部で培養し、 培養 モユタ一部で、 細胞の培養状態をモ ターし、 コ ン トローラーで細 胞培養状態のモニタ一結果をもとに培養条件の変更及び細胞を回収 すべき時点の判断を行いさらにコントローラーよりの信号をもとに、 培養部で、 生理活性物質等の投与制御を行い、 コント口—ラーより の信号をもとに、 分離部で細胞の回収操作を行う。 ノ
さらに分離部に密度勾配遠心法を用いることができる。 さらに分 離部に膜による分離法を用いることができる。 さらに分離部に電気 泳動法を用いることもできる。 さらに培養部に連続培養方法を用い ることができる。 さらに培養モユタ一部に培養細胞のァクティ ビティ ーをモユタ一する艇胞障害活性測定を用いることができる。 さらに 培養モニター部に培養細胞のァクティ ビティー(幼若化)のモニター あるいは特定の亜群の細胞を区別する画像処理を用いることができ る o
培養槽中の細胞液をサンプリ ングする手段をさらに有するもので もよい。 培養モニター部が、 細胞の染色手段または細胞のラベル手段を有 するものでもよい。
培養モニター部が、 細胞の特性を測定する測定手段を有するもの でもよい。
測定手段が、 顕微鏡を介して得られた細胞像を画像処理するもの でもよい。
測定手段が、 測光装置を有するものでもよい。
測定手段が、 ラジォアイソ トープの量を測定するものでもよい。 細胞の特性の測定結果を用いて、 生理活性物質の投与量の制御を . 行うことにより、 培養条件を制御するものでもよい。
細胞の特性の測定結果を用いて、 培養液の交換の制御を行うこと により、 培養条件を制御するものでもよい。
細胞の特性の測定結果を用いて、 細胞の回収時期を制御するもの でもよい。
測定する細胞の特性が、 細胞数または細胞濃度(密度)であっても よい。 測定する細胞の特性が、 細胞障害活性であってもよい。
測定する細胞の特性が、 細胞の.種類またはフュノタイプであつて もよい。
測定する細胞の特性が、 細胞の形状または細胞の大きさまたは細. 胞の異形度であつでもよい。
液の p Hまたは温度または湿度または C O 2濃度の少なく とも iつ を測定して、 この測定値をフィ一ドバック制御するものでもよい。 図面の簡単な説明
第 i図はこの発明の培養.装置の一実施例の概略を示す斜視図、 第
2図はこの発明の培養装置を示すブロック図、 第 3図 aないし第 3 : 図 eは遠心部の動作の要部を示す図、 第 4図は分離部の他の実施例 を示す斜視図、 第 5·図と第 6図は分離部の他の実施例を示す斜視図、. 第 7図は培養部の他の実施例を示す図、 第 8図はモユタ一部の他の 実施例を示す図、 第 9図は動作の要部を示すフローチヤ一トである。 実施例
第 1図と第 2図に示すように、 この発明の装置は培養部 1 0と、 分離部 2 0と、 モニター部 3 0と、 各部を制御するたとえばマイク 口コンピュータにてなる制御部あるいはコ ン トローラ一部 5 0とを 備えている。 培養部 1 0において所定の培養液を斩有している培養 液槽 1 1から.導管 1 1 aでとり出された培養液は、 混合器 1 l bで、 添加液槽 1 2からとり出された添加液と混合され、 ポンプ 1 3によ り培養槽 1 4に送られる。 不要な液はポンプ 1 5により廃液槽 1 6 に排出される。
分離部 2 0には種々の培養溶液を入れた複数の容器 2 1を有し、 各容器 2 1は遠心.装置 2 2に装着されている。 ピぺッ ト 2 4はマ二 ビュレータ 2 3に装着され、 ビぺッ ト 2 4を上下に移動することに より、 該ピぺッ ト 2 4を容器 2 1から抜き出し、 あるいは掙入して、 所望の培養溶液をポンプ 2 9によりとり出して、 培養槽 1 4内の培 養管 1 7に送り込むようになつている。
遠心装置 2 2の 1つの回転アーム 2 2 aに吊りかけら,れた容器(2 1 Xで示す)の内容を監視するために、 モニター用のテレビカメ ラ 又は、 ポジショ ンセンシティブダイオー ド(P S D ) 2 5が設けられ ており、 該テレビカメ ラ又は、 P S D 2 5から得られる呋像信号は コン ト口一ラー 5 0のモ ターテレビ 5 1に接続され、 容器 2 1 X の內容もこのモュターテレビ 5 1で見ることができるようになって いる。
モニター節 3 0において、 ポンプ 3 1によって、 培養管 1 7でつ く られた細胞を含む培養液をとり出して、 該培養液をマニビュレー 夕 3 2によって、 X— Y方向に可動な X— Yテーブル 3 3上に載置 されている聍留器 3 4に所定量ずつ移送する。
