USRE35524E - Epipodophyllotoxin glucoside 4'-phosphate derivatives - Google Patents

Epipodophyllotoxin glucoside 4'-phosphate derivatives Download PDF

Info

Publication number
USRE35524E
USRE35524E US08/229,659 US22965994A USRE35524E US RE35524 E USRE35524 E US RE35524E US 22965994 A US22965994 A US 22965994A US RE35524 E USRE35524 E US RE35524E
Authority
US
United States
Prior art keywords
compound
sub
alkyl
substituted
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime, expires
Application number
US08/229,659
Inventor
Mark G. Saulnier
Peter D. Senter
John F. Kadow
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bristol Myers Squibb Co
Original Assignee
Bristol Myers Squibb Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bristol Myers Squibb Co filed Critical Bristol Myers Squibb Co
Priority to US08/229,659 priority Critical patent/USRE35524E/en
Application granted granted Critical
Publication of USRE35524E publication Critical patent/USRE35524E/en
Adjusted expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/24Condensed ring systems having three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • A61P35/04Antineoplastic agents specific for metastasis

Definitions

  • the present invention relates to 4'-phosphate derivatives of epipodophyllotoxin glucosides, to their antitumor use, and to pharmaceutical compositions containing these new agents.
  • Etoposide and teniposide are clinically useful anticancer agents derived from the naturally occurring lignan, podophyllotoxin (III); the class of compounds including etoposide and teniposide is sometimes referred to as 4'-demethylepipodophyllotoxin glucosides.
  • Etoposide and teniposide are active in the treatment of a variety of cancers including testicular, small cell lung, ovarian, breast, thyroid, bladder, brain, non-lymphocytic leukemia, and Hodgkin's disease.
  • Phosphorylation of therapeutic agents containing a hydroxyl group has been used as a means for drug latentiation; the phosphorylated derivatives may then be cleaved in vivo by a phosphatase to liberate the active parent molecule.
  • phosphates as potential prodrugs is included in the review article entitled "Rational for Design of Biologically Reversible Drug Derivatives: Prodrugs" (Sinkula and Yalkowsky, J. pharm. Sci., 1975, 64: 181-210 at 189-191).
  • Examples of phosphates of known antitumor agents include camptothecin (Japan Kokai 21-95,394 and 21-95,393, Derwent Abst. No. 87-281016 and 87-281015, respectively) and daurorubicin (U.S. Pat. No. 4,185,111).
  • Podophyllotoxin phosphate disodium salt IV was prepared by Seligman et al. However, the phosphate was not hydrolyzed by prostatic acid phosphatase and did not show reduced toxicity over the parent podophyllotoxin (Cancer Chemotherapy reports Part I, 1975, 59: 233-242). ##STR2##
  • the present invention provides phosphate esters of 4'-demethylepipodophyllotoxin glucosides which are active antitumor agents.
  • the dihydrogen phosphate of 4'-demethylepipodophyllotoxin glucosides and salts thereof are highly water-soluble thus providing a superior pharmaceutical advantage over the current therapeutic agents of this class, etoposide and teniposide, which have minimal water solubility.
  • the present invention provides 4'-phosphate derivatives of 4'-demethylepipodophyllotoxin glucosides of general formula V, and pharmaceutically acceptable salts thereof ##STR3## wherein R 6 is H and R 1 is selected from the group consisting of (C 1-10 )alkyl; (C 2-10 )alkenyl; (C 5-6 ) cycloalkyl; 2-furyl; 2-thienyl; (C 6-10 )aryl; (C 7-14 )aralkyl; and C 8-14 ) aralkenyl wherein each of the aromatic rings may be unsubstituted or substituted with one or more groups selected from halo, (C 1-8 )alkyl, (C 1-8 )alkoxy, hydroxy, nitro, and amino; or R 1 and R 6 are each (C 1-8 )alkyl; or R 1 and R 6 and the carbon to which they are attached join to form a (C 5-6 ) cycloalkyl group; X
  • the salts of compound V include both the monoanionic and the dianionic salts.
  • the cation may be a metal ion such as one from the alkali metal or alkaline earth metal groups or other common metal ions; or an organic nitrogen-containing group such as ammonium, mono-, di-, or trialkylammonium, or pyridinium.
  • the cation is preferably selected from the group consisting of sodium, potassium, lithium, cesium, magnesium, calcium, aluminum, ammonium and mono-, di-, and trialkylammonium.
  • R 7 and R 8 are both H, and pharmaceutically acceptable salts thereof.
  • a most preferred embodiment provides etoposide 4'-dihydrogen phosphate and thiophosphate, and their respective disodium salts VIa and VIb.
  • a further preferred embodiment provides ##STR4## compounds of formula V wherein R 7 and R 8 are the same and are selected from the group consisting of 2,2,2-trihaloethyl, 2-cyanoethyl, (C 1-5 )alkyl, phenyl, and phenylalkyl, wherein the phenyl ring is optionally substituted with alkyl, halogen, or nitro.
  • a further aspect of this invention provides antitumor phosphoroamidate derivatives of formula VII and pharmaceutically acceptable salts thereof, ##STR5## wherein R 1 , R 6 , and X are as previously defined; Y is Cl, OH, or NR 4 R 5 ; R 2 , R 3 , R 4 , and R 5 are each independently selected from the group consisting of H, (C 1-5 ) alkyl, (C 2-5 ) alkenyl, (C 3-6 ) cycloalkyl, A-substituted (C 1-5 ) alkyl, A-substituted (C 2-5 ) alkenyl, A-substituted (C 3-6 ) cycloalkyl; or R 2 , R 3 , and the nitrogen to which they are attached together represent to 3- to 6-membered ring; or R 4 , R 5 , and the nitrogen to which they are attached together represent a 3- to 6-membered ring; wherein said A-substituent
  • dichlorophosphate intermediates of formula VIII wherein R 1 , R 6 and X are as previously defined; these agents are useful in the preparation of compounds of formula V. ##STR6##
  • Yet a further aspect of the present invention provides a process for preparing a compound of formula V wherein R 7 and R 8 are both H and its pharmaceutically acceptable salts, which comprises the steps of (a) converting a compound of formula IX ##STR7## into a compound of formula X wherein R 1 , R 6 , and X are as previously defined and G is a phosphate protecting group; (b) removing the phosphate protecting group; and (c) ##STR8## optionally converting the product of step (b) to a pharmaceutically acceptable salt.
  • Phosphate protecting groups include, but are not limited to, those within the definition of R 7 given above except H.
  • alkyl means straight or branched carbon chains; "halo” includes bromo, chloro, fluoro, and iodo; "etopofos” is the compound etoposide 4'-phosphate disodium salt.
  • the phenol group of 4'-demethylepipodophyllotoxin glucosides may be phosphorylated with phosphorous oxychloride and thiophosphoryl chloride to give the corresponding dichlorophosphate and dichlorothiophosphate, respectively (formula VIII).
  • the phosphorylation reaction is performed in a suitable anhydrous organic solvent, for example acetonitrile, and preferably in the presence of a tertiary amine base, for example N,N-diisopropylethylamine.
  • the course of the reaction may be monitored by thin layer chromatography (TLC) by which the optimum reaction time may be judged by the appearance of product or the disappearance of the starting material, or both. In our experience, the reaction period may take from about 4 hours to about 72 hours. The length of reaction time required appears to be related to the quality of the phosphorous reagent used.
  • the 4'-dichlorophosphates of formula VIII are versatile intermediates which may subsequently react with nucleoophiles to provide a variety of phosphate and thiophosphate derivatives.
  • the intermediates may be hydrolyzed to provide the phosphates, and in the presence of a base the phosphate salts are obtained.
  • VIII treated with an excess of aqueous sodium bicarbonate solution provides the corresponding 4'-phosphate disodium and 4'-thiophosphate disodium salts; bicarbonates of other cations such as potassium and ammonium may also be used to provide the respective salts.
  • the dichlorophosphate intermediate VIII may react with amines to afford either the corresponding phosphorodiamidate or the chlorophosphoromonoamidate.
  • Suitable amines include, but are not limited to, ammonia, primary amines such as ethylamine, chloroethylamine, allylamine, dimethylaminopropylamine, hydroxyethylamine, cyclohexylamine, and aminocyclohexanol; and secondary amines such as diethylamine, piperidine, ethylmethylamine, methylaminoethanol, ethylbutylamine, and the like.
  • the amount of the amine used relative to that of the epidpodophyllotoxin dichlorophosphate may be adjusted so as to favor one or the other reaction product.
  • the symmetrical phosphorodiamidate is obtained, i.e. compounds of formula VII wherein Y is the same as NR 2 R 3 ;
  • the chlorophosphoromonoamidate i.e. compounds of formula VII wherein Y is Cl
  • the chlorophosphoromonoamidate may be hydrolyzed to provide compounds of formula VII wherein Y is OH or its salts, or it may react further with a second amine to provide the unsymmetrical phosphorodiamidate, i.e. compounds of formula VII wherein Y is NR 4 R 5 and is different from NR 2 R 3 .
  • Phosphate triesters are compounds of formula V wherein R 7 and R 8 are not H, and they may be prepared by treating a 4'-demethylepipodophyllotoxin glucoside with a halophosphate diester, [i.e. Hal-P(X)(OR 7 ) (OR 8 )]. It has been found that this reaction is most efficiently performed in acetonitrile in the presence of an organic trialkylamine base; the preferred base is diisopropylethylamine. At least one equivalent of the halophosphate and the amine base is used, but both reagents are preferably employed in molar equivalents in slight excess relative to that of the epipodophyllotoxin glucoside reactant.
  • the reaction may be carried out at any temperature conductive to product formation; however, slightly elevated temperatures, e.g. 30°-40° C. appear to facilitate the reaction which may take up to several days to go to completion.
  • R 7 R 8
  • unsymmetrical ones i.e. R 7 ⁇ R 8
  • phosphate triesters by other routes, for example by first converting the phenol into a phosphite ester, e.g.
  • Phosphate triesters may additionally serve as intermediates in the preparation of compounds of formula V and salts thereof.
  • Other suitable phosphate protecting groups include but are not limited to, 2,2,2-trichloroethyl, benzyl, cyanoethyl, p-nitro substituted phenyl, benzyl, phenethyl, and p-bromophenyl.
  • the salts may also be generated by eluting the dihydroxy phosphate through a column of an exchange resin containing the desired cation.
  • the present invention utilizes phosphorous oxychloride, halophosphate diesters, and their respective sulfur analogs as the phosphorylating reagent, it is to be understood that other phosphorous reagents capable of phosphorylating phenols may also be used, and appropriate reaction conditions and medium may be chosen according to the phosphorylating agent selected.
  • the review article entitled “Current Methods of Phosphorylation of Biological Molecules” (Synthesis, 1977, 737-52) contains further examples of phosphorylating agents and is hereby incorporated by reference.
  • Representative compounds of the present invention were evaluated for antitumor activity against transplantable murine P388 leukemia.
  • female CDF 1 mice implanted with a tumor inoculum of 10 6 ascites cells of P388 murine leukemia were used.
  • tumor implantation and drug treatment were both via the iv route.
  • tumor implant and drug treatment were via the ip route.
  • the positive control, etoposide was administered ip. The experiments lasted 28 to 46 days at the end of which time the number of survivors was noted.
  • Antitumor activity is expressed as % T/C which is the ratio of the median survival time (MST) of drug-treated group to the MST of saline-treated control group.
  • MST median survival time
  • a compound having % T/C value of 125 or greater is generally considered to have significant antitumor activity in the P388 test.
  • Table I presents the results of the above-described evaluation; the maximum % T/C values and doses giving that effect are reported.
  • the antitumor compounds of the present invention have been demonstrated to be active against transplanted tumors in experimental animals.
  • the compound represented by formula VIa (“etopofos”) shows significantly higher antitumor activity than etoposide in the P388 test.
  • This selective agent represents a highly water soluble pro-drug of etoposide which has reduced antitumor activity in-vitro and is rapidly cleaved by alkaline phosphatase resulting in the release of etoposide.
  • the etoposide that is released exhibits identical cytotoxicity to the parent drug.
  • the present invention provides a method for inhibiting mammalian tumors which comprises administering an effective tumor-inhibiting dose of an antitumor compound of formula V or VII to a tumor bearing host.
  • the drug may be administered by conventional routes including, but not limited to, intravenous, intramuscular, intratumoral, intraarterial, intralymphatic, and oral.
  • a further aspect of the present invention provides a pharmaceutical composition which comprises a compound of formula V or VII and a pharmaceutically acceptable carrier.
  • the antitumor composition may be made of any pharmaceutical form appropriate for the desired route of administration. Examples of such compositions include solid compositions for oral administration such as tablets, capsules, pills, powders and granules, liquid compositions for oral administration such as solutions, suspensions, syrups or elixirs and preparations for parenteral administration such as sterile solutions, suspensions or emulsions. They may also be manufactured in the form of sterile solid compositions which can be dissolved in sterile water, physiological saline or some other sterile injectable medium immediately before use.
  • Optimal dosages and regimens for a given mammalian host can be readily ascertained by those skilled in the art. It will, of course, be appreciated that the actual dose used will vary according to the particular composition formulated, the particular compound used, the mode of application and the particular site, host and disease being treated. Many factors that modify the action of the drug will be taken into account including age, weight, sex, diet, time of administration, route of administration, rate of excretion,, condition of the patient, drug combinations, reactions sensitivities and severity of the disease.
  • the aqueous portion was then applied to a 4 cm diameter column containing 15 cm of octadecylsilane bonded to silica gel which had been packed in methanol and equilibrated with H 2 O. After all of the aqueous portion was applied, the column was eluted with H 2 O (175 ml) to remove inorganic salts and then 4:1 H 2 O:CH 3 OH eluted the product. Concentration of the solvent at 0.5 torr provided 744 mg (36%) of the pure title compound as a colorless solid. Alternatively lyophilization provides the pure title compound as a very fluffy low density solid.
  • Example 2 As indicated in Example 1, 20% by volume of the reaction product mixture of etoposide and POCl 3 was added to diethylamine (4 mL) and stirred at room temperature for 3 hours. The solvent was evaporated in vacuo and the light orange residue purified by flash chromatography on silica gel. Elution with 4% methanol in methylene chloride provided 271.3 mg (46.9%) of the pure title compound as a light yellow solid.
  • the mixture was cooled to room temperature and treated with N,N-diisopropylethylamine (2.05 mL, 11.8 mmol).
  • the mixture was then cooled to 0° C. under N 2 and phosphorous oxychloride (624 mg. 4.07 mmol) added by syringe over 30 seconds.
  • the mixture was magnetically stirred at 0° C. for 2.5 hours and then at room temperature for an additional 1.5 hours.
  • a magnetically stirred suspension of etoposide (2.04 g, 3.47 mmol) in dry acetonitrile (175 mL) was warmed to give a nearly complete solution.
  • the solution was allowed to cool to room temperature and N,N-diisopropylethylamine (2.00 mL, 11.5 mmol) was then added thereto.
  • the mixture was then cooled to 0° C. and thiophosphoryl chloride (0.720 g, 4.17 mmol) was added via syringe over a 30 second period.
  • the mixture was allowed to slowly warm to room temperature over 2-3 hours and stirring continued at room temperature for 16 hours.
  • the mixture was then warmed to 30°-35° C. and kept at that temperature for an additional 4 hours.
  • a magnetically stirred suspension of etoposide (10.50 g. 17.84 mmol, dried over P 2 O 5 at 80° C./0.5 torr) in dry acetonitrile (450 ml) was treated with diisopropylethylamine (4.20 ml, 24.1 mmol) and then diphenyl chlorophosphate (2.00 ml, 9.65 mmol) was added neat via syringe.
  • the mixture was stirred under N 2 for two hours at 50° C. at which point all of the etoposide had dissolved. Additional diphenyl chlorophosphate (1.80 ml, 8.68 mmol) was added and the reaction mixture was held at 45° C. for 72 hours.
  • Example 7 The procedure described in Example 7 was repeated using bis(2,2,2-trichloroethyl)chlorophosphate to provide the title compound in 100% yield as a colorless solid following flash chromatography on silica gel.
  • Example 2 The general procedure described in Example 2 is repeated with the exception that the diethylamine used therein is replaced by the amines listed below to provide the corresponding etoposide 4'-phosphorodiamidates.
  • Example 3 The general procedure described in Example 3 is repeated with the exception that the bis(2-chloroethyl)amine used there is replaced by the amines listed below to provide the corresponding etoposide chlorophoroamidates.
  • Example 5 The general procedure in Example 5 is repeated with the exception that the 3-aminopropanol used therein is replaced by the following amines to provide the corresponding unsymmetrical etoposide phosphorodiamidates.

