WO1987000968A1 - Positioning table - Google Patents

Positioning table Download PDF

Info

Publication number
WO1987000968A1
WO1987000968A1 PCT/JP1983/000363 JP8300363W WO8700968A1 WO 1987000968 A1 WO1987000968 A1 WO 1987000968A1 JP 8300363 W JP8300363 W JP 8300363W WO 8700968 A1 WO8700968 A1 WO 8700968A1
Authority
WO
WIPO (PCT)
Prior art keywords
roller
axis
movement
moving
plane
Prior art date
Application number
PCT/JP1983/000363
Other languages
English (en)
French (fr)
Inventor
Kenichi Oku
Masaki Suzuki
Original Assignee
Kenichi Oku
Masaki Suzuki
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kenichi Oku, Masaki Suzuki filed Critical Kenichi Oku
Publication of WO1987000968A1 publication Critical patent/WO1987000968A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/48Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs
    • B23Q1/4852Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single sliding pair followed perpendicularly by a single rotating pair
    • B23Q1/4866Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs a single sliding pair followed perpendicularly by a single rotating pair followed perpendicularly by a single sliding pair

Definitions

  • the present invention relates to a positioning table for performing alignment on one plane, for example, for aligning a mask position of an exposure unit in semiconductor manufacturing, and the like.
  • Low overall height, high rigidity, low backlash, accurate alignment, and rotational alignment with any position on the moving table as the center of rotation It provides a business table. > Technical background
  • Fig. 1 shows a specific configuration of a conventional alignment table.
  • an X table 2 having an X direction linear guide 1 and a Y direction linear guide on the X table 2 are shown.
  • a y-table 4 having a guide 3 and a rotary table 6 having a rotary shaft 5 provided on the y-table 4 are superposed, and the movement in the X direction is fixed to the base 7.
  • the motor in the y direction is driven to the motor 8, and the movement in the y direction is driven to the motor 9 fixed to the X table 2, and the movement in the rotational direction is moved to the motor 9 fixed to the y table 4.
  • Driving was performed according to 1 O.
  • the present invention provides a flat plate table, a regulating means for moving the table on a flat surface, a reciprocating motion on a straight line, a triaxial feed means, and a triaxial feed means.
  • the means to regulate the direction of operation of the sending means> The total height of the positioning table is low, the rigidity is high, and accurate positioning can be performed, and the position can be rotated around any position on the moving table as the center of rotation.
  • Seat table Provided.
  • FIG. 1 is a perspective view of a broken portion of a conventional positioning table
  • FIG. 15 is a perspective view of a positioning table according to the first embodiment of the present invention.
  • 3 and 4 are explanatory diagrams of the same
  • FIG. 5 is an explanatory diagram of a positioning table in the second embodiment of the present invention
  • FIG. 6 is a third embodiment of the present invention.
  • FIG. 8 is an explanatory view of a positioning table according to the fourth embodiment of the present invention.
  • FIG. 9 is an explanatory view of a positioning table 20 according to a fourth embodiment of the present invention.
  • FIG. 7 is an explanatory diagram of the first embodiment of the present invention in which the roller-attachment position of the alignment table is changed.
  • FIG. 2 is an alignment table according to one embodiment of the present invention. — —
  • ⁇ 1 Roller, Y2 Roller, 18 The end face that contacts the X Roller 15 is perpendicular to the base 12, example of feeding means ⁇ ⁇ X Roller Pusher . 19 is the X-roller pusher 18; X-ray guide that regulates linear motion parallel to the base 12; 2 O is the X-roller pusher X screw shaft to linear motion sheet catcher one 1 8, X motor 2 1 you drive the X screw shaft 2 0, 2 2 are always above X b Ra push sheet catcher said X b over La one 1 5 The above moving table in the direction 1 to 8
  • the X spring that pressurizes 1, 2 3 has the end face that is in contact with the Y 1 roller 16 above, the end face is perpendicular to the base 12, and the X roller pusher 18 has the X above.
  • b one color 1 5 in contact with the end surface perpendicular Y 1 b - La chromatography Bed Tsu sheet catcher one Aru. 24 is the above Y1 roller busher
  • Y 1 motor, 27 presses the transfer table 11 1 in the direction that always pushes the 1 roller 16 to the bush 23 2.
  • 1 spring, 2 8 1 End face in contact with 7; above, parallel to the upper roller 23 2 3 ⁇ 4 ⁇ 2 Use a roller busher.
  • 29 is the above-mentioned ⁇ 2 Roller bushing 28 is regulated as described above ⁇ 1 Roller bushing 23 ⁇ 2 Straight guide 3 ⁇ ⁇ 2 Roller bushing 1-28 moves linearly ⁇ 2 screw shaft 3 "! Drives ⁇ ⁇ 2 screw shaft 30 ⁇ 2 Motor, 3 2 always drives the roller 17 Above- ⁇ Press the pusher in the direction of pusher 2 8 ⁇ ⁇ Press the moving table in the direction ⁇ Press the spring 2
  • X motor 2 1, Upsilon 1 motor 5 2 6, Upsilon 2 mode one motor 3 1 Yo j each be predetermined angular rotation, respectively X screw shaft 2 Omicron, Y 1 screw shaft 2 5, Y 2 screws axis
  • the X roller bushing 18, Y 1 roller bushing 23, Y 2 roller bushing 28 can be moved directly by a predetermined amount via 30. You.
  • the X rollers 15 and 11 and the Y 2 rollers 17 attached to the moving table 11 are connected to the X pins 22 and Y 1 springs 27 respectively. , Y 2 springs 3 2, X roller hooks 18, Y 1 roller bushers 23, and roller bushers 28 always pressurized. To move the X roller 15 and X roller bush 18
  • the amount of movement in the five directions is the same as the amount of movement of the X roller bushing.
  • the amount of movement of the Y1 roller 16 in the direction of movement of the T1 roller bushing 23 is equal to the amount of transfer of the 11 roller bushing.
