US3874594A - Tank cleaning machine with selective wash programming - Google Patents

Tank cleaning machine with selective wash programming Download PDF

Info

Publication number
US3874594A
US3874594A US354508A US35450873A US3874594A US 3874594 A US3874594 A US 3874594A US 354508 A US354508 A US 354508A US 35450873 A US35450873 A US 35450873A US 3874594 A US3874594 A US 3874594A
Authority
US
United States
Prior art keywords
nozzle
wash
axis
tank
housing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US354508A
Inventor
Kenneth John Hatley
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Butterworth System Inc
Original Assignee
Butterworth System Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Butterworth System Inc filed Critical Butterworth System Inc
Application granted granted Critical
Publication of US3874594A publication Critical patent/US3874594A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/14Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with oscillating elements; with intermittent operation
    • B05B3/16Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with oscillating elements; with intermittent operation driven or controlled by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B3/00Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements
    • B05B3/02Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements
    • B05B3/04Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet
    • B05B3/0409Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements
    • B05B3/0418Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine
    • B05B3/0422Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements
    • B05B3/0445Spraying or sprinkling apparatus with moving outlet elements or moving deflecting elements with rotating elements driven by the liquid or other fluent material discharged, e.g. the liquid actuating a motor before passing to the outlet with moving, e.g. rotating, outlet elements comprising a liquid driven rotor, e.g. a turbine with rotating outlet elements the movement of the outlet elements being a combination of two movements, one being rotational
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B08CLEANING
    • B08BCLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
    • B08B9/00Cleaning hollow articles by methods or apparatus specially adapted thereto 
    • B08B9/08Cleaning containers, e.g. tanks
    • B08B9/093Cleaning containers, e.g. tanks by the force of jets or sprays
    • B08B9/0936Cleaning containers, e.g. tanks by the force of jets or sprays using rotating jets