Abstract

Phosphate derivatives of 4'-demethylepipodophyllotoxin glucosides are novel antitumor agents and the salts thereof offer the pharmaceutical advantage of high water solubility.

Description

This application is a continuation-in-part of U.S. patent application, Ser. No. 081,492, filed on Aug. 4, 1987 in the United States Patent and Trademark Office, now abandoned.
BACKGROUND OF THE INVENTION
I. Field of the Invention
The present invention relates to 4'-phosphate derivatives of epipodophyllotoxin glucosides, to their antitumor use, and to pharmaceutical compositions containing these new agents.
II. Description of the Prior Art
Etoposide (VP-16, I) and teniposide (VM-26, II) are clinically useful anticancer agents derived from the naturally occurring lignan, podophyllotoxin (III); the class of compounds including etoposide and teniposide is sometimes referred to as 4'-demethylepipodophyllotoxin glucosides. Etoposide and teniposide are active in the treatment of a variety of cancers including testicular, small cell lung, ovarian, breast, thyroid, bladder, brain, non-lymphocytic leukemia, and Hodgkin's disease.
Compounds I and II, and the method for producing them are disclosed in U.S. Pat. No. 3,408,441 to Wartburg et al. and U.S. Pat. No. 3,524,844 to Keller-Juslen et al. The compounds disclosed therein, in particular etoposide and teniposide, serve as starting material for our preparation of epipodophyllotoxin glucoside 4'-phosphate derivatives of the present invention. ##STR1##
Phosphorylation of therapeutic agents containing a hydroxyl group has been used as a means for drug latentiation; the phosphorylated derivatives may then be cleaved in vivo by a phosphatase to liberate the active parent molecule. A brief discussion of phosphates as potential prodrugs is included in the review article entitled "Rational for Design of Biologically Reversible Drug Derivatives: Prodrugs" (Sinkula and Yalkowsky, J. pharm. Sci., 1975, 64: 181-210 at 189-191). Examples of phosphates of known antitumor agents include camptothecin (Japan Kokai 21-95,394 and 21-95,393, Derwent Abst. No. 87-281016 and 87-281015, respectively) and daurorubicin (U.S. Pat. No. 4,185,111).
Podophyllotoxin phosphate disodium salt IV was prepared by Seligman et al. However, the phosphate was not hydrolyzed by prostatic acid phosphatase and did not show reduced toxicity over the parent podophyllotoxin (Cancer Chemotherapy reports Part I, 1975, 59: 233-242). ##STR2##
The present invention provides phosphate esters of 4'-demethylepipodophyllotoxin glucosides which are active antitumor agents. In particular, the dihydrogen phosphate of 4'-demethylepipodophyllotoxin glucosides and salts thereof are highly water-soluble thus providing a superior pharmaceutical advantage over the current therapeutic agents of this class, etoposide and teniposide, which have minimal water solubility.
SUMMARY OF THE INVENTION
The present invention provides 4'-phosphate derivatives of 4'-demethylepipodophyllotoxin glucosides of general formula V, and pharmaceutically acceptable salts thereof ##STR3## wherein R6 is H and R1 is selected from the group consisting of (C1-10)alkyl; (C2-10)alkenyl; (C5-6) cycloalkyl; 2-furyl; 2-thienyl; (C6-10)aryl; (C7-14)aralkyl; and C8-14) aralkenyl wherein each of the aromatic rings may be unsubstituted or substituted with one or more groups selected from halo, (C1-8)alkyl, (C1-8)alkoxy, hydroxy, nitro, and amino; or R1 and R6 are each (C1-8)alkyl; or R1 and R6 and the carbon to which they are attached join to form a (C5-6) cycloalkyl group; X is oxygen or sulfur; R7 and R8 are independently selected from the group consisting of H, (C1-5) alkyl, A-substituted (C1-5) alkyl, (C3-6)cycloalkyl, A-substituted (C3-6)cycloalkyl, (C6-10)aryl, A-substituted aryl, alkyl-substituted aryl, (C7-14)aralkyl, A-substituted aralkyl, and alkyl-substituted aralkyl; wherein said A-substituents are one or more groups selected from hydroxy, alkoxy, alkanoyloxy, cyano, amino, alkylamino, dialkylamino, carboxy, alkylthio, mercapto, mercaptothio, nitropyridyl disulfide, alkanoylamino, alkanoyl, carbamoyl, nitro, and halo.
The salts of compound V include both the monoanionic and the dianionic salts. The cation may be a metal ion such as one from the alkali metal or alkaline earth metal groups or other common metal ions; or an organic nitrogen-containing group such as ammonium, mono-, di-, or trialkylammonium, or pyridinium. The cation is preferably selected from the group consisting of sodium, potassium, lithium, cesium, magnesium, calcium, aluminum, ammonium and mono-, di-, and trialkylammonium. A preferred embodiment provides compounds of formula V wherein R7 and R8 are both H, and pharmaceutically acceptable salts thereof. A most preferred embodiment provides etoposide 4'-dihydrogen phosphate and thiophosphate, and their respective disodium salts VIa and VIb. A further preferred embodiment provides ##STR4## compounds of formula V wherein R7 and R8 are the same and are selected from the group consisting of 2,2,2-trihaloethyl, 2-cyanoethyl, (C1-5)alkyl, phenyl, and phenylalkyl, wherein the phenyl ring is optionally substituted with alkyl, halogen, or nitro.
A further aspect of this invention provides antitumor phosphoroamidate derivatives of formula VII and pharmaceutically acceptable salts thereof, ##STR5## wherein R1, R6, and X are as previously defined; Y is Cl, OH, or NR4 R5 ; R2, R3, R4, and R5 are each independently selected from the group consisting of H, (C1-5) alkyl, (C2-5) alkenyl, (C3-6) cycloalkyl, A-substituted (C1-5) alkyl, A-substituted (C2-5) alkenyl, A-substituted (C3-6) cycloalkyl; or R2, R3, and the nitrogen to which they are attached together represent to 3- to 6-membered ring; or R4, R5, and the nitrogen to which they are attached together represent a 3- to 6-membered ring; wherein said A-substituents are as previously defined.
Another aspect of the present invention provides dichlorophosphate intermediates of formula VIII wherein R1, R6 and X are as previously defined; these agents are useful in the preparation of compounds of formula V. ##STR6##
Yet a further aspect of the present invention provides a process for preparing a compound of formula V wherein R7 and R8 are both H and its pharmaceutically acceptable salts, which comprises the steps of (a) converting a compound of formula IX ##STR7## into a compound of formula X wherein R1, R6, and X are as previously defined and G is a phosphate protecting group; (b) removing the phosphate protecting group; and (c) ##STR8## optionally converting the product of step (b) to a pharmaceutically acceptable salt. Phosphate protecting groups include, but are not limited to, those within the definition of R7 given above except H.
DETAILED DESCRIPTION OF THE INVENTION
As used herein, unless otherwise specied, the term "alkyl" means straight or branched carbon chains; "halo" includes bromo, chloro, fluoro, and iodo; "etopofos" is the compound etoposide 4'-phosphate disodium salt.
The phenol group of 4'-demethylepipodophyllotoxin glucosides may be phosphorylated with phosphorous oxychloride and thiophosphoryl chloride to give the corresponding dichlorophosphate and dichlorothiophosphate, respectively (formula VIII). The phosphorylation reaction is performed in a suitable anhydrous organic solvent, for example acetonitrile, and preferably in the presence of a tertiary amine base, for example N,N-diisopropylethylamine. The course of the reaction may be monitored by thin layer chromatography (TLC) by which the optimum reaction time may be judged by the appearance of product or the disappearance of the starting material, or both. In our experience, the reaction period may take from about 4 hours to about 72 hours. The length of reaction time required appears to be related to the quality of the phosphorous reagent used.
The 4'-dichlorophosphates of formula VIII are versatile intermediates which may subsequently react with nucleoophiles to provide a variety of phosphate and thiophosphate derivatives. Thus the intermediates may be hydrolyzed to provide the phosphates, and in the presence of a base the phosphate salts are obtained. For example, VIII treated with an excess of aqueous sodium bicarbonate solution provides the corresponding 4'-phosphate disodium and 4'-thiophosphate disodium salts; bicarbonates of other cations such as potassium and ammonium may also be used to provide the respective salts. The dichlorophosphate intermediate VIII may react with amines to afford either the corresponding phosphorodiamidate or the chlorophosphoromonoamidate. Examples of suitable amines include, but are not limited to, ammonia, primary amines such as ethylamine, chloroethylamine, allylamine, dimethylaminopropylamine, hydroxyethylamine, cyclohexylamine, and aminocyclohexanol; and secondary amines such as diethylamine, piperidine, ethylmethylamine, methylaminoethanol, ethylbutylamine, and the like. The amount of the amine used relative to that of the epidpodophyllotoxin dichlorophosphate may be adjusted so as to favor one or the other reaction product. For example, when a large excess of the amine relative to the epipodophyllotoxin is used, the symmetrical phosphorodiamidate is obtained, i.e. compounds of formula VII wherein Y is the same as NR2 R3 ; the chlorophosphoromonoamidate, i.e. compounds of formula VII wherein Y is Cl, may be prepared when a more controlled amount of the amine is used. The chlorophosphoromonoamidate may be hydrolyzed to provide compounds of formula VII wherein Y is OH or its salts, or it may react further with a second amine to provide the unsymmetrical phosphorodiamidate, i.e. compounds of formula VII wherein Y is NR4 R5 and is different from NR2 R3.
The above-described procedure is illustrated in the following reaction scheme. ##STR9##
Phosphate triesters are compounds of formula V wherein R7 and R8 are not H, and they may be prepared by treating a 4'-demethylepipodophyllotoxin glucoside with a halophosphate diester, [i.e. Hal-P(X)(OR7) (OR8)]. It has been found that this reaction is most efficiently performed in acetonitrile in the presence of an organic trialkylamine base; the preferred base is diisopropylethylamine. At least one equivalent of the halophosphate and the amine base is used, but both reagents are preferably employed in molar equivalents in slight excess relative to that of the epipodophyllotoxin glucoside reactant. The reaction may be carried out at any temperature conductive to product formation; however, slightly elevated temperatures, e.g. 30°-40° C. appear to facilitate the reaction which may take up to several days to go to completion. Symmetrical halophosphate diesters [i.e. R7 =R8 ] may be conventionally prepared from the alcohol and e.g. phosphoryl chloride, and unsymmetrical ones [i.e. R7 ≠R8 ] may be prepared from the alcohol and dihalophosphate ester. It is also possible to prepare phosphate triesters by other routes, for example by first converting the phenol into a phosphite ester, e.g. by reacting with a reagent such as (PhCH2 O)2 PN(i-pr)2, and subsequently oxidizing the phosphate to the phosphate ester using e.g. m-chloro perbenzoic acid.
Phosphate triesters may additionally serve as intermediates in the preparation of compounds of formula V and salts thereof. Thus, for example, the dihydroxy phosphate (V, R7 =R8 =H) is obtained when the diphenyl ester (V, R7 =R8 =phenyl) is subjected to catalytic hydrogenation. Other suitable phosphate protecting groups include but are not limited to, 2,2,2-trichloroethyl, benzyl, cyanoethyl, p-nitro substituted phenyl, benzyl, phenethyl, and p-bromophenyl. The dihydroxy phosphate (V, R7 =R8 =H) are converted to base salts by reacting with the appropriate base, e.g. sodium bicarbonate, ammonium bicarbonate or organic amines. Alternatively, the salts may also be generated by eluting the dihydroxy phosphate through a column of an exchange resin containing the desired cation.