  • ⁇ j, and the moving amount of the Y 2 roller 17 in the moving direction of the ⁇ 2 roller bushing 18 are the same as the moving amount of the Y 2 roller pusher.
  • the X roller 15 can rotate along the end face of the X roller busher 18 in the direction perpendicular to the moving direction of the X roller pusher 18, and can move Y.
  • Roller 1 and Roller Y 2 are similarly drawn along the end of Roller 1 and Roller 2 and the end of Roller 2 and Roller 2.
  • ⁇ 2 It can rotate in the direction perpendicular to the direction of movement of the roller pusher 28, and can move along. Therefore, the moving table 11 is moved by a predetermined amount.
  • X roller bush 18, ⁇ 1 Roller bush, shear — 23, ⁇ 2 Roller pusher 28 Movement amount of 8 and any point on the movement table 1 1 The relationship between the movement amount and the rotation amount of the movement table 11 about that point will be described below.
  • Fig. 3 consider a linear coordinate system whose origin is an arbitrary point ⁇ on the moving table 11, and a straight line passing through the center of ⁇ 1 roller 16 and ⁇ 2 roller 17 X axis 15, Y 1 roller 16, Y in an m-coordinate system such that the axis passing through the origin ⁇ is parallel to the axis and the axis passing through the origin ⁇ and the axis perpendicular to the axis are the m axis.
  • the coordinates of the center of the two rollers 17 are (1, m) and ( ⁇ 2, m2) f ( ⁇ 3, m3), respectively.
  • the axis parallel to the end face of the X-roller bushing 18 is defined as the ⁇ axis
  • the axis passing through ⁇ is the ⁇ axis
  • the axis passing through ⁇ is the axis perpendicular to the ⁇ axis.
  • the angle between the axis and the X axis in the coordinate system (referred to as the XY coordinate system) is
  • the moving table moves in a plane, and the flat table moving table is always in contact with the end surface of the moving table.
  • Reciprocating motion ⁇ By providing the regulated three-axis positioning means, the above three-axis positioning means can be moved linearly by the amount determined by calculation.
  • the above-mentioned moving table can be rotated by an arbitrary angle about an arbitrary point above, and can be moved on a plane by an arbitrary amount.
  • the overall height of the alignment table is low, rigidity is high and accurate alignment can be performed.
  • the bearing friction in linear motion and rotational motion is small, a backlash J and a table for aligning the position are provided.
  • FIG. 11 a is a moving table
  • 15 a, 16 a, and 17 a are X, Y 1, and Y 2 rollers, respectively, and 18 a, 23 a, and 28.
  • a is an X roller, a bush, a low roller, and a Y 2 roller, a pusher, respectively.
  • the regulation method and the driving method are the same as the configuration in Fig. 2, but are different from the configuration in Fig.
  • the moving table 11a By moving the Y1 roller bushers 23a and the Y2 roller bushers 28a by a predetermined amount, the moving table 11a can be moved by a predetermined amount.
  • the amount of movement of any point on the moving tape one table 1 1 a and X b one la one 1 s et, Y 1 roller 'single i 6 a Y 2 b - a 1 7 a moving amount of the relationship of - La It is possible to get.
  • FIG. 1 2 b is a base
  • 11 b is a moving table
  • 15 b 16 b and 17 b are X, Y 1, and Y 2 rollers, respectively.
  • 8 1), 23 b, and 28 b are X roller pushers, respectively; X, Y1 roller bush, Y2 rower busher,
  • 3 3 is a guide with two mutually perpendicular faces mounted on the base 1 2.
  • the regulation method and the driving method of the pusher 23b, Y2 roller pusher 28D are the same as those of FIG. 2 except that the structure shown in FIG. X Roller Bush 18b, Y1 Roller Pusher 23b, Y2 Roller Pusher 28b roller 1 6 b, Y 2 rollers one 1 7 b are provided, are Russia Rapu' sheet catcher one cut above 0 Symbol three Tsu is provided on the movable table 1 1 b Aru in till point.
  • the alignment tool configured above
  • the X roller and the pusher 18b, Y1 roller pusher — 23b and the Y2 roller busher 28b are specified respectively.
  • the moving table 11b can be moved by a predetermined amount 5.
  • FIG. 11 C is a moving table
  • 15 C, 16 C, and 17 C are * X roller, Y 1 roller, ⁇ 2 roller, 180, 230, 28 C is an X roller busher, a 1 roller bush and a Y 2 roller busher, respectively.
  • the method and the driving method are the same as those in the configuration shown in Fig. 2, but the difference from the configuration S in Fig. 2 is that three roller pushers are movable tables.
  • the rotation axis of the X roller 15C, Y1 roller-16C, and Y2 roller 11A C is fixed outside the moving table.
  • the restricting means for performing the movement of the moving table in the plane is a group of spheres.
  • the bearing must have a configuration that allows the movement of the moving table to be performed in one plane.
  • the linear motion of the roller bushers is converted into a linear motion using a screw shaft as a driving source, but the linear motion may be a reer motor or the like. In short, it should have a configuration in which the roller bush moves linearly.
  • the roller is mounted in the arrangement shown in FIG. 2 and not in the arrangement shown in FIG. Of the three-axis linear feed means, the two-axis movement direction should be parallel and perpendicular to the other one-axis movement direction.
  • the present invention provides a table of one flat plate, a regulating means for performing the movement of the table on one plane, and a constant contact with the table, And a means for regulating the direction of operation of the three-axis feeding means, and a means for regulating the direction of operation of the three-axis feeding means.
  • the low overall height, high rigidity, and low backlash make precise alignment possible, and the rotary table can rotate as an arbitrary center of rotation on the moving table. Is a big thing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Position Or Direction (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Machine Tool Units (AREA)