Definitions

  • ABSTRACT A tank washing machine, suitable for cleaning the tanks of marine oil tankers, in which washing liquid is discharged from a nozzle mounted on a housing which is rotatable about a first axis (e.g., vertical) in relation to other normally fixed parts of the machine.
  • the nozzle is pivotable or rotatable about a second axis (e.g., horizontal) which at an angle to the first axis.
  • a single driving means (preferably a single turbine powered by wash liquid) is connected via gears and a clutch mechanism to rotate the housing about the first axis and via other gears to pivot or rotate the nozzle about the second axis, the ratio of the angular speeds of the nozzle and housing about their respective axes being constant, but the absolute angular speeds being varied in accordance with a selected program (e.g., as determined by the profile of a cam) so that distant tank walls are sprayed as effectively as proximate walls, during use.
  • a selected program e.g., as determined by the profile of a cam
  • TANK CLEANING MACHINE WITH SELECTIVE WASH PROGRAMMING This invention relates to machines for cleaning tanks.
  • Such machines however. have one serious defect and that is their inability to equalize the wash water over the whole tank surface. This occurs because the nozzle is suspended relatively close to the underside of the tank top, and it is normal for the nozzle to elevate a fixed amount about the horizontal axis for every turn about the vertical axis. If the nozzle housing is rotated at a constant rate the nozzle will take as long to travel from the vertically downward position to the horizontal position as it will do to travel from the horizontal position to the vertically upward position, thereby supplying as much wash water to the top metre or so of the tank as the whole of the rest of the tank.
  • the present invention provides a method ofcleaning a tank employing a tank cleaning machine of the type having a nozzle which is rotatable or pivotable about a first axis substantially perpendicular to the longitudinal axis of the nozzle. the nozzle being mounted in a housing which is rotatable about a second axis at an angle to the said first axis. the method comprising driving the nozzle and the housing about their respective axes from the same drive means with their angular velocities in a constant ratio. and varying their absolute angular velocities in a predetermined manner in accordance with a selected program.
  • the invention comprises a tank washing machine comprising a nozzle which is rotatable or pivotable about a first axis substantially perpendicular to the longitudinal axis of the nozzle and which is mounted on a housing which is rotatable about a second axis at an angle to the said first axis.
  • a common drive means connected for rotating the housing and rotating or pivoting the nozzle in such a manner that the angular velocity of the housing will be in a fixed ratio in relation to the angular velocity of the nozzle.
  • a selected program Preferably.
  • the selected program is provided by the interaction of a cam and a cam follower which are driven from the said drive means. and the relative movements of the cam and cam follower are employed to influence the power output from the drive means. e.g. by varying the relative angle between the blades of a drive turbine powdered by the wash liquid and the angle ofimpingement of the wash liquid on the blades.
  • a tank washing machine suitable for cleaning tanks of oil tankers comprises a wash liquid supply pipe in communication with a nozzle housing rotatable about its longitudinal axis. a nozzle fixed to the nozzle housing. said nozzle being rotatable about an axis at an angle to its own longitudinal axis and at an angle to the axis of rotation of the housing.
  • a turbine actuated by the flow of wash liquid. means whereby. whilst the turbine is rotating. the relative angle between the turbine blades and the flow of wash liquid impinging on the turbine blades may be varied (cg. by changing the altitudes of the blades. and/or by changing the direction of liquid flow onto the blades employing flow nozzles) and means whereby the speed of rotation of the turbine controls the speed of rotation of the nozzle housing and the speed of the rotation of the nozzle.
  • the wash liquid supply pipe is usually designed so that when the machine is installed in position for use. at least a large part of the pipe projects substantially vertically into the tank from the roof of the tank. Preferably it carries an annular plate for fixing to the hole in the roof of the tank. Part of the supply pipe may if desired be bent. e.g.. through 90. so that when the machine is fitted in position part ofthe supply pipe outside the tank is for example horizontal so that it can be connected easily to the source of wash liquid.
  • the nozzle housing communicates with the wash liquid supply pipe and usually it is co-axial with this pipe. and therefore usually rotates about a substantially vcrtical axis when the machine is in position in the tank.
  • the nozzle is rotatable about an axis at an angle to the axis of rotation of the housing. and usually this angle is a substantial angle. e.g.. 90.
  • this angle is a substantial angle. e.g.. 90.
  • the axis of rotation of the nozzle housing is substantially vertical when the machine is in position in the tank.
  • the axis of rotation of the nozzle is substantially horizontal.
  • the axis about which the nozzle is rotatable is substantially 90 to its own longitudinal axis.
  • the nozzle does not rotate completely about its axis of rotation. but oscillates about this axis.
  • the turbine is actuated by the flow of wash liquid. and the turbine should preferably be located at the entrance to. or in the wash liquid supply pipe.
  • the angle which the turbine blades make with the flow of wash liquid affects the speed of rotation of the turbine. and preferably it is the angle which the blades make with the longitudinal axis of the turbine which is altered.
  • Means can be provided which are capable of continuously varying the angle of the turbine blades.
  • this means of varying the angle of the blades of the turbine comprises a slidable rod. eo-axial with the axis of the turbine. the sliding of which rod along the axis ofthc turbine causes by means of linked levers. the variation of the angle the blades of the turbine make with the plane at right angles to the axis of the turbine.
  • the angle which the turbine blades make with the flow of wash liquid can however be varied by having fixed turbine blades and altering the angle at which the wash liquid impinges on the blades.
  • This arrangement would involve a number of substantially radial vanes placed in the wash liquid supply pipe immediately before the turbine, and a device for altering the angle which these blades make with the longitudinal axis of the wash liquid supply pipe, thereby altering the angle at which the wash liquid impinges upon the fixed blades of the turbine.
  • the speed of rotation of the turbine controls the speed of rotation of the nozzle housing and the speed of rotation of the nozzle.
  • the turbine is connected to a rotatable shaft which rotates with the turbine blades.
  • the slidable rod which varies the angle of the blades of the turbine is linked to a pivoted lever, the other end of which is moved by a rotatable cam.
  • Rotation of the cam causes longitudinal shifting of the slidable rod and hence variation of the angle of the turbine blades.
  • the nozzle can oscillate rather than completely rotate the machine is preferably provided with means for reversing the direction of rotation of the nozzle periodically.
  • This may be achieved by means of a slidable and rotatable clutch with two faces, each face of which can engage separately with two other rotatable clutches.
  • This slidable clutch is caused to slide periodically so that it engages first one and then the other of the other two clutches.
  • rotation of one of these clutches causes the nozzle housing and nozzle to rotate in one direction, whereas rotation of the other clutch in the same direction causes the nozzle housing and nozzle to rotate in the opposite direction.
  • the direction of rotation of the nozzle about the horizontal axis may be reversed while maintaining the direction of rotation of the nozzle housing in the same direction.
  • the direction of rotation of the nozzle can of course be reversed by other means. e.g., by means of a rotating partially toothed wheel engaging first one gear train, and then another gear train.
  • the speed of rotation or oscillation of the nozzle is very much less than the speed or rotation of the nozzle housing. This is obviously achieved by gear reduction and in practice the speed or rotation of the nozzle housing is usually from to 200 times, e.g. 20 to 60 times, that of the speed of rotation or oscillation of the nozzle.
  • FIG. I shows a general elevation of a machine according to the invention, with certain parts cut away to show the interior thereof.
  • FIG. 2 is a vertical section through the top part of the machine of FIG. I.
  • FIG. 3 is a section through IIl-III of FIG. 2.
  • FIG. 4 is a section through IVIV of FIG. 2.
  • FIG. 5 is a sectional elevation of the turbine and turbine shaft of the machine of FIGS. 1 and 2.
  • FIG. 6 is a section through VIVI of FIG. 5.
  • FIG. 7 is a vertical cross-section through the top part of another machine in accordance with the invention.
  • FIG. 8 is a vertical cross-section through the bottom part of the machine whose top part is depicted in FIG. 7, and
  • FIG. 9 is a horizontal cross-sectional plan on lines lX-IX of FIG 8.
  • the machine I is mounted by means of annular plate 2 on the top of a tank 3 with the wash liquid supply pipe 4 passing into the interior of the tank 3.
  • a rotatable housing 5 which is connected to a drive tube 6 which is eo-axial with and can rotate inside the supply pipe 4.
  • a shaft 7 Co-axial with and inside the drive tube 6 is a shaft 7, the lower end of which terminates in a worm 8.
  • This worm meshes with a worm wheel 9 which is connected to the nozzle 10.
  • the turbine 11 is housed in the horizontal portion of the wash liquid supply pipe 4 and is connected to the hollow shaft 12 which rotates with the turbine.
  • another shaft 13 Inside shaft 12 and coaxial therewith is another shaft 13, the function of which is to be described later.
  • Fixed to shaft I2 is gear 14 which meshes with gear 15.
  • Gear 15 is keyed at 16 (see also FIG. 3) to shaft 17, but the shaft 17 is free to slide axially through the gear 15.
  • Attached to shaft 17 is a clutch member 18 which is capable of engaging with another clutch member 19 which is fixed to bevel gear 20.
  • Bevel gear 20 and another bevel gear 21 are fixed to and mounted on a hollow shaft 22.
  • Clutch member 18 is also capable of engaging with a clutch member 23 which is fixed to a bevel gear 24.
  • the bevel gear 24 and clutch member 23 are mounted on the hollow shaft 17, but the shaft is free to shift longitudinally with respect to the gear 24 and clutch member 23.
  • Bevel gear 20 meshes with a bevel gear 25 mounted on shaft 7, and bevel gear 21 meshes with a bevel gear 26 mounted on the drive tube 6.
  • Hollow shaft I7 has an internal annular shoulder 27 which serves as journal bearing for a rod 28 which is co-axial with shaft 22.
  • One end of rod 28 is provided with a screw thread 29 which meshes with an internal thread 30 of shaft 22.
  • the other end of rod 28 is connected to a rack 31 which has an extension 32 which can slide longitudinally in a guide 33 (see also FIG. 4).
  • Rack 31 meshes with a gear 38, which rotates when the rack moves longitudinally.
  • Gear 38 is coupled via shaft 39 to a cam 40.
  • the cam 40 moves a lever 4
  • lever 41 may be moved manually by displacement of fulcrum pin 42.
  • the shaft 13 terminates in a square end 45.
  • Three of the four turbine blades 46 are shown and attached to each at the inward end of each is a pivoted lever 47 to which is fixed a pin 48.
