US9750248B2 - Synergistic fungicidal compositions - Google Patents

Synergistic fungicidal compositions Download PDF

Info

Publication number
US9750248B2
US9750248B2 US14/142,758 US201314142758A US9750248B2 US 9750248 B2 US9750248 B2 US 9750248B2 US 201314142758 A US201314142758 A US 201314142758A US 9750248 B2 US9750248 B2 US 9750248B2
Authority
US
United States
Prior art keywords
fungicide
cmpd
yes
compound
cyproconazole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active, expires
Application number
US14/142,758
Other languages
English (en)
Other versions
US20140187590A1 (en
Inventor
David Ouimette
John Todd Mathieson
Chenglin Yao
OLAVO CORREA da SILVA
Greg Kemmit
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corteva Agriscience LLC
Original Assignee
Dow AgroSciences LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dow AgroSciences LLC filed Critical Dow AgroSciences LLC
Priority to US14/142,758 priority Critical patent/US9750248B2/en
Publication of US20140187590A1 publication Critical patent/US20140187590A1/en
Assigned to DOW AGROSCIENCES LLC reassignment DOW AGROSCIENCES LLC ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: KEMMITT, Greg, DA SILVA, OLAVO CORREA, MATHIESON, JOHN T, OUIMETTE, DAVID G, YAO, CHENGLIN
Application granted granted Critical
Publication of US9750248B2 publication Critical patent/US9750248B2/en
Assigned to CORTEVA AGRISCIENCE LLC reassignment CORTEVA AGRISCIENCE LLC CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). Assignors: DOW AGROSCIENCES LLC
Active legal-status Critical Current
Adjusted expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/48Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with two nitrogen atoms as the only ring hetero atoms
    • A01N43/541,3-Diazines; Hydrogenated 1,3-diazines
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/02Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms
    • A01N43/24Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one or more oxygen or sulfur atoms as the only ring hetero atoms with two or more hetero atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/64Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with three nitrogen atoms as the only ring hetero atoms
    • A01N43/647Triazoles; Hydrogenated triazoles
    • A01N43/6531,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N2300/00Combinations or mixtures of active ingredients covered by classes A01N27/00 - A01N65/48 with other active or formulation relevant ingredients, e.g. specific carrier materials or surfactants, covered by classes A01N25/00 - A01N65/48