貯留器 3 4は X— Yテーブル 3 3によって、 図上右方 に送られ、 ストック 3 5に順次貯えられ、 あるいは、 取り出される。
この X— Yテーブル 3 3の移送铎路上には染色弦注入用のマユビュ レー夕 3 6が設けられ、 のマ-ビュレータ 3 6によって、 上記の ように狞留器 3 4に入れられた培養液に染色液をポンプ 3 7を用い て注入できるようになっている。
顕微鏡 3 8が上記 X— Yテーブル 3 3移送用の搬送路 3 3 aから Y方向にずれた位置に設けられており、 聍留器 3 4を顦微鏡用テ一 ブル 3 9に送ることによって該容器 3 4内の培養液を拡大して、 見 ることができるようにしている。 顕微鏡 3 8で拡大された像はテレ ビカメ ラ 4 0によって撮像されその画像信号は画像処理装置 4 1に 送られ、 画像処理装置 4 1 で得られた信号はコン トローラー 5 0の モュ夕一テレビ 5 1により映出される。
第 1図に示すように、 分離部 2 0として遠心装置 2 2を用いた場 合の培養溶液の分離動作を以下に述べる。
[遠心動作] '
複数容器 2 1 にそれぞれ分離しょうとする培養液を貯入してから、 遠心装置 2 2をコ ン ト ローラ— 5 0からの指令により駆動して、 ァ ーム 2 2 aを回転して容器 2 1を回転遠心力によって水平にする(第 3図 a〉、 これによつて細胞を分画する。 そして、 必要細胞の分画位 置をセンシングする。 テレビカ メ ラ又は、 ポジショ ンセンシテ ィブ ダイォード(P S D ) 2 5から各分画の輝度差もしくは、 吸光度差又 は反射光量差を利用してセンス信号と分画位置とを取得する。 (第 3図 b)。 コ ン ト ローラー 5 0 はセンス位置情報をもとにマニ ビユ レ ータ 2 3を駆動し、 必要細胞分画位置にビぺッ ト 2 4の先端をもつ ていく。 そして細胞をポンプ 2 9により吸引する。 次に別の遠心管 位置にビぺツ ト 2 4の先端を持っていく。 ポンプにより吐出する。
さらに、 平衡塩溶液槽より液を吸引する。
次に B遠心管に平衡塩溶液を吐出して、 攪拌し、 遠心し、 細胞分 画 β置を前述のセンシングの場合と同様にしてセンスする。
さらに上澄液を吸引 ·廃棄する。 培養液を、 培養液槽より吸引し Β遠心管に吐出する。 さらに攪拌し、 ピぺツ ト遠心管底位置へ移動 させ含細胞培養液吸引する。 (第 3図 e, d, e参照)
[回収動作]
電磁パルプ 2 6を開とし、 ピぺッ ト 2 4へ培養槽 1 7より細胞液 を送液する。
以下遠心 ·分画プロセス、 铣浄プロセスは上述の分離プロセスと 同様である。
次に分離部として、 第 4図に示す連铳遠心装置を用いた場合を説 明する。 (ィ)遠心準備 :ポンプ 2 0 6を介して液槽 2 0 0よりファイコ ール · ぺーク等の密度勾配遠心用物質をロー夕
2 0 1内チ ンバー 2 0 2に注入する。 液槽 2
0 3又は、 培養管 1 7より含細胞溶液をチ ン バー 2 0 2内に注入する
(口)遠 心 :連続遠心ロータ 2 0 1を駆動する
(ハ)センス開始:センサ 2 0 4により必要細胞群のセンシングを
開始する
(二)送 液 :ポンプ 2 0 8によ りチュ ンバー 2 0 2内より分 画液を送り出す <
(ホ)分 画 :不要な分画は、 バルブ 2 0 7を切り換えて、 廃 液槽 2 0 5へ送り、 一方必要な分画はポンプ 2
0 8を介して次の工程へ送液する
次に分離部 2 0として、 第 5図に示した膜分離装置を用いた場合 について説明する
(ィ)液流路設定:コン トローラー 5 0よ りの信号にて、 分離操作 — IS—
の場合は、 液槽 6 0 5→ろ過槽 6 0 1→廃液槽 6 0 S (電磁バルブ 6 0 0開、 S 0 3閉)、 回収 操作の場合は、 培養槽 1 4→ろ過槽 6 0 1→廃 液槽 6 0 6となるよう三方活栓 6 0 8、 6 0 9、 6 1 0を設定する。 各三方活栓は図示しない電 磁ソレノィ ドにより コン トローラー 5 0よりの 制御信号で切り換えられる。
(口)フィ.ルト レ:コン トローラー 5 0よりの信号によりポンプ 6 ーショ ン 2 S及びポンプ 6-0 4を駆動し、 液槽 6 0 5又