  • Each pin 48 engages in a slot 49 (ohlique to the longitudinal axis) in the square end of the shaft. Longitudinal movement of rod 13 results in shifting of the levers 47 thereby altering the inclination of the blades 46 about their axes, two of which are shown at 50.
  • the operation of the tank cleaning machine is as follows:
  • Wash liquid usually water
  • the wash liquid passes down the vertical section of the wash liquid supply pipe 4 and eventually passes out through the nozzle 10.
  • Rotation of the turbine blades 46 causes shaft 12 to rotate and with it gears 14 and I5, and shaft 17. Since clutch member I8 is fixed to shaft l7 this clutch member also rotates. and as shown in FIG. 2 it engages clutch member I) which also rotates with clutch member 18.
  • Rotation of the clutch member 19 means that bevel gears 20 and 21 and shaft 22 on which the gears 20 and 21 are mounted also rotate.
  • Rotation of gears 20 and 2! also causes rotation of bevel gears 25 and 26, and shaft 7 and tube 6 respectively. Due to the difference in the gear ratio between gears 20/25 and 21/25 shaft 7 and tube 6 will rotate at different speeds. This in turn means that worm 8 and housing 5 respectively will rotate at different speeds. In practice it is usual for the gear ratios to be chosen so that shaft 7 and hence worm 8 rotates slightly slower than housing 5. This in turn means that worm gear wheel 9 rotates even slower.
  • bevel gear 26 now rotates in the opposite direction as also does bevel gear 25 (through bevel gear 20 fixed to shaft 22 which carries bevel gear 2] It can be seen therefore that when bevel gear 25 reverses direction so will shaft 7, and worm 8. This reversal of direction also means a reversal of direction of rotation of worm wheel 9, and this means that if nozzle l0 has been slowly rising it will now slowly descend, and vice-versa.
  • FIGS. 7, 8 and 9 illustrate the principal constructional features of a different design of machine in accordance with the invention.
  • FIGS. 7. 8 and 9 features which are common also to the embodiment of FIGS. I to 6 are given the same reference numeral.
  • the relative rotation or angular speeds of the housing 5 and the worm 8 (and consequently the worm gear 9) are derived by a reduction gear arrangement. described below, in the housing 5 rather than from a reduction gear arrangement in the top of the machine as is the case with the previous embodiment, and the reduction gear arrangement in the housing 5 is driven by means of a single drive shaft 50 rather than the combination of the shaft 7 and drive tube 6 of the previous embodiment.
  • bevel gears 20, 25 of FIG. 2 are absent. and that the clutch member 19 is attached to the inwardlydirected face of bevel gear 2!.
  • Bevel gear 21 and bevel gear 24 are both meshed with a bevel gear 26 (which may alternatively be in the form ofa crown gear wheel, not shown, as will be apparent to those skilled in this art), and bevel gear 26 drives the single shaft 50 which extends downwards into the rotatably-mounted housing 5.
  • FIGS. 8 and 9 From which it will be seen that the shaft 50 is attached to the rotatably-mounted housing 5 by means of a key and keyway 50a and locked nut 50/).
  • the housing 5 is mounted for rotation about the stationary vertical liquid supply pipe 4 on bearings 4a, of which only some are shown in FIG. 8.
  • the liquid supply pipe 4 supports a stationary tube 51 which terminates at its lower end in an annular recess between the shaft 50 and the housing 5.
  • the tube 51 is provided with an external gear ring 52.
  • a spur wheel 53 is mounted for rotation on a stub shaft 54 which extends upwardly from the base of the housing 5 parallel with, and offset from the axis of shaft 50. and the spur wheel 53 meshes with the gear ring 52, so that rotation of the shaft 50 and the attached rotatable housing 5 causes planetary rotation of the spur wheel 53 about the axis of the shaft 50.
  • a second, smaller pinion wheel 55 Attached to the spur wheel 53 and mounted for rotation on the stub shaft 54 is a second, smaller pinion wheel 55 which meshes with a spur gear on the worm 8 which is mounted, in any known suitable way, for rotation about the stationary tube 5].
  • the rotation of the worm 8 causes rotation of the worm wheel 9 and hence causes changes in the elevation or attitude of the nozzle 10 in the same way as in the embodiment of FIGS. 2 to 6.
  • the gear ratios between the stationary gear ring 52 and the meshing spur wheel 53, between the spur wheel 53 and the smaller pinion wheel 55, and between the pinion wheel 55 and the spur gear 80 can easily be selected to provide a desired ratio between the rotational or angular speed of the shaft 50 and the speed of the worm 8.
  • the reduction gear arrangement within the housing 5 of the embodiment of FIGS. 7 and 8 is more expensive to make than the simple worm-andgear wheel assembly in the housing 5 of the embodiment of FIGS. I to 6. in many cases. the overall cost of the machine of FIGS. 7 and 3 may be cheaper than that of the machine of FIGS. 1 to 6 since only one drive shaft (50) is required compared with the two shafts 6 and 7. and for some duties. these shafts may be about I2 feet long. Nevertheless, the type of tank cleaning machine of this invention which may be preferred by the ultimate user may be determined by operational factors which outweigh advantages of the FIG. 7 embodiment.
  • the top section of the machine of FIGS. 7 and 8 can be made smaller since the size limitations on the bevel wheels 21. 24 and 26 are less stringent in the absence of the other two bevel wheels 20. 25 of FIGS. I to 6. It will be seen in FIG. 8 that the thrust of the water jet is shared equally between hearings or sets of bearings (which are illustrated. but not all indicated by reference numerals) on each side of the jet reaction line. It will be clear to those skilled in the art that hearings or sets of hearings may be provided and so arranged in the housing 5 of FIG. I that the water jet thrust is shared between a plurality of bearings.
  • the worm 8. as shown in FIG. 8, is free to slide axially a short distance along the support tube 51 between a lower shoulder 57 in the housing 5 and an upper shoulder 58 in the housing 5.
  • a suitably short distance is one-half of the product of the speed reduction ratio of the gear-train S2, 53, 55. 8a and the pitch of the worm. or approximately this product
  • the change in direction of the reaction of the worm 9 on the worm 8 will cause the worm 8 to move axially along the shaft 50 in the space between the lower shoulder 57 and the upper shoulder 58.
  • the final position of the worm 8 will be at an abutting location with one or other of the shoulders 57 or 58, thereby imparting to the worm gear 9 and the attached nozzle 10 a starting position on reversing the direction of angular movement which is non-coincident with their positions prior to reversal of direction of angular motion.
  • the non-coincident position of the nozzle at each reversal is advantageous in mitigating any tendency of the wash water jet leaving the nozzle 10 to make substantially repetitive wash patterns in the tank thereby further improving the thoroughness of washing that can be effected by the machine of the invention.
  • the worm 8 of the embodiment of FIGS. 1 to 6 can also bearranged for limited axial movement relative to the housing for the same purpose.
  • FIG. 9. there are shown the flow apertures 60 at the end of the nozzle within the housing 5 through which wash water passes from regions 61 ofthe housing 5 to the nozzle 10. Wash water is supplied to the regions 6
  • FIGS. 8 and 9. it will be appreciated by those skilled in the art that the same or a similar arrangement can be used in other embodiments of the invention.
  • a tank washing machine suitable for cleaning tanks of oil tankers comprising a wash liquid supply pipe in communication with a nozzle housing rotatable about its longitudinal axis. a nozzle fixed to said nozzle housing. said nozzle being rotatable about an axis at an angle to its own longitudinal axis and at an angle to the axis of rotation of said housing.
  • a turbine having tur bine blades actuated by the flow of wash liquid from said wash liquid supply pipe, means operably driven in response to the impingement of said wash liquid on said turbine blades and including program means for causing said tanks to be cleaned in accordance with a pre' determined programmed wash cycle.
  • said program means operably connected for changing the speed of said turbine, and means connecting said turbine to drive said nozzle and nozzle housing for automatically varying the speed of each of said nozzle housing and said nozzle during operation as a function of said predetermined programmed wash cycle of said program means.
  • a machine according to claim 2 wherein said turbine is located at the opposite end of said wash liquid supply pipe from said nozzle housing and is connected thereto by means of a rotatable shaft.
  • a machine wherein said turbine blades have a variable pitch and said program means are operably connected therewith through means comprising a slidable rod co-axial with the axis of the turbine. and means for connecting said rod with said program means and said turbine blades so that sliding of said rod is in accordance with said program means for varying the pitch of said turbine blades in response thereto.
  • said program means comprises a rotatable cam having profile correspomling to said predetermined programmed wash cycle. and liner means connected at one end for sensing said profile and at the opposite end for causing said rod to slide as a function of the sensed profile.
  • common drive means connected for rotating said housing and for causing said nozzle to pivot in a predetermined fixed angular veloc ity relationship
  • predetermined tank wash profile means for defining a desired automatic wash program for cleaning said tank
  • said tank wash profile means connected with said common drive means for regulating the speed thereof as a function of said tank wash profile means and for automatically varying the absolute rate of angular velocity of said housing and said nozzle in accordance with said tank wash profile means.
  • said tank wash profile means comprising cam means having a cam surface defining said wash program. and cam follower means for tracking said cam surface and connected with said common drive means for regulating the speed thereof in response to the tracked cam surface.
  • said means for varying the relative angle between said tur bine blades and the wash liquid impinging thereon comprises a slidable rod coaxial with the axis of said turbine. and lever means connecting said rod to said turbine blades for causing the pitch of said turbine blades to vary in relation to the pitch of said turbine blades a vary in relation to the sliding movement ofsaid rod.
  • a machine according to claim 14 wherein said slidable rod is operably connected to a first end of pivotably mounted lever means. said lever means carrying at the opposite end thereof said cam follower means disposed in operable tracking contact with said cam surface.
  • a tank washing machine adapted for cleaning the interior of a cargo storage tank. comprising variable speed drive actuated by wash liquid, said speed varying automatically in accordance with a predetermined wash program for said tank, predetermined wash program means operably connected with said drive means for causing the speed of said drive means to automatically vary in accordance with said wash program for said tank, nozzle means for use in cleaning said tank and means connecting said drive means to said nozzle for automatically varying the speed thereof in accordance with said wash program whereby said tank is cleaned in a predetermined optimum manner.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Cleaning In General (AREA)
  • Nozzles (AREA)
  • Transmission Devices (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