Definitions

  • This disclosure concerns a synergistic fungicidal composition containing a fungicidally effective amount of a compound of Formula I and at least one triazole.
  • Fungicides are compounds, of natural or synthetic origin, which act to protect plants against damage caused by fungi.
  • Current methods of agriculture rely heavily on the use of fungicides. In fact, some crops cannot be grown usefully without the use of fungicides.
  • the use of fungicides allows a grower to increase the yield and the quality of the crop and consequently, increase the value of the crop. In most situations, the increase in value of the crop is worth at least three times the cost of the use of the fungicide.
  • synergistic compositions comprising fungicidal compounds. It is a further object of this disclosure to provide processes that use these synergistic compositions.
  • the synergistic compositions are capable of preventing or curing, or both, diseases caused by fungi within the classes Ascomycetes and Basidiomycetes.
  • the synergistic compositions have improved efficacy against the Ascomycotes and Basidiomycotes pathogens, including wheat leaf blotch (caused by Mycosphaerella graminicola ; anamorph: Septoria tritici ; Bayer code SEPTTR); and wheat brown rust, caused by Puccinia recondita f. sp. tritici , synonym Puccinia triticina ; Bayer code PUCCRT).
  • synergistic compositions are provided along with methods for their use.
  • the present disclosure concerns a synergistic fungicidal mixture comprising a fungicidally effective amount of a compound of Formula I and at least one triazole fungicide.
  • fungicidally effective amount is synonymous with the phrase “amount effective to control or reduce fungi” and is used in relation to a fungicidal composition in an amount that will kill or materially inhibit the growth, proliferation, division, reproduction, or spread of a significant number of fungi.
  • the compound of Formula I (3S,6S,7R,8R)-8-benzyl-3-(3-((isobutyryloxy)methoxy)-4-methoxypicolinamido)-6-methyl-4,9-dioxo-1,5-dioxonan-7-yl isobutyrate, is a macrocyclic picolamide which acts at the MET III Q i site and possesses the following structure:
  • the triazole is selected from the group consisting of tebuconazole, propiconazole, metconazole, and cyproconazole.
  • Tebuconazole is the common name for ⁇ -[2-(4-chlorophenyl)ethyl]- ⁇ -(1,1-dimethylethyl)-1H-1,2,4-triazole-1-ethanol and possesses the following structure:
  • Tebuconazole is a commercial fungicide used to control fungal diseases in a variety of agricultural crops, particularly cereals, including wheat, barley, and canola, as well as peanuts, oilseed rape, grapes, pome fruit, stone fruit, and bananas.
  • Propiconazole is the common name for 1-[[2-(2,4-dichlorophenyl)-4-propyl-1,3-dioxolan-2-yl]methyl]-1H-1,2,4-triazole and possesses the following structure:
  • Metconazole is the common name for 5-[(4-chlorophenyl)methyl]-2,2-dimethyl-1-(1H-1,2,4-triazol-1-ylmethyl)cyclopentanol and possesses the following structure:
  • Cyproconazole is the common name for ⁇ -(4-chlorophenyl)- ⁇ -(1-cyclopropylethyl)-1H-1,2,4-triazole-1-ethanol and possesses the following structure:
  • the weight ratio of the compound of Formula I to tricyclazole at which the fungicidal effect is synergistic generally lies within the range of between about 1:16 and about 64:1.
  • the weight ratio of the compound of Formula I to tebuconazole at which the fungicidal effect is synergistic lies within the range of between about 1:16 and about 60:1.
  • the weight ratio of the compound of Formula I to propiconazole at which the fungicidal effect is synergistic lies within the range of between about 1:64 and about 64:1.
  • the weight ratio of the compound of Formula I to metconazole at which the fungicidal effect is synergistic lies within the range of between about 1:4 and about 16:1.
  • the weight ratio of the compound of Formula I to cyproconazole at which the fungicidal effect is synergistic lies within the range of between about 1:16 and about 64:1.
  • the rate at which the synergistic composition is applied will depend upon the specific composition, the particular type of fungus to be controlled, the degree of control required and/or the timing and method of application.
  • the composition described herein can be applied at an application rate of between about 50 grams per hectare (g/ha) and about 2300 g/ha based on the total amount of active ingredients in the composition.
  • the composition described herein can be applied at an application rate of between about 100 g/ha and about 550 g/ha.
  • the triazole may be applied at a rate between about 50 g/ha and about 250 g/ha.
  • Tebuconazole may be applied at a rate between about 50 g/ha and about 250 g/ha and the compound of Formula I may be applied at a rate between about 50 g/ha and about 300 g/ha.
  • Propiconazole may be applied at a rate between about 50 g/ha and about 250 g/ha and the compound of Formula I may be applied at a rate between about 50 g/ha and about 300 g/ha.
  • Metconozole may be applied at a rate between about 50 g/ha and about 250 g/ha and the compound of Formula I may be applied at a rate between about 50 g/ha and about 300 g/ha.
  • Cyproconazole may be applied at a rate between about 50 g/ha and about 250 g/ha and the compound of Formula I may be applied at a rate between about 50 g/ha and about 300 g/ha.
  • the components of the synergistic mixture described herein can be applied either separately or as part of a multipart fungicidal system.
  • the synergistic mixture of the present disclosure can be applied in conjunction with one or more other fungicides to control a wider variety of undesirable diseases.
  • the presently claimed compounds may be formulated with the other fungicide(s), tank mixed with the other fungicide(s) or applied sequentially with the other fungicide(s).
  • Such other fungicides may include 2-(thiocyanatomethylthio)-benzothiazole, 2-phenylphenol, 8-hydroxyquinoline sulfate, ametoctradin, amisulbrom, antimycin, Ampelomyces quisqualis , azaconazole, azoxystrobin, Bacillus subtilis, Bacillus subtilis strain QST713, benalaxyl, benomyl, benthiavalicarb-isopropyl, benzylaminobenzene-sulfonate (BABS) salt, bicarbonates, biphenyl, bismerthiazol, bitertanol, bixafen, blasticidin-S, borax, Bordeaux mixture, boscalid, bromuconazole, bupirimate, calcium polysulfide, captafol, captan, carbendazim, carboxin, carpropamid, carvone, chlazafenone, chloroneb, chlor
  • compositions described herein are preferably applied in the form of a formulation comprising a composition of a compound of Formula I and at least one triazole.
  • the triazole fungicide selected from the group consisting of tebuconazole, propiconazole, metconazole, and cyproconazole, together with a phytologically acceptable carrier if desired.
  • Concentrated formulations can be dispersed in water, or another liquid, for application, or formulations can be dust-like or granular, which can then be applied without further treatment.
  • the formulations are prepared according to procedures which are conventional in the agricultural chemical art, but which are novel and important because of the presence therein of a synergistic composition.
  • the formulations that are applied most often are aqueous suspensions or emulsions.
  • Either such water-soluble, water suspendable, or emulsifiable formulations are solids, usually known as wettable powders, or liquids, usually known as emulsifiable concentrates, aqueous suspensions, or suspension concentrates.