Description

明 細 書
発明の名称
位置合ゎせ用テー ブル
技術分野
本発明は、 一平面上で位置合ゎせを行な ぅ、 例ぇぱ、 半導体 製造にぉける露光装直のマスク位置合ゎせ用等の位置合ゎせ用 テ一ブルに関するもので、 全高が低く、 剛性が高く 、 バックラ ッ シュの少なぃ正確 位置合ゎせができ、 移動テ—ブル上の任 ' 意の位置を回転中心と して回転運動することができる位直合ゎ せ用テ一ブルを提供するものでぁる。 > 技術背景
従来の位置合ゎせ用テー ブルでは、 第 1 図にその具体構成を 示すょ ぅに、 X方向直線ガィ ド 1 を有する Xテ一ブル 2 と、 X テー ブル 2上に y方向直線ガィ ド 3を有する yテー ブル 4と、 yテー ブル 4上に設けられた回転軸 5を有する回転テー ブル 6 を重ね合ゎせた構成で、 X方向の移動は、 べ ース 7に固定され たモ一タ 8にょ 駆動し、 y方向の移動は、 Xテ一ブル 2に固 定された、 モ一 タ 9にょ 駆動し、 回転方向の移動は、 yテー ブル 4に固定されたモ一 タ 1 Oにょって駆動が行 ¾ゎれてぃた。
しかしながら、 上記のょぅる構成では、 直 ¾するニ方向に移 動する Xテ一ブル 2 と yテ一ブル 4を重ね合ゎせ、 さらに、 回 転テー ブル 6を重ねるため、 三段重ねの構成と ¾るので、 位置 合ゎせ用テーブルの全高が高く 、 剛性が低下するとぃぅ欠 点を有してぃた。 また、 回転テ一 ブル 6の回転軸 5カ;、 yテ一 ブル 4上の一定の位置に固定されるた J6、 yテー ブル 4上の任
O PI — ―
• 意の位置を回転中心と して、 回転運動をすることができ ぃと ぃぅ欠点を有してぃた。 さらに、 直線運動及び回転運動の軸受 摩擦が大き くバックラッ シュが大きぃとぃぅ欠点を有し、 正確 ¾位置合せを行ぃ難ぃ欠点を有してぃた。
5 発明の開示
本発明は、 ー枚の平板のテ一ブルと 、 上記テーブルの運動を ー平面上で行 ゎせる規制手段と、 直镍上を往復運動可能 、 - 三軸の送 手段と、 上記三軸の送 手段の動作の方向を規制す > る手段とからな i?、 位置合ゎせ用テーブルの全高が低く、 剛性 t o が高く、 正確 ¾位置合ゎせができまた移動テ—ブル上の任意の > 位置を回転中心として、 回転運動することができる位置合ゎせ 用テーブル 提供するものでぁる。
図面の簡単 説明
第 1 図は従来の位置合ゎせ用テ—ブルのー部破断の斜視図、 1 5 第 2図は本発明の第 1 の実施例にぉける位置合ゎせ用テー ブ ルの斜視図、 第 3図 ,第 4図は同説明図、 第 5図は本発明の第 2'の実施例にぉける位置合ゎせ用テ一ブルの説明図、 第 6図は 本発明の第 3の実施例にぉける位直合ゎせ用テーブルの説明図、 第ァ図は本発明の第 4の実施例にぉける位置合ゎせ用テーブル 20 の説明図、 第 8図〜第 1 O図は本発明の第 1 の実施例における 位直合ゎせ用テーブルのローラ—取付位置を変ぇた場合の説明 図でぁる。
発明を実施するための最良の形態
以下本発明のー実施例にっぃて、 図面を参照しるがら説明す 25 る。 第 2図は本発明のー実施例にぉける位置合ゎせ用テーブル — ―
を示すものでぁる。 1 1 は移動テーブル、 1 2はべース、 1 3 は、 上記移動テーブル 1 1 と上記べース 1 2の両方に接し、 上 記移動テーブルが一平面上で移動するょ ぅに規制する同じ直径 の球体群、 1 4は、 上記球体群 1 3カ 、 離散しなぃょ ぅ規制し、 かっ上記球体群 1 3が上記べ一ス 1 2上をどの方向にも回転し ながら移動できるょ ぅ保持するケ一ジ、 1 5は、 上記移動テ一 ブル 1 1 の一端面に回転軸が、 べ一ス 1 2に垂直になるょ ぅに 取 付けられた X ロ ーラ一、 1 6 , 1 7は、 上記 X ローラ一 , 1 5が取 っけられた上記移動テ一ブル 1 1 の端面と垂直 ¾端 面にそれぞれ回転軸が、 上記べース 1 2に垂直になる ょ ぅに取
っけられた Ϊ 1 ローラ一 , と Y 2 ロ 一ラー、 1 8は上記 X ロ ーラー 1 5 と接する端面が上記べ ース 1 2 と垂直 送 手段例 ぇぱ X ローラープッ シャ ーでぁる。 1 9は上記 X ロ一ラ一プッ シ ャ 一 1 8カ;、 上記べ一ス 1 2 と平行に直線運動をするょ ぅに 規制する X直線ガィ ド、 2 Oは上記 X ロ 一ラープッ シ ャ一 1 8 を直線運動させる Xネジ軸、 2 1 は上記 Xネ ジ軸 2 0を駆動す る X モータ、 2 2は上記 X ロ ーラ一 1 5を常に上記 X ロ ーラー プッ シ ャ 一 1 8に柙しぁてる ょ ぅ 方向に上記移動テー ブル
1 1 を加圧する Xバネ、 2 3は上記 Y 1 ロ 一ラ一 1 6 と接する 端面が、 上記べ—ス 1 2に垂直で、 かっ、 上記 X ローラ一プッ シ ャ ー 1 8が上記 X ロ 一ラー 1 5 と接する端面と垂直 Y 1 ロ — ラ ーブ ッ シ ャ 一でぁる。 2 4は上記 Y 1 ロ 一 ラ 一ブ ッ シ ャ ー
2 3が上記べース 1 2 と平行でかっ、 上記 X ローラ一ブッ シ ャ
- 1 8の直鎳運動方向と垂直な方向に直鎳運動する ょ ぅ に規制 する Y 1 直線ガィ ド、 2 5は上記 Y 1 ロ 一ラ一プッ シ ャ ーを直
OMPI
— - — A—
• 鎳運動させる ネジ軸、 2 6は上記 Y 1 ネジ軸を駆動する
Y 1 モータ、 2 7は上記 Υ 1 ローラー 1 6を常に上記 ブッ シ ャ ー 2 3に押しぁてるょ ぅな方向に上記移勤テーブル 1 1 を 加圧する Ϊ 1 バネ、 2 8は上記 ローラ一 1 7と接する端面 カ;、 上き己 ローラ一ブッ シ ャ一 2 3 と平行 ¾ Υ 2 ロ一ラーブ ッ シ ャ ーでぁる。 2 9は上記 Υ 2 ローラ一ブッ シ ャ 一 2 8が上 記 Υ 1 ロ 一ラ一ブッ シ ャ 一 2 3 と平行に直鎳運動するょ ぅに規 制する Υ 2直線ガィ ド 3 Οは上記 Υ 2 ローラーブッ シ ャ 一 2 8 を直線運動させる Υ 2ネジ軸 3 "! は、 上記 Ϊ 2ネジ軸 3 0を駆 動する Υ 2 モータ、 3 2は上記 ロ 一ラー 1 7を常に上記 - Υ 2 プッ シ ャ ー 2 8に押しぁてるょ う ¾方向に移動テーブルを 加圧する Υ 2バネでぁる、―
以上のょ ぅ に構成された位置合ゎせ用テー ブルにっぃて、— 以 下にその動作を説明する。 まず前記 X モータ 2 1 , Υ 1 モータ5 2 6 , Υ 2 モ 一 タ 3 1 をそれぞれ所定の角度回転させることに ょ j 、 それぞれ Xネジ軸 2 Ο , Y 1 ネジ軸 2 5 , Y 2ネジ軸