Although the present invention utilizes phosphorous oxychloride, halophosphate diesters, and their respective sulfur analogs as the phosphorylating reagent, it is to be understood that other phosphorous reagents capable of phosphorylating phenols may also be used, and appropriate reaction conditions and medium may be chosen according to the phosphorylating agent selected. The review article entitled "Current Methods of Phosphorylation of Biological Molecules" (Synthesis, 1977, 737-52) contains further examples of phosphorylating agents and is hereby incorporated by reference.
BIOLOGICAL PROPERTIES
Representative compounds of the present invention were evaluated for antitumor activity against transplantable murine P388 leukemia. In all experiments female CDF1 mice implanted with a tumor inoculum of 106 ascites cells of P388 murine leukemia were used. In experiments using etoposide 4'-phosphate, its disodium salt, and etoposide 4'-thiophosphate disodium salt, tumor implantation and drug treatment were both via the iv route. In all other experiments tumor implant and drug treatment were via the ip route. In all cases, however, the positive control, etoposide, was administered ip. The experiments lasted 28 to 46 days at the end of which time the number of survivors was noted. Antitumor activity is expressed as % T/C which is the ratio of the median survival time (MST) of drug-treated group to the MST of saline-treated control group. A compound having % T/C value of 125 or greater is generally considered to have significant antitumor activity in the P388 test. Table I presents the results of the above-described evaluation; the maximum % T/C values and doses giving that effect are reported.
              TABLE I                                                     
______________________________________                                    
Antitumor Activity Against Muring P388 Leukemia.                          
______________________________________                                    
          Dose*                                                           
Compound of                                                               
          (mg/kg/inj)                                                     
                     Route    MST(d)  % T/C                               
______________________________________                                    
TUMOR CELLS IMPLANTED INTRAVENOUSLY                                       
Example 1 140        IV       29.0    363                                 
(Etoposide)                                                               
           50        IP       20.5    256                                 
Example 4 200        IP       18.0    225                                 
(Etoposide)                                                               
          100        IP       21.5    269                                 
Example 8 125        IV       24.5    306                                 
(Etoposide)                                                               
          100        IP       29.5    369                                 
TUMOR CELLS IMPLANTED INTRAPERITONEALLY                                   
Example 2 240        IP       16.5    165                                 
(Etoposide)                                                               
           60        IP       25.0    250                                 
Example 3 200        IP       15.5    155                                 
(Etoposide)                                                               
          100        IP       27.0    270                                 
______________________________________                                    
                                      Dose*                               
Compound of                                                               
          (mg/kg/inj)                                                     
                     Route    MST(d)  % T/C                               
______________________________________                                    
Example 7 240        IP       25.0    250                                 
(Etoposide)                                                               
          100        IP       26.0    260                                 
Example 9 150        IP       19.5    217                                 
(Etoposide)                                                               
          100        IP       24.0    267                                 
______________________________________                                    
 *Drugs were administered on day 5 and 8 unless otherwise specified (day 1
 being the day of tumor implantation).                                    
The antitumor compounds of the present invention have been demonstrated to be active against transplanted tumors in experimental animals. Specifically, the compound represented by formula VIa ("etopofos") shows significantly higher antitumor activity than etoposide in the P388 test. This selective agent represents a highly water soluble pro-drug of etoposide which has reduced antitumor activity in-vitro and is rapidly cleaved by alkaline phosphatase resulting in the release of etoposide. The etoposide that is released exhibits identical cytotoxicity to the parent drug.
Accordingly, the present invention provides a method for inhibiting mammalian tumors which comprises administering an effective tumor-inhibiting dose of an antitumor compound of formula V or VII to a tumor bearing host. For this purpose, the drug may be administered by conventional routes including, but not limited to, intravenous, intramuscular, intratumoral, intraarterial, intralymphatic, and oral.
A further aspect of the present invention provides a pharmaceutical composition which comprises a compound of formula V or VII and a pharmaceutically acceptable carrier. The antitumor composition may be made of any pharmaceutical form appropriate for the desired route of administration. Examples of such compositions include solid compositions for oral administration such as tablets, capsules, pills, powders and granules, liquid compositions for oral administration such as solutions, suspensions, syrups or elixirs and preparations for parenteral administration such as sterile solutions, suspensions or emulsions. They may also be manufactured in the form of sterile solid compositions which can be dissolved in sterile water, physiological saline or some other sterile injectable medium immediately before use.
Optimal dosages and regimens for a given mammalian host can be readily ascertained by those skilled in the art. It will, of course, be appreciated that the actual dose used will vary according to the particular composition formulated, the particular compound used, the mode of application and the particular site, host and disease being treated. Many factors that modify the action of the drug will be taken into account including age, weight, sex, diet, time of administration, route of administration, rate of excretion,, condition of the patient, drug combinations, reactions sensitivities and severity of the disease.
The following examples are for illustrative purposes only and should not be construed as limiting the scope of the invention which is defined solely by the claims appended to this application.
In the following examples, proton and carbon nuclear magnetic resonance (NMR) spectra (using CDCl3 or D2 O as an internal reference) and phosphorous NMR spectra (using 85% aqueous H3 PO4 as an external reference) were recorded on a Bruker WM360 spectrometer. Infrared spectra (IR) were determined on a Perkin-Elmer 1800 Fourier Transform Infrared Spectrophotometer. "Flash chromatography" refers to the method described by Still (Still, W. C.; Kahn, M.; Mitra, A.; J. Org. Chem., 1978 43, 2923) and was carried out using E. Merck silica gel (230-400 mesh). Reverse phase chromatography was carried out under a positive nitrogen pressure using C18 (Octadecylsilane) bonded to silica gel (40-μm diameter, J. T. Baker supplier).
EXAMPLE 1 Etoposide 4'-Phosphate Disodium Salt (Compound VIa)
A magnetically stirred suspension of etoposide (2.30 g, 3.91 mmol) in dry acetonitrile (210 ml) was warmed to give a nearly complete solution. The solution was allowed to cool to room temperature, and N,N-diisopropylethylamine (2.36 ml, 13.5 mmol) was added. The mixture was then cooled to 0° C. and POCl3 (666 mg, 4.34 mmol) was added via syringe over 30 seconds. The mixture was allowed to slowly come to room temperature over 2-3 hours and stirring continued at room temperature for 63 hours. At the end of this period 20% by volume was removed and treated with diethylamine as described in Example 2. The remainder was treated with a solution of sodium bicarbonate (6.0 g, 71.4 mmol) in deionized H2 O (110 ml), the mixture was stirred at room temperature for 80 minutes, and then partitioned with saturated aqueous sodium bicarbonate (20 ml) deionized H2 O (125 ml), and ethyl acetate (350 ml). The organic layer was further extracted with deionized H2 O (1×50 ml) and the combined aqueous layers were washed with ethyl acetate (250 ml) and then subjected to a vacuum of 0.5 mm at room temperature for 1 hour to remove dissolved solvents. The aqueous portion was then applied to a 4 cm diameter column containing 15 cm of octadecylsilane bonded to silica gel which had been packed in methanol and equilibrated with H2 O. After all of the aqueous portion was applied, the column was eluted with H2 O (175 ml) to remove inorganic salts and then 4:1 H2 O:CH3 OH eluted the product. Concentration of the solvent at 0.5 torr provided 744 mg (36%) of the pure title compound as a colorless solid. Alternatively lyophilization provides the pure title compound as a very fluffy low density solid.
IR (KBr) 3426, 1775, 1593, 1505, 1486, 1337, 1239, 1191, 1122, 1078, 1034, 983, 927, 888, 876, 851, 840, 697, 684, 664, 547 cm-1.
360 MHz 1 H NMR (D2 O) δ6.93 (s, 1H), 6.59 (s, 1H), 6.27 (s, 2H), 5.93 (d, 2H), 5.09 (d, 1H, J=2.8 Hz), 4.83 (q, 1H, J=5.0 Hz), 4.68 (d, 1H, J=7.9 Hz), 4.62 (d, 1H, J=5.7 Hz), 4.47 -4.35 (m, 2H), 4.24 (dd, 1H, J=4.4 and 10.4 Hz), 3.64 (s, 6H), 3.68-3.52 (m, 3H), 3.44-3.30 (m, 3H), 3.17-3.07 (m, 1H), 1.31 (d, 3H, J=5.0 Hz).
90 MHz 13 C NMR (D2 O) δ178.5, 151.8, 148.1, 146.1, 135.0, 132.6, 130.9, 127.4, 109.9, 109.5, 107.4, 101.3 100.4, 99.6, 79.2, 73.7, 72.7, 72.2, 69.1, 67.1, 65.4, 55.6, 42.8, 40.3, 37.5, 18.8.
146 MHz 31 P NMR (D2 O) δ3.79.
Mass spectrum (FAB), m/e, 713 (M+ +H). C29 H31 Na2 O16 P requires M+, 712.
Anal. Calcd. for C29 H31 Na2 O16 P: C, 48.89; H, 4.39; Na, 6.45. Found*: C, 48.72; H, 4.56; Na, 6.56.
EXAMPLE 2 Etoposide 4'-(Bis-[N,N-diethyl]phosphonamide) (VII, X=O, R1 =methyl, R6 =H, Y=N(Et)2, R2 =R3 =Et)
As indicated in Example 1, 20% by volume of the reaction product mixture of etoposide and POCl3 was added to diethylamine (4 mL) and stirred at room temperature for 3 hours. The solvent was evaporated in vacuo and the light orange residue purified by flash chromatography on silica gel. Elution with 4% methanol in methylene chloride provided 271.3 mg (46.9%) of the pure title compound as a light yellow solid.
IR (KRr) 3408, 2974, 2936, 2877, 1774, 1598, 1508, 1486, 1467, 1421, 1383, 1339, 1234, 1191, 1162, 1130, 1098, 1079, 1037, 902, 858, 795, 713, 700, 544 cm-1.
360 MHz 1 H NMR (CDCl3) δ6.79, (s, 1H), 6.50 (s, 1H), 6.20 (s, 2H), 5.96 (ABq, 2H), 4.87 (d, 1H, J=3.2 Hz), 4.71 (q, 1H, J=5.1 Hz), 4.61 (d, 1H, J=7.6 Hz), 4.57 (d, 1H, J=5.2 Hz), 4.39 (dd, 1H, J=9.1 and 10.2 Hz), 4.22-4.13 (m, 2H), 3.74 (m, 1H), 3.65 (s, 6H), 3.55 (m, 1H), 3.40 (m, 1H), 3.32-3.10 (m, 11H), 2.94-2.83 (m, 1H), 1.37 (d, 3H, J=5.1 Hz), 1.10 (m, 12H).
146 MHz 31 P NMR (CDCl3) δ16.49.
Mass spectrum (FAB), m/e, 779 (M+ +H), 573 (M+ -sugar). C37 H51 N2 O14 P requires M+, 778.
EXAMPLE 3 Etoposide 4'-(N,N-[2-chloroethyl]phosphoryl chloride) (VII, R1 =methyl, R6 =H, X=O, Y=Cl, R2 =R3 =CH2 CH2 Cl)