  • the present disclosure contemplates all vehicles by which the synergistic compositions can be formulated for delivery and use as a fungicide.
  • any material to which these synergistic compositions can be added may be used, provided they yield the desired utility without significant interference with the activity of these synergistic compositions as antifungal agents.
  • Wettable powders which may be compacted to form water dispersible granules, comprise an intimate mixture of the synergistic composition, a carrier and agriculturally acceptable surfactants.
  • concentration of the synergistic composition in the wettable powder is usually from about 10% to about 90% by weight, more preferably about 25% to about 75% by weight, based on the total weight of the formulation.
  • the synergistic composition can be compounded with any of the finely divided solids, such as prophyllite, talc, chalk, gypsum, Fuller's earth, bentonite, attapulgite, starch, casein, gluten, montmorillonite clays, diatomaceous earths, purified silicates or the like.
  • the finely divided carrier is ground or mixed with the synergistic composition in a volatile organic solvent.
  • Effective surfactants comprising from about 0.5% to about 10% by weight of the wettable powder, include sulfonated lignins, naphthalenesulfonates, alkylbenzenesulfonates, alkyl sulfates, and non-ionic surfactants, such as ethylene oxide adducts of alkyl phenols.
  • Emulsifiable concentrates of the synergistic composition comprise a convenient concentration, such as from about 10% to about 50% by weight, in a suitable liquid, based on the total weight of the emulsifiable concentrate formulation.
  • the components of the synergistic compositions jointly or separately, are dissolved in a carrier, which is either a water miscible solvent or a mixture of water-immiscible organic solvents, and emulsifiers.
  • the concentrates may be diluted with water and oil to form spray mixtures in the form of oil-in-water emulsions.
  • Useful organic solvents include aromatics, especially the high-boiling naphthalenic and olefinic portions of petroleum such as heavy aromatic naphtha. Other organic solvents may also be used, such as, for example, terpenic solvents, including rosin derivatives, aliphatic ketones, such as cyclohexanone, and complex alcohols, such as 2-ethoxyethanol.
  • Emulsifiers which can be advantageously employed herein can be readily determined by those skilled in the art and include various nonionic, anionic, cationic and amphoteric emulsifiers, or a blend of two or more emulsifiers.
  • nonionic emulsifiers useful in preparing the emulsifiable concentrates include the polyalkylene glycol ethers and condensation products of alkyl and aryl phenols, aliphatic alcohols, aliphatic amines or fatty acids with ethylene oxide, propylene oxides such as the ethoxylated alkyl phenols and carboxylic esters solubilized with the polyol or polyoxyalkylene.
  • Cationic emulsifiers include quaternary ammonium compounds and fatty amine salts.
  • Anionic emulsifiers include the oil-soluble salts (e.g., calcium) of alkylaryl sulphonic acids, oil soluble salts or sulphated polyglycol ethers and appropriate salts of phosphated polyglycol ether.
  • Mixtures of two or more organic liquids are also often suitably employed in the preparation of the emulsifiable concentrate.
  • the preferred organic liquids are xylene, and propyl benzene fractions, with xylene being most preferred.
  • the surface-active dispersing agents are usually employed in liquid formulations and in the amount of from 0.1 to 20 percent by weight of the combined weight of the dispersing agent with the synergistic compositions.
  • the formulations can also contain other compatible additives, for example, plant growth regulators and other biologically active compounds used in agriculture.
  • Aqueous suspensions comprise suspensions of one or more water-insoluble compounds, dispersed in an aqueous vehicle at a concentration in the range from about 5% to about 70% by weight, based on the total weight of the aqueous suspension formulation.
  • Suspensions are prepared by finely grinding the components of the synergistic combination either together or separately, and vigorously mixing the ground material into a vehicle comprised of water and surfactants chosen from the same types discussed above. Other ingredients, such as inorganic salts and synthetic or natural gums, may also be added to increase the density and viscosity of the aqueous vehicle. It is often most effective to grind and mix at the same time by preparing the aqueous mixture and homogenizing it in an implement such as a sand mill, ball mill, or piston-type homogenizer.
  • the synergistic composition may also be applied as granular formulation, which is particularly useful for applications to the soil.
  • Granular formulations usually contain from about 0.5% to about 10% by weight of the compounds, based on the total weight of the granular formulation, dispersed in a carrier which consists entirely or in large part of coarsely divided attapulgite, bentonite, diatomite, clay or a similar inexpensive substance.
  • Such formulations are usually prepared by dissolving the synergistic composition in a suitable solvent and applying it to a granular carrier which has been preformed to the appropriate particle size, in the range of from about 0.5 to about 3 mm.
  • Such formulations may also be prepared by making a dough or paste of the carrier and the synergistic composition, and crushing and drying to obtain the desired granular particle.
  • Dusts containing the synergistic composition are prepared simply by intimately mixing the synergistic composition in powdered form with a suitable dusty agricultural carrier, such as, for example, kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% by weight of the synergistic composition/carrier combination.
  • a suitable dusty agricultural carrier such as, for example, kaolin clay, ground volcanic rock, and the like. Dusts can suitably contain from about 1% to about 10% by weight of the synergistic composition/carrier combination.
  • the formulations may contain agriculturally acceptable adjuvant surfactants to enhance deposition, wetting and penetration of the synergistic composition onto the target crop and organism. These adjuvant surfactants may optionally be employed as a component of the formulation or as a tank mix. The amount of adjuvant surfactant will vary from 0.01 percent to 1.0 percent v/v based on a spray-volume of water, preferably 0.05 to 0.5 percent.
  • Suitable adjuvant surfactants include ethoxylated nonyl phenols, ethoxylated synthetic or natural alcohols, salts of the esters or sulphosuccinic acids, ethoxylated organosilicones, ethoxylated fatty amines and blends of surfactants with mineral or vegetable oils.
  • the formulations may optionally include combinations that can comprise at least 1% by weight of one or more of the synergistic compositions with another pesticidal compound.
  • additional pesticidal compounds may be fungicides, insecticides, nematocides, miticides, arthropodicides, bactericides or combinations thereof that are compatible with the synergistic compositions of the present disclosure in the medium selected for application, and not antagonistic to the activity of the present compounds.
  • the other pesticidal compound is employed as a supplemental toxicant for the same or for a different pesticidal use.
  • the pesticidal compound and the synergistic composition can generally be mixed together in a weight ratio of from 1:100 to 100:1.