は培養槽 1 7よりフィルター 6 0 2を通過する よう細胞を含む液を流す。 このとき細胞は膜状 のフィルター 6 0 2の前段側に残る。
フィルターの通過できる粒子径は、 細胞によつ て 1龍〜数 1 0難のものを適時選定する。
フィルターの材質は、 例えばセルロース系の材 料や ボリカーボネー ト、 フッソ系のものが使 用できる。
フ ィル夕一は、 ナイ ロ ンウールのような液の状 態により吸着、 脱着するものであってもよい。 〈ハ)逆 洗 :液の流路がバッファー液槽 6 0 7→フ ィ ルター
6 0 2→電磁バルブ 6 0 3となるようコ ン ト口 ーラ一 5 0よりの信号で切り換える。 電磁バル ブ 6 0 0は閉、 6 0 3は開とする。 コ ン ト ロー ラー 5 0よりの信号でポンプ 6 0 4及びポンプ 6 1 3を駆動し、 細胞を培養槽 1 7 (分離の場合) 又は、 液槽 6 0 5 (回収の場合)に送る。
第 6図は電気泳動装置を用いて分離を行なう場合を示す。
液槽 3 0 1からポンプ 3 0 2でとり出された細胞溶液は電磁バル ブ 3 0 3、 三方活栓 3 0 4を介して、 電気泳動槽 3 0 5へ送られる。 電気泳動槽 3 0 5内に対立して設けられた電極 3 0 6 aと 3 Q 6 bと の間に細胞が注出される。 これらの電極 3 0 6 aと 3 0 6 bとの間に は所定の直流電圧が印加されている。 細胞の種類に応じて、 電気泳 動の原理により細胞は分離され分離室 3 0 7 a〜3 0 7 eのどれかに 落ちる。 そして、 分離室 3 Q 7 a〜3 0 7 eのそれぞれに設けられた 電磁バルブ 3 0 8 a〜3 0 8 eを択一的に開く ことによって、 所望の 細胞を分離して取り出すことができる。
とり出された細胞はポンプ 3 0 9により三方活栓 3 1 0へ送られ 電磁バルブ 3 1 1を開く ことによって、 上記の分離されとり出した 細胞を三方活拴 3 1 2を介して培養槽 1 4内の培養管 1 7 (第1図) へ送る。
なお、 分離中は、 ポンプ 3 1 3を停止、 電磁バルブ 3 1 4を閉、 回収槽 3 1 5への電磁バルブ 3 1 6を閉としておく。
細胞を電気泳動槽 3 0 5から回収するときは、 電磁バルブ 3 1 1 を閉、 電磁バルブ 3 1 6を開とすることにより、 電気泳勣槽 3 0 5 からの細胞は回収槽 3 1 5へ送られる。
次に培養部 1 0の動作を第 7図を参照して説明する。
(ィ)細胞入庫 :ポンプ 2 9 (第 1図)を駆動して、 電磁パルプ 4
0 1を開いて分離部 2 0より、 培養する細胞を 培養槽 1 4内の培養管 1 7に入庫する。
(口)培養開始 :ポンプ 1 3を駆動して培養液を培養槽 1 4に連 続的に注入する。 不要になった培養液はポンプ 1 5を駆動して廃液槽 1 6に捨てる。
培養槽 1 7→ポンプ 1 5—三方活栓 4 0 3—三 方活栓 4 0 4—ポンプ 1 3 ~ 培養槽 1 4の順序 で培養液を培養槽に注入後一定期間は、 同一液 を順回してもよい。
培養管 1 7の表面は、 細胞は通過させないが、 培養液、 老廃物は通過させる半透膜 (材質は例 えばセルロース系やポリオレフ イ ン、 ポ リ スル ホ ン、 ポュビュル、 フ ッ ソ系が使用できる) 又 は、 メ ッ シュを用いることが好ま しい。
(ハ)生理活性 :細胞活性データにより添加液を混合割合いを変 物質添加 えて培養液に混合してもよい。 この場合添加液 は、 複数種であってもよい。 (二)サ ンプリ ン:一定期間ごとに電磁パルプ 4 0 5を開いて培養 グ 槽 1 4內の培養管 1 7より培養中の含細胞液を
モニターのためサンプルする。
(ホ)回 収 : ffl胞活性データにより(例えば細胞濃度)、 培養
- 槽 1 4中の含細胞液を分離部 2 0に送液する。 次に培養モニター部 3 0の動作を第 1図をもとに説明する。 (ィ〉サンブリ ン:搬送路信号 X— Yテーブル信号により搬送路 3 グ準備 3 a及び X— Yテーブル 3 3を駆動しス ト ック位
置に持っていく。
固定チヤック信号により固定チヤツクにて、 測 定容器をス ト ツク 3 5より取り出し固定する。 搬送路信号 X— Yテープル信号により測定容器
3 4を分注位置へ移動する。
(口)サンプリ ン:分注用マニピュレータ信号、 ポンプ信号により グ分注 ポンプ 3 1を駆動し、 培養槽 1 4内の培養管 i
7より含細胞液送液をピぺ ' 7 トマニピュレータ 3 2により、 所定位置にある測定容器 3 4に分 注する。