3 0を介して、 X ローラーブッ シ ャ ー 1 8 , Y 1 ロ ーラーブッ シ ャ ー 2 3 , Y 2 ロ ーラ一プッ シ ャ ー 2 8を所定の量だけ直镍 移動させるこ とができ る。 また、 移動テー ブル 1 1 に取 付け られた X ロ 一ラ一 1 5 , 1 1 ロ一ラ一 1 6 , Y 2 ロ 一ラー 1 7 は、 Xノく ネ 2 2 , Y 1 バネ 2 7 , Y 2バネ 3 2にょ 、 それぞ れ X ロー ラー フ' ッ シ ャ一 1 8 , Y 1 ロ 一ラーブッ シ ャ一 2 3 , ロ一ラーブッ シ ャ一 2 8 と常に接する ょ ぅ に加圧されてぃ るため、 X ローラー 1 5の、 X ローラーブッ シ ャ ー 1 8の移動
5 方向への移動量は、 X ロ一ラーブッ シ ャ ーの移動量と同じでぁ
O PI
鶴 - — — j?、 同様に Y 1 ロ一ラー 1 6の、 T 1 ロ ーラ一ブッ シ ャ ー 2 3 の移動方向への移動量は、 Υ 1 ロ 一ラーブッ シ ャ ーの移勤量と 同じでぁ j 、 また Y 2 ローラー 1 7の ΤΓ 2 ロ ーラーブッ シ ャ 一 2 8の移動方向への移動量は Y 2 ロ ーラープッ シ ャーの移動量 と同じでぁる。 またその際 X ロ一ラー 1 5は X ローラーブッ シ ャ ー 1 8の端面に沿って、 X ロ一ラ一プッ シ ャ 一 8の移動方 向と垂直 方向へ回転し ¾がら移動でき、 Y 1 ローラーと Y 2 ローラーも同様に、 Y 1 ローラ一ブッ シ ャ ー 2 3の端面と Y 2 ロー ラーブッ シ ャ一 2 8の端面に沿って、 Y 1 ロ ーラ一プッ シ ャ 一 2 3 , Υ 2 ロ ーラ一プッ シ ャ 一 2 8の移動方向と垂直 ¾方 向へ回転し ¾がら移動できる。 従って、 移動テ一ブル 1 1 カ;、 所定の量だけ移動することに ¾る。
ここで、 X ロ ーラーブッ シ ャ ー 1 8 , Υ 1 ロ ー ラーブッ 、シ ャ — 2 3 , Υ 2 ロ ー ラ一プッ シ ャ ー 2 8の移動量と移動テー ブル 1 1 上の任意点の移動量及び、 その点を中心とする移動テーブ ル 1 1 の回転量の関係を次に説明する。 第 3図にぉぃて、 移動 テー ブル 1 1 上の任意の点 Οを原点とする直芡座標系を考ぇ、 Υ 1 ローラー 1 6 と Υ 2 ロ 一ラ一 1 7の中心を通る直線に平行 で、 原点 Οを通る直線を 軸 , 原点 Οを通 、 軸に垂直 軸 を m軸とするょ ぅな、 m座標系で、 X ロ一ラー 1 5 , Y 1 ロ ーラー 1 6 , Y 2 ロ一ラ一 1 7の中心の座標をそれぞれ( 1 , m ) , ( ^ 2 , m 2 ) f ( ^ 3 , m 3 ) とする。 また同じく 、 oを原点 と して、 X ロ ーラ一ブッ シ ャ 一 1 8の端面に平行で、 οを通る 直镍を Υ軸、 οを通 γ軸に垂直 軸を X軸とする直 ¾座標系 ( X Y座標系とする ) にぉぃて、 軸と X軸の間の角度を と
OMPI すると、 m 座標系で表ゎした X ロ一ラ一 1 5 , 1 ローラー
1 6 , Y 2 ローラ一 1 7の中心の座標を、 X Y座標系に変換す ると、 X ロ一ラー 1 5の中心の座標(X i ', y i') , Y 1 ロ一ラー ^の中心の座標 ズ? ァ?っ , Y 2 ローラー 1 7の中' の座標 ( X 5', y )は
X COS (9 Sin^ e
y Sine COS 5 m
― 1 , 2 , 3 となる。
次に第 4図に示すょ ぅに、 移動テ一 ブル 1 1 上の原点 Oが第
3図に示す位置から: 座標系の X方向に Jx , y方向に だ け移動した点 に移 さらに、 O'を中心に / / だけ回転したと き、 X Y座標系に対する、 X ロ ーラー 1 5 , Y 1 ロ —ラー 1 ら Y 2 ーラ一 1 の中心の座標( X 1 y 1 X 2 y 5っ , ( X , y つは、
Figure imgf000008_0001
1 , 2 , 3 と ¾る。 従って、 第 3図に示す位龌から第 4図に示す位置に移 動テー ブル 1 1 が移動したと きの 3個のロ ーラ一の中心の座標 の変位 ^ix , yiは、
OMPI
、 、 VvlPO Jxi X
^yi y y
Figure imgf000009_0001
Figure imgf000009_0002
COS ( + )—GOS0 • ( S i n ( Θ + ΑΘ )-S±nd ) Sin +4 (9 )— Sin COS ( Θ+Δ Θ )-COSd ^
+
m i
2 , 3 と ¾る。 以上ょ j9、 X ロ 一ラー 1 5の X軸方向の変位 ζί Χ 1 , Υ 1 ロ 一ラー 1 6の Υ軸方向の変位 Jy i , Y 2 ロ ーラ一の Υ軸 方向の変位 は、
4 r={COS((9+J5 )-COS(9 } ^ i-{Sin( 5+ ^ )-Sin5 } m 1 +Jx
Jy i = {Sin( (?" り—Sin0 2 + {GOS( (9+Jり— COS
m 2 +J y
2={Sin(0+ lり— Sin 5 + {COS(3 + )—COS(9 } m 3 +J y
と ¾る。 従っ て、 上記、 移動テ一ブル上の任意の点 oが X方向 へ Jx , y方向へ だけ移動し、 かっ J d だけ、 回転するには、
Ο ΡΙ 應 • 3個のローラーブッ シ ャーはそれぞれ , 1 , y 2だけ移 動すればょぃ。
以上のょ ぅに、 本実施例にょれば、 ー平面上で運動.するょ ぅ に規制されたー枚の平板の移動テーブルに対して、 上記移動テ ーブル端面に常に接し、 かっ直線上を往復運動する ょ ぅ規制さ れた三軸の位置決め手段を設けることにょ 、 上記、 三軸の位 置決め手段を計算に ょ って決められる量だけ、 それぞれ直線運 動させれぱ、 上記移動テーブル上の任意の点を中心に上記移動 テ―ブルを任意の角度回転させ、 かっ任意の量だけ平面上を移 動させることができる。 また位置合ゎせ用テーブルの全高が低 ぃため、 剛性が高く正確¾位蘆合ゎせができ る。 さ らに直線運 動及び回転運動の軸受摩擦が小さぃので、 バ ック ラ ッ シュカ J、 さぃ位置合ゎせ用テーブルが提供される。