A magnetically stirred suspension of etoposide (2.00 g, 3.40 mmol) in dry acetonitrile (220 mL), was warmed to give a nearly complete solution. The mixture was cooled to room temperature and treated with N,N-diisopropylethylamine (2.05 mL, 11.8 mmol). The mixture was then cooled to 0° C. under N2 and phosphorous oxychloride (624 mg. 4.07 mmol) added by syringe over 30 seconds. The mixture was magnetically stirred at 0° C. for 2.5 hours and then at room temperature for an additional 1.5 hours. Bis-(2-chloroethylamine) hydrochloride (1.82 g, 10.2 mmol) was then rapidly added followed immediately by additional N,N-diisopropylethylamine (2.10 mL, 12.0 mmol). The mixture was stirred at room temperature for 85 minutes, concentrated in vacuo to a volume of about 5 mL, and dissolved in ethyl acetate (400 mL) and methanol (5 mL). The resulting solution was washed with pH 5 buffer (2×200 mL), water (150 mL), and brine (150 mL) and dried over Na2 SO4/MgSO4. Evaporation of the solvent gave a yellow orange solid which was purified by flash chromatography on silica gel with 3-4% methanol in methylene chloride to provide 1.25 g (45.4%) of the pure title compound as a colorless solid.
360 MHz 1 H NMR (CDCl3) δ6.82 (s, 1H), 6.52 (s, 1H), 6.27 (s, 2H), 5.99 (d, 2H), 4.90 (d, 1H, J=3.4 Hz), 4.73 (q, 1H, J=5.0 Hz), 4.65-4.60 (m, 2H), 4.41 (m, 1H), 4.25-4.15 (m, 2H), 3.75-3.65 (m, 5H), 3.72 (s, 6H), 3.60-3.23 (m, 9H), 2.91-2.80 (m, 1H), 1.38 (d, 3H, J=5.0 Hz).
146 MHz 31 P NMR (CDCl2) δ11.16 and 10.96 (two peaks due to chiral phosphorous).
Mass spectrum (FAB), m/e, 812, 810, 808. C33 H39 Cl3 NO14 P requires M+ (35 Cl) 809.
EXAMPLE 4 Etoposide 4'-Thiophosphate Disodium Salt (Compound VIb)
A magnetically stirred suspension of etoposide (2.04 g, 3.47 mmol) in dry acetonitrile (175 mL) was warmed to give a nearly complete solution. The solution was allowed to cool to room temperature and N,N-diisopropylethylamine (2.00 mL, 11.5 mmol) was then added thereto. The mixture was then cooled to 0° C. and thiophosphoryl chloride (0.720 g, 4.17 mmol) was added via syringe over a 30 second period. The mixture was allowed to slowly warm to room temperature over 2-3 hours and stirring continued at room temperature for 16 hours. The mixture was then warmed to 30°-35° C. and kept at that temperature for an additional 4 hours. A major new spot of higher Rf than etoposide was observed by TLC (5% CH3 OH in CH2 Cl2). The reaction mixture was treated with solid sodium bicarbonate (7.4 g) and then deionized H2 O (100 mL) was added. The mixture was stirred at 28°-25° C. for 1.5 hours and at room temperature for 1.5 hours. The mixture was partitioned with deionized H2 O (200 mL), saturated aqueous sodium bicarbonate (30 mL) and ethyl acetate (300 mL). Further workup and reverse phase chromatography was performed according to the procedure delineated in Example 1 to provide 1.03 g (40.8%) of the pure title compound as a colorless solid.
360 MHz 1 H NMR (D2 O) δ6.93 (s, 1H), 6.60 (s, 1H), 6.27 (s, 2H), 5.93 (d, 2H), 5.09 (d, 1H, J=2.8 Hz), 4.83 (q, 1H, J=5.0 Hz), 4.68 (d, 1H, J=7.8 Hz), 4.63 (d, 1H, J=5.7 Hz), 4.47-4.35 (m, 2H), 4.24 (dd, 1H, J=4.3 and 10.5 Hz), 3.64 (s, 6H), 3.67-3.52 (m, 3H), 3.47-3.29 (m, 3H), 3.17-3.07 (m, 1H), 1.31 (d, 3H, J=5.0 Hz).
Mass spectrum (FAB), m/e 728 (M+), 706 (M+ +H-Na). C29 H31 Na2 O15 PS requires M+, 728.
EXAMPLE 5 Etoposide 4'-[[N,N-bis(2-chloroethyl)amino]-[N-(3-hydroxypropyl)aminol]]phosphate (VII, X=O, R1 =methyl, R6 =H, R2 =R3 =2-chloroethyl, Y=--NH(CH2)3 OH
A magnetically stirred solution of the compound of Example 3 (280 mg, 0.346 mmol) in CH2 Cl2 (3 ml) was treated with a solution of 3-amino-1-propanol (33.5 mg, 0.446 mmol) in CH2 Cl2 (1 ml). After 5 minutes additional 3-amino-1-propanol (31.0 mg, 0.413 mmol) in absolute methanol (0.5 ml) was added. The reaction mixture was purified by direct application to 4 preparative TLC plates (1 mm, E. Merck silica gel) which were developed using 5-8% CH3 OH in CH2 Cl2. Elution of the desired product band using 5% CH3 OH in ethyl acetate followed by evaporation in vacuo and then further drying at 0.1 torr provided 185 mg (63%) of the pure title compound as a colorless solid (mixture of diastereomers at phosphorus).
360 MHz 1 H NMR (CDCl3) δ7.20 (br s, 1H), 6.80 (s, 1H), 6.50 and 6.48 (2s, 1H), 6.26 and 6.25 (2s, 2H), 5.97 (d, 2H), 4.88 (m, 1H), 4.73 (q, 1H), 4.64-4.57 (m, 2H), 4.40 (m, 1H), 4.21 -4.13 (m, 2H), 3.71, 3.70 (2s, 6H), 3.71 -3.06 (m, 18H), 2.90-2.80 (m, 1H), 1.37 (d, 3H).
Mass Spectrum (FAB), m/e 849, 851 (M+ +H, 35 Cl, 37 Cl). C36 H47 Cl2 N2 O15 P requires M+ 848 (35 Cl) and 850 (37 Cl).
EXAMPLE 6 Etoposide 4'-[[N,N-bis(2-chloroethyl)amino]-[N-[2-[(3-nitro-pyridyl-2-yl)disulfide]ethyl]]amino]phosphate (VII, X=O, R1 =methyl, R6 =H, R2 =R3 =2-chloroethyl, Y=NH(CH2)2 -SS-(3-nitropyridyl-2-yl)
A mixture of the compound of Example 3 (248 mg, 0.306 mmol) and 2-(3-nitropyridyl)-1-(2-aminoethyl) disulfide hydrochloride (105 mg, 0.393 mmol) was treated with CH2 Cl2 (7 ml) followed by the addition of diisopropylethylamine (100 μl, 0.570 mmol) and dry methanol (0.5 ml). The resulting solution was stirred at room temperature for 1.5 hours and then purified by direct application to four preparative TLC plates (1 mm, E. Merck silica gel) which were developed using 4-5% CH3 OH in ethyl acetate. Elution of the desired product band using 5% CH3 OH in ethyl acetate followed by evaporation in vacuo and then further drying at 0.1 torr provided 231.7 mg (75.3%) of the pure title compound as a yellow-brown solid (mixture of diastereomers at phosphorous).
IR (KBr) 1774, 1598, 1584, 1559, 1509, 1486, 1456, 1421, 1397, 1342, 1236, 1160, 1128, 1096, 1038, 1004, 926, 857, 747, 699 cm-1.
360 MHz 1 H NMR (CDCl3) δ8.81 and 8.77 (2 m, 1H), 8.48 (m, 1H), 7.33 (m, 1H), 6.81 (s, 1H), 6.51 and 6.50 (2s, 1H), 6.26 (br s, 2H), 5.97 (d, 2H), 4.89 (m, 1H), 4.73 (q, 1H), 4.65-4.52 (m, 3H), 4.41 (m, 1H), 4.24-4.14 (m, 2H), 3.71, 3.70 (2s, 6H), 3.71-2.85 (m, 19H), 2.68 (br s, 1H, OH), 2.37 (br s, 1H), OH), 1.37 (d, 3H).
Mass Spectrum (FAB), m/e, 1005, 1007 (M+ +H, 35 Cl, 37 Cl). C40 H47 Cl2 N4 O16 PS2 requires M+, 1004 (35 Cl) and 1006 (37 Cl).
EXAMPLE 7 Etoposide 4'-diphenyl phosphate (R1 =CH3, R6 =H, R7 =R8 =phenyl)
A magnetically stirred suspension of etoposide (10.50 g. 17.84 mmol, dried over P2 O5 at 80° C./0.5 torr) in dry acetonitrile (450 ml) was treated with diisopropylethylamine (4.20 ml, 24.1 mmol) and then diphenyl chlorophosphate (2.00 ml, 9.65 mmol) was added neat via syringe. The mixture was stirred under N2 for two hours at 50° C. at which point all of the etoposide had dissolved. Additional diphenyl chlorophosphate (1.80 ml, 8.68 mmol) was added and the reaction mixture was held at 45° C. for 72 hours. After more of the amine base (0.75 ml, 4.3 mmol) and diphenyl chlorophosphate (0.80 ml, 3.86 mmol) were added, the mixture was stirred at 40°-45° C. for 27 hours, treated with more diphenyl chlorophosphate (0.40 ml, 1.93 mmol), and maintained at 40°-45° C. for 22 hours. Isopropanol (20 ml) was then added, the solvent was evaporated in vacuo, and the solid residue was dissolved in CH2 Cl2 (500 ml), and partitioned with H2 O (400 ml). The aqueous layer was further extracted with CH2 Cl2 (100 ml) and the combined organic extracts were extracted were washed with brine (250 ml) and dried (Na2 SO4 /MgSO4). Rotary evaporation followed by flash chromatography on silica gel using 2-3% CH3 OH in CH2 Cl2 provided 12.50 g (85%) of the pure title compound as a colorless solid.
FAB MS m/e (relative intensity) 820 (M+H)+.
IR (KBr) 3460, 2925, 1775, 1601, 1490 cm-1.
1 H NMR (CDCl3) δ7.28 (m, 8H), 7.15 (m, 2H), 6.78 (s, 1H), 6.47 (s, 1H), 5.95 (m, 2H), 4.85 (d, J=3.5 Hz, 1H), 4.71 (m, 1H), 4.60 (d, J=7.6 Hz, 1H), 4.56 (d, J=5.1 Hz, 1H), 4.38 (m, 1H), 4.22-4.13 (m, 2H), 3.72.3.60 (m, 1H), 3.48 (s, 6H), 3.54-3.28 (m, 3H), 3.23 (dd, J=14.2, 5.3 Hz, 1H), 2.78 m, 1H), 1.35 (d, J=5.1 Hz, 3H).
Anal. Calcd. for C41 H41 O16 P: C, 60.00; H, 5.04. Found: C, 60.20; H, 5.16.
EXAMPLE 8 Etoposide 4'-phosphate (V; R1 =CH3 ; R6 =H, R7 =R8 =H)
Platinum oxide (0.198 g, 0.87 mmol) from a freshly opened bottle (Aldrich Chemical Co.) was added to a solution of etoposide 4'-diphenyl phosphate (product of Example 7; 0.79 g, 0.962 mmol) in 95 mL of absolute ethanol. The solution was hydrogenated on a Parr apparatus under 45-50 PSI for 4 h at room temperature. The reaction mixture was filtered through a pad of celite using ethanol as eluent. Concentration in vacuo and drying over P2 O5 for 14 h in vacuo provided the desired product as a white solid (0.627, 94%):
FAB MS m/e (relative intensity) 669 (M+H)+
IR (KBr) 3440, 2930, 1778, 1604, 1498 cm-1.
1 H NMR (DMSO-d6) δ6.93 (s, 1H), 6.46 (s, 1H), 6.12 (s, 2H), 5.94 (m, 2H), 5.17 (bs, 1H), 4.86 (d, J=3.93 Hz, 1H), 4.64 (q, J=7.5, 5.8 Hz, 1H), 4.51-4.42 (m, 2H), 4.20 (d, J=10.7 Hz, 1H), 4.01 (dd, J=12.1, 5.3 Hz, 1H), 3.51 (s, 6H), 3.51-2.75 (m, 7H), 2.83 (m, 1H), 1.16 (d, J=5.1 Hz, 3H).
-- C NMR (DMSO-d6) δ 174.5, 151.2, 151.1, 147.7, 146.2, 126.1, 132.3, 128.8, 109.8, 109.7, 101.5, 101.2, 98.5, 80.0, 74.3, 72.7, 71.7, 67.6, 67.2, 65.7, 55.8, 43.0, 37.1, 20.2, 18.5.
Anal. Calcd. for C29 H33 O16 P. 0.85% H2 O: C, 50.95; H, 5.11. Found: C, 51.42; H, 4.97.
EXAMPLE 9 Etoposide 4'-bis(2,2,2-trichloroethyl)phosphate (VIII; R6 =CH3, R1 =H, R7 =R8 =CH2 CCl3)
The procedure described in Example 7 was repeated using bis(2,2,2-trichloroethyl)chlorophosphate to provide the title compound in 100% yield as a colorless solid following flash chromatography on silica gel.
IR (KRr) 1780, 1610, 1490, 1415, 1345, 1240, 1040, 960, 725 cm-1.
300 MHz 1 NMR (CDCl3) δ 6.81 (s, 1H), 6.49 (s, 1H), 6.27 (s, 2H), 5.98 (dd, 2H), 4.88 (d, 1H, J=3.4 Hz), 4.82-4.70 (m, 5H), 4.64 (d, 1H, J32 7.6 Hz), 4.61 (d, 1H, J=5.3 Hz), 4.41 (dd, 1H), 4.25-4.13 (m, 2H), 3.75 (m, 1H), 3.73 (s, 6H), 3.56 (m, 1H), 3.43 (dd, 1H), 3.34-3.24 (m, 3H), 2.91-2.82 (m, 1H), 1.38 (d, 3H, J=4.9 Hz).
Mass Spectrum (FAB), m/e=928.9848 (M+ +H). C33 H36 Cl6 O16 P requires 928.9872.
EXAMPLE 10 Etoposide 4'-phosphate disodium salt from etoposide 4'-phosphate
Method A
Commercial Dowex 50×8-100 cation exchange resin in the hydrogen form (20 g, Aldrich Chemical Co.) was treated with excess 1N NaOH. The resulting resin in Na+ form was packed into a 2 cm column and equilibrated with water. Etoposide 4'-phosphate (product of Example 8, 1.25 g, 1.87 mmol) dissolved in 25 ml of deionized water was applied to the top of the packed column and the column was eluted with water. Fractions containing the title compound were pooled, filtered, and lyophilized to yield 1.15 g of the title compound as a white and fluffy material.
Method B
To 2.90 g (4.34 mmol) of crude etoposide 4'-phosphate (product of Example 8) was added deionized water (50 ml) and sodium bicarbonate (3.00 g, 35.7 mmol). The mixture was stirred at room temperature for 30 minutes during which time CO2 evolution ceased. The mixture was then chromatographed as described in Example 1. Elution with deionized water (300 ml) and then 4:1 H2 O/CH3 OH provided 1.90 g (61%) of pure title compound as a fluffy white solid following lyophilization.
EXAMPLE 11
The general procedure described in Example 2 is repeated with the exception that the diethylamine used therein is replaced by the amines listed below to provide the corresponding etoposide 4'-phosphorodiamidates.
______________________________________                                    
             Compound VII (X = O, R.sup.1 =                               
             methyl, R.sup.6 = H, Y = NR.sup.2 R.sup.3)                   
Amine          R.sup.2    R.sup.3                                         
______________________________________                                    
propylamine    H          CH.sub.2 CH.sub.2 CH.sub.3                      
ethanolamine   H          CH.sub.2 CH.sub.2 OH                            
methoxyethylamine                                                         
               H          CH.sub.2 CH.sub.2 OCH.sub.3                     
N-acetylethylenediamine                                                   
               H          CH.sub.2 CHNC(O)CH.sub.3                        
2-methylallylamine                                                        
               H          CH.sub.2 CH(CH.sub.3)═CH.sub.2              
allylamine     H          CH.sub.2 CH═CH.sub.2                        
dimethylaminopropylamine                                                  