  • the present disclosure includes within its scope methods for the control or prevention of fungal attack. These methods comprise applying to the locus of the fungus, or to a locus in which the infestation is to be prevented (for example applying to wheat plants), a fungicidally effective amount of the synergistic composition.
  • the synergistic composition is suitable for treatment of various plants at fungicidal levels, while exhibiting low phytotoxicity.
  • the synergistic composition is useful in a protectant or eradicant fashion.
  • the synergistic composition may be applied by any of a variety of known techniques, either as the synergistic composition or as a formulation comprising the synergistic composition.
  • the synergistic compositions may be applied to the roots, seeds or foliage of plants for the control of various fungi, without damaging the commercial value of the plants.
  • the synergistic composition may be applied in the form of any of the generally used formulation types, for example, as solutions, dusts, wettable powders, flowable concentrates, or emulsifiable concentrates. These materials are conveniently applied in various known fashions.
  • the synergistic composition has been found to have significant fungicidal effect particularly for agricultural use.
  • the synergistic composition is particularly effective for use with agricultural crops and horticultural plants.
  • the synergistic composition is effective in controlling a variety of undesirable fungi that infect useful plant crops.
  • the synergistic composition can be used against a variety of Ascomycete fungi, including for example the following representative fungi species: leaf blotch of wheat ( Mycosphaerella graminicola ; anamorph: Septoria tritici ; Bayer code SEPTTR); glume blotch of wheat ( Leptosphaeria nodorum ; Bayer code LEPTNO; anamorph: Stagonospora nodorum ); spot blotch of barley ( Cochliobolus sativum ; Bayer code COCHSA; anamorph: Helminthosporium sativum ); leaf spot of sugar beets ( Cercospora beticola ; Bayer code CERCBE); leaf spot of peanut ( Mycosphaerella arachidis ; Bayer code MYCOAR; anamorph: Cercospora arachidicola ); cucumber anthracnose ( Glomerella lagenarium ; anamorph: Colletotrichum
  • the synergistic composition can be used against a variety of Ascomycote and Basidiomycote pathogens, including wheat leaf blotch caused by Septoria tritici (SEPTTR), and wheat brown rust, caused by Puccinia recondita - tritici (PUCCRT).
  • SEPTTR Septoria tritici
  • PUCRT wheat brown rust
  • the following list includes additional representative fungi species: Stripe rust of wheat caused by Puccinia striiformis (PUCCST) and stem rust of wheat, caused by Puccinia graminis f sp. tritici (PUCCTR). It will be understood by those in the art that the efficacy of the synergistic compositions for one or more of the foregoing fungi establishes the general utility of the synergistic compositions as fungicides.
  • the synergistic compositions have a broad range of efficacy as a fungicide.
  • the exact amount of the synergistic composition to be applied is dependent not only on the relative amounts of the components, but also on the particular action desired, the fungal species to be controlled, and the stage of growth thereof, as well as the part of the plant or other product to be contacted with the synergistic composition.
  • formulations containing the synergistic composition may not be equally effective at similar concentrations or against the same fungal species.
  • the synergistic compositions are effective in use with plants in a disease inhibiting and phytopathologically acceptable amount.
  • the term “disease inhibiting and phytopathologically acceptable amount” refers to an amount of the synergistic composition that kills or inhibits the plant disease for which control is desired, but is not significantly toxic to the plant. This amount will generally be from about 1 to about 1000 ppm, with about 2 to about 500 ppm being preferred.
  • concentration of synergistic composition required varies with the fungal disease to be controlled, the type of formulation employed, the method of application, the particular plant species, climate conditions, and the like.
  • a suitable application rate for the synergistic composition typically corresponds to about 0.10 to about 4 pounds/acre (about 0.1 to 0.45 grams per square meter g/m 2 ).
  • compositions can be applied to fungi or their locus by the use of conventional ground sprayers, granule applicators, and by other conventional means known to those skilled in the art.
  • Treatments consisted of fungicides, including a compound of Formula I, tebuconazole, propiconazole, metconazole, and cyproconazole, applied either individually or as two-way mixtures with a compound of Formula I.
  • Technical grades of materials were dissolved in acetone to make stock solutions which were used to perform three-fold dilutions in acetone for each individual fungicide component or for the two-way mixtures. Desired fungicide rates were obtained after mixing dilutions with nine volumes of water containing 110 parts per million (ppm) Triton X-100.
  • the fungicide solutions (10 milliliters (mL)) were applied onto six pots of plants using an automated booth sprayer, which utilized two 6218-1/4 JAUPM spray nozzles operating at 20 pounds per square inch (psi) set at opposing angles to cover both leaf surfaces. All sprayed plants were allowed to air dry prior to further handling. Control plants were sprayed in the same manner with a solvent blank.
  • the plants were inoculated with an aqueous spore suspension of the pathogen of interest (either PUCCRT or SEPTTR) and then placed in a dew room from 1-3 days to allow for infection to occur. The plants were then placed in the greenhouse for symptom development to occur. In the case of PUCCRT, symptoms typically appeared in 7-10 days while for SEPTTR symptoms typically appeared in 25-30 days.
  • an aqueous spore suspension of the pathogen of interest either PUCCRT or SEPTTR
  • plants were inoculated with an aqueous spore suspension of the pathogen of interest (either PUCCRT or SEPTTR) and then placed in a dew room from 1-3 days to allow for infection to occur.
  • the plants were removed from the dew room, allowed to dry for approximately one hour (h), sprayed with the test materials formulated as described above, and then placed in the greenhouse for symptom development to occur as described previously.
  • the field trial was conducted at the Dow AgroSciences field station located at Mogi Mirim, Brazil. There were four replicate plots per treatment, with each plot 2 ⁇ 3.5 meters in length and width. The plots were sprayed with the treatments twice, once at growth stage BBCH 33 and again at growth stage BBCH 61-65. Treatments were applied with spray volumes of 150 liters/hectare (L/ha) with an XR flat fan nozzle. Disease development relied on natural inoculum (no artificial infestation). Ten plants per plot were used for each disease severity assessment, with all leaves per plant used for the assessment.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Plant Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dentistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
US14/142,758 2012-12-31 2013-12-28 Synergistic fungicidal compositions Active 2034-02-12 US9750248B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/142,758 US9750248B2 (en) 2012-12-31 2013-12-28 Synergistic fungicidal compositions