A tank washing machine, suitable for cleaning the tanks of marine oil tankers, in which washing liquid is discharged from a nozzle mounted on a housing which is rotatable about a first axis (e.g., vertical) in relation to other normally fixed parts of the machine. The nozzle is pivotable or rotatable about a second axis (e.g., horizontal) which is at an angle to the first axis. A single driving means (preferably a single turbine powered by wash liquid) is connected, via gears and a clutch mechanism, to rotate the housing about the first axis and via other gears to pivot or rotate the nozzle about the second axis, the ratio of the angular speeds of the nozzle and housing about their respective axes being constant, but the absolute angular speeds being varied in accordance with a selected program (e.g., as determined by the profile of a cam) so that distant tank walls are sprayed as effectively as proximate walls, during use.

Description

United States Patent [191 [111 3,874,594 Hatley 1 1 Apr. 1,1975
[ TANK CLEANING MACHINE WITH SELECTIVE WASH PROGRAMMING [75] Inventor: Kenneth John Hatley, 26 Holmwood Ave., Sanderstead, Surry, England [73] Assignee: Butter-worth System Inc.
[22] Filed: Apr. 25, 1973 [21] Appl. No.: 354,508
[30] Foreign Application Priority Data Apr. 28, 1972 United Kingdom 19907/72 [52] U.S. Cl 239/227, 134/167 R, 239/240 [51] Int. Cl B05b 3/04 [58] Field of Search 239/225, 227, 237, 240; 134/24, 167 R; 416/167 [56] References Cited UNITED STATES PATENTS 3,092,!86 6/1963 MacLean 416/!67 X 3,292,863 l2/l966 Nelson 239/227 3,295,610 [[1967 Frias 4l6/l67 X 3,326,468 6/1967 Bristow et 239/227 3,601,!36 8/l97l Marcham l34/l67R Primary Examiner-M. Henson Wood, Jr. Assistant Examiner-Michael Y. Mar Attorney, Agent, or Firm-F. Donald Paris [57] ABSTRACT A tank washing machine, suitable for cleaning the tanks of marine oil tankers, in which washing liquid is discharged from a nozzle mounted on a housing which is rotatable about a first axis (e.g., vertical) in relation to other normally fixed parts of the machine. The nozzle is pivotable or rotatable about a second axis (e.g., horizontal) which at an angle to the first axis. A single driving means (preferably a single turbine powered by wash liquid) is connected via gears and a clutch mechanism to rotate the housing about the first axis and via other gears to pivot or rotate the nozzle about the second axis, the ratio of the angular speeds of the nozzle and housing about their respective axes being constant, but the absolute angular speeds being varied in accordance with a selected program (e.g., as determined by the profile of a cam) so that distant tank walls are sprayed as effectively as proximate walls, during use.
17 Claims, 9 Drawing Figures ATENTEUAPR 1191's 3,874,594
SLLLU 2 0F 7 F ll ,///%///////IIIIIII.'
PATENTEU APR 1 5 Sl'iEET 3 BF 7 FIG. 3.
FIG. L.
PATENTEDAPR mars ..874,594 SHEETSUZ 0 o r 1.. m *3 F a r N 32 W 3 ,;w/////////////// w :i
5 N H 3 r g I II m g :1 1: T; 99 E ii E U? 7 i g E 1;
I I Mm: E Am\\\\\\\\\\\\ ii E:
I a 1L 6 L :0 .L
L 3 s N m T '3 P ATENTEB APR 1 1975 sum 7 I 1' FIG.9.
TANK CLEANING MACHINE WITH SELECTIVE WASH PROGRAMMING This invention relates to machines for cleaning tanks.
Many machines have been described for cleaning tanks. e.g.. tanks of oil tankers. Usually the tank washing is carried out by the use of jets of water ejected through a nozzle. On some machines the nozzle is mounted on a housing which rotates slowly about a vertical axis and at the same time the nozzle oscillates more slowly about the horizontal axis. in this manner substantially the whole of the tank wall area receives jets of water from the nozzle.
Such machines however. have one serious defect and that is their inability to equalize the wash water over the whole tank surface. This occurs because the nozzle is suspended relatively close to the underside of the tank top, and it is normal for the nozzle to elevate a fixed amount about the horizontal axis for every turn about the vertical axis. If the nozzle housing is rotated at a constant rate the nozzle will take as long to travel from the vertically downward position to the horizontal position as it will do to travel from the horizontal position to the vertically upward position, thereby supplying as much wash water to the top metre or so of the tank as the whole of the rest of the tank.
We have now reduced this problem with the machine of this invention which employs a variable speed turbine. and this results in variations in the rotational speed of the nozzle housing and the speed of oscillation of the nozzle about the horizontal axis.
The present invention provides a method ofcleaning a tank employing a tank cleaning machine of the type having a nozzle which is rotatable or pivotable about a first axis substantially perpendicular to the longitudinal axis of the nozzle. the nozzle being mounted in a housing which is rotatable about a second axis at an angle to the said first axis. the method comprising driving the nozzle and the housing about their respective axes from the same drive means with their angular velocities in a constant ratio. and varying their absolute angular velocities in a predetermined manner in accordance with a selected program.
In another aspect. the invention comprises a tank washing machine comprising a nozzle which is rotatable or pivotable about a first axis substantially perpendicular to the longitudinal axis of the nozzle and which is mounted on a housing which is rotatable about a second axis at an angle to the said first axis. a conduit for supplying a tank wash liquid to the nozzle. a common drive means connected for rotating the housing and rotating or pivoting the nozzle in such a manner that the angular velocity of the housing will be in a fixed ratio in relation to the angular velocity of the nozzle. and means for varying the absolute rate of rotation of the housing and of the nozzle, about their respective axes. in accordance with a selected program. Preferably. the selected program is provided by the interaction of a cam and a cam follower which are driven from the said drive means. and the relative movements of the cam and cam follower are employed to influence the power output from the drive means. e.g. by varying the relative angle between the blades of a drive turbine powdered by the wash liquid and the angle ofimpingement of the wash liquid on the blades.
According to this invention a tank washing machine suitable for cleaning tanks of oil tankers comprises a wash liquid supply pipe in communication with a nozzle housing rotatable about its longitudinal axis. a nozzle fixed to the nozzle housing. said nozzle being rotatable about an axis at an angle to its own longitudinal axis and at an angle to the axis of rotation of the housing. a turbine actuated by the flow of wash liquid. means whereby. whilst the turbine is rotating. the relative angle between the turbine blades and the flow of wash liquid impinging on the turbine blades may be varied (cg. by changing the altitudes of the blades. and/or by changing the direction of liquid flow onto the blades employing flow nozzles) and means whereby the speed of rotation of the turbine controls the speed of rotation of the nozzle housing and the speed of the rotation of the nozzle.
The wash liquid supply pipe is usually designed so that when the machine is installed in position for use. at least a large part of the pipe projects substantially vertically into the tank from the roof of the tank. Preferably it carries an annular plate for fixing to the hole in the roof of the tank. Part of the supply pipe may if desired be bent. e.g.. through 90. so that when the machine is fitted in position part ofthe supply pipe outside the tank is for example horizontal so that it can be connected easily to the source of wash liquid.
The nozzle housing communicates with the wash liquid supply pipe and usually it is co-axial with this pipe. and therefore usually rotates about a substantially vcrtical axis when the machine is in position in the tank.
The nozzle is rotatable about an axis at an angle to the axis of rotation of the housing. and usually this angle is a substantial angle. e.g.. 90. Thus. in the preferred embodiment when the axis of rotation of the nozzle housing is substantially vertical when the machine is in position in the tank. the axis of rotation of the nozzle is substantially horizontal. Usually the axis about which the nozzle is rotatable is substantially 90 to its own longitudinal axis. Generally the nozzle does not rotate completely about its axis of rotation. but oscillates about this axis.
The turbine is actuated by the flow of wash liquid. and the turbine should preferably be located at the entrance to. or in the wash liquid supply pipe.
The angle which the turbine blades make with the flow of wash liquid affects the speed of rotation of the turbine. and preferably it is the angle which the blades make with the longitudinal axis of the turbine which is altered. Means can be provided which are capable of continuously varying the angle of the turbine blades. In the preferred embodiment this means of varying the angle of the blades of the turbine comprises a slidable rod. eo-axial with the axis of the turbine. the sliding of which rod along the axis ofthc turbine causes by means of linked levers. the variation of the angle the blades of the turbine make with the plane at right angles to the axis of the turbine.
The angle which the turbine blades make with the flow of wash liquid can however be varied by having fixed turbine blades and altering the angle at which the wash liquid impinges on the blades. This arrangement would involve a number of substantially radial vanes placed in the wash liquid supply pipe immediately before the turbine, and a device for altering the angle which these blades make with the longitudinal axis of the wash liquid supply pipe, thereby altering the angle at which the wash liquid impinges upon the fixed blades of the turbine.
The speed of rotation of the turbine controls the speed of rotation of the nozzle housing and the speed of rotation of the nozzle. In the preferred embodiment of the invention. the turbine is connected to a rotatable shaft which rotates with the turbine blades.
Rotation of this rotatable shaft through gears and other rotatable shafts causes rotation of the nozzle housing and the nozzle. By this means variation in the speed of the turbine blades results in variations in the speeds of rotation of the nozzle housing and of the nozzle.
In the preferred embodiment of the invention the slidable rod which varies the angle of the blades of the turbine is linked to a pivoted lever, the other end of which is moved by a rotatable cam. Rotation of the cam causes longitudinal shifting of the slidable rod and hence variation of the angle of the turbine blades. By using cams of different profile one can alter the variation in the speed of the turbine blades.
So that the nozzle can oscillate rather than completely rotate the machine is preferably provided with means for reversing the direction of rotation of the nozzle periodically. This may be achieved by means of a slidable and rotatable clutch with two faces, each face of which can engage separately with two other rotatable clutches. This slidable clutch is caused to slide periodically so that it engages first one and then the other of the other two clutches. By means of gears, rotation of one of these clutches causes the nozzle housing and nozzle to rotate in one direction, whereas rotation of the other clutch in the same direction causes the nozzle housing and nozzle to rotate in the opposite direction. Alternatively, the direction of rotation of the nozzle about the horizontal axis may be reversed while maintaining the direction of rotation of the nozzle housing in the same direction.