(ハ〉染 色 :ポンプ 3 7及び染色用マユピュレー夕 3 6にて サンプル溶液上澄を除去する。 (固定液の分注, 吸引除去が入ってもよい)ポンプ 3.7及び染色用 マニピュレータ 3 6にて染色液を測定容器に分 注する。
ポンプ 3 7及び染色用マニピュ レータ 3 6にて 染色液を吸引除去する。
ポンプ 3 7及び染色用マニピュ レー夕 3 6にて 洗浄液を分注し及び吸引除去する。
(二)測定準備 :搬送路信号、 X— Yテーブル信号、 光源信号、 画像処理装置駆動信号により測定容器 3 4を、 顕微鏡ステージ 3 9に搬送する。 光源 3 9 aを点 灯する。 画像処理装置 4 1を駆動してテレビ力 メ ラ 4 0で得られた画像情報をモニター 5 1で 観謝する。
(ホ)測 定 :画像処理信号、 X— Yテーブル光源信号により 画像処理装置 4 1を駆動して、 モニターテレビ 5 1の画面を見るかコントローラー 5 0内での 処理により、 例えば、 細胞数,異形度合,細胞種 類等を測定する。
なお、 サンブル 前処理→測定は、 一定期間ごとにコン ト ローラ 一 5 Qよりの信号で行う。
さらに、 画像処理により、 例えば、 細胞数、 異形度合(幼若化度 合等)、 細胞種類等を測定し、 これらを細胞活性化度合のパラメ一 タとして、 イ ンターロイキン 2等のリ ンホヵイ ンなどの生理活性物 質を投与制御.する。
培養モ二ター部 3 0の他の例を第 8図を参照して説明する。
(ィ)ターゲ ト:搬送路信号、 搬出機構信号、 前処理マニピユレ 細胞分注 ータ信号、 ポンプ信号、 前処理マニピュレータ 信号、 ポンプ信号により培養中の細胞が活性を 示すターゲッ トとなる細胞(例えば K— 562ce 11 line等)を分注する。 測定容器 50 1をス トツ ク 502より搬出し、 ワーク位置に搬送する。 マニピュ レータ 504、 ピペッ ト 503及びポ ンプ 506によりターゲッ ト細胞を容器 50 1 に分注する。 同容器 50 1に染色液を分注する。
C02ィ ン牛ュベータ 507に容器を搬入する。 以上は、 ①あらかじめ染色液中の細胞を分注し てもよい。 ②染色ずみの細胞を以下の(ハ)より 用いてもよい。 本作業の目的は、 染色物質(例え ば51 Crや Euなど)をターゲツ ト細胞内に取り込 ませることである。
(π)洗 浄 :コン トローラ一よりの信号、 搬出機構信号、 搬 送路信号、 '前処理マニピュ レータ信号、 ポンプ 信号により一定期間後容器を c o 2イ ンキュベー タ 507より搬出し、 ワーク位置に搬送する。 前処理用のマニピュ レータ 5 0 4、 ピペッ ト 5 0 3およびポンプ 5 Q 6にて容器內夕ーゲツ ト 細胞液を遠心容器 5 1 0に分注する。 遠心装置 信号により遠心し、 細胞分画を集めるために遠 心器 5 1 1を作動し、 一定時間(5分〜 1 0分) 後停止する。 センサ 4 0にて細胞分画センシン グを行なう。 センサ信号を分画位置データとす る。
前処理マ-ピユ レ一タ信号、 ポンプ信号により センシングデータを基に上澄液をビぺッ ト 5 0 3、 マニピュ レータ 5 0 4、 ポンプ 5 0 6にて 除去する。
前処理マニピュ レータ信号、 ポンプ信号により 培養液を遠心容器 5 1 0に分注する。
前処理マニピュ レータ信号、 ポンプ信号により、 ビぺッ ト 5 0 3を遠心容器内に挿入し、 ポンプ 5 0 6を吸引 ·吐出することにより液を攪拌す る。
(ハ)培養細胞 : (遠心容器より測定容器 2にターゲッ ト細胞液を 分注 ' 移しかえ同容器 2内に、 培養檜より培養中の細 胞をサンプルし注入する)。
搬送路信号、 搬出機構信号により測定容器 2を ス ト ッ クより搬出ワーク位置に搬送する。
ポンプ信号、 前処理用マユビュ レーク信号によ り ピペッ ト 5 0 3、 ポンプ 5 0 6及び前処理用 マニピュ レータ 5 0 4を駆動してターゲッ ト細 胞液を遠心容器 5 1 0 より測定容器 2に分注す 0
ポンプ信号により ポンプ 5 0 8及び細嗨液分注 用マニ ピュ レータ 5 0 5にて、 培養槽 1 4内の 培養管 1 7よりの培養細胞液を分注する。
搬送路信号、 搬入出機構信号により搬送路 5 1 2を用いて
C 0 2イ ンキュベータ 5 0 7内に格納する。
(ュ)測定前処理:搬入出機構信号、 搬送路信号により搬送路 5 1 2