               H          (CH.sub.2)N(CH.sub.3).sub.2                     
N-methylethylenediamine                                                   
               H          CH.sub.2 CH.sub.2 NCH.sub.3                     
trifluoroethylamine                                                       
               H          CH.sub.2 CF.sub.3                               
2-aminoethanethiol                                                        
               H          CH.sub.2 CH.sub.2 SH                            
cyclohexylamine                                                           
               H          cyclohexyl                                      
2-amino-1-methoxypropane                                                  
               H          CH(CH.sub.3)CH.sub.2 OCH.sub.3                  
2-(ethylthio)-ethylamine                                                  
               H          CH.sub.2 CH.sub.2 SCH.sub.2 CH.sub.3            
chloroethylamine                                                          
               H          CH.sub.2 CH.sub.2 Cl                            
4-aminocyclohexanol                                                       
               H                                                          
ethylmethylamine                                                          
               CH.sub.3   CH.sub.2 CH.sub.3                               
ethylbutylamine                                                           
               CH.sub.2 CH.sub.3                                          
                          (CH.sub.2).sub.3 CH.sub.3                       
methylaminoethanol                                                        
               CH.sub.3   CH.sub.2 CH.sub.2 OH                            
bis(2-chloroethyl)amine                                                   
               CH.sub.2 CH.sub.2 Cl                                       
                          CH.sub.2 CH.sub.2 Cl                            
2-propylaminoethanol                                                      
               CH.sub.2 CH.sub.2 CH.sub.3                                 
                          CH.sub.2 CH.sub.2 OH                            
3-methylaminopropionitrile                                                
               CH.sub.3   CH.sub.2 CH.sub.2 CN                            
piperidine     R.sup.2 + R.sup.3 =                                        
                          --(CH.sub.2).sub.3 --                           
______________________________________                                    
EXAMPLE 12
The general procedure described in Example 3 is repeated with the exception that the bis(2-chloroethyl)amine used there is replaced by the amines listed below to provide the corresponding etoposide chlorophoroamidates.
______________________________________                                    
             Compound VII (X = O, R.sup.1 =                               
             methyl, R.sup.6 = H, Y = Cl)                                 
Amine          R.sup.2    R.sup.3                                         
______________________________________                                    
propylamine    H          CH.sub.2 CH.sub.2 CH.sub.3                      
ethanolamine   H          CH.sub.2 CH.sub.2 OH                            
methoxyethylamine                                                         
               H          CH.sub.2 CH.sub.2 OCH.sub.3                     
N-acetylethylenediamine                                                   
               H          CH.sub.2 CHNC(O)CH.sub.3                        
2-methylallylamine                                                        
               H          CH.sub.2 CH(CH.sub.3)═CH.sub.2              
allylamine     H          CH.sub.2 CH═CH.sub.2                        
dimethylaminopropylamine                                                  
               H          (CH.sub.2)N(CH.sub.3).sub.2                     
N-methylethylenediamine                                                   
               H          CH.sub.2 CH.sub.2 NCH.sub.3                     
Trifluoroethylamine                                                       
               H          CH.sub.2 CF.sub.3                               
2-aminoethanethiol                                                        
               H          CH.sub.2 CH.sub.2 SH                            
cyclohexylamine                                                           
               H          cyclohexyl                                      
2-amino-1-methoxypropane                                                  
               H          CH(CH.sub.3)CH.sub.2 OCH.sub.3                  
2-(ethylthio)-ethylamine                                                  
               H          CH.sub.2 CH.sub.2 SCH.sub.2 CH.sub.3            
chlorethylamine                                                           
               H          CH.sub.2 CH.sub.2 Cl                            
4-aminocyclohexanol                                                       
               H          4-OH cyclohexyl                                 
ethylmethylamine                                                          
               CH.sub.3   CH.sub.2 CH.sub.3                               
ethylbutylamine                                                           
               CH.sub.2 CH.sub.3                                          
                          (CH.sub.2).sub.3 CH.sub.3                       
methylaminoethanol                                                        
               CH.sub.3   CH.sub.2 CH.sub.2 OH                            
diethylamine   CH.sub.2 CH.sub.3                                          
                          CH.sub.2 CH.sub.3                               
2-propylaminoethanol                                                      
               CH.sub.2 CH.sub.2 CH.sub.3                                 
                          CH.sub.2 CH.sub.2 OH                            
3-methylaminopropionitrile                                                
               CH.sub.3   CH.sub.2 CH.sub.2 CN                            
piperidine     R.sup.2 + R.sup.3 =                                        
                          --(CH.sub.2).sub.5 --                           
______________________________________                                    
EXAMPLE 13
The general procedure in Example 5 is repeated with the exception that the 3-aminopropanol used therein is replaced by the following amines to provide the corresponding unsymmetrical etoposide phosphorodiamidates.
______________________________________                                    
             Compound                                                     
             VII (X = O, R.sup.1 = methyl,                                
             R.sup.6 = H, Y = NR.sup.4 R.sup.5,                           
             R.sup.2 = R.sup.3 = CH.sub.2 CH.sub.2 Cl)                    
Amine          R.sup.4    R.sup.5                                         
______________________________________                                    
propylamine    H          CH.sub.2 CH.sub.2 CH.sub.3                      
ethanolamine   H          CH.sub.2 CH.sub.2 OH                            
methoxyethylamine                                                         
               H          CH.sub.2 CH.sub.2 OCH.sub.3                     
N-acetylethylenediamine                                                   
               H          CH.sub.2 CHNC(O)CH.sub.3                        
2-methylallylamine                                                        
               H          CH.sub.2 CH(CH.sub.3)═CH.sub.2              
allylamine     H          CH.sub.2 CH═CH.sub.2                        
dimethylaminopropylamine                                                  
               H          (CH.sub.2)N(CH.sub.3).sub.2                     
N-methylethylenediamine                                                   
               H          CH.sub.2 CH.sub.2 NCH.sub.3                     
Trifluoroethylamine                                                       
               H          CH.sub.2 CF.sub.3                               
2-aminoethanethiol                                                        
               H          CH.sub.2 CH.sub.2 SH                            
cyclohexylamine                                                           
               H          cyclohexyl                                      
2-amino-1-methoxypropane                                                  
               H          CH(CH.sub.3)CH.sub.2 OCH.sub.3                  
2-(ethylthio)-ethylamine                                                  
               H          CH.sub.2 CH.sub.2 SCH.sub.2 CH.sub.3            
chlorethylamine                                                           
               H          CH.sub.2 CH.sub.2 Cl                            
4-aminocyclohexanol                                                       
               H          4-OH cyclohexyl                                 
ethylmethylamine                                                          
               CH.sub.3   CH.sub.2 CH.sub.3                               
ethylbutylamine                                                           
               CH.sub.2 CH.sub.3                                          
                          (CH.sub.2).sub.3 CH.sub.3                       
methylaminoethanol                                                        
               CH.sub.3   CH.sub.2 CH.sub.2 OH                            
bis(2-chloroethyl)amine                                                   
               CH.sub.2 CH.sub.3                                          
                          CH.sub.2 CH.sub.2 Cl                            
2-propylaminoethanol                                                      
               CH.sub.2 CH.sub.2 CH.sub.3                                 
                          CH.sub.2 CH.sub.2 OH                            
3-methylaminopropionitrile                                                
               CH.sub.3   CH.sub.2 CH.sub.2 CN                            
piperidine     R.sup.2 + R.sup.3 =                                        
                          --(CH.sub.2).sub.5 --                           
______________________________________                                    
EXAMPLE 14
The general procedure described in Example 7 is repeated with the exception that the diphenyl chlorophosphate used therein is replaced with the chlorophosphates listed below to provide the corresponding etoposide 4'-phosphate diesters (X=O, R1 =methyl, R6 =H, R7 =R8 =R described below).
______________________________________                                    
chlorophosphates [(RO).sub.2 P(O)Cl]                                      
______________________________________                                    
          R =  methyl                                                     
               ethyl                                                      
               benzyl                                                     
               p-nitrobenzyl                                              
               p-nitrophenyl                                              
               p-bromobenzyl                                              
               p-nitrophenethyl                                           
               cyanoethyl                                                 
               o-(t-butyl)phenyl                                          
______________________________________                                    
EXAMPLE 15
The general procedures described in Examples 1 to 14 are repeated with the exception that the etoposide starting materials used therein are replaced with the corresponding teniposide compounds to provide the corresponding teniposide products.