The direction of rotation of the nozzle can of course be reversed by other means. e.g., by means of a rotating partially toothed wheel engaging first one gear train, and then another gear train.
It is a preferred feature of this invention that the speed of rotation or oscillation of the nozzle is very much less than the speed or rotation of the nozzle housing. This is obviously achieved by gear reduction and in practice the speed or rotation of the nozzle housing is usually from to 200 times, e.g. 20 to 60 times, that of the speed of rotation or oscillation of the nozzle.
The tank cleaning machines of this invention will now be described with reference to the accompanying drawings in which:
FIG. I shows a general elevation of a machine according to the invention, with certain parts cut away to show the interior thereof.
FIG. 2 is a vertical section through the top part of the machine of FIG. I.
FIG. 3 is a section through IIl-III of FIG. 2.
FIG. 4 is a section through IVIV of FIG. 2.
FIG. 5 is a sectional elevation of the turbine and turbine shaft of the machine of FIGS. 1 and 2.
FIG. 6 is a section through VIVI of FIG. 5.
FIG. 7 is a vertical cross-section through the top part of another machine in accordance with the invention.
FIG. 8 is a vertical cross-section through the bottom part of the machine whose top part is depicted in FIG. 7, and
FIG. 9 is a horizontal cross-sectional plan on lines lX-IX of FIG 8.
Referring to FIG. I of the drawings, the machine I is mounted by means of annular plate 2 on the top of a tank 3 with the wash liquid supply pipe 4 passing into the interior of the tank 3. At the lower end of the machine there is a rotatable housing 5 which is connected to a drive tube 6 which is eo-axial with and can rotate inside the supply pipe 4. Co-axial with and inside the drive tube 6 is a shaft 7, the lower end of which terminates in a worm 8. This worm meshes with a worm wheel 9 which is connected to the nozzle 10.
Referring to FIG. 2 of the drawings the turbine 11 is housed in the horizontal portion of the wash liquid supply pipe 4 and is connected to the hollow shaft 12 which rotates with the turbine. Inside shaft 12 and coaxial therewith is another shaft 13, the function of which is to be described later. Fixed to shaft I2 is gear 14 which meshes with gear 15. Gear 15 is keyed at 16 (see also FIG. 3) to shaft 17, but the shaft 17 is free to slide axially through the gear 15. Attached to shaft 17 is a clutch member 18 which is capable of engaging with another clutch member 19 which is fixed to bevel gear 20. Bevel gear 20 and another bevel gear 21 are fixed to and mounted on a hollow shaft 22. Clutch member 18 is also capable of engaging with a clutch member 23 which is fixed to a bevel gear 24. The bevel gear 24 and clutch member 23 are mounted on the hollow shaft 17, but the shaft is free to shift longitudinally with respect to the gear 24 and clutch member 23. Bevel gear 20 meshes with a bevel gear 25 mounted on shaft 7, and bevel gear 21 meshes with a bevel gear 26 mounted on the drive tube 6.
Hollow shaft I7 has an internal annular shoulder 27 which serves as journal bearing for a rod 28 which is co-axial with shaft 22. One end of rod 28 is provided with a screw thread 29 which meshes with an internal thread 30 of shaft 22. The other end of rod 28 is connected to a rack 31 which has an extension 32 which can slide longitudinally in a guide 33 (see also FIG. 4).
Mounted on rod 28 are two annular axially adjustable stops 34 and 35, in between which are compression springs 36 and 37 located either side of the annular internal shoulder 27 of shaft I7.
Rack 31 meshes with a gear 38, which rotates when the rack moves longitudinally. Gear 38 is coupled via shaft 39 to a cam 40. The cam 40 moves a lever 4| pivotcd at 42 which is provided at one end with a bearing 44. This bearing 44 engages with two stops 43 on the shaft 13. Alternatively lever 41 may be moved manually by displacement of fulcrum pin 42.
Referring now to FIGS. 5 and 6 of the drawings the shaft 13 terminates in a square end 45. Three of the four turbine blades 46 are shown and attached to each at the inward end of each is a pivoted lever 47 to which is fixed a pin 48. Each pin 48 engages in a slot 49 (ohlique to the longitudinal axis) in the square end of the shaft. Longitudinal movement of rod 13 results in shifting of the levers 47 thereby altering the inclination of the blades 46 about their axes, two of which are shown at 50.
The operation of the tank cleaning machine is as follows:
Wash liquid, usually water, enters the wash liquid supply pipe 4 and impinges on the blades 46 of the turbine causing the turbine 11 to rotate. The wash liquid passes down the vertical section of the wash liquid supply pipe 4 and eventually passes out through the nozzle 10.
Rotation of the turbine blades 46 causes shaft 12 to rotate and with it gears 14 and I5, and shaft 17. Since clutch member I8 is fixed to shaft l7 this clutch member also rotates. and as shown in FIG. 2 it engages clutch member I) which also rotates with clutch member 18. Rotation of the clutch member 19 means that bevel gears 20 and 21 and shaft 22 on which the gears 20 and 21 are mounted also rotate. Rotation of gears 20 and 2! also causes rotation of bevel gears 25 and 26, and shaft 7 and tube 6 respectively. Due to the difference in the gear ratio between gears 20/25 and 21/25 shaft 7 and tube 6 will rotate at different speeds. This in turn means that worm 8 and housing 5 respectively will rotate at different speeds. In practice it is usual for the gear ratios to be chosen so that shaft 7 and hence worm 8 rotates slightly slower than housing 5. This in turn means that worm gear wheel 9 rotates even slower.
Whilst shaft 22 rotates its internal screw thread meshes with the screwed end 29 of rod 28. As shown in FIG. 2 this causes rod 28 to shift slowly towards the left. Rotation of this rod 28 is prevented by means of the guide 33 preventing rotation of extension 32 of rack 31. As rod 28 moves towards the left the stop 35 gradually compresses spring 37 and at the same time spring 36 which is initially compressed between should 27 and stop 34, becomes less compressed. This continuous compression of spring 37 and relaxation of spring 36 will result eventually in the clutch member 18 suddenly shifting from right to left so that it engages clutch member 23. Since clutch member 18 is fixed to shaft [7, rotation of the clutch members I8 and 23 occurs and with. it rotation of bevel gear 24 which is usually of the same size as and having the same number of teeth as bevel gear 21. This means that bevel gear 26 now rotates in the opposite direction as also does bevel gear 25 (through bevel gear 20 fixed to shaft 22 which carries bevel gear 2] It can be seen therefore that when bevel gear 25 reverses direction so will shaft 7, and worm 8. This reversal of direction also means a reversal of direction of rotation of worm wheel 9, and this means that if nozzle l0 has been slowly rising it will now slowly descend, and vice-versa.
As rod 28 moves longitudinally so will rack 31. This engages gear 38, rotation of which causes cam 40 to.rotate. Rotation of the cam causes pivoted lever 41 to pivot about the fulcrum pin 42. By means of the bearing 44 and stops 43 movement of lever 41 causes shaft 13 to move longitudinally. As explained previously movement of shaft I3 causes inclination of blades 46 to alter, thereby altering the angle which the blades 46 make with the flow of wash liquid. This causes the speed of the turbine 11 to alter, and hence the speed of rotation of housing 5 and speed of oscillation of nozzle 10.
By adjusting the position of stops 34 and 35 and by changing cams so that different profiles are used representing different selected washing programmes, one can readily alter the speed of rotation of housing 5 and also the speed of oscillation of nozzle I0 to meet the requirements of the particular tank being cleaned.
Reference is now made to FIGS. 7, 8 and 9 which illustrate the principal constructional features ofa different design of machine in accordance with the invention. In FIGS. 7. 8 and 9, features which are common also to the embodiment of FIGS. I to 6 are given the same reference numeral.
In the embodiment of FIGS. 7. 8 and 9. the relative rotation or angular speeds of the housing 5 and the worm 8 (and consequently the worm gear 9) are derived by a reduction gear arrangement. described below, in the housing 5 rather than from a reduction gear arrangement in the top of the machine as is the case with the previous embodiment, and the reduction gear arrangement in the housing 5 is driven by means of a single drive shaft 50 rather than the combination of the shaft 7 and drive tube 6 of the previous embodiment.
Referring particularly to FIG. 7, it will be seen that the meshed bevel gears 20, 25 of FIG. 2 are absent. and that the clutch member 19 is attached to the inwardlydirected face of bevel gear 2!. Bevel gear 21 and bevel gear 24 are both meshed with a bevel gear 26 (which may alternatively be in the form ofa crown gear wheel, not shown, as will be apparent to those skilled in this art), and bevel gear 26 drives the single shaft 50 which extends downwards into the rotatably-mounted housing 5.
From the description of the first embodiment, it will be apparent that when the clutch member 18 is en gaged with clutch member I9, the rotation of the shaft 50 will be in the opposite direction to that when the clutch member 18 is engaged with the clutch member 23 on the bevel gear 24. Accordingly, the shaft 50 will rotate a predetermined number or revolutions in one direction and then a predetermined number of revolu tions in the opposite sense as the clutch member 18 engages alternately with the clutch members 19 and 23. All the other functions of the parts shown in FIG. 7 are substantially the same as the parts shown in FIG. 2, including the arrangement previously described, by which the speed of rotation of the turbine 11 controls the speed of rotation of the shaft 17 and of whichever of the bevel gears 2]. 24 is engaged by the clutch, and of the bevel gear 26.
Reference is now made to FIGS. 8 and 9 from which it will be seen that the shaft 50 is attached to the rotatably-mounted housing 5 by means of a key and keyway 50a and locked nut 50/). The housing 5 is mounted for rotation about the stationary vertical liquid supply pipe 4 on bearings 4a, of which only some are shown in FIG. 8.
The liquid supply pipe 4 supports a stationary tube 51 which terminates at its lower end in an annular recess between the shaft 50 and the housing 5. The tube 51 is provided with an external gear ring 52. A spur wheel 53 is mounted for rotation on a stub shaft 54 which extends upwardly from the base of the housing 5 parallel with, and offset from the axis of shaft 50. and the spur wheel 53 meshes with the gear ring 52, so that rotation of the shaft 50 and the attached rotatable housing 5 causes planetary rotation of the spur wheel 53 about the axis of the shaft 50. Attached to the spur wheel 53 and mounted for rotation on the stub shaft 54 is a second, smaller pinion wheel 55 which meshes with a spur gear on the worm 8 which is mounted, in any known suitable way, for rotation about the stationary tube 5]. The rotation of the worm 8 causes rotation of the worm wheel 9 and hence causes changes in the elevation or attitude of the nozzle 10 in the same way as in the embodiment of FIGS. 2 to 6.