次に本発明の第 2の実施例にっぃて第 5図を参照し ¾がら説5 明する。 1 1 aは移動テーブル、 1 5 a , 1 6 a , 1 7 aは、 それぞれ X ロ一 ラ一 , Y 1 ロ ー ラ一 , Y 2 ロ 一 ラー、 1 8 a , 2 3 a , 2 8 aはそれぞれ、 X ローラ一ブッ シャ ー , ロー ラーブッ シャ 一 , Y 2 ローラ一プッ シ ャ 一でぁる。 移動テーブ ル 1 1 aの規制方法、 X ロ 一ラ一プッ シ ャ 一 8 a , γ 1 ロ 一0 ラ一ブッ シ ャ ー 23 a , Y 2 ロ一ラープッ シ ャ ー 2 8 21の酉 5置. 規制方法及び駆動方法は第 2図の構成と同じでぁるが、 第 2図 の構成と異 るのは、 X ロ 一ラ一ブッ シ ャ一 1 s a , Y 1 ロ一 ラーブッ シ ャ一 23 a , Y 2 ローラ一ブッ シャ ー 2 8 aの先端 にそれぞれ X ローラ一 1 5 a , Y 1 ロ一ラー 1 6 a , Y 2 ロー5 ラ一 1 7 a を設けた点でぁる。 上記の ぅに構成された位置合 — —
• ゎせ用テーブルにっぃても 、 X ロ ーラーブッ シャ ー 1 8 a ,
Y 1 ローラーブッ シ ャ ー 2 3 a , Y 2 ローラーブッ シ ャ ー 28a をそれぞれ所定の量だけ移動させると、 移動テー ブル 1 1 aを 所定の量だけ移動させることができる。 また移動テ一ブル 1 1 a 上の任意の点の移動量と X ロ一ラ一 1 s et , Y 1 ローラ '一 i 6a Y 2 ロ—ラ— 1 7 aの移動量の関係式を得る ことが可能でぁる。 次に、 本発明の第 3の実施例にっぃて、 第 6図を参照し ¾が ら説明する。 1 2 bはべース 、 1 1 bは移動テ一ブル、 1 5 b 1 6 b , 1 7 bはそれぞれ X ロ一ラ一 , Y 1 ロ一ラ一 , Y 2 ロ ―ラ一、 1 8 1) , 2 3 b , 2 8 bはそれぞれ X ロ ーラープッ ^ ; ャ 一 , Y 1 ロ 一ラー フ ' ッ シ ャ 一 , Y 2 ロ 一ラーブッ シャ 一、
3 3はべ一ス 1 2 に取 j っけられた互ぃに垂直 ¾ 2っの面を 持っガィ ドでぁる。 移動テ一 ブル 1 1 bの規制方法、 X ローラ — フ ' ッ シ ャ ー 1 8 b , Y 1 ローラ一 フ。 ッ シ ャ一 2 3 b , Y 2 ロ5 ーラープッ シ ャ— 2 8 Dの規制方法及び駆動方法は、 第 2図の 搆成と同じでぁるが、 第 2図の構成と異なるのは、 X ロー ラ一 ブッ シ ャ ー 1 8 b , Y 1 ロ一 ラープッ シ ャ ー 2 3 b , Y 2 ロ ー ラ一プッ シ ャ 一 2 8 bの先端にそれぞれ X ローラ一 1 5 b , Y 1 ローラー 1 6 b , Y 2 ローラ一 1 7 bが設けられ、 かっ上0 記三っの ロ ーラープッ シ ャ 一が移動テーブル 1 1 bの上に設け られてぃる点でぁる。 上記のょ ぅに構成された位置合ゎせ用テ
— フ'ノレにっぃても、 X ローラ一 フ'ッ シ ャ ー 1 8 b , Y 1 ローラ ープッ シ ャ — 2 3 b , Y 2 ロ 一ラーブッ シ ャ一 2 8 b をそれぞ れ所定の量だけ移動させると、 移動テー ブル 1 1 bを所定の量5 だけ移動させることができ る。 また移動テー ブル 1 1 b上の任
O PI — 意の点の移動量と X ローラ 1 5 b , Y 1 ローラー 6 b , Y 2 ローラー 1 7 bの移動量の関係式を得ることが可能でぁる。
次に本発明の第 4の実施例にっぃて、 第 7図を参照し がら 説明する。 1 1 Cは移動テ一ブル、 1 5 C , 1 6 C , 1 7 Cは それそ *れ X ロ一ラ一 , Y 1 ローラー , Υ 2 ロ一ラ一、 1 8 0 , 2 3 0 , 2 8 Cはそれぞれ X ロ一ラーブッシャ ー , Υ 1 ロ一ラ —ブッ シ ャ 一 , Y 2 ロ 一ラーブッ シ ャ 一でぁる。 移動テ一 ブル 1 1 cの規制方法、 X ロ 一ラーブッ シ ャ一 8 C , Y 1 ロ一ラ , —ブッシ ャ 一 2 3 C , Y 2 ロ 一ラ一ブッシ ャ ー 2 8 C の規制方 法及び駆動方法は、 第 2図の構成と同じでぁるが、 第 2図の構 S 成と異 ¾るのは、 3っのロ一ラ一プッ シ ャーが移動テ一ブル 1 1 Cの上に設けられ、 また、 X ロ 一ラ一 1 5 C , Y 1 ーラ - 1 6 C , Y 2 ローラ一 1 ァ Cの回転軸が移動テ一ブルの外部 に固定されてぃる点でぁる。
上記のょ ぅに構成された位置合ゎせ用テ一ブルにっぃても、
X ロ ー ラ ー ブ ッ シ ャ ー 1 8 C , Y 1 ロ 一 ラ ー フ ' ッ シ ャ ー 2 3 C , γ 2 ロ 一ラープッ シ ャ一 2 8 Cをそれぞれ所定の量だけ移動さ せると、 移動テ一 ブル 1 1 Cを所定の量だけ移動させることカ; できる。 また移動テーブル上の任意の点の移動量と X ロ一ラー 1 5 C , Y 1 ロ一ラ一 1 6 C , Y 2 ロ一ラ一 1 ァ Cの移動量の 関係式を得る事が可能でぁる。
ぉ、 第 1 の実施例から第 4の実施例にぉぃて移動テ—ブル の運動をー平面内で行 ゎせる規制手段は、 球体群と したが、 規制手段は、 すべ i 軸受, 流体軸受でも ょく、 要は、 移動テー ブルの運動を一平面内で行 ¾ゎせるょ な構成でぁればょぃ。
OMPI
く ϋ — —
また第 1 の実施例から第 4の実施例でローラーブッシャーの 直線運動は、 モータ一の回転をネジ軸で直線運動に変換して駆 動源と したが直線運動は、 リ -ァモータ等でも ょく、 要はロ一 ラ一ブッ'シ ャーを直線運動させる構成でぁればょぃ。
また、 第 1 の実施例にぉぃてローラーの取付は第 2図に示し たょ ぅ ¾配置でぁるカ 第 8図なぃし第 1 O図のょ ぅ 配置で も ょ く、 要は三軸の直線送 手段のぅち、 ニ軸の運動方向が平 行でかっ、 他の一軸の運動方向と垂直でぁればょぃ。
産業上の利用可能性
以上のょ ぅに、 本発明は、 一枚の平板のテ一ブルと、 上記テ ー ブルの運動を、 一平面上で行るゎせる規制手段と、 上記テ— ブルと常に接し、 上記テーブルが運動する平面と平行な平面上 を直線運動する三軸の送] 9手段と、 上記三軸の送 手段の動作 の方向を規制する手段を設けることにょ i 、 位置合ゎせ用テー ブルの全高が低く、 剛性が高く、 バックラッ シ ュが少ぃので精 密¾位置合ゎせができ、 移動テ— ブル上の任意の位置回転中心 と して回転運動することができ、 その実用的効果は大 ¾るもの カ ぁる。
OMPI