及び搬入出機構を用いて、 C 0 2イ ンキュベータ 5 0 7より測定容器 2を搬出し、 ワーク位置に搬 - . 送する。 ポンプ信号、 マ-ピユレ一夕信号、 ボン
プ 5 0 6及び前処理マ-ビユ レ一夕 5 0 3、 5 0 4にて細胞混合液を遠心容器 5 1 0に移しかえる。 遠心装置信号により遠心し、 細胞分画(5〜 1 0 分)分離する。 センサ 4 0にて細胞分画センシン グをしてセンシング信号分画位置データを送る。
搬入出機構信号、 搬送路信号によりス ト ッ ク 5 0 2より測定容器 3を搬出、 ワーク位置に搬送する。 ポンプ信号、 前処理マニピュ レータ信号により ピ ペッ ト 5 0 3、 ポンプ 5 0 6及び前処理用マユピュ レータ 5 0 4を用い細胞混合液上澄を(分画位置 データを基に)分取し、 測定容器 3に分注する。
上記の動作によって、 コ ン ト ローラーよ りの信 号により一定期間後、 測定容器 2を搬出し、 細胞 混合液を遠心容器に移しかえ遠心する。
(ホ)測 定 :搬送路信号により測定容器 3を、 測定器 509へ 搬送して測定する。
測定器信号はコン トローラー 50へ送られる。 染色液に E u (ユーロ ピウム)等の蛍光物質を用い た場合は、 蛍光測定す.る。
51Cr等のようなラジオァイソ 卜ープを用いた場 合は、 R I測定器を用いる。
なお、 測定原理は培養中に Euがターゲッ 卜細胞に取り込まれる。 培養中の細胞のキラー活性によりこの Euがターゲッ ト細胞外に放 なお、 Euのかわりに51 Cr(R I )を用いても原理は同じである。 培養中の細胞がキラー活性を持っているかどうかのデータを集め る。 このデータをもとに、 イ ンターロイキン 2等のリ ンホカイ ンな ' どの生理活性物質の投与制御を行う。
また" ^連の測定は、 コン トローラー 50の制御により一定斯間ご とに行われる。
上記において培養の制御を要約すれば以下の通りである。
U]生理活性物質の投与の制御
①細胞数また'は細胞濃度(密度)による制御
培養モニター部の画像処理により細胞数を測定し、 コン トローラーにて測定した細胞液量より培養中の細胞の細胞 密度を演算する。
例えば、 培養中の細胞の測定した細胞密度が、 コン ト口 一ラーに設定した密度以下(設定値例: 5 X 1 Oecelis/ml) の場合は、 生理活性物質として例えばィ ンターロイキン 2 を加える。
作業部位は培養部である。 、-
②細胞障害活性による制御 培養モニター部の細胞障害活性測定により培養中の細胞 の細胞障害活性度く cytotoxicity)を得る。
細胞のラ ,ペルには、 51C r, E uや C F D A (carboxy fluo recceln Diacetate)などが使用可能である。
培養中の細胞の細胞障害活性度がコントローラーに設定 した密度以下(例えば、 ターゲッ ト細胞全部を障害する時 を 100%として、 得られた障害活性が 20%以下)のとき、 生 理活性物質(例: ィ ンターロイキン 2)を加える。
作用部位は培養部である。
③細胞の種類による制御
培養モニター部の蛍光像を使用した画像処理または 蛍光測光装置を使用した測光装置により培養中の細胞の種 類を測定し、 コン トローラーの演算により、 その分布や割 合等を得る。
このときの染色物質としては、 蛍光物質等でラベルした モノ クロ一/ル抗体を用いてもよい。 培養中の細胞の特定の細胞種の割合(例えば N K細胞;ナ チュラル *キラー細胞)が、 コ ン ト ローラーに設定した値(割 合)以下の場合は、 生理活性物質の投与を行う。
作用部位は培養部である。
④細胞の形状による制御
培養モニター部の画像処理により、 染色もしくは無染色 の細胞の形状パラメータを測定する。
形状のパラメ一夕としては、'(i)細胞の大きさ、 (i i〉扁 平度、 等を例えば用いることができる。
培養中の細胞の形状パラメータの分布あるいは平均値が コントローラーに設定された値より小さい場合に例えばィ ンターロイキン 2のような生理活性物質の添加を行う。 作用部位は培養部である。
[2]培養液交換の制御
①細胞数または、 細胞濃度(密度)による制御
培養モニター部の画像処理により細胞数を測定し、 コ ン トローラーにて、 測定した細胞液量より培養中の細胞の細 胞密度を演算する。