The gear ratios between the stationary gear ring 52 and the meshing spur wheel 53, between the spur wheel 53 and the smaller pinion wheel 55, and between the pinion wheel 55 and the spur gear 80 can easily be selected to provide a desired ratio between the rotational or angular speed of the shaft 50 and the speed of the worm 8. Although the reduction gear arrangement within the housing 5 of the embodiment of FIGS. 7 and 8 is more expensive to make than the simple worm-andgear wheel assembly in the housing 5 of the embodiment of FIGS. I to 6. in many cases. the overall cost of the machine of FIGS. 7 and 3 may be cheaper than that of the machine of FIGS. 1 to 6 since only one drive shaft (50) is required compared with the two shafts 6 and 7. and for some duties. these shafts may be about I2 feet long. Nevertheless, the type of tank cleaning machine of this invention which may be preferred by the ultimate user may be determined by operational factors which outweigh advantages of the FIG. 7 embodiment.
The top section of the machine of FIGS. 7 and 8 can be made smaller since the size limitations on the bevel wheels 21. 24 and 26 are less stringent in the absence of the other two bevel wheels 20. 25 of FIGS. I to 6. It will be seen in FIG. 8 that the thrust of the water jet is shared equally between hearings or sets of bearings (which are illustrated. but not all indicated by reference numerals) on each side of the jet reaction line. It will be clear to those skilled in the art that hearings or sets of hearings may be provided and so arranged in the housing 5 of FIG. I that the water jet thrust is shared between a plurality of bearings.
In order to enhance further the washing operation which can be performed by machines in accordance with the invention. the worm 8. as shown in FIG. 8, is free to slide axially a short distance along the support tube 51 between a lower shoulder 57 in the housing 5 and an upper shoulder 58 in the housing 5. A suitably short distance is one-half of the product of the speed reduction ratio of the gear-train S2, 53, 55. 8a and the pitch of the worm. or approximately this product When the direction of rotation of the shaft 50 is reversed due to the previously-described change of engagement of the clutch member 18 with the clutch members 19 and 23. the change in direction of the reaction of the worm 9 on the worm 8 will cause the worm 8 to move axially along the shaft 50 in the space between the lower shoulder 57 and the upper shoulder 58. The final position of the worm 8 will be at an abutting location with one or other of the shoulders 57 or 58, thereby imparting to the worm gear 9 and the attached nozzle 10 a starting position on reversing the direction of angular movement which is non-coincident with their positions prior to reversal of direction of angular motion. due to lost motion in the gear train 52. 53. 55. 8a, 8. 9 as outlined above, and equal to about one-half of the effective pitch of the gear train. The non-coincident position of the nozzle at each reversal is advantageous in mitigating any tendency of the wash water jet leaving the nozzle 10 to make substantially repetitive wash patterns in the tank thereby further improving the thoroughness of washing that can be effected by the machine of the invention. It will be apparent to those skilled in the art that the worm 8 of the embodiment of FIGS. 1 to 6 can also bearranged for limited axial movement relative to the housing for the same purpose.
In FIG. 9. there are shown the flow apertures 60 at the end of the nozzle within the housing 5 through which wash water passes from regions 61 ofthe housing 5 to the nozzle 10. Wash water is supplied to the regions 6| from the wash water supply pipe 4. as shown in FIG. 8. via apertures 62 at the lower end of the pipe 4 within the rotatable housing 5 from which it passes into the spaces 63 of the housing 5 which communicate via apertures. not shown, with the regions 61. Although the manner in which wash water or other wash liquid is passed to the nozzle 10 has been particularly described with reference to FIGS. 8 and 9. it will be appreciated by those skilled in the art that the same or a similar arrangement can be used in other embodiments of the invention.
In the foregoing description. reference has been made only to the principal parts of the machines of the invention. but it will be understood by those skilled in the art that there will be other parts such as bearings between relatively rotatable parts. and glands and seals to prevent undesirable leakage of liquids.
It will be appreciated by those skilled in the art that features which have been described or mentioned with particular reference to one of the two illustrated embodiments may be incorporated in the other of the two embodiments. without departing from the invention as defined in the appended claims.
I claim;
I. A tank washing machine suitable for cleaning tanks of oil tankers, comprising a wash liquid supply pipe in communication with a nozzle housing rotatable about its longitudinal axis. a nozzle fixed to said nozzle housing. said nozzle being rotatable about an axis at an angle to its own longitudinal axis and at an angle to the axis of rotation of said housing. a turbine having tur bine blades actuated by the flow of wash liquid from said wash liquid supply pipe, means operably driven in response to the impingement of said wash liquid on said turbine blades and including program means for causing said tanks to be cleaned in accordance with a pre' determined programmed wash cycle. said program means operably connected for changing the speed of said turbine, and means connecting said turbine to drive said nozzle and nozzle housing for automatically varying the speed of each of said nozzle housing and said nozzle during operation as a function of said predetermined programmed wash cycle of said program means.
2. A machine according to claim I wherein the noz zle housing is co-axial with the wash liquid supply pipe.
3. A machine according to claim 2 wherein said turbine is located at the opposite end of said wash liquid supply pipe from said nozzle housing and is connected thereto by means of a rotatable shaft.
4. A machine according to claim 2 wherein the nozzle is rotatable about an axis disposed at an angle of to the axis of rotation of the nozzle housing.
51A machine according to claim 4 wherein the axis about which the nozzle is rotatable is disposed at substantially 90 to its longitudinal axis.
6. A machine according to claim 1 wherein said turbine blades have a variable pitch and said program means are operably connected therewith through means comprising a slidable rod co-axial with the axis of the turbine. and means for connecting said rod with said program means and said turbine blades so that sliding of said rod is in accordance with said program means for varying the pitch of said turbine blades in response thereto.
7. A machine according to claim 6 wherein said program means comprises a rotatable cam having profile correspomling to said predetermined programmed wash cycle. and liner means connected at one end for sensing said profile and at the opposite end for causing said rod to slide as a function of the sensed profile.
8. A machine according to claim 6 wherein the noz zle oscillates about its axis of rotation.
9. A machine according to claim 8 comprising a slid able and rotatable clutch member having faces at opposite ends thereto, each of said faces adapted to engage with two other rotatable clutch members respectively, and gear means connected to said other rotatable clutch members and to the nozzle and nozzle housing so that when an adjacent face of said slidable clutch member disengages front engagement with one of said other clutch members the opposite face thereof engages with the other of said clutch members which causes a reversal in the direction of rotation of the noz zle and nozzle housing.
10. A tank washing machine for cleaning storage tanks, comprising a nozzle having a longitudinal axis and mounted for pivotal movement about a first axis substantially perpendicular to said longitudinal axis. a housing for pivotally mounting said nozzle and being rotatable about a second axis disposed at an angle relative to said first axis. conduit means for supplying tank wash liquid to said nozzle. common drive means connected for rotating said housing and for causing said nozzle to pivot in a predetermined fixed angular veloc ity relationship, predetermined tank wash profile means for defining a desired automatic wash program for cleaning said tank, said tank wash profile means connected with said common drive means for regulating the speed thereof as a function of said tank wash profile means and for automatically varying the absolute rate of angular velocity of said housing and said nozzle in accordance with said tank wash profile means. said tank wash profile means comprising cam means having a cam surface defining said wash program. and cam follower means for tracking said cam surface and connected with said common drive means for regulating the speed thereof in response to the tracked cam surface.
Ill
II. A machine according to claim 10 wherein said common drive means includes a turbine actuated by the flow of wash liquid.
l2. A machine according to claim ll wherein said turbine includes turbine blades. and comprising lever means for varying the angle between said turbine blades and the direction of flow of wash liquid impinging thereon in accordance with the cam surface as sensed by said cam follower.
13. A machine according to claim [2 wherein said turbine blades have a variable pitch.
14. A machine according to claim 13 wherein said means for varying the relative angle between said tur bine blades and the wash liquid impinging thereon comprises a slidable rod coaxial with the axis of said turbine. and lever means connecting said rod to said turbine blades for causing the pitch of said turbine blades to vary in relation to the pitch of said turbine blades a vary in relation to the sliding movement ofsaid rod.
15. A machine according to claim 14 wherein said slidable rod is operably connected to a first end of pivotably mounted lever means. said lever means carrying at the opposite end thereof said cam follower means disposed in operable tracking contact with said cam surface.
16. A machine according to claim 15 wherein said cam means is rotatably mounted.
[7. A tank washing machine adapted for cleaning the interior of a cargo storage tank. comprising variable speed drive actuated by wash liquid, said speed varying automatically in accordance with a predetermined wash program for said tank, predetermined wash program means operably connected with said drive means for causing the speed of said drive means to automatically vary in accordance with said wash program for said tank, nozzle means for use in cleaning said tank and means connecting said drive means to said nozzle for automatically varying the speed thereof in accordance with said wash program whereby said tank is cleaned in a predetermined optimum manner.