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201261747464P 2012-12-31 2012-12-31
US14/142,758 US9750248B2 (en) 2012-12-31 2013-12-28 Synergistic fungicidal compositions

Publications (2)

Publication Number Publication Date
US20140187590A1 US20140187590A1 (en) 2014-07-03
US9750248B2 true US9750248B2 (en) 2017-09-05

Family

ID=51017873

Family Applications (1)

Application Number Title Priority Date Filing Date
US14/142,758 Active 2034-02-12 US9750248B2 (en) 2012-12-31 2013-12-28 Synergistic fungicidal compositions

Country Status (28)

Country Link
US (1) US9750248B2 (uk)
EP (1) EP2941126B1 (uk)
JP (2) JP6560619B2 (uk)
KR (1) KR102153363B1 (uk)
CN (1) CN105007738B (uk)
AR (1) AR094367A1 (uk)
AU (1) AU2013369670B2 (uk)
BR (1) BR112015015659B1 (uk)
CA (1) CA2896242A1 (uk)
CL (1) CL2015001842A1 (uk)
CR (1) CR20150339A (uk)
DK (1) DK2941126T3 (uk)
EC (1) ECSP15028116A (uk)
ES (1) ES2727663T3 (uk)
HK (1) HK1217156A1 (uk)
HU (1) HUE043708T2 (uk)
IL (1) IL239651B (uk)
LT (1) LT2941126T (uk)
MX (1) MX369107B (uk)
NZ (1) NZ709309A (uk)
PH (1) PH12015501496A1 (uk)
PL (1) PL2941126T3 (uk)
RU (1) RU2687225C2 (uk)
TW (1) TWI640248B (uk)
UA (1) UA116554C2 (uk)
UY (1) UY35254A (uk)
WO (1) WO2014106259A1 (uk)
ZA (1) ZA201504603B (uk)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955691B2 (en) 2014-07-08 2018-05-01 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
US9955690B2 (en) * 2009-10-07 2018-05-01 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
US9974304B2 (en) 2013-12-26 2018-05-22 Dow Agrosciences Llc Use of macrocyclic picolinamides as fungicides
US10173971B2 (en) 2014-12-30 2019-01-08 Dow Agrosciences Llc Picolinamides with fungicidal activity
US10173982B2 (en) 2016-08-30 2019-01-08 Dow Agrosciences Llc Picolinamides as fungicides
US10172358B2 (en) 2016-08-30 2019-01-08 Dow Agrosciences Llc Thiopicolinamide compounds with fungicidal activity
US10173981B2 (en) 2014-12-30 2019-01-08 Dow Agrosciences Llc Picolinamides as fungicides
US10172354B2 (en) 2012-12-28 2019-01-08 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
US10182568B2 (en) 2014-12-30 2019-01-22 Dow Agrosciences Llc Use of picolinamide compounds as fungicides
US10188109B2 (en) 2014-12-30 2019-01-29 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
US10246417B2 (en) 2017-01-05 2019-04-02 Dow Agrosciences Llc Picolinamides as fungicides
US10244754B2 (en) 2016-08-30 2019-04-02 Dow Agrosciences Llc Picolinamide N-oxide compounds with fungicidal activity
US20190124924A1 (en) * 2015-12-30 2019-05-02 Dow Agro Sciences Llc Fungal control of white mold
US10334852B2 (en) 2016-08-30 2019-07-02 Dow Agrosciences Llc Pyrido-1,3-oxazine-2,4-dione compounds with fungicidal activity
US10433555B2 (en) 2014-12-30 2019-10-08 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
US11155520B2 (en) 2018-03-08 2021-10-26 Dow Agrosciences Llc Picolinamides as fungicides
US11191269B2 (en) 2017-05-02 2021-12-07 Dow Agrosciences Llc Use of an acyclic picolinamide compound as a fungicide for fungal diseases on turfgrasses
US11206828B2 (en) 2017-05-02 2021-12-28 Corteva Agriscience Llc Synergistic mixtures for fungal controls in cereals
US11639334B2 (en) 2018-10-15 2023-05-02 Corteva Agriscience Llc Methods for synthesis of oxypicolinamides
US11771085B2 (en) 2017-05-02 2023-10-03 Corteva Agriscience Llc Synergistic mixtures for fungal control in cereals