Claims

• 請 求 の 範 囲
1 . 平面上を回転可能かっ直鎳運動可能に支持されたー枚の平 板のテーブルと、 このテー ブルが運動する平面と平行 ¾平面内 で直镍運動し、 かっ上記テーブル と常に当接するょ ぅ設けられ.
5 上記テー ブルをー方向に送 i?出す第 1 の送 手段と、 上記テー
ブルの運動する平面と平行 ¾平面内で、 上記第 1 の送 手段の 運動方向と異なった方向に直镍運動し、 かっそれぞれ上記テー ブルと常に当接するょ ぅ設けられ、 上記テ一 ブルをー方向に送
j9出す第 2 , 第 3の送 手段とを備ぇた位置合ゎせ用テー ブル (
, Ο 2 . 請求の範囲第 1 項にぉぃて、 第 2 ,第 3の送 手段にょり
テ—ブルが送])出される方向は、 各々平行でぁ D、 かっ上記第
1 の送 手段にょ 上記テーブルが送 出される方向と垂直で ぁる位置合ゎせ用テ一ブル。
3 . 請求の範囲第 1 項にぉぃて、 テ一ブルと第 1 ,第 2 , 第 3
1 5 の送 手段とはローラーを介して当接して設けられた位置合ゎ
せ用テーブル。
20
25
OMPI
"WIPO , '
PCT/JP1983/000363 1982-10-19 1983-10-19 Positioning table WO1987000968A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP57/183933 1982-10-19
JP57183933A JPS5972727A (ja) 1982-10-19 1982-10-19 位置合わせ用テ−ブル