Claims (17)

1. A tank washing machine suitable for cleaning tanks of oil tankers, comprising a wash liquid supply pipe in communication with a nozzle housing rotatable about its longitudinal axis, a nozzle fixed to said nozzle housing, said nozzle being rotatable about an axis at an angle to its own longitudinal axis and at an angle to the axis of rotation of said housing, a turbine having turbine blades actuated by the flow of wash liquid from said wash liquid supply pipe, means operably driven in response to the impingement of said wash liquid on said turbine blades and including program means for causing said tanks to be cleaned in accordance with a predetermined programmed wash cycle, said program means operably connected for changing the speed of said turbine, and means connecting said turbine to drive said nozzle and nozzle housing for automatically varying the speed of each of said nozzle housing and saiD nozzle during operation as a function of said predetermined programmed wash cycle of said program means.
2. A machine according to claim 1 wherein the nozzle housing is co-axial with the wash liquid supply pipe.
3. A machine according to claim 2 wherein said turbine is located at the opposite end of said wash liquid supply pipe from said nozzle housing and is connected thereto by means of a rotatable shaft.
4. A machine according to claim 2 wherein the nozzle is rotatable about an axis disposed at an angle of 90* to the axis of rotation of the nozzle housing.
5. A machine according to claim 4 wherein the axis about which the nozzle is rotatable is disposed at substantially 90* to its longitudinal axis.
6. A machine according to claim 1 wherein said turbine blades have a variable pitch and said program means are operably connected therewith through means comprising a slidable rod co-axial with the axis of the turbine, and means for connecting said rod with said program means and said turbine blades so that sliding of said rod is in accordance with said program means for varying the pitch of said turbine blades in response thereto.
7. A machine according to claim 6 wherein said program means comprises a rotatable cam having profile corresponding to said predetermined programmed wash cycle, and liner means connected at one end for sensing said profile and at the opposite end for causing said rod to slide as a function of the sensed profile.
8. A machine according to claim 6 wherein the nozzle oscillates about its axis of rotation.
9. A machine according to claim 8 comprising a slidable and rotatable clutch member having faces at opposite ends thereto, each of said faces adapted to engage with two other rotatable clutch members respectively, and gear means connected to said other rotatable clutch members and to the nozzle and nozzle housing so that when an adjacent face of said slidable clutch member disengages from engagement with one of said other clutch members the opposite face thereof engages with the other of said clutch members which causes a reversal in the direction of rotation of the nozzle and nozzle housing.
10. A tank washing machine for cleaning storage tanks, comprising a nozzle having a longitudinal axis and mounted for pivotal movement about a first axis substantially perpendicular to said longitudinal axis, a housing for pivotally mounting said nozzle and being rotatable about a second axis disposed at an angle relative to said first axis, conduit means for supplying tank wash liquid to said nozzle, common drive means connected for rotating said housing and for causing said nozzle to pivot in a predetermined fixed angular velocity relationship, predetermined tank wash profile means for defining a desired automatic wash program for cleaning said tank, said tank wash profile means connected with said common drive means for regulating the speed thereof as a function of said tank wash profile means and for automatically varying the absolute rate of angular velocity of said housing and said nozzle in accordance with said tank wash profile means, said tank wash profile means comprising cam means having a cam surface defining said wash program, and cam follower means for tracking said cam surface and connected with said common drive means for regulating the speed thereof in response to the tracked cam surface.
11. A machine according to claim 10 wherein said common drive means includes a turbine actuated by the flow of wash liquid.
12. A machine according to claim 11 wherein said turbine includes turbine blades, and comprising lever means for varying the angle between said turbine blades and the direction of flow of wash liquid impinging thereon in accordance with the cam surface as sensed by said cam follower.
13. A machine according to claim 12 wherein said turbine blades have a variable pitch.
14. A machine according to claim 13 wherein said means for varying the relative angle between said turbine bladEs and the wash liquid impinging thereon comprises a slidable rod co-axial with the axis of said turbine, and lever means connecting said rod to said turbine blades for causing the pitch of said turbine blades to vary in relation to the pitch of said turbine blades a vary in relation to the sliding movement of said rod.
15. A machine according to claim 14 wherein said slidable rod is operably connected to a first end of pivotably mounted lever means, said lever means carrying at the opposite end thereof said cam follower means disposed in operable tracking contact with said cam surface.
16. A machine according to claim 15 wherein said cam means is rotatably mounted.
17. A tank washing machine adapted for cleaning the interior of a cargo storage tank, comprising variable speed drive actuated by wash liquid, said speed varying automatically in accordance with a predetermined wash program for said tank, predetermined wash program means operably connected with said drive means for causing the speed of said drive means to automatically vary in accordance with said wash program for said tank, nozzle means for use in cleaning said tank and means connecting said drive means to said nozzle for automatically varying the speed thereof in accordance with said wash program, whereby said tank is cleaned in a predetermined optimum manner.
US354508A 1972-04-28 1973-04-25 Tank cleaning machine with selective wash programming Expired - Lifetime US3874594A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB1990772 1972-04-28

Publications (1)

Publication Number Publication Date
US3874594A true US3874594A (en) 1975-04-01

Family

ID=10137131

Family Applications (1)

Application Number Title Priority Date Filing Date
US354508A Expired - Lifetime US3874594A (en) 1972-04-28 1973-04-25 Tank cleaning machine with selective wash programming

Country Status (10)

Country Link
US (1) US3874594A (en)
JP (1) JPS5810156B2 (en)
CA (1) CA1002266A (en)
DE (1) DE2320916C2 (en)
ES (1) ES414110A1 (en)
FR (1) FR2182570A5 (en)
GB (1) GB1333338A (en)
NL (1) NL7305948A (en)
NO (1) NO145608C (en)
SE (1) SE402261B (en)

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272018A (en) * 1978-08-04 1981-06-09 Southern Refractories, Inc. Apparatus and method for spraying refractory material
US5279675A (en) * 1989-10-13 1994-01-18 Technische Universiteit Delft Method of, and apparatus for, cleaning a tank
WO1995021033A1 (en) * 1994-02-07 1995-08-10 Toftejorg A/S Method and apparatus for the cleaning of closed compartments
WO1997000142A1 (en) * 1995-06-15 1997-01-03 Toftejorg Technology A/S A method and an apparatus for washing the interior surfaces of tanks and containers
US5718382A (en) * 1994-10-24 1998-02-17 Jaeger; Ben E. Apparatus for cleaning vessels
US5720310A (en) * 1996-08-01 1998-02-24 Moulder; Jeffrey Ernest Tank car cleaning and rinsing apparatus and method
US5954271A (en) * 1994-10-28 1999-09-21 Gamajer Cleaning Systems, Inc. Fluid driven tank cleaning apparatus
US6021793A (en) * 1996-08-01 2000-02-08 Moulder; Jeffrey Ernest Tank car cleaning and rinsing apparatus and method
US6039056A (en) * 1996-04-03 2000-03-21 Verbeek; Diederik Geert Computer controlled apparatus and method for the cleaning of tanks
US6105593A (en) * 1998-05-22 2000-08-22 Jet, Inc. Fixed film media cleaner apparatus and method
US6123271A (en) * 1998-12-23 2000-09-26 Gamajet Cleaning Systems, Inc. Vessel cleaning apparatus
US6447377B1 (en) * 2001-10-12 2002-09-10 Cae Alpheus, Inc. Dry ice blasting gun with adjustable handle
US6561199B2 (en) 2001-05-31 2003-05-13 Gamajet Cleaning Systems, Inc. Cleaning apparatus especially adapted for cleaning vessels used for sanitary products, and method of using same
US6591847B1 (en) * 1998-10-05 2003-07-15 Aarne Hurskainen Arrangement for a process washing apparatus
US6651681B1 (en) * 1998-10-05 2003-11-25 Aarne Hurskainen Method and apparatus for washing surfaces of a process device
US20040089329A1 (en) * 2000-12-12 2004-05-13 Bijster Johannes C. H. Apparatus for cleaning containers
US20060243307A1 (en) * 2003-05-22 2006-11-02 Lars Jinback Device for interior flushing of tanks or containers
US20080047587A1 (en) * 2006-08-22 2008-02-28 Ball David M Method and apparatus for cleaning tanks and other containers
US20080142042A1 (en) * 2006-12-19 2008-06-19 Spraying Systems Co. Automated tank cleaning and monitoring device
US20080247861A1 (en) * 2004-06-23 2008-10-09 Alfa Laval Tank Equipment A/S Drive Unit In Particular For Use In Connection With Tank Cleaning Equipment
US20100132138A1 (en) * 2005-12-30 2010-06-03 Alfa Laval Tank Equipment A/S Drive System For A Cleaning Head Disposed In A Tank
US20100265787A1 (en) * 2007-09-25 2010-10-21 The Trustees of the La Strada No. 2 Trust, a New Zeland trust, the trustees comprising Richard Stan Automated food mixer cleaning system
US20110036381A1 (en) * 2009-08-13 2011-02-17 Michael Shawn Zilai Articulating and rotary cleaning nozzle spray system and method
EP2440340A1 (en) * 2009-06-08 2012-04-18 Scanjet Marine AB Device for cleaning closed spaces
US20140299159A1 (en) * 2011-10-18 2014-10-09 Peter Helm Cooking appliance with a pan and a method for cleaning the pan
US20150321299A1 (en) * 2013-01-28 2015-11-12 Mitsubishi Heavy Industries, Ltd. Water jet peening device
DE102017115837A1 (en) 2017-07-14 2019-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for cleaning the interior wall of a cavity
US10449563B2 (en) 2015-12-22 2019-10-22 Bay Worx Laboratories, Llc Multi-axis articulating and rotary spray system and method
EP3829780B1 (en) 2018-07-27 2022-09-07 Oreco A/S Nozzle arrangement for injecting liquid into a tank
US12023718B2 (en) 2022-06-24 2024-07-02 Path Environmental Technology, LLC Apparatus for cleaning a surface with a liquid jet and related methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS512092B2 (en) * 1971-10-22 1976-01-23
DE2645401C2 (en) * 1976-10-08 1983-11-17 Otto 2059 Büchen Tuchenhagen Tank cleaner
JPS54167568U (en) * 1978-05-15 1979-11-26
JPS5522571A (en) * 1978-08-08 1980-02-18 Sansui Shoji Kk Oil tanker flushing apparatus
JPS56126284U (en) * 1980-02-27 1981-09-25
DK0723909T4 (en) * 1995-01-30 2003-07-07 Jinbaeck Lars H sluicing
CN102489483B (en) * 2011-12-15 2013-09-11 铁岭市九鼎模具有限公司 Cleaning gun for oil tanks

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3092186A (en) * 1962-01-04 1963-06-04 James K Maclean Variable pitch propeller mechanism
US3292863A (en) * 1962-09-28 1966-12-20 Butterworth System Inc Tank washer employing an impeller bracking means
US3295610A (en) * 1965-10-24 1967-01-03 Frias Robert Automatic propeller pitch control and adaptor
US3326468A (en) * 1965-03-19 1967-06-20 Cloud Co Tank cleaning machine employing a piston actuated hydraulic clutch
US3601136A (en) * 1968-12-12 1971-08-24 Samuel Hodge & Sons Ltd Tank-washing equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4325888Y1 (en) * 1966-04-27 1968-10-29
GB1199391A (en) * 1968-01-09 1970-07-22 Dasic Equipment Ltd Improvements in Machines for Internally Washing Hollow Structures.
US3472451A (en) * 1968-01-19 1969-10-14 Butterworth System Inc Tank washing apparatus
US3544012A (en) * 1968-08-26 1970-12-01 Michael Mcnally Pressure jet tank cleaner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3092186A (en) * 1962-01-04 1963-06-04 James K Maclean Variable pitch propeller mechanism
US3292863A (en) * 1962-09-28 1966-12-20 Butterworth System Inc Tank washer employing an impeller bracking means
US3326468A (en) * 1965-03-19 1967-06-20 Cloud Co Tank cleaning machine employing a piston actuated hydraulic clutch
US3295610A (en) * 1965-10-24 1967-01-03 Frias Robert Automatic propeller pitch control and adaptor
US3601136A (en) * 1968-12-12 1971-08-24 Samuel Hodge & Sons Ltd Tank-washing equipment