Claims (29)

What is claimed is:
1. A compound having the formula ##STR10## wherein R6 is H and R1 is selected from the group consisting of (C1-10)alkyl; (C2-10)alkenyl; (C5-6)cycloalkyl; 2-furyl; 2-thienyl; (C6-10)aryl; (C7-14)aralkyl; and (C8-14)aralkenyl wherein each of the aromatic rings may be unsubstituted or substituted with one or more groups selected from halo, (C1-8)alkyl, (C1-8)alkoxy, hydroxy, nitro, and amino; or R1 and R6 are each (C1-8)alkyl; or R1 and R6 and the carbon to which they are attached join to form a (C5-6)cycloalkyl group;
X is oxygen or sulfur;
R7 R8 are independently selected from the group consisting of H, (C1-5)alkyl, halo-substituted (C1-5)alkyl, cyano-substituted (C1-5)alkyl, (C3-6)cycloalkyl, (C6-10)aryl, (C7-14)aralkyl, wherein the ring portion of said aryl and aralkyl groups is unsubstituted or substituted with a group selected from the group consisting of alkyl, halo, and nitro;
or a pharmaceutically acceptable salt thereof.
2. The compound of claim 1 having the formula ##STR11## wherein R1, R6 and X are as defined in claim 1; or a pharmaceutically acceptable salt thereof.
3. The compound of claim 1 wherein R6 is H and R1 is methyl or 2-thienyl.
4. The compound of claim 2 wherein R6 is H and R1 is methyl or 2-thienyl.
5. The compound of claim 2 wherein R6 is H and R1 is methyl.
6. The compound of claim 5 wherein X is oxygen.
7. The compound of claim 5 wherein X is sulfur.
8. The compound of claim 2 wherein the pharmaceutically acceptable salt is the sodium salt.
9. The compound etoposide 4'-phosphate disodium salt. ##STR12##
10. The compound etoposide 4'-thiophosphate disodium salt. ##STR13##
11. The compound of claim 1 wherein R7 and R8 are the same and are selected from the group consisting of (C1-5)alkyl; halo-substituted (C1-5)alkyl; cyano-substituted (C1-5)alkyl; (C6-10)aryl; and (C7-14)aralkyl; wherein the ring portion of said aryl and aralkyl groups is unsubstituted or substituted with a group selected from alkyl, halo, and nitro.
12. The compound of claim 11 wherein R6 is H and R1 is methyl or 2-thienyl.
13. The compound of claim 12 wherein R1 is methyl.
14. The compound of claim 13 wherein X is oxygen.
15. The compound of claim 14 wherein R7 and R8 are each phenyl.
16. The compound of claim 14 wherein R7 and R8 are each 2,2,2-trichloroethyl.
17. The compound having the formula ##STR14## wherein R1, R6 and X are as defined in claim 1; Y is Cl, OH, or NR4 R5 ; R2, R3, R4, and R5 are each independently selected from the group consisting of H, (C1-5)alkyl, (C2-5)alkenyl, (C3-6)cycloalkyl; wherein said alkyl, alkenyl, cycloalkyl may be unsubstituted or substituted with one or more of a group selected from the group consisting of hydroxy, alkoxy, halo, mercapto, cyano, alkylthio, alkanoylamino, dialkylamino, alkylamino, and nitropyridyl disulfide, or R2, R3, and the nitrogen to which they are attached together represent a 3 to 6 membered ring; or R4, R5, and the nitrogen to which they are attached together represent a 3 to 6 membered ring; or a pharmaceutically acceptable salt thereof.Iadd., provided that when R1 is methyl, R6 is H, and R2 and R3 are each 2-chloroethyl, Y is not NR4 R5 where R4 is H and R5 is either 3-hydroxypropyl or ##STR15##
18. The compound of claim 17 wherein R6 is H: R1 is methyl or 2-thienyl; Y is Cl or NR4 R5 ; X is oxygen or sulfur, and R2, R3, R4 and R5 are independently selected from the group consisting of H, (C1-5) alkyl, halo substituted (C1-5) alkyl, hydroxy substituted (C1-5) alkyl, and nitropyridyl disulfide substituted (C1-5) alkyl.
19. The compound of claim 18 wherein X is oxygen.
20. The compound of claim 19 wherein R1 is methyl.
21. The compound of claim 20 wherein R2 and R3 are each 2-chloroethyl; and Y is Cl.
22. The compound of claim 20 wherein Y is NR4 R5.
23. The compound of claim 22 wherein R2, R3, R4, and R5 are each ethyl. .[.24. The compound of claim 22 wherein R2 and R3 are each 2-chloroethyl; R4 is H; and R5 is 3-hydroxypropyl..]..[.25. The compound of claim 22 wherein R2 and
R3 are each 2-chloroethyl; R4 is H; and R5 is .].26. An intermediate having the formula ##STR16##
wherein R1, R6, and X are as defined in claim 1. 27. The compound of claim 26 wherein R6 is H; R1 methyl; and X is
oxygen. 28. The compound of claim 26 wherein R6 is H; R1 is
methyl; and X is sulfur. 29. A pharmaceutical composition which comprises an antitumor effective amount of a compound of claim 1 or claim 17, and a
pharmaceutically acceptable carrier. 30. A composition according to claim
29 wherein said compound is etoposide 4'-phosphate disodium salt. 31. A process for preparing a compound of the formula ##STR17## wherein R1, R6, and X are as defined in claim 1 or a pharmaceutically acceptable salt thereof which comprises the steps of:
(a) reacting a compound of formula IX ##STR18## with a compound of the formula Hal-P(X)(O-G)2, wherein Hal is a halogen, G is a phosphate protecting group, and R1, R6, and X are as defined in claim 1, in acetonitrile or (C2-5)CN and in the presence of a trialkylamine to form a compound of formula X ##STR19## and (b) removing the phosphate protecting group.
US08/229,659 1987-08-04 1994-04-19 Epipodophyllotoxin glucoside 4'-phosphate derivatives Expired - Lifetime USRE35524E (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US08/229,659 USRE35524E (en) 1987-08-04 1994-04-19 Epipodophyllotoxin glucoside 4'-phosphate derivatives

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US8149387A 1987-08-04 1987-08-04
US07/199,731 US4904768A (en) 1987-08-04 1988-05-27 Epipodophyllotoxin glucoside 4'-phosphate derivatives
US08/229,659 USRE35524E (en) 1987-08-04 1994-04-19 Epipodophyllotoxin glucoside 4'-phosphate derivatives

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US07/081,492 Continuation-In-Part US4791296A (en) 1987-08-04 1987-08-04 Fast method of measuring phosphorous concentration in PSG and BPSG films
US07/199,731 Reissue US4904768A (en) 1987-08-04 1988-05-27 Epipodophyllotoxin glucoside 4'-phosphate derivatives

Publications (1)

Publication Number Publication Date
USRE35524E true USRE35524E (en) 1997-06-03

Family

ID=26765636

Family Applications (3)

Application Number Title Priority Date Filing Date
US07/199,731 Ceased US4904768A (en) 1987-08-04 1988-05-27 Epipodophyllotoxin glucoside 4'-phosphate derivatives
US07/450,718 Expired - Lifetime US5041424A (en) 1987-08-04 1989-12-14 Epipodophyllotoxin glucoside 4'-phosphate derivatives
US08/229,659 Expired - Lifetime USRE35524E (en) 1987-08-04 1994-04-19 Epipodophyllotoxin glucoside 4'-phosphate derivatives

Family Applications Before (2)

Application Number Title Priority Date Filing Date
US07/199,731 Ceased US4904768A (en) 1987-08-04 1988-05-27 Epipodophyllotoxin glucoside 4'-phosphate derivatives
US07/450,718 Expired - Lifetime US5041424A (en) 1987-08-04 1989-12-14 Epipodophyllotoxin glucoside 4'-phosphate derivatives

Country Status (34)

Country Link
US (3) US4904768A (en)
JP (1) JPH0699465B2 (en)
KR (1) KR900006230B1 (en)
CN (1) CN1027169C (en)
AT (1) AT398974B (en)
BE (1) BE1002982A4 (en)
CA (1) CA1310637C (en)
CH (1) CH676716A5 (en)
CY (1) CY1625A (en)
CZ (1) CZ286893B6 (en)
DD (2) DD299067A5 (en)
DE (1) DE3826562A1 (en)
DK (2) DK169344B1 (en)
ES (1) ES2010775A6 (en)
FI (1) FI87790C (en)
FR (1) FR2622193B1 (en)
GB (1) GB2207674B (en)
GR (1) GR1000490B (en)
HK (1) HK6392A (en)
HU (3) HU202547B (en)
IE (1) IE61040B1 (en)
IL (1) IL87290A (en)
IT (1) IT1226825B (en)
LU (2) LU87290A1 (en)
MX (1) MX173843B (en)
MY (1) MY104321A (en)
NL (2) NL192683C (en)
NO (4) NO170284C (en)
NZ (1) NZ225615A (en)
PT (1) PT88186B (en)
SE (1) SE502214C2 (en)
SG (1) SG101291G (en)
SK (1) SK279325B6 (en)
YU (3) YU143688A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6624317B1 (en) 2000-09-25 2003-09-23 The University Of North Carolina At Chapel Hill Taxoid conjugates as antimitotic and antitumor agents
US6709646B2 (en) 1996-04-01 2004-03-23 Epix Medical, Inc. Bioactivated diagnostic imaging contrast agents
US20060182684A1 (en) * 2003-01-03 2006-08-17 Richard Beliveau Method for transporting a compound across the blood-brain barrier
US20080299039A1 (en) * 2005-02-18 2008-12-04 Angiochem Inc. Aprotinin Polypeptides for Transporting a Compound Across the Blood-Brain Barrier
US20090016959A1 (en) * 2005-02-18 2009-01-15 Richard Beliveau Delivery of antibodies to the central nervous system
US20100256055A1 (en) * 2008-12-05 2010-10-07 Angiochem Inc. Conjugates of neurotensin or neurotensin analogs and uses thereof
US20100297120A1 (en) * 2007-05-29 2010-11-25 Angiochem Inc. Aprotinin-like polypeptides for delivering agents conjugated thereto to tissues
EP2266607A2 (en) 1999-10-01 2010-12-29 Immunogen, Inc. Immunoconjugates for treating cancer
US20110112036A1 (en) * 2008-04-18 2011-05-12 Angiochem Inc. Pharmaceutical compositions of paclitaxel, paclitaxel analogs or paclitaxel conjugates and related methods of preparation and use
US8828925B2 (en) 2008-10-15 2014-09-09 Angiochem Inc. Etoposide and doxorubicin conjugates for drug delivery
US8853353B2 (en) 2008-12-17 2014-10-07 Angiochem, Inc. Membrane type-1 matrix metalloprotein inhibitors and uses thereof
US8921314B2 (en) 2008-10-15 2014-12-30 Angiochem, Inc. Conjugates of GLP-1 agonists and uses thereof
US8969310B2 (en) 2005-07-15 2015-03-03 Angiochem Inc. Potentiation of anticancer agents
US9161988B2 (en) 2009-07-02 2015-10-20 Angiochem Inc. Multimeric peptide conjugates and uses thereof
US9173891B2 (en) 2009-04-20 2015-11-03 Angiochem, Inc. Treatment of ovarian cancer using an anticancer agent conjugated to an angiopep-2 analog
US10980892B2 (en) 2015-06-15 2021-04-20 Angiochem Inc. Methods for the treatment of leptomeningeal carcinomatosis