Publications (1)

Publication Number Publication Date
WO1987000968A1 true WO1987000968A1 (en) 1987-02-12

Family

ID=16144342

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP1983/000363 WO1987000968A1 (en) 1982-10-19 1983-10-19 Positioning table

Country Status (3)

Country Link
US (1) US4610442A (ja)
JP (1) JPS5972727A (ja)
WO (1) WO1987000968A1 (ja)

Families Citing this family (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0727042B2 (ja) * 1986-12-02 1995-03-29 キヤノン株式会社 ステ−ジ装置
JPS63162132A (ja) * 1986-12-26 1988-07-05 Nippon Thompson Co Ltd Xyテ−ブル
SE457438B (sv) * 1987-02-13 1988-12-27 Volvo Ab Anordning foer lokalisering och/eller fasthaallning av foeremaal
US5022619A (en) * 1988-12-09 1991-06-11 Tokyo Aircraft Instrument Co., Ltd. Positioning device of table for semiconductor wafers
US5059090A (en) * 1990-01-16 1991-10-22 International Business Machines Corp. Two-dimensional positioning apparatus
JPH03224006A (ja) * 1990-01-30 1991-10-03 Matsushita Electric Ind Co Ltd 数値制御装置
JP2557316Y2 (ja) * 1990-02-28 1997-12-10 エヌティエヌ 株式会社 移動テーブル
DE4337902C2 (de) * 1993-11-08 1997-01-16 Kammann Spezialmaschinen Und S Stanze für Bahnmaterial
US5660381A (en) * 1994-02-07 1997-08-26 Ushiodenki Kabushiki Kaisha Carrier device
US5523941A (en) * 1994-10-04 1996-06-04 Burton; Gary L. X-Y-theta positioning mechanism
JPH08190430A (ja) * 1995-01-12 1996-07-23 Matsushita Electric Ind Co Ltd 位置決めテーブル
GB2343399B (en) * 1997-03-28 2001-04-18 Preco Ind Inc Web or sheet-fed apparatus having high-speed positioning mechanism
EP0916447A3 (en) * 1997-11-18 2000-03-22 Borgotec Tecnologie Per L'Automazione S.p.A. Method and device for aligning a workpiece on a machine tool table
US6334960B1 (en) 1999-03-11 2002-01-01 Board Of Regents, The University Of Texas System Step and flash imprint lithography
US6873087B1 (en) 1999-10-29 2005-03-29 Board Of Regents, The University Of Texas System High precision orientation alignment and gap control stages for imprint lithography processes
EP1303792B1 (en) 2000-07-16 2012-10-03 Board Of Regents, The University Of Texas System High-resolution overlay alignement methods and systems for imprint lithography
JP4740518B2 (ja) 2000-07-17 2011-08-03 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 転写リソグラフィ・プロセスのための自動液体ディスペンス方法およびシステム
KR20030040378A (ko) 2000-08-01 2003-05-22 보드 오브 리전츠, 더 유니버시티 오브 텍사스 시스템 임프린트 리소그래피를 위한 투명한 템플릿과 기판사이의고정확성 갭 및 방향설정 감지 방법
EP1390975A2 (en) 2000-08-21 2004-02-25 The Board Of Regents, The University Of Texas System Flexure based translation stage
AU2001297642A1 (en) 2000-10-12 2002-09-04 Board Of Regents, The University Of Texas System Template for room temperature, low pressure micro- and nano-imprint lithography
EP1216787B1 (de) * 2000-12-21 2004-08-18 Liechti Engineering AG Positioniervorrichtung
US6964793B2 (en) 2002-05-16 2005-11-15 Board Of Regents, The University Of Texas System Method for fabricating nanoscale patterns in light curable compositions using an electric field
KR100396021B1 (ko) * 2001-05-25 2003-08-27 박희재 초정밀 이송장치
JP4627938B2 (ja) * 2001-09-07 2011-02-09 コバレントマテリアル株式会社 方形ガラス板の形状測定装置
US7077992B2 (en) 2002-07-11 2006-07-18 Molecular Imprints, Inc. Step and repeat imprint lithography processes
US6900881B2 (en) * 2002-07-11 2005-05-31 Molecular Imprints, Inc. Step and repeat imprint lithography systems
US6932934B2 (en) * 2002-07-11 2005-08-23 Molecular Imprints, Inc. Formation of discontinuous films during an imprint lithography process
US6916584B2 (en) 2002-08-01 2005-07-12 Molecular Imprints, Inc. Alignment methods for imprint lithography
US7071088B2 (en) 2002-08-23 2006-07-04 Molecular Imprints, Inc. Method for fabricating bulbous-shaped vias
US8349241B2 (en) 2002-10-04 2013-01-08 Molecular Imprints, Inc. Method to arrange features on a substrate to replicate features having minimal dimensional variability
US6929762B2 (en) 2002-11-13 2005-08-16 Molecular Imprints, Inc. Method of reducing pattern distortions during imprint lithography processes
US6871558B2 (en) 2002-12-12 2005-03-29 Molecular Imprints, Inc. Method for determining characteristics of substrate employing fluid geometries
US7452574B2 (en) 2003-02-27 2008-11-18 Molecular Imprints, Inc. Method to reduce adhesion between a polymerizable layer and a substrate employing a fluorine-containing layer
US7122079B2 (en) 2004-02-27 2006-10-17 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
US6805054B1 (en) 2003-05-14 2004-10-19 Molecular Imprints, Inc. Method, system and holder for transferring templates during imprint lithography processes
US6951173B1 (en) * 2003-05-14 2005-10-04 Molecular Imprints, Inc. Assembly and method for transferring imprint lithography templates
US7157036B2 (en) 2003-06-17 2007-01-02 Molecular Imprints, Inc Method to reduce adhesion between a conformable region and a pattern of a mold
US7136150B2 (en) 2003-09-25 2006-11-14 Molecular Imprints, Inc. Imprint lithography template having opaque alignment marks
US20050106321A1 (en) * 2003-11-14 2005-05-19 Molecular Imprints, Inc. Dispense geometery to achieve high-speed filling and throughput
US8076386B2 (en) 2004-02-23 2011-12-13 Molecular Imprints, Inc. Materials for imprint lithography
US7906180B2 (en) * 2004-02-27 2011-03-15 Molecular Imprints, Inc. Composition for an etching mask comprising a silicon-containing material
JP4628012B2 (ja) * 2004-04-15 2011-02-09 津田駒工業株式会社 傾斜テーブル装置
DE102004057776B4 (de) * 2004-11-30 2011-08-18 Multitest elektronische Systeme GmbH, 83026 Lagekorrektureinrichtung zur Korrektur der Position eines Bauelementehalters für elektronische Bauelemente
KR100674440B1 (ko) * 2005-08-12 2007-01-25 주식회사 파이컴 프로브 카드 제조 방법 및 장치
US7665981B2 (en) * 2005-08-25 2010-02-23 Molecular Imprints, Inc. System to transfer a template transfer body between a motion stage and a docking plate
US20070064384A1 (en) * 2005-08-25 2007-03-22 Molecular Imprints, Inc. Method to transfer a template transfer body between a motion stage and a docking plate
US20070074635A1 (en) * 2005-08-25 2007-04-05 Molecular Imprints, Inc. System to couple a body and a docking plate
CN101522037B (zh) * 2006-10-11 2013-07-17 株式会社明治 发酵乳饮料或发酵乳饮料的制造方法
JP5047040B2 (ja) * 2008-04-14 2012-10-10 株式会社日立ハイテクノロジーズ プロキシミティ露光装置、プロキシミティ露光装置の基板移動方法、及び表示用パネル基板の製造方法
JP5819998B2 (ja) * 2014-01-29 2015-11-24 ファナック株式会社 二つの基準面にワークを位置決めするワーク位置決め装置
NL2013783B1 (en) * 2014-11-12 2016-10-07 Phenom-World Holding B V Sample stage.
JP1538139S (ja) * 2015-04-03 2015-11-16
JP6693132B2 (ja) * 2016-01-12 2020-05-13 日本精工株式会社 テーブル装置、位置決め装置、フラットパネルディスプレイ製造装置、及び精密機械
CN105551529B (zh) * 2016-02-26 2017-11-03 中国计量学院 平行双圆柱体相对空间位置及其转角的精密定位装置
USD815166S1 (en) * 2017-03-10 2018-04-10 Techno Dynamics Inc. Positioning table
JP7259476B2 (ja) * 2019-03-27 2023-04-18 東京エレクトロン株式会社 アライメント装置、基板処理装置、アライメント方法及び基板処理方法
CN113714829B (zh) * 2021-08-24 2022-09-06 大连理工大学 大尺寸三轴自动调姿工装设计及操作方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4864884A (ja) * 1971-12-01 1973-09-07
JPS5399875A (en) * 1977-02-14 1978-08-31 Hitachi Ltd Alignment stage