制御方法として、 (i〉例えば培養中の細胞の細胞密度が、 コ ン ト ローラーに設定された密度を越えた場合に、 一定期 間ごと例えば毎日、 培養液の交換を行うようにコ ン ト ロー ルする。 (i i)例えば培養.中の細胞の細胞密度が、 コ ン ト 口 一ラーに設定された密度を越えた場合に、 初期濃度まで希 釈するようコ ン ト ロールする。
作用部位は培養部である。
② p Hによる制御
培養モユタ一部の測光装匱にて、 細胞を培養している溶 液の pHを測定する。
測定した液の PH値が、 コ ン ト ローラーに設定された値 より酸性側にかたよった時点で、 培養液を交換する。
作用部位は培養部である。
細胞回収の制御を S約すれば以下の通りである。 [1]細胞数または細胞濃度(密度)による制御
培養モニター部の画像処理により、 細胞数を測定し、 コ ン トローラーにて、 測定した細胞液量より培養中の細胞の 細胞密度を演算する。
例えば培養中の細胞の測定結果の細胞密度が、 コ ン ト π 一ラーに設定した細胞密度以上になった時点(設定値例; 1 X 1 0 7cel lsノ ml)で、 コ ン ト ローラーより、 分離部及び培 養鄧に信号が送られ、 回収作業を開始する。
作用部位は分離部および培養部である。
[2]細胞障害活性による制御
培養モニター部の細胞障害活性測定により培養中の細胞 の細胞障害活性度(cytotoxi c i ty)を得る。
細胞のラペルには5 1 C r, E uの他、 C F D A等が使用可 能である。
培養中の細胞の細胞障害活性度が、 コ ン ト ローラーに設 定した値以上になった時点で、 (例えば、 タニゲッ ド細胞 令部を障害する時を 100%として得られた障害活性が、 30
%以上になった時点)コン トローラーより分離部及び培養
に制御信号が送られ、 回収作業を開始する。
作用部位は分離部及び培養部である。
| :! |細胞の種類による制御
培璲モユタ一部の蛍光像を使用した画像処理または、 蛍 光'则光装置を使用した測光装置により培養中の細胞の種類 を则定し、 コ ン ト ロ ーラーの演算によりその割合等の分布 を得る。
このときの染色物質としては、 蛍光物質等(例えば F I
T Cや P, E · , R I T C等) でラベルしたモノ ク ローノノレ .
½体を用いてもよい。
培蓰中の細胞の特定の細胞種の割合 (例えば N K細胞) が、 コン トローラーに設定した値(割合)以上になった時点
で、 コン トローラーより分離部及び培養部に信号が送られ、 、 |π|収作業を開始する。 作業部位は分離部及び培養部である。
[4]細胞の形状による制御
培養モニター部の画像処理により染色もしくは、 無染色 の細胞の形状パラメータを測定する。
形状のパラメータとしては、 (i)細胞の大きさ、 (i i〉扁 平度、 等を例えば用いることができる。
培養中の細胞の形状パラメータの分布あるいは平均値が コン 卜ローラーに設定された値より大きくなった時点で、 コン トローラーより分離部及び培養部に制御信号が送られ、 回収作業を開始する。
作業部位は培養部である。
- 各制御は、 上記した 2つ以上の制御を組み合わせて使用してもよ いし、 またこの発明は上記した制御に限定されるものではない。
この発明は主として以下のような効果を有する。
( 1 ) 細胞の増殖、 または活性化は、 各機構における条件を設定し て装置の操作を開始させるだけで、 特別の技術を有しなく とも容易 に行うことができ、 労働力、 特に医師の労働^;を大幅に減少させる ことができ、 治療に用いる場合には、 1人の医師が多くの患者を治 療可能になる。
( 2 ) 装置全体をク リーンベンチや安全キャ ビネッ 卜内に設置すれ ば無菌環境下で操作を行うことができ、 人手を介さずにすむので、 雑菌混入の可能性は低く、 治療に用いる場合にも安全である。 又、 作業者(医師)にとつても病原菌等の感染の心配がない。
( 3 ) 従来の人が手で行う細胞増殖方法では、 細胞密度や細胞の持 つ活性をほとんど調べていないため、 增殖あるいは活性化に最適な 条件が得られていなかった。 本装置は設定時など適時に細胞密度及び細胞活性を測定、 培養条 件をダイナミ ックにコ ン ト ロールできるため、 最適な培養を行うこ とが可能で従来法に比べ細胞密度あるいは細胞活性を上げることも 可能であり.、 安定して細胞を供給することができる。
( 4 ) 患者による細胞特性のパラツキを含み、 多くの種類の細胞を 培養する場合でも、 培養方法をとり達える危険性がなく、 安全に同 時に培養を行うことができる