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4272018A (en) * 1978-08-04 1981-06-09 Southern Refractories, Inc. Apparatus and method for spraying refractory material
US5279675A (en) * 1989-10-13 1994-01-18 Technische Universiteit Delft Method of, and apparatus for, cleaning a tank
WO1995021033A1 (en) * 1994-02-07 1995-08-10 Toftejorg A/S Method and apparatus for the cleaning of closed compartments
US5715852A (en) * 1994-02-07 1998-02-10 Toftejorg A/S Method and apparatus for the cleaning of closed compartments
US5718382A (en) * 1994-10-24 1998-02-17 Jaeger; Ben E. Apparatus for cleaning vessels
US5954271A (en) * 1994-10-28 1999-09-21 Gamajer Cleaning Systems, Inc. Fluid driven tank cleaning apparatus
US5896871A (en) * 1995-06-15 1999-04-27 Toftejorg Technology A/S Method for washing the interior surfaces of tanks and containers
WO1997000142A1 (en) * 1995-06-15 1997-01-03 Toftejorg Technology A/S A method and an apparatus for washing the interior surfaces of tanks and containers
US6039056A (en) * 1996-04-03 2000-03-21 Verbeek; Diederik Geert Computer controlled apparatus and method for the cleaning of tanks
US5720310A (en) * 1996-08-01 1998-02-24 Moulder; Jeffrey Ernest Tank car cleaning and rinsing apparatus and method
US6021793A (en) * 1996-08-01 2000-02-08 Moulder; Jeffrey Ernest Tank car cleaning and rinsing apparatus and method
US6105593A (en) * 1998-05-22 2000-08-22 Jet, Inc. Fixed film media cleaner apparatus and method
US6591847B1 (en) * 1998-10-05 2003-07-15 Aarne Hurskainen Arrangement for a process washing apparatus
US6651681B1 (en) * 1998-10-05 2003-11-25 Aarne Hurskainen Method and apparatus for washing surfaces of a process device
US6123271A (en) * 1998-12-23 2000-09-26 Gamajet Cleaning Systems, Inc. Vessel cleaning apparatus
US20040089329A1 (en) * 2000-12-12 2004-05-13 Bijster Johannes C. H. Apparatus for cleaning containers
US6561199B2 (en) 2001-05-31 2003-05-13 Gamajet Cleaning Systems, Inc. Cleaning apparatus especially adapted for cleaning vessels used for sanitary products, and method of using same
US6447377B1 (en) * 2001-10-12 2002-09-10 Cae Alpheus, Inc. Dry ice blasting gun with adjustable handle
US7713359B2 (en) * 2003-05-22 2010-05-11 Scanjet Marine Ab Device for interior flushing of tanks or containers
US20060243307A1 (en) * 2003-05-22 2006-11-02 Lars Jinback Device for interior flushing of tanks or containers
US8277572B2 (en) * 2004-06-23 2012-10-02 Alfa Laval Tank Equipment A/S Drive unit in particular for use in connection with tank cleaning equipment
US20080247861A1 (en) * 2004-06-23 2008-10-09 Alfa Laval Tank Equipment A/S Drive Unit In Particular For Use In Connection With Tank Cleaning Equipment
US20100132138A1 (en) * 2005-12-30 2010-06-03 Alfa Laval Tank Equipment A/S Drive System For A Cleaning Head Disposed In A Tank
US9023157B2 (en) 2005-12-30 2015-05-05 Alfa Laval Tank Equipment A/S Drive system for a cleaning head disposed in a tank
US20080047587A1 (en) * 2006-08-22 2008-02-28 Ball David M Method and apparatus for cleaning tanks and other containers
US20080142042A1 (en) * 2006-12-19 2008-06-19 Spraying Systems Co. Automated tank cleaning and monitoring device
US9302301B2 (en) * 2006-12-19 2016-04-05 Spraying Systems Co. Automated tank cleaning and monitoring device
US20100265787A1 (en) * 2007-09-25 2010-10-21 The Trustees of the La Strada No. 2 Trust, a New Zeland trust, the trustees comprising Richard Stan Automated food mixer cleaning system
US8585276B2 (en) 2007-09-25 2013-11-19 The Trustees of the La Strada No. 2 Trust Automated food mixer cleaning system
EP2440340A1 (en) * 2009-06-08 2012-04-18 Scanjet Marine AB Device for cleaning closed spaces
EP2440340A4 (en) * 2009-06-08 2012-11-21 Scanjet Marine Ab Device for cleaning closed spaces
US20110036381A1 (en) * 2009-08-13 2011-02-17 Michael Shawn Zilai Articulating and rotary cleaning nozzle spray system and method
US8181890B2 (en) * 2009-08-13 2012-05-22 Nanoworx, LLC Articulating and rotary cleaning nozzle spray system and method
US20140299159A1 (en) * 2011-10-18 2014-10-09 Peter Helm Cooking appliance with a pan and a method for cleaning the pan
US10589325B2 (en) * 2011-10-18 2020-03-17 MKN Maschinenfabrik Kurt Neubauer GmbH & Co. KG Cooking appliance with a pan and a method for cleaning the pan
US20150321299A1 (en) * 2013-01-28 2015-11-12 Mitsubishi Heavy Industries, Ltd. Water jet peening device
US9914186B2 (en) * 2013-01-28 2018-03-13 Mitsubishi Heavy Industries, Ltd. Water jet peening device
US10449563B2 (en) 2015-12-22 2019-10-22 Bay Worx Laboratories, Llc Multi-axis articulating and rotary spray system and method
US11648578B2 (en) 2015-12-22 2023-05-16 Trinity Bay Worx, Llc Multi-axis articulating and rotary spray system and method
DE102017115837A1 (en) 2017-07-14 2019-01-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Apparatus and method for cleaning the interior wall of a cavity
DE102017115837B4 (en) 2017-07-14 2024-04-11 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Device and method for cleaning the inner wall of a cavity
EP3829780B1 (en) 2018-07-27 2022-09-07 Oreco A/S Nozzle arrangement for injecting liquid into a tank
US11992864B2 (en) 2018-07-27 2024-05-28 Oreco A/S Nozzle arrangement for injecting liquid into a tank
US12023718B2 (en) 2022-06-24 2024-07-02 Path Environmental Technology, LLC Apparatus for cleaning a surface with a liquid jet and related methods

Also Published As

Publication number Publication date
CA1002266A (en) 1976-12-28
DE2320916C2 (en) 1983-12-01
JPS4948165A (en) 1974-05-10
ES414110A1 (en) 1976-02-01
SE402261B (en) 1978-06-26
DE2320916A1 (en) 1973-11-08
JPS5810156B2 (en) 1983-02-24
NO145608C (en) 1982-04-28
GB1333338A (en) 1973-10-10
NO145608B (en) 1982-01-18
NL7305948A (en) 1973-10-30
FR2182570A5 (en) 1973-12-07

Similar Documents

Publication Publication Date Title
US3874594A (en) Tank cleaning machine with selective wash programming
US3472451A (en) Tank washing apparatus
KR100373605B1 (en) Cleaning device for cleaning the inside of a closed tank
EP0879097B1 (en) A method and an apparatus for washing the interior surfaces of tanks and containers
US3420444A (en) Apparatus for washing the cargo tanks of ships,particularly oil tankers
US2714080A (en) Tank cleaning device and method
US5333630A (en) Apparatus for the cleaning of a closed compartment
US3326468A (en) Tank cleaning machine employing a piston actuated hydraulic clutch
US3878857A (en) Apparatus for cleaning tanks and the like
US5415350A (en) Water spraying device for tableware washer
US20030137895A1 (en) Method and a process plant for treating a batch of liquids
US5351885A (en) Liquid jetting apparatus including position change and detector mechanisms
US5279675A (en) Method of, and apparatus for, cleaning a tank
US3601136A (en) Tank-washing equipment
US2914255A (en) Lawn sprinkler
US3464632A (en) Hydraulic tank cleaning apparatus
US3292863A (en) Tank washer employing an impeller bracking means
JPH05317826A (en) Method for cleaning tank
US2991203A (en) Method and apparatus for cleaning the interior of a tank
US3451623A (en) Lawn sprinkler
US2691549A (en) Cleaning machine
US2078568A (en) Apparatus for washing tanks
GB2096455A (en) Tank washing machine
US3319889A (en) Method for automatically controlling the rotating speed of a liquid distributor
JP2000140785A (en) Liquid jet device and tank cleaning