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10455835B2 (en) * 2012-12-31 2019-10-29 Dow Agrosciences Llc Fungicidal compositions for controlling leaf spots in sugar beets
US9247742B2 (en) * 2012-12-31 2016-02-02 Dow Agrosciences Llc Synergistic fungicidal compositions
WO2015005355A1 (ja) * 2013-07-10 2015-01-15 Meiji Seikaファルマ株式会社 ピコリン酸誘導体を含んでなる相乗性植物病害防除用組成物
BR112016006366A2 (pt) * 2013-10-01 2017-08-01 Dow Agrosciences Llc uso de picolinamidas macrocíclicas como fungicidas
CN106061257A (zh) 2013-12-26 2016-10-26 美国陶氏益农公司 大环吡啶酰胺作为杀真菌剂的用途
ES2744911T3 (es) * 2013-12-31 2020-02-26 Dow Agrosciences Llc Mezclas fungicidas sinérgicas para luchar contra hongos en los cereales
CN106456601A (zh) 2014-05-06 2017-02-22 美国陶氏益农公司 作为杀真菌剂的大环吡啶酰胺
WO2016007531A1 (en) 2014-07-08 2016-01-14 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
US20160037774A1 (en) * 2014-08-08 2016-02-11 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
PL3240416T3 (pl) * 2014-12-30 2022-12-19 Corteva Agriscience Llc Kompozycje fungicydowe
WO2016174042A1 (en) 2015-04-27 2016-11-03 BASF Agro B.V. Pesticidal compositions
EP3141118A1 (en) * 2015-09-14 2017-03-15 Bayer CropScience AG Compound combination for controlling control phytopathogenic harmful fungi
WO2017194363A1 (en) * 2016-05-10 2017-11-16 Bayer Cropscience Aktiengesellschaft Compound combination for controlling phytopathogenic harmful fungi
EP3245872A1 (en) 2016-05-20 2017-11-22 BASF Agro B.V. Pesticidal compositions
TWI774760B (zh) * 2017-05-02 2022-08-21 美商科迪華農業科技有限責任公司 用於蔬菜中的真菌防治之協同性混合物

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276038A (en) 1992-06-01 1994-01-04 American Cyanamid Company 1-aryl-3-(3,4-dihydro-4-oxo-3-quinazolinyl)urea fungicidal agents
US20040110777A1 (en) 2001-12-03 2004-06-10 Annis Gary David Quinazolinones and pyridinylpyrimidinones for controlling invertebrate pests
US20040192924A1 (en) 2001-10-23 2004-09-30 Meyer Kevin Gerald Derivatives of uk-2a
US6953807B2 (en) 2001-07-11 2005-10-11 Bayer Cropscience S.A. 4-substituted-picolinic acid amide derivatives useful as fungicides
EA014775B1 (ru) 2005-12-03 2011-02-28 Байер Кропсайенс Аг Комбинация биологически активных веществ фунгицидного действия
US20110082160A1 (en) 2009-10-07 2011-04-07 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
US20110166109A1 (en) 2009-07-16 2011-07-07 Bayer Cropscience Ag Synergistic Active Compound Combinations Comprising Phenyltriazoles
US20110207607A1 (en) * 2010-02-19 2011-08-25 Dow Agrosciences Llc Synergistic herbicide/fungicide composition containing certain pyridine carboxylic acids and certain fungicides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MY115814A (en) * 1995-06-16 2003-09-30 Bayer Ip Gmbh Crop protection compositions
EP1563731A1 (en) * 2004-02-12 2005-08-17 Bayer CropScience S.A. Fungicidal composition comprising a pyridylethylbenzamide derivative and a compound capable of inhibiting the ergosterol biosynthesis