Claims

請 求 の 範 囲
( 1 )細胞を分離する分離部と、 細胞を培養する培養槽を有する培 養部と、 前記離部と前記培養部との間で細胞を輸送する細胞の輸送 手 ¾と、 前記分離部、 前記培養部、 前記輸送手段の動作を制御する コン トローラーとを備えたことを特徵とする細胞増殖装置。
( 2 )分離部が、 液を遠心.可能な遠心装置と、 液の吸引、 吐出可能 な.ビベッ テ ィ ング装置と、 ビぺツティ ング装置を操作するマニ ビュ レータと、 遠心後の各分画の位置をセンシングするセンサーを具備 し、 各分画位置のセンシング結果をもとにビぺッティ ング動作を制 御する請求の範囲第 1項記載の細胞増殖装置。
( 3 )分離部の遠心操作が、 連続遠心分離である請求の範囲第 1項 記載の細胞増殖装置。
( 4〉細胞の分離に密度勾配遠心法を用いる請求の範囲第 2項、 第 3項記載の細胞増殖装置。
( 5 )分離部が、 細胞を分離する膜と、 前記膜を保持する治具及び 波路より構成され、 フィ ル ト レーシ ョ ンにより細胞を分離する請求 の範囲第 1項記載の細胞増殖装置。
(6〉前記膜及び膜を保持する治具及び液路が逆洗可能な構成であ る請求の範囲第 5項記載の細胞増殖装置。
(7 )分離部が、 細胞の帯電量の差を利用して、 細胞の分離をする 請求の範囲第 1項記載の細胞増殖装置。
( 8 )分離部が液に加電圧する電極を具備する槽と、 液路より構成 される請求の範囲第 7項記載の細胞增殖装置。
( S )培養部が、 培養液を培養槽に注入、 培養櫂より排出可能な構 - 成である請求の範囲第 1項記載の細胞增殖装置。
(10)培養槽が、 培養部より脱着可能な構造であり、 輸送手段は培 養部と、 分離部の間で前記培養槽を移動する請求の範囲第 1項記載 の細胞増殖装置。
(ιϋ分離部、 培養部、 鶉送手段の各操作が、 無菌的に行える請求 の範囲第 1項記載の細胞增殖装置。
(12)細胞を分離する分離部と、 細胞を培養する培養槽を有する培 養部と、 前記分離部と、 前記培養部を連絡して細胞を輸送する輸送 手段と、 培養部內にある細胞の特性を測定する培養モニター部と、 前記培養モニター部で得られた細胞特性を演算し、 培養槽の培養条 件を制御するとともに、 前記分離部、 前記輸送手段、 前記培養モニ 夕一部の動作を制御するコン トローラーとを備えたことを特徴とす る細胞増殖装置。
(13)培養槽中の細胞液をサンプリ ングする手段をさらに有する請 求の範囲第 12項記載の細胞増殖装置。
4)培養モニター部が、 細胞の染色手段または細胞のラベル手段 を有する請求の範囲第 12項記載の細胞増殖装置。 .
ひ5)培養モニター部が、 細胞の特性を測定する測定手段を有する 請求の範囲第 12項記載の細胞増殖装置。
; (16)測定手段が、 顕微鏡を介して得られた細胞像を画像処理する 請求の範囲第 15項記戴の細胞増殖装置。
(17)測定手段が、 測光装置を有する請求の範囲第 15項記載の細胞
(18)測定手段が、 ラ ジオァイ ソ トープの量を測定する請求の範囲 第 15項記載の細胞増殖装置。
(19〉細胞の特性の測定結果を用いて、 生理活性物質の投与量の制 御を行うことにより、 培養条件を制御する請求の範囲第 12項記載の 細胞増殖装置。
(2( 細胞の特性の測定結果を用いて、 培養液の交換の制御を行う ことにより、 培養条件を制御する請求の範囲第 12項記載の細胞増殖
(21)細胞の特性の測定結果を用いて、 細胞の回収時期を制御する 請求の範囲第 12項記載の細胞増殖装置。
(22)測定する細胞の特性が、 細胞数または細胞濃度(密度)である 請求の範囲第 21項記載の細胞増殖装置。
(23)測定する細胞の特性が、 細胞障害活性である請求の範囲第 21 項記載の細胞增殖装置。
(24)測定する細胞の特性が、 細胞の種類またはフユノタイプであ 、-る請求の範囲第 21項記載の細胞増殖装置。
(25)測定する細胞の特性が、 細胞の形状または細胞の大きさまた は細胞の異形度である請求の範囲第 21項記載の細胞増殖装置。
(26)液の pHまたは温度または湿度または C 0 2濃度の少なく とも 1つを測定して、 この測定値をフィ一ドバック制御する請求の範囲 第 Π項記載の細胞増殖装置。
PCT/JP1988/001002 1987-10-01 1988-09-30 Cell propagation apparatus WO1989002913A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE3889104T DE3889104T2 (de) 1987-10-01 1988-09-30 Zellenzuchtvorrichtung.
EP88908388A EP0336974B1 (en) 1987-10-01 1988-09-30 Cell propagation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP24873087A JPH0191771A (ja) 1987-10-01 1987-10-01 細胞増殖装置
JP62/248730 1987-10-01

Publications (1)

Publication Number Publication Date
WO1989002913A1 true WO1989002913A1 (en) 1989-04-06

Family

ID=17182497

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1988/001002 WO1989002913A1 (en) 1987-10-01 1988-09-30 Cell propagation apparatus

Country Status (4)