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE378199B (ja) * 1974-09-20 1975-08-25 Ericsson Telefon Ab L M
US3990689A (en) * 1975-08-11 1976-11-09 Eklund Sr Ralph H Adjustable holder assembly for positioning a vacuum chuck
CH595941A5 (ja) * 1976-03-02 1978-02-28 Fischer Ag Georg
JPS5650517Y2 (ja) * 1977-02-09 1981-11-26
FR2387734A1 (fr) * 1977-04-19 1978-11-17 Cii Honeywell Bull Mecanisme de blocage d'un plateau mobile sur une table le long de moyens de guidage
DE2728587A1 (de) * 1977-06-24 1979-01-11 Siemens Ag Steuervorrichtung fuer einen kreuztisch-support einer arbeitsvorrichtung
JPS5626188A (en) * 1979-08-09 1981-03-13 Agency Of Ind Science & Technol Improved production of alpha-1,6-glucosidase of genus bacillus
JPS6138180Y2 (ja) * 1979-09-28 1986-11-05
CH633740A5 (fr) * 1980-01-25 1982-12-31 Charmilles Sa Ateliers Machine-outil comprenant une table mobile.
US4492356A (en) * 1982-02-26 1985-01-08 Hitachi, Ltd. Precision parallel translation system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4864884A (ja) * 1971-12-01 1973-09-07
JPS5399875A (en) * 1977-02-14 1978-08-31 Hitachi Ltd Alignment stage

Also Published As

Publication number Publication date
JPH049379B2 (ja) 1992-02-20
US4610442A (en) 1986-09-09
JPS5972727A (ja) 1984-04-24

Similar Documents

Publication Publication Date Title
WO1987000968A1 (en) Positioning table
US4948330A (en) Alignment stage device
JP4656334B2 (ja) アライメント装置
US7849762B2 (en) Constrained tri-sphere kinematic positioning system
KR200486720Y1 (ko) 스프링 성형 기계에 사용되는 전방위형 매니퓰레이터
WO2019049994A1 (ja) 作業装置
JP4826584B2 (ja) 並進旋回2自由度ステージ装置およびこれを用いた3自由度ステージ装置
EP0394914A1 (en) Mechanical stage support especially for a tunneling microscope
JPS62152632A (ja) テ−ブル装置
CN1403850A (zh) 双晶单色器第二晶体的2维角度精密微调装置
US6463664B1 (en) Multi-axis planar slide system
JPS61159349A (ja) 微小変位移動装置
JPH1043978A (ja) 移動テーブル装置
JP2727368B2 (ja) Xyテーブル
JP3216166B2 (ja) Xy位置決めテーブル
JP2006237485A (ja) アライメント装置
JPH04304936A (ja) 移動案内装置
JP3733808B2 (ja) XYθ3軸移動テーブル
JP2017013210A (ja) 二軸位置決めステージ装置
JPH02225854A (ja) 静圧流体軸受
CN219787425U (zh) 一种传感器加工用切削装置
JPH01302197A (ja) 位置決め装置
JPS62180291A (ja) 調整用ステ−ジ
JPS6085521A (ja) 差動摩擦車減速装置を用いた試料ステ−ジ位置決め装置
JPH0825163A (ja) ステージ装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): US