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5276038A (en) 1992-06-01 1994-01-04 American Cyanamid Company 1-aryl-3-(3,4-dihydro-4-oxo-3-quinazolinyl)urea fungicidal agents
US6953807B2 (en) 2001-07-11 2005-10-11 Bayer Cropscience S.A. 4-substituted-picolinic acid amide derivatives useful as fungicides
US20040192924A1 (en) 2001-10-23 2004-09-30 Meyer Kevin Gerald Derivatives of uk-2a
US20040110777A1 (en) 2001-12-03 2004-06-10 Annis Gary David Quinazolinones and pyridinylpyrimidinones for controlling invertebrate pests
EA014775B1 (ru) 2005-12-03 2011-02-28 Байер Кропсайенс Аг Комбинация биологически активных веществ фунгицидного действия
US20110166109A1 (en) 2009-07-16 2011-07-07 Bayer Cropscience Ag Synergistic Active Compound Combinations Comprising Phenyltriazoles
CN102510721A (zh) 2009-07-16 2012-06-20 拜尔农作物科学股份公司 含苯基***的协同活性物质结合物
US20110082160A1 (en) 2009-10-07 2011-04-07 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
CN102711477A (zh) 2009-10-07 2012-10-03 陶氏益农公司 用于谷物中的真菌控制的协同增效的杀真菌混合物
US20110207607A1 (en) * 2010-02-19 2011-08-25 Dow Agrosciences Llc Synergistic herbicide/fungicide composition containing certain pyridine carboxylic acids and certain fungicides
CN102843905A (zh) 2010-02-19 2012-12-26 陶氏益农公司 包含某些吡啶羧酸和某些杀真菌剂的除草剂/杀真菌剂协同组合物

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
Anonymous, "Synergistic Fungicidal Compositions of Heterocyclic Aromatic Amides and Triazoles",IP.Com Journal, IP.Com, Inc., West Henrietta, NY (Jul. 20, 2004).
Decision on Grant (RU 2015131825), dated Jan. 23, 2017.
Extended European Search Report (EP 13867164), dated Jun. 16, 2016.
Office Action No. 9539 (Colombian Appl. No. 15175009), dated Sep. 1, 2016.
PCT/US2013/078524 filed Dec. 31, 2013, International Search Report dated Apr. 24, 2014.
Scherm et al., "Quantitative review of fungicide efficacy trials for managing soybean rust in Brazil", Crop Protection 28 (2009) (Elsevier), pp. 774-782.
Search Report (CN Appl. No. 201380073857.X), dated Jul. 4, 2016.

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9955690B2 (en) * 2009-10-07 2018-05-01 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
US10172354B2 (en) 2012-12-28 2019-01-08 Dow Agrosciences Llc Synergistic fungicidal mixtures for fungal control in cereals
US9974304B2 (en) 2013-12-26 2018-05-22 Dow Agrosciences Llc Use of macrocyclic picolinamides as fungicides
US9955691B2 (en) 2014-07-08 2018-05-01 Dow Agrosciences Llc Macrocyclic picolinamides as fungicides
US10588318B2 (en) 2014-12-30 2020-03-17 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
US10252989B2 (en) 2014-12-30 2019-04-09 Dow Agrosciences Llc Picolinamides with fungicidal activity
US10173981B2 (en) 2014-12-30 2019-01-08 Dow Agrosciences Llc Picolinamides as fungicides
US11751568B2 (en) 2014-12-30 2023-09-12 Corteva Agriscience Llc Picolinamide compounds with fungicidal activity
US10182568B2 (en) 2014-12-30 2019-01-22 Dow Agrosciences Llc Use of picolinamide compounds as fungicides
US10188109B2 (en) 2014-12-30 2019-01-29 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
US10595531B2 (en) 2014-12-30 2020-03-24 Dow Agrosciences Llc Use of picolinamide compounds as fungicides
US10173971B2 (en) 2014-12-30 2019-01-08 Dow Agrosciences Llc Picolinamides with fungicidal activity
US10433555B2 (en) 2014-12-30 2019-10-08 Dow Agrosciences Llc Picolinamide compounds with fungicidal activity
US20190124924A1 (en) * 2015-12-30 2019-05-02 Dow Agro Sciences Llc Fungal control of white mold
US10214490B2 (en) 2016-08-30 2019-02-26 Dow Agrosciences Llc Picolinamides as fungicides
US10244754B2 (en) 2016-08-30 2019-04-02 Dow Agrosciences Llc Picolinamide N-oxide compounds with fungicidal activity
US10334852B2 (en) 2016-08-30 2019-07-02 Dow Agrosciences Llc Pyrido-1,3-oxazine-2,4-dione compounds with fungicidal activity
US10231452B2 (en) 2016-08-30 2019-03-19 Dow Agrosciences Llc Thiopicolinamide compounds with fungicidal activity
US10172358B2 (en) 2016-08-30 2019-01-08 Dow Agrosciences Llc Thiopicolinamide compounds with fungicidal activity
US10173982B2 (en) 2016-08-30 2019-01-08 Dow Agrosciences Llc Picolinamides as fungicides
US10246417B2 (en) 2017-01-05 2019-04-02 Dow Agrosciences Llc Picolinamides as fungicides
US11191269B2 (en) 2017-05-02 2021-12-07 Dow Agrosciences Llc Use of an acyclic picolinamide compound as a fungicide for fungal diseases on turfgrasses
US11206828B2 (en) 2017-05-02 2021-12-28 Corteva Agriscience Llc Synergistic mixtures for fungal controls in cereals
US11771085B2 (en) 2017-05-02 2023-10-03 Corteva Agriscience Llc Synergistic mixtures for fungal control in cereals
US11155520B2 (en) 2018-03-08 2021-10-26 Dow Agrosciences Llc Picolinamides as fungicides
US11639334B2 (en) 2018-10-15 2023-05-02 Corteva Agriscience Llc Methods for synthesis of oxypicolinamides