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5191071A (en) * 1987-08-21 1993-03-02 Novo Nordisk A/S Monoesters of glycosides and a process for enzymatic preparation thereof
US4965348A (en) * 1989-05-19 1990-10-23 Bristol-Myers Company Dimeric epipodophyllotoxin glucoside derivatives
US5036055A (en) * 1989-06-07 1991-07-30 Bristol-Myers Company Acylated derivatives of etoposide
US5066645A (en) * 1989-09-01 1991-11-19 Bristol-Myers Company Epipodophyllotoxin altroside derivatives
US6610299B1 (en) 1989-10-19 2003-08-26 Aventis Pharma Deutschland Gmbh Glycosyl-etoposide prodrugs, a process for preparation thereof and the use thereof in combination with functionalized tumor-specific enzyme conjugates
US6475486B1 (en) 1990-10-18 2002-11-05 Aventis Pharma Deutschland Gmbh Glycosyl-etoposide prodrugs, a process for preparation thereof and the use thereof in combination with functionalized tumor-specific enzyme conjugates
US7241595B2 (en) 1989-10-20 2007-07-10 Sanofi-Aventis Pharma Deutschland Gmbh Glycosyl-etoposide prodrugs, a process for preparation thereof and the use thereof in combination with functionalized tumor-specific enzyme conjugates
US5552154A (en) 1989-11-06 1996-09-03 The Stehlin Foundation For Cancer Research Method for treating cancer with water-insoluble s-camptothecin of the closed lactone ring form and derivatives thereof
US5034380A (en) * 1989-11-20 1991-07-23 Bristol-Myers Squibb Company Alkoxymethylidene epipodophyllotoxin glucosides
US5081234A (en) * 1990-04-30 1992-01-14 Bristol-Myers Squibb Co. 4'-demethylepipodophyllotoxin glycosides
US4997931A (en) * 1990-06-11 1991-03-05 Bristol-Myers Squibb Company Epipodophyllotoxin glycosides
TW260671B (en) * 1991-04-29 1995-10-21 Bristol Myers Squibb Co
IT1250692B (en) * 1991-07-23 1995-04-21 PROCEDURE FOR THE PREPARATION OF DEMETYLEPIPODOPHYLOTOXY-BETA-D-GLUCOSIDES.
US5648474A (en) * 1991-10-08 1997-07-15 Bristol-Myers Squibb Crystalline etoposide 4'-phosphate diethanolate
JPH07632B2 (en) * 1991-12-23 1995-01-11 ブリストル−マイヤーズ スクイブ カンパニー Stable hexahydrate of etoposide 4'-phosphate disodium salt
US6080751A (en) * 1992-01-14 2000-06-27 The Stehlin Foundation For Cancer Research Method for treating pancreatic cancer in humans with water-insoluble S-camptothecin of the closed lactone ring form and derivatives thereof
JP3061476B2 (en) * 1992-04-24 2000-07-10 日本化薬株式会社 Method for producing etoposide phosphate
US5459248A (en) * 1993-11-04 1995-10-17 Bristol-Myers Squibb Company Process of preparing etoposide phosphate and etoposide
FR2725990B1 (en) * 1994-10-21 1997-01-10 Pf Medicament WATER-SOLUBLE DERIVATIVES OF EPIPODOPHYLLOTOXIN, PROCESS FOR THEIR PREPARATION, THEIR USE AS MEDICAMENTS, AND THEIR USE FOR CANCER TREATMENTS
US5942386A (en) * 1995-06-07 1999-08-24 Thomas Jefferson University Anti-fungal agents and methods of identifying and using the same
US6207673B1 (en) 1997-03-12 2001-03-27 The University Of North Carolina At Chapel Hill Covalent conjugates of topoisomerase I and topoisomerase II inhibitors
WO1999032499A1 (en) * 1997-12-23 1999-07-01 Korea Research Institute Of Chemical Technology 4'-O-DEMETHYL-EPIPODOPHYLLOTOXIN-β-D-GLUCOSIDE ACETAL DERIVATIVES
US6506739B1 (en) 2001-05-01 2003-01-14 Telik, Inc. Bis-(N,N'-bis-(2-haloethyl)amino)phosphoramidates as antitumor agents
BR0206206A (en) * 2001-10-26 2005-01-11 Centre Nat Rech Scient Ethoposide derivatives and analogs, and pharmaceutical compositions containing them
BR0312692A (en) 2002-07-15 2007-06-26 Univ Texas selected antibodies and duramycin peptides that bind to anionic phospholipids and aminophospholipids and their uses in the treatment of viral infections and cancer
CN100334090C (en) * 2005-02-02 2007-08-29 南京医科大学 Pyridines podophyllotoxin compounds and their preparation method and use in preparation of pesticides
CN100410266C (en) * 2006-01-11 2008-08-13 重庆华邦制药股份有限公司 Synthesizing process of podophyllotoxin phosphonate derivate
JO2660B1 (en) 2006-01-20 2012-06-17 نوفارتيس ايه جي PI-3 Kinase inhibitors and methods of their use
PE20070978A1 (en) * 2006-02-14 2007-11-15 Novartis Ag HETEROCICLIC COMPOUNDS AS INHIBITORS OF PHOSPHATIDYLINOSITOL 3-KINASES (PI3Ks)
TW200808739A (en) * 2006-04-06 2008-02-16 Novartis Vaccines & Diagnostic Quinazolines for PDK1 inhibition
GB0625283D0 (en) * 2006-12-19 2007-01-24 Cyclacel Ltd Combination
WO2009036106A1 (en) * 2007-09-13 2009-03-19 Bristol-Myers Squibb Company Cytotoxic xanthone compounds
JP5809415B2 (en) 2007-11-09 2015-11-10 ペレグリン ファーマシューティカルズ,インコーポレーテッド Compositions and methods of anti-VEGF antibodies
CN101952282A (en) 2007-12-20 2011-01-19 诺瓦提斯公司 Thiazole derivatives used as PI 3 kinase inhibitors
US8293753B2 (en) 2009-07-02 2012-10-23 Novartis Ag Substituted 2-carboxamide cycloamino ureas
US8440651B2 (en) 2010-02-22 2013-05-14 F. Hoffmann-La Roche Ag Pyrido[3,2-d]pyrimidine PI3K delta inhibitor compounds and methods of use
US9586954B2 (en) 2010-06-22 2017-03-07 Demerx, Inc. N-substituted noribogaine prodrugs
AR082418A1 (en) 2010-08-02 2012-12-05 Novartis Ag CRYSTAL FORMS OF 1- (4-METHYL-5- [2- (2,2,2-TRIFLUORO-1,1-DIMETHYL-Ethyl) -PIRIDIN-4-IL] -TIAZOL-2-IL) -AMIDE OF 2 -AMIDA OF THE ACID (S) -PIRROLIDIN-1,2-DICARBOXILICO
AP2013007043A0 (en) 2011-01-31 2013-08-31 Novartis Ag Novel heterocyclic derivatives
US9617274B1 (en) 2011-08-26 2017-04-11 Demerx, Inc. Synthetic noribogaine
WO2013061305A1 (en) 2011-10-28 2013-05-02 Novartis Ag Novel purine derivatives and their use in the treatment of disease
EP2788003A4 (en) * 2011-12-09 2015-05-27 Demerx Inc Phosphate esters of noribogaine
JP6381523B2 (en) 2012-05-16 2018-08-29 ノバルティス アーゲー Administration regimen of PI-3 kinase inhibitor
JP2016508979A (en) 2012-12-20 2016-03-24 デメレックス, インコーポレイテッド Substituted norbogaine
JP2016539149A (en) 2013-12-06 2016-12-15 ノバルティス アーゲー Alpha-isoform selective phosphatidylinositol 3-kinase inhibitor dosing regimen
AU2016347881A1 (en) 2015-11-02 2018-05-10 Novartis Ag Dosage regimen for a phosphatidylinositol 3-kinase inhibitor
WO2018060833A1 (en) 2016-09-27 2018-04-05 Novartis Ag Dosage regimen for alpha-isoform selective phosphatidylinositol 3-kinase inhibitor alpelisib
KR102378151B1 (en) 2020-05-11 2022-03-24 주식회사 제이앤씨사이언스 New derivatives of β-apopicropodophyllin

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3408441A (en) * 1965-12-14 1968-10-29 Sandoz Ltd Epipodophyllotoxin-beta-d-glucosides and derivatives thereof
US3524844A (en) * 1965-09-21 1970-08-18 Sandoz Ag Epipodophyllotoxin glucoside derivatives
DE1643521A1 (en) * 1966-12-13 1971-04-08 Sandoz Ag New glucosides and a process for their preparation
CH514578A (en) * 1968-02-27 1971-10-31 Sandoz Ag Process for the production of glucosides
CH543502A (en) * 1970-11-20 1973-10-31 Sandoz Ag 4,6-O-Cyclic acetals - of 4'-demethyl-epipodophyllotoxin-beta-D-gluco-pyranoside, with antitumour activity
US3773803A (en) * 1971-06-05 1973-11-20 I Villax Process of preparation of 21-sulfate and 21-phosphate esters of corticosteroids
CH589668A5 (en) * 1973-06-07 1977-07-15 Sandoz Ag Cytostatic (4')-demethyl substd. epipodophyllotoxin - prepd. from the corresp. glucopyranoside with (3)-thiophene-carboxaldehyde
US4185111A (en) * 1977-07-11 1980-01-22 Rhone-Poulenc Industries Daunorubicin derivatives
EP0111058A1 (en) * 1982-11-26 1984-06-20 Nippon Kayaku Kabushiki Kaisha Process for producing 4'-demethyl-epipodophyllotoxin-beta-D-ethylidene-glucoside and acyl-derivative thereof
EP0162701A2 (en) * 1984-05-22 1985-11-27 Nippon Kayaku Kabushiki Kaisha Process for producing etoposide and intermediate for use therein
US4567253A (en) * 1984-02-03 1986-01-28 Tony Durst 2-Substituted derivatives of podophyllotoxin and etoposide
EP0226202A2 (en) * 1985-12-16 1987-06-24 Bar-Ilan University Synthesis of podophylotoxin type compounds
US4687762A (en) * 1984-03-31 1987-08-18 Green Cross Corporation Water soluble drug complex and method for production of same
JPS63192793A (en) * 1987-02-06 1988-08-10 Nippon Kayaku Co Ltd Novel ester of 4'-demethyl-epipodophyllotoxin derivative
US4818752A (en) * 1985-08-19 1989-04-04 Bioglucans, L.P. Soluble phosphorylated glucan: methods and compositions for treatment of neoplastic diseases
US4874851A (en) * 1987-07-01 1989-10-17 Bristol-Meyers Company 3',4'-dinitrogen substituted epipodophyllotoxin glucoside derivatives
US4916217A (en) * 1987-01-08 1990-04-10 Bristol-Myers Company Phosphorus containing derivatives of epipodophyllotoxin

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1171314A (en) * 1955-05-13 1959-01-23 Sandoz Ag Condensation products of glucosides with carbonyl compounds and their preparation

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3524844A (en) * 1965-09-21 1970-08-18 Sandoz Ag Epipodophyllotoxin glucoside derivatives
US3408441A (en) * 1965-12-14 1968-10-29 Sandoz Ltd Epipodophyllotoxin-beta-d-glucosides and derivatives thereof
DE1643521A1 (en) * 1966-12-13 1971-04-08 Sandoz Ag New glucosides and a process for their preparation
CH514578A (en) * 1968-02-27 1971-10-31 Sandoz Ag Process for the production of glucosides
CH543502A (en) * 1970-11-20 1973-10-31 Sandoz Ag 4,6-O-Cyclic acetals - of 4'-demethyl-epipodophyllotoxin-beta-D-gluco-pyranoside, with antitumour activity
US3773803A (en) * 1971-06-05 1973-11-20 I Villax Process of preparation of 21-sulfate and 21-phosphate esters of corticosteroids
CH589668A5 (en) * 1973-06-07 1977-07-15 Sandoz Ag Cytostatic (4')-demethyl substd. epipodophyllotoxin - prepd. from the corresp. glucopyranoside with (3)-thiophene-carboxaldehyde
US4185111A (en) * 1977-07-11 1980-01-22 Rhone-Poulenc Industries Daunorubicin derivatives
EP0111058A1 (en) * 1982-11-26 1984-06-20 Nippon Kayaku Kabushiki Kaisha Process for producing 4'-demethyl-epipodophyllotoxin-beta-D-ethylidene-glucoside and acyl-derivative thereof
US4564675A (en) * 1982-11-26 1986-01-14 Nippon Kayaku Kabushiki Kaisha Process for producing 4'-demethyl-epipodophyllotoxin-β-D-ethylidene-glucoside and acyl-derivative thereof
US4567253A (en) * 1984-02-03 1986-01-28 Tony Durst 2-Substituted derivatives of podophyllotoxin and etoposide
US4687762A (en) * 1984-03-31 1987-08-18 Green Cross Corporation Water soluble drug complex and method for production of same
EP0162701A2 (en) * 1984-05-22 1985-11-27 Nippon Kayaku Kabushiki Kaisha Process for producing etoposide and intermediate for use therein
US4818752A (en) * 1985-08-19 1989-04-04 Bioglucans, L.P. Soluble phosphorylated glucan: methods and compositions for treatment of neoplastic diseases
US4833131A (en) * 1985-08-19 1989-05-23 Bioglucans, L.P. Soluble phosphorylated glucan: methods and compositions for wound healing
EP0226202A2 (en) * 1985-12-16 1987-06-24 Bar-Ilan University Synthesis of podophylotoxin type compounds
US4916217A (en) * 1987-01-08 1990-04-10 Bristol-Myers Company Phosphorus containing derivatives of epipodophyllotoxin
JPS63192793A (en) * 1987-02-06 1988-08-10 Nippon Kayaku Co Ltd Novel ester of 4'-demethyl-epipodophyllotoxin derivative
US4874851A (en) * 1987-07-01 1989-10-17 Bristol-Meyers Company 3',4'-dinitrogen substituted epipodophyllotoxin glucoside derivatives

Non-Patent Citations (50)

* Cited by examiner, † Cited by third party
Title
A. Seligman, et al., "Design of Spindle Poisons Activated Specifically by Prostatic Acid Phosphatase (PAP) and New Methods for PAP Cytochemistry" Cancer Chemother. Rep. 59: 233-242, 1975.
A. Seligman, et al., Design of Spindle Poisons Activated Specifically by Prostatic Acid Phosphatase (PAP) and New Methods for PAP Cytochemistry Cancer Chemother. Rep. 59: 233 242, 1975. *
A. Sinkula, et al., "Rationale for Design of Biologically Reversible Drug Derivatives: Pro Drugs", J. Pharm. Sci., 1975, 64, pp. 181-210.
A. Sinkula, et al., Rationale for Design of Biologically Reversible Drug Derivatives: Pro Drugs , J. Pharm. Sci., 1975, 64, pp. 181 210. *
Arnold, A.M., et al., "Etosposide: A New Anti-Cancer Agent", The Lancet, 2, pp. 912-914 (1981).
Arnold, A.M., et al., Etosposide: A New Anti Cancer Agent , The Lancet, 2, pp. 912 914 (1981). *
Ball, C.R., et al., Enzyme Activated Alkylating Agents, J. Brit. J. Cancer, 1973, 78, 81. *
Bukhari, M.A., et al., Aryl 2 Halogenoalkylamines XXVI, Biochem. Pharmacol., 1972, 21, 963 67. *
Bukhari, M.A., et al., Aryl-2-Halogenoalkylamines--XXVI, Biochem. Pharmacol., 1972, 21, 963-67.
Burger s Medicinal Chemistry, 4th Ed., 1979, 640 41. *
Burger's Medicinal Chemistry, 4th Ed., 1979, 640-41.
Cancer Chemotherapy Reports Part I (1975) 59:233 242. *
Cancer Chemotherapy Reports Part I (1975) 59:233-242.
Chem. Abstr. 104:199672q (1986). *
Chem. Abstr. 96: 218193 (1982). *
Chem. Abstr. 96: 218193μ (1982).
Chem. Abstracts: 109:23200y (1988). *
Chem. Abstracts: 70:78340a (1969). *
Chem. Abstracts: 73:118783t (1970). *
Chem. Abstracts: 96:96837j (1982). *
E. M u ller, Methoden der Organischen Chemie, 4th Ed. (1964) 162 163, 212 215, 324 329, 406 07, 457 61 (w/translation). *
E. Muller, Methoden der Organischen Chemie, 4th Ed. (1964) 162-163, 212-215, 324-329, 406-07, 457-61 (w/translation).
E.K. Ryu, et al., "Phospholipid-Nucleoside Conjugates", J. Med. Chem., 25, 1322-29 (1982).
E.K. Ryu, et al., Phospholipid Nucleoside Conjugates , J. Med. Chem., 25, 1322 29 (1982). *
Godfroid, et al., "Structure Activity Relationship in PAF-Acether 3", J. Med. Chem. 1987, 30, 792-97.
Godfroid, et al., Structure Activity Relationship in PAF Acether 3 , J. Med. Chem. 1987, 30, 792 97. *
H. Staehlin, "Chemie und Wirkungsmechanismus von Podophyllin-Derivaten", Planta Medica, 1972, 22(3), 336-47 (w/translation).
H. Staehlin, Chemie und Wirkungsmechanismus von Podophyllin Derivaten , Planta Medica, 1972, 22(3), 336 47 (w/translation). *
Harper, N.J., "Drug Latentiation," J. Med. Pharm. Chem., 1959, 1, 467, 470-71.
Harper, N.J., Drug Latentiation, J. Med. Pharm. Chem., 1959, 1, 467, 470 71. *
Japanese Patents Gazette, Week 8740, Nov. 18, 1987 p. 10, JP 034964 and JP 037 232. *
Japanese Patents Gazette, Week 8740, Nov. 18, 1987 p. 10, JP-034964 and JP-037-232.
Kauffman, et al., "Absorption and excretion of clindamycin-2-phosphate in children after intramuscular injection", Clin.Pharm.Thera., 13 (1972) 704-9.
Kauffman, et al., Absorption and excretion of clindamycin 2 phosphate in children after intramuscular injection , Clin.Pharm.Thera., 13 (1972) 704 9. *
Keller Juslen, C., et al., Synthesis and Antimitotic Activity of Glycosidic Lignan Derivatives Related to Podophyllotoxin , J. Med. Chem., 1971, 14, 936 940. *
Keller-Juslen, C., et al., "Synthesis and Antimitotic Activity of Glycosidic Lignan Derivatives Related to Podophyllotoxin", J. Med. Chem., 1971, 14, 936-940.
Melby, J.C., et al., "Comparative studies on Absorption and Metabolic Disposal of Water Soluble Steroids," 1961, pp. 75-82.
Melby, J.C., et al., Comparative studies on Absorption and Metabolic Disposal of Water Soluble Steroids, 1961, pp. 75 82. *
Merck Index, 10th Ed. (1983), Camptothecin (No. 1714) Etoposide (No.3832) Doxorubicin (No. 3435) Teniposide (No. 8978). *
Rosowsky, et al., J. Med. Chem. 25, 171 78 (1982). *
Rosowsky, et al., J. Med. Chem. 25, 171-78 (1982).
Toyama Chemical KK SP 102362 (86 2406 C115). *
Toyama Chemical KK SP 102362 (86-2406 C115).
Varia, et al. "Phenytoin Prodrugs III: Water-Soluble Prodrugs for Oral and/or Parenteral Use", J. Pharm. Sci., 73 (1984) 1068-73.
Varia, et al. "Phenytoin Prodrugs IV: Hydrolysis of Various 3-(Hydroxymethyl), Phenytoin Esters," J. Pharm. Sci. 73, 1074 (1984).
Varia, et al. Phenytoin Prodrugs III: Water Soluble Prodrugs for Oral and/or Parenteral Use , J. Pharm. Sci., 73 (1984) 1068 73. *
Varia, et al. Phenytoin Prodrugs IV: Hydrolysis of Various 3 (Hydroxymethyl), Phenytoin Esters, J. Pharm. Sci. 73, 1074 (1984). *
Varia, et al. Phenytoin Prodrugs V: In Vivo Evaluation of Some Water Soluble Phenytoin Prodrugs in Dogs, J. Pharm. Sci. 73, 1080 (1984). *
Zent Molekularbiol DD 222 595 A, Jan. 24, 1984. *
Zent Molekularbiol DD-222-595-A, Jan. 24, 1984.

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6709646B2 (en) 1996-04-01 2004-03-23 Epix Medical, Inc. Bioactivated diagnostic imaging contrast agents
US20040156785A1 (en) * 1996-04-01 2004-08-12 Epix Medical , Inc., A Delaware Corporation Bioactivated diagnostic imaging constrast agents
US7147837B2 (en) 1996-04-01 2006-12-12 Epix Pharmaceuticals, Inc. Bioactivated diagnostic imaging constrast agents
EP2266607A2 (en) 1999-10-01 2010-12-29 Immunogen, Inc. Immunoconjugates for treating cancer
EP2289549A2 (en) 1999-10-01 2011-03-02 Immunogen, Inc. Immunoconjugates for treating cancer
US6624317B1 (en) 2000-09-25 2003-09-23 The University Of North Carolina At Chapel Hill Taxoid conjugates as antimitotic and antitumor agents
US20060182684A1 (en) * 2003-01-03 2006-08-17 Richard Beliveau Method for transporting a compound across the blood-brain barrier
US9221867B2 (en) 2003-01-06 2015-12-29 Angiochem Inc. Method for transporting a compound across the blood-brain barrier
US20090016959A1 (en) * 2005-02-18 2009-01-15 Richard Beliveau Delivery of antibodies to the central nervous system
US20080299039A1 (en) * 2005-02-18 2008-12-04 Angiochem Inc. Aprotinin Polypeptides for Transporting a Compound Across the Blood-Brain Barrier
US7902156B2 (en) 2005-02-18 2011-03-08 Angiochem Inc. Aprotinin polypeptides for transporting a compound across the blood-brain barrier
US20110171128A1 (en) * 2005-02-18 2011-07-14 Angiochem Inc. Aprotinin polypeptides for transporting a compound across the blood-brain barrier
US8828949B2 (en) 2005-02-18 2014-09-09 Angiochem, Inc. Aprotinin polypeptides for transporting a compound across the blood-brain barrier
US9713646B2 (en) 2005-07-15 2017-07-25 Angiochem Inc. Potentiation of anticancer agents
US8969310B2 (en) 2005-07-15 2015-03-03 Angiochem Inc. Potentiation of anticancer agents
US20100297120A1 (en) * 2007-05-29 2010-11-25 Angiochem Inc. Aprotinin-like polypeptides for delivering agents conjugated thereto to tissues
US9365634B2 (en) 2007-05-29 2016-06-14 Angiochem Inc. Aprotinin-like polypeptides for delivering agents conjugated thereto to tissues
US20110112036A1 (en) * 2008-04-18 2011-05-12 Angiochem Inc. Pharmaceutical compositions of paclitaxel, paclitaxel analogs or paclitaxel conjugates and related methods of preparation and use
US8710013B2 (en) 2008-04-18 2014-04-29 Angiochem Inc. Pharmaceutical compositions of paclitaxel, paclitaxel analogs or paclitaxel conjugates and related methods of preparation and use
US8921314B2 (en) 2008-10-15 2014-12-30 Angiochem, Inc. Conjugates of GLP-1 agonists and uses thereof
US8828925B2 (en) 2008-10-15 2014-09-09 Angiochem Inc. Etoposide and doxorubicin conjugates for drug delivery
US20100256055A1 (en) * 2008-12-05 2010-10-07 Angiochem Inc. Conjugates of neurotensin or neurotensin analogs and uses thereof
US9914754B2 (en) 2008-12-05 2018-03-13 Angiochem Inc. Conjugates of neurotensin or neurotensin analogs and uses thereof
US8853353B2 (en) 2008-12-17 2014-10-07 Angiochem, Inc. Membrane type-1 matrix metalloprotein inhibitors and uses thereof
US9173891B2 (en) 2009-04-20 2015-11-03 Angiochem, Inc. Treatment of ovarian cancer using an anticancer agent conjugated to an angiopep-2 analog
US9161988B2 (en) 2009-07-02 2015-10-20 Angiochem Inc. Multimeric peptide conjugates and uses thereof
US10980892B2 (en) 2015-06-15 2021-04-20 Angiochem Inc. Methods for the treatment of leptomeningeal carcinomatosis

Also Published As

Publication number Publication date
LU90138I2 (en) 1997-11-26
US5041424A (en) 1991-08-20
BE1002982A4 (en) 1991-10-15
FR2622193B1 (en) 1993-12-17
KR900006230B1 (en) 1990-08-27
NO170284C (en) 1992-09-30
FR2622193A1 (en) 1989-04-28
CZ541288A3 (en) 1999-12-15
SE502214C2 (en) 1995-09-18
FI87790C (en) 1993-02-25
AT398974B (en) 1995-02-27
HK6392A (en) 1992-01-17
CH676716A5 (en) 1991-02-28
SK541288A3 (en) 1998-10-07
IT1226825B (en) 1991-02-19
LU87290A1 (en) 1990-02-07
NO920665D0 (en) 1992-02-20
NO920665L (en) 1989-02-24
SE8802815D0 (en) 1988-08-03
NL192683B (en) 1997-08-01
GB2207674A (en) 1989-02-08
NO1998002I1 (en) 1998-01-14
NO883299D0 (en) 1988-07-26
HU905862D0 (en) 1991-03-28
NL8801934A (en) 1989-03-01
MX173843B (en) 1994-03-30
DE3826562C2 (en) 1993-04-08
HU211960A9 (en) 1996-01-29
AU610619B2 (en) 1991-05-23
DD274423A5 (en) 1989-12-20
NZ225615A (en) 1991-06-25
FI883596A (en) 1989-02-05
HUT47303A (en) 1989-02-28
GR1000490B (en) 1992-07-30
NO920277D0 (en) 1992-01-22
ES2010775A6 (en) 1989-12-01
CN1061225A (en) 1992-05-20
NO172440C (en) 1993-07-21
SK279325B6 (en) 1998-10-07
DK434088A (en) 1989-02-05
IT8821535A0 (en) 1988-07-28
NO920277L (en) 1989-02-24
NL192683C (en) 1997-12-02
AU2030688A (en) 1989-06-08
DK11992A (en) 1992-01-31
DK11992D0 (en) 1992-01-31
IL87290A (en) 1993-01-31
CA1310637C (en) 1992-11-24
JPH01100188A (en) 1989-04-18
HU202547B (en) 1991-03-28
YU143688A (en) 1990-04-30
CZ286893B6 (en) 2000-07-12
FI883596A0 (en) 1988-08-01
NO883299L (en) 1989-02-24
GB2207674B (en) 1991-09-11
NO172440B (en) 1993-04-13
CY1625A (en) 1992-07-10
GR880100512A (en) 1989-05-25
DK434088D0 (en) 1988-08-03
NL970042I2 (en) 2005-06-01
CN1027169C (en) 1994-12-28
IL87290A0 (en) 1989-01-31
NO170284B (en) 1992-06-22
PT88186B (en) 1995-07-03
YU10390A (en) 1990-06-30
MY104321A (en) 1994-03-31
KR890003790A (en) 1989-04-18
JPH0699465B2 (en) 1994-12-07
DD299067A5 (en) 1992-03-26
YU10490A (en) 1990-06-30
ATA195588A (en) 1994-07-15
IE61040B1 (en) 1994-09-07
FI87790B (en) 1992-11-13
SG101291G (en) 1992-01-17
DE3826562A1 (en) 1989-02-16
NL970042I1 (en) 1998-03-02
IE882378L (en) 1989-02-04
SE8802815L (en) 1989-02-05
US4904768A (en) 1990-02-27
MX9202851A (en) 1992-06-30
GB8818462D0 (en) 1988-09-07
DK169344B1 (en) 1994-10-10
HU208147B (en) 1993-08-30
PT88186A (en) 1989-06-30

Similar Documents

Publication Publication Date Title
USRE35524E (en) Epipodophyllotoxin glucoside 4'-phosphate derivatives
AU772478B2 (en) Phosphoramidate, and mono-, DI-, and tri-phosphate esters of (1R,CIS)-4-(6-amino-9H-purin-9-YL)-2-cyclopentene-1- methanol as antiviral agents
US4873355A (en) Process for regioselectively preparing phosphorylated inositols and other cyclitols
US5529989A (en) Pancratistatin prodrug
WO1984000367A1 (en) New glycerine derivatives for the synthesis of phospholipides
US6107284A (en) Water-soluble derivatives of epipodophyllotoxin, process for their preparation, their use as medicinal products and their intended use in anti-cancer treatments
EP0329108A2 (en) Epipodophyllotoxin glucoside lactam derivatives
US4924023A (en) Phosphorylated inositols
NZ225089A (en) 3',4'-dinitrogen substituted epipodophyllotoxin glucoside derivatives and pharmaceutical compositions
US4874779A (en) Mitomycin phosphate derivatives
US3478013A (en) Carbohydrate derivatives of erythromycin
US5034380A (en) Alkoxymethylidene epipodophyllotoxin glucosides
HU207734B (en) Process for producing phosphates and sulfates of 4'-demethyl-epipodophyl-lotoxin-glycozides and pharmaceutical compositions containing them
ZA200208591B (en) Bis-(N,N-bis-(2-haloethyl)amino) phosphoramidates as antitumor agents.
US5026898A (en) Process for regioselectively preparing phosphorylated inositols and other cyclitols
EP0548834A1 (en) Stable hexahydrate of etoposide 4'-phosphate disodium salt

Legal Events

Date Code Title Description
PTEF Application for a patent term extension

Free format text: PRODUCT NAME: ETOPOPHOS (ETOPOSIDE PHOSPHATE); REQUESTED FOR 1017 DAYS

Filing date: 19960625

Expiry date: 20070804

FPAY Fee payment

Year of fee payment: 8

CC Certificate of correction
PTEG Grant of a patent term extension

Free format text: PRODUCT NAME: ETOPOPHOS (ETOPOSIDE PHOSPHATE)

Filing date: 19960625

Expiry date: 20070804

FPAY Fee payment

Year of fee payment: 12