Country Link
EP (1) EP0336974B1 (ja)
JP (1) JPH0191771A (ja)
DE (1) DE3889104T2 (ja)
WO (1) WO1989002913A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5162204A (en) * 1988-05-06 1992-11-10 Hitachi, Ltd. Apparatus and method of culturing and diagnosis of animal cells using image processing
DE4208805C2 (de) * 1991-05-02 1995-07-06 Will W Prof Dr Minuth Vorrichtung zur Behandlung, insbesondere zur Kultivierung von Biomaterial mit wenigstens einem Behandlungsmedium
AU1059997A (en) * 1995-11-08 1997-05-29 Trustees Of Boston University Cellular physiology workstations for automated data acquisition and perfusion control
US6762036B2 (en) 1995-11-08 2004-07-13 Trustees Of Boston University Cellular physiology workstations for automated data acquisition and perfusion control
US7407781B2 (en) 2002-05-08 2008-08-05 Wyeth Oocyte recording chamber
EP1598415A1 (en) * 2004-05-20 2005-11-23 The Automation Partnership (Cambridge) Limited Smart cell culture
FR2917826B1 (fr) * 2007-06-19 2010-03-19 Commissariat Energie Atomique Systeme et methode d'extraction en continu d'une phase liquide de microechantillons, et installation automatisee pour les prelever, realiser l'extraction et des mesures les concernant.
WO2024116408A1 (ja) * 2022-12-02 2024-06-06 日本電信電話株式会社 培養生物による産生物質の添加装置及び添加方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152273A (ja) * 1984-12-27 1986-07-10 Sumitomo Electric Ind Ltd 細胞培養装置
JPS61202684A (ja) * 1985-03-01 1986-09-08 ニユー・ブランズウイツク・サイアンテイフイツク・カムパニー・インコーポレーテツド 媒体の溶存酸素及びpH制御方法及び装置
JPH06188872A (ja) * 1990-12-19 1994-07-08 Fujitsu Ltd 同期保護回路

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5212982A (en) * 1975-07-22 1977-01-31 Olympus Optical Co Ltd Apparatus for automatic incubation
US4210724A (en) * 1977-03-28 1980-07-01 Olympus Optical Co., Ltd. Apparatus for liquid disposal and distribution in automatic culture system
DE3139310C2 (de) * 1981-10-02 1987-04-02 Vsesojuznyj nau&ccaron;no-issledovatel'skij institut biosinteza belkovych ve&scaron;&ccaron;estv, Moskau/Moskva System zur Steuerung der Kultivierung von Mikroorganismen
US4440638A (en) * 1982-02-16 1984-04-03 U.T. Board Of Regents Surface field-effect device for manipulation of charged species
DE3586892T2 (de) * 1984-09-18 1993-05-06 Sumitomo Electric Industries Vorrichtung zum trennen von zellen.
JPS6188872A (ja) * 1984-10-09 1986-05-07 Snow Brand Milk Prod Co Ltd 高濃度連続培養方法及び装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61152273A (ja) * 1984-12-27 1986-07-10 Sumitomo Electric Ind Ltd 細胞培養装置
JPS61202684A (ja) * 1985-03-01 1986-09-08 ニユー・ブランズウイツク・サイアンテイフイツク・カムパニー・インコーポレーテツド 媒体の溶存酸素及びpH制御方法及び装置
JPH06188872A (ja) * 1990-12-19 1994-07-08 Fujitsu Ltd 同期保護回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0336974A4 *

Also Published As

Publication number Publication date
EP0336974A4 (en) 1990-02-22
DE3889104T2 (de) 1994-09-08
DE3889104D1 (de) 1994-05-19
EP0336974B1 (en) 1994-04-13
JPH0191771A (ja) 1989-04-11
EP0336974A1 (en) 1989-10-18

Similar Documents

Publication Publication Date Title
US20230176062A1 (en) Devices and disposables for patient-specific cell therapy manufacturing
US11993765B2 (en) Cell culture device system and methods of use thereof
US6673595B2 (en) Automated cell management system for growth and manipulation of cultured cells
KR101319135B1 (ko) 재생 의약에서 성체 줄기 세포를 비롯한 세포 부분집합의 수집, 처리, 이식을 위한 통합된 기계 장치
JP5604397B2 (ja) 組織から再生細胞を分離して濃縮するためのシステム及び方法
KR20200091898A (ko) 세포 농축 및 격리 방법
KR20200118835A (ko) 세포 치료용 바이오프로세싱 방법
JPS5888324A (ja) 生体外において細胞又は組織を培養する培養方法
US20110111497A1 (en) Cell separation apparatus, method for activating fat-derived cells, graft material producing process, and graft material
WO1986001824A1 (fr) Installation de triage de cellules
JP2019514402A (ja) 自動化された製造及び収集
JPH09329602A (ja) 微小物質保持担体、その懸濁系、微小物質操作装置及 び微小物質位置制御方法
WO1989002913A1 (en) Cell propagation apparatus
CN109321458B (zh) 一种制备细胞的方法
JP2022141915A (ja) 細胞増殖
JP2005328726A (ja) 培養処理装置およびこれを備えた自動培養装置
CN211814486U (zh) 一种制备细胞的设备
JP2005287461A (ja) 給排ロボットおよび自動培養装置
JPS5953024B2 (ja) 遠心管の残溜液吸取装置
JP2005341877A (ja) 培養処理装置、自動培養装置、接触検出方法、および液滴検出方法
JP2005341813A (ja) 培養処理装置および自動培養装置
JPS6260071B2 (ja)
JP2005168323A (ja) 培養処理装置および自動培養装置
JP2005312387A (ja) 培養処理装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): SU US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LU NL SE

WWE Wipo information: entry into national phase

Ref document number: 1988908388

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 1988908388

Country of ref document: EP

WWG Wipo information: grant in national office

Ref document number: 1988908388

Country of ref document: EP