Also Published As

Publication number Publication date
IL239651B (en) 2018-07-31
EP2941126A4 (en) 2016-07-20
HK1217156A1 (zh) 2016-12-30
JP2018138593A (ja) 2018-09-06
UA116554C2 (uk) 2018-04-10
WO2014106259A1 (en) 2014-07-03
KR102153363B1 (ko) 2020-09-08
PH12015501496B1 (en) 2015-09-28
NZ709309A (en) 2019-12-20
ZA201504603B (en) 2016-11-30
TW201431491A (zh) 2014-08-16
KR20150103165A (ko) 2015-09-09
CA2896242A1 (en) 2014-07-03
UY35254A (es) 2014-07-31
BR112015015659B1 (pt) 2020-06-23
CN105007738A (zh) 2015-10-28
CN105007738B (zh) 2017-07-04
RU2687225C2 (ru) 2019-05-07
RU2015131823A (ru) 2017-02-03
CR20150339A (es) 2015-10-07
ES2727663T3 (es) 2019-10-17
MX2015008567A (es) 2015-09-07
LT2941126T (lt) 2019-05-10
AU2013369670B2 (en) 2017-05-18
EP2941126A1 (en) 2015-11-11
TWI640248B (zh) 2018-11-11
AR094367A1 (es) 2015-07-29
JP2016501912A (ja) 2016-01-21
JP6560619B2 (ja) 2019-08-14
MX369107B (es) 2019-10-29
ECSP15028116A (es) 2016-01-29
BR112015015659A2 (pt) 2017-07-11
AU2013369670A1 (en) 2015-07-09
CL2015001842A1 (es) 2016-07-01
DK2941126T3 (da) 2019-06-03
PH12015501496A1 (en) 2015-09-28
IL239651A0 (en) 2015-08-31
HUE043708T2 (hu) 2019-09-30
US20140187590A1 (en) 2014-07-03
PL2941126T3 (pl) 2019-08-30
EP2941126B1 (en) 2019-03-13

Similar Documents

Publication Publication Date Title
US9750248B2 (en) Synergistic fungicidal compositions
EP3089587B1 (en) Synergistic fungicidal mixtures for fungal control in cereals
US9955690B2 (en) Synergistic fungicidal mixtures for fungal control in cereals
US8470840B2 (en) Synergistic fungicidal compositions containing a 5-fluoropyrimidine derivative for fungal control in cereals
US20110082162A1 (en) Synergistic fungicidal composition containing 5-fluorocytosine for fungal control in cereals
US8709458B2 (en) Synergistic fungicidal interactions of 5-fluorocytosine and other fungicides
US20120157486A1 (en) Synergistic fungicidal interactions of aminopyrimidines and other fungicides

Legal Events

Date Code Title Description
AS Assignment

Owner name: DOW AGROSCIENCES LLC, INDIANA

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:OUIMETTE, DAVID G;MATHIESON, JOHN T;YAO, CHENGLIN;AND OTHERS;SIGNING DATES FROM 20140722 TO 20141016;REEL/FRAME:036941/0438

STCF Information on status: patent grant

Free format text: PATENTED CASE

MAFP Maintenance fee payment

Free format text: PAYMENT OF MAINTENANCE FEE, 4TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: M1551); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

Year of fee payment: 4

AS Assignment

Owner name: CORTEVA AGRISCIENCE LLC, INDIANA

Free format text: CHANGE OF NAME;ASSIGNOR:DOW AGROSCIENCES LLC;REEL/FRAME:058044/0184

Effective date: